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Abstract

Although the question of mininum or critical fiber volume fraction beyond which a
composite can then be strengthened due to addition of fibers has been dealt with by sev-
eral investigators for both continuous and short fiber composites, a study of maximum
or optimal fiber volume fraction at which the composite reaches its highest strength has
not been reported yet. The present analysis has investigated this issue for short fiber
case based on the well-known shear lag (the clastic stress transfer) theory as the first
step. Using the relationships obtained, the minimum spacing between fibers is deter-
mined upon which the maxinum fiber volume fraction can be calculated, depending on
the fiber packing forms within the composites. The effects on the value of this maximum
fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect
ratio and fiber packing forms are discussed. Furthermore, combined with the previous
analysis on the minimum fiber volume fraction, this maximumn fiber volume fraction
can be used to examine the property compatibility of fiber and matrix in forming a
composite. This is deemed to be useful for composite design. Finally some examples
are provided to illustrate the results{1-14].

1 INTRODUCTION

Adding fibers to strengthen materials is a technique which has been used since ancient times.
It is applied mainly to materials which are much weaker in tension than in compression so
that by adding fibers into them the superior tensile property of fibers can be fully utilized
and stronger new materials are obtained.

Yet it is understandable that if very few fibers are added to a matrix, the material
is weakened rather than strengthened. Therefore there must be a minimum critical fiber
voluine fraction Viin, only exceeding that with which the fiber reinforcing function can be
realized. There havebeen several studies which addressed thisproblem and derived thespecific
values of Vinin for various cases and under different conditions [1,8,11]. On the other hand,
however, as the fiber amount in the system is being increased, the tensile strength of the
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composite will increase to a certain point where, upon further increasing of fiber amount,
the bonding between the fibers and the matrix will start to deteriorate as the fibers become
too close to cach other. As a result, for a short-fiber composite, the tensile strength of the
composite will decline due to the bond failure of the system caused by the excessive fibers.
Thercfore there will be a maximum value of fiber volume fraction as well, that being the
upper limit of fiber amount allowable in the system for reinforcement.

There have been no reported studies on this issue as far as the present author is aware,
This may be due mainly to the fact that, in most cases, the fiber amount which can be
incorporated into a matrix system is limited by the processing technology [4] so that tech-
nically it may be difficult for the fiber volume fraction to reach this maximum allowable
value. Hence the maximum fiber volume problem may not be as significantas the minimum
one for practical applications. Nevertheless, study on this issuc is still desirable partly due
to its theoretical significance, and more importantly, because the investigation of this
issue as presented in this article cannot only provide the maximum value of fiber volume
fraction, but also determines the property compatibilityof various fiber and matrix materials
for a composite so as to guide the design procedures in achieving the optimum composite
strength and full material usage.

The present study deals with this problem based on a shear strength criterion between
fibers within the composite. The cffects of fiber length and fiber misalignment are also
investigated.

2 THE MINIMUM ALLOWABLE SPACING BETWEEN
FIBERS IN A SHORT FIBER COMPOSITE

It has been a well known mechanism that when a fiber composite is under a uniaxial
tension, the axial displacements in the fiber and in the matrix will be different because
of the differcnces in tensile properties of these two components. As a result, shear strains
will be created on all planes parallel to the axes of the fibers. The shear strain and the
resulting shear stress are the primary means by which load is transferred to fibers ( for a
short fiber composite ), or distributed between and supported by the two components of
composites. It is through this interactionbetween fibers and matrix that a fiber reinforcing
function is realized. There have been several theories trying to explain this fiber-matrix
interaction. The first one was entirely based on the elastic mechanisin by Cox [3]in 1952, and
is now referred to as the shear lag theory, and another similar version was later proposed
by Rosen [12]. Since then, a number of new theories were suggested such as the slip theory
[7] to account for matrix plasticity at the fiber surface near the fiber ends, applicable to
well-bonded reinforced metals, and the theory of frictional sliding [7] to reinforced polymers
and ceramics. However for the present study, the model of the elastic stress transfer will be
used as the main theoretical basis. It will be shown that, although this theory basically
only explains the behaviorof composites at low stress, it still provides adequate information
in determining the maximum fiber volume fraction for design purposes. Furthermore the
analysis will surely be helpful in the attempt to look into the case of the inelastic
interaction as well.




Assumptions made in this analysis include =

1. Since the elastic model is used here, conclusions from the present analysis are valid
only if the original assumptions associated with this model hold.

2. The composite consists of many short fibers each with constant length I, circular
cross-section area Ay of uniform radius r and tensile modulus E'y.

3. All fibers are distributed uniforinly along the length of the composite so that the fiber
area fractions on all the cross sections of the composite are identical.

4. Both fibers and matrix behave elastically, and the interface transfers the stress between
fibers and matrix without yielding or slipping.

5. Fiber ends are all normal so that the shape effect of fiber end on the stress transfer
[6] is excluded in this analysis.

6. Furthermore, the fiber-fiber interaction within the composite and the effect of matrix
property change as a result of the fiber interfering with dislocation motion in the
matrix are also ignored. '

We take the mean fiber center to center spacing normal to their length to be 2R (see Figure
1). Assume the composite as a whole is subject to a strain €. which will cause a strain €y
in a fiber. If P is the load in the fiber at a distance z from the fiber end, then according to
Cox [3], the distribution of tensile stress in this arbitrary fiber is

P cosh 3 (% — )

o=—=FEef[l -

=1 1 M

cosh ﬁ%

where

1 [Gn 2
ﬂ_; _—f—(ln(R/r))

and G, is the shear modulus of the matrix. Note that o =0 at = 0, and [.

(2)

The maximum stress occurs at the middle of position z = [/2 where

L 3)

Omaz = Eref[l — ——
i reil coshﬂé

It can be seen from Equation 3 that, in order to fully make use of the tensile strength of
the fibers, i.e. to make opqar = 0y, the fiber-fiber spacing R is the key factor for given fiber
strain, and fiber and matrix properties.
If 7 is the shear stress in the direction of the fiber axis, on planes parallel to this axis,
then at the fiber surface we have
aP
— = =277 (4)
dx

Equation 1 and 4 give the expression for the shear stress distribution

, Gm sinh (L — z)
=F 2 r,
T fff 2Ef lll(R/T) COShﬁ% (‘))
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The maximum value of 7 occurs at the fiber ends, i.e. at z =0 and [,

/ Gin
Tmazr = Ejfj 2———E In(R/7) tanhﬂ (6)

and it is zero at the middle of the fiber. Both of these stress distributions are shown in
Figure 2. The ratio of the maximum value of shear stress to the maximum tensile stress in

the fiber is
Tmazx G
— = cotl
Omaz V 2E;In( R/r) lﬂ (7)

This ratio is of great importance as it represents fiber and matrix properties as well as fiber
spacing R within the matrix. The validity of equations 1 - 7 has been verified by several
experimental studies [6,7 |.

In reinforcing the composite to its maximum tensile strength, the tensile strength of
fibers has tobe utilized to the fullest. In other words, a stress equal to the tensile breaking
stress of the fibers oy must be reached at the middle of a fiber,ie. omar = ops. So the
above equation can be rearranged as

G"l l
mar = e T 57 ¢ 3~
T, Ub“’ZEfln(R/T) coth / 3 (8)

This equation gives the relationship between fiber spacing R ( or the spacing ratio R/r)
and the maximum value of shear stress. When the spacing between fibers R decreases,
the value of 7,54, will increase as shown by Figure 3. The minimum spacing R, is thus
determined when 7p,4; has been increased to such a large value that it reaches the shear
strength of the matrix adjacent to the interface or the shear strength of the fiber/matrix
interface, whichever is less, designated as 7,. Because of the clastic assumption where the

matrix can not deform plastically, tlns will cause cither the fiber /matrix interface or the
matrix to fail in shear.

Furthermore replacing 7,42 by 75 and rearranging Equation 8 give the final relationship
between the minimum spacing ratio Rmin/r and the strength ratio %L, the fiber aspect

ratio % as well as the modulus ratio _Gf'l,trL

Ubf 2 171 0' Gyn 2 77 2 G
coth = oth
Ts }ﬂ4) 2E Ts Feo [ \/Ef lu(Rmm/r)} 2Ey )

]n(Rmin/r

This is a transcendental equation for IR,,;,/r, and its solution can only be calculatcd
numerically. '

However if the fiber length is relatively long so that cothﬁ% — 1, we have an explicit
relationship between the fiber spacing ratio and the fiber-matrix properties

(Ropin/r) = (Uf)2 Gom (10)
Ey
or
iy G
Rominfr = 7 2B5 (11)




In this analysis, the effect of stress transfer across the fiber ends is neglected which will
cause an cxtra load on both the fiber and the matrix in this region. However this effect is
considered insignificant [11] as long as the fiber aspect ratio {/r > 10. Also the influence of
stress concentration across the fiber ends, which will lead to a greater shear stress (8] and
will affect the slip behavior of the fiber ends, is ignored.

In addition, in the present analysis, fiber and the matrix are assumed tobe completely
elastic. This is of course an ideal case, and only valid in practice to brittle materials. For
some cases where plastic deformation of the matrix does exist, the conclusion drawn from
this study will be a conservative one and certain modification may be needed, since the
plastic deformation of the matrix will alleviate the shear stress. However a different model
of the spacing/stress relationship is desirable for a matrix which is significantly plastic and
flows under loading, or for structures where the effect of frictional sliding between fiber and
matrix during the stress transfer is not negligible.

3 THE MAXIMUM FIBER VOLUME FRACTION IN COM-

POSITES

As indicated above since there is a miniinum spacing Rpin/r between fibers within
a composite below which the structure will collapse due to shear failure, correspondingly
this minimum spacing will define an upper limit of fiber amount which is allowed to be
incorporated into a given matrix. The composite will reach its highest strength at this
maximum fiber volume fraction Vi, asthere will be a maximum amount of fibers in the
composite and each is fully utilized. In other words, this maximum fiber volume fraction
is also the optimal value for maximizing the composite tensile strength. Obviously the
specific value of V4. is dependent on the forms of fiber arrangement within a composite
as well. Moreover, for the short fiber case where fiber ends don’t meet, the maximum fiber
volume fraction also varies with the distance between fiber ends. Let us assume this distance
between the ends of two fibers is 265 as shown in Figure 4(a).

The following are the two cases most often encountered in a composite [11].

3.1 Hexagonally Packed Fibers

The fiber arrangement of this type is schematically shown in Figure 1-(c). Suppose there are
totally N fibers within the composite. According to the definition of fiber volume fraction
of a composite, we have

Vrsiber
Vf - V'lolal (12)

Considering the hexagonal area enclosed by the dotted line in Figure 1-(c), the maximum
fiber volume fraction in this casc is

v 3mr2l . ( r 2( 1
mh = - =
T S R+ 26)  2V3 R 14281

) (13)
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When all fibers are packed so densely that they are actually contacting cach otlier in full
with fiber ends also connected, that is

Rypin =, 6}' =0 (14)
the maximum fiber volume fraction becomes
T
Vih = —= 15
fmh = 5= (15)

Also for the case when the fiber length is so long as | >> & that the fiber end cffect can

be neglected
.

K
Vm)=— 2 16
o = 575 () (16)

Because of this direct relationship between the maximum fiber volume fraction and the
minimum fiber spacing, it is equivalent in the later analysis to refer to either of them,

3.2 Square-Packed Fibers

The fiber arrangement in this case is shown in Figure 1-(d) and we will have

7r2l P 1
Vims = G == 2 7
/ (2Rmin)z(l+25f) 4(Rmin) (1+26f/l) (1‘)
For the longer fiber case we have
=TT 3
mes - 4(Rmin) (18)

In the extreme case when fibers are closcly packed to cach other so that R,u: = 7, there

will be i
ijs = Z

In either of two packing forms, the value of maximum fiber volume fraction monotonically
increases as the fiber spacing decrcascs. The relationship of or difference between the
maximum fiber volume fractions of these two packing forms is given by

anls — ﬁ (20)
meh 2

(19)

That is, the maximum possible fiber volume fraction for square-packed fibers is less than
that of a hexagonally Packed case. Again because of this direct relationship between the
two fiber packing forms, for briefuess, only the Square-Packed form is used in the following
analysis.

Note that when there is fiber misalignment existing in the composite, the fiber arrange-
ment may not be as regular as the two examples shown here. Consequently the value of the
actual maximum fiber volume fraction may be lower than the present results.




4 THE MINIMUM FIBER VOLUME FRACTION IN COM-

POSITES

In the next paragraph, €, €4, and €y, represent the fiber breaking strain, the matrix
breaking strain and the matrix yield strain. Although there may be three cases {11]

1. 6(,] < fym)
2. €ym < €Lf < €bm>
3. Com < €hf-

existing in composite, each of which will lead to different failure behavior of the composite,
usually the breaking strain of the fiber ¢, is less than the yield strain of the matrix eym so
that only the first case is considered here. The treatments of two other cases, however,
are in principle the same.

If the variations of fiber teusile propertics are ignored, according to the Law of Mixture,
the breaking strength of the composite oy, is of the contributions from both fibers and the
matrix, and can be expressed as [1]

Ope = Ufm(l - Vf) + 7717100ijf, Vj > Vinin (21)

where oy is the breaking strength of the fiber, and oy, is the stress on the matrix at the
breaking tensile strain of the fiber. The factors 1 and 7y account for the effects of limited
fiber length for the short fiber case, and of fiber misalignment, and are often called the
length efficiency and fiber orientation efficiency factors. Vi,i, is the minimum value of the
fiber volume fraction which must be exceeded if the strength of the composite is to be given
by the Law of Mixture. The value of V,,;, can be determined analytically, according to
Kelly [8],as shown below.

If the amount of fiber added into the composite is very small, it will actually weaken
the composite so that the strength of the composite becomes

Opc = abm.(l - V]) (22)

where oy, is the breaking strength of the matrix.

Inserting this relation into Equation 21 gives:
Obm(1 = Vi) = o5 (1 = V) + mimgoy s Vy (23)

The minimum fiber volume fraction can be derived from this equation,i.e.

g -
Vinin = b = (24)
Me0bf + Tom — O fin

For a continuous fiber composite where all fibers are aligned in the loading direction,

there will be
m=1 =1
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and

Opm — O
Vinin = b AL (25)
Tbf + Vabm —Cfm

5 DETERMINATION OF THE FIBER LENGTH EFFI-
CIENCY FACTOR

It has been claimed [9] that in the post-cracking stage the combined efliciency factors due
to botl length and orientation can not be simply calculated as the product of the length
efficiency factor and the orientation efficiency factor because the orientation efficiency factor
is also a function of the fiber length in the case of short fibers. For the clastic model of
pre-cracking stage as inthe present case however, these two factors can be considered to be
independent of each other and therefore can be determined separately.

The length efficiency factor, specifying the effect of a definite lengthof fibers in ashort
fiber (‘omposxtc has two expressions, dcpcudmg on the shess interaction mechanisms [9)].
For the inelastic case, the most common version of this fiber length efficiency factor is
expressed in terms of critical fiber length [1,8, 9]. For the elastic case, it can be easily
determined based on the tensile stress distribution. From Equation 1, the average tensile
stress over the length of this short fiber can be calculated as

tanh 34

oq=Eyef[l - 5l =] (26)

While for contixnioné fibers, there is
op=opn=Eyes (27)

Thercfore the fiber length cfficiency factor can be defined as

tauh/}%
m=1-——"= (28)
A
When { — oo,y = 1.

This expression shows that, compared to the continuous fibers, the tensile stress on a
short fiber is discounted by a factor 7 due to limited fiber length.

It is casy to prove that whenl — 0, 7 = 0.

6 DETERMINATION OF FIBER ORIENTATION EFFI-
CIENCY FACTOR

In most published studies where the effect of fiber misalignment was considered, fibers were
assumcd either all aligned in the same direction at a fixed angle with respect to the axis
of the composite loading direction[1,8,11], i.c., there is no variation or spread existing in




fiber orientations, or distributed totally in randomn [3, 9]. Although it is usually desirable
to orient the fibers to enhance stiffness and strength properties, in short-fiber composites,
it is normally very difficult, if not impossible, to achieve perfect alignment or completely
random distribution of short fibers. The orientation distributions of fibers in a composite
arc determined by the processing conditions. Partial fiber alignment is typical in injection
and transfer moulded composites while planar partial random orientation is typical in shect
moulding compounds [2]. Thercfore for most cases, variation of fiber orientation distribution
has to be included in the study. There have been several reports (2,5,13,14] dealing with
fiber orientation spreading. A more explicit form of the expression of this fiber orientation
efficiency factor is obtained in the present study.

6.1 Form of Fiber Orientation Density Function

Since it is impractical to deal with fibers of different orientations individually, a statistical
approach is usually a better, or the only, alternative. To do this, a known form of the
function to describe the fiber orientation probability density is the premise.

Two cases of the fiber orientation distribution are of practical importance [2]. In the
case of injection moulded objects, fiber orientation distribution is independent of the base
angle ¢ if the direction of flow is along the z3(z) axis. In sheet moulding compounds it is
reasonable to assume that the short fibers all lie within a plane and the problem is reduced
to a two-dimensional one. In either case, by properly arranging the coordinate system, the
fiber orientation density function can be expressed as

1
- (0<f0<a
Q(())_{O a<l<n/2

where @ is the polar angle of a fiber with vespect to the z3 axis (the loading direction), and
a is the limit of 4.

6.2 Relationship Between Strains of Composite, Matrix and Fiber

Assume the composite as a whole is subject to a strain e, which will cause strain €, in
the fiber and €, in the matrix. It has been widely accepted that the elastic stress transfer
mechanism is dominant at the pre-cracking stage and therefore the longitudinal displace-
ments of the fiber and matrix interface are considered geometrically compatible. In other
words, the matrix strain will be the same as the composite strain before cracking. The fiber
strain however is dependent on the fiber orientation with respect to the loading direction.

There are several approaches in finding the relationship between the composite strain
and fiber strain, such as the tensor transformation method[10] and the affine deformation
modecl [5]. However a few simple differentiation operations as shown below can also derive
the same result.

Let us consider a cylinder of matrix material with height H and radius R.. Iuside
the matrix there is a fiber with length I and orientation 6 (sce Figure 4-(b)). We have a
relationship between the three variables

=R+ H? (29)

109



o e

e .

IRUTT T TR T

110

Differentiating both sides gives
2ldl = 2R dR. +2HdH (30)
It can be further expressed as

dl _ RZdR.  H?dH

TR R TETT

Bringing
% —e. (32)
and dR
I - = —Vm€e (33)
into it yiclds
1 :
&= iz- = fc(COS‘2 8 — Sinz 0) (34)

where v, represents the matrix Poisson’s ratio. Note that, similar to previous analyses
[5, 8], the effect of the fiber Poisson’s ratio has been excluded in equation 33. Equation
34 hLas been found to be consistent with both the experimental data and the results based
on other more sophisticated analytical analysis [5]. However, since the change of the fiber
orientation during composite deformation is neglected in the above analysis, it is preferable
to apply equation 34 to the small strain case.

6.3 The Result of Fiber Orientation Efficiency Factor

Once we have the relationship between fiber strain and the overall composite strain, the
average strain on an arbitrary fiber due to its misalignment can then be calculated as

& = /0 % ee(cos? 0 — vy sin® 0)Q(0)d6 (35)
Bringing the distribution function into the above equation gives
= :—;[Qa(l —vm) + (1 + vpy) sin 2a] (36)
The overall average tensile stress on this fiber tlius becomes
oy =mEser = 1)1Ef;1%[2a(1 — )+ (1 + Vyn) sin 2] (37)

Furthermore because of fiber misalignment, the contribution of this fiber toward the
composite strength will be discounted according to the equation in (9]

[o7c] = [T)loy] (38)




LR RN TRT

where [T] is the transformation matrix

cos?a sin? o —2sin @ cos o
[T] = | sin’« cos? ax 2sinacos o (39)
sinadcosa —sinacosa cos?a —sin®a

and [oy] and {o/.] are the actual fiber stress tensor and the fiber stress tensor in the orthog-
onal directions with respect to loading direction. For the present uniaxially loading case,
the above equation reduces to

Ofc = 0f cos?f — 27y sin 6 cos § (40)
It can be easily proven from Equation 5 that
Ty = 0 (41)

So we have
Ofc =0y cos? § (42)

The average value of this stress with respect to fiber orientation is

Tfe = /Oa 7y cos? 62(8)dd = mEfecﬁ[&x(l —vm) + (1 4+ vy) sin2a](2a + sin 2a)  (43)
The fiber oricntation efficiency factor is thus derived as

g = Ela—.z[2a(1 —vm) + (1 + vn) sin 20 (2 + sin 2a) (44)

It can be proved that when a¢ — 0, 79 = 1. The minimum value of 7y = (L;T""—’) is achieved

when a — 7/2

7 THE PROPERTY COMPATIBILITY OF FIBER AND
MATRIX IN COMPOSITES

Now that we have determined the maximum allowable fiber volume fraction and the min-
imum necessary fiber volume fraction, we can use these two values to examine the fiber-
matrix property compatibility.

Obviously, for composite design with any possible combinations of fiber and matrix, the
criterion

Vma:c > Vmin (45)

has to be satisficd. As these two values are determined by the propertics of the fiber
and matrix as well as the spacing between fibers, Equation 45 actually provides the inter-
relationships between all these parameters in a composite, and can hence be used to study
the fiber-matrix property compatibility and to sclect proper materials for a composite.

The easier way of using this cquation is to study the boundaries enclosed by the maxi-
mum aud the minimum fiber volume fraction curves for a given property. Some examples
will be shiown in the next scction.
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8 CALCULATION AND DISCUSSION

First of all, since we have had all the equations describing the relationships between the
composite structural parameters and the fiber and matrix properties, a parametric study
becomes possible to shiow the effects of these properties on a composite structure. The
data used for calculation are listed in Table 1. For generality, the ratios of fiber matrix
properties are used wherever possible. When the effect of a specific parameter in Table 1
is investigated over the given range, other paramecters will take the typical values provided.
The results are illustrated in Figures 5 - 12.

Table I. The Fiber Matrix Properties Used for Calculation

Item Range Typical
Strength Ratio ”:_ 1.5 - 5.0 [7] 2.4
Modulus Ratio Tj}l 0.02 - 0.3 {7] 0.03
Fiber Aspect Ratio £ 5 - 200 [assumed] 60
Fiber Breaking Strength oy 4 - 20 Gpa [9] 8 Gpa
Matrix Stress Difference o4, — of | 0.2 - 4.0 Gpa [assummed] | 2 Gpa
Fiber Orientation Range « 0-3% 5
Matrix Poisson’s Ratio vy, 0.2 - 0.5 [assuined] 0.3
Fiber End spacing Length ratio % | 0.0008 - 0.05 [assumed] | 0.003

Figure 5 shows the effect of the Smcngth Ratio -;L on the values of Vipar. As the
strength ratio increases, meaning stronger fibers are used, or aweakex bondingshear strength
between the matrix and fibers, V4 .is decreasing, a greater spacing between
fibers is required in order to maintain a stable structure. Note that fiber length does not
have significant effect on the result.

The effect of the modulus ratio%;L ontheV,, 4 valucisillustrated inFigure 6. It is also a
monotonically decreasing relationship. This means that a matrix with higher shear modulus
or a less tough fiber will result in a smaller V},,4; value, or allow greater spacing between
fibers. In other words, fewer fibers will be needed in the structure. Again there is no
noticeable difference for different fiber length cases.

Figure 7 and 8 show the relationships between the fiber length efficiency factor 7 and
the fiber aspect ratio i, and between the fiber orientation range o and the fiber orientation
efficiency factor ny respectively. Asshown in the results, increasing the fiber aspect ratio (a
longer or thinner fiber ) will raise the fiber length cfficiency factor, and a wider spread ( a
greater a value ) of fiber orientation will lower the fiber orientation efficiency factor.

Figures 9 and 10 ontheother hand indicate the cffects of the matrix Poisson’s ratio vy, and
the fiber oricntation range a on the value of minimum fiber volume fraction Vipin. When «
becomeslarger, the value of V},,;, willincrease as shown in Figure 10, indicating that the fiber
reinforcing function is hampered due to fiber misalignment so that more fibers are needed.
A similar trend is found between v, and me in Figure 9 except that the relationship
appears to be linear.

The curves in Figures 11 and 12 can be used to test the property compatibility between
the fibers and matrix. First of all, Figure 11 shows the effects of the modulus ratio on the
values of Ve { the same curve as the short fiber case in Figure 6 ) and Vi,i,. Unlike Viiaz,




Vimin decreases very slightly when %;1 is increasing. Based on Equation 45, only those fiber

and matrix types whose %’;’- values are greater than the critical %n value are compatible for
being selected to form a properly functioning composite. Likewise in Figure 12, first, the
effects of é on both volume fraction values Vi 4 and V,,;,, can be seen, showing different
trends but both gradually approaching its own asymptote as é increases. On the other
hand, as shown in the figure, there is a critical % value above which a feasible structure can

then be made.

9 CONCLUSIONS

The stress transfer between matrix and fibers in a composite is not only determined by the
intrinsic properties of fiber and matrix, but also affected by the geometric parameters of
fiber arrangement within the matrix such as the spacing between fibers and the orientation
of fibers.Consequently the shear strength of tlic interface between fibers and the matrix can
be used as a criterion to determine the spacing between fibers in a composite.

For a composite made of given fiber and matrix materials, there is an optimal spac-
ing between fibers at which the fiber tensile strength will be fully exploited. Moreover
this optimal spacing is also the minimum allowable spacing between fibers below which
the structure will start to disintegrate under loading before the fiber tensile failure. This
minimum spacing then defines a maximum fiber volume fraction allowable for a composite.

The maximum fiber volume fraction combined with the minimum fiber volume fraction
studied previously can be used for composite design. Both volume fractions are found
dependent on such parameters as fiber modulus Ey, fiber tensile strength oy, fiber aspect
ratio % and fiber orientation range o, the matrix properties as Poisson’s Ratio v,,, shear
modulus G,,, and the bonding shecar strength 7, between fiber and matrix, as shown in
this study. Consequently, these two values of fiber volume fraction Vier and Vi,in can
be applied to define the boundaries in determining the property compatibility of various
combinations of fiber and matrix types for a particular application so as to optimize the

result of composite design.
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Figure 1 Fiber embedded in a matrix and the fiber packing forms
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