Computational Mechanics

Edited by
University of Hong Kong
Three-dimensional computational study of asymmetric flows using Navier-Stokes equations

T.-C. Wong & O.A. Kandil
Department of Mechanical Engineering and Mechanics, Old Dominion University, Norfolk, Va., USA
C.H. Liu
Theoretical Flow Physics Branch, NASA Langley Research Center, Hampton, Va., USA

ABSTRACT: The unsteady, compressible, thin-layer Navier-Stokes equations are used to obtain three-dimensional, asymmetric, vortex-flow solutions around cones and cone-cylinder configurations. The equations are solved using an implicit, upwind, flux-difference splitting, finite-volume scheme. The computational applications cover asymmetric flows around a 5° semi-apex angle cone of unit length at various Reynolds number. Next, a cylindrical afterbody of various length is added to the conical forebody to study the effect of the length of cylindrical afterbody on the flow asymmetry. All the asymmetric flow solutions are obtained by using a short-duration side-slip disturbance.

1. INTRODUCTION
The problem of asymmetric vortex-flow around slender bodies has received considerable attention by researchers in the computational fluid dynamics area [1-3] and by researchers in the experimental fluid dynamics area [4-6]. The problem is of vital importance to the dynamic stability and controllability of missiles and fighter aircraft. When flow asymmetry develops, it produces side forces, asymmetric lifting forces and corresponding yawing, rolling and pitching moments that might be larger than those available by the control system of the vehicle.

In several recent papers by the present authors [1, 2], the unsteady, thin-layer, compressible Navier-Stokes equations have been used to simulate steady and unsteady, asymmetric vortex flows, including their passive control, around cones with different cross-sectional shapes. The emphasis of these papers was extensive computational studies of the parameters which influence the asymmetric flow phenomenon and its passive control. Since the computational cost associated with the solution of three-dimensional-flow problems with reasonable flow resolution is very expensive, all the computational solutions were obtained using a locally-conical flow assumption. Such an assumption reduces the problem solution to that on two conical planes, which are in close proximity of each other, and hence it reduces the computational cost by an order of magnitude. Moreover, such solutions still provide extensive understanding of the flow physics since one can use very fine grids for reasonable flow resolution. In the present paper, we focus on the three-dimensional asymmetric flow problem using a very fine grid with high resolution near the solid boundary.

2. FORMULATION AND COMPUTATIONAL SCHEME HIGHLIGHTS
The conservative form of the dimensionless, unsteady, compressible, thin-layer Navier-Stokes equations in terms of time-independent, body-conformed coordinates are used. The implicit, upwind, flux-difference splitting finite-volume scheme is used to solve the unsteady, compressible, thin-layer Navier-Stokes equations. The scheme uses the flux-difference splitting scheme of Roe which is based on the solution of the approximate Riemann problem. Boundary conditions are explicitly implemented. At the plane of geometric symmetry, periodic conditions are used.
Figure 1. Asymmetric flow solution around a cone of unit length, short-duration side slip.

$$\alpha = 40^\circ$$

$$M_\infty = 1.4$$

$$R_n = 8 \times 10^6$$

Figure 2. Asymmetric flow solution around a cone of unit length, short-duration side slip.
conditions are specified at the inflow boundaries and first-order extrapolation of the flow variables is used at the outflow boundaries. The conical shock enclosing the body is captured as part of the solution. On the solid boundary, the no-slip and no-penetration conditions are enforced and the normal pressure gradient is set equal to zero. For the temperature, the adiabatic boundary condition is enforced at the solid boundary. The initial conditions correspond to the freestream conditions with the no-slip and no-penetration conditions on the solid boundary.

3. COMPUTATIONAL APPLICATIONS AND DISCUSSIONS

Circular Cone

A 5°-semi-apex angle circular cone of unit length (cone length is the characteristic length) is considered. This is the same circular cone which was considered by the authors in Ref. 1 for the locally-conical flow solutions. A three-dimensional grid of 161×81x65 in the wrap around, normal and axial directions, respectively, is generated by using a modified Joukowski transformation at axial stations. The grid is clustered algebraically in the normal direction of the body using a geometric series with minimum grid spacing of 10^{-6} at the cone vertex and 10^{-5} at the axial station of unit length. The cross-flow grid size of 161×81 is the same grid size which was used for the locally-conical flow solutions of Ref. 1.

With the flow conditions set at α = 20°, M_∞ = 1.8 and Re = 10^5, which are the same conditions as those of the locally-conical flow of Ref. 1, the three-dimensional solution produces a symmetric steady flow, unlike the locally-conical solution which produces asymmetric steady flow. Next, the search is directed at obtaining asymmetric flow solutions for the three-dimensional cone flow. In Fig. 1, we show the solution in the form of total-pressure loss for the same cone at α = 40°, M_∞ = 1.4 and Re = 4×10^6. It is seen that the solution is asymmetric and is nearly self-similar over a long axial distance of the cone length. This solution is obtained using a short-duration side-slip
Figure 4. Total-pressure-loss contours and surface-pressure coefficient at different axial stations, a cone of unit length, $\alpha = 40^\circ$, $M_\infty = 1.4$, $Re = 8 \times 10^6$.

Figure 5. Asymmetric flow solution around a cone-cylinder configuration 1:1.
disturbance. When the residual error drops four orders of magnitude, a 2°-side-slip disturbance is applied for 100 iteration steps, then it is removed. Thereafter, the pseudo time stepping is continued until the residual error drops again four to five orders of magnitude and a stable asymmetric solution is obtained.

Figure 2 shows the total-pressure-loss solution for the same cone for a higher Reynolds number, \(Re = 8 \times 10^6 \). The asymmetry of the vortex flow becomes much stronger as compared with the previous case. The flow asymmetry of this case changes sides along the axial distance and a complete wave length of flow asymmetry is formed between the third and ninth cross-flow planes. Strong spatially shed vortices exist in the flowfield. This solution is qualitatively similar to the unsteady asymmetric locally-conical flow solution at different time steps [1] which is depicted in Fig. 3 on a cylinder with the axis of the cylinder representing time. The behavior of the flow asymmetry over one period in Fig. 3 is qualitatively similar to the behavior of the flow asymmetry over one wave length in Fig. 2. Figure 4 shows the total-pressure-loss contours and surface-pressure coefficient at different axial stations for the case of Fig. 2. The solutions at axial stations of \(X/L = 0.2 \) and \(0.9 \) are almost the same (the total pressure losses are drawn to a scale given by the ratio of the circular diameters at \(X/L = 1 \) station and the local axial station). The flow asymmetry between these two stations represents a full wave length.
Circular Cone-Cylinder Configurations

To address the issue of the effect of cylindrical afterbody length on the flow asymmetry a cylindrical afterbody of different lengths is added to the unit-length conical forebody. The flow around the resulting cone-cylinder configurations is solved with the flow conditions of $\alpha = 40^\circ$, $M_\infty = 1.4$ and $Re = 4 \times 10^6$, which are the same flow conditions of the isolated unit-length cone of Fig. 1. The lengths of the cylindrical afterbody are chosen as 1, 1.5 and 2. The source of flow disturbance is the same short-duration 2°-side-slip disturbance. For the cone-cylinder configuration of 1:1 (cone length: cylinder length), Fig. 5 shows a very strong asymmetric flow on the cone, in comparison with the flow asymmetry of the isolated cone of Fig. 1, and on the cylindrical afterbody as well. It should be noted that inside the conical shock surrounding the cone-cylinder configuration, subsonic flow regions exist and hence the downstream cylindrical-afterbody boundary has an upstream effect. The cylindrical afterbody has dual effects which increase the flow asymmetry; the first is due to the cone-cylinder juncture and the second is due to the increase of the local angle of attack of the leeward side of the cylinder. Both of these effects increase the spatial growth of the flow asymmetry. For the cone-cylinder configurations of 1:1.5 and 1:2, the asymmetry is strong and the flow becomes unsteady [Ref. 3].

Next, we show a comparison of the computed results with available experimental data. For this purpose, we consider the cone-cylinder configuration of 0.5:0.5 which was experimentally tested by Landrum5. The configuration angle of attack is 46.1°, the Mach number is 1.6 and the Reynolds number based on the total configuration length (cone + cylinder) is 6.6×10^6. The cone semi-apex angle is 9.5°. The problem is solved using a grid size of $161 \times 81 \times 65$. Figure 6 shows the surface-pressure coefficient along with the experimental data, the total-pressure-loss contours and the total Mach-number contours at the axial stations of 0.475 and 0.775. The computed and measured surface-pressure coefficient are in good agreement on all the axial stations. The asymmetry changes sides in the downstream direction as it is shown by the results of axial stations at 0.475 and 0.775. This comparison conclusively validates our computed results and the grid size.

4. CONCLUDING REMARKS

Several important issues are addressed in the present study. By increasing the flow Reynolds number for flows around a cone, we have shown that the flow asymmetry becomes strong and changes sides in the downstream direction. For the high-Reynolds flows, the spatial asymmetric flow develops in a wavy manner, which is qualitatively similar to the temporal asymmetric flow development of the locally-conical solutions, where the flow asymmetry develops in a periodic manner. By adding a cylindrical afterbody to the conical forebody, the flow asymmetry becomes stronger in comparison with that of the isolated cone. As the length of the cylindrical afterbody is increased, the flow asymmetry becomes stronger and unsteady. Finally, the computed results and grid used are conclusively validated.

ACKNOWLEDGEMENT

This research work is supported by the NASA Langley Research Center under Grant No. NAG-1–994. The computations have been carried out using the CRAY 2 (Voyger) of the NASA Langley Research Center.

REFERENCES

Prediction of Steady and Unsteady Asymmetric Vortical Flows Around Circular Cones
O. A. Kandil, T.-C. Wong, C. H. Liu

Reprinted from AIAA Journal
Volume 29, Number 12, December 1991, Pages 2169-2178

A publication of the American Institute of Aeronautics and Astronautics, Inc.
The Aerospace Center, 370 L'Enfant Promenade, SW Washington, DC 20024-2518
Prediction of Steady and Unsteady Asymmetric Vortical Flows Around Circular Cones

Osama A. Kandil* and Tin-Chee Wong†
Old Dominion University, Norfolk, Virginia 23529
and
C. H. Liu‡
NASA Langley Research Center, Hampton, Virginia 23665

Steady and unsteady, supersonic asymmetric vortical flows and their passive control around circular cones are considered in this paper. These problems are formulated by using the unsteady, compressible, single and double, thin-layer, Navier-Stokes equations. The equations are solved by using an implicit, upwind, flux-difference splitting, finite-volume scheme, either in a pseudotime stepping or in an accurate time stepping. An implicit, approximately factored, central-difference, finite-volume scheme has also been used to validate some applications of the upwind scheme. Local conical flows are assumed for the computational applications presented in this paper. Steady asymmetric vortical flows have been predicted by using random and controlled disturbances. Unsteady asymmetric vortex-shedding flows have also been predicted, for the first time, using time-accurate solutions with two different computational schemes. Control of flow asymmetry has been demonstrated computationally by inserting a vertical fin in the leeward plane of geometric symmetry.

Introduction

In the high angle of attack (AOA) range, the separated vortical flow from forebodies of missiles and fighter aircraft may become asymmetric, producing large abrupt changes in force and moment coefficients. These abrupt changes may exceed the available controllability and lead to missile and aircraft spin. Experimental studies of several researchers have identified four distinct flow patterns about slender bodies through a wide AOA range and zero-degree side slip. The first pattern develops in the very small AOA range, where the flow is attached and the axial flow is dominant. In the intermediate AOA range, the crossflow becomes of the same order of magnitude as that of the axial flow, the flow separates on the leeward side, and a symmetric vortex pair is formed. As the AOA reaches a high range, the symmetric vortex pair becomes asymmetric, and the flows stay steady. For this asymmetric vortex-flow pattern to occur, it is not a necessary condition to have asymmetric separation lines on the leeward side of the body. The fourth flow pattern develops at a very high AOA range, where asymmetric time-dependent vortex shedding occurs either randomly or periodically, similar to the von Kármán vortex street in two-dimensional flows around cylinders.

For isolated pointed forebodies, the onset of vortical flow asymmetry occurs when the relative incidence (ratio of AOA to nose semi-apex angle) exceeds a certain value; e.g., for a pointed circular cone, the relative incidence must be higher than two. However, the relative incidence value is not the only determinable parameter for the onset of vortical flow asymmetry. The onset of vortical flow asymmetry is also a function of the freestream Mach number and Reynolds number and the shape of the body cross-sectional area as well. Asymmetric vortical flow and vortex shedding have also been documented for delta wings at very high relative incidences and low subsonic regimes.

For the critical values of the relative incidence, Mach number and Reynolds number, and the shape of cross-sectional area, the symmetric flow is unstable. Any small flow disturbance in the form of a transient side slip, acoustic disturbance, or similar source of disturbances causes flow instability that produces, depending on the flow conditions, either a steady asymmetric vortical flow or an unsteady asymmetric flow with vortex shedding. In this paper, we present an extensive computational study of the steady asymmetric vortical flow and unsteady asymmetric flow with vortex shedding to address some of the influential parameters as the relative incidence and Mach number.

As the experimental work shows, the mechanisms that lead to asymmetric vortex wake are not well understood. However, two mechanisms have been established for explaining the evolution of flow asymmetry. The first mechanism applies to both laminar and fully turbulent flows. It suggests that flow asymmetry occurs due to instability of the velocity profiles in the vicinity of the enclosing saddle points that exist in the crossflow planes above the body primary vortices. The second mechanism suggests that flow asymmetry occurs due to asymmetric transition of the boundary-layer flow either at the nose in the axial direction or on both sides of the body in the crossflow planes. For pointed slender bodies, the first mechanism produces higher side forces than those produced by the second mechanism. These results have conclusively been shown through the experimental work of Lamont on 2-diam and 3.5-diam tangent ogive noses with cylindrical afterbody. An extensive review of the steady and unsteady vortex-induced asymmetric loads is given by Ericsson and Reding in Ref. 11.

Several attempts have been carried out to computationally simulate asymmetric vortical flows around slender bodies of revolution. Early computational work on conical flows has been published in Refs. 14 and 15. Graham and Hankey presented the first three-dimensional Navier-Stokes computations for asymmetric flow around a cone-cylinder body at 20.
deg angle of attack, 1.6 freestream Mach number, and 0.4×10^6 Reynolds number. The MacCormack explicit finite difference scheme was used for the computations on a relatively coarse grid of $26 \times 30 \times 60$. A very small perturbation is induced by the truncation error of finite difference algorithm that triggers an instability of the saddle point above the body (first mechanism for asymmetry). Hence, the instability is induced by numerical bias that is physically amplified to produce flow asymmetry. By switching the order of spatial differencing in the predictor and corrector sweeps, the asymmetry was reversed.

Degani and Schiff used the thin-layer, Reynolds-averaged, Navier-Stokes equations to compute asymmetrical vortical flow around an ogive-cylinder body. They found that flow asymmetry can be obtained by introducing an asymmetric disturbance to the body nose. The disturbance they used was in the form of a small jet that was blown from one side of the body near the nose. However, when the jet was turned off, the numerical solution unfortunately showed that the flow recovered its symmetry. The authors of the present paper believe that the problem is attributed to the smallest scale of the grid at the solid boundary and the damping effect of the numerical dissipation in the axial direction, in addition to the grid-fineness distribution.

Marconi used the Euler equations to solve for supersonic flow past a circular cone in conjunction with a "forced separation model," which was used by Dyer, et al. The pseudo-time stepping was carried out until the residual error reached machine zero while the flow was symmetric. Proceeding with the time stepping, vortex-flow asymmetry was obtained and stayed stable thereafter. It is believed that the asymmetry was triggered by the machine round-off error, which acted as a disturbance to the saddle point in the flowfield. In a later paper, Siclari and Marconi used the full Navier-Stokes equations to solve for supersonic asymmetric flows around a 5-deg semiapex angle cone over a wide range of angles of attack.

Very recently, Stahl conducted experimental studies of the low-speed flow around a circular cone of 8-deg semiapex angle with 2 and 3, respectively. The last element of Eq. (5) is given by

$$
\partial_t \xi^l = \frac{M_m \mu}{\rho} \left(\psi \partial\xi^l + \frac{\partial u_1}{\partial \xi^l} \right)
$$

where

$$
\phi = \partial_t \xi^l \partial_\xi^l, \quad \psi = \frac{1}{2} \partial_t \xi^l \frac{\partial u_1}{\partial \xi^l}
$$

The second and third elements of the momentum elements are obtained by replacing the subscript 1, everywhere in Eq. (7), with 2 and 3, respectively. The last element of Eq. (5) is given by

$$
\partial_t \xi^l (u_{1e} \tau_{1e} - q_1) = \frac{M_m \mu}{\rho} \left(W + \phi \left[\frac{1}{2} \frac{\partial (u_2^2 + u_3^2)}{\partial \xi^l} \right] + \frac{1}{(1 - \psi)} \frac{\partial (u_2^2)}{\partial \xi^l} \right)
$$

where

$$
W = \partial_t \xi^l u_n
$$

For Eq. (4), in the case of double thin-layer, Navier-Stokes equations, the elements are given by equations similar to Eqs. (7-10) with the exception of replacing ξ^l by ξ^2. The double thin-layer, Navier-Stokes equations are used only for the passive control of flow asymmetry since the existence of the fin creates a second thin layer that is perpendicular to the cone thin layer. The reference parameters for the dimensionless form of the equations are $L, a_m, L/a_m, \mu_m$, and μ_m for the length, velocity, time, density, and molecular viscosity, respectively. The Reynolds number is defined as $Re = \rho_m V_m L / \mu_m$, and the pressure p is related to the total energy per unit mass and density by the gas equation

$$
p = (\gamma - 1) \rho [e - \frac{1}{2} (u_1^2 + u_2^2 + u_3^2)]
$$

The viscosity is calculated from the Sutherland law

$$
\mu = \frac{T^{\gamma/2}}{C T + c}, \quad C = 0.4317
$$

and the Prandtl number $P_r = 0.72$.

In Eqs. (1-10), the indicial notation is used for convenience. Hence, the subscript k and n are summation indices, the superscript or subscript s is a summation index, and the superscript ν. The first element of the three momentum elements of Eq. (5) is given by

$$
\partial_t \xi^l = \frac{M_m \mu}{\rho} \left(\psi \partial\xi^l + \frac{\partial u_1}{\partial \xi^l} \right)
$$

For Eq. (4), in the case of double thin-layer, Navier-Stokes equations, the elements are given by equations similar to Eqs. (7-10) with the exception of replacing ξ^l by ξ^2. The double thin-layer, Navier-Stokes equations are used only for the passive control of flow asymmetry since the existence of the fin creates a second thin layer that is perpendicular to the cone thin layer. The reference parameters for the dimensionless form of the equations are $L, a_m, L/a_m, \mu_m$, and μ_m for the length, velocity, time, density, and molecular viscosity, respectively. The Reynolds number is defined as $Re = \rho_m V_m L / \mu_m$, and the pressure p is related to the total energy per unit mass and density by the gas equation

$$
p = (\gamma - 1) \rho [e - \frac{1}{2} (u_1^2 + u_2^2 + u_3^2)]
$$

The viscosity is calculated from the Sutherland law

$$
\mu = \frac{T^{\gamma/2}}{C T + c}, \quad C = 0.4317
$$

and the Prandtl number $P_r = 0.72$.

In Eqs. (1-10), the indicial notation is used for convenience. Hence, the subscript k and n are summation indices, the superscript or subscript s is a summation index, and the superscript ν. The first element of the three momentum elements of Eq. (5) is given by

$$
\partial_t \xi^l = \frac{M_m \mu}{\rho} \left(\psi \partial\xi^l + \frac{\partial u_1}{\partial \xi^l} \right)
$$

For Eq. (4), in the case of double thin-layer, Navier-Stokes equations, the elements are given by equations similar to Eqs. (7-10) with the exception of replacing ξ^l by ξ^2. The double thin-layer, Navier-Stokes equations are used only for the passive control of flow asymmetry since the existence of the fin creates a second thin layer that is perpendicular to the cone thin layer. The reference parameters for the dimensionless form of the equations are $L, a_m, L/a_m, \mu_m$, and μ_m for the length, velocity, time, density, and molecular viscosity, respectively. The Reynolds number is defined as $Re = \rho_m V_m L / \mu_m$, and the pressure p is related to the total energy per unit mass and density by the gas equation

$$
p = (\gamma - 1) \rho [e - \frac{1}{2} (u_1^2 + u_2^2 + u_3^2)]
$$

The viscosity is calculated from the Sutherland law

$$
\mu = \frac{T^{\gamma/2}}{C T + c}, \quad C = 0.4317
$$

and the Prandtl number $P_r = 0.72$.

In Eqs. (1-10), the indicial notation is used for convenience. Hence, the subscript k and n are summation indices, the superscript or subscript s is a summation index, and the superscript ν. The first element of the three momentum elements of Eq. (5) is given by

$$
\partial_t \xi^l = \frac{M_m \mu}{\rho} \left(\psi \partial\xi^l + \frac{\partial u_1}{\partial \xi^l} \right)
$$

For Eq. (4), in the case of double thin-layer, Navier-Stokes equations, the elements are given by equations similar to Eqs. (7-10) with the exception of replacing ξ^l by ξ^2. The double thin-layer, Navier-Stokes equations are used only for the passive control of flow asymmetry since the existence of the fin creates a second thin layer that is perpendicular to the cone thin layer. The reference parameters for the dimensionless form of the equations are $L, a_m, L/a_m, \mu_m$, and μ_m for the length, velocity, time, density, and molecular viscosity, respectively. The Reynolds number is defined as $Re = \rho_m V_m L / \mu_m$, and the pressure p is related to the total energy per unit mass and density by the gas equation

$$
p = (\gamma - 1) \rho [e - \frac{1}{2} (u_1^2 + u_2^2 + u_3^2)]
$$

The viscosity is calculated from the Sutherland law

$$
\mu = \frac{T^{\gamma/2}}{C T + c}, \quad C = 0.4317
$$

and the Prandtl number $P_r = 0.72$.
script or subscript m is a free index. The range of k, n, s, and m is $1-3$, and $\delta = \mathcal{O}(\delta_{k,s})$.

Boundary conditions are explicitly implemented. They include inflow-outflow conditions and solid-boundary conditions. At the plane of geometric symmetry, periodic conditions are used for symmetric or asymmetric flow applications on the whole computational domain (right and left domains). At the far-field inflow boundaries, freestream conditions are specified since we are dealing with supersonic flows, whereas at the far-field outflow boundaries, first-order extrapolation from the interior points is used. On the solid boundary, the no-slip and no-penetration conditions are enforced; $u_1 = u_2 = u_3 = 0$, and the normal pressure gradient is set equal to zero. For the temperature, the adiabatic boundary condition is enforced on the solid boundary. The initial conditions correspond to the uniform flow with $u_1 = u_2 = u_3 = 0$ on the solid boundary.

For the passive control applications using a vertical fin in the leeward plane of geometric symmetry, solid-boundary conditions are enforced on both sides of the fin.

Highlights of Computational Schemes

The first computational scheme used to solve the unsteady compressible, single or double thin-layer, Navier-Stokes equations is based on the Roe inviscid flux-difference splitting scheme. In this scheme, the Jacobian matrices of the inviscid fluxes, $A_s = (\partial E_s/\partial q)$, $s = 1-3$, are split into left and right fluxes according to the signs of the eigenvalues of the inviscid Jacobian matrices. Flux limiters are used to dampen the numerical oscillations in regions of large changes of the gradients of the flowfield vector. The viscous and heat transfer terms are centrally differenced. The resulting equation is solved by using approximate factorization in the ξ^1, ξ^2, and ξ^3 directions. The computational scheme is coded in the computer program CFL3D.

The second computational scheme is an implicit, approximately factored, centrally differenced, finite-volume scheme, added second-order and fourth-order dissipation terms are used in the difference equation on its right-hand side terms, which represent the explicit part of the scheme. The Jacobian matrices of the implicit operator on the left-hand side of the difference equation are centrally differenced in space, and implicit second-order dissipation terms are added for the scheme stability. The left-hand side operator is approximately factored, and the difference equation is solved in three sweeps in the ξ^1, ξ^2, and ξ^3 directions, respectively. The computational scheme is coded in the computer program ICF3D. The ICF3D code is used to verify some of the applications of the

![Fig. 1 Symmetric flow solutions for a circular cone, $\alpha = 10$ deg, $M_\infty = 1.8$, $Re = 10^5$ (validation case).](image1)

![Fig. 2 Steady asymmetric flow solutions for a circular cone due to random disturbances, $\alpha = 20$ deg, $M_\infty = 1.8$, $Re = 10^5$ (validation case).](image2)
CFL3D code; namely the cases of Figs. 1 and 2. For the problem of passive control of flow asymmetry, the double thin-layer, Navier-Stokes equations have been solved using the CFL3D code.

Since the applications in this paper cover local-conical flows only, the three-dimensional scheme is used to solve for locally conical flows. This is achieved by forcing the conserved components of the flow vector field to be equal at two planes of \(x = 0.95 \) and 1.0. The validity of local-conical-flow assumption is discussed in the next section.

Validity of the Local-Conical-Flow Assumption

The solutions presented in this paper are called local-conical solutions, which are obtained by equating the conserved components of the flowfield vector, in the three-dimensional scheme, on two crossflow planes that are in close proximity to each other at a selected location. Once this location is specified (\(x = 1.0 \) in the present applications), the flow Reynolds number is determined and the time scale, for time-accurate solutions, is also determined. The resulting solution is a local-conical solution at the specified location. It is not a global-conical solution. The locally conical equations can be shown by considering the conservative form of the Navier-Stokes equations in the Cartesian system

\[
\frac{\partial q}{\partial t} + \frac{\partial (E - E_i)}{\partial x_i} = 0, \quad i = 1 - 3
\]

where

\[
E_i = E_1 \gamma \eta_i E_1 + \eta_i E_2 + \eta_i E_3
\]

\[
E_1 = E_1 \gamma \eta_1 E_1 + \eta_1 E_2 + \eta_1 E_3
\]

\[
E_2 = E_2 \gamma \eta_2 E_2 + \eta_2 E_1 + \eta_2 E_3
\]

\[
E_3 = E_3 \gamma \eta_3 E_3 + \eta_3 E_1 + \eta_3 E_2
\]

\[
\gamma = (\gamma_1 + \gamma_2 + \gamma_3)^{-1}
\]

\[
\eta_1 \frac{\partial q}{\partial t} + \frac{\partial (E - E_1)}{\partial \eta_1} + \frac{\partial (E - E_2)}{\partial \eta_2} + 2(\gamma - 1) = 0
\]

and using the chain rule to express Eq. (13) in terms of the conical coordinates, we get

\[
\frac{\partial q}{\partial t} + \frac{\partial (E - E_i)}{\partial \eta_i} + \frac{\partial (E - E_1)}{\partial \eta_1} + \frac{\partial (E - E_2)}{\partial \eta_2} + 2(\gamma - 1) = 0
\]

where

\[
\eta_1 \frac{\partial q}{\partial t} + \frac{\partial (E - E_1)}{\partial \eta_1} + \frac{\partial (E - E_2)}{\partial \eta_2} + 2(\gamma - 1) = 0
\]

The conical flow condition requires that the flow variables be independent of the coordinate \(\eta \). If this condition is imposed in Eq. (15), by dropping the derivatives with respect to \(\eta \), the equation reduces to

\[
\eta_1 \frac{\partial q}{\partial t} + \frac{\partial (E - E_1)}{\partial \eta_1} + \frac{\partial (E - E_2)}{\partial \eta_2} + 2(\gamma - 1) = 0
\]

Steady Symmetric Flows

Figure 1 shows steady symmetric vortical-flow solutions for the circular cone at 10 deg angle of attack and 1.8 freestream Mach number. In the figure, we show comparisons of the results of the CFL3D and ICF3D codes. The results include the residual error versus the number of iterations, the crossflow velocity, the total-pressure-loss contours, and the surface-pressure coefficients. It should be noted here that the angle \(\theta \) in the CFL3D figure is measured from the leeward plane of geometric symmetry in the clockwise direction. The agreement of the results of the two code is excellent, and the results are in full agreement with those of Siclari and Marconi.

Steady Asymmetric Flow

Round-Off and Truncation Error Disturbances

The cone angle of attack is increased to 20 deg while all the other flow conditions are kept fixed. Figure 2 shows the results of the CFL3D and ICF3D codes. In the residual error figure, the CFL3D code shows that the residual error drops 10 orders of magnitude within 2500 iteration steps. Thereafter, the error increases by six orders of magnitude. The flow is symmetric during this 500 iteration steps. Next, the error drops down by another six orders of magnitude and stays constant for 2500 iteration steps. The flow becomes asymmetric and stable. The ICF3D code shows that the residual error drops five orders of magnitude in the first 3000 iteration steps, increases two orders of magnitude in the next 2000 iteration steps, and then drops down by three orders of magnitude within the next 5000 iterations. The flow solution goes through a symmetric unstable solution and then to an asymmetric stable solution. The pressure-coefficient figure for the two codes is the same over the full range of the circumferential angle \(\theta \). The suction pressure in the range of \(\theta = 0-90 \) deg is lower than that of the range of \(\theta = 270-360 \) deg. The crossflow velocity and total-pressure-loss contours for the two codes are also in excellent agreement. They show the nature of the flow asymmetry and its details. The results are in complete agreement with those of Ref. 20.

Since the residual error of the CFL3D code is much smaller than that of the ICF3D code after the first 2500 iterations, the disturbance that triggered the asymmetry in the first code is attributed to the machine round-off error, while the distur-
bance that triggered the asymmetry in the second code is attributed to the truncation error of the scheme (since there is a bias due to the spatial marching direction). Both disturbances are random in nature. However, irrespective of the source of disturbance, the final asymmetric stable solution is the same.

Controlled Transient Side-Slip Disturbances

In Figs. 3 and 4, we show steady asymmetric flow solutions due to transient side-slip disturbances of ± 2 and ± 0.5 deg. The residual-error figures show a drop of seven orders of magnitude in the first 2000 iterations. At this step, a side-slip disturbance is imposed for six iteration steps, then it is removed. Irrespective of the magnitude or the sign of the side-slip disturbance, the residual error increases by six orders of magnitude, then it drops down very rapidly. A stable asymmetric flow solution is obtained. The asymmetric solutions corresponding to the ± 2 deg side-slip disturbances are mirror images of each other, as can be seen from the figures of the surface-pressure coefficient, crossflow velocity, and total-pressure-loss contours. The corresponding asymmetric solutions with the ± 0.5 deg side-slip disturbances are exactly the same as those of the ± 2 deg side-slip disturbances. Moreover, the final asymmetric solutions of the ± 2 deg and ± 0.5 deg side-slip disturbances are the same as those of Fig. 2.

Again, this numerical experiment shows that the same physical flow asymmetry is obtained.

Unsteady Asymmetric Vortex Shedding

In the present case, the angle of attack is increased to 30 deg and all the other flow conditions are kept the same as those of the cases above. Figure 5 shows the results of this case. Here, we show the history of the residual error and the lift coefficient up to the 15,700 time step. First, pseudo-time stepping was used up to 10,000 iterations, and the solution was monitored every 500 iterations. The solution showed that the asymmetry was changing from the left side to the right side, which indicated a possibility of unsteady asymmetric vortex shedding. The residual error was also oscillating. The computations were repeated starting from the 3,500 iteration step using time-accurate calculations with Δt = 10⁻³. The residual-error and lift-coefficient figures show the time history of the solution. It is seen that the residual error and the lift coefficient show a transient response that is followed by a periodic response. Figure 5 shows also snapshots of the time history of the solution for the total-pressure-loss contours and surface-
pressure coefficient. The solutions are shown every 100 time steps starting from the time step of 15,000. At $n = 15,000$, the asymmetric flow is seen with an already shed vortex from the right side. As time passes, the shed vortex is convected in the flow and the primary vortex on the left side stretches upwards while the primary vortex on the right gets stronger, as it is seen from the surface pressure figures. At $n = 15,600$, the primary vortex on the left side is about to be shed. At $n = 15,700$, the primary vortex on the left side is shed in the flowfield. It should be noticed that the solution at $n = 15,700$ is exactly a mirror image to that at $n = 15,000$. The solution from 15,000-15,700 represents the first one-half the cycle of shedding. The solution from 15,700-16,400 (not shown) represents the second one-half the cycle. The periodicity of the shedding motion is conclusively captured. The period of oscillations is $10^{-3} \times 1,400$ steps = 1.4 that produces a shedding frequency of 4.400 (Strouhal number). This solution is obtained by using the flux-difference splitting (FDS) scheme.

Very recently, a researcher in the computational simulation area of asymmetric flows claimed that he had applied the flux-vector splitting (FVS) scheme of the CFL3D code to the present flow case. His solution showed that the flow was steady and symmetric. A statement of his results was communicated to us and we were asked to respond. Therefore, we recomputed the present flow case using the FVS scheme of the same CFL3D code. In Fig. 6, we show the results of the time-accurate solutions using the FVS scheme using the same grid. Using the FVS scheme, the flux limiters were turned on, and as can be seen from the logarithmic-residual curve, the solution becomes symmetric and steady after 5000 time steps. Next, the flux limiters are turned off, and the solution shows a transient response up to 12,000 time steps. Thereafter, the solution becomes periodic with periodic asymmetric vortex shedding. The solution was monitored every 100 time steps, and the results from $n = 13,900-14,600$ are shown. Although the process of adjusting the time instants is difficult to match those of the FDS solution, it is seen that the captured snapshots of the FVS solution almost match those of the FDS solution. Comparing the FVS solutions at $n = 13,900$ and 14,600, it is seen that they are mirror images of each other. Hence, periodic flow response has been achieved with a period of $1400 \times 10^{-3} = 1.4$, which is exactly the same period of shedding as that of the FDS solution. This pinpoints the high numerical dissipation effect of the FVS scheme when the flux...
limiters are turned on. The resulting numerical dissipation in the FVS is large enough to dampen the random disturbances of the flow solution. By turning off the flux limiters in the FVS scheme, the random disturbances can grow, producing the asymmetric unsteady vortex shedding. This also shows that the FDS scheme, even with the flux limiters turned on, is less dissipative than the FVS scheme. These results conclusively explain the erroneous claim of steady flow made by the previously mentioned researcher.

Steady Asymmetric Flow at Different Mach Numbers (Effect of \(M_a\))

Figure 7 shows the effect of the freestream Mach number (\(M_a = 2.2, 2.6, \text{ and } 3.0\)) on the convergence history, surface pressure, crossflow velocity, and total-pressure-loss contours for the circular cone at 20 deg angle of attack. At \(M_a = 2.2\), the residual error shows that the stable asymmetric flow is obtained within the same number of iterations as that of the \(M_a = 1.8\) case. At \(M_a = 2.6\), the residual error shows that the stable asymmetric flow is obtained after a large number of iterations. And at \(M_a = 3.0\), no asymmetric flow was captured, the flow stayed symmetrically stable. The surface pressure figures show that the asymmetry gets weaker as the Mach number is increased. This conclusion is clearly seen from the crossflow velocity and the total-pressure-loss figures. It should be noted that since the nature of disturbance is random, flow asymmetry changes sides as the Mach number increases until it disappears.

Passive Control of Flow Asymmetry

Figure 8 shows the passive control of flow asymmetry by inserting a vertical fin in the leeward plane of geometric symmetry. The fin height is equal to the cone local radius \(r\). Here, the double thin-layer, Navier-Stokes equations are used to obtain these results. The flow Mach number is kept at 1.8 and the angle of attack is 20 deg. The flow is completely symmetric as can be seen from the figures of the surface-pressure coefficient, total-pressure-loss contours, and crossflow velocity. A blow-up of the cross-flow velocity at the fin-cone juncture shows two corner recirculating bubbles of exactly the same size. This case has been obtained after 24,000 iteration steps. Again, this is the first time such a computational simulation of
Fig. 7 Effect of the freestream Mach number on the flow asymmetry for a circular cone, \(\alpha = 20 \) deg; \(M_a = 2.2, 2.6, 3.0 \); \(R_e = 10^5 \).
the passive control of the flow asymmetry has been presented. The results are in full agreement with Stahl's experimental study. 21

Concluding Remarks

This paper presents extensive computational study and simulation of steady and unsteady asymmetric vortex flow around circular cones. A systematic study has been carried out to show the effects of angle of attack and Mach number. The study shows that the flow asymmetry is independent of the type or level of the disturbance. For the controlled transient side-slip disturbance, the solution is unique. For the uncontrolled random disturbance, the solution is also unique with the exception of having the same symmetry changing sides on the cone. It conclusively shows that periodic vortex shedding has been captured at larger angles of attack. The unsteady asymmetric vortex-shedding solution has been substantiated by using two different computational schemes. It also shows that as the Mach number increases, the vortex flow asymmetry gets weaker until it disappears. The possibility of passive control of flow asymmetry has been demonstrated. Many of the cases presented here are obtained for the first time, in particular, the asymmetric vortex shedding cases and the cases of passive control of flow asymmetry.

Acknowledgment

This research is supported by the NASA Langley Research Center under Grant NAS1-18584-08 for the first two authors.

References

