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ABSTRACT

A comprehensive study for the inviscid numerical calculation

of the hypersonic flow past a class of elliptic-cone derived

waveriders is presented. The theoretical background associated

with hypersonic small-disturbance theory (HSDT) is reviewed.

Several approximation formulas for the waverider compression

surface are established. A CFD algorithm due to Lawrence is used

to calculate flow fields for the on-design case and a variety of

off-design cases. The results are compared with HSDT, experiment,

and other available CFD results. For the waverider shape used in

previous investigations, the bow shock for the on-design condition

stands off from the leading-edge tip of the waverider. It was

found that this occurs because the tip was too thick according to

the approximating shape formula that was used to describe the

compression surface. When this was corrected, the bow shock became

closer to attached as it should be. At Mach numbers greater than

the design condition, a lambda-shock configuration develops near

the tip of the compression surface. At negative angles of attack,

other complicated shock patterns occur near the leading-edge tip.

These heretofore unknown flow patterns show the power and utility

of CFD for investigating novel hypersonic configurations such as

waveriders.
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Chapter I

INTRODUCTION

The design of trans-atmospheric and aero-space vehicles has been of great in­

terest in recent years. The National Aero-Space Plane (NASP) is an example of the

current effort to develop technologies to design a vehicle that will fly into orbit while

taking off and landing like a conventional airplane. A simple generic diagram of an

aero-space plane configuration is shown in Fig.(l-l). The generic configuration is

divided into three parts: a forebody, a scramjet propulsion unit, and an afterbody.

All of these parts are to be blended together as a smooth, interacting entity. Besides

these basic parts, of course, there may also be wings and tails taking part in the

overall configuration.

One concept for the design of the forebody part of such a configuration is

that of a waverider. A waverider shape offers a high lift and a small drag, and, in

addition, provides favorable flow properties for the inlet of the scramjet propulsion

unit. This investigation is directed towards a general study of the aerodynamics

and flow fields associated with a special class of waverider configurations.

The concept of a waverider has been around for some time. A good history of

the original concepts and a discussion of some possible aerodynamic applications

can be found in Kiichemann[l]. A waverider is constructed by identifying the stream

surfaces of known supersonic flow fields as new solid surfaces that are connected in

such a way as to form a new aerodynamic configuration. The flow field and aerody­

namic properties of the waverider configuration are thus well known from the basic

flows from which they were obtained. This basic flow and geometric configuration

1
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are called the on-design conditions. When the waverider shape is held fixed, and

either or both of the 'Mach number and orientation of the oncoming flow are varied,

the varied conditions are said to be the off-design conditions. Whereas the under­

lying concept of waveriders is that the on-design conditions are easy to calculate,

the off-design conditions are usually very difficult to calculate. The development of

Computational Fluid Dynamics (CFD) possibly provides the only practical means

for studying the off-design properties of waverider configurations.

The first CFD analyses of waverider flow fields were made by Jones et al.[2]

and Jones[3,4]. These studies considered the elliptic-cone derived waveriders of

Rasmussen[5] for which experimental results were available (Rasmussen et al.[6]

and Jischke et al.[7]). The CFD calculations associated with Jones were simplified

by using the full potential equations to describe the flow fields. Also, because the

elliptic-cone waveriders are conical together with their inviscid flow fields even at

off-design conditions, the similarity properties of conical flows could be fully uti­

lized. In spite of the fact that the related elliptic-cone flow fields were slightly ro­

tational, the irrotational potential-flow calculations provided fairly good agreement

with experimental results and with the perturbation-analysis results upon which

the elliptic-cone waveriders were based. This was probably due to the fact that

the waveriders were actually not very slender, such that the viscous drag was small

compared to the wave drag, and that the vorticity produced by small perturbations

from axisymmetric flow was small.

The purpose of the present study is to deal with the flow fields and aerodynam­

ics of the elliptic-cone derived waveriders by CFD methods utilizing the complete

Euler equations. Both the fluid dynamics and aerodynamics of the waverider flow

fields are of interest together with the numerics of the CFD solution method. It was

also desired to obtain results for viscous effects and heat transfer by utilizing the

Parabolized Navier-Stokes (PNS) equations. Whereas the inviscid flow-field studies
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were successful, the studies involving the viscous effects did not lead to success, In

addition' to a broad description of the inviscid-flow results, some of the difficulties

associated with the viscous-flow numerics will be addressed.

Just recently, after the completion of the present work, several other papers

have appeared that deal with the calculation of waverider flow fields by eFD meth­

ods. Long[8] used the Euler equations to analyze an elliptic-cone waverider and

a modified psuedo-waverider. Both configurations were fitted with afterbodies in

their base regions. The only off-design results that were reported were for varied

freestream Mach numbers. Jones and Dougherty[9] studied round-nosed, sharp­

edged non-conical waveriders derived from axisymmetric conical flow fields. The

Euler equations were used with emphasis on the grid generation to account prop­

erly for the flow near the sharp leading edges. Only on-design conditions were

treated. Liao et al. [10] studied elliptic-cone derived waveriders by a eFD Navier­

Stokes simulation. These calculations considered the design Mach number fixed

(Moo = 4), but varied the angle of attack. Although local skin-friction coefficients

were calculated, the overall lift and drag were not. Because the shock is spread out

over several grid elements, it was noticed that there was some flow spillage around

the sharp edges of the waverider where in principle the shock should be attached.

This was also noticed by Jones and Dougherty, as well as within the present investi­

gation. Whereas these recent investigations have some regions of commonality with

the present investigation, the present study is concerned primarily with the broad,

overall description of the flow past a class of elliptic-cone derived waveriders, both

on-design and off-design. The results are related to the numerics .of the eFD cal­

culation scheme, and·thus this is of interest also. The intent and the results of the

present investigation are different and more comprehensive than the aforementioned

papers.
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The above three studies used existing codes based on unsteady 3-D equations

with super computers like the Cray-2. On the other hand, in this study the steady­

flow equations are utilized. Thus, the computational dimension can be reduced

by one and the calculation can be made more effective and economical than the

previous investigations.

Some of the difficulties involved in this problem lie in handling the singularity

produced by the sharp leading edge. The elliptic-cone waverider has two very sharp

leading edges, and a bow shock is attached at the edges at the on-design condition

in the ideal inviscid case. This can cause difficulties in both grid generating and nu­

merical integrating procedures. For example, a slightly deteriorated grid structure

near the tip will result in the divergence of the numerical calculations. Therefore,

for this type of problem, both procedures should be carried out with great care in

order to get successful results.

Because of the particular boundary geometry and the importance of the flow

near the body wall, the utilization of body-fitted coordinates is necessary. Among

various methods for grid generation, an elliptic grid generator, which is a widely

used scheme, is utilized, because it produces a very smooth grid. Although the

overall geometry of the waverider looks simple, a lot of effort should be exerted

to get a desirable grid structure especially near the tip. For that purpose Roberts'

stretching[ll], Sorenson's[12] method, and Anderson's adaptive grid method[13] are

adopted.

Numerous numerical algorithms and methods can be considered for numerical

integration and discretizing the Euler equations which are used in this study. In

this investigation, Lawrence's STARS3D code based on his algorithm, which is a

steady version of Roe's[14] approximate Riemann solver and is in the class of up­

wind schemes, is utilized to solve the hypersonic flows past elliptic-cone waveriders.

The upwind schemes can be classified into two categories; Flux Vector Splitting
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(FVS)[15] and Flux Difference Splitting (FDS). The FVS divides any flux into the

positive and negative parts according to the sign of its relevant eigenvalues first and

then discretizes them by using one-sided differences. The FDS determines a flux

difference for two corresponding cell interfaces first and then discretizes the flux

difference according to the relevant eigenvalues. Lawrence et al.[16] applied a Total

Variation Diminishing (TVD) [17,18] schemes of Chakravarthy et al.[19,20] to the

PNS equations to develop an algorithm which is in the category of the FDS. The

TVD schemes have attracted much attention in the field of hypersonic flows, since

they have some desirable properties associated with the handling of discontinuities

like a shock in view of the stability and built-in dissipation. This algorithm uses

the Finite Volume Method (FVM) to discretize the governing equations and an

Alternating Directional Implicit method to integrate in space. The FVM, which

is acquiring popularity recently over the conventional Finite Difference Method, is

reported to have some advantages for the problems with irregular boundaries. In

order to calculate inviscid flows, which were only possible for this problem with this

code, the option for an inviscid flow was used.

Despite the difficulties due to the singularities involved in the elliptic-cone

waverider flow, the complete compressible inviscid solutions are sought without

modifying the sharp geometry. To confirm the validity of numerical results for the

hypersonic flow past waveriders, analytic approximate solutions obtained by means

of the Hypersonic Small Disturbance Theory (HSDT) are calculated and compared

with computational values. The HSDT result, which is possible to get only at the

on-design condition, is used for checking the trends of the CFD results but not

necessarily for seeking complete agreement. The main goal of this investigation is

the study of the flow behavior around waveriders at off-design conditions where

analytical solutions do not currently exist.



Chapter II

ELLIPTIC-CONE DERIVED WAVERIDER

In this chapter we describe the development of an elliptic-cone waverider. Al­

though such waveriders can be obtained from the basic supersonic flow past any

elliptic cone, we shall be concerned with those cones having small eccentricities.

In these cases, approximate results can be obtained by perturbation methods and

hypersonic small-disturbance theory[5]. We shall outline the basic results here and

leave the details for Appendix A.

2.1 Perturbation Expansions

We introduce spherical polar coordinates (r, (}, ¢» as shown in Fig.(2-1). A flow

or a body is said to be conical if it does not depend on the radial coordinate r.

We assume that a basic axisymmetric conical flow has been established. The basic

circular-cone semi-vertex angle is 6 and the corresponding attached shock semi­

vertex angle is {3. The uniform freestream flow, denoted by the subscript 00, is

in the z direction, which is the axis of symmetry of the basic circular cone. '\Te

assume (along with Rasmussen[5]) that the basic axisymmetric flow is perturbed by

introducing an elliptic-cone perturbation in the cone body shape. The elliptic-cone

body is thus described by

(2 - 1)

6
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where f2 is a small-perturbation parameter that is a measure of the eccentricity.

The corresponding shock shape is assumed to be

(2-2)

Here (1 = f3/6 is the ratio of the basic-shock angle to the basic-cone angle. The

shock eccentricity factor 92 is to be determined as part of the perturbation solution.

To account for a singular behavior in the solution near the surface of the per­

turbed cone, Rasmussen[21,22] introduced a new stretched variable Bo to replace

the polar angle B:
Bo - 6 _ B- Be (¢»
(3-6 - BlJ(¢»-Be(¢>)'

(2 - 3)

Thus, for the new independent variable, Bo = 6 at the perturbed cone and Bo = (3 at

the perturbed shock. The radial velocity u(B, ¢», polar velocity v(B, ¢», azimuthal

velocity weB, ¢», pressure pCB, ¢», density pCB, ¢», and entropy s(B, ¢» were then

expanded in the series forms

(2 - 4a)

(2 - 4b)

(2 - 4c)

(2 - 4d)

(2 - 4e)

(2 - 41)

Here the subscript 0 denotes the unperturbed basic-cone quantity, and the subscript

2 denotes the perturbation quantities. These expansions are a variation of the

original expansions by Rasmussen and Lee[23]. An approximate solution for the

above variables was obtained within the framework of hypersonic small-disturbance
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theory. The results are valid for large freestream Mach numbers Moo and small cone

angles 8 such that the similarity parameter K 6 =MooS is held fixed at an arbitrary

value. When K6 -+ 0, the linear-theory limit is obtained, and when K 6 -+ 00 the

hypersonic limit is obtained.

2.2 Conical Stream Surfaces

A streamline is described by the vector equation

vx ds= 0, (2 - 5a)

where ds is a differential element of distance measured along the streamline. In

spherical coordinates this becomes

dr rdO r sin Od¢>
-=-=
u v w

(2 - 5b)

Consistent with the first-order perturbations and hypersonic small-disturbance the­

ory[21,22], this reduces to

dr dOo Ood¢>
rVoo = vo(Oo) = €2 w2(00)sin2¢>'

(2 - 5c)

The second and third members of this equation describe the family of conical stream

surfaces. The variables can be separated, and we have

€2 W 2(00 )dOo
Oovo(00 )

d¢>
= sin2¢>'

(2 - 6)

An accurate approximation for vo(Oo) is (see Appendix A):

(2 - 7)

IT we denote by </> = </>., the azimuthal location where the conical stream surface

intersects the shock 00 = {3, then Eq.(2-6) together with Eq.(2-7) can be integrated

to give

-€2 (OO W2(00) dOo = (I> ....:!:L = ~ln [ tan ¢> ] .
lp Voo 05 - 82 ltt>, sin2¢> 2 tan ¢>8

(2 - 8)
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This is done in two different ways. The first way captures the behavior in the

vorticallayer, that is, near 00 = 6. It yields a simple result and is the basis for the

actual construction of the waveriders in Refs. [6, 7, 26]. The azimuthal velocity

W2(00) is a complicated function (see Appendix A), and the integral on the left

side of Eq.(2-8) must be evaluated numerically as it stands. It is thus useful to find

an approximation for this integral. Since the integral is singular at 00 = 6, most of

the value of the integral comes when 00 is near 6, that is, near the surface of the

perturbed cone. Thus we can set W2(00) '" w2(6). This is a good approximation

when W2(00) varies slowly across the shock layer; otherwise there may be some

error in the shape near the leading edge. Correspondingly, in the integral we can

set 05 - 62 = (00 + 6)(00 - 6) '" 26(00 - 6). When this is done the integral can be

approximated simply, and we obtain

(2 - 9)

Let us define a new small parameter e by

(2 - 10)

This parameter is positive since W2 is negative when €2 is positive, and vice versa.

Equation (2-9) can now be solved for Oo(¢) and written in the form

Oo(¢) = 1 + (0' -1) [tan¢] lIe

6 tan ¢"
(2 - 11)

In terms of the physical variable O(¢), obtained from Eq.(2-3), this can be rewritten

as

(2 - 12)

Equation (2-12) describes the conical stream surfaces generated by hypersonic flows

past elliptic cones. It is valid for small eccentricities, that is, for small 1:2' Since all
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of the streamlines that comprise a conical stream surfaces pass through a common

ray along the conical shock, they all have the same entropy. Thus, a conical stream

surface is also a constant-entropy surface.

It was first established by Ferri[24] that the surface of a conical solid body in

a supersonic conical flow must be a constant-entropy surface. In general, except for

axisymmetric shocks, the entropy must vary azimuthally immediately downstream

of a conical shock. Thus, whereas Eqs.(2-4) may hold in the vicinity of the shock,

they cannot hold in general near the surface of a conical body. Equations (2-4) are

thus said to be the outer expansions, and another set of perturbation expansions

must hold near the surface of the body. They are called the inner expansions, and

they describe what is said to be the vortical layer. The vortical layer has been

studied by means of matched asymptotic expansions [21,22,25]. It is found that the

outer expansion for the pressure in Eq.(2-4d) is uniformly valid across the vortical

layer to all orders, and the first-order azimuthal velocity in Eq.(2-4c) is uniformly

valid to the lowest order. As might be expected, therefore, the approximation in

Eq.(2-12) for a constant-entropy surface is also found to be uniformly valid across

the whole shock layer.

Although Eq.(2-12) is a uniformly-valid approximation for a conical stream

surface across the shock layer, it is a composite solution, and thus it is not unique.

There are other approximate formulas that are correct to the same order of accuracy

in E2. Another possible approximation is

(2 - 13)

This gives approximately the same result as Eq.(2-12) since (B+Bc ) and (B8 +Bc ) are

nearly the same for slender cones in hypersonic flow. Equation (2-12) was used in

Refs.[6,7] and Eq.(2-13) was used in Ref.[26]. A better representation for a conical
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stream surface can be obtained by approximating the combination W2 (Bo) / (Bo +8)

by a linear variation with Bo from the body to the shock. Thus we would have

(2 - 14)

IT we substitute this approximation into Eq.(2-8), then upon integration we obtain

(BO- 8) [{ 2W2(f3) } (Bo - (3)] [tan ¢ ] lIe

f3 - <5 exp (0" + 1)w2(<5) -1 f3 - <5 = tan ¢" (2 - 15)

IT the exponential term in this expression were ignored, then this result would be

the same as Eqs.(2-9) or (2-11). Equation (2-15) is more accurate near the shock.

2.3 Construction of an Elliptic-Cone Derived Waverider

A conical constant-entropy stream surface, such as given by Eqs.(2-12), (2-13)

or (2-15), is used as a lower compression surface in a new waverider configuration.

The complementary upper freest ream surfaces are taken to be a pair of triangular

plane surfaces that pass through the axis of symmetry (z-axis) of the basic cone

and intersect the elliptic-cone shock at the angle ¢ = ±¢". A cross-section plane,

perpendicular to the axis of symmetry, is shown in Fig.(2-2). The angle ¢" where

the upper freestream planes intersect the lower conical stream surface is said to be

the anhedral angle. A perspective lower rear view of an elliptic-cone waverider is

shown in Fig.(2-3).

For the on-design condition, the flow is aligned with the upper freestreani

surfaces, and the shock is attached to the sharp leading-edge tip at <p = 4>". This

orientation is said to be at zero angle of attack 0' = O. After the body shape is fixed

based on the on-design conditions, the off-design conditions can occur by changing

the freestream Mach number and/or by changing the orientation of the waverider

(0' #- 0). We shall not consider non-zero yawing (or sideslip) angle. Thus the

flows considered will be right/left symmetric with respect to the vertical plane of
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symmetry of the waverider. For Mach numbers less than the design Mach number,

the bow shock will detach from the sharp leading edge of the waverider.

2.4 Specific Waverider Shapes

Two basic elliptic-cone waveriders are considered, denoted by A and B. For

both cases, the on-design Mach number is Moo = 4 and the eccentricity is €2 = 0.1.

The pertinent functions of K6 =Mooo are determined from the formulas given in

Appendix A.
Table (2-1)

Parameters
6
</>5
K6
U

92
lie

Waverider A
12°
60°
0.838
1.62
0.382
6.132

Waverider B
18.62°
70°
1.30
1.34
0.597
7.611

The parameters for Waverider B correspond to the shape tested in Refs. [6, i].

Waverider A corresponds to the shape tested in Ref.[26], except that the eccentricity

was €2 = 0.05 in Ref.[26], which led to a corresponding value of lie = 12.264. This

large value of lie produces a very sharp leading edge on the waverider, and the initial

efforts at calculating the flow led to numerical instabilities which were subsequently

overcome. Consequently, the larger value of €2 was selected for the present study.

For each of the foregoing sets of parameters for models A and B, the compres­

sion surfaces were calculated according to Eqs.(2-12) and (2-15). The models with

compression surfaces calculated according to Eq.(2-I2) are denoted by Al and El,

whereas the models with compression surfaces denoted by Eq.(2-I5) are denoted

by A2 and B2. The two compression surfaces for models Al and A2 are shown

in Fig.(2-4). The two compression curves are considerably different in the concave

region where the winglet blends into the body and outward towards the leading­

edge tip. Figure (2-5) shows a comparison of the compression surfaces BI and B2.
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An analysis for the leading-edge tip angles is given in Appendix C. The waverider

types A2 and B2 have considerably thinner leading-edge tips. The two types of rep-
.

resentations will be used to test the influence of variations in the waverider shape

on the flow-field properties.



Chapter III

GOVERNING EQUATIONS

Three coordinate systems (Cartesian, Spherical, and Generalized coordinates)

involved in the ensuing ~umerical investigation are shown in Fig.(3-1). The new

Cartesian coordinates are labeled differently from those defined in Chaper II. The

streamwise direction is x unlike z in the previous definition. For the numerical

calculation we will use this new coordinate system throughout as well as the gen­

eralized coordinate system. The rotated coordinates (x', y', z') are for aerodynamic

force calculations which will be considered in Chapter IV. The waveriders studied

here have conical geometry and thus to d~scribe them spherical coordinates are also

utilized.

The Euler equations in Cartesian coordinates are introduced first in a strong

conservation-law form. Although governing equations in this coordinate system

are not utilized directly for numerical integration, their components are involved

in the computational process. For example, the initial conditions are imposed by

means of Cartesian velocity components. Then the unsteady Euler equations are

transformed in generalized curvilinear coordinates. This would be necessary for

high-speed flow problems with a complicated boundary geometry. If the governing

equations are expressed in a body-fitted coordinate system, then the imposition

of boundary conditions becomes relatively easy, but the equations themselves have

more complicated forms. In this investigation the steady Euler equations in the

body-fitted coordinates are numerically integrated by means of a space marching

14
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shceme. For a steady problem this would be more economical and desirable with

respect to the CPU time than using the unsteady equations.

Finally, in the last two sections initial and boundary conditions for the wa­

verider problem will be presented. Despite the unusual shape of the waverider it is

easy to implemet those conditions. A computer code written based on a body-fitted

coordinate system can be used for a large class of similar body shapes. That is,

we can solve for elliptic-cone and waverider flows with the same code written for a

circular cone based on the body-fitted coordinates. In other words, the imposition

of the initial and boundary conditions for the flows of a circular cone, an elliptic

cone, and a waverider, is the same inspite of the geometrical difference among them.

Considering both of the body-fitted and Cartesian coordinates are body-fixed coor­

dinates, we can distinguish the waverider flow problem from the other flow problem

of such as a circular or elliptic con~ by the generated grid, but not by the initial or

boundary conditions.

3.1 Governing Equations in Cartesian Coordinates

The unsteady Euler equations without source terms (such as a body force)

can be written in a strong conservation-law form in a Cartesian coordinate system

(Xi:X,y,Z) as

where

au ~ aE i 0-+L,---='at . aXi
1=1

(E i
: E, F, G), (3 - 1)

- T
U = {p,pu,pv,pw,Etl ,
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E t = p [e + ~(U2 + V
2

+'W
2

)] ,

where Ui are Cartesian velocity components (u, v, w), e is internal energy per unit

mass, and Oij denotes the Kronecker delta function. The ideal gas model is used

here for simplicity:

(3 - 2)

reference parameters. The nondimensional variables are,

p = - V 2 'Poo 00

e
e = V2 '

00

p
p = -=-,

poo

11
U = ---,

Voo

v tV
v = ---, W = ---,Voo Voo

T
T= ---,

Too

(3 - 3)

where the bar denotes a dimensional quantity.

3.2 Governing Equations in Generalized Curvilinear Coordinates

The Euler equations in a generalized curvilinear coordinate system can be ob­

tained through the following transformation;

(3 - 4)

where ~(= e) is taken as the radial direction. The 1](= e) is in the crosswise

direction and ((= e) is in the normal direction to the waverider body wall. These

coordinates will be generated numerically. The 1] and ( coordinates are orthogonal

at the body boundary but not near the leading edges and for the rest of the flow

field. Especially in case that the ~ and 1] coordinates are taken to be fixed at the

body wall, the generalized coordinates· are said to be body-fitted coordinates. If we

utilize the chain rule, the governing equations in a new coordinate system can be

expressed in the strong conservation-law form again[ll]:

au 3 aEi

at +~ a~i = 0, (Ei
: E,F,G),

'=1

(3 - 5)



17

where
A (j
U=J'

E E

F 1 F= -[A]
J

G (;

where [A] is defined by

[ ~% ey ~% ][A] = 7]z; 7]y 7]z
(z; (y (z

and the Jacobian J is defined by the determinant of [A] as

J =IAI =8(e, 7], () •
8(x,y,z)

(3- 6)

(3 - 7)

(3 - 8)

IT we examine Eq.(3-7), then we can see that all the information for the fluxes of

Cartesian coordinates and the flows of generalized coordinates are exchanged by

means of the metrics and the Jacobian. It is to be noted here that the metrics

appear in a special form such that they are divided by the Jacobian. The metrics in

this form, as well as the Jacobian, have geometrical meanings. The Jacobian is equal

to the inverse of the cell volume and the metrics combined with the Jacobian are

area element vectors, as will be explained later. Thus, once an appropriate grid is

generated, both the metrics and the Jacobian can be determined from the geometric

consideration of the grid. Therefore, the explicit form of the transformation function

is not necessary. Even for a special case where we can identify a transformation

function, it is not necessarily desirable to use the metrics and the Jacobian calculated

by this function in a numerical analysis.
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3.3 Steady Hyperbolic Equations

In this study we use the steady Euler equations which are obtained from Eq.(3­

5). They are written as

(3 - 9)

To numerically integrate the governing equations in space they are to be of a hy­

perbolic type. The steady Euler equations become hyperbolic in the ~ direction,

if we impose a restriction such that the eigenvalues of the pertinent flux Jacobian

matrices (8P / 8E, 8t; /8E) should be real[47]. The restriction requires supersonic

inviscid flow in the streamwise direction everywhere. Fortunately, the waverider

problem investigated here has such a characteristic except for the case with a very

high angle of attack and thus we can use the steady equations with space march­

ing technique. The ~ coordinate in the steady equations plays the role of the time

variable in the unsteady equations.

3.4 Initial Conditions

To start the numerical integration of the Euler equations by space marching,

the initial flow values at a starting point of ~ must be specified. Since the waverider

has sharp leading edges and there is no inviscid subsonic region expected for a mild

angle of attack, the supersonic freestream values can be used as initial conditions

(lCs). Even though the final form of the equations is expressed in the body-fitted

coordinates to fit the unusual geometry of the waverider, the imposition of lCs

for the velocity can be achieved easily by the utilization of the Cartesian velocity

components. The initial velocity components are:

Uk, = Voo cos a cos {3,,

1 TT·
V" 1 = Yoo SIn a,•

wl, = Voo cos a sinj3.,

(3 - lOa, b, c)
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The effects of the angles of attack a and yaw f3 are implemented in this procedure

by the above relation as shown in Fig.(3-2). For a special case without angles of

attack and yaw where the freestream flow is in the x direction, the only nonvanishing

velocity component is ul,z = Veo • Thus keeping and using the Cartesian velocity

components in generalized curvilinear coordinates makes it easy to impose starting

values, even for the particular shape of the waverider geometry. For the other flow

variables such as pressure, density, and temperature, freestream values are used.

The initial converged solution is sought at the position x = 0.05 where the step­

back procedure is taken until we meet any given criterion. Since we deal with the

inviscid problem only and thus the flow is conical, we don't need to integrate further

downstream by space marching.

3.5 Boundary Conditions

The boundary conditions (BCs) without yaw (f3 = 0) are composed of three

parts as shown in Fig.(3-3); the far-field away from the bow shock, the upper and

lower parts of the symmetry plane, and the body wall. For the case with angle of

yaw, the symmetry condition cannot be used and thus the whole flow region must

be included in the calculation instead of the half domain.

Far-Field

In a supersonic flow the flow downstream of a shock does not influence the

upstream flow. Thus we can use the freestream values for the region which is far

away from an expected bow shock located around the lower portion of a waverider.

The outer boundary values (denoted by [ = [max) are set equal to those of the

freestream as

(3 - 11)
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. When the angle of attack is such that an expansion wave exists above the waverider,

the far-field conditions must be imposed outside the Mach cone emanating from the

apex of the waverider.

Symmetry Planes

The waverider configuration studied in this work is symmetric about the plane

z = 0 and the How around it will be also symmetric as long as its symmetry plane

is aligned with the freestream How direction (f3 = 0). To impose this condition two

additional neighboring grid points are necessary across both the upper and lower

symmetry planes, since the numerical algorithm used is the second order in the

crosswise directions. Let

1 0 0 0 0
0 1 0 0 0

X= 0 0 1 0 0 (3 - 12)
0 0 0 -1 0
0 0 0 0 1

then
Uk=l = XUk=4, Uk=kmu+2 = XUk=kmGz-l,

(3 - 13)
Uk=2 = XUk=3, Uk=kmu+l = XUk=kmu '

Here the -1 in X plays the role of changing the sign of w across the symmetry line.

The above relations show simply the reflection condition which is shown in Fig.(3-4).

Wall

Since the finite-volume method is used, the wall surface is composed of cell

interfaces obtained by the primary grids. Thus, fluxes at the wall instead of flow

variables should be specified. For inviscid flow the contravariant velocity TV in the

(-direction is zero. That is,

where
A \7(
n = 1\7(1'

(3 - 14)

(3 - 15)
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As a consequence, all the inviscid normal fluxes to the wall vanish except for the

pressure term.



Chapter IV

PROBLEM SOLVING PROCEDURE

The first part of this chapter describes the problem concerning waveriders, and

the solving procedure is presented. Then the characteristics and difficulties involved

in the problem are set forth. Finally a simplified relation for aerodynamic forces is

presented.

4.1 Problem Description

A waverider, a lifting body with high lift-drag ratio, is chosen as the forebody

of a generic aero-space plane, as mentioned earlier. This study is to numerically

solve the compressible flows past waveriders at supersonic speeds at both on- and

off-design conditions. Because for supersonic flows the downstream flow does not

affect the upstream flow, unlike subsonic flows, a waverider forebody can be studied

independently of any downstream or afterbody configuration.

Jones[2,3] solved numerically supersonic flows past waveriders by means of

the full potential method[27] and obtained quite successful results. They are not

strictly valid when the vorticity is sufficiently large, which occurs for a fixed finite

eccentricity f2 when K6 becomes sufficiently large. In this investigation the complete

Euler equations in a steady form are utilized. Since there are no restrictions on

rotationality, unlike the potential method, we can calculate for arbitrary hypersonic

flow regimes.

22
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Composition of Program Packages

The whole computer code is composed of three packages of program files. They

are:

(1) AGRlD : generating grid

(2) STARS3D : solving for flows

(3) CPLOT : plotting various graphs and obtaining approximate solutions for

waveriders

AGRlD is the code that produces body-fitted coordinates. This can generate

algebraic, hyperbolic, and elliptic grids. The details about elliptic grid generation

are presented in Chapter V. The STARS3D code developed by Lawrence[28] at

NASA, whose algorithm is described in Appendix B, is used to solve hypersonic

flows past circular cones, elliptic cones, or waveriders with various conditions. This

code was about 7,700 lines long, but it was reduced to 5,000 lines through modi­

fication for grids and COMMON block structure and removing some unnecessary

subroutines. The CPU time was about 2.25 hours on the IBM 3081 for an 83x41

mesh. The CPLOT code is used for plotting the various variables obtained by

running STARS3D through either a SURFACEII or a FORTRAN basic graphic

routine. This also calculates approximate solutions by means of the HSDT. In

addition PLOT3D developed by NASA is utilized for entropy contours and other

plots.

4.2 Problem Characteristics

The numerical calculation of flows past waveriders involves difficulties that fall

into at least three categories which are somewhat interrelated. The first category

is associated with the singular nature of the waverider shape at the sharp leading

edge. The second category is associated with the large gradients in the flow arising

from the bow shock wave, the large gradients near the sharp leading edge especially
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when the freestream Mach number is slightly less than the design Mach number,

and possibly large gradients arising from vortical layers. The third category is

the numerical algorithm itself, including the implementation of the wall boundary

condition.

The upper surface of the elliptic-cone derived waverider is a flat delta-shaped

surface that intersects the lower curved compression surface along a straight line

that forms the sharp leading edge of the waverider. The singular behavior of this

leading edge presents difficulties in constructing a desired smoothly-varying grid

structure near the leading edge. Several grid-construction schemes will be studied:

an O-type grid, a fan-type grid, and an adaptive grid. If the grid is too skewed or

if the grid cell volumes change size too rapidly, the numerical integration process

will diverge. An adaptive grid could be considered to be used for the computation.

This, however, would yield a grid skewness both for the, sharp leading edge region

and for the bow shock region. As a test case, an. adaptive grid was used with the

hopes for an improved shock structure, but it did not lead to a successful converged

solution.

For the on-design condition, a conical bow shock is attached at the leading

edge. The upper surface of the waverider is a freestream surface, and the lower

surface is a high-pressure, high-density compression surface. As is the usual case

for hypersonic flows, there is a large change in flow properties across the bow shock.

For the waverider problem, however, there is an additional problem. This manifests

itself dramatically when the freestream Mach number decreases slightly from the

design Mach number. In this case the bow shock detaches from the leading edge,

and a large gradient in the flow is established around the sharp leading edge of the

waverider. The same sort of behavior would occur if the location of the leading

edge were perturbed, either by design or by a slight error in the representation of

the waverider surface. Since the numerical shock structure itself is spread over a
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few grid elements, the representation of the flow near the sharp leading edge is very

sensitive to small changes or errors.

Since the asymmetric inviscid flow to be calculated is conical, a vortical layer

exists that is pronounced near the symmetry plane of the compression surface.

In principle, the compression surface of the waverider for the on-design flow is a

constant-entropy surface since it is formed from a conical stream surface from a

basic flow past an elliptic cone. There will thus be large gradients in the entropy,

density, and temperature near the symmetry plane on the compression surface.

There will also be corresponding large gradients in the entropy around the sharp

leading edge.

In this study we do not deal with viscous flows. IT viscous flows were to be

considered, however, the vortical-Iayer effects would be mitigated. In their place,

nevertheless, large gradients due to viscou~ boundary layers would occur. These

would produce further interactions of large gradients at the leading edge.

The third category involves the numerical algorithm together with the way of

the boundary condition imposition based on the finite-volume method. There is

always some error involved in the numerical computation scheme. The boundary

condition for the waverider surface pressure is imposed by means of the pressure

at a half grid element away from the waverider wall. At the sharp leading edge,

this is a potential source of difficulty. Except for the grid generation, the numerical

algorithm used by the Lawrence code in this investigation is unmodified. For inviscid

flows, pressure blips near the wall are detected even for the case of axisymmetric flow

past a circular cone. For the related PNS viscous flows, wall pressure oscillations

in the stream direction have been noted[28]. It is possible that a more accurate

means of imposing the boundary conditions is needed. This will be discussed more

later. The Lawrence code initializes the space marching operation by a step-back

procedure using the freestream conditions as initial conditions. For the conical
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inviscid problem this converges to the desired solution since the flow does not change

in the radial direction. The situation is very much changed when viscous effects are

involved since strong viscous interactions then occur at the vertex of the waverider.

When the waverider is inclined to the freestream, that is, when it is at a

nonzero angle of attack, it is possible that other flow features will arise that can

cause numerical instabilities when the angle of attack is large enough. Such features

might be the detachment of the bow shock, the occurrence of imbedded shocks, or

the occurrence of vortical motions.

4.3 Aerodynamic Forces

The normal-force and axial-force coefficients (CN, CA)are defined as

(4 - 1)

(4 - 2)

where N and A are normal- and axial-forces respectively, Sb is a waverider base

plane area, and qoo is the dynamic pressure of freestream flow. The base plane Sb

is used for a reference area in order to compare with experimental data which use

1 2 1 2
qoo = 2PooVoo = 2iPooMoo,

1
4J=4J·

Sb = 1
2

4J=o tan
2

[B( <f> )]d<f>,

where 1is the length of the waverider. The pressure force acting on a waverider can

be expressed by

(4- 3)

where n is an outward unit normal vector and S is a closed surface domain which

embraces the whole waverider body. They are composed of three parts, i.e., a

freestream upper-surface, a compression under-surface, and a base plane. Now

consider the definitions of normal- and axial-forces, and metrics.

N == j. F, A = i· F, - 1
dS = J \1(, (4 - 4)
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where i and j are base vectors of body oriented coordinates. If the pressure of the

base plane surface is assumed to have the freestream value, then the integration for

the base plane vanishes by the second expression of F in Eq.(4-3). Therefore, the

N and A in discretized form can now be expressed by

N = 2 ~[(Poo - p) ]li,j,
I,J

A = 2 L)(Poo - p)~ li,iJ
i,i

(4 - 5)

where the subscripts i,j are for 7], ( coordinates respectively and Pi,i denote the

wall pressures on the waverider upper and lower surfaces with excluding the base

plane. Note that the signs of both ~ and ~ are negative for the lower compression

surface where P > Poo and thus N and A become positive. The eN and CA for the

whole waverider body now become

(4 - 6)

To get these coefficients the summation should be carried out for the whole forebody

geometry. However, for an inviscid flow over a conical body like the waveriders

studied here a simpler calculation can be done and its procedure is presented in the

following. From the grid constructed for this problem, we can let

imGz

~§i =L ('1(/Jki'
i=l

For an inviscid flow we can apply the conical approximation such as

(4 - 7)

(4 - 8)
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where 1 ~ i1 ,i2 :$ imu . By means of Eqs.(4-7) and (4-8), the normal-force and

axial-force coefficients can be obtained as

(4 - 9)

The ratio N/A can be easily obtained by Eq.(4-9) as

(4 - 10)

This means that to calculate NIA for the forebody with conical geometry it is suf-

ficient to consider a special portion of the forebody separated by two cross sections

instead of the whole forebody. CL and CD for nonzero angle of attack are calculated

by the following relation:

{CL } = [C?S a _sin a] {CN }

CD sma cos a CA'
(4-11)

where CN and CA are based on the Cartesian coordinates (x, y, z) fixed to the

waverider body. The rotated Cartesian coordinates for CL and CD, (x', y', z') are

shown in Fig.(3-1). Now LID can be easily obtained from Eq.(4-11).



Chapter V

GEOMETRICAL CONSIDERATIONS

A generalized curvilinear coordinate system is of common use nowadays in

solving numerically fluid-flow problems with complicated boundaries. If we use

body-fitted coordinates with two coordinates on the body, the boundary conditions

can be imposed easily and accurately. Even though there exist grid generating codes

such as GRAPE[12] and EAGLE[29], it would be more desirable to write a code

for the waverider problem, because the elliptic-cone waverider studied here has a

geometrical singularity and thus we have to control the grid as much as we need.

Among various requirements of grid, smoothness and good grid control are ba­

sically important. Thompson's[30] elliptic grid generation, which can produce very

smooth grids, is one of the most widely used schemes. The grids can be controlled by

the inhomogeneous source terms called control functions in the Poisson's equations

which are used for grid construction. In determining control functions to generate

a required grid for an elliptic-cone waverider two factors are taken into account: an

orthogonal grid near the wall and a very sharp tip. To overcome the difficulty due

to double singularities we introduce a Fan-type grid which was found quite efficient

there. In order to capture a bow shock more accurately we may utilize an adaptive

grid. To get a more desirable grid structure near the tip the boundary points are

redistributed by means of a stretching function. Finally, the metrics, Jacobian, and

conical grid are described in brief.

29
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5.1 Elliptic Grid Generation

The set of equations for 2-D elliptic grid generation is

TJzz + TJyy = P(TJ, 0, (zz + (yy = Q(TJ, ().

subject to the Dirichlet BCs such as

r1;z = h(TJ,(d,y = 91(TJ,(d,

r 2; z = h(TJ, (2), y = 92(TJ, (2),

(5-1a,b)

(5-2a,b)

where f1l91lh, and 92 are functions specified for the inner «( = (d and outer

«( = (2) boundaries. P and Q are called control functions which control the grid

shape. The solution of the above system has the form

TJ = TJ(z,y), (= (z,y), (5 - 3a, b)

in a physical domain. But our purpose is to use TJ, ( as new coordinates and accord­

ingly they are to be used as independent variables instead of dependent variables.

Therefore, we need the solution in the form

z = z(TJ, (), Y = Y(TJ, 0, (5 - 4a, b)

in a computational domain. Figure (5-1) shows the physical and computational

domains related to the elliptic grid generation. If we interchange the dependent

and independent variables by means of the Jacobian theory (or chain rule), then

the elliptic grid generator becomes

where

1
azl'jl'j - 2f3zl'j( + "'tz(, = - J2 (pzl'j + Qzc),

1
ayl'jl'j - 2f3yl'j( + "'tYee = - J2 (pYl'j + Qyc),

(5 - 5a)

(5-5b)

_ 2 + 2
"'t = zl'j yl'j' (5-6a,b,c)
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and the Jacobian J is defined as

5.2 Control Functions

J = 8(TJ, C)
- 8(z, V)"

(5 - 7)

In determining control functions two factors are taken into account. One is

grid control near the wall and the other is an adaptive grid. In this study the above

two separated effects are combined together as

(5 - 8)

where the subscript w stands for wall and A for adaptive. The Pw and Qnl can

be determined only by geometric constraints, while PA and QA are affected by flow

solutions.

Grid Control near Wall

To control the grid near the wall two constraints by Sorenson[12] are imposed.

They are orthogonality and the first grid spacing from the wall;

(5 - 9)

(5 - 10)

where !lTJ = !l( = 1 as usual and !lSI is the first grid spacing from the wall. Except

for z" and V" at the wall all the other necessary derivatives can be determined if the

inner wall boundary are specified. The second derivatives in ( are approximated by

using the one-sided differences which contain previous iteration values. The source

terms are assumed to have the following forms.

(5-11a,b)
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The above constraints can decide the p(1]), q(1]) and the parameters, a and b, are

specified. IT a larger value of a or b is used, the effect of constraints decay very

quickly. On the other hand for a smaller value it decays slowly. In solving the set

of equations, the Successive Line Over-Relaxation (SLOR) method is utilized. Near

the sharp corners, numerical instability may often occur. To remedy the problem,

various methods including under relaxation and mixed finite difference schemes

based on the sign of P and Q are used.

Adaptive Grid

To improve the resolution in regions where rapid flow variations occur, and/or

to reduce the global error, an adaptive grid may be utilized. The basic idea of

adaptive grid which provides automatic adjustment to the flow pattern can be

obtained by equidistribution principle which for I-D case can be expressed by

x"w = (Ax)w = const. (5 - 12)

This means simply that the mesh size is smaller when a weight function w is larger

and vice versa. If we differentiate it once with respect to 1] and compare with

the Poisson elliptic grid generating equation for I-D, it can be easily seen that the

control function P is related to ~ ~~. Thomas et al. [31] introduced control function

as

Anderson[13] related these ¢ and t/J to the weight function w as

(5 - 13a, b)

¢ _ 2. 8w
- w 8"1'

In this study w is determined by

(5-14a,b)

w = 1 + AIV'pl/lV'plmax, (5-15)



(5 - 16a, b)
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where A is a constant and the number 1 is introduced to avoid infinite grid spacing

in regions where the pressure gradient vanishes. The pressure gradient in Eq.(5-15)

can be obtained by
8p 8p 8p
8z = (y( 8TJ - Yfl 8e)/vg,

8p 8p 8p
8y = (-Z(8TJ +zfl8e)/vg,

where vg = j. Note that the pressure obtained by numerical integration is defined

at cell center points and thus it is necessary to express it at primary grid points

before calculating pressure gradients. If we use the weight function based on the

above definition directly, then the grid might become rough. Thus, we adapt the

following smoothing

1
w(k,1) = 16 {4w(k, 1) +2w(k, 1+ 1) + 2w(k + 1,1) + 2w(k - 1,1) + 2w(k, 1- 1)

+w(k -1,1- 1) + w(k - 1,1 + 1) + w(k + 1,1- 1) + w(k + 1,1 + In.
(5 - 17)

Since the source terms are defined by Eqs.(5-11,13), the Poisson equations are

set up as

OTqfl - 2f3rfl( + i r ((

= - {[}2 P(TJ)e- a
C; +O:c;6(TJ,O] rfl + [}2 q(TJ)e-bC; +itP(TJ,O] r(}, (5 - 18)

where r= (z,y)T. The Eq.(5-18) is the final form which is numerically solved to

get a desired elliptic grid for a waverider.

5.3 Boundary Conditions

To generate body-fitted coordinates by solving elliptic partial differential equa­

tions two boundary conditions at inner and outer boundaries should be specified.

Inner Boundary: Waverider

The compression under-surface of the elliptic-cone waverider, Ow = Ow( c;6), is

constructed in spherical coordinates by either Eq.(2-12) or (2-13).
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For -<P. ~ <P < <P., the lower compression surface is given by

Y = -x tan Ow cos <P, z = x tan Ow sin <P, 0 ~ <P ~ <P.,

Y = -x tan Ow cos <P, z = -x tan Ow sin <P, -<P. < <P ~ O.

(5-19a,b)

(5 - 20a, b)

For cP. < cP < 27r - cP., two planes which are aligned with the freest ream flow are

used to define a waverider configuration.

Y. ~ Y < 0,

y. ~ y ~ 0,

z.
z = --v, <P. < <P < 7r,

y.

z.
z = -v, -7r ~ <P < -<P••

Y.

(5 - 21a, b)

(5 - 22a, b)

Outer Boundary : Ellipse

The outer boundary is defined as an adjustable ellipse.

where

(5 - 23)

(5 - 24a, b, c, d)

(5 - 25)

where a1, a2, and a3 are parameters determining the outer boundary shape.

Redistribution of Boundary Points

The inner and outer boundary points around the tip are redistributed by using

Roberts' stretching[ll] which is more desirable than an exponential stretching, since

for the region where the clustering is not wanted we can get more uniform stretching.

The arc length, S, is defined by .

S- (,B+l)-(,B-l)(~)l-'S
- 1 +(~)1-~ t,

fJ-1

where 0 < f3 < 00 and ( = (m..~-1. As f3 -+ 0, more clustered grid near S = 0 can

be obtained. As f3 -+ 00, they become uniform. Based on the arc lengths we can get
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the clustered grid as we like. This is done by redistributing the x and y coordinates

along the wall line by means of the interpolation according to the calculated arc

lengths.

Grid Types

By changing the inner boundary values with slight modifications, we can obtain

differrent types of grids such as O-type, Fan-type, and adaptive grids.

The grid structure near the sharp tip plays a very important role especially in

respect to the convergence in numerical calculations. The smoothness is the general

requirement of any grid for body-fitted coordinates. To get such a grid the grid lines

and the variation of grid cell volumes should be smooth. If we adapt O-type grid,

which is shown in Figs.(5-2,3) and obtained for the location x = 1, the grid structure

near the tip will be skewed so much that the grid line smoothness can be spoiled.

This cannot be improved by clustering TJ grid lines, while the cell volume variation

is not too bad. Because of the convex surface with an infinite transverse curvature

at the tip, constant ( lines near the tip region are clustered and thus grid spacings

along TJ line which comes out of the tip are small. To adjust them we impose a

positive source at the tip which is determined by trial and error.

To improve the smoothness we introduce another type of grid, a Fan-type grid,

shown in Figs.(5-4,5) where several rays come out of the same tip point. The grid

points are calculated at the position x = 1. This type of grid will not cause any

problem in numerically integrating the governing partial differential equations, since

we are using a finite-volume scheme and there is no flux into the body due to the

zero cell area at the tip. However, it is desirable to get at least four triangular

grid cells, considering that the numerical algorithm is 2nd order accurate in the

crosswise direction, and thus four cells are involved to calculate a flux. The grid

used here has six triangular cells. This can represent the flow differences near the tip
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properly. But there is a difficulty still in constructing this type grid, since increasing

ray number will make the cell areas smaller and thus the smooth variation of cell

areas deteriorates. This can be alleviated by introducing a point source at the tip

and adjusting the '7 grid line spacings near the tip. The Fan-type grid is more

appropriate to get a finer grid in the 7] direction, while the O-type grid is more

desirable for a finer grid in the ( direction.

The adaptive grid for a Type-B waverider obtained by the Eq.(5-18) is shown

in Fig.(5-6) and its magnified figure is shown in Fig.(5-7). Both figures are obtained

for the location x = 0.05 where the numerical calculations are made. As can be

seen, the grid is skewed very much near the clustered region. Even though the

adaptive grid may improve the resolution of the shock in general, it doesn't seem

to be very desirable for the problem which has sharp leading edges where numerical

instability can occur frequently.

5.4 Jacobian and Metrics

The Jacobian and metrics have their geometrical meanings and they can be

determined by the grid geometry in Fig.(5-8). The indices (n, k, 1) are for (~, 7], ()

coordinates respectively. The vertices denoted by the solid circles (.) are called

primary grid points and the cell center points denoted by X are called secondary

grid points.

Jacobian and Cell Volume Element

Under the definition of the Jacobian J,

J = 8(e, 7], ()
- 8(x,y,z)'

the J is related to the cell volume in the physical domain inversely, Le.,

1
J = b.V'

(5 - 26)

(5 - 2i)



37

where ~e = ~TJ =~( =1 is set as usual. Therefore, the Jacobian can be obtained

from the geometry of the grid. There can be various ways to determine the cell

volume. In this investigation it is calculated by using the following relation[32],

1 1 (As-n+l AS-n+l/2 AS-n+l/2) (~+l ~ ) (5 '>8)
J = 3 L.1 k,l + L.1 k+l/2,1 + L.1 k,l+1/2 • r k+1/2,l+1/2 - rk-l/2,1-1/2 , - -

where r represents a position vector for the primary grid points shown in Fig.(5­

8). For example, the point C in the figure is corresponding to r;t:/2,l+1/2' The

magnitude of the area element ~§:tl is equivalent to the area of ABCD and its,

direction is in the normal to the area with the the positive e-direction. Whereas the

:fluxes are defined at the cell interfaces like ~§:tl in the finite volume method, the,

:flow variables are defined at the cell center point. In the Lawrence algorithm, the

marching level is raised from (n +1/2) to (n + 1) as shown in Fig.(5-8) . Therefore,

the point (n + 1, k, 1) is located at the center of the area element ABCD instead of

the center point of the cell.

Metrics and Cell Area Element

The comparison of the discretized equation(B-ll) based on the finite volume

method with its corresponding differential equation(3-5) in steady state can provide

a useful relation which shows the physical explanation for metrics. For example,

the e metrics is expressed by means of the geometrical quantity, the area vector, as

(5 - 29)

Therefore, once a grid are generated by any means, the metrics combined with the

Jacobian can also be determined through their corresponding area element vectors.

The area vector ~§ktl can be calculated by the cross product of two vectors as,

~§:.tl = ~(AC x BD)

1 (-n+l -n+l ) (-n+l -n+l )
= 2 r k+1/ 2,1+1/2 - r k - 1/ 2,1-1/2 X r k - 1/ 2,1+1/2 - r k+ 1/ 2,1-1/2 .

(5 - 30)
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Note that the sign of the area element is decided by its corresponding outward unit

normal n and the metrics in FVM are defined at cell interfaces.

Conical Grid

So far .we described only 2-D grid, while the problem is 3-D. We can easily

construct the desired 3-D grid through contraction or expansion of the generated 2­

D grid, since the elliptic-cone waverider has a conical shape. Since the e= constant

plane is perpendicular to the x-axis, for the grid constructed here we have

ey = ez = O. (5-31)



Chapter VI

CmCULAR- AND ELLIPTIC-CONE FLOW SOLUTIONS

In this chapter, in order to confirm the validity of the code STARS3D which

is used for this study and also to check the accuracy of the HSDT approximate

method, we calculate some inviscid flow variables for circular cones and compare

them with known exact solutions. As a second means of comparison, the solution

of the flow past an elliptic cone is obtained by numerically integrating the complete

Euler equations. Considering any waverider investigated here is constructed from

the known compressible flow field past an elliptic cone at a supersonic speed, it will

be profitable to obtain a flow solution about the elliptic cone in order to facilitate

the understanding of waverider physics. In studying hypersonic flows it is important

to note that for any asymmetric supersonic or hypersonic conical flow there exists

a vortical layer near the body surface where the entropy changes very rapidly.

For checking the vortical layer we present entropy contours. Finally to enhance

the understanding of the waverider flows especially near the leading edges, the

shock locations by both the HSDT and numerical integration for elliptic cones are

calculated and presented.

6.1 Circular-Cone Flow

As test cases we calculate the shock angles f3 and normalized wall pressure

Pw/Poo of inviscid circular-cone flows for several values of the basic circular-cone

half angle 8. For the calculation Moo = 4 and I = 1.4 are used. The numerical

data are from STARS3D code and the approximate analytic data from the HSDT

39
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by means of Eqs.(A-6,7,12). The numerical shock position is determined by the

location of the largest pressure gradient. The shock is captured with one internal

grid point and it is a very clean shock without any wiggles before and after the

shock. For 8 = 12.5°,17.5°, and 20.0° Sims tables[33] render exact solutions which

are shown in Table (6-1).

Table (6-1)

8 f3 or Pw Sims STARS3D HSDT l:::.EN-E l:::.EA-E

12.5° f3 19.65° 19.72° 19.90° +0.36% +1.27%
Pw/Poo 2.307 2.306 2.331 -0.04% +1.04%

17.5° f3 24.08° 24.16° 24.07° +0.33% -0.04%
Pw/Poo 3.368 3.365 3.382 -0.09% +0.42%

20.0° f3 26.49° 26.42° 26.34° -0.25% -0.55%
Pw/Poo 4.006 4.002 4.014 -0.10% +0.20%

As can be seen, the maximum percentage errors of the numerical values to the

exact values (denoted by l:::.EN-E) for the surface pressure and the shock angles

are 0.1% and 0.36% respectively for the given range of 6. These indicate that the

computational results are very dependable, and thus that the STARS3D code can

be utilized for other similar flow calculations with confidence. On the other hand,

the maximum percentage errors of the approximate analytic values to the exact

values (denoted by l:::.EA-E) for both the surface pressure and the shock angle are

slightly larger than 1%.

Table (6-2) is for two values of 6 that are used to generate perturbed elliptic­

cone flows. For the smaller 8 case the relative error of the analytic shock to the

numerical shock (denoted by l:::.EA-N) is positive. But for the larger 8 case the error

is negative. The wall pressure data of the HSDT show consistently larger values

than the exact values in Table (6-1) and the numerical values in Table (6-2).



41

Table (6-2)

S f3 or Pw STARS3D HSDT ~EA-N

12.00 f3 19.300 19.520 +1.14%
Pw/Poo 2.217 2.241 +1.10%

18.620 f3 25.190 25.070 -0.48%
Pw/Poo 3.641 3.657 +0.44%

6.2 Flow Field past an Elliptic Cone

Figures (6-1) show the solution to the compressible supersonic flow past an

elliptic cone at Moo = 4 and Q = 00
• It is obtained by numerically integrating the

Euler equations. For the reason of comparison each physical variable is normalized

by its corresponding freestream value. The elliptic-cone geometry is decided by the

half basic cone angle S = 18.620 and small perturbation parameter €2 = 0.1 (see

Eq.(2-1)). This specific geometry with the given flow condition is introduced so that

it is consistent with its corresponding waverider Type-B at the on-design condition.

Figure (6-1a) shows the grid (63x63 mesh) for the elliptic cone. Figure (6-1b) shows

the disturbance velocity parallel to the y - z plane, that is, V = Vyj + vzk. The

dots indicate that the flow is in the x-direction without any disturbance due to the

body. Between the dotted and arrow areas we can see a distinct boundary where

a bow shock is located (roughly speaking). Through this shock the freestream flow

is deflected. IT we take a close look at the shock location, it can be seen that the

shock stand-off is larger near the vertical minor axis than the horizontal major axis.

This is in agreement with Eqs.(2-1,2) for the HSDT 92 = 0.597 and (1 = 1.34. The

azimuthal velocity component shown in Fig. (6-1c) goes to zero as ¢ approaches

00
, 900

, or 1800
• Its maximum absolute value occurs at ¢ ~ 450

• It is to be noted

here that flow variables are not given at symmetry lines where primary grid points

are defined. Since the FVM is used in this study, they are defined at secondary
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grid points. The sign of w is negative as shown in Fig. (6-1c). That is because

of the positive pressure gradient from the vertical minor axis toward the horizontal

major axis, as can be seen in Fig. (6-1d). The pressure is a maximum at the major

axis. Figure (6-1e) shows the pressure distribution near the lower minor axis from

the freestream side to the wall side. A very sharp and clean shock is captured with

one internal grid point. Figure (6-1£) shows a comparison of the pressure on the

cone surface obtained by the numerical integration of the Euler equations and by the

HSDT. At the minor- and major-axes the two sets of data are very close. The HSDT

result in the middle of the figure is about 3 percent greater than the numerical result.

Figure (6-1g) shows a comparison of the pressure distribution across the shock layer

near the minor-axis symmetry plane. The HSDT shock is located more closely to

the cone body than that by the numerical calculation. Figures (6-1h,i) show the

pressure and Mach number contours. In both figures a bow shock is identified by

coalesced lines.

6.3 Entropy and Vortical Layer

Figures (6-2a,b) show the entropy contours for the elliptic cones with 0 = 12°

and 18.62°. Each of them corresponds to the Type-A or Type-B waverider. The

constant entropy surfaces are getting closer as they approach the cone surface and

they have a common tendency to embrace the body near the minor axis. This

means the entropy near the wall changes very rapidly in the normal direction to

the wall. A region with a rapid entropy change also has a large vorticity according

to Crocco's equation. The region of the rapid change near the wall is called the

vorticallayer. According to an analysis by Ferri [24] vortical singularities exist at

the minor axes of an elliptic cone where multiple values of entropy occur. In order

to delineate the vorticallayer distinctly, of course, we need accurate entropy values

on the wall and symmetry lines. In this respect a finite-difference method (FDM)
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would be more preferable for the purpose of capturing the vortical layer, since in a

FDM both the wall and symmetry values are defined. A partially improved result

for the vorticallayer might be achieved by means of a finer grid in those regions.

6.4 Shock Locations for Elliptic Cones

Figure (6-3a) shows the shock locations for an elliptic cone (Type-A waverider

generator) by the HSDT method and numerical calculation. It can be seen that the

shock angle due to the approximate analytic method is greater than that obtained

by the numerical integration of the Euler equations. Figure (6-3b) shows the shock

locations obtained by the above. two ways for another elliptic cone (Type-B wa­

verider generator). For this case the HSDT shock is located inside of the numerical

shock. These phenomena correspond to the results of Table (6-2). In the figures

we can also see that the shock locations predicted by the HSDT and CFD methods

are in reasonable agreement, the more so in the Type-A waverider generator.



Chapter VII

WAVERIDER FLOW SOLUTIONS

In this chapter we present and discuss the numerical Euler solutions for super­

sonic/hypersonic flows past elliptic-cone waveriders. The base on-design condition

is for Moo = 4 and a = 0°. The chapter is divided into six parts. The first part

discusses the on-design flows past the two A and B types of waveriders, and compar­

isons are made with the results of the HSDT. The second part considers off-design

flows where a = 0° is held fixed. The Mach numbers above the design condition

are Moo = 4.5, 5.0, and 10.0. The Mach number below the on-design condition is

Moo = 3. The third part considers off-design conditions for which Moo = 4 is held

fixed and both positive and negative angles of attack are considered. The fourth

part considers the off-design conditions for which both the angle of attack and Mach

number are different from those of the on-design condition. The fifth part discusses

the constant entropy surfaces for the on-design flows. The sixth part deals with the

inviscid lift and drag of the waveriders as functions of freesteam Mach number and

angle of attack.

7.1 On-Design Flows: Moo = 4, a = 0°

We consider separately the on-design flows for the Type-AI, A2 waveriders in

Figs.(7-l,2) and then the flows for the Type-Bl, B2 waveriders in Figs.(7-3,4). Next,

we compare the computational solution to the flow past the Type-AI waverider with

the analytic approximate solution based on the HSDT in Figs.(7-5) and to the flow

past the Type-BI waverider in Figs.(7-6).

44
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(1). Type-A1 Waverider (KcS = 0.838)

Figures (7-1) show various drawings for the numerical solution to the compress­

ible flow past the Type-AI waverider at its nominal on-design condition. Figure (7­

la) shows the O-type grid (83x41 mesh) that was used. The details of the typical

O-type grids for the sharp tip region were presented in Figs.(5-2,3).

The distUrbed velocity that is perpendicular to the x-axis is shown in Fig.(7­

Ib). Its magnified flow field near the leading edge is shown in Fig.(7-1c). A bow

shock is captured under the waverider, and it ranges from the symmetry plane to

the leading edge region. Below the shock there are dots which indicate that t~e

flow is perpendicular to the y - z plane and the freestream is not disturbed at

all. In the region between the lower waverider wall and the dotted area we can

see the velocity components in the y - z plane, which indicate the freestream flow

is deflected through the shock. In the upper region above the waverider we can

observe that the freestream is disturbed. The right side of this disturbed region

is the extension of the bow shock from under the waverider, and its strength is

weakened as it goes upwards. This weakened shock finally becomes a Mach cone in

the" upper symmetry plane.

Figure (7-1d) shows a comparison of the bow shocks as calculated by means of

the HSDT and as captured by the numerical integration. The computational shock

position was defined by the locations where the largest pressure gradient along

each constant 7] line occurs. The shock captured by the computation is found to

stand off from the leading edge instead of being attached, which should be expected

for the ideal on-design condition. The attached shock can be expected only if the

waverider geometry is based on the exact solution to the corresponding elliptic-cone

flow and the solution to the flow past such a waverider is also exact. Thus, if either

or both of the two conditions are not met, we cannot expect an attached shock

in general. The waverider configuration used in this investigation is generated by
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means of an HSDT approximation. For the flow past the elliptic cone that generates

the waverider, we could already see the difference between the two shocks by the

HSDT and the computation in Fig.(6-3a) of the previous chapter. Through the

gap between the leading edge and the shock, the flow is appears to be spilling from

the lower region to the upper region owing to the large pressure gradient in the

circumferential direction. As a result, the flow in the upper region of the waverider

is also disturbed.

The normalized azimuthal velocity component wIV00 along the waverider wall

is shown in Fig.(7-1e). The horizontal axis denotes the '1-coordinate along the wall.

The azimuthal angle 4> is measured from the lower symmetry plane anticlockwise.

Obviously w goes to zero in the region at 4> = O. As 4> increases, its magnitude with

negative sign increases. In the middle of the figure we can observe that w increases

from negative values to large positive values. In other words; the flow near the tip

accelerates from the lower compression part to the upper freestream part of the flow

field.

Figure (7-1£) shows the normalized pressure distribution along the waverider

surface Pwlpoo versus the horizontal axis z. For the computer computations, the

z coordinate is measured at the location x = 0.05, where all the other numerical

calculations are also carried out throughout this study. Since the flow and body

are conical, the picture is similar in every vertical plane. The higher pressure line

in the figure is for the waverider lower-compression surface, and the lower pressure

line is for the upper-freestream surface. Strictly speaking, the pressure is for a half

grid spacing above the wall. For the wall pressure the zero gradient assumption

in the normal direction from the wall is used. As z increases, the pressure of the

lower waverider surface also increases. This is mainly due to the larger deflection­

angle effect from the minor axis to the major axis of the elliptic cone which is the

waverider generator. For the same pressure line we can see the region where the
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pressure decreases as z increases. This decreasp. is principally due to the pressure

decreasing phenomenon of the elliptic-cone flow from the body to the shock as shown

in Fig.(6-1e). Near the leading edge, the pressure of the under-compression area

increases as z increases, and it has the peak value right before reaching the edge. On

the other hand, according to the analytical calculation which will be presented in the

subsection Comparison with HSDT, the pressure for the same region decreases

as z approaches the tip. To check whether the numerical pressure has the trend of

the analytical calculation or not, we calculated the flow by using a more clustered

grid near the tip and also Fan-type grids shown in Figs.(5-4,5). But the pressure

increasing trend remained almost the same. In other words, the behavior of the

numerical solutions near the tip does not match that of the approximate solution,

while the flow for the rest of the tip region remains nearly unchanged and shows good

agreement with HSDT. This will be discussed in'more detail subsequently. Figure

(7-1g) shows the normalized pressure distribution near the lower symmetry plane

z ~ o. More precisely, it represents the pressure for the finite-volume elements

whose left interfaces are located at the symmetry plane. The shock is found to

be captured only with two internal grid points. It is a clean shock without any

oscillations either after or before the shock.

Figure (7-1h) shows the pressure contours. A bow shock is clearly seen in the

lower compression part, and it stands off from the tip as stated earlier. The right

upper area of the waverider is disturbed by both the bleeding due to the pressure

jump near the tip and the extended shock. This disturbed region is expected to be

extend upwards further as the angle of attack is increased. Therefore, for the case

of high angle of attack, care must be taken so that the outer boundary is sufficiently

far from the waverider to cover this disturbed region. IT not, numerical instability

can occur. Figure (7-1i) shows the Mach number contours which are similar to the

pressure contours.
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(2). Type-A2 Waverider (K.s = 0.838)

In order to determine the effects of a change in shape of a waverider on the flow

fields, calculations were made for the waverider with shape Type-A2. This shape

has a tip angle of only 1.44 deg, compared with 10.45 deg for the Type-AI waverider.

The details for the tip angle are described in Appendix C. Figures (7-2a) through

(7-2g) pertain to the Type-A2 waverider, and these are to be compared with the

corresponding Figs.(7-la) through (7-lg) for the Type-AI waverider. Figures (7­

2a,a') show the Fan-type grid that is used for the computation. In spite of the

sharpness of the leading edge, a very ~mooth grid is generated. The Cross-Plane

velocity distribution is shown in Fig.(7-2b) and its magnified portion for the tip

region is in Fig.(7-2c). We can see that the flow disturbance above the tip region

is very small compared with the corresponding flow in Figs.(7-lb,c). The shocks

by the HSDT and the numerical solution are depicted in Fig.(7-2d) and show an

amazingly good agreement between them, unlike the case of the Type-AI waverider

in Fig.(7-ld). From the comparison of the shock locations in Figs.(7-1,2d) we can

assert that the reason for the large discrepancy for the shock locations in the Fig.(7­

Id) near the tip region is from the error of the waverider configuration at the sharp

leading edge. The azimuthal velocity component is shown in Fig.(7-2e), and the

pressure distributions along the wall and near the lower symmetry plane are shown

in Figs.(7-2f,g). The waverider wall pressure distribution in Fig.(7-2f) shows no

pressure peak at the tip, unlike the case in Fig.(7-lf). The pressure distribution

resembles the trend of the ideal on-design condition based on the HSDT.

(3). Type-B1 Waverider (K6 = 1.30)

Figures (7-3) show various drawings for the numerical solution to the com­

pressible flow past the Type-BI waverider at its nominal on-design condition. The

O-type grid (83x4I mesh) used for the waverider is shown in Fig.(7-3a). Since the
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Type-BI waverider has a larger deflection 8 than the Type-AI, the flow of this type

waverider has a larger hypersonic similarity parameter (K6 =Mooo) and thus it has

a more hypersonic feature. Figure (7-3b) shows the disturbed-velocity distribution,

whose magnified portion for the tip region is shown in Fig.(7-3c). The disturbance

region above the tip area can be found in the figure. This is located closer to the

upper wall than that for the Type-AI shown in Fig.(7-lb). Thus, the possibility

of interaction with the outer boundary is lessened. Due to this fact, for the case

of high angle of attack this type waverider may give more stable results than the

Type-Al. Since the Typ~-BI waverider is generated from the elliptic-cone flow

whose numerical solution was presented in Chapter 6, ideally the flow pattern of

the waverider lower compression portion should match that of the elliptic-cone flow

pattern. We can see that the flow field in Fig.(7-3b) resembles the flow pattern in

Fig.(6-lb).

Figure (7-3d) shows two shocks from the approximate and numerical solutions.

As the case in Fig.(7-ld), the numerical shock for this type waverider is located

outside of the HSDT shock. Figures (7 - 3e '" i) show similar trends to those of

the Type-AI waverider in Figs.(7 - Ie '" i).

For the flow past the Type-BI waverider, there are other data available for

the wall pressure coefficient. Figure (7-3j) shows the comparison of the pressure

coefficients Cp by several researchers including the present study as functions of

the azimuthal angle 4>. The experimental data by Jischke et al.[7] are plotted in

the figure. There is a noticeable discrepancy between the experimental and present

numerical data. The similar discrepancy between the experimental and the Euler

numerical data by Liao et al.[lO] can be observed. In fact, a complete agreement

cannot be expected, since the experimental data are related to the real viscous

flow. However, except for this basic difference of the viscous and inviscidoflows, it

is difficult at the present time to explain very well the reason for the discrepancy
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in Cpo In spite of this disagreement in magnitude between the experimental and

computational data, the comparison shows very similar trends for the range of the

given experimental data points. Furthermore, a very good agreement between the

numerical results by Liao et al. and the present investigation can be found except

for the very small region near the leading edge. The two results are obtained by

completely different numerical integration methods. The above considerations on

the trend and agreement lend confidence to the reliability of the present numerical

results. In the figure the pressure coefficient by Jones[4] is also plotted. These data

show better agreement with the experimental data for the lower values of <P, but

for the higher values they do not. The trend shows somewhat irregular variation at

<P ~ 300
•

For the purpose of further checking the reliability of the numerical result we

calculated the flow by using two different mesh numbers. The coarse mesh is 45 x 21

and the fine mesh is 83 x 41. The comparisons for the different mesh numbers

are shown in Figs.(7-3k,I). Figure (7-3k) shows the normalized pressure near the

lower symmetry plane versus the normalized vertical length y/x tan 8. The shock

locations are almost identical. The wider shock structure denoted by the dotted line

is due to the worse resolution by the coarse grid. Figure (7-31) shows the normalized

waverider wall pressure distributions Pw/Poo versus the normalized horizontal length

z/x tan 8. As a whole, a good agreement except for the sharp leading edge region

can be seen. The part of the reason for the discrepancy is from using the FVM,

since the flow points for the grids of two different mesh sizes in the FVM cannot be

identical. The other aspect is that the major numerical error occurs near the sharp

leading edge.
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(4). Type-B2 Waverider (K45 = 1.30)

Figures (7-4a) through (7-4g) pertain to the type B2 waverider, and these are

to be compared with the corresponding Figs.(7-3a) through (7-3g) for the type Bl

waverider. The Type-B2 waverider has a tip angle of 4.12 deg., compared with

9.45 for the type Bl waverider. Figure (7-4a) shows the Fan-type grid used for

the computation. The cross-plane velocity distribution is shown in Fig.(7-4b), and

the magnified region near the tip is shown in Fig.(7-4c). Although the shock is

not attached at the tip, the stand-off distance is somewhat less than for waverider

Bl. A comparison of the shock locations by the HSDT and the numerical solution

is shown in Fig.(7-4d). The numerically calculated position is always somewhat

outside the HSDT. This can be partly associated with the fact that, for this case,

the conical shock angle at the tip is about 25°, and when the angles get this large the

small-angle approximations of HSDT loose their accuracy. The azimuthal velocity

component w is shown in Fig.(7-4e), and the pressure distributions near the wall

and near the lower symmetry plane are shown in Figs.(7-4f,g). The magnitude of

the azimuthal velocity is much less for this case, and the peak in the pressure at

the tip of the compression surface has been removed.

(5,6). Comparison with HSDT

One way to confirm numerical results is to check them at a special condition

where we know analytic solutions. The basic waverider-generating flow field past

an elliptic cone can be obtained by a perturbation method. The details for the

solution procedure are described in Appendix A. Both approximate and numerical

solutions for the Type-AI waverider are plotted in Figs.(7-5) and for the Type-Bl

waverider in Figs.(7-6). The O-type grids are used for each waverider. It should

be kept in mind that the perturbation solution is an approximate solution, and

the purpose of the comparison is to compare trends as well as magnitudes. As a
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further reference, flow variables for unperturbed basic cones are also plotted; the

polar angle 0 within the circular-cone shock layer is given by the same relation as

the waverider wall equation 0 = O(</J) in Eq.(2-12). All the dependent variables

are nondimensionalized by their corresponding freestream values and represented

in spherical coordinates (r, 0, </J).

Figures (7-5) show the flow fields on the lower compression surface of the Type­

Al waverider as functions of azimuthal angle </J. The leading edge of the waverider

is located at </J = 60°. At </J = 45°, the perturbed and unperturbed solutions are

identical except for the azimuthal velocity component.. '

The radial (r) velocity components of both circular and elliptic cones are shown

in Fig.(7-5a). They have a common value at </J = 45° as mentioned before. This

is due to the perturbation term cos 2</J in Eq.(2-4a). At </J = 0°, the r-velocity

component of the elliptic cone is larger than that of the circular cone, as can be

expected from the fact that the elliptic cone has a smaller deflection angle there

than the corresponding circular cone. This trend remains the same for the region of

o< </J < 45°. For the region 45° < </J < 60° the opposite occurs by a similar reason.

The trends of the analytic and numerical solutions are well matched. Even the

magnitudes themselves are quite close to each other except for the tip region. For

example, the numerical radial velocity component in Fig.(7-5a) near the symmetry

line agrees with the analytic value within 0.15%.

The polar (0) velocity components are shown in Fig.(7-5b). The difference

between the components of the circular and elliptic cones is invisible on this scale.

In other words, the O-velocity component is insensitive to a slight disturbance on a

circular cone.

In Fig.(7-5c) the azimuthal (</J) velocity components w are shown. The analytic

value of w for the elliptic-cone flow has the term sin2</J (see Eq.(2-4c)) which is



53

different from the rest of the dependent variables. The maximum value of the ¢­

velocity component lies at ¢ ::: 45° where the other perturbation variables vanish.

Near the tip region, a relatively large discrepancy between the HSDT and the

numerical calculation is detected. The much smaller numerical value of w from

the computation is caused by the large pressure gradient in that region.

The pressure distributions along the waverider wall are shown in Fig.(7-5d).

At ¢ = 0°, a larger pressure for the unperturbed cone is anticipated than for the

corresponding elliptic cone.

As presented in Appendix A, the pre~ure and azimuthal velocity component

obtained from the outer perturbation expansions are valid for the entire shock layer

including the inner wall regime. On the other hand, the rest of the flow variables are

not strictly valid near the wall. This lack of validity of the outer solution is because

of the existence of a vortical layer and a vortical singularity in the vicinity of the

elliptic cone minor axis, which will be discussed in a later section. For a uniformly­

valid solution we need to also use the inner expansions so that these phenomena

might be taken into account. In line with this, it is interesting to note that for the

symmetry plane region where the vortical layer and vortical singularity are most

significant, the agreement of the approximate analytic and numerical values for the

pressure and azimuthal velocity component in Figs.(7-5c,d) is very good.

The density and temperature distributions according to the outer expansions

are plotted in Figs.(7-5e,f). The agreement for those is not so good in comparison

with the case of the pressure.

Corresponding comparisons for the Type-BI waverider are made in Figs.(7­

6). Figures (7-6a,b,c) show the normalized velocity components by the freestream

velocity Voo in the r, (}, and ¢ directions. The comparisons for the radial and polar

velocity components are very similar to those for the Type-AI waverider in Figs.(7­

5a,b). The comparison for w in Fig.(7-6c) shows much better overall agreement
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between the numerical and analytical values than that in Fig.(7-5c). Figure (7-6d)

compares the waverider wall pressure. As for Figs.(7-5c,d), we can see the very

good agreement for the pressure and the azimuthal velocity component in Figs.(7­

6c,d) near the lower symmetry plane. In Fig.(7-6e) the outer-expansion density

variations are plotted. A relatively large discrepancy between the numerical and

the analytic values is observed. It would be helpful to recall that for the outer

expansion solutions the pressure and the azimuthal velocity component ar~ valid

throughout the entire shock layer, but the density in Fig.(7-6e) and the temperature

in Fig.(7-6f) are not.

7.2 Off-Design Flow: a = 0°. Moo i= 4

In the following three sections, the various off-design solutions for the Type­

B10 waverider are discussed. The 0 means that an O-Type grid is used. Even

for the off-design conditions, as well as the on-design condition, the flow is conical,

since there is no characteristic length scale involved for inviscid supersonic flows.

Therefore, for this problem it is enough to calculate the flow at a specific given

position in the x-direction. In this study the waverider length is considered as

unity and all the numerical calculations are carried out at x = 0.05. Thus, in the

computation for conical flows savings in CPU time and storage are significant.

In this section the case for a lower Mach number than the on-design value is

presented first and then the higher Mach number cases are presented. Finally their

comparisons for the pressure distributions are made.

(7). For Moo =3, a =0°

Figures (7-7) show various plots for the waverider flow at Moo = 3 with no

incidence. Figures (7-7a) shows the disturbance velocity parallel to the y - z plane.

The shock stands off from the leading edge somewhat further than for the on-design

case. In Fig.(7-7b) the normalized waverider wall pressure is shown as a function
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of the horizontal Cartesian coordinate z. Near the tip a large pressure gradient is

seen. Because of this large pressure gradient and the sharp corner of the waverider

geometry at the leading edge, the flow at the upper surfce near the edge is disturbed

significantly. For the flow at a Mach number below the on-design value, this kind

of flow pattern near the tip area occurs quite typically. In Fig.(7-7c) the pressure

across the shock layer at the lower symmetry plane is plotted. The normalized

azimuthal velocity component w/Voo along the waverider wall i.s shown in Fig.(7­

7d). The rapid change of w indicates the accelerated cross flow around the tip.

In Fig.(7-7e,f) the pressure and Mach number contours are plotted and the shock

stand off is clearly seen in those figures.

(8). For Moo = 4.5, Q = 0°

Figures (7-8) show various plots for the waverider flow field at Moo = 4.5 with

no incidence. At this condition the bow shock is attached at the leading edge in

Figs.(7-8a,b). The disturbance region is confined by the shock, which ends at the tip,

to the under portion of the body. Figure (7-8c) shows the waverider wall pressure; no

pressure peak occurs at the leading edge and no significant flow disturbance occurs

on the upper freestream surface. This has a similar pressure trend to the idealized

case obtained by HSDT. In Fig.(7-8d) the pressure near the lower symmetry plane

is plotted, and the azimuthal velocity component along the waverider wall is shown

in Fig.(7-8e). For the waverider shape Bl, this flow condition appears to be what

should be called the on-design flow.

(9). For Moo = 5,Q = 0°

Figures (7-9) show various plots for the waverider flow field at Moo = 5 with no

incidence. In Fig.(7-9a) a bow shock is located inside of the tip. No flow disturbance

is caught except for the lower portion of the waverider. The magnified flow for the

leading edge is shown in Fig.(7-9b). In the figure we can see some other type of
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flow disturbance from the bow shock to the tip. The main bow shock appears to

terminate normal to the undersurface a short distance from the tip, and a very weak

secondary shock emanates from the main shock, a short distance below the body

surface, to the tip of the body. This shock interaction near the tip can be interpreted

alternatively: For Mach numbers greater than for the on-design condition, the main

conical bow shock will lie closer to the body. Except near the tip, the undersurface

of the waverider is nearly the same as the originating elliptic cone, and the under

portion of the bow shock corresponds to that for the elliptic cone. The flow near

the t~p, however, is governed by component of the freestream Mach number that is

not parallel to the shock. At the tip 9 = 95(<P5), this component is Ml. = Moo sin 95

and is parallel to the freestream surface. This component of the flow is termed

the crossflow. The crossflow undergoes a deflection angle .6. at the tip, and this

generates a weak oblique shock. The concave curvature near the tip causes a slight

concave curvature in the oblique lip shock. The weak oblique lip shock and the

strong conical bow shock intersect a short distance away from the lip. A strong

Mach stem emanates from the line of intersection to a perpendicular location on

the waverider body. The shock structure near the intersecting component has three

legs which appear to have the shape of a "lambda". We thus refer to the interacting

shock as the lambda shock. We shall consider this further after examining the case

for Moo = 10. A schematic diagram is shown in Fig.(7-l0c). Figure (7-9c) shows

the total pressure distribution for the tip region. Since the total pressure loss is

also directly related to the entropy, this figure also indicates the entropy variation

in the area. In Fig. (7-9d) the waverider wall pressure is plotted. There are two

rapid pressure drops in the tip area. The larger pressure gradient is caused by the

main bow shock and the smaller pressure gradient is caused by the very weak shock

located in the region from the main shock to the tip. The upper surface shows

the undisturbed freest ream pressure. In Fig.(7-ge) the pressure distribution across
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the shock layer near the lower symmetry plane is drawn. The shock strength is

stronger than that of the on-design condition as can be seen in Fig.(7-3g). Figure

(7-9f) shows the azimuthal velocity component near the wall. Figures (7-9g,h) show

the pressure and Mach number contours. The contours appearing to pass through

the body surface near the tip in Fig.(7-9h) are due to the interpolation for the

contour plots in the graphic package SURFACEII which is used for this figure.

These also represent the lambda shock inside of the tip.

(10). For Moo = 10, Q = 0°

Figures (7-10) show various plots for the waverider flow field at Moo = 10 with

no incidence. Figure (7-10a) shows the disturbed-velocity distribution on the plane

perpendicular to the x-axis. The disturbance is limited to a small region below the

waverider, and a bow shock is captured very close to the waverider compression

surface. Near the tip region, a lambda shock pattern is established, and it is more

pronounced than for the Moo = 5 case. It is shown more dramatically by the stag­

nation pressure contours which are shown in Fig.(7-lOb) and which correspond to

the Moo = 5 case shown in Fig.(7-9c). A schematic diagram of the lambda shock

pattern is shown in Fig.(7-10c). The oblique shock from the tip is stronger for the

Moo = 10 case since the cross flow Mach number is larger and the cross flow under­

goes the same deflection angle. Figure (7-10d) shows the wall pressure distribution.

The rapid pressure jump on the lower surface occurs across the Mac~-stemportion

of the lambda shock that is normal to the surface. The upper surface has the undis­

turbed freestream value. Figure (7-10e) shows the the pressure distribution across

the shock layer near the lower symmetry plane. Even though the shock is quite

strong, it is a very clean shock with only one internal grid point and no wiggles

around it. In Fig.(7-10f) the azimuthal velocity component is depicted.
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(11). Comparisons for Flows at Moo =F 4, Q = 0 0

Figures (7-11) show the comparisons of the pressure distributions at various

freestream Mach numbers Moo = 3,4,4.5, and 5 with the fixed angle of attack

Q = 00
• Figure (7-11a) compares the the pressure distribution across the shock

layer near the lower symmetry plane. It can be seen that as Moo increases, the

shock strength increases and the shock location moves toward the body. Figure

(7-11b) compares the wall pressure distributions. The wall pressure for the upper

waverider surface does not change so much except for the case of the Mach number

below the on-design value. This implies that the upper freestream surface remains

undisturbed for the higher Mach numbers above the on-design value. Especially at

Moo = 4.5 the pressure variation near the tip resembles that of the HSDT prediction

and the waverider upper surface has the freestream pressure. The wall pressure for

the lower compression surface increases as the Mach number increases except for

the leading edge region.

7.3 Off-Design Flow: Moo = 4, Q i 0 0

In this section the cases for positive angle of attack are presented first and then

the cases for negative angle of attack are presented. Finally their comparisons for

the pressure distributions are made.

(12). For Moo = 4, Q = +30

Figures (7-12) show various plots for the waverider flow field at Moo = 4 and

Q = +30
• Figure (7-12a) shows the disturbance velocity in the y - z plane. Its

magnified portion for the tip area is shown in Fig.(7-12b). In Fig.(7-12a) it can

be seen that the flow region below the bow shock has uniform upward velocity

which represents the freestream component due to the positive angle of attack. The

bow shock stands off outside of the tip. The movement of the shock outwards

from the on-design condition is caused by the increased effective deflection through
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the !Jositive angle of attack. Figure (7-12c) shows the pressure distribution along

the waverider wall. The upper part of the figure represents the lower compression

surface of the waverider, and the lower part represents the upper surface. We see

that the pressure for the upper surface near the tip is smaller than the freestream

value. The pressure drop is produced by an expansion wave around the sharp leading

. edge. We can detect a pressure rise near the symmetry plane for the upper waverider

surface. This ·is produced by the formation of an imbedded weak conical shock that

is needed to turn the flow that has expanded around the leading edge back to a

direction parallel to the symmetry plane. This pressure rise was also observed by

Jischke et al.[7] in their experiment for waveriders. The similar phenomenon can

be seen by a supersonic flow past a delta wing at a positive angle of attack with

a supersonic leading edge. Figure (7-12d) shows the pressure distribution near the

lower symmetry plane. The shock is stronger than that of the on-design condition

as in Fig.(7-3g). Figure (7-12e) shows the pressure distribution in the ( direction

at the waverider top surface for the first grid cells whose left faces are at the upper

symmetry plane. We can see the expansion that occurs from the freestream to the

waverider upper wall. Fig.(7-12f) shows the azimuthal velocity component with the

." coordinate.

(13). For Moo = 4, a = +100

Figures (7-13) show various plots for the waverider flow field at Moo = 4 and

a = +100
• As a whole, these figures present the characteristics of Figs.(7-12)

more distinctly. Figure (7-13a) shows the disturbance velocity. The bow shock

is located more outwards. The disturbance region extends more outwards than

its counterpart in Fig.(7-12a), and the undisturbed freestream exhibits now the

uniform velocity components upwards clearly. The magnified disturbance velocity

is plotted in Fig.(7-13b). The wall pressure is shown in Fig.(7-13c). We can see that
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the cross flow around the leading edge affects the upper part of the waverider more

forcibly. The pressure-rise region for the waverider upper surface is smaller than

its counterpart in Fig.(7-12c). The shock near the lower symmetry plane and the

expansion near the upper symmetry plane are shown in Figs.(7-13d,e). Both the

expansion and shock become stronger than those in Figs.(7-12d,e). In Fig.(7-13f)

the azimuthal velocity shows a positive peak value which indicates the accelerated

cross flow at the leading edge. The azimuthal velocity w should be zero on the

waverider upper surface. The w depicted in Fig.(7-13f) shows the values for the

half grid spacing off from the wall. A small discontinuity is detected at 7J ~ 75.

This corresponds to the pressure-rise point near the upper waverider surface at

z/x tan 8 ~ 0.4 in Fig.(7-13c).

(14). For Moo = 4~ Q' _2°

Figures (7-14) show various plots for the waverider flow field at Moo = 4 and

Q = -2°. At this condition the shock appears to be nearly attached at the tip

as can be seen in Figs.(7-14a,b). In Fig.(7-14c) the pressure distribution along

the lower wall does not show any peak value near the tip. In this respect the

pressure trend for the lower compression surface resembles that of the HSDT result

which represents the idealized on-design condition. It is interesting to note that

at about this condition the maximum lift/drag ratio occurs, as will be presented

in Section 7.6. Figures (7-14d,e) show the pressure distributions near the lower

and upper symmetry planes respectively. In Fig.(7-14e) we can see the gradual

compression from the freestream to the wall. Figure (7-14£) shows the azimuthal

velocity component versus the 7J coordinate.

(15). ·For Moo = 4, Q = _4°

Figures (7-15) show various plots for the waverider flow field at Moo = 4 and

Q = _4°. Figures (7-15a,b) show quite different flmv patterns compared to their
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counterparts in Figs.(7-12a,b) and Figs.(7-13a,b). First of all, the bow shock is

located inside of the tip, which is caused by the reduced effective deflection angle

through the negative angle of attack. Next, the upper disturbed region has the

opposite flow direction to its counterpart in Figs.(7-12,lla). That is, the upper

disturbed velocity is in the direction of the leading edge. The gas near the leading

edge flows downwards instead of upwards and the freestream has downward velocity

components. In Fig.(7-15c) we can observe that, near the leading edge, the pressure

on the upper surface is higher than the pressure on the lower surface. Thus, near

the leading edge a negative lift is produced. The shock for the lower surface in

Fig.(7-15d) becomes weaker than the corresponding situation with positive angles of

attack in Figs.(7-12,lld). Unlike the cases with positive angles of attack, the upper

surface :uong the symmetry plan~ experiences a compression from the freestream to

the wall of the waverider instead of an expansion as can be seen in Fig.(7-15e). In

Fig.(7-15f) the azimuthal velocity component shows negative values including the

negative peak value near the leading edge.

(16). For Moo = 4, a = _8°

Figures (7-16) show various plots for the waverider flow field at Moo = 4 and

a = -8°. These represent the characteristics of the previous Figures (7-15) more

dramatically. The bow shock in Fig.(7-16a) moves more inwards than that of Fig.(7­

15a). Figure (7-16b) shows the downward flow more clearly. Figure (7-16c) shows

the stagnation pressure contours where we can see the development of the upper and

lower shocks. The shock below the waverider has a stronger strength near the tip

area, and it becomes weaker as it approaches the lower symmetry plane. The shock

above the waverider is nearly attached at the tip and weakens as it approaches the

upper symmetry plane. In Fig.(7-16d) we can see the two areas delineated by the

difference between the upper and lower wall pressures have approximately the same
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size. This implies that the lift is almost zero. The situation of zero lift will be seen

again in Section 7.6. The compression by the shock in Fig.(7-16e) becomes weaker

than its counterpart in Fig.(7-15d), and the compression in Fig.(7-16f) becomes

stronger than its counterpart in Figs.(7-15e). In Fig.(7-16g) the azimuthal velocity

is shown. The azimuthal velocity component is always negative on the lower surface.

(17). For Moo = 4,0: = -12°

Figures (7-17) show various plots for the waverider flow field at Moo = 4 and

0: = -12°. Figures (7-17a,b) show somewhat irregular flow patterns for the wa­

verider lower portion near the tip ar~a. In Fig.(7-17c) we can observe that the

lower surface pressure is smaller than that of the upper surface. As a result, a

negative lift is generated, which will be presented again in Section 7.6. Figure

(7-17d) shows the pressure distribution in the shock layer under the body near the

symmetry plane; the flow downstream of the bow shock undergoes a gradual com­

pression. Figure (7-17e) shows the pressure in the shock layer above the body near

the symmetry plane. Figure (7-17f) shows the azimuthal velocity component which

has a somewhat irregular variation.

(18). Comparisons for Flows at Moo =4,0: # 0°

Figures (7-18) show the comparisons of the pressure distributions at various

angles of attack 0: = -8°, -4°,0° ,+3°, +10° with freestream Mach number fixed

at Moo = 4. Figure (7-18a) compares the pressure distribution and shock locations

near the lower symmetry plane. It can be seen that as 0: increases, the shock

strength increases and the shock moves toward the body. In this respect the effect

of the increasing 0: is similar to that of the increasing Moo as can be seen in Fig.(7­

lla). Figure (7-18b) compares the wall pressure distributions. For the negative

angles of attack the pressure lines for the lower waverider surface intersect those

for the upper waverider surface. The areas of the left hand side of the intersection
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denote positive lift, but the areas of the right hand side denote negative lift. This

is the reason for the decreasing lift at negative angles of attack. At the positive

angles of attack the pressure near the upper symmetry plane becomes higher than

that near the tip region, because a weak imbedded shock develops on the upper

surface. We can also see the pressure near the lower symmetry plane increases in

comparison with the tip region, as a increases. This is because the flow deflection

near the symmetry plane due to the high angle of attack is greater than the flow

deflection due to the perturbed elliptic cone near the major axis, as a increases.

7.4 Off-Design Flow : Moo i 0, a i 0°

In this section the cases of different Mach number and angle of attack from

the on-design values are presented and then their comparisons for the pressure

distributions are made.

(19). For Moo = 5, a = +4°

Figures (7-19) show various plots for the waverider flow field at lv/co = 5 and

a = +4°. Figures (7-19a,b) indicate that the bow shock is slightly detached from the

tip. The larger freestream Mach number than the on-design value causes the shock

to move inwards. On the other hand, the positive angle of attack causes the shock

to move outwards. These two opposite effects work together to result in moving

the shock nearer to the tip. In Fig.(7-19a) the freestream flow shows the upward

velocity component. Figure (7-19c) shows the wall pressure distribution. As shown

in the cases of other positive angle of attack with the fixed Mach number Moo = 4,

we can see a small pressure increase near the upper symmetry plane. Figure (7-19d)

shows the pressure distribution and the shock near the lower symmetry plane. Due

to the larger Moo than the on-design value and the positive angle of attack the shock

becomes very strong. The pressure distribution near the upper symmetry plane is
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shown in Fig.(7-1ge), which shows an expansion from the shock to the body. The

azimuthal velocity component near the body surface is shown in Fig.(7-19f).

(20). For Moo = 5, a = _4°

Figures (7-20) show various plots for the waverider flow field at Moo = 5 and

a = _4°. In Figs.(7-20a,b) we can see that the sh~ck is located inside .of the tip.

Both the larger Mach number and negative angle of attack cause the shock to move

inward. The freestream portion shows the downward velocity component. For the

region near the top ridge of the waverider we can observe that there is no velocity

component in the y - z plane as in the case in Fig.(7-19a). Whereas the vertical

flow is directed toward the ridge, the flow parallel to the waverider upper surface

is directed outward from the ridge. The cross flow near the leading edge shows a

smooth variation. The wall pressure line shown in Fig.(7-20c) intersects itself at the

lower right side of the figure. From this we can see that the upper surface pressure

near the leading edge is larger than that of its corresponding lower surface with

the small pressure gradient. Therefore, the flow near the tip is downward with a

smooth variation as seen in Fig.(7-20a,b). If we compare the pressure distribution

in the lower symmetry plane in Fig.(7-20d) with that in Fig.(7-2g), it can be seen

that there is no big change in the shock strength. That is because the larger Mach

number causes an increase of the shock strength, whereas the negative angle of

attack causes a decrease. The pressure distribution near the upper symmetry plane

is shown in Fig.(7-20e), and the azimuthal velocity around the body surface is shown

in Fig.(7-2Of).

(21). For Moo = 3, a = +4°

Figures (7-21) show various plots for the waverider flow field at Moo = 3 and

a = +4°. As can be seen in Fig.(7-21a) the disturbance area of the upper flow

region extends far away. Both the larger angle of attack and smaller Mach number
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than the on-design values cause the disturbance area to move more outwards. At

this condition numerical instability can often occur due to the extended disturbance

and the irregular flow pattern near the upper tip region as shown in Fig.(7-21b).

In Fig.(7-21c) we can see a large pressure gradient near the tip. In the figure we

see that the pressure change of the upper surface is significant, but the pressure

variation for the lower surface is mild. In Fig.(7-21d) the pressure distribution for

the lower symmetry plane is illustrated. For the pressure distribution .near the

upper symmetry plane, shown in Fig.(7-21e), the flow expansion field is fairly large.

From the right upper portion of the figure, we can see that the pressure near the

outer boundary seems to be influenced by the boundary which is not taken large

enough to embrace the disturbance region. The azimuthal velocity component near

the body surface is shown in Fig.(7-21f). A small discontinuity can be detected at

11 ~ 65, as happens usually for the cases with Q > 0° so far.

(22). For Moo = 3, Q = _4°

Figures (7-22) show various plots for the waverider flow field at Moo = 3 and

Q = -4°. Figure (7-22a) shows the flow field perpendicular to the x-axis. For the

upper part the weakened extended shock and the compression due to the negative

angle of attack are combined together. In the figure we can see that the outer

boundary near both the lower and upper symmetry planes does not embrace the

whole disturbance region. In order to get more desirable solution we need to extend

the outer boundary more outwards. In Fig.(7-22b) the magnified flow field for the

sharp leading edge area is shown. The flow above the upper waverider surface, which

is somewhat parallel to the wall, is directed toward the leading edge. Before reaching

the tip the flow is deflected upwards a little bit due to the pressure gradient in the

region. Figure (7-22c) shows the wall pressure distribution. We can see the pressure

rising near the leading edge for the upper wall. In Figs.(7-22d,e) we see that both
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the lower and upper surfaces near the symmetry planes undergo compressions. The

compression for the upper surface is due to the negative angle of attack and possibly

due to the extended bow shock. The other compression for the lower surface is due

to the flow deflection caused by the waverider geometry, as is usual for the cases so

far. Figure (1-22f) shows the azimuthal velocity component near the body wall.

(23). Comparisons for Flows at Moo :f; 4, Q :f; 0 0

Figures (1-23) show the comparisons of the pressure distributions at the two

angles of attack Q = ±4° and the two freestream Mach numbers Moo = 3,5. Figure

(1-23a) compares the pressure distributions and the shock locations near the lower

symmetry plane. As far as the shock strength and location are concerned, increasing

the angle of attack and increasing the Mach number exert similar effects. Thus, at

the conditon of Moo = 5 and Q = +40 the shock strength is strongest and the

shock is located nearest to the waverider body wall. For the case of Moo = 3 and

Q = _40 the opposite phenomenon happens. Figure (7-23b) compares the wall

pressure distributions. The closed area in the figure by a pressure line is a measure

for the lift. We can see that the lift at Moo = 5, Q = +4 is very large but at

Moo = 3, Q = -4 it is very small.

7.5 Entropy Distribution

Figures (7-24) show the constant entropy contours for the flows past the Type­

Bl waverider with the two different types of grids. Figure (1-24a) is for the Type­

Bl waverider with a Fan-type grid (denoted by BIF) and Fig.(7-24b) for the same

waverider with an O-type grid (denoted by BIO). The comparison of the three

plots of Figs.(6-2b) and (1-24a,b) provides us one feature of entropy increase. The

entropy for the waverider flow in Fig.(1-24a) with a Fan-type grid is increased in

comparison with its corresponding elliptic-cone flow in Fig.(6-2a). This is mainly

due to the sharp leading edge which makes the flow change very rapidly. Further
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entropy increase can be seen in Fig.(7-24b) which is for the same waverider with an

O-Type grid. The major difference between Figures (7-24a,b) is the grid structure

near the tip. The 0-Type grid is more skewed than the Fan-Type grid near the tip.

The entropy production caused by the skewed grid may be explained in terms of a

numerical viscosity. For viscous flow the shock location moves outwards compared

with that of the corresponding inviscid flow due to the increased deflection by the

momentum displacement. Accordingly this numerical viscosity may cause the shock

to move outwards more or less. Recall that for both the Type-A and B the shocks

are located outside of the leading edges as shown in Figs.(7-1d,2d). On the other

hand, the entropy production by an 0-Type grid is concentrated mainly on the

small upper region near the tip. Because of this localized high entropy distribution

the overall flow is not affected so much in comparison with the Fan-Type case except

for the region of high entropy. And its effect on the shock location seems to be very

little.

Again from the comparisons of entropy contours in Figs.(6-2b) and (7-24a,b),

it can be now seen that the constant entropy lines in Fig.(6-2b) have similar shapes

to the lower compression parts in Figs.(7-24a,b). This can be expected from the

fact that the waverider is generated from the elliptic-cone flow. As in Figs.(6-2b),

in Figs.(7-24a,b) we can observe the vortieallayer near the waverider wall where

the entropy gradient is large. A large entropy gradient can be also seen near the

sharp tip. The large variation of the entropy there would be a source of error

and difficulty in the numerical calculation. Above the upper surface we can see

the entropy change. This is from the shock stand-off at the leading edge. At

the idealized on-design condition the entropy of the upper region should be the

freestream value. Recall that any conical stream surface for an elliptic cone in the

shock layer is composed of stream lines which originate from the same rayon the

shock surface coming out of an elliptic-cone apex. We know each conical stream
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surface has a constant entropy. Thus, the waverider surface should be a constant

entropy surface at an idealized on-design condition. But we cannot confirm the

constant entropy for the waverider surface. The partial reason for this is due to

the utilization of the finite-volume method (FVM) with its pertinent boundary­

condition imposition. In the FVM the flow data are not defined at the wall and the

boundary condition for the pressure is imposed by means of the linear extrapolation

from the value at the center points pf the first grid cells from the wall. A partially

improved result would be obtained by using a finer grid near the waverider surface.

7.6 Aerodynamic Forces

The aerodynamic force coefficients at off-design Mach numbers are shown in

Figs.(7-25a,b,c) at zero angle of attack for the Type-B waverider. Both CL and CD

decrease monotonically with increasing Moo. The lift-to-drag ratio L/D decreases

from 3.52 to 3.27, as Moo increases from 3 to 5. For this Mach number range,

the variation of aerodynamic forces with respect to freestream Mach number is

significant.

Also shown in these figures are the on-design results (Moo = 4) according to

experiment [6], the full-potential equation [3], and the HSDT approximation for the

idealized cone-derived waverider (Eq.7-1). At the on-design condition, CL from the

Euler equations is about 3.6% lower than the result for the full-potential equations,

and about 9.6% lower than the result from experiment. The on-design value of

CD from the Euler equations is about 13.7% lower than the result for the full

potential equations, and about 19.5% lower than the result from experiment. The

experimental result, it should be noted, includes a contribution from viscous effects.

The L/D ratio according to the Euler calculations are 13.4% greater than for the

full-potential equations and 7.3% greater than the experimental result.
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The normal-force coefficient in the y-direction CN and the axial-force coefficient

in the x-direction CA are shown in Figs.(7-25d,e), as a function of 0: for Moo = 4.

The comparison of CN in Fig.(7-25d) of numerical and experimental data[6] shows

very good agreement, and CN varies almost linearly. Figure (7-25e) illustrates CA

vs. Q. As expected the numerical data are lower than the experimental data, since

the CA of viscous flow has an additional contribution due to the skin friction.

Figures (7-25f,g,h) show aerodynamic quantities CL, CD, and L/D for the

elliptic-cone waverider Type-B as functions of angle of attack 0: at the design Mach

number of 4. It is known[22] that the lift/drag ratio of viscous flow for an idealized

cone waverider, for example, which has infinitesimally thin winglets, approaches the

value of its corresponding inviscid flow as the cone deflection angle 8 increases. The

waverider investigated here has 8 = 18.62° for which the difference of lift/drag ratio

between inviscid and viscous flows is small, that is, the viscous drag is much smaller

than the wave drag. This indicates that the comparison of the numerical inviscid

solutions with the experimental viscous results can be justified accordingly.

Figure (7-25f) shows the lift coefficients CL as a function of angle of attack at

the on-design Mach number 4. The agreement of the numerical results obtained

by solving the complete Euler equations with experimental data is quite good for

the range of 0: from -12° and 10°. Approximately, CL increases linearly with 0:.

As 0: decreases, CL also decreases and becomes zero at 0: :: -8.5°. For negative

0:, the full-potential result is very close to the experimental data, but the accuracy

declines as 0: increases in the positive region. These phenomena can be expected

from the theoretical restrictions on the potential theory. As 0: has larger positive

value, the effective flow deflection angle becomes much larger. This causes the flow

to be more nonlinear and to increase the rotationality. Accordingly, the homentropic

approximation which is assumed in the full potential theory becomes worse, as 0:

increases. On the other hand, negative angles of attack do not increase the effective



70

flow deflection angle for the range of a used here, considering that at the on-design

condition the centerline of the waverider ('" 8/2) hCl.$ already positive deflection to

the freestream direction and the negative angle of attack is compensated by this

deflection more or less. This is the reason why the agreement is good for negative

angles of attack.

The drag coefficients CD are plotted in Fig.(7-25g) with the same cond:itions

as in Fig.(7-25f). The variation resembles a parabolic shape about the a of zero

lift value. The numerical values are lower than the experimental data, as expected.

For the positive angles of attack, there is considerable discrepancy between the

full-potential result and the experimental data, again as for CL.

The L/D ratios are depicted in Fig.(7-25h). The maximum value of L/D for

both the Euler and full-potential calculations occurs at a '" -2°, whereas the max­

imum value for the experimental results occurs at a ~ 0° (the on-design condition).

In principle, the L / D for inviscid flow should be greater than that for viscous flow,

since viscosity increases the drag while affecting the lift only a small amount. The

Euler results are in accord with this whereas the full-potential results ~e not, at

least for a > -2°. Systematic errors in the calculation of eLand CD tend to

compensate when the ratio is taken to obtain L/D. This is especially true for the

calculation of the reference area since it cancels out entirely for the L/D ratio.

So far only the Type-B waverider has been discussed. To anticipate the L/D

ratio for another type waverider it would be useful to consider an idealized cone

waverider which has infinitesimally thin winglets. The L / D for such a waverider

can be obtained from reference[34] as

(7 -1)

The Type-A waverider has smaller 8 and </>~ than Type-B. According to Eq.(7-1)

these smaller values provide a larger L/D ratio for Type-A. Actually the on-design
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numerical value of L/D for Type-A is 6.52, which is much greater than 3.38 for

Type-B waverider. Those values of L/D due to Eq.(7-1) are slightly less than the

above numerical results for elliptic-cone waveriders .



Chapter VIII

CONCLUDING REMARKS

A comprehensive study has been carried out for the numerical calculation of

the inviscid hypersonic flow past a class of elliptic-cone derived waveriders. The

on-design conditions were Moo = 4 and a = 0°. A variety of off-design condi­

tions (Moo i= 4, a i= 0°) was studied, all for zero yaw. Thus all the flows were

symmetric about a central vertical plane. Both the body of the waverider and the

associated flow fields were conical. An extensive background analysis of the un­

derlying hypersonic small-disturbance theory was given, and comparative results

for the on-design flows were presented. The basic flow past the elliptic cone that

generates the waveriders was also studied as a means for evaluating the flow past

the waveriders themselves.

The numerical results for the waverider flow fields for the on-design conditions

compared well with the HSDT and the numerical elliptic-cone flow fields except

near the sharp leading edge of the waverider. Here it was found that the bow shock

stand off from the leading edge rather than being attached as it should according

to the underlying waverider concept. This was found to be true both for an O-type

grid and a fan-type grid near the leading edge. The approximate formula use to

generate the waverider compression surfaces for the Al and BI models was the

same as was used in previous investigations to study the same waverider shape.

This approximate formula produces a leading-edge tip angle that is considerably

larger than it should be to reproduce the proper elliptic-cone flow field. When a

better approximate formula is used to determine the waverider compression surfaces,

72
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giving models A2 and B2, the correct tip angle is obtained. For model A2, the CFD

results show that the shock becomes attached at the leading edge, as it should be.

For model B2, the shock does not become attached, but the stand-off distance is less.

For models Bl and B2, the conical shock angle at the tip is about 25°. When the

angles become this large, the small-angle approximations associated with HSDT

becomes less accurate. This explains in part some of the remaining differences

between the HSDT and CFD results, Overall, the agreement of the CFD results

with what was expected at the on-design conditions was deemed to be good.

The great importance for the CFO calculations is associated with the off-design

results. At a = 0° and for Moo >.4, the bow shock fits more tightly under the

waverider body. Near the leading-edge of the waverider, a lambda-type shock con­

figuration appears to develop. This becomes more pronounced as Moo increases,

the largest value being Moo = 10 in this study. This is a new effect that was not

known from previous experimental studies. The lambda-shock configuration occurs

for other off-design conditions also as part of the adjustment of the main conical

bow shock to the local leading-edge conditions.

For Moo < 4 and a = 0°, the bow shock stands off from the body, the more

so as Moo decreases. There is then a flow in the gap between the shock and the

leading edge as the flow adjusts to the higher pressure under the body to the lower

pressure on top.

When the angle of attack is positive, a > 0°, the shock tends to fit tighter to the

lower compression surface, and there is an expansion region over the upper surface.

A very weak shock develops on the upper surface. This is needed to deflect the

flow that has expanded over the leading edge back parallel to the vertical symmetry

plane. For negative angles of attack, the shock below the body weakens and a bow

shock develops over the upper surface of the body.
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The forces on the waveriders could be calculated from the pressure distributions

on the surfaces. Of course, the viscous contributions could not be calculated from

the Euler-code results. The results were thus not directly comparahle with those of

experiments, but the trends in variation with angle of attack were very similar. The

orientation for zero-lift agreed with experiment, and the interpretation in terms of

the flow-field properties is a unique capability of the CFD analysis.

For the conical waverider under investigation the Lawrence Code was found to

be an effective means of producing the numerical results. Care must be taken to

produce an effective grid structure especially near the sharp leading edges. Unlike

some other researches for supersonic flows with a sharp leading edge, which ap­

peared recently, we adopted steady equations instead of unsteady equations for the

computation. This can save the computer storage and CPU time evidently. Due to

this saving we could solve waverider flows for a wide range of off-design conditions.

There is a substantial amount of research that remains for the future. It would

be useful to calculate the effects of yaw, or sideslip. More important would be

the calculation of vis~ous and heat-transfer effects. Attempts associated with the

present investigation were not successful. In addition, it would also be desirable to

incorporate real-gas effects. There are other classes of waverider shapes that are

also of interest. Comprehensive studies relating to their on-design and off-design

flow fields would be very desirable.
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Appendix A

APPROXIMATE ANALYTICAL SOLUTIONS

The waverider investigated in this study is derived based on the inviscid flow

field over an elliptic cone. To check the validity of the numerical results of the flow

over the waverider, it may be necessary to calculate approximate analytical solutions
I

to the inviscid flow around an elliptic cone. The elliptic cone can be considered as a

perturbed circular cone. Rasmussen et al.[21,22,35] obtained approximate solutions

to the flows around circular and elliptic cones with a small angle of attack by

means of perturbation theory. They are expressed by linear combination of the

small perturbed terms of the eccentricity and angle of attack in the framework

of the Hypersonic Small Disturbance Theory (HSDT). Since the purpose of this

introduction of the approximate solution is to check the validity of the numerical

solutions as mentioned before, presented are only the elliptic cone solutions without

incidence that are corresponding to the flow at the on-design condition of an elliptic

cone waverider. It will be also useful for understanding the physics of the waverider

flow to study analytical solutions of an elliptic cone flow.

The first section of this chapter presents the assumed solutions by outer ex­

pansion forms. Then unperturbed and perturbed solutions are sought separately

and they are combined to get the desired analytical approximate solutions. From

the consideration of streamlines the lower compression part of the waverider con-

figuration is determined.

80
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A.I Perturbation Series Expansions

For slightly perturbed elliptic cone without incidence, the solutions can be

approximated by outer expansions as

u(B, ¢J) = uo(Bo) + e2u2(Bo) cos 2¢J + O(e~),

v(B, ¢J) = vo(Bo) + e2v2(Bo) cos 2¢J + O(e~),

w(B, ¢J) = e2w2(Bo)sin 2¢J +O( e~),

pCB, ¢J) = po(Bo) [1 + e2P2(Bo) cos 2¢J] + O(en,

pCB, ¢J) = po(Bo) [1 + e2R2(Bo)cos 2¢J] + O(e~),

(A -1a,b,c,d,e,f)

where the subscript 0 denotes an unperturbed basic cone quantity and the subscript

2 denotes a perturbed quantity. The independent variable Bo is defined in terms of

B and ¢J in a later section. Here P2 , R2 , and 52 are dimensionless but all the rest

flow variables are dimensional.

A.2 Unperturbed Basic Circular Cone Solution

The gas dynamics equation of inviscid axisymmetric cone flow is called Taylor-

Maccoll equation which can be written as

(
V5) J2 Uo duo ( v5 )

1 - a2 dB2 + cot B dB + 2 - a2 Uo = o. (A - 2)

The Eq.(A-2) is a highly nonlinear ODE of second order, since both v5 and a2 are

functions of uo. The irrotational condition which is obtained from the r-momentum

equation is given by vo = duo/dB, and the homenergic condition determines the

a - uo relation, that is

(A - 3)

This flow is homentropic for the region between the shock and the cone wall, since

the entropy jump at the points on the shock is the same.
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Pottsepp[36] made an approximate relation to Eq.(A-2) which results in a linear

equation without v5Ia2 terms. Rasmussen[37] also obtained approximate solutions

by means of the HSDT. This theory is to assume the limit that 8 -+ 0, Moo -+ 00

,while K6 =Moo sin 8 is held constant. The brief procedure will be introduced in

the following. First we can see that cos 9 is a solution to the linearized equation.

This suggests an idea about the Taylor-Maccoll's solution in the form of U(9) cos 9

where U(9) is an unknown function of 9. After substitution of the assumed solution

and neglecting the higher order terms than 92 , the desired solutions are obtained

(A-4a,b)

uo(9) - 1- '92
_ 1- e f3 21n(f32)

Voo 2 2 92 '

vo(9) 132

V
oo

= -9[1 - (1 - €)82"]'

where € =poolp(f3) is the density ratio across the shock. The gas dynamics equation

as

is the second order, but there are three boundary conditions; two at the shock and

one at the wall. The second order differential equation needs the first two conditions.

The third one is from the impermeable conditon at the wall. This is necessary for

the determination of shock location which is another unknown variable. If we apply

the last restriction to the v-equation, it gives

13 1
-g=~, (.4 - 5)

where

b - 1)K~ + 2 b - 1)Kg + 2
€ = ( )K2 = ( ) 2 ,KfJ =Moo13, K 6 =Moo 8. (A - 6, b, c)1+ 1 fJ 1+ 1 K 6 + 2

After combining the above three relations, the hypersonic similarity shock formula

can be obtained as

(A -. 7)
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Eq.(A-2) was derived by Chernyi[38] and also by Rasmussen by means of the HSDT.

This represents a very good agreement with the exact formula especially in the

hypersonic limit. The velocity components uo, Vo can be obtained as

For temperature, we use the homenergic relation like

To(8) = h(8) = 1 'Y - 1M2 (1 _ V 2(8))
- T. - h + 2 00 V 2 •

00 00 00

With the aid of Eq.(A-3) the Eq.(A-9) becomes

To(8) 'Y - 1 2 62 /P
Too = 1 + -2-K6 [2 - 82 + In( 82)].

(A - 8a,b)

(A - 9)

(A -10)

For pressure, homentropic condition can be used to relate the pressure to enthalpy

which is a linear function of temperature. That is

(A - 11)

The first term on the right hand side can be obtained through the oblique shock

relation and the temperature ratio is given by Eq.(A-I0). Thus, we can have

po (8) 'Y 2 { 1 62 f32}- = 1 + -K6 1 + -[1 - - + In(-)] .
Poo 2 f 82 82

A.3 Perturbed Solutions

(A - 12)

The approximate solutions for slightly perturbed cone flows by Rasmussen[22]

deal with the inclined circular, elliptic, ternary, and quartic cones parametrically. A

perturbed body can be obtained by identifying a single term out of a Fourier-series

expansion terms. Here we consider an elliptic cone flows without angle of attack.

It is well known that the curved shock is a source of rotationality. The elliptic
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cone has a nonuniform transverse shock curvature and thus the flow is no longer

irrotational even in the inviscid region unlike the axisymmetric cone flow. The

analytical solutions about slightly perturbed body can play an important role in

the studying the physics of the waverider flow where we don't know exact solutions.

Ellitic Cone Body and Shock Shape

A conical body can be expressed by F((), 4» = 0 as well as its corresponding bow

shock in spherical coordinate system. For a specific body geometry there must be

a constraint between () and 4> such as () = ()c(4». A conical body may be expressed

by

F = () - ()c(4».

An elliptic cone cross section is given by

(A -13)

(A - 14)

where 1e21 ~ 1. In the same line with the body shape, the shock shape may be

assumed to have the form () = ()s( 4»

(A -15)

where 92 is a shock eccentricity factor which must be determined as a part of

solutions.
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Boundary Conditions for Body and Shock

The wall boundary has only tangential velocity with its normal component

vanishing

Y.n=O, (A -16)

where n is an outward unit normal vector. The shock jump conditions can be

imposed by identifying n at the shock surface. That is,

(A -17)

The mass conservation and tangential momentum conservation become the two

shock boundary conditions.

- A Poo - AV" . n" = -(Voo . n,,),
P"

Y" xii" = Yoo xii".

(A - 18)

(A - 19)

Stretched Independent Variable

Considering that 8 is smaller than 8 for some tP a stretched independent variable

00 is defined by
_ 00 - 8 _ z -1 _ 0 - Oc(tP)

770 = /3 - 6 = u - 1 = 0,,( tP) - Oc( ¢» ,

where z =00 /8. The three independent variables have the ranges of

8 :::; 00 < /3, 1:::; z :::; u, 0 < 770 < 1.

(A - 20)

(A - 21a, b, c)

On the basis of these independent varibles, the following dependent variables are

introduced as

Solution

U(Oo) = U*(z) = U**(770)' (A - 22)
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After some algebra and approximation based on the HSDT, the mass conser­

vation equation can be expressed as

(A - 23a)

where

H2 (8o) =- 2S2 ({3) a5(6) [1-J85 6 ] . (A - 23b)
..,.(1 - 1) Voo (32 - 62

Note that the differential equation is equidimensional and thus the homogeneous

solution can be obtained. The particular solution can also be obtained by means of

the method of variation of parameters. The solution in terms of z can be obtained

as

U*(z) = UiI(z) + Up(z),

where its homogeneous and particular solutions are given by

UH(Z)=92[(~)2+(~?]_ U92 [(~?_(~?],
62V00 2u U z I + 1 U z

and

where

(A - 24)

(A - 25)

(A - 26)

a5(6) 1 + ,;1 Kl(1 + In(2 )
J= -- = (A - 27)

- a5({3) 1 + ,;1 Kl(2 -1/(2 )·

The eccentricity factor 92 will be determined at the end of this subsection. Thus

the perturbed solutions can be obtained as

u2(8o) = U(8o) +vo(8o)82(8o),

v2(8o) = U'(8o) + v~(80)e2(8o),

1
w2(8o) = "7fJ[2vo(8o)82(8o) + H2(8o) - 2U2(8o)],

Slnuo

P2(8o) = -..,.[uO(80)U2(8o) + vO(80)V2(8o)]/a~ - S2({3)/(I - 1),

R2(8o) = -[uO(80)U2(Bo) + vO(80)V2(8o)]/a5 - S2({3)/(I - 1),
(A - 28a, b, c, d, e)
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where

2 _ Po
a o =,-.

Po
(A - 29a, b, c)

From the boundary condition, we have

(A - 30)

IT Eq.(A-30) is combined with VI equation in Eq.(A-28), then 9 can be obtained as

1 (74 - 1 (74 +1 J [3 cos- I 1. 2 ]
-= + +- rr -(7 -2 .
92 2(73 (7(, + 1) .. 6(73 ";(72 - 1

A.4 Streamline and Waverider Configuration

(A - 31)

The compression undersurface of the waverider is obtained from the differential

equation for streamlines expressed by

if x dr= O.

The streamline equation to the first order becomes

dr _ rd80 _ r80 d¢J

uo(80 ) - vo(80 ) - €2 w2(80 )sin2¢'

(A - 32)

(A - 33)

Within the framework of the HSDT with the assumption, 80 --+ 8, the right side

equation can be integrated to obtain

(A - 34)

where

(A - 35a, b)

In the physical variable, Eq.(A-35) become

(A - 36)
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This is another relation describing the compression undersurface of a waverider

which has a slightly different form from the Eq.(2-13).

A.5 Approximate Solution for Shock Layer

To get the outer solutions of the flow for the compression lower portion of the

waverider we need to combine Eqs.(A-l), (A-8), (A-IO), and (A-12) with Eq.(A­

28). IT we use the constraint on (J and ¢J, Eq.(A-36), the flow variables on the lower

waverider wall can be obtained. It should be noted that all the approximate analytic

solutions are not valid across the entire flow field. Nonetheless, the pressure and

azimuthal velocity component are valid uniformly including the vorticallayer which

exists very near the elliptic-cone body surface.



Appendix B

NUMERICAL ALGORITHM

The first section introduces a numerical algorithm along with discretization,

linearization, and operator splitting procedure. The following two sections provide

the elements of the algorithm; flux Jacobian matrices with the first order express~on

for flux and flux differences with the second order expression for flux. Finally, the

construction of a block tridiagonal matrix is explained.

B.l Algorithm

To numerically integrate the PNS equations we need to express them in dis­

cretized forms. In this study Lawrence's algorithm[28] based on Chakravarthy's

[19,20] TVD[17,18] scheme is adapted.

Finite Difference and Finite Volume Methods

The discretization is accomplished in the frame work of Finite Volume Method

(FVM) [32]. This utilizes the conservation equations in the integral form and re­

places the surface integrals with the sum of the flux multiplied by its corresponding

surface element of a finite volume. There is another discretizing method; Finite

Difference Method (FDM)[39] which has been widely used. Both of them are in the

category of local methods. The main differences lie in the treatment of boundary

conditions and the definition of metrics. The first control points of FDM are lo­

cated on the boundary, while those of FVM are off the boundary and thus better

to handle irregular boundary problems than the former. Considering the waverider

89
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.geometry has sharp corners, the FVM would be more appropriate than the FDM

for the study of waveriders. The FVM defines metrics at cell interfaces and the

conservative variables at primary grid points, but the FDM does not separate them

and use the same points for both metrics and flow variables.

Discretized Equation in Finite Volume Framework

Considering that the concept of the physical conservation laws which govern

the gas dynamics is based on a finite region, let's express governing equations in an

integral form for a finite volume V enclosed by a surface S.

(B -1)

where (j is a conservative variable column matrix and P is the rate of production

of fl. For a steady flow without any source term, it becomes

tH.ndS=O,

-where the dyadic H is defined as

-H =Ei+ FJ+ Gk,

(B - 2)

(B - 3)

and n = outward unit normal vector. Here it is noticeable that for a freestream

where the fluxes are constant, the integral equation agrees with the geometric con-

servation, that is,

(B - 4)

This means that the integral form of the governing equations satisfies the freestream

conservation automatically. However,that is not the case for some earlier upwind

algorithms like that of Buning et al.[40] and Bunipg[41], and thus various efforts

have been exerted to remove this drawback. The discretized form of the integral
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equation for a finite volume which is bounded by six surfaces as in Fig.(5-8) is given

by

where

- _ -n+l
I:::&Sl = I:::&Sk,1 ,

I:::&S4 =1:::&5;,,,

and

6'"'" - ­LJH . 1:::&Sa = 0,
a=1

(B - 5)

(B - 6a, b, c, d, f, f)

(B -7)

Note that the subscripts k and I denote primary grids according to Vinokur's ter­

minology[32]. Two kinds of grid points such as primary and secondary grids are

shown in Fig.(5-8). The Eq.(B-5) can be now expressed as

(B - 8)

with the definition of each element

and -H· 1:::&5a = laE + mal' + naG, Q = 1,2, ... ,6. (B - 10)

Eq.(B-8) is a discrete form of Eq.(3-5) for steady flow. At this stage, the above

expression discretized based on a finite volume frame work is the same as that for

the finite difference approach. One important difference lies in that la' rna, and na

are calulated at cell interfaces instead of primary grid points. In chapter V it will be

explained that 1:::&5a are related to the·metrics. As in the previous chapter we can
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obtain a discretized expression for the PNS equations by dropping the strearnwise

viscous derivative terms as

(B - 11)

where E,F, and Gare given in Eq.(3-7).

Streamwise Flow ( Space Marching )

We define a strearnwise flux Jacobian matrix A* and an operator 6n+1 as

(B -12a,b)

To implement the space-marching we introduce Vigneron's[42] technique as

(B - 13)

where

A A A ex A ey A ez A T
E* =[pU, puU + (J )Wp, pvU + (J )Wp, pwU +(J )Wp, (Et + p)U] ,

EP =(1- w)p[O, (~), (~), (~ ),O]T,
(B - 14a, b)

with

(B - 15a, b)

where (j is a safe factor for nonlinear effect and (; is a contravariant velocity com-

ponent in the e-direction. Now the strearnwise flux difference can be expressed

by

(B - 16)
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where the marching steps of A· and EP are lagged by one for the conservative vector

(j only. Thus, the operator on in Eq.(B-16) is defined by

cnA~· -A~·(As-n+l U-n ) A~.(As-n U-n- 1 )
v k,l = ~ k,l , k,l - ~ k," k,l ,

ciiE~P - E~P( As-n+l U-n) E~P( As-n U-n-l)
v k,l = ~ k,l , k,l - ~ k," k,l •

(B-17a,b)

From now on, the E· replaces the role of E and the EP is neglected or treated like

a source term in the space marching scheme.

Crosswise Flows ( Linearization )

To avoid confusion and make the linearization procedure of cross flows clear,

some notations as in Table 3 are introduced.

Table 3

K I m I H I Hi I Hv

7J k,Z· F f· Fv1

( k"l G Gi Gv

where H =Hi+Hv and the superscript * is for an inert index by an opreator, which

means that the index with * does not vary. The H denotes a difference expression of

an inviscid and/or a viscous flux. But iI is strictly reserved for the flux itself such

as either F or G. The subscripts i, v stand for the inviscid and viscous respectively.

The general flux difference is defined by a difference operator OK, as

oHn + 1 - Hn+ 1 Hn + 1
Ie m = m+l/2 - m-l/2' (B - 18)

where we raised the marching level (n + 1/2) to (n + 1) for the purpose of both

simplicity and stability. In the above equation the subscript m denotes the cell

center point and the subscripts m ± 1/2 denote the cell interface points. Before

starting linearization it is to be noted that

(B - 19)
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This means that the flow quantities are defined at the cell centers, while the metrics

are defined at the cell interfaces where the fluxes are calculated also. Considering

the elements of fI~11/2 in Eq.(B-19) we can linearize it as

- - afI
n

±1/2 _ afI
n

±1/2 -Hn+1 = Hn + m 8n+1U + m 8n+1U
m±1/2 - m±1/2 aUm m aUm±l m±b

where

(B - 20)

(B - 21)

Depending on the above linearization the general flux difference at the marching

level (n + 1) can be now obtained in terms of n marching level values

(B - 22)

where

o/CfI~ =fI~+1/2 - fI~-1/2' (B - 23)

a aHn aHn
---(0 fIn )on+lf) = m+l/2 0n+1f) _ m-l/2 0n+1f) (B - 24)aum /C m m - aum m aum m,

(aH
-n) afIn afIn

6 ~ on+lf) = m+l/2 8n+1[r _ _m-l/2 8n+1[r (B - 25)
/C au m - au m+l au m-l·m m+l m-l

It is to be noted that the 6/C in the Eq.(B-25) operates on the whole portion which

follows the operator.

First Form of Algorithm

To have a desired discretized algorithm all the terms containing on+l f) are

moved to the left hand side and the other terms to the right hand side of the

equation after substituting the appropriate expressions for 6'/C:A~+1 into Eq.(B-ll)
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with the help of the Table 3. Then the following algorithm in the 50 called b-form

can be obtained,

(B - 26)

where Ok I and Uk I are for a Jacobian matrix and a flux respectively and
• •

AI_AI A AI_AI A

F = F j + F", G = G i + G",

tIl =tv + Fv , GIl =G[I + Gv •

(B - 27a, b)

(B - 28a, b)

The superscripts I and I I denote the first and the second order expressions for the

inviscid fluxes respectively. More generally, we introduce the notations , HI and

fIll like,
.HI = either FI or GI

,

HII = either tIl or GIl.

It must be noted that these notations are not the general fluxes, but they are the

expressions for the first and the second order difference representation of them. They

will be specified in the following sections. If the first order accurate discretization

is used on the LHS, then block tridiagonal matrices are obtained. If we choose

the second order expression, then it will become pentadiagonal matrices which will

require much more efforts to inverse them than the tridiagonal matrices. In view of

the above fact it would be adequate to use the first order differencing the LHS. On

the other hand, the RHS must be handled with much care and a lot of efforts are

to be exerted to imporve the accuracy. For the RHS the second order differencings

are usually used.
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Final Form of Algorithm (Approximate Operator Factorization)

The Eq.(B-26) cannot be used directly. To numerically integrate this it is

rewritten by approximate operator factorization[43] as

(B - 29)

where

(B - 30a)

(B - 30b)

(B - 30c)

At this stage any reasonable finite difference expression can be chosen for HI or

fIJI. The special form used for this study will be presented later. The solving

procedure of the Eq.(B-29) can be taken as the following four steps.

1. [a]X = {RHs}n,

2. Y = [Ak~] X,

3. [.B1S n+1Uk" = Y,
- +1 - +1 -

4. U:" = Uk" + on Uk,"

(B - 31a, b, c, d)

Both of [a] and LB] is a block tridiagonal matrces which will be explained in the last

section.
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B.2 Flux Jacobian Matrices

The LHS ofthe previous algorithm Eq.(B-29) contains some Jacobian matrices

in [0:] and [,8]. Their calculating procedure is described in the following subsections.

Inviscid Flux Jacobian (First Order Upwind Scheme)

Before introducing inviscid flux Jacobian a Jacobian matrix Cm +I / 2 is defined

first as

where sgnC is given by

sgnC = R(sgnA)R-I , sgnA =IAIA-I = AlA-II,

(B - 32)

(B - 33a, b)

where R-I and R are the left and right eigen vector matrices of the Jacobian

matrix C respectively. To evaluate R-I, R, and A Roe-averaged values are used.

The notation "-,, is introduced to denote the Roe average values. The first order

expression of the general inviscid flux can be now expressed in terms of sgnC by

(B - 34)

where

~O=Om+1 - Om, ICI =R(A+ - A-)R-I , sgnC~Hi = ICI~E·.

(B - 35a, b, c)

Based on the Eq.(B-34), the inviscid Jacobian matrices are calculated as

(B - 36a, b)
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with the definition of B, as

(B - 37a, b)

For the case of (H{)m-l/2 m in Eqs(B-36,37) is to be changed into m - 1.

Viscous Flux Jacobian

For viscous flux Jacobian matrices they are simply defined as

(B - 38a, b)

Inviscid and Viscous Flux Jacobian

Considering the definition of H

(B - 39)

Jacobian matrices for both the inviscid and viscous terms are obtained from the

previous two subsections as

where the matrices C, B" and B v are given in reference[28]. The above two equa­

tions can determine all the terms on the LHS of Eq.(B-29) except for A* which is

given already in Eq.(B-12).
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B.3 Flux Differences

The RHS of the final algorithm of Eq.(B-29) contains the flux differences of the

second order in F and Gas can be seen in Eq.(B-30c). The general flux difference

is divided into the inviscid and viscous portions as

(B - 41)

The inviscid flux difference is defined as

(B - 42)

The second order expression for Hi [28]is obtained by adding higher order correction

terms to the first order expression in Eq.(B-34) like

(B - 43)

Depending on the value of the accuracy parameter ¢ various schemes can be ob­

tained. For example, if ¢ = 1, it becomes an upwind scheme. The notations - and ::

denote the limited flux differences through the MINMOD limiter which is defined

by

MINMOD(x,y) =sgn(x)· max{O,min(lxl,.Bsgn(x)y)}, (B - 44)

where.B is a compression parameter. The MINMOD picks up a minimum absolute

value (modulus), if the two arguments are of the same sign. On the other hand,

it assigns zero, if they are of opposite sign. Therefore, it plays a role of limiting

the fluxes, whenever it meets very steep varations. But for mild variation it returns

un-limited fluxes, since .B is large compared with 1 in most case. At maximum, min­

imum, or inflection points where the sign of the neighboring fluxes are changed, the

limiter returns zero. As a result, if we use MINMOD based on the Total Variation

Diminishing (TVD) condition. it will not introduce new maxima or minima and
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thus it removes glitches and expansion shocks. This is somewhat parallel with the

Piecewise Parabolic Method (PPM) by Collela and Woodward[44]. As f3 becomes

larger, we can get a sharper distribution near discontinuity. However, to satisfy

the TVD condition, its value is restricted. For instance, in one-dimensional scalar

nonlinear equation or systems of linear equations,

3-¢
1<f3:5: 1_¢· (B - 45)

Even though the equations used here are multi-dimensional non-linear systems of

equations, it is known that this can provide quite good guideline for them also.

The viscous flux difference which can be simply determined by

(B - 46)

B.4 Block Tridiagonal Matrix

Matrix Construction

In order to integrate the PNS equations by the algorithm given by Eq.(B-29)

the Eqs.(B-40) and (B-38) must be inserted in Eq.(B-30). In doing so the first step

of Eq.(B-31) is important, since it contains a block tridiagonal matrix[45] on the

left hand side. The third step is the same as the first in the point of numerical

calculation. The rest two steps are not difficult. Thus, the solving procudure of

block tridiagonal matrix will be presented in the following. The Eq.(B-31a) can be

rewritten as

(B - 47)
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where AI

[ ]
_ a(F )1:-1/2,1

0'1 1:,1 = - au '1:-1,1
AI AI

[ ] - a(F )1:+1/2,1 a(F )1:-1/2,1 + [..1* ] (B _ 48a, b, c)
0'2 1:,1 = au - au 1:,1 ,1:,1 1:,1

AI

[ ]
_ a(F )1:+1/2,1

0'3 1:,1 = au .
1:+1,1

Here the [0'1]1:,1, [0'2]1:,,, and [0'3]1:,1 are 5x5 square matrices. {Xh-1,1, {Xh,

{Xh+l,,, and {RHSh,1 are 1x5 column matrices. Thus the coefficient matrices,

[ail, compose a block tridiagonal matrix. Eq.(B-47) is solved along the TJ -direction

( 1= const ), while Eq.(B-31c) is solved along the (-direction (k = const ). Thus the

calculating procedure changes the directions. For this reason it is called Alternating

Directional Implicit (ADI) method.

Matrix Solver

A system of equations composed of a scalar tridiagonal matrix can be solved by

means of Thomas algorithm. For a block tridiagonal matrix, we can also apply the

same algorithm combined with the inverse matrix solver. The solution procedure of

a system ofequation with tridiagonal matrix is described in brief. First, we eliminate

the sub-diagonal matrices below the diagonal matrices by using the upper row

matrices and then the present row matrices are multiplied by the inversed diagonal

matrix element. Thus we can construct upper triangular matrix whose elements

are 5x5 block matrices. To obtain the inverse matrix we use Crout's algorithm[46]

which decompose any matrix into lower and upper triangular matrices.. The final

step is to take the backward sweep to get the desired block column matrices which

contain the dependent (conservative) variables.
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GEOMETRY OF LEADING EDGE

It is desired to determine the angle ~ between the upper planar surface and

the lower compression surface. The outward pointing unit normal of compression

surface is determined by n= -V'F/IV'FI, where F(B,~) = B- B(~), where B(~) is

determined by Eq.(2-6). For small polar angles, we have

(C -1)

Since the outward normal to the freestream planar surface is ecP , we can determine

the leading edge tip angle ~ (where B= f3) by cos( 7r - ~) = n .ecP • It can then be

determined that

(C - 2)

The azimuthal velocity at the shock can be determined from the shock boundary

conditions [21,22] :

Thus the leading-edge tip angle is determined by

A 2€2g2 sin 2~~
tanu = .

0'(0'2 - 1)

(C - 3)

(C - 4)

The tip angle according to the approximate formula (2-9) is determined by a differ­

ent result. It is

(tan~)&pprOX = 2(O'e~ 1) sin2~".

102

(C - 5)
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The tip angles for models Al and Bl are determined by the approximate

formula (C-5), whereas the tip angles for models for A2 and B2 are determined by

the correct formula (C-4). The numerical values are shown in the following table:

Table (C-l)

Model
Al
A2
Bl
B2

10.450

1.440

9.450

4.120

The models Al and Bl with the compression surface described by the approxi­

mate formula (2-9) have considerably thicker angles than the corresponding correct

waveriders would have.
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Fig.(l-l) Model of Aero-space Plane
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Fig.(2-2) Construction of Elliptic-Cone Waverider
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Fig. (2-3) Waverider Configuration
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Fig.(3-1) Coordinate Systems
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Fig.(5-1) Elliptic Grid Generation
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• =Primary Grid Points
X =Secondary Grid Points

Fig.(5-8) Finite-Volume Element
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Fig. (6-la) Grid for Elliptic-Cone Flow ( for WR Type-B)
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Fig. (6-1h) Pressure Contours
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Fig. (6-li) Mach Number Contours
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Fig. (7-la) Grid for Type-AID Waverider

( On-Design, WR Type-AlO )
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Fig. (7-1c) Magnified Cross-Plane Velocity near Tip

( On-Design, WR Type-Ala)
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Fig. (7-li) Mach Number Contours

( On-Design, WR Type-AIO )
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Fig. (7-2a) Grid for Type-A2F Waverider
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Fig. (7-2a') Magnified Fan-grid for Tip Region
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Fig. (7-2c) Magnified Cross-Plane Velocity near Tip

( On-Design, WR Type-A2F )
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Fig. (7-4a) Grid for Type-B2F Waverider
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Fig. (7-4c) Magnified Cross-Plane Velocity near Tip

( On-Design, WR Type-B2F )
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Fig. (7-7f) Mach Number Contours

(Moo = 3, a = 0°)
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Fig. (7-8b) Nlagnified Cross-Plane Velocity near Tip

(Moo = 4.5, a = 0°) .
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Fig. (7-9b) Magnified Cross-Plane Velocity near Tip
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