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ABSTRACT

The mixing characteristic of two fluids inside a cavity due to buoy-
ancy driven flow fields for low gravity conditions is investigated via
numerical experiments. The buoyancy driven flow, depending on the
parametric region, stretches and deforms the material interface into a
wave morphological pattern. The morphological pattern affects the
resulting stratification thickness of the mixed region. Three basic mixing
regimes occur: convective, diffusive, and chaotic. In the convective
regime, an overturning motion occurs which gives rise to a stable wave
formation. This wave oscillates and its decay leads to a stable
stratification. Whereas, in the diffusive regime, the length of the inter-
face remains constant while mixing occurs. This limiting behaviour is
very important to materials processing in space, and it admits a closed
form solution corresponding to vanishing convective terms which agrees
with computational results. Finally in the chaotic regime, the material
interface continuously stretches and folds on itself similar to a horseshoe
map. The length of stretch of the interface increases exponentially. Inter-
nal wavebreaking occurs for this case. This wavebreaking generates
local turbulence, and provides an effective mechanism for mixing.
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1. Introduction.

Materials processing in low earth orbit has recently received attention because of
intrinsic advantages over ground based processes. These advantages include the control
of delicate processes, and stem from the low buoyancy driven flows in bulk fluids
which occur in various phenomena, such as phase transformations during crystal
growth, and fluid-fluid interactions for mixing processes. Because of the inherent cou-
pling of temperature and concentration fields in materials processing, uncontrolled
buoyancy flows can have deleterious effects on many phenomena. Some examples
include striation effects in crystal growth, and convective effects masking the measure-
ment of diffusion coefficient. The low gravity condition of space provides a controlled
environment where buoyancy driven flows can be minimized and processes can poten-
tially attain a greater degree of optimization than that obtainable on earth.

Under low gravity environment many phenomena that are adversely affected due
to buoyancy flows can be easily carried out in space without being masked by convec-
tion. One such case is the measurement of self and interdiffusion coefficients. As
pointed out by Froberg, Kraatz, and Wever (1987) the elimination of convective effects
yields measufements of diffusion coefficients with an accuracy of 10 to 50 times better
than those made in ground laboratories. Another example is the counterdiffusion pro-
cess, see Gerbi et. al (1986), for solution crystal growth. This process involves mass
transport of liquids through multiple chambers in order to grow crystals. Galster, and
Nielsen (1984) have pointed out that this process has benefited from microgravity
because of the minimization of convective effects. In comparison to the crystals grown
on earth, the results of their space experiments show that higher quality crystals
resulted, free from striation effects. In addition, Radcliffe et al. (1988) have shown,
through their space experiments, the parametric range under which liquids are mixed
by convective effects. They have also delineated the conditions under which mixing
occurs by mass diffusion alone without significant convection. These experiments were
carried out in closed chambers without any photographic device to capture the details
of the fluid dynamics.



We present a model problem to study mixing of two fluids inside a closed cavity
under low gravity conditions which shows the fluid dynamic details. Similar to many
phenomena in materials processing, the mixing is driven by buoyancy forces. This is
unlike many industrial mixing phenomena, as presented by Nagata (1975) and Uhl &
Gray (1966), that are induced by mechanical devices. This model problem allows us
to determine parametric ranges under which convective effects driven by buoyancy
forces play a predominant role in mixing, and it also allows us to delineate the condi-
tions for which diffusive mixing can be expected.

Mixing due to buoyancy generated flow fields are of interest in many materials
processing phenomena. Closely related to our model problem is the mixing of two
different fluids by Rayleigh-Taylor instability. Recently, Andrews and Spalding (1990)
have designed an experiment to study two-dimensional mixing by Rayleigh-Taylor ins-
tability using both photographic means and an imaging based measurement system.
They investigated both one dimensional plane mixing and tilted two-dimensional
experiments. In the one-dimensional (no-tilt) experiment they show that the mixing
region expands in proportion to gr>. Whereas, in the tilted (55' and 3°21') two-
dimensional experiments, a large scale two-dimensional overturning motion was super-
imposed on the Rayleigh-Taylor mixing process. The large scale motion stretched the
mixing interface and caused its width to be reduced. In the early stages of the experi-
ments the width of the interface is approximately the same for both cases. Because of
the stretching of the interface in the two-dimensional case, to preserve continuity the
width of the interface contracts as time increases. These phenomena of mixing which
involves stretching and folding of material lines have been described more generally
by Ottino (1982). Our model problem has some similarity to the tilted experiments of
Andrews and Spalding. In our case we consider a model problem which corresponds to
a 90° tilt case which can be practically achieved only under microgravity conditions.
This case is of interest because processes for solution crystal growth use a similar

configuration.

At its fundamental level, fluid mixing consists of stretching and folding of
material lines by a flow field to achieve a reduction of length scales. This is accom-
panied by thinning of materials volumes and dispersion throughout space; in addition
diffusion of mass and heat may also take place. The flow field may be induced by
either mechanical means or it may be caused by buoyancy forces in the case of materi-
als processing. The fluids may be either miscible or immiscible. The interface between
the two fluids, as defined by Aref and Tryggvason (1984), may be respectively passive
or active. In the case of passive interfaces, the boundary between the two fluids serves
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as a marker of the flow and the motion may be topological. Whereas in the case of
active interfaces, there is interaction of the interface with the flow field to modify it. A
framework for the description of fluid interfaces as a material surface to describe
mechanical mixing have been developed by Ottino, Ranz, and Macosko (1981) using
continuum mechanical arguments. They consider the case of immiscible materials with
clearly defined interfaces and negligible interfacial tension. A metric to quantify the
state of mixing, Ottino, Ranz, and Macosko (1979), is the striation thickness defined as
s=1/a,, where a, is the interfacial area density. In the case where interdiffusion occurs
at the interface, s has a distributed rather than an average value. Thus in the case of
miscible fluids, the state of mixing is quantified by uniformity of the concentration
field. In our model we consider two liquids with passive interfaces and negligible
interfacial tension. We show the effect of buoyancy flow fields on the kinematics of
interfacial deformation, and also show the parametric range under which mixing can be
effective. While this work discusses the effect of steady acceleration, time dependent
acceleration or g-jitter, has been considered by Duval & Jacqmin (1990) and Duval
(1992).

This paper is organized as follows: in section 2, we formulate the model problem
and its characteristic parameters are delineated from scaling arguments. In section 3 we
discuss the solution technique. In section 4 we present the parametric range to be stu-
died and show the details of the three most basic mixing regimes for buoyancy gen-
erated flows inside cavities, namely: convective, chaotic, and diffusive. Measures to
quantify mixing are also shown. We conclude by drawing inferences to related works

in the literature.

2. Formulation

By virtue of its significance in materials processing, we consider the situation
shown in Figure 1, where the two liquids meet at a sharp density interface inside a
rectangular cavity. These two liquids are treated as Boussinesq fluids with properties
approximated as average. The physical situation is approximated as:
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over the region inside the cavity.

The initial and boundary conditions are:

1 0<x<Ln2
t=0 C'xyt)=1{ .5 x=L/2
0 LR<x<L

>0 7'=0 on T, no slip

VC*-# =0 on T, condition of impermeability

where
p =p(1 + BAC)

ol
p oC

?=ngo? .

In the above equations AC represents the concentration difference between the left and
right side of the cavity. I' denotes the boundary of the cavity, and # its normal. The
factor n multiplying the gravitational acceleration constant, g,, is a ratio by which
gravity can be reduced to represent typical conditions on a space shuttle, and 7 is the
unit vector in the vertical direction. The boundary conditions along the cavity walls are
no slip and impermeability of the concentration field. The overbar and * denote,
respectively, average and dimensional quantities. Subscripts 1 and r denote left and
right, respectively. The viscosity and diffusion coefficient are independent of concen-

tration.

In the initial condition, the left and right fluids are assigned distinct values of
concentration, the interface between the two fluids is treated as a tracer. This tracer,
according to Ottino (1982), is a hypothetical material that moves everywhere with the
mean velocity of the mixture. Thus, the distinct value of C=.5 represents a material
line in terms of particles of tracer moving with the mean velocity. This material line
does not diffuse, but it is permeable to the diffusion of species. Since we are allowing
for interdiffusion, the spreading of concentration lines with values ranging from .9 to
.6 on the left side of the interface, and .4 to .1 on the right side will give an indication
of mass transport by interdiffusion. Even though the equation of an interface is strictly
DC/Dt =0, we can still talk about an interface if DC/Dr # 0 provided that we can follow
a distinct hypothetical material line in the region of interest. Thus, within a non-
material region which allows for diffusion, distinct set of particles with the same



identity can be treated like a material line or surface.

To study the physics of the problem, the above set of equations were recast into
vorticity- stream function form with the following dimensionless numbers defined as:

_x _y _u _ Y _e
*=T Y="H “= 1. M7 =T
c'-C; ’ 4
=2 ¥=g g= 2t
C'-C! U.H U,
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With these scales, the continuity, momentum, and species continuity become:
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The characteristic time, T, and velocity, U,, are scaled with the viscous diffusion and

. v 2 n 2
buoyancy forces respectively, ie., T = %- and U, = Apng, H*

Three governing

parameters arise from the dimensionless form of the equations, namely: the Grashof
number (Gr), the Schmidt number (Sc), and the aspect ratio (Ar) of the cavity. These
parameters are defined as:

— S¢ = —= Ar =

Apng, H? v H
5 L

The Grashof number is the ratio of buoyancy to viscous forces, the Schmidt
number indicates the diffusion of viscosity relative to that of mass, and the aspect ratio
denotes the ratio of the height of the cavity to its length. Since we have a nonhomo-
geneous media, a vorticity creation term arises. According to the dimensionless set of
field equations, the evolution of the interface and flow field can be modified by the
aspect ratio. For very low aspect ratios (4r — 0), the horizontal components of the
field equations become negligible in comparison to the vertical components. This
corresponds to the case of a very long, narrow, horizontal cavity. In this limit, the
buoyancy force in the Grashof number which gives rise to flow, becomes very small
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and viscous diffusion dominates. In addition, the vorticity creation term becomes
negligible, thus the flow field is decoupled from the concentration field. And the limit-
ing case of one-dimensional mixing via interdiffusion with negligible convection due
to buoyancy effects is obtained. In contrast, the other limiting case of a very tall verti-
cal cavity (Ar — ), indicates dominance of the horizontal components in the field
equations. The flow field is driven by buoyancy forces and the creation of vorticity
term becomes important. The nonlinear convective terms in the horizontal direction
dominates for this case. Thus, mixing is more efficient due to the overwhelming
influence of the buoyancy force. This is in contrast to the case for the horizontal nar-

row cavity.

Even though the characteristic time in the scaling of the field equations is based
on molecular viscous diffusion, T,, two other time scales also exist. These time scales
are based on effects of buoyancy, T,, and molecular mass diffusion, 7,. They are
defined as:

2
Tb = ‘1— and TD = 1_:1
Vé& "ga Dlr

% H

Note that the Atwood number, Ar = Ap/25, which commonly appears as a factor in the
equation for growth rate of perturbations for Rayleigh-Taylor instability also occurs
above. 7, represents the characteristic time it takes a particle to travel a distance H
neglecting drag effects, it is also a measure of the short time events of the phenomena.
It can also be shown that T, = N7!, where N is the buoyancy frequency that commonly
appears in the definition of Richardson number (i.e. Ri = N%(u/dy)’. The third time
scale, T, denotes the long time mixing events leading toward equilibrium or a homo-
geneous mixture when convective effects are vanishingly small. For a given binary
system subjected to various gravitational levels, the viscous and mass diffusion time
scales are fixed. However, the buoyancy time scale approaches infinity, T, — « as
n — 0, also Gr — 0. This corresponds to the diffusive limit where buoyancy forces are
no longer effective. In this case T, would be the appropriate time scale. When T, — 0
(Gr — «) which corresponds to ground based accelerated conditions then the proper
time scale is T,, since the mixing phenomena would occur relatively fast. However,
when T, lies between these limiting cases, a good overall time scale (as will be shown
in our numerical examples) is 7,. For the diffusive limit Gr — 0, even if we scale with

T, the proper scale, Tp, as will be shown, is recovered from the solution.

Though the limiting behavior of the vertical and horizontal cavity allows qualita-
tive interpretation of the scaled field equations and indicates how simplification can be
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obtained, for practical materials processing inside cavities, that degree of freedom is
often not available. One is limited to work with finite cavity sizes. Thus, it is neces-
sary to deal with the full complexity of the problem, which is governed by the set of
equations. Note that for a square cavity, the problem is governed principally by the
Grashof number. If the gravitational field can be reduced to sufﬁcienfly small values,
the nonlinear advective terms in the field equations can become negligible. In this
case, irrespective of the magnitude of the aspect ratio, one-dimensional mixing via
interdiffusion can be obtained. Therein, lies the importance of microgravity to materi-
als processing.

3. Solution Technique

In this model problem, by virtue of the initial configuration, buoyancy forces will
cause the onset of convective flow fields however small. The convective flow field
may or may not deform the interface. This will depend on the magnitude of the
Grashof (Gr) number. Furthermore, the importance of the nonlinear terms in the field
equations is also dependent on the magnitude of Gr. Hence, it is imperative to choose
a numerical technique which is suitable to resolve the sharp interface region, and have
the property of handling discontinuities. One such method is the Flux Corrected Tran-
sport (FCT) developed by Boris & Book (1973) and Book (1981). The FCT method is
known for its ability to resolve steep gradients such as shocks and discontinuities. One
of the drawbacks of applying finite difference techniques to buoyancy flows dominated
by nonlinear advective terms is the numerical oscillation that occurs because the tran-
sported component (in our case the concentration component) can become negative
over the domain of computation. The FCT method assures positivity of the concentra-
tion component, thus eliminating false numerical oscillation. Comparison of the FCT
method to compute the nonlinear advective terms in the concentration field equation
with other techniques such as upwind differencing and central differencing assured us

of its excellent ability to track interfaces.

The set of field equations is solved by direct finite difference methods. The
stream function equation is solved using a Poisson solver with direct matrix inversion.
The time and spatial diffuse terms are discretized respectively, using third order
Adams Bashforth scheme and central differencing. Most importantly we use the FCT
method to compute the nonlinear advective terms in the species concentration equation.
Lastly, the vorticity boundary condition is computed using a method suggested by
Roache (1972, pp 139-174). Numerical studies on the effect of grid size show that a
36x36 mesh is sufficient to resolve the large scale details of the flow field for the cavity
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sizes considered. The time step selected is small enough to insure stability of the cal-
culations.

4. Discussions and Numerical Results
4.1 Parametric range

The range of conditions considered is dictated by practical achievable conditions
in space with typical cavity sizes used for crystal growth. In space it is possible to
achieve gravitational levels ranging from 1073g, to 10%,. Typical cavity sizes are
approximately 2 to 10 cm. From the space experiments of Radcliffe et al. (1988), den-
sity ratios Ap/p ranged from .7 to 10 The highly dilute limits have been used by
Roberts et al. (1987) to simulate experimentally low gravity buoyancy flows inside
multiple tanks on the ground. These conditions indicate that a parametric limit of
Grashof number ranging from .1 to 10° would cover the range of buoyancy generated
flows in fluid mixing processes. The range of cases studied is shown in Table 1. Typi-
cal fluid properties such as chloroform and heptane are: v = .00495cm¥sec, Ap/p = 721,
and D, = 2x10-%cm¥sec; the properties for low density difference liquids such as water
and deuterated water are: v = .00804cm?¥sec, Ap/p = 4.9x107%, and D, = 2x1075cm?¥sec.

4.2 Characteristics of flow field evolution and interface morphology: Convective
mixing 7

The first case is selected to give an overall picture of the phenomena. In our
problem, since there is a density jump across the interface, a finite horizontal pressure
gradient exists which drives the flow. Figure 2 shows the early stages of the effect of
the flow field on deformation of the interface region. The kinematics of interfacial
deformation is shown by contours of concentration, and the stream function contours
show the flow field and its direction by velocity vector field plots. The morphology of
the interface region is similar to the tilted experiments of Andrews and Spalding
(1990) for short times. The flow field causes stretching and folding of the interface. A
rotational flow with a strong vortex core results initially. This flow field pushes the
interface region towards the top and bottom of the cavity symmetrically. Its maximum
velocity is attained when the interface region has been stretched near its maximum
horizontal direction (+ = 0.016). This local maximum velocity for early times is within
order of magnitude of the characteristic velocity obtained from scaling with the charac-
teristic time 7,.

The momentum of the flow field continually stretches the interface to form an
internal wave. This is shown in Figure 2b. Internal waves are known to occur in the
ocean and have also been produced in several tank experiments as pointed out by
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Turner (1973, pp 14-21, 48-57, 120-126). However, unlike our case these internal
waves are generated experimentally by mechanical sources at the boundaries. As
shown in the figure the formation of an internal wave feeds back or interacts with the
flow field. This results in the formation of multiple vortices and takes place at the
location of the maximum wave amplitude. This case corresponds to the formation of a
stable wave. The deformation of the interface region is topologigal, it is smooth and
continuous and there is no breakup. This configuration shows the point where the flow
field has converted all its initial potential energy into the formation of a wave. At this
point the wave dissipates all its potential energy through oscillation of the interface
region.

The oscillation and decay of the internal wave with reflections at the boundaries
are shown in Figure 2c. The maximum amplitude of the wave occured at about
(t = .029). Subsequently the interface region behaves like a damped oscillator. Because
of viscous effects and since there is no source of energy being fed into the system the
oscillations decay quite rapidly. During the first cycle of oscillation from (¢ =.029 to
072), wall friction dissipates the energy of the wave. The equilibrium position
corresponds to ¢=.039. Upon reflection from the boundary at (=.05 less energy is avail-
able due to dissipation. This represents the first half cycle of the oscillation. At this
point the motion repeats itself, with each continual reflection at the boundary the

amplitude of the wave decreases until it decays at 1=.151.

The effect of the buoyancy force is to stretch and deform the interface, in this
case create internal waves which decay to a stably stratified configuration. During this
process a mixed region results with a certain width at the stably stratified configuration
with light component fluid above the heavy component fluid. The two fluids then mix
diffusively until a final state of uniform concentration field is achieved with zero
potential gradients in the region. The final state which leads to uniform mixing is
shown in Figure 2d. The complete stably stratified configuration occurs at 1 =.717. The
separation of the lines represents interdiffusion from one region to another. Similar
observations have also been reported in tank experiments, see Turner (1979, pp 267-
270). Note that at ¢ =9.56 interdiffusion does not occur uniformly throughout the
region. One posible explanation is that, as will be shown later, there is still flow in the
stably configuration which is in the form of vortex rows. Since these vortices have
variable strengths, they contibute to the spreading of the concentration field at different
rates. This gives rise to unequal spreading (dispersion) rate of the concentration field.
Note that at ¢ = 23.9 the concentration lines of .1 and .9 have diffused, this process con-
tinues until the concentration lines of .4 and .6 also diffuse through the cavity. At this
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point uniform mixing would have taken place. The line C=.5 would still be present, in
agreement with our earlier definition of this line as a tracer, a hypothetical material
line which admits diffusion through itself,

The characteristics of the flow field during various stages of mixing for the stably
stratified configuration are shown in Figures 2e, 2f, 2g. At the interim to stratification
the flow field with multiple vortices which was oriented vertically is now oriented hor-
izontally (Figure 2e). The vortices are mainly concentrated near the top left hand and
lower right hand walls with a weak flow field in the mixed region. This flow field is
weaker than the flow field generated by the buoyancy force; it is the decay of the flow
field left over from the action of the buoyancy effects and wave oscillations. It has the
same order of magnitude of velocity as the viscous diffusive flow field. Thus, it
represents the viscous diffusion regime. Transition from the viscous diffusion regime
to mass diffusion is shown in Figure 2f. Note that in this case the vortices generated at
the wall diffuse away from the wall to the core of the flow field. Regions of weak flow
now occupy a much larger area. This is accompanied by an increase in the width of
the mixed region. The region that is dominated by mass diffusion, where viscous
diffusion has decayed, is shown in Figure 2g. In this regime the vortices that were ori-
ginally generated near the wall have diffused toward the top and bottom center of the
cavity. Beyond ¢ = 9.56 the action of mass diffusion begins to decay. At this point the
magnitude of the velocity field would approach zero as an equilibrium state is
approached. Thus, the characteristics of the flow field denote three distinctive regions
at the interim to mixing with various velocity scales: a buoyancy dominated region at
early times which transforms to a viscous diffusive region and finally to a mass
diffusive region as thermodynamic equilibrium is approached.

4.3 Effect of aspect ratio

For the above parametric value, the effect of the buoyancy force is to stretch and
deform the interface into an internal wave. We now examine the effect of varying the
aspect ratio on the amplitude of the wave generated. The amplitude is the vertical dis-
tance the material interface deforms from a horizontal position at midheight of the cav-
ity. In Figure 3 we show the effect of five aspect ratios on the amplitude of the wave
generated at a fixed time (+ = .029). The aspect ratio variations correspond to varying
the cavity from a square configuration (Ar = 1) to a vertical rectangle (Ar = 2 and 10)
keeping the height constant, then to an horizontal rectangle (Ar = .1 and .5) decreasing
the height by one tenth and one half respectively. Since the Grashof number is propor-
tional to H3, its magnitude would not change even though the configuration of the cav-
ity has changed from a square to a vertical rectangle. However, note that from the
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dimensionless field equations the aspect ratio plays a more dominant role in this situa-
tion. Similar to the previous case, Ar=1.23, the material interface forms a wave with a
large amplitude, Ar=1. For a stable wave formation, if a vertical line is extended
midlength of the cavity, the wave would be tangent to this line. We thus have a stable
wave formation for the Ar=1 case. However, when the aspect ratio is increased to
Ar=2 the interface deforms past this vertical line. Thus we have a situation where the
material interface starts to fold on itself. Since we had decreased the width of the cav-
ity, viscous effects are effective enough to sustain this incipient unstable wave and
keep it from breaking. As the cavity is made narrower, Ar=10, the effect of the walls
is to damp out wave formation. Deformations occur only near the top and bottom of
the cavity. Very effective vertical shear flows develop near the interface which acts to
prevent deformation of the interface at the core of the cavity. In contrast, for the hor-
izontal configuration Ar=.5, the amplitude of the wave is very small, this is due to the
fact that the potential head available to transform the material interface into a wave has
decreased. In this case a smaller thickness of mixed region would result after the
stratification. When the cavity approaches a horizontal slot (Ar=.1), the flow field is
not effective enough to deform the interface, as we pointed out earlier; in this case the

one-dimensional diffusive limit of mixing is approached.
4.4 Effect of Grashof number

The dependence of both Ar and Gr on height prevents independent variation of
these parameters. However, if the aspect ratio is fixed (Ar = 1), one may vary either
the properties of the fluids or the ratio of the gravitational field to investigate the effect
of Gr. In Figure 4, we show the effect of Gr on interface morphology. Unlike the
previous cases we consider the lower values of Gr to investigate the other end of the
spectrum. These values represent conditions that can only be obtained under micro-
gravity environment. The resulting deformation of the interface for Gr of order 10° is
similar to the previous case in Figure 3, in spite of the change in aspect ratio. As the
Grashof number decreases there is less potential energy head available to deform the
interface. The case for Gr = 3.73 corresponds to the situation where the characteristic
flow field velocity is of the order of the diffusive velocity. In this case the interface
does not stretch and one-dimensional diffusion occurs for mixing. Thus, the effect of
increasing the Grashof number is to stretch and fold the interface region. The amount

of stretching and folding depends on its magnitude.
4.5 Internal breaking wave
The aspect ratio studies gave us a first glimpse into nonlinear wave formation.

We now study this phenomena in more detail. In Figures 5a,b,c, we show a case
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where the Grashof number is increased one order of magnitude, Gr = 3.73x10°. This
leads to the formation of a wave which folds on itself, similar to break waves in the
ocean, Figure 5a. Unlike the previous case for Ar=2, this wave is unstable and it soon
breaks at r = .012, Figure 5b. What makes this phenomenon interesting is that it is an
internal wave. Such phenomenon of internal breaking waves has been discussed by
Turner (1973, pp 120-123 ) and has also been observed by McEwan (1983a,b) through
experiments to study the details of wave breaking inside tanks. In contrast to the for-
mation of a wave for Gr up to 10* which oscillate before a stably stratified
configuration is reached, in this case the material interface continually stretches and
deforms until it breaks, no oscillation occurs. The breaking of the wave gives rise to
an increased number of vortices in the flow field. These vortices serve as stirring
mechanisms to homogenize the mixing region. This leads to a much thicker stratified
mixed region than the previous cases. Upon stratification the flow field is transformed
from multiple vortices to a single vortex in the core, Figure 5c. For longer time, the
stratification leading to complete mixing is similar to the previous case examined
(Gr = 1.45x10%), in that vortex rows develop in the flow field as thermodynamic equili-
brium is approached. Note also that droplet formation occurs near the top and bottom
walls; they grow and break-off similar to droplet formation in R-T instability. The
break-off occurs at the neck of the drop. Droplet reattachment occurs before final

stratification,
4.6 Chaotic mixing

A horseshoe map involves continuous deformation of a material region (a blob or
a square) by a flow field which stretches and folds the region on itself, Ottino (1979,
chps 5 & 7). One of the ﬁecessary conditions for a system to display chaos is that the
flow field produces horseshoe maps. As discussed by, Chien, Rising, and Ottino
(1986), the presence of a horseshoe function in a mixing system involves superposition
of forward and backward transformation with the initial location of the material region.
In our case this requires careful examination of the time sequence evolution of the
interface region of the two fluids in Figure 5. When breakup occurs, there is no period-
icity in the flow field to allow superposition of striation patterns prior to breakup. Even
though the structure is similar to that of a hoseshoe map, it is difficult to ascertain the
presence of a horseshoe function with any degree of certainty. However, another meas-
ure, as will be shown, such as the length of stretch of the interface indicates exponen-
tial growth in this parametric region. This behaviour is known to occur in chaotic
regions of mixing. Chaotic mixing is effective for fluid mixing. This is verified in our

results, for a much shorter length of time, a much wider mixed region resulted.
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4.7 Diffusive Mixing

Of great importance to materials processing is the region where diffusive mixing
occurs and the material interface remains undistorted while mixing takes place uni-
formly. This case is particularly useful to crystal growers because deformation of
solute fields during crystal growth leads to unwanted segregation effects, see Chang
and Brown (1983). These situations adversely effect crystal quality because of inho-
mogeneity of the solute field. In Figure 6, we show the case which leads to diffusive
mixing without distortion of the interface. In this case a weak rotational flow field
results, and the characteristic velocity is of the order of the mass diffusive velocity.
Buoyancy forces are smaller than viscous forces, the flow field has minuscule effect on
the concentration field and it stays constant for the time considered. In this case, by
virtue of the low value of Gr = .37, the one-dimensional limit is approached as we had
speculated earlier.

The fact that mass transport can be induced by both convection and diffusion was
pointed out by Maxwell (1860). This also suggests that for miscible systems, diffusion
and convection always occur together, even if the system is isothermal or isobaric.
This fact seperates mass diffusion that occurs in fluids from heat diffusion that occurs
in solids. Even though convection is very small for the case shown, mass transport still
occurs, and diffusion is the dominant mechanism. This limiting case can serve to illus-
trate that even when convection is negligibly small, diffusion generates its own con-
vection. The case for vanishingly small convective field has been used in many text-
books for the solution of diffusion problems, see for example Cussler (1984, pp 55-85)
and Crank (1986, pp 1-10). The computational results can be used to compare to the
closed form solution obtained with the assumption that the nonlinear convective terms
are negligible. In this case, there is a decoupling of the vorticity field from the concen-
tration field. This leads to the simple approximate problem:

oC 1 ,°C 3%
L - A= —
ot Sc{ ’ ox? * dy?
VC*'#=0 on T.

We obtain the closed form solution

- 1Y
C(x,y,t)={—;— + % E,((zzl)l) cos(U+Imx - exp — [(21+1)21t2(Ar2/Sc) 1]}

The simplification has great significance, it implies that even if we have a three dimen-
sional cavity the solution is still one-dimensional. Note that in dimensional units the
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group (Ar%Sc) t reduces to (B,/L?) ¢*, which is the expected proper form of the solu-
tion. The proper characteristic time T, is also recovered. Comparison of the one-
dimensional closed form solution to the results in Figure 6 is shown in Figure 7. The
close agreement shows that the classical solutions for diffusion problems give excellent
results. when convection is vanishingly small. For 'cxpcrimenters who use microgravity
for materials processing phenomena, it shows that good control of convective flow
fields can be achieved in a space laboratory.

4.8 Comparison of local velocity scales to the computational results

Two types of scaling occur, local and global time scaling. The global scaling pro-
vides an overall scaling of the phenomena. The local scaling takes into account the
local events influencing the process and can yield approximate magnitude of the flow
field. In Table 2 we show the characteristic local velocity predicted from the charac-
teristic local time (see Table 3) for various Gr numbers. The local velocity is scaled
using the height of the cavity as characteristic length with the proper characteristic
time. V,,, indicates the magnitude of the velocity field from the computational results
at the appropriate local characteristic time. The results show that when the proper
characteristic time is used reasonable agreement is obtained in comparison with the
computational predictions. This shows the importance of local scaling for obtaining the
proper characteristic velocity in this class of problem.

4.9 Descriptors to quantify mixing

We use three descriptors to quantify mixing for flows driven by buoyancy forces,
namely: the local mixing efficiency, the interface width W of the mixed region and its
clongation length L as a function of time. The dimensionless width and length are
defined as, W = (W" - W,yW, and L = (L" - L,)L,, where subscript o denotes the initial
value at time zero. The width of the interface is taken as the average distance between
the maximum and miximum concentration contour. In Figures 8, 9, and 10 we show

the width of the interface region as a function of time.
4.9.1 Variation of interface width

For the nominal value of Gr of order 10° which brackets the diffusive mixing (Gr
of order 1) and chaotic mixing (Gr of order 10°) regime as shown in Figure 8, three
distinct mixing regions occur: the convective region which results in wave formation,
the oscillatory region, and the diffusive region. In the convective region the width of
the interface expands and contracts. This occurs at the very early stages of the flow
development. This is also in agreement with the experimental findings of Andrews and
Spalding (1990) for their tilt experiments. Further contraction and expansion continue
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through the oscillatory region until a stable stratification results. In the oscillatory
region Kelvin-Helmholtz instability through horizontal shear results in the contraction
and expansion of the interface region. The final stage of diffusive mixing is accom-
panied with the decay of the flow field and shows an exponential like behaviour
toward homogeneous mixing. This exponential like behaviour is due unequal spreading
of the concentarion field in the stably stratified configuration.

The other cases of diffusive and chaotic mixing are shown in Figures 9 and 10.
The pu.ely diffusive regime exhibits the same character as the late stages of the con-
vective mixing which is to be expected since mixing is one-dimensional in both cases.
In comparison to Figure 8, it takes more time for the fluid to diffuse through
equivalent widths as compared to the convective regime. This is due to the existence
of a weak flow field which does not deform the interface. In contrast, the chaotic
regime provides very effective mixing. For the same dimensionless time, the width of
the interface increases 3 times as much in comparison to the convective mixing case
and to about 7 times greater than the diffusive mixing case.

4.9.2 Elongation of the material interface

Another measure to quantify mixing is the elongation of the material interface
due to the flow field. The basic three cases of convective, diffusive, and chaotic
regimes are shown in Figures 11, and 12. In the convective regime, the effect of the
flow field is to transform the initially vertical material interface to an horizontal posi-
tion. In the early stages of flow development the material interface continually
elongates until a maximum is reached. This maximum corresponds to the internal wave
formation region. The material interface decreases in length in the oscillatory region to
conform to the horizontal width of the cavity. Although the length of the material
interface decreased, the width of the mixing region increases which is a better indica-
tor of the degree of mixing for this region. Contraction and expansion of the length of
the material interface also occur. The plumes at the top and bottom walls eventually
decay until a stable stratification is reached. In the stably stratified configuration, since
the length of the material interface remains constant, it is no longer a good indicator of
mixing. However, the width W of the mixing region continues to grow, and serves as
a better indicator of mixing, until equilibrium is achieved. Note that the intial and final
lengths are not equal, this is because Ar#1.

The diffusive and chaotic mixing regimes are shown in Figure 12. As expected,
in the diffusive regime the length of the material interface remains constant. Whereas
in the chaotic mixing regime the length increases exponentially. In this case, the flow
field is very effective at stretching the material interface to its maximum length.
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Because of internal wavebreaking, there is no oscillatory mode for this case. Instead
there is an abrupt transition to a stratified configuration. When turbulence from wave-
breaking dissipates, complete mixing occurs via the diffusive mode. Note for the same
time interval the flow field stretches the interface 3 times as much as the convective
case. And the maximum length occurs for 1/4 the time as that of convective mixing.
Thus, the effect of the flow field is to stretch the material interface until a maximum is
reached. The maximum length of stretch determines the width of the mixing region
once stratification is achieved. If the flow field is weak, diffusive mixing occurs
without stretching the interface.

4.9.3 Local mixing efficiency

Laboratory experiments to quantify stratified mixing through internal wavebreak-
ing have been carried out by McEwan (1983a,b). The qualitative features of internal
mixing by breaking such as density microstructures, regions of density instability, and
interleaving are shown to occur experimentally. A simple method to calculate mixing
efficiency based on a particle exchange model shows that for a linear stratification the
mixing efficiency n is on the order of 1/4 ( McEwan 1983a ). However, in defining
mixing efficiency as the ratio of potential energy from stratification to kinetic energy
gained through shear, a major component of the overall energy which does not contri-
bute to mixing is from viscous dissipation. In McEwan (1983b), careful experiments
were designed to account for viscous dissipation, final results show that the assumption
of similarity between buoyancy and mass transfer used by previous investigators are
valid. The efficiency values calculated in (1983b) agree closely with the particle
exchange model in (1983a). Comparison with our model suggests that we can use a
similar method to calculate mixing efficiency. The internal wave generated is based on
the potential head available (E = Ap ng, H). Based on the total potential head, the inter-
nal wave may or may not break. This potential head results in certain wave formation
that has a certain potential energy which is dependent on peak to peak amplitude
(P =ap ng,(y ! —y ™. (The peak to peak amplitude is denoted by o1 -y™) This
energy is dissipated either through internal oscillation or wavebreaking, which gives
rise to a certain stratification thickness (8). The efficiency may be approximated as
n=358/(y -y, For the three cases examined, convective, chaotic, and diffusive, we
obtain mixing efficiencies of .26, .34, and 0.0 respectively. The convective case agrees
quite well with the predicted value of 1/4 , since in the chaotic case, breaking occurs
we would expect n to increase, however, its magnitude is within the limits of the cases
reported in McEwan (1983b). Finally a zero mixing efficiency results for diffusive
mixing since volume elements never exchange position and the system gains no
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potential energy, this is in agreement with the definition in McEwan (1983a).

4.10 Comparison of the features of our model problem to Rayleigh-Taylor
characteristics

An analog to our model problem is the classical Rayleigh-Taylor instability of
superposed fluids with the heavier component overlying the lighter component, see
Chandrasekhar (1961). It is well known that short wavelength instabilies give rise to
growth of the interface between two fluids. Daly (1967, 1968) has shown computation-
ally the evolution of the interface inside a bounded cavity. His results show that in the
late stages of the Rayleigh-Taylor (R-T) instability, Kelvin-Helmholtz (K-H) instability
give rise to waves at the interface. These waves form near the neck of the spike. With
the inclusion of surface tension, Daly (1969) has shown the conditions leading to drop
formation in agreement with the experimental findings of Melcher and Hurwitz (1967).
Our model problem exhibits many of the features that occur in the classical R-T insta-
bility problem. Because of the magnitude of Gr number the nonlinearity is very impor-
tant except for the limiting case of small or Gr — 0. This is in contrast to the linear
stability problem of R-T where nonlinearity is neglected. Unlike the classical R-T
where the density jump is parallel to the body force; in our model problem the density
jump is perpendicular to the body force, as a result flow is initiated without having to
introduce a perturbation. The small scale features at the interface due to the growth of
small wavelength perturbation, as shown experimentally by Andrews and Spalding
(A&S) (1990) for the no tilt case, do not occur in our results. However, the numerical
simulations of Youngs (1984), show that these small features occur for the multiple
wavelength initial perturbation cases. Even though our model problem corresponds to a
much larger tilt angle in comparison to the cases considered by A&S, the basic charac-
ter of the flow field dominated by an overturning two dimensional motion still occurs.

The late stages of convective mixing for our case show similar behaviour to the
late stages of R-T instabilify. One of the features of R-T is the lateral growth K-H ins-
tability in the nonlinear regime. In our case, oscillation of the wave causes growth of
K-H instability due to the shear components of the velocity field. This is manifested by
the undulatory features of the interface region. A feature, usually uncommon in classi-
cal R-T, is the evolution of plumes at the top and bottom corners of the cavity. This is
shown to occur for the slightly tilted experiments of A&S. In the case of A&S, these
wall plumes are attributed to the short wavelength instabilities due to the half sawtooth
initial perturbation. A similar behaviour occurs for our case. Because vorticity is gen-
erated at the walls, a slow dragging effect of the plumes near the walls occurs before

final stratification is achieved.
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The features of interface breakup and droplet formation also occur for the chaotic
mixing case. Droplet formation occurs near the top and bottom of the cavity as shown
in Figure 5b. The growth of the droplet is similar to the spike formed during R-T ins-
tability which is usually shown to occur as a single event (Daly, 1969). However, in
our case multiple events occur simultaneously with the droplet formation. This
includes the breakup of the interface region, and multiple droplet formation. As shown
in Figure 5b the frontal area of the droplet increases in size while the neck gets
thinner. This results in the seperation of the drop from the source region. The breakup
occurs right at the neck in the thinner region. Note that reattachment of the droplets
occurs before a stably stratified configuration is achieved.

4.11 Phenomenological discussion and related experiments

According to Youngs (1984), the quadratic law for the growth rate of the mixed
region of the interface (ie. W' =2a- At - g 1*, o= .04) by R-T instability is valid only
for short wavelength initial perturbation. The experiments of Read (1984) show quite
clearly the validity of the quadratic law for a number of experimental cases of mixing
inside tanks by R-T instability. However, for large amplitude long wavelength initial
perturbation, the quadratic law ceases to be valid. The growth rate corresponding to the
most unstable wavelength, see Chandrasekhar (1961), for viscous fluids is given by:

ng 172 2 3
o v

= A =4 — .
n, {n . t} and A, n{ g, At}

Based on the trends of the physics, When Gr— 0 the R-T problem (if mass diffusion is

considered) and our model become equivalent, that is they have the same solution. In
Table 3 we show the corresponding wavelength and growth rate for various Gr
numbers. According to linear theory of stability as the level of gravitational accelera-
tion ng, decreases, A, increases and the growth rate decreases. In comparison to the
height of the cavity H, A, is much greater. This implies that a situation that is unstable
on earth can become stable in space if ng, can be reduced to sufficiently small values.
In this case the diffusive limit would be approached as we had shown. And the closed
form solution is applicable to both R-T and our model problem. Note also that the
characteristic time n;' of the growth rate of the perturbation is within the same order
of magnitude as predicted by the buoyancy time scale T,. However, as expected when
the Gr number increases and nonlinearity becomes important, the disparity between T,
and n;! increases.

Based on the comments of Sharp (1984) the phenomenology of R-T instability
occurs in 4 basic stages: (1) the linear evolution of the interface due to small
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amplitude perturbation, (2) the nonlinear growth of these perturbations of the order of
the wavelength, (3) the development of the interface structure into spikes and bubbles,
and (4) the breakup of the spike by various mechanisms leading to turbulent or chaotic
mixing. These phenomenology are similar to the features exhibited in our model prob-
lem for high Gr numbers with the exception of stages (1) and (2).

An alternate viewpoint for the interpretation of our results is based on the concept
of passive and active interfaces by Aref and Tryggvason (1984). The characteristics of
the observed structures of our interfaces may be quantified in those terms depending of
the magnitude of Gr number. As we have shown depending on the magnitude of Gr,
three distinct flow field regimes occur: convective, diffusive, and chaotic. These flow
field regimes are characterized based on the morphological patterns displayed by the
interface region when it is advected by the flow field. The diffusive regime displays a
"passive" interface. The convective regime shows the "weak coupling limit” where the
flow field is slightly influenced by the interface structure. This occurs during the transi-
tion of the interface to the stratified configuration. The oscillation of the interface acts
as a "feed back” to the flow field. In this case, the interface structures of "whorls" and
"tendrils" as described by Berry et al. (1979) and Ottino (1989) are also exhibited. For
the convective regime, the evolution of the interface into a wave may be interpreted as
a whorl resulting from the rotation of the flow and its subsequent oscillation has the
characteristic of tendrils, note the secondary waves on the interface region (Figure 2c).
However, in the chaotic limit, the interface may be seen as passive only for a very
short time; it soon displays the characteristic of an active interface with features such
as spikes, bubbles, and breakup similar to the late stages of R-T.

The limiting cases of diffusive and chaotic mixing have applications to materials
processing. Some delicate processes require purely the diffusive regime such as crystal
growth, while others require efficient mixing before a process can be carried out. This
occurs in the growth of crystals with binary components where a solute field of low
concentration exist. Sometimes it is necessary to have a homogeneous liquid phase
before the process is carried out. The range of cases studied give insight into what can
be accomplished with buoyancy generated flow fields under steady microgravity condi-
tions. And these cases can serve as a guideline to what can be achieved in space.

5. Concluding remarks

We investigated a model problem to study fluid mixing due to buoyancy gen-
erated flows with emphasis on microgravity conditions. Three distinctive mixing
regimes are identified for a range of Grashof numbers; diffusive, convective, and
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chaotic. In the diffusive regime Gr of order 1 or less, mixing occurs without stretch-
ing the interface region. The interface spreads out uniformly as mixing occurs and the
characteristic velocity approaches the diffusive limit. This case compares well with
the one-dimensional closed form solution of classical diffusion problems. It shows
quite clearly the conditions under which the classical solution holds. Whereas in the
convective regime, Gr of order between 10 to 10% events leading to stratification occur
with various important differences. In the region for Gr between 10 and less than 10,
very gentle overturning motions occur without internal wave formation. However, for
Gr number on the order of 10° to 10% the overturning motion stretches and folds the
interface region which leads to formation of an internal wave with various amplitudes.
These waves oscillate, and the decay of oscillation leads to a stably stratified
configuration. Wave generation enhances mixing by dissipating energy at the interface
region, this leads to an increase in the width of the mixed region. Finally, in the
chaotic regime, Gr number on the order of 10° or greater, continuous stretching and
folding of the interface occur until it breaks. No oscillation of the resulting wave for-
mation takes place. This wave exhibits the characteristics of internal breaking waves.
Once the wave breaks, a very large mixing width region results. Thus, the chaotic
regime is very effective for mixing. Independent of the convective and chaotic regime,
when stratification takes place, final uniform mixing occurs via mass diffusion.

Each mixing regime has its own characteristic flow field. The mixing efficiency is
greatly dependent on the type of flow field. The flow field gives rise to two basic
structures, namely, tendrils and whorls. In the convective regime both whorls and ten-
drils occur. The whorl occurs at the beginning of the flow, and this results in the for-
mation of the wave. When this wave oscillates, a tendril structure occurs. During the
wave formation, the flow field transforms from single to multiple vortices (cells). The
decay of wave oscillation leads to stable stratification of the two fluids. This period is
marked by the decay of buoyancy forces. At this point the flow field changes from
vertical to horizontal stacks of vortices. These vortices are generated by wall effects
during the viscous diffusion period. For the long time scale, mass diffusive period, the
vortices diffuse from the wall to the flow field. The flow field slowly decays until the

fluids are uniformly mixed.

In the diffusive regime, a steady flow results. Steady flows are known to be less
effective in producing mixing. This is quite evident in the diffusive regime, since the
length of the material interface remains constant while mixing occurs. On the other
hand, chaotic mixing is very efficient for mixing. This is evident by the stretching,
which increases exponentially, and folding of the interface region. The flow field is
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unsteady, and large number of vortices are generated. These vortices serve as stirring
mechanisms to produce a stratified mixed region.

We examined the implications of both local and global time scales. Three local
time scales occur during mixing generated by buoyancy forces. A time scale to denote
the decay of buoyancy effects (T,), a viscous diffusion time (7,), and a mass diffusion
time (7p). The global time scale depends on the magnitude of the Gr number, and for a
particular Gr number, scaling with the appropriate local time scale yields approximate
results for the characteristic local velocity. The local time scale depends on the events
occuring during the mixing process. These events can be summarized as follow : (1)
an overturning motion which may lead to internal wave formation (7,), (2) stable
stratification which follows from oscillations or wavebreaking (T,), and (3) lastly
diffusive mixing which takes place until thermodynamic equilibrium is reached or no
concentration gradient exists in the flow field (7). Scaling with the appropriate local
time scale yields the approximate magnitude of the local velocity. Note that for the
limiting cases of Gr — 0 or Gr — «, there is only one appropriate local time scale, Tp
or T, respectively. For these cases the phenomena are dependent on a single time
scale, whereas multiple time scales occur for the cases that lie between the limiting
cases. The appropriate global time scale, based on the magnitude of Gr, is summar-
ized as follows: for Gr >0 T =Tp, 10<Gr <1x10° T =T,, and Gr >10° T =T,.
However, with the inclusion of the limiting case Gr —» 0, we found that for our
parametric range even when we scaled with T, the proper characteristic time Tp is

recovered.

Descriptors to quantify mixing such as width of the mixed zone, elongation of the
interface, and local mixing efficiency have shown the characteristics of mixing gen-
erated by buoyancy forces. For high Gr numbers where nonlinearity is important the
width of the mixed region for the convective and chaotic regime contracts and expands
as time increases, until the stably stratified configuration is reached. In the stratified
configuration, the mixed region increases steadily in time until equilibrium is achieved.
Similar trends occur for the diffusive regime of mixing. The elongation of the inter-
face for the chaotic and convective regime increases exponentially with time. However,
in the convective regime, the oscillation region provides partial restoration of the flow.
Whereas, in the chaotic regime, no oscillation occurs, the length decays as ¢™. In the
diffusive limit the length of the interface is independent of time. The local mixing
efficiencies for the convective, chaotic, and diffusive regimes are respectively .26, .34,
and 0. These values are in agreement with typical values reported by McEwan. Com-
parison of our results with the linear theory of stability shows that for low Gr numbers
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the characteristic time for growth rate of a perturbation is in good agreement with the
time predicted by the buoyancy frequency. The local characteristic velocity scales
show reasonable approximate correlation with computational values.

From the point of view of crystal growers, the results for Gr=.37 are encouraging.
Because the space environment offers the potential to achieve low gravitational levels,
the results indicate that there exist parametric regions where the diffusive regimes can
be obtained. Attaining the diffusive regime is basically the region of interest for the
crystal growers. This means that it is possible to obtain a solute field which diffuses
uniformly. This is very important to many crystal growth phenomena where nonuni-
form distribution of the solute field can cause unwanted segregation effects. These
effects degrade crystal quality. Thus, microgravity environment provides a unique set-
ting where delicate materials processing can be controlled. This opens the door to

many other new phenomenological investigations.
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List of Tables

Table 1 Parametric range for buoyancy generated flows.

Case | Figure | Ar Gr Sc
1 |2 1.3 | 1.45x<10* | 402
2 |3 1 743x10° | 402
3 |3 2 743x10% | 402

4 |3 10 7.43x10° | 402

5 |3 5 | 9.29x10° | 402

6 |3 1 743 402

7 |4 1 3.73 247

8 | 4 1 3.73x10" | 247

9 |4 1 3.73x10% | 247
10 | 4 1 3.73x10° | 247
11 5 1 3.73x10° | 247
12 |6 1 37 247

Table 2 Comparison of local velocity scales to computational results.

Gr Vo(cmlis) | V(emis) | Vp(emis) | Vimag(cmlis) va‘ (cm/s) | Vpmag(cmls)

0 0 - - - - -

37 426x107% | 9.87x107% | 4.0x107° - - 2.1x107°
1.5x10% 118 0014 3.44x107% 086 0008 3.0x1078
3.73x10° 427 9.87x107% | 4.0x107° 34 2.4x107% -

Table 3 Comparison of length and time scales to linear stability theory.

Gr Ty(s) Tos) | To(s) [ Au(em) [ Hiem) | nn(s)” Ny~ (s)

0 ©o - - o0 - 0 oo
37 1.17x10% | 5065 | 1.25x10° | 109 5 3.23x107 | 3.04x10*
1.5x10% 49.1 4184 | 1.68x10° 3.76 5.8 4.48x1072 223
3.73x10° 11.7 5065 | 1.25x108 1.10 5 3.21x107! 3.1
3.73%x10° 117 5065 | 1.25x10° .05 5 1.51x10% | 6.62x<10~°

oo 0 - - 0 - oo 0
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Figure 1.—Physical description of two fluids in contact at
an interface.
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Figure 6.— Diffusive mixing, Gr = .37, Ar =1, and Sc¢ = 247.
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