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Chapter 1

Introduction

The real-world target response of a radar system often has rapid variations with

frequency and scanning angle. As a result, one needs to sample quite densely in both

frequency and angle to accurately represent the response. A compression technique

is developed in this report that can be used to reduce this large amount of data.

This technique is based on the concept of isolated scattering centers and Fourier

analysis.

When a real-world target is illuminated by a microwave radar, the scattered field

of the target tends to emanate from a few isolated spots, referred to as scattering

centers, such as the corners, edges and discontinuities in the target's surface. Keller's

geometrical theory of diffraction (GTD) [1] described the scattered field of a target in

terms of various kinds of diffractions, and the diffraction coefficients of many simple

geometries have been calculated. But a real-world target may have an arbitrary

shape and these scattering centers can be widely spaced electrically, so the target's

frequency response often varies rapidly and appears to be hard to analyze. In order

to better understand a target's geometry and physical characteristics, it is important

to be able to separate the different scattering mechanisms on the target.

A lot of researches have been done in the subject of mechanism extraction. For

example, Ksienski [2] isolated two mechanisms in a matrix form in the frequency

domain by using a least mean square error decomposition, and Dominek et al. [3]



used a tirne-gntlng approach to separate several scatterlng centers in an imp111se

response. Though the former presented his idea in the frequency domain and the

latter did it in the time domain, both of their algorithms are dependent on the

relative positional differences among the scattering centers.

It is noticed that after the extraction of these scattering mechanisms, the resulting

individual responses are simple and smooth. Therefore, fewer data points are needed

to represent the isolated scattering centers, which leads to the proposed goal of data

compression. Moreover, this idea of data compression is extended to two dimensions

in this research.

It is well known that radar cross section (RCS) measurement data can be used to

generate a radar image (for example, see Mensa's book [4]), from which one can locate

the scattering centers two-dimensionally. In this report a two-dimensional gating

technique is then employed to separate these scattering centers in the image domain.

In addition, a two-dimensional smoothing technique is also developed to separate

these scattering centers directly in the spectral domain. After the separation, the

resulting individual scattering centers' responses are smooth in both the frequency

and angle dimensions, so one can sample these responses more loosely and a two-

dimensional compressed database for the target under test can be formed. It will be

shown that from this reduced database, one can reconstruct the originally measured

data in both the frequency and angle scans. The compression ratio can be as large

as several hundred.

Chapter 2 describes the one-dimensional target responses and the mechanism

extraction methods, which in turn leads to the idea of data compression. Chapter 3

reviews the formulation of a radar image and extends the data compression scl,eme

to two dimensions. Fourier analysis and the sampling theorem, which are the two

basic tools in this research, are also reviewed'. Chapter 4 displays the results of

the data compression and reconstruction scheme of a simplified target composed of

six corner reflectors. These results show that this algorithm works very well for

2



a nenr ideal case. Chapter 5 shows the results of nppl)'ing the d,tn cornpresslfm

and reconstruction scheme to a real-world target model and explores the problems

facing this complicated, nonideal situation. Chapter 6 concludes this research and

examines possible future studies related to this topic.

3



Chapter 2

One Dimensional Target

Response and Mechanism

Extraction

When an electrically large target is illuminated by a plane wave, tile scattered fields

are often modeled as if they come from several point scatterers, or scattering centers

[3]. This model is helpful for analyzing a complicated real-world target because the

physical properties of ideal point scatterers are simple and can be easily simulated.

An outline of this chapter is as follows. The one-dimensional frequency response

of point scatterers is discussed in Section 2.1, followed by two approaches of mech-

anism extraction in Sections 2.2 and 2.3. Section 2.4 deals with the bandwidth of

the frequency response and its effect on resolution. Section 2.5 describes the one-

dimensional sampling theorem and its applications in terms of data compression and

reconstruction.

2.1 Frequency Response of Ideal Point Scatterers

An ideal point scatterer can be viewed as an isotropic reradiating point source: the

radar sends out an electromagnetic pulse, the pulse hits the point scatterer, the point

scatterer reradiates isotropically and the radar detects the reradiation field (or the



i _ R _"

½ r'

0 X t

scattering center

v

x

Figure 2.1: One dimensional target detection scheme.

backscattered field). The backscattered field of a point scatterer is given by

e-jk2,"

=_Ao-- ; r'>>)_
rt2

(2.1)

where

/_ is the backscattered field

is the unit vector of the backscattered field

r' is the distance from the radar to the point scatterer

k is the wave number, k - 27rf
c

f is the frequency

c is the speed of light, and

is the wavelength.

For the one-dimensional (l-D) case shown in Figure 2.1, an ideal scattering center

is located at z = x' where Iz'l << R, R is the distance from the radar to the target

zone center. Then from Equation (2.1) and r' = R + x', one obtains that

e-J2"s )e-J2 s (2.2)
E= Ao ( R + x,) _ ,_ Ao( --_
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For convenience, one can change the phase reference from tile radar to tile target

zone center x = 0, then Equation (2.2) becomes

AO " 2zt
-_'_f-7 Boe-J'_'_l_ '" (2.3)

E _ -_e =

Equation (2.3) represents the 1-D frequency response of an ideal scattering center

with the phase reference set at z = 0.

Frequency responses for an ideal scattering center located at different positions

are shown in Figures 2.2, 2.3 and 2.4. From these figures one can see that the

amplitude response of an ideal scattering center is constant, and the phase response

is linear. Furthermore, if the scattering center is located at the origin (Figure 2.2),

there is no phase variation. If the scattering center is moved away from the origin, a

linear phase change occurs (see Figures 2.3 and 2.4). In other words, the slope of tile

phase response contains the information of how far from the origin the scattering

center is shifted.

Next consider the response of two scattering centers located at x' = -d/2 and

z' = d/2. The total field at the observation point z = 0, according to Equation (2.3),

is

E = Ate "_2,'f_ + A2e -j2"t_ (2.4)

where Ai and A2 are the magnitudes of the two scattering centers. From Figure 2.5

one can see that in this case, the amplitude response oscillates as does the phase

response. To gain a better understanding of the oscillation in the amplitude response,

one can rewrite Equation (2.4) as

E = A,eJ2'_I-_(1 + ae -s2'_f_-) (2.5)

where a = _ Note that 1 + ae-J2"f_ is a circle in the complex plane. It is
Al"

centered at (1, 0) and has a radius a, with -27rf_ q being the argument parameter.

So the amplitude response of Equation (2.5) has maxima at f = n_d and minima at

f = (rt- ½)5 for n = +1,2,3..., and is periodic with a period Af = 5" Figure 2.5
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showed the periodicity of Equation (2.5) when # = 0.5 nanoseconds (ns), A,=2 and
t'

a = 0.5.

If there are more than two scattering centers, the frequency response can be

obtained simply by superposition such that

E = y_ A,e -:'f c (2.6)
i=!

Similar to the two scattering centers case, rapid variations in both the amplitude

and phase responses are expected due to interactions among these scattering centers.

In the above discussion the 1-D case of the "ideal" scattering center has been

studied. An ideal scattering center is a fixed point scatterer, and it reradiates the

incident plane wave isotropically. But in the real world, the scattering centers are

located in a three dimensional space, and they may not be ideal. In other words,

the terms A, in Equation (2.6) are not necessarily constants; they can be functions

of both the frequency and the incident angle of the plane wave. So for a real-world

target composed of a finite set of scattering centers, the 1-D frequency response

along the incident wave direction, or down range direction, is slightly modified as

• -____

E'(f)= "e ° (2.7)
i=l

where E_(f, 0, ¢) is the individual response of the i-th scattering center and (0, ¢)

represents the incident direction of the plane wave. Note that El(f, 0, ¢) represents

the physical scattering property of the i-th scattering center. Though not necessarily

a constant, the Ei(f,O,¢) should be slow-varying, or "smooth", in frequency for a

given incident angle since its behavior should not be far from an ideal point scatterer.

One shouhl note that Equation (2.7) is valid under two assumptions and require-

ments:

1. the target is electrically large; and

2. the target has a finite number of scattering centers.

11



The first assumption states that the target size has to be large with respect to the

wavelength of the incident field such that a scattering mechanism on the target can

really be treated as a point scatterer. Since a point scatterer is a line-of-sight scat-

terer, this assumption is not valid for higher order effects such as multiple reflections,

creeping waves and edge waves in that they will not be correctly located.

The second assumption dictates that the scattering centers are discrete such that

the total response can be written as a linear superposition of individual scattering

center responses. If this assumption does not hold, then other models; e.g., the GTD

model, should be employed to calculate the scattered fields. (For example, in the

case where the incident wave normally hits a straight edge, the scattered field will

not be the summation of individual scattering centers, but rather the integration of

the contribution along the whole edge.)

In this research, it is assumed that Equation (2.7) represents a target's frequency

response under the above two requirements.

2.2 One Dimensional Gating Technique for Mech-

anism Extraction

Figure 2.6 shows a typical 1-D target response measured in the OSU compact range.

Two main reasons lead one to try to extract out individual scattering center responses

from such a complicated response:

1. By extracting out the scattering centers, one can study the individual scat-

tering mechanisms and gain a deeper insight into the geometry and physical

characteristics of the target.

2. The frequency response of an individual scattering center is smoother and

simpler than the frequency response of the entire target as mentioned before;

hence, storing the former instead of the latter should be much space-saving if

the number of scattering centers is not big.

12
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The second reason is of special in(.erest in t.lfis research because a smaller da.tal_ase

can be conveniently carried around and installed in most computers for the target

identification's purpose, and it can help identify a target more efficiently by saving

the sorting time. With these motivations, the major concern now is how to extract

out the individual scattering mechanisms.

As mentioned before, it is assumed that Equation (2.7) represents a target's

frequency response. For a given incident direction (0o, _bo), one can write the inverse

Fourier transform of Equation (2.7) as

/1

where

= - T,)
i=l

2xi'
Ti _

C

e"(t) = .T'-'[E"(f)] and

e,(t) = _-'[E,(f)].

(2.8)

(2.9)

Throughout this report, eS(t) is called the time domain impulse response in the down

range direction.

Because of the invertibility of the Fourier transform, frequency and time are

dual domains. Namely, any linear operator carried out in one domain can be cor-

respondingly carried out as a linear operation in the other domain. Therefore, the

extraction of scattering centers can be performed in either domain. For example,

Dominek et al. [3] suggested a time domain gating technique to separate individual

scattering mechanisms. And this research will basically follow their approach.

The impulse response of the frequency domain data in Figure 2.6 is shown in

Figure 2.7. Note that this impulse response checks well with Equation (2.8). It

seems much easier to extract out individual scattering mechanisms in Figure 2.7

than in Figure 2.6 because a natural way to separate these "pulses", which represent

the scattering centers, in Figure 2.7 is to use a proper "time gate". The steps are as

follows:
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I. Pinpolnt th_ peak 1,wation of each sca|_'ring centf'r bl the imp_llre respnnse.

2. Shift the scattering center of interest to the coordinate origin.

3. Apply a time gate to extract out that scattering center.

4. Repeat steps 2,3 until all the scattering centers are extracted.

The above procedure is called the time domain gating technique.

Various kinds of time gates and their properties have been discussed in [5]. For

example, a 0.8 ns Hanning gate which has a waveform of

_(t) = 0.5. [1+ cos(_)] ; -0.4 ns < t < 0.4 ns (2.10)

has been used to extract the individual scattering centers given in Figure 2.7. The

frequency responses of individual scattering centers after extraction are shown in

Figures 2.8 and 2.9. Note that the resulting individual responses after extraction

are smooth both in amplitude and phase, as was suggested in Section 2.1.

A potential drawback of gating is that when two or more scattering centers are

too close in the down range direction such that they are coupled together in the

impulse response, they cannot be completely separated by gating. However, since

the scattering centers are located in a 3-D space, two scattering centers with close

down range positions do not necessarily mean they cannot be separated in the cross

range direction -- the direction transverse to that of the down range. This fact

motivates one to separate scattering mechanisms in two (or even three) dimensions,

as will be discussed later in this report.

2.3 One Dimensional Smoothing Technique for

Mechanism Extraction

The counterpart operation of gating in the time domain is convolution in the fre-

quency domain:

_[e'(t).w(t)] =/__ E'(I')W(f - f')df' = E_(f)* W(f) (2.11)
oo
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wherew(t) is the time gate and IV(f) is its Fourier transform pair. Theoretlcally

one can apply Equation (2.11) to separate individual scattering mechanisms in the

frequency domain if the position of each scattering center is given, but this convolu-

tion is more computationally complicated than gating in the time domain because

the integration in Equation (2.11) ranges over the whole frequency axis. Figure 2.10

plots the time-limited Hanning gate described in Equation (2.10). To make things

easier, one should notice that in Figure 2.10, the frequency response of a Ilanning

gate is a lowpass function. The energy of this lowpass function concentrates around

the mainbeam area (low frequency band) and dramatically decays over the sidelobes

(high frequency band). So one can approximate the infinite-bandwidth frequency

response of the Hanning gate by a truncated version obtained by neglecting the

sidelobes outside, say, -30 dB; then, Equation (2.11) becomes

E"(S')W(f- f')d/'.• ,,:-sw (2.12)

Note that the right-hand side of the above expression is nothing but a weighted

moving average, or a smoothing operation, in the frequency domain. As a result one

can choose various kinds of bandlimited smoothing operators W(f) in the frequency

domain to execute mechanism extraction. This approach of separating scattering

mechanisms in the frequency domain goes as follows:

1. Detect the down range position T, of each scattering center in the impulse

response.

2. Shift the scattering center of interest to the coordinate origin by multiplying

the the term e j_fr_ to the frequency response.

3. Smooth the frequency response by performing the integration in Equation (2.12).

4. Shift back the scattering center by multiplying the complex conjugate term

in step 2 to the smoothed data and subtract this smoothed data from the

pre-smoothed response.
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5. Repeat steps 2 to 4 until all the sra_ering centers are extracted.

The above procedure is called the smoothing technique in the frequency domain.

Note that the accuracy of the mechanism extraction by smoothing is at tile cost

of the computation time; i.e., one can always achieve better separation by increasing

the bandwidth f,,, of the smoothing operator in Equation (2.12). Also note that

smoothing can be interpreted as time-unlimited gating in the time domain; hence,

when scattering centers are too close to separate by gating, nor can they be separated

by smoothing.

Figures 2.11 and 2.12 show the six individuM scattering center responses by

applying the smoothing technique to the frequency response shown in Figure 2.6.

The smoothing operator chosen here is:

1 [1 + cos(_rf
W(f) = _ _.-.-.-.g)]; - 2.5 < f < 2.5 , f in Gnz (2.13)

where A is tile normalization constant. The bandwidth 4-2.5 GHz is chosen because

the first nulls of the frequency response of a 0.8 ns Hanning gate are at +2.5 GHz.

These smoothing results compare well to Figures 2.8 and 2.9 which are obtained by

time-gating.

2.4 Resolution and Bandwidth

In Section 2.2, it was shown that if two scattering centers are too close to each other,

they cannot be separated by gating. But how close is too close? It is a question of

resolution, and the resolution is mostly decided by the available bandwidth.

An ideal scattering center is represented by a Dirac Delta function in the time

domain and its frequency response is nonzero over the whole spectrum. If one did

have the ability to store data over the whole spectrum, two ideal scattering centers

could always be separated in the time domain no matter how close they are. However,

in the real world only a finite bandwidth is available due to equipment limitations.

In our experiments only the frequency response from 2 GHz to 18 GHz has been
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measured.

spectrum.

n e is a sinc function:passband for -_ < f < _-,

where

This is equivalen| to applying an ideal handpass filter to the infi.ite

Note that the inverse Fourier transform of an ideal filter with a unity

h(t) = Bsinc(Bt) (2.14)

sin 7rz
sinc(z) = (2.15)

71"X

Therefore, the effect of a truncated bandwidth is equivalent to convolving a sinc

function with the original impulse response in the time domain. Consequently, an

ideal scattering center will look like a sinc function in the time domain after the

bandwidth is truncated. This is shown in Figure 2.13. Since under the bandlimited

condition ideal scattering centers become sinc-shaped pulses, the resolution, Atr, is

defined as the width between the first zeros of the sinc pulse such that

2

AG = _ (ns) (2.16)

where B is the bandwidth. Note that the resolution is inversely proportional to the

available bandwidth. In tile case of a 16 GHz bandwidth, the resolution is about

0.125 ns (or 0.75 inches by Equation (2.9)).

Also note that the high sidelobes of the sinc function can give ambiguity to

the number of scattering centers in a measurement. A traditional way to reduce

the sidelobes of the sinc function is to apply a window function in the frequency

domain to taper off the frequency response instead of using abrupt truncation. Here

a Kaiser-Bessel window is chosen such that

I_ __ "1

w(/)= L[2 ] ,/o- < f < fo+

where Io(.)is the zeroth-order modified Bessel function of the firstkind, .toisthe

central frequency of the frequency band one uses and B is the total bandwidth. Note
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that an inverse window t sho,lld be applied nt the end of processing to remove

the effect of this window if one uses the gating technique to execute mechanism

extraction.

2.5 One Dimensional Sampling Theorem and Its

Applications to Data Compression and Re-

construction

Though a target's frequency response is continuous, it is often recorded in a discrete

form in order to be stored in a computer. The data increment required to represent

a continuous frequency response is dictated by the sampling theorem [6].

From the property of the Fourier transform, one knows that if a continuous

frequency response is sampled at a step of f,t,._ GItz, the effect of this sampling is

to make the corresponding impulse response periodical every is,,_--_ns, or about _'"_fslcp

feet. This property is shown in Figure 2.14. Therefore, if the target is larger than

"'_ feet the periodicity will cause overlapping, or aliasing, in the time domain. This
fslep

would prevent the possible recovery of the original impulse response and is called an

undersampling situation. Thus, in order to fully represent a continuous frequency

response in a discrete form, tile data increment has to be decided by the target

size. In this research, a 10 MHz increment in the frequency domain is chosen, which

corresponds to an aiiasing distance (or wrap-around period) of 100 ns, or about 50

feet. Since the targets in our measurements are restricted within 8 feet, any target

will be highly oversampled.

In Section 2.2, it was shown that the resulting frequency response of an individual

scattering center is a smooth curve. For the purpose of data compression, one

may hope to represent this smooth curve by just a few data points. Again this is

guaranteed by the sampling theorem. In Figure 2.7, if a scattering center is extracted

out by a 0.8 ns gate, then the scattering center's frequency response (see Figures 2.8

and 2.9) can be sampled at a step of 1/0.8 = 1.25 GtIz without introducing aliasing.
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In t.his research, the preliminary gonl i._ to reduce the database from stori,g every

10 MHz to 1 GHz, which can be achieved as long as the gate width is less than 1 ns.

The reconstruction of the continuous response out of these sampled points can be

done by applying a rectangular gate to the periodical impulse response in the time

domain as shown in Figure 2.14. This could also be thought of as interpolating the

sampled points by a sinc function directly in the frequency domain [6]. Figure 2.15

shows the latter approach.

Once one gets back the individual scattering center's frequency response, the

original target's frequency response can be obtained by shifting back each scattering

center to its down range position and then summing up all the individual scattering

center responses. Figure 2.16 shows the reconstructed data of Figure 2.6. From

Figure 2.16 one can see that the data compression-reconstruction scheme is promising

for building a compact database of a complicated target.
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Chapter 3

Two Dimensional Target

Response and Mechanism

Extraction

Early radar systems were designed to detect a target's range and speed, which is ba-

sically one-dimensional information. Recently more high resolution radar techniques

have been developed to "see" and identify a target in two or three dimensions (for

example, see [9]). Thus, "radar imaging" ensues.

A radar image can be represented by a two-dimensional (2-D) reflectivity func-

tion u(x,y). This reflectivity function is related to the two-dimensional frequency

response U(fx,fu) by the 2-D Fourier transform. Some important properties and

applications of the 2-D Fourier transform can be found in [7], [8] and many others.

However, the computations needed to perform a 2-D Fourier transform are extensive

even by using a 2-D Fast Fourier Transform (FFT) subroutine, and it is also incon-

venient to collect the rectangular type data U(fx, fu) if only one antenna is available.

The above problems can be solved by using the Inverse Synthetic Aperture Radar

(ISAR) technique. In short, polar type data U(f, 0), instead of the rectangular type

U(f_,fu), is collected from swept frequency and angle measurements in order to

generate the 2-D radar image.

This ISAR technique is reviewed in Section 3.1. Section 3.2 examines the rela-

tion between the ISAR image and the available 2-D spectral domain data, including
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resolution and aliasing. Section 3.3 discusses the 2-D mechanism extraction meth-

ods, which are extensions of the 1-D case. The sampling theorem for 2-D signal

processing is also explained. Section 3.4 is the core of this report, which displays

the procedure of the 2-D data compression, the formulation of a reduced database

and the reconstruction of the original data from the reduced database.

3.1 2-D ISAR Image Technique

ISAR draws its name from SAR: the Synthetic Aperture Radar. SAR is an airborne

radar which illuminates a terrain area and records the reflected signal in order to

generate a high resolution map of that terrain area. This technique was first demon-

strated in early 50's [9]. Figure 3.1 illustrates how one kind of SARs works called

the Spotlight SAR. Basically the Spotlight SAR collects data of a fixed target (e.g.,

a terrain area) from a rotating antenna. But the same data can be collected in

an "inverse" way; i.e., from a fixed antenna illuminating a rotating target. This is
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exactly the idea of ISAR. 1SAR is easy to set up in a compact range facility [10].

Model target can be measured and a high resolution image can be obtained. This

will be shown next.

Consider a radar image represented by a reflectivity function u(z,y). Note that

as discussed in Chapter 2, one has tile following results:

tx = Lzc ; tu= c

where z and y are units of length, tx and tu are units of time (round trip), and c

is the speed of hght. Consequently, one can freely change the scale from u(z,y) to

u(tx,tu). The 2-D time domain function u(G,t,,) can then be related to the 2-D

spectral domain function U(f,, f_j) by the Fourier transform pairs:

and

F£=(t_,t_)= U(L,L)e:"¢"/'+'_S,)dLdL
OG O0

U(L,G) = u(tx,t_)
o_ Oo

v(/,¢)= v(L,f,,)I/.=s_,.,,,,/,=s,,,,_,,

Since

(3.1)

(3.2)

one can substitute f_: = f cos ¢, fu = f sin ¢ and dfxdft , = fdfd¢ into Equation (3.1)

to obtain [8]

Note that

_2_ _ U(f , ¢)e j2_f('" c'''*+,u "i"'_) f df d¢

L"L fdfd 

+/).L,:(:, f (3.3)

cos(¢ + _-) = - cos¢,

sin(C+ z-) = -sine, and

V(f,¢ + _') = U(-L4,).
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By s.1)stil,.ting the above results into Eq.ation (3.3), one finds that

u(t_,tu) = _'_ f_ U(f,¢)eJ2"f(t_c"_+t_";"_')lfldfd ¢. (3.4)
oo

The radar image can thus be achieved by completing the integration in either Equa-

tion (3.1)or Equation (3.4).

Since the measured data is normally obtained in a polar form (i.e., swept fre-

quency and swept angle), one needs a precise interpolation routine to change the

polar form data to the rectangular form (see Figure 3.2) before performing the 2-D

inverse Fourier transform in Equation (3.1). Interested readers can refer to [11] for

this approach. On the other hand, one can use Equation (3.4) to construct an im-

age with less effort. To show this, the Fourier Shce Theorem, which is extensively

applied in Computer Tomography, should first be introduced [8].

In Figure 3.3, let p60([_) be the parallel projection of an image u(tx, tu) onto the

{x axis, which is the rotation of the tx axis by ¢o. Then the Fourier Slice theorem

says the 1-D Fourier transform of p_o(i_)is U(f,¢ = ¢o), a slice of the 2-D spectral

response oriented at the same angle ¢ = ¢o.

The proof of the Fourier Slice theorem is straightforward. By definition,

/5p,o(i.) = u(i_,i_)di_. (3.5)

Let P_o(f) be the Fourier transform of p_o(iX), then

/5P6°(f) = P_,°([,) e-j_'_fi_d_'.
oo

= u., i,,)e-_"Ii_dixdt_
oo oo

Note that for a rotation of a coordinate system by angle ¢o,

{_ = t_cos¢o +tusin¢o (3.6)

i u = -t_sin¢o+t vcos¢o, (3.7)

SO

££P¢o(f) = u(tx,tu)e-JZ'_IC'_"_¢°+'_"_°)dt_dtu. (3.8)
oo oo
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Figure 3.2: Polar and rectangular grid formats.
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Figure 3.3: The Fourier Slice (or Fourier Projection) Theorem.

Comparing Equation (3.8) to Equation (3.2), one knows that P_o(f) = U(f,_bo),

proved.

According to the Fourier Slice theorem, the 1-D inverse Fourier transform of

U(f, 4,o) is a "projection" of the 2-D image. And one can define a "filtered projec-

tion" function I_ such that

=/'¢ U(f,_)lfteJ2"Iizdf. (3.9)I (ix)

Note that l_({x) is the 1-D inverse Fourier transform of a filtered slice of U(f,_),

with the filter coefficients being [f[, hence it is called a "filtered projection" function.

With the help of this function, Equation (3.4) can be rewritten to obtain

Z-= (3.10)

Equation (3.10) demands each filtered projection to be "backprojected" onto the

(tx, tu) plane and then to be summed up over the angle variable to generate the
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image 7r(t,,/:,). The above proced,re is callcd the filtered lmckpro.i,'ction algorifhm

and all image thus generated is called an ISAR image throughout this report. The

following is a summary of the steps to generate an ISAR image [8]:

1. Measure the swept frequency data U(I, ¢) at angle ¢.

2. Filter the data by Ifl and then take the 1-D inverse Fourier transform (IFT).

3. Backproject the 1-D IFT result onto the whole (G,tu) image plane in the

orientation of ¢.

4. Repeat steps 1-3 for each look angle and sum up each backprojection in the

image plane to generate the ISAR image.

The filtered backprojection algorithm also needs interpolation, not in the spectral

domain but in the image domain, when it is constructing an ISAR image. It turns out

that the interpolation scheme in the image domain is much easier than what is needed

by the 2-D IFT algorithm in the spectral domain [8]. Here a linear interpolation is

used and a typical ISAR image is shown in magnitude in Figure 3.4.

3.2 Resolution in 2-D Image Domain and Effect

of Discrete Data Increments

To obtain an ISAR image as shown in the previous section, one needs data of all 360 °

look angles. But in practical cases, scattering centers are not isotropic; i.e., their

scattered fields may change versus the illuminating angle. Besides, for a complicated

target some parts may be shadowed by other parts when it is illuminated by an

electromagnetic plane wave. These factors will make the 360 ° ISAR a complex

image. To take these factors into account, Equation (3.10) is modified as

U_,o(tX,t_) [_'°+_= l,(G)d¢ (3.11)
J¢o-_
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in order to generat, e a. "loenl" I,qAR image for a desired look angle _ --- qSo. llere _, is

empirically set to be 10% Note that by doing this one can actually make U_o(t_,, _y) a

real image by arbitrarily satisfying the conjugate symmetry condition in the spectral

domain.

In addition to the limited aspect angles, only a finite bandwidth is available.

Thus, the data used to generate a local ISAR image is measured and stored within

a small region of the whole 2-D spectral domain. To guarantee the target is fully

represented, again one needs to investigate the effect of data truncation and the

discrete data increments.

Assume $o = 0 ° in Equation (3.11) for convenience. For this particular look

angle, t, is the down range axis and t_ is the cross range axis. Remember that

for the 1-D case shown in Chapter 2, tile frequency bandwidth gives the time do-

main resolution, and the target size dictates the discrete data increment required

to fully represent the target response. The same criterion holds between the 2-D

(f_,, f_) spectral domain and the 2-D (t_,tu) spatial domain. Namely, the available

bandwidth in f_ gives the resolution along the tx direction of the image; and the

target's size along the t_ direction dictates the data increment required in the f._

axis. Similar for fy and ty.

Though here polar form data (f, qS)is measured instead of (fx, fu), when the

angle span is small (say, +10 °) and the frequency is bandlimited, the rectangular

type data can be approximated by the polar type data. In this case, f_ = f cos _b_ f

and fu = f sin d' _ f • d'. So the down range resolution is primarily dictated by the

bandwidth of f. In our measurements, the frequency band ranges from 2 GHz to

18 GIIz for a total bandwidth of 16 GIIz, so the down range resolution is about

0.75 inches as discussed in Chapter 2. On the other hand, the cross range resolution

depends on both f and q_since fu _ f" d'. Note that the span of _ is +10 °, so fu has

a bandwidth of 0.7 GHz when f = 2 GHz; and 6.3 GHz when f = 18 GHz, which

varies by a factor of 9. In other words, the bandwidth of fu is not a constant. Since
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in this cnse no direct relation cnn be used to decide the resolution in cross range, it

is done by letting two scattering centers of equal strength move toward each other

along the tu axis until their positions become distorted. The cross range resolution

thus achieved is approximately 3 inches under the ±10 ° angle span condition.

Note that if the whole spectral domain data is available, the 2-D spatial response

of an ideal point scatterer is a Dirac Delta function. But when the spectral domain

data are abruptly truncated, the spatial domain Delta function begins to distort

into a 2-D sinc function. The high sidelobes of the 2-D sinc function will deteriorate

the quality of the ISAR image. The traditional way to deal with this problem is

to apply a 2-D tapering window in the spectral domain to avoid abrupt truncation.

Note that an inverse window should be used to compensate this effect after one gets

back from the image domain to the spectral domain.

The discrete spectral data increments have to be chosen such that they can

avoid aliasing in both the down and cross range directions of the ISAR image. As

mentioned before, for a small angular data region in the spectral domain, the ISAR

image's down range is closely related to f. So a 10 MHz frequency data increment

corresponds to a 100 ns, or about 50 feet wrap-around period in the down range axis,

which oversamples a target with a down range size of 8 feet. In the ISAR image's

cross range direction, the spectral data increment Afu _ fAd, oc f, so one should

consider the highest frequency case which has the smallest wrap-around period in

cross range. At f = 18 GHz, if one uses an angle step of 0.1 °, it is about an fu

increment of 18. 0.z • _r = 0.031 GHz, or roughly 30 MHz. This means the least

wrap-around period is about 33 ns, or 16.5 feet in cross range, then a target with a

cross range size of 8 feet is also oversampled.

Though the above chosen data increments (10 MHz, 0.1 °) can fully represent the

target in the spectral domain given the oversampling condition, the data amount

thus achieved may be too large to save. For example, if one uses a bandwidth of 16

GHz to complete an ISAR measurement of a 360 ° circular illumination, one needs
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to store 3600 x 1601 = 5,763,600 complex data points. So the challenge is how

to reduce the data amount while still being able to preserve all the information

contained in the measurements. Hence, 2-D mechanism extraction methods and

data compression scheme will be explored in the next two sections.

3.3 2-D Mechanism Extraction

From the discussion of tile Fourier Slice Theorem in Section 3.1, one knows that

when a target is illuminated from a certain look angle, the 1-D frequency response

is just a Fourier transform of p_o(/'x) -- the projection of the reflectivity function

u(G,t_,) onto the down range t_ axis. Therefore, scattering centers of similar down

ranges but different cross ranges, when projected onto the down range, may overlap

and become impossible to separate using 1-D mechanism extraction techniques. This

problem can be solved by extending the 1-D techniques to the 2-D case.

Figure 3.5 shows the spatial domain envelopes of six corner reflectors at the look

angle q_ = 180 ° obtained using the ISAR technique. From Figure 3.5 one can see

that a 2-D gating technique is a straightforward method to isolate scattering centers

in the spatial domain. To be specific, first Figure 3.5 is used to detect the peak

location of each scattering center. Then a rectangularly-based uniform gate (which

is a 2-D spatial gate with unity passband) is positioned to the scattering centers

one at a time to extract each of them. The extracted area is then shifted to the

coordinate origin and projected onto the down range axis. The final step is to take

the I-D Fourier transform of the projection to get each scattering center's frequency

response for that look angle.

A 2-D smoothing technique can also be derived. As one knows, the equivalent

operation of gating in the spatial domain is the 2-D convolution in the spectral

domain such that

££Jr[u(G, tu) . g(G,tu)] = U(f_',fu')G(f, - f/,f_ - f_')dL'dfu'
OG Of 2
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Figure 3.5: 2-D envelope response of tile six corner reflectors at _ = 180 °.

= u(.f.,f,,) • c(L,.f,,). (3.12)

For a small angular region, the 2-D rectangular-type convolution can be approxi-

mated by a 2-D smoothing process along the frequency and angle scans, respectively.

After the smoothing for one scattering center, the smoothed response is subtracted

from the total spectral response, and the procedure continues until all scattering

centers are extracted out.

The advantage of 2-D smoothing over 2-D gating is that smoothing operates

directly on the spectral domain data, so it avoids the need to use windows and gates

back and forth in both the spatial and spectral domains. The disadvantage is that

smoothing takes longer time than gating to process the data. But basically these

two techniques represent the same idea of mechanism extraction.
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3.4 2-D Data Compression and Reconstruction

After the 2-D mechanism extraction by either gating or smoothing, the individual

spectral response of a scattering center shifted to the origin should be smooth over

the whole spectral domain because there are no interactions with other scattering

centers and there is no propagation phase. The smoothness of individual scattering

center's 2-D spectral response is what one can take advantage of when it comes

to 2-D data compression. For example, one may expect to represent the smooth

frequency response for a certain look angle by just a few data points, while in the

angle domain one may also expect to represent the scattering center's angle response

by just a few angles. By doing this one can reduce the data amount a lot. Let's

assume there are in average 30 scattering centers making up a real-world target,

since one originally measures the target every 10 MHz over a 16 GHz bandwidth

and every 0.1 ° over 360 ° rotation, there will be 5,763,600 data points as calculated

before. If one can extract out these 30 scattering centers and sample each scattering

center's frequency response every 1 GHz and azimuth response every 5 ° and thus

form a "reduced" database, then the number of data points needed to be stored will

reduce to 30 × 17 × 72 = 36,720, which is 150 times less than the originally measured

data amount.

Though the above calculation seems attractive, a big concern is that whether or

not one can reconstruct the original signal from the reduced database in real time.

For example, in a target identification application, a moving target could come in

from any look angle on a radar operating in different frequency bands; one must

be able to generate the frequency response of a certain look angle or the azimuth

response at a certain frequency from the reduced database in order to compare the

incoming target signal with the stored information. From the 1-D experience in

the previous chapter, one would expect to achieve this goal again by the sampling

theorem.
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In the 1-D case, the samplhlg theorem guarantees the recovery of a time lhnited

frequency domain signal from its sampled points. The reconstruction is done by

either using a rectangular time gate in the time domain or a sinc interpolation in

the frequency domain. Tile same concept can be extended to the 2-D case where tile

time-limit Tx along the down range t'_ axis decides the sampling period in Z and the

time-limit T, along the cross range t, axis decides the sampling period in .f,. To be

specific, the 2-D sampling theorem states that a 2-D time-limited frequency domain

function u(L,L) can be completely recovered from the discrete spectral samples

whose separation is given by [7]

A)_< 1
-Tx

and

1
-7.

The recovery is then done by either using a rectangularly-based uniform gate in the

2-D spatial domain or a 2-D sinc interpolation in the spectral domain.

Note that in general one cannot apply the 2-D sampling theorem on the polar

format (f,_b) data because there is no separable relation between f and the down

range, and between _b and the cross range. But again for a small angular region

and a truncated bandwidth, one can use the polar-type data to approximate the

rectangular-type data and hence one can sample a scattering center's spectral re-

sponse by just a few frequencies and angles after it is extracted out.

After one obtains the reduced database, the reconstruction procedure operates

as follows:

1. Recover the frequency response of each scattering center at recorded angles by

the sinc interpolation.

2. If the look angle to be reconstructed is not a recorded angle, linearly interpolate

the response for each scattering center at the desired look angle using the data

of the two neighboring recorded angles.
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3. Shift hack the proper down range position for each scattering center and sum

up all the individual responses.

The above procedure can be used to get a frequency response of a desired look

angle, or an azimuth response of a certain frequency, or the response at a desired

look angle for a given frequency. And if the number of scattering centers is small,

the reconstruction can be done very fast. Tile details and the results of this 2-D

data compression and reconstruction scheme will be shown in the next two chapters.

45



Chapter 4

Data Compression and

Reconstruction for a Simple

Target: The Six Corner

Reflectors Case

The basic ISAR imaging concepts, separation of individual scattering centers and

data compression techniques have been explained in the previous chapter. In this

chapter, a simple target composed of six corner reflectors is used to demonstrate the

details of the 2-D data compression procedure and to evaluate the capability of the

data reconstruction algorithm.

4.1 Measurement of a Simplified Target: Six

Corner Reflectors

A simplified target composed of six corner reflectors is chosen to test the feasibility of

the data compression-reconstruction algorithm in this chapter. The corner reflectors

are chosen because they simulate point scatterers very well, provided that they are

not very large electrically. Though corner reflectors are not isotropic scattering

centers, the frequency and angle dependence of their backscattered fields can be

calculated from their geometries.
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Figure 4.1: Target coordinate systems.

Table 4.1: Positions and sizes of the six corner reflectors.

No.

#i

#2

#3

#4

#5

#6

x (inch) y (inch) side length

-13.6 3.9 3"

-11.8 7.9 3"

-llt
0.5 -11.4 3_

-lit
2.1 -3.8 2g

3t!
15.7 0.0 1_

. lip
17.I 12.1 4 5
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Figure 4.2: Top view of the six corner reflectors.
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As shown in Figure 4.1, the (t,,tv) coordinate system is a fixed coordinate system

with respect to the target, with the origin defined at the center of rotation. The

(t_,iu) coordinate system, which is rotating, indicates the down ra;nge and cross

range of the incident wave direction, respectively. Figure 4.2 and Table 4.1 define

the locations of these six corner reflectors.

The backscattered fields from the six corner reflectors were measured every 0.25 °

from _b = 160 ° to q_ = 200 °. For each angle a frequency response from 2 Gtlz to 18

GHz was stored at an increment of 10 Mtlz. Thus, there are 1601 data points for each

angle file. These discrete data increments (10 MHz, 0.25 °) are both oversampling,

hence they can fully represent the continuous target response in the 2-D spectral

domain.

When an ISAR image centered at a certain look angle _b = _bo is formed, the

azimuth data from _bo - 10 ° to _bo+ 10 ° is used. This 20 ° angle span gives roughly

a cross range resolution of 3 inches as discussed in Chapter 3. For each look angle,

the available bandwidth of tile frequency scan is 16 GHz, hence tile down range

resolution is about 0.75 inches as shown in Chapter 3, too. To avoid the abrupt

truncations in both the azimuth and frequency scans, a Kaiser-Bessel window is

applied to both the 20 ° azimuth span and the frequency data.

To execute the filtered backprojection algorithm to form an ISAR image, each

frequency data array is multiplied by If[ first. Then an 8192 point Inverse Fast

Fourier Transform (IFFT) subroutine is used to transform the filtered 1601 frequency

points to the time domain. Lastly, the time domain array is backprojected onto a

2-D ISAR image plane which is large enough to cover the whole target zone. Note

that one can freely set the grid size in tile ISAR image, but the smallest grid step

is dictated by tile IFFT subroutine. To be specific, since the frequency increment is

10MHz, correspondingly in the time domain the wrap-around period is 100 ns. The

8192 time domain array thus has an increment of 0.0122 ns, or 0.07 inches. This is

the smallest grid representation of the ISAR image. Figures 4.3 to 4.5 show ISAR
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Figure 4.3: ISAR image of six corner reflectors for a central look angle of 170 °.
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images of lhe six corner reflectors for three dilTerent look angle._. Note thor:

• All the corner reflectors are correctly located.

• The energy of each corner reflector spreads out more in the cross range direction

because the average bandwidth of fu is much smaller than that of jx.

4.2 Compression and Reconstruction of Frequency

Scan Data

To separate individual scattering centers in the image domain, a 6 inches down range

by 4 incites cross range (i.e., about 1 ns by 0.67 ns) uniform gate is positioned at

each scattering center to gate it out and shift it to the origin. According to tile

Fourier Slice Theorem, the projection of an ISAR image onto the down range axis

is the impulse response along the central look angle. So one can take the projection

of each extracted scattering center (i.e., add up the extracted subin:,ge along the

cross range direction), and then take the 1-D Fourier transform of the projection to

get an individual scattering center's frequency response at the central look angle.

Figures 4.6-4.7 show the individual frequency responses for each of the six corner

reflectors thus obtained. Note that both the amplitude and phase responses are

smooth.

Now there are six smooth frequency responses after separating out the six corner

reflectors in the ISAR image. Since each frequency response is time-limited within

1 ns imposed by the down range gate width, the sampling theorem guarantees that

one can sample the smooth frequency response at 1 GtIz rate without loss of infor-

mation. For a frequency bandwidth of 16 Gttz, this means only 17 data. points need

to be recorded for each corner reflector's frequency response. If compared to tile

original frequency data array of 1601 points, the frequency scan data has thus been

compressed by a factor of J60__Al= 16.
6.17
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The sampllng theorem also provides lmw to recnnstr.ct the _TTlof'ltl! ;.dlvld.al

frequency response out of the 17 data points; namely, a sinc interpolation in the

frequency domain. The frequency scan reconstruction is done in the following order:

1. Recover the six smooth frequency responses out of their own 17 sampled data

points by the sinc interpolating function _ with f in GHz.
wf '

2. Move the phase reference of each corner reflector back to its proper down range

position [x_ by multiplying the term e-J2'vfi_ to each frequency response.

3. Add up the six corner reflectors' frequency responses to reconstruct the original

data.

Note that the criterion 1 ns down range gate width is based on the observation

and calculation that for a frequency band of 2-18 GHz, the scattering center's impulse

response is within 1 ns. But this criterion also limits this algorithm to further

separating two scattering Centers if they are as close as a ns. This problem may

show up in a real-world target case and will be regarded as a grouping problem.

4.3 Compression and Reconstruction of Azimuth

Scan Data

After the separation of individual corner reflectors, one would llke to loosely sample

the 2-D spectral response Ui(f, c_) of each corner reflector not only in the frequency

scan but also in azimuth. For a small angular region, the sampling rate for a smooth

azimuth response at any given frequency can be calculated by the time-limit imposed

by the cross range gate width in the spatial domain. But since tile frequency ranges

from 2 GHz to 18 GHz, one must satisfy the sampling criterion for the highest

frequency case. The gate width in cross range is 0.67 ns, which demands a sampling

rate of 1.5 Gnz along ]v" Note that 1.5 = Afu = f. sin(AS) _ f. A_b. For

f = 18 GHz, A_b is about 5 °. So for an azimuth scan, one can sample the smooth
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angle response of an individ.al scaltering center every .5° based on the 4 inch cross

range gate width. If compared to tile original 0.25 ° data increment, this gives a

compression factor of 20 in tile angle domain.

Now suppose one has already got ISAR images at every 5 °, extracted out indi-

vidual corner reflectors in each ISAR image and obtained a reduced database. If this

reduced database were in a rectangular grid, the ideal reconstruction procedure along

the .t:v direction would still be a sine interpolation. But sine interpolation, which

needs as many data points as possible to exactly recover the original response, is

not proper for the polar-type angle reconstruction case because the time-limit in the

cross range and the samplillg rate in the angle domain relation does not hold if it is

no longer a small angular region. Thus, one has to simplify tile interpolation scheme

in the angle domain. For the time being a linear interpolation is used. If linear

interpolation is not working well, higher order interpolation schemes like a parabolic

fit shall be considered.

There are two questions associated with angle reconstruction. Tile first is, given

two reduced datasets; e.g., _b = 175 ° and _b = 180 °, can one recover the frequency

response for some look angle in between, say, the one at _b = 177°? The second is, for

a fixed frequency, can one reconstruct the azimuth scan data between any recorded

angles? In fact, the first case is just a special case of the second one, so here the

study will concentrate on the second case.

Assume the scattering centers are stationary, that is, the positions detected in

the _b = 175 ° ISAR image and _b= 180 ° ISAR image for the same scattering center

are identical with respect to the fixed coordinate system (tx, tv). Then the prop-

agation phase of each corner reflector at any look angle can be easily calcnlated.

To reconstruct the azimuth response for a fixed frequency, one just needs to lin-

early interpolate a corner reflector's azimuth response out of the two datasets, put

back the calculated propagation phase term, and sum up all six corner reflectors'

contributions at each look angle between q_= 175 ° and q_= 180 °.
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But in reality, the scattering centers are not necessarily sta_i,nary. For e×nmple,

a corner reflector is not exactly a point scatterer, so the peak position of a corner

reflector's spatial response changes slightly with look angle during the 5° azimuth

scan. Besides, ISAR itself will introduce positional shifts depending on what kind

of window one applies to the frequency and angle data and how large an angle span

one uses to generate the ISAR image. Though these positional shifts are expected to

be small, they cannot be neglected, especially in the higher frequency case because

the error in the propagation phase term e -j2,_li'_ is proportional to frequency. For

example, even with a positional shift of 0.1 inch (or 0.017 ns) in the down range,

the phase error will still be 107 ° at 17 GHz.

To take this nonstationary case into account, consider the situation shown in

Figure 4.8. In this figure, suppose the 175 ° ISAR image indicates that a scattering

center is at point A and the 180 ° 1SAR image shows that it has shifted to a nearby

point B. It is reasonable to assume that for small look angle changes, the scattering

center moves linearly from point A to point B. Thus, one can still calculate the

propagation phase term for any look angle in between. However, this approach

increases the complexity of the reconstruction process by the need to "match" the

scattering centers in the two ISAR images; i.e., one has to compare the positions in

the two images to decide which scattering center in dataset _ = 175 ° corresponds to

the one in dataset _ = 180 °, for example.

Now assume a scattering center has a complex magnitude of Al and peak position

(txl, tut) obtained from the (_ = 175 ° ISAR image. The same scattering center has a

complex magnitude As and peak position (tx2,tu2) from the _ = 180 ° ISAR image.

To estimate the azimuth response for a given frequency at, say, _ = 177 °, the linear

interpolation scheme mentioned before will give the following results:

E,.,77o = (0.6A, + 0.4A2)e -i2'_y(°'6'_'+°''t_) (4.1)

where tdl and tu2 are the down range positions at _b = 177 ° calculated from the

_b = 175 ° and _ = 180 ° data, respectively. Note that in the stationary case, tdl =
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t,t2 =-:-t,I, and hence Equation (4.1) becomes

E,,_ 77o = 0.6Aj e -'/2=ftd + 0.4A2e -j2=ftd. (4.2)

As for the nonstationary case, the following approximation can be made for a small

look angle changes (say, 5°):

td =- 0.6tall q- 0.4td2 _ tdj _ td2.

Substituting the above approximate results into Equation (4.2), one obtains that

Ei,1770 _ 0.6Ale -j'2_ftal + 0.4A_e -j_lt_. (4.3)

Expression (4.3) is a good approximation of Equation (4.1) if the positional change

of a scattering center between two 5° apart look angles is small; and it avoids the

necessity to match scattering centers between the two look angles. But if the change

is not small, Expression (4.3) indicates there will be two scattering centers in tile

down range instead of one, in which case the frequency response will begin to oscillate

as shown in Chapter 2. This might be a potential problem of this approximation.

However, one can always make the positional shifts smaller by reducing the azimuth

sampling step. In the corner reflector case, Expression (4.3) seems to work well as

will be shown next.

Figures 4.9 through 4.12 show tile reconstructed frequency responses for the six

corner reflectors at 176 ° , 177 ° , 178 ° and 179 ° , which are recovered from tile 175 °

and 180 ° reduced datasets by Expression (4.3). Note that the reconstructed data

is very close to the original one. Figures 4.13 through 4.16 show the reconstructed

azimuth responses for the six corner reflectors at 4 (low frequency band), 10, 15.5

(medium frequency band) and" 17 GHz (high frequency band). The errors are greater

than those in the reconstructed frequency responses, because they are cumulated

through the frequency reconstruction process. But the overall performance is very

satisfactory.
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4.4 2-D Smoothing versus Gating

As shown in Chapter 3, the separation of scattering mechanisms can also be executed

in the 2-D spectral domain by a smoothing operation, which is the dual operation of

gating in the image domain. According to the 2-D Fourier transform, a rectangular-

based uniform gate in the image domain corresponds to a 2-D sinc function in the

spectral domain. To avoid the infinite response of the 2-D sinc function, one can

design other finite smoothing operators, ttere the 2-D smoothing operator is designed

specifically for the frequency data and the azimuth data. For the frequency data, a

finite-duration cosine smoothing function is chosen. It is defined as

l¥(f) = cos(80 °- f) (4.4)

where -1 GHz < f _< 1 GHz. Figure 4.17 compares the sinc and this cosine smoothing

functions in both the frequency and time (down range) domains. The cosine function

is chosen because in the time domain it has a corresponding gate width of 1 ns or

so, yet has relatively low sidelobes.

As for the smoothing operator in the azimuth scan, since there is no direct

relation between the cross range gate width and the angle variable, empirically one

can use the average frequency (say, 10 GHz) as an estimate. Note that a 2 GHz

cosine smoothing function along ]_ direction corresponds to a 1 ns down range gate

width, so a 3 GHz cosine smoothing function along the ],j direction corresponds to

a 0.67 ns cross range gate width such that

3=]u_f.A¢= 10-Aq$=_ A¢= 17 ° . (4.5)

Therefore along the azimuth direction a t8.5 ° cosine smoothing operator is used.

Note that a 2-D smoothing operator thus defined will not be a symmetric gate

in the 2-D spatial domain. Furthermore, the corresponding gate widths, especially

in cross range, cannot be explicitly computed. Also note that when one uses the

2-D smoothing operator on a finite spectral data region, the border area will not
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have enough data to be smootlwd. One simple solution is to mlrror-reflect the border

area data, which is employed in this report. Better solutions involve linear prediction

and spectral estimation methods which are beyond the discussion here. Moreover, a

priori knowledge of the positions of scattering centers is required before smoothing.

The 2-D smoothing algorithm can be summarized as follows:

1. Estimate the peak locations (t_,tu,) of all the scattering centers in the ISAR

image.

2. Move the i-th scattering center to the origin by multiplying the term

eJ2_rf[iz_ c,,s(tb-¢_0)+i_i si,,(4_-¢0)] to the 2-D spectral data.

3. Apply the smoothing operator to smooth the spectral domain data in the

frequency and angle scans, respectively.

4. Subtract the smoothed data from the pre-smoothed data.

5. Move the phase center back by multiplying the complex conjugate term of the

one in step 2.

6. Continue from step 2 for the next scattering center.

Note that for a scattering center shifted to the origin, its 2-D spectral response

should be smooth, so step 3 can be simplified by smoothing only a few selected

data points instead of every data point, and then using a interpolation routine to

generate all the other smoothed results in between. In this study, the spectral data

is smoothed every 1 GHz and 1 °. By doing so, one can significantly reduce the

computations needed to perform the 2-D smoothing operation.

Also note that in step 2, it is recommended that one should perform the smooth-

ing operation of the scattering centers in a magnitude order since the larger scattering

centers have much stronger contribution than smaller ones. It is only reasonable to

subtract out the larger one first especially when two or more scattering centers are

close to each other.
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F]gures4.18_nd4.19show |he 2 D smoothing results f,_r the six corner refleclors.

Comparing these to Figures 4.6 and 4.7, one should notice that the smoothing results

are very similar to the gating ones. After the smoothing and extraction of the

individual scattering centers, the reconstruction process remains the same.

Overall, the data compression and reconstruction algorithm works well for the

six corner reflectors case considering the huge database reduction it provides.

72



I I I 1 I ! I

FREQUENCY IN GHZ

I l I I I I I

#4

FREQUENCY IN GHZ

¢:_ I I I I I I I _/ I I I I I I I
/

:1 _. I1_. I_. 1_. 1:_. 1_o 11_.

FREQUENCY IN GHZ FREQUENCY IN GHZ

a d. l& I:_. _. ,_. l&.
FREQUENCY IN GHZ

I I I I [ I I I

FREQUENCY IN GHZ

Figure 4.18: Individual amplitude responses for each corner reflector at 180 °, ob-

tained by 2-D smoothing.

T3



L,.J__

o._

I I

5I
• I I I I I

J. d. ,I. l& 1_. ¢,. ,& 1
FREQUENCY IN GHZ

/ I I I I I I I

_ #4

T .

ii,"J. ,1. ,1. _1. ,& ,.k 4. ,& ,,
FREQUENCY IN GHZ

I$,_I-
1::3

d--
z

13-

I

#2

/

I I I I I I

,L d. El. ,6'. & 4. l&
FREQUENCY IN GHZ

m #5

+ /I

_._. ,_. ,t ,_. ,& ,_. ,i. ,& ,.
FREQUENCY IN GHZ

"i
i

I I I I I

#3

4. d. & l& 12.' ,_. _& ,_
FREQUENCY IN GHZ

I _| I I I I ! I I
l

+il
_,. d. el. ,6. ,_. +i. ,& I,

FREQUENCY IN GHZ

Figure 4.19: Individual phase responses for each corner reflector at 180 °, obtained

by 2-D smoothing.

74



Chapter 5

Data Compression and

Reconstruction for a Complicated

Target: The F-117 Fighter Model

Case

Real-world targets are much more complicated than just a few corner reflectors.

One has no clear idea where the scattering centers are and hence will find it difficult

to set a threshold to define a scattering center. In addition, the magnitudes and

number of scattering centers may vary dramatically from one look angle to the next,

and these scattering centers may cluster together depending on the target's shape.

In this chapter, an F-117 fighter model is used to test the data compression and

reconstruction algorithm. It turns out that this algorithm works well for this fighter

model in most cases. Even for a special case, such as the straight edge scattering

from the plane wings, one can still manage to represent the edge by several "pseudo"

scattering centers and obtain very good results. This special case will be shown in

Section 5.4.
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5.1 Setup for the F-117 Fighter Model Measure-

ment

Figure 5.1 shows the physical scale of the F-117 fighter model used in this report.

The model is made of aluminum sheets. It is about 5½ feet long and 4 feet wide. The

front tip to the rotation center is 35 inches; i.e., this target falls within a circular

zone with a diameter of 6 feet, or 12 ns. When the front tip of the plane is aligning

toward the radar direction, it is called the reference position, and this reference angle

is defined as ¢ = 180 °.

The frequency response of the F-117 model was measured from 2 GHz to 18

GHz at an increment of 10 MHz. Since the target size is less than 12 ns, which is

well within the aliasing period of 100 ns, no aliasing will occur in the down range

direction. The azimuth scan was measured from ¢ = 90 ° to ¢ = 270 ° at a step

of 0.1 °. This azimuth increment gives an aliasing period of 32 ns at the highest

frequency (18 Gtiz), which is also oversampled.

The ISAR image around a certain look angle is formed by a 4-10 ° angle span.

Kaiser-Bessel window is used on both the frequency and azimuth data. In an ISAR

image, since there is no absolute criterion to define a scattering center, a pulse

whose peak value is the local maximum of the surrounding 1 inch radial area and is

larger than -20 dB of the absolute maximum peak value is chosen to be a qualified

scattering center. Figures 5.2 through 5.6 show the ISAR images of the F-117 model

at ¢ = 115 ° , 170 °, 180 °, 190 ° and 245 ° . Note that around the reference angle,

the scattering centers are accurately located at the front tip, wing ends, tail and the

pedestal mount. Also note that when the target rotates to ¢ = 115 ° or ¢ = 245 °, the

incident wave is normal to the wing leading edge, and the broadside effect dominates.

The scattering in these two angles definitely cannot be classified as a point scattering

case, and hence it will be discussed separately later.
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5.2 Data Compression and Reconstruction by

Gating

Here the azimuth angle from _b= 175 ° to _b= 185 ° region is processed. In this region,

a typical number of 20 scattering centers are detected in the _b = 175 °, 180 ° and 185 °

ISAR images. Table 2 shows the magnitudes and positions of some scattering centers

in the _b = 180 ° ISAR image.

Table 5.1: Positions and magnitudes of dominate scattering centers of the F-117

fighter model in the 180 ° 4- 10 ° ISAR.

No.

#1

#2

#3

#4

#5

#6

x (inch) y (inch) magnitude (dB) possible spot

-29.84 -2.31 0 front tip

21.91 -23.21 -4.56 left wingtip

20.55 24.08 -5.55 right wingtip

31.21 6.06 -6.63 right talltip

31.50 -4.76 -7.64 left tailtip

- 17.59 1.59 -9.09 cockpit

To extract out individual scattering centers, the 2-D rectangularly-based uniform

gate with a down range width of 1 ns and a cross range width of 0.67 ns is again

chosen. After the extraction of each scattering center by gating, a reduced database

is formed. Figures 5.7-5.9 show the reconstructed frequency responses out of the

reduced database for the three look angles _b = 175 °, 180 ° and 185 °.

Figures 5.10-5.12 show the angle domain reconstructed data for frequencies of

4 GHz, 10 Gllz and 17 GHz, respectively. Tile errors in the 10 and 17 GIIz angle

reconstruction cases are greater than expected. Figures 5.13-5.14, which show the

reconstructed frequency responses at 182 ° and 183 ° , also indicate the linear inter-

polation every 5° in the angle reconstruction is somewhat failing. To analyze this
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Figure 5.15: Azimuth response for the four dominant scattering centers in the F-117
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prot,lem in d_'t_il, let's consider the response of the dominant scattering centors first.

Figure 5.15 shows the angle response of the four most dominant scattering centers

at 17 GHz obtained using repeated ISAR images every 1 ° and the gating technique.

Note that the #1 scattering center's angle response exhibits an oscillation while the

others do not. This phenomenon leads one to postulate that there might be two

scattering centers grouped together as one. Note that for a given frequency fo, tile

angle response of two equal strength scattering centers separated in the cross range

by 2td is given by

E(_) = e-j2_otdsj''l*-_o)+ e-_jol-td)s_''_*-*o) (5.1)

or

E( dp) = 2 cos[2_r fotd sin( d? - _bo)] (5.2)

where _o is the central look angle. From Figure 5.15, one can see that the oscillating

period for the # 1 scattering center is about 6.5 °, if substituted into Equation (5.2),

it means there are two scattering centers 0.5 ns (or 3 inches) apart in the cross range

direction.

In fact, the nose part of the F-117 model contains a short edge of 3 inches wide or

so. The contribution of this short edge can be viewed as two scattering centers which

are of the same down range but about 3 inches apart in cross range when this edge is

illuminated around the reference angle _b = 180 ° (see Figure 5.1). The _10 ° spanned

ISAR images do not have enough resolution to resolve these two scattering centers;

hence, they detect only one scattering center somewhere in between. The result is

that the two scattering centers are grouped together by the spatial gate and the angle

response begins to oscillate as indicated by Equation (5.2). From the # 1 scattering

center's case shown in Figure 5.15, one knows that for an angle reconstruction of

a high frequency (say 17' GHz), linear interpolation every 5 ° is not good enough to

recover the cosine-shaped curve whose oscillation is about 6.5 ° • 2 = 13 ° per cycle.

To solve this problem, first a +15 ° spanned ISAR is re-imaged to resolve the two

scattering centers. Then a i ns by 0.5 ns gate is positioned around the two scattering
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Table 5.2: Positions and magnitudes of dominate scattering centers of the F-]17

fighter model in the 180 ° 4- 15 ° ISAR.

No.

#1"

#2

#3

#4

#5-

#6

#7

x (inch) y (inch) magnitude (dB)

-29.84 -2.45 0

21.91 -23.21 -1.99

possible spot

front edge

left wingtip

20.55 24.08 -3.41 right wingtip

31.21 6.06 -5.36 right tailtip

-30.20 0.14 -5.57

-6.19

-8.84

_ont edge

left tailtip

cocktip

centers at the front edge one at a time to separate them out. (Others are separated

using the previous 1 ns by 0.67 ns gate.) The isolated scattering center positions

and strengths are shown in Table 3, and the new reconstructed results are shown in

Figures 5.16-5.20. Compared to the previous ones, the newly reconstructed results

are much improved.

The above example shows that sampling in the angle domain has to be based

on the cross range gate width. Since the employed cross range gate width is 4

inches (0.67 ns), which is the limit of sampling every 5 °, if two scattering centers are

located within 4 inches in the cross range and hence are gated as one (in which case

the sinusoidal behavior occurs in the angle domain), then only sinc interpolation

can exactly recover the angle response according to the sampling theorem. But

as mentioned in Chapter 3, sine interpolation is impractical in the angle domain.

Therefore, if one still wants to use the linear interpolation in this situation, one has

to either separate the two scattering centers or sample the grouped angle response

more often; e.g., every 2.5 ° instead of every 5° .
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5.3 Data Compression and Reconstruction by

Smoothing

In the previous section, when the most dominant scattering center was investigated

for its angle response (see Figure 5.15), it could be isolated for each different look

angle and then tracked manually. But as mentioned in Chapter 4, for a real-world

target, the scattering centers can really be moving with respect to the look angle

(such as in a metal sphere case), and the numerical inaccuracy in the ISAR processing

can also contribute to the positional shift of a given scattering center. These factors

make it very difficult to track how these scattering centers move, let alone there

may even be different number of scattering centers in different look angles. To solve

this problem, a newly reduced database concept is proposed using the smoothing

technique.

The new proposal is, for a look angle _b(say 175°), the smoothed results of _b-5 °,

_b and _b ÷ 5 ° are to be recorded instead of _b alone. Since these three datasets are

obtained based on the information from the same ISAR image, there is no need

to match scattering centers among them. Therefore, one can easily interpolate the

response at, say 177 ° from these three datasets. Note that by doing so there will be

repeated angle regions; e.g., the smoothed results of _b -- 180 o will cover 175 °, 180 °

and 185 ° which can Mso generate the data at 177 °. Hence, the final response at

_b -- 177 ° is a weighted result of the two reconstructed curves which should have

already been very close to each other. Also note that since one has three datasets,

the interpolating function can be chosen to be a parabolic fit, which is better than

the previously used linear fit in a sense that a parabolic fit better represents the sinc

interpolation.

Figures 5.21 through 5.25 show the results of the frequency reconstructions for

_b - 175 °, 180 °, 182 °, 183 ° and 185 °. And Figures 5.26 through 5.28 show the results

of angle response reconstructions for frequencies of 4 GHz, 10 GHz and 17 GHz,

respectively. Again these results are similar to those obtained by gating.
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5.4 Data Compression and Reconstruction for a

Special Case: the Broadside Scattering

The ISAR image of the F-117 fighter at $ = 115 ° is shown in Figure 5.2. As shown

in the image, the long straight edge of the wing dominates because around this

angle the incident wave illuminates the wing edge in phase, which results in a very

strong backscattered field. This scattering obviously is not a point scatterer, but

rather a line scatterer. One can employ a GTD model to calculate the frequency

and angle response of this llne source and store it as a special case in the database,

but this would ruin the database structure and complicate the compression and

reconstruction schemes. Here a method is offered to represent the line source by

many "pseudo" discrete point scatterers whose spacing is decided by the cross range

gate width, and then one still use the gating/smoothing technique to achieve data

compression and reconstruction.

Figures 5.29 to 5.31 show the frequency reconstructions, and Figures 5.32 to

5.34 show the angle reconstructions around the broadside scattering angle by this

method. The results are very good. The reason is that a line source is an integration

of point sources, if one continuously gates out the line scatterer according to these

pseudo scattering centers, the sum of these segments will approximate the original

line source such that total energy is not lost at all.

tIowever, the reconstruction is done at the cost of an increased number of pseudo

scattering centers. In our case, each pseudo scattering center is chosen to be about

1.5 inches apart and the typical number of scattering centers is about 40 for a 60

inch long wing. This means the database for this particular angle is larger than

normal, and the reconstruction will be a little slower.
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5.5 Discussion

Though the gating and smoothing techniques operate on different domains, they

basically carry the same idea of mechanism extraction and data compression. So

here the discussion will concentrate on the gating technique.

As shown before, the gate widths in the image domain dictate the sampling rates

in the spectral domain. Since one wants to represent the spectral response of an

individual scattering center by the fewest points, he should use as small a spatial gate

as possible. But the gate widths cannot be arbitrarily small. The gate one chooses

should cover most of a scattering center's energy in the spatial domain. According

to the descriptions in Chapter 3, the mainlobe widths of a scattering center in the

down range and cross range directions of tile ISAR image are mainly decided by the

available bandwidth and angle spans. In short, the larger the bandwidth and angle

span, the smaller the scattering center's mainlobe widths, and hence the smaller

gate one needs. This in turn implies a larger sampling rate in the frequency domain

and results in fewer data points to be stored. In our experiments, the available

bandwidth was 16 GHz, which gives an ideal scattering center's down range width

of 0.75 inches (0.125 ns) or so. A uniform gate which has 1 ns down range width

was chosen in this report, which makes the sampling every 1 GHz in the frequency

scan possible. (Actually the down range gate width can be safely reduced to 0.5 ns

and the sampling period can thus be increased to 2 GHz.)

A larger bandwidth usually means collecting data at higher frequencies. This

demands a smaller sampling rate in the angle domain if the cross range gate width

is fixed. To compensate for this disadvantage, one can increase the available angle

span with which to construct an ISAR image such that the scattering centers will

spread out less in cross range and hence the cross range gate width can be reduced.

In this report, the angle span was first set to be +10 °, which gave approximately

a cross range mainlobe width of 4 inches and a sampling rate of 5 ° in the angle

domain, given the highest frequency of 18 GHz. When the angle span was next
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set to be 4-15 °, the cross range mainlobe width was roughly reduced by a factor of

:_*J= 1.5, and hence the azimuth sampling rate could have been increased from 5 ° to

7.5 °. Note that 4-15 ° is almost the maximum angular range to form a "local" ISAR

image; furthermore, a polar region over this range can hardly be approximated by a

rectangular region since the relation sin _b _ _b can no longer be applied.

As one can see, there are a lot of tradeoffs in this algorithm. Therefore, before

one applies this algorithm, it is suggested that one first come up with an optimal

way to compress the data according to the available bandwidth and limitations of

his measurements.
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Chapter 6

Conclusions

Complete real-world scattering measurements require enormous data storage. The

main goal of this report research is to reduce this massive data amount while still

preserving the information contained in the original measurements. A compression

and reconstruction technique has been developed in this report to achieve this goal.

The results of corner reflectors and the F-117 fighter model in Chapters 4 and 5

showed this technique is very efficient and accurate.

The most important physical phenomenon which supports the idea of compres-

sion for the RCS measurement data is that when one illuminates a target by an

electromagnetic plane wave with a relatively small wavelength, the majority of scat-

tering mechanisms on the target can be classified as point scatterers. So instead of

storing the whole shape of the target in an optical sense, one can reduce the data

amount by storing just a few isolated scattering centers. For example, in an ideal

case, the true information buried in the measured data will only be the positions

and scattered field responses of a few scattering centers. Namely, if these scattering

centers' positions along with their frequency and angle dependences are detected,

one can represent their total scattered field out of this information.

To achieve this goal of data compression, the proposal in this report was to

isolate the scattering centers on a target and store the spectral responses of these

isolated scattering centers using the fewest points. Two-dimensional (2-D) gating
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and smnnlhlng lechniqueshavebeenexamined In serve tbls purpose of mechani,qm

isolation and extraction.

The 2-D gating technique is a straightforward method to extract out an individual

scattering center in the 2-D ISAR image. And through the gate widths in the down

range and cross range directions, one can calculate the sampling rates needed in

the frequency and angle scans, respectively. These calculations are based on Fourier

analysis and the sampling theorem. In short, the sampling rate in the frequency

scan is the reciprocal of the down range gate width; whereas, the sampling rate in

the angle scan is inversely proportional to both tile cross range gate width and the

highest frequency available. In general, the shorter the gate widths, the fewer points

one needs to sample in the spectral domain.

The 2-D smoothing technique is an alternative tool to separate individual scat-

tering mechanisms. This technique takes more time in processing, but because it

operates directly on the spectral domain data, the smoothing technique minimizes

the endband region errors which would otherwise be caused by gating (also known

as the Gibbs phenomenon [6]). Besides, in reconstructing the angle scan data, tile

smoothing technique was refined to solve the problem that scattering centers moved

with look angle, and this was done without having to track individual scattering

centers from the present angle to the next. The details have been shown in Section

5.3.

After the mechanism extraction by either gating or smoothing, the isolated scat-

tering center's spectral response is smooth and can be sampled much more loosely

according to the sampling theorem. These sampled data points form a reduced

database for the target under test. From this reduced database, one can generate

any response of interest in the 2-D spectral domain. And the reconstruction can be

done very fast if the total number of scattering centers is not too large.

The typical compression ratio made by the data compression and reconstruction

algorithm in this research can be larger than 50 under the situation that three data
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set,.q sre recorded affer the proces.qiug of one central look angle. This alg_rltl;m has

been shown to perform very well for both the corner reflectors and the F-117 fighter

model. Even for the broadside scattering case as shown in Section 5.4, the result is

still very good.

There are several issues that can be pursued following this research. The first

one is to extend the 2-D case to a 3-1) database compression and reconstruction

technique. Younger [12] had proposed two methods which can be used to locate

a scattering center on the target in three dimensions. A 3-I) gating or smoothing

technique should be able to extract the individual scattering centers, such that one

could build a 3-D reduced database which is more realistic for real-world targets.

The second issue is how to compress the 2-1) data more efficiently. Fourier

analysis is a basic tool for image processing, but not necessarily the only one. Other

algorithms such as superresolutlon techniques, Wavelet theory or spatial domain

modeling approaches may help one achieve the goal, too.

The third issue is how to improve the situation that the scattering mechanisms

are other than point scatterers. The broadside case shown in Section 5.4 is a good

example. What is the proper model to represent a non-point scattering mechanism?

Does the model help to reduce the database? These questions become important

when the pseudo scattering center method proposed in Section 5.4 fails to represent

a special geometry. Other issues are also of interest such as how to process the

data directly in polar form, or how to deal with moving targets whose speeds and

positions are constantly changing.

The most important application of this research may lie in target identification.

Recall that the target's scattering over a smal] angular region can be accurately rep-

resented by a linear combination of the data points stored in the reduced database.

This should allow one to develop some very unique classification filters to separate

out one target from a large number of possibilities.
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