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ABSTRACT

A comprehensive study for the inviscid numerical calculation

of the hypersonic flow past a class of elliptic-cone derived

waveriders is presented. The theoretical background associated

with hypersonic small-disturbance theory (HSDT) is reviewed.

Several approximation formulas for the waverider compression

surface are established. A CFD algorithm due to Lawrence is used

to calculate flow fields for the on-design case and a variety of

off-design cases. The results are compared with HSDT, experiment,

and other available CFD results. For the waverider shape used in

previous investigations, the bow shock for the on-design condition

stands off from the leading-edge tip of the waverider. It was

found that this occurs because the tip was too thick according to

the approximating shape formula that was used to describe the

compression surface. When this was corrected, the bow shock became

closer to attached as it should be. At Mach numbers greater than

the design condition, a lambda-shock configuration develops near

the tip of the compression surface. At negative angles of attack,

other complicated shock patterns occur near the leading-edge tip.

These heretofore unknown flow patterns show the power and utility

of CFD for investigating novel hypersonic configurations such as

waveriders.
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Chapter I

INTRODUCTION

The design of trans-atmospheric and aero-space vehicles has been of great in­

terest in recent years. The National Aero-Space Plane (NASP) is an example of the

current effort to develop technologies to design a vehicle that will fly into orbit while

taking off and landing like a conventional airplane. A simple generic diagram of an

aero-space plane configuration is shown in Fig.(l-l). The generic configuration is

divided into three parts: a forebody, a scramjet propulsion unit, and an afterbody.

All of these parts are to be blended together as a smooth, interacting entity. Besides

these basic parts, of course, there may also be wings and tails taking part in the

overall configuration.

One concept for the design of the forebody part of such a configuration is

that of a waverider. A waverider shape offers a high lift and a small drag, and, in

addition, provides favorable flow properties for the inlet of the scramjet propulsion

unit. This investigation is directed towards a general study of the aerodynamics

and flow fields associated with a special class of waverider configurations.

The concept of a waverider has been around for some time. A good history of

the original concepts and a discussion of some possible aerodynamic applications

can be found in Kiichemann[l]. A waverider is constructed by identifying the stream

surfaces of known supersonic flow fields as new solid surfaces that are connected in

such a way as to form a new aerodynamic configuration. The flow field and aerody­

namic properties of the waverider configuration are thus well known from the basic

flows from which they were obtained. This basic flow and geometric configuration
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are called the on-designconditions. When the waveridershapeis held fixed, and

eitheror both of the'Machnumberandorientationof the oncomingflow arevaried,

the varied conditionsaresaid to be the off-designconditions. Whereasthe under­

lying conceptof waveridersis that the on-designconditionsare easyto calculate,

the off-designconditionsareusuallyvery difficult to calculate.The developmentof

ComputationalFluid Dynamics(CFD) possiblyprovidesthe only practicalmeans

for studyingthe off-designpropertiesof waveriderconfigurations.

The first CFD analysesof waveriderflow fields were madeby Joneset al.[2]

and Jones[3,4]. Thesestudiesconsideredthe elliptic-cone derived waveridersof

Rasmussen[5]for which experimentalresults were available (Rasmussenet al.[6]

and Jischkeet al.[7]). The CFD calculationsassociatedwith Jonesweresimplified

by using the full potentialequationsto describethe flow fields. Also, becausethe

elliptic-conewaveridersare conical togetherwith their inviscid flow fields even at

off-designconditions,the similarity propertiesof conical flows could be fully uti­

lized. In spiteof the fact that the relatedelliptic-coneflow fields were slightly ro­

tational, the irrotationalpotential-flowcalculationsprovidedfairly good agreement

with experimentalresultsand with the perturbation-analysisresultsupon which

the elliptic-cone waveriderswere based. This was probably due to the fact that

the waveriderswereactuallynot very slender,suchthat the viscousdragwassmall

comparedto the wavedrag,andthat the vorticity producedby small perturbations

from axisymmetricflow wassmall.

Thepurposeof thepresentstudyis to dealwith theflow fields andaerodynam­

ics of the elliptic-conederivedwaveridersby CFD methodsutilizing the complete

Euler equations.Both the fluid dynamicsandaerodynamicsof the waveriderflow

fields areof interesttogetherwith thenumericsof the CFD solutionmethod. It was

also desiredto obtain resultsfor viscouseffects and heat transferby utilizing the

ParabolizedNavier-Stokes(PNS) equations.Whereasthe inviscid flow-field studies




























































































































































































































































































































































































































































































































































































