
NASA Contractor Report 190798

//v -_/

"ql- Digital Active Material Processing Platform

Effort (Damper), SBIR Phase II

John Blackburn and Dennis Smith

Applied Technology Associates

Albuquerque, NM

November 1992

I%I/ A
(NASA-CK-190798) DIGITAL ACTIVE

MATERIAL PROCESSING PLATFORM EFFORT

(OAMPER), SBIR PHASE 2 Final Report

(Ap_t led Technology Associates)

6O p

N93-15353

Uncles

G3/3! 0136218





INTRODUCTION

Applied Technology Associates,Inc.,(ATA) has demonsn'ated thatinertialactuationcan be

employed effectively in digital, active vibration isolation systems. Inertial actuation involves the

use of momentum exchange to produce corrective forces which act directly on the payload being

actively isolated. In a typical active vibration isolation system, accelerometers are used to measure

the inertial motion of the payload. The signals from the acceleromet¢_ are then used to calculate

the oorrective forces required to counteract, or "cancel out" the payload motion. Active vibration

isolation is common technology, but the use of inertial actuation in such systems is novel, and is

the focus of the DAMPER project.

In May of 1991 a report was completed which documented the successful demonstration of

inertial actuation, employed in the control of vibration in a single axis I. In the one-degree-of-

freedom (IDOF) experiment a set of air bearing rafts was used to suspend the payload, simulating

a microgravity environment in a single horizontal axis. Digital Signal Processor (DSP) technology

was used to calculate in real time, the control law between the accelerometer signals and the inertial

actuators. The data obtained from this experiment verified that as much as 20 dB of rejection could

be realized by this type of system.

Included in this report is a discussion of recent tests performed by ATA in which vibrations

were actively controlled in three axes simultaneously. In the three-degree-of-freedom (3DOF)

system, the air bearings were designed in such a way that the payload is free to rotate about the

azimuth axis, as well as translate in the two horizontal directions.

This is the final report on the DAMPER project. It is a culmination of past (1DOF) and

present (3DOF) work, and is intended to provide an overall picture of the project. The _,,nuator

developed for the DAMPER project has applications beyond payload isolation, including structural

damping and source vibration isolation. This report includes a brief discussion of these

applications, as well as a co_zation plan for the actuator.

1. Reference is made here m the ATA report entitled "Digital Active Materials Processing Experiment (DAMPER)
1DOF Platform Development Task Final Report".





1.0 PROGRAM OBJECTIVES

I.I Scope

The fastobjectiveoftheDAMPER projectwas todevelopa linear,inertialactuatorsuitable

for space stabilization applications. An inertial actuator operates on the principle of momentum

interchange. The key com_nent of this type of actuator is an inertial mass, which is caused to

accelerate by imposing on it a force (usually applied by magnetic fields). When the inertial mass

accelerates, it produces an equal and opposite force on the actuator housing. The actuator housing

in turn transmits that force to the surface to which the actuator is mounted. Inertial actuation differs

fundamentally from traditional forms of actuation because there is no mechanical connection

between a fixed point and the surface to be actuated. In contrast, an electromagnetic (or so-called

"voice coil") actuator is used to apply forces between two surfaces. This is an example of a

relative force actuator.

The inertial actuator had to meet certain requirements. The requirements of the actuator

involved the frequency response, the throw, the force constant, and the peak force. The peak force

can be increased at the expense of the frequency response, and vice versa, so there were tradeoffs

involved in the design. The actuator requirements were based on measurements of the disturbance

environment, as well as the desired bandwidth of the vibration isolation.

The second objective of the DAMPER program was to demonstrate the use of inertial actuators

in one and three-axis, active isolation systems. Once the actuators were designed and fabricated,

vibration isolation systems were developed to demonstrate theiJ"performance. It should be noted

however, that the development and performance of the overall isolation systems was not the focus

of the project. There are factors other than the performance of the actuators which limit the overall

performance of vibration isolation systems. These factors include sensor noise and dynamics, the

dynamic coupling between the axes of controlled motion and the speed of the digital computer, to

name a few. There are data sets presented in this report which suggest that the isolation systems

used to test the actuators may not provide the levels of disturbance rejection required for many

micr_g science applications. In these cases it is shown that the actuators are not the limiting

factor.

As an aside, a distinction is made in active vibration isolation technology between source and

payload isolation. When vibrations originate from the payload, and the objective is to reduce the

levels of vibration which reach the environment, then a source vibration isolation system is
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required.A systemwhich is intendedto abatevibrationdistm'banccswhichacton thepayloadis

called a payload vibration isolation system. At the time this work was solicited, the micro-g

science community was especially interested in the payload isolation problem. For this reason

payload isolation schemes were selected to demonstrate the performance of the actuators, and the

performance of the isolation systems was assessed according to payload isolation specifications.

Thexa'etically, there should be no difference between the cHsturbance rejection that can be

realized by a payload isolation system employing inertial actuators, and a similar system employing

one of the more common actuator designs (such as "voice coir' actuators for example). The

second objective of the DAMPER project involved obtaining test data which supports this theory.

The data does imply that inertial and relative force actuators are equivalent in payload isolation

schemes. However, hindsight suggests that implementation of the actuators in a source vibration

system may have proven to be a more dramatic demonstration of the merits of inertial actuation.

Inertial actuation is clearly superior to relative force actuation in the solution of source vibration and

structural damping problems. More will be said about these applications later.

1.2 Actuator Development

"'" The primary objective of the actuator development was to demonstrate that the inertial

actuationconceptcouldbe implementedinhardware,and customizedtomeet specificdesigngoals.

The designoftheactuatorhad toaddressthekey issueslistedbelow.

I) The forceconstantandpeakforce;

2) The frequencyresponse;

3) The throw;

4) Stictionbetweenthemoving actuatorcoiland theinnerconductor;,

5) Low frequencycagingofthemoving actuatorcoo position;

6) Electronicnoise.

Each of these issues is discussed in the next section. It should be noted however, that the actuator

design discussed in the next section is based on the specific payload isolation problem selected to

demonstrate the performance. The design would have to be modified to meet significantly different

requirements.
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1.3 Vibration Isolation System Development

The incrtalactuatorwas designed forvibrationisolationapplications,and thusitwas

necessarytodemonstrate theperformance of theactuatorinactualisolationsystems. The second

objectiveof theDAMPER projectwas todevelop and testtwo isolationsystems,both employing

the actuators. The first system was intended to demonstrate active payload isolation in a single

axis,and thesecond was designed todemonstratethattheactuatorscan be used tocontrolvibration

inthreeaxes simultaneously.The two systems willhereafterbe referredto asthe IDOF and the

3DOF systems,respectively.

The desiredperformance of theisolationsystems was based on specificationsprovided by the

InternationalAstronauticalFederation(IAF). InFigure I-l envelopeswhich specifythe maximum

allowablevibrationlevelsforvariousprocesses,arepresentedas a functionof frequency. ATA

derivedfrom thissetof curves(providedby theIAF), a singleenvelope under which residual

vibrationshould fall.This envelope isshown inFigure I-2.

The envelope shown inFigure I-2 limitsonly vibrationsinthe frequency band from 0.1 to

100 Hz. In ordertoaccomplish vibrationisolationatfrequenciessignificantlybelow 0.I I-.Iz,the

throw of an inertialactuatorwould have tobe relativelylarge(asmuch as 2 fee0. Large-throw

actuatorscould indeedbe designed toaccommodate very low frequency isolation.However, the

demonstrationof vibrationisolationat0.1Hz issufficientto show thevalidityof the approaches

used.

Inordertorealizeoptimalperformance from a vibrationisolationsystem, the bandwidth of the

controlsystem should be as high as possible.The bandwidth of thecontrolsystem dictatesthe

highestfrequency atwhich disturbancerejectioncan be realizedby the system. In generalthe

bandwidth islimitedby the phase margin. Phase lossdue to sensordynamics and sampling cause

the phase margin to deteriorate at frequencies above 100 Hz. Since it was known at the outset that

active isolation above 100 I-Iz would not be possible with the available sensors and computer, the

performance specifications were defined from 0.1 to 100 Hz. The envelope shown in Figure 1-2

corresponds to the most conservative curves in Figure 1-1, within the frequency band 0.1 to 100

Hz.

1.4 Commercialization

The third and final goal of the project was to formulate a plan to market the inertial actuator as

a commercial product. As mentioned earlier,theseactuatorshave applicationsinboth sourceand

payload vibration isolation, as well as in the active damping of large space structures.
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2.0 DESIGNING THE ACTUATOR

2.1 Principle of Operation

Figure 2-1 is a schematic of an electromagnetic, linear, inertial actuator 2. Permanent magnets

are attached to the actuator housing such that they surround the moving actuator coil and the inner

conductor. The moving actuator coil is a spool of copper wire which is wound so that the wire

turns encircle the inner conductor. The moving actuator coil is free to slide along the axis of the

inner conductor.

When a current is passed through the wire turns of the moving actuator coil, a force is created

which has a magnitude that is proportional to the magnitude of the cross product of the current

vector i, and the magnetic field vector B. The current flows in the circumferential direction, and

the magnetic field flux lines created by the permanent magnets are directed radially toward the

center of, and normal to the axis of the inner conductor. Thus, the vector cross product ofi and B

yields a force vector F, which is directed along the axis of the inner conductor.

Fm = --li x Ill (1)

where:

0_ - 2R-rmeanN

rmean = mean .spool radius (cm)

N = number of coil windings

Assuming thatthevectorsiand B are always normal toeach other,the magnitudes of thesevectors

can be denoted as i and B respectively, and equation (I) can be written as

F m ffi2_meanNBi (2)

2. The actuator shown in Figure 2.1 does not have exactly the configuration of the ones used in the final DAMPER

isolation systems. It is quite similar however, and the schematic provides a good illuswafion of the principle of
operation.
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Figure 2-1. Principle of Operation of Electromagnetic, Linear, Inertial Actuator
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DeEmingthe motor constant Km as follows:

K m = 2_meanNB (3)

The electromagnetic force can be written as follows:

F m = Kmi (4)

Note that a change in the polarity of the current (or voltage) will reverse the sign, and thus the

direction of the force F z.

When the force Fm acts on the moving actuator coil, an equal and opposite force acts on the

housing of the actuator. This force is then transmitted to the surface to which the actuator is

mounted, forcing that surface to accelerate.

2.2 Magnetic Flux Line Considerations

The operation of the actuator depends on closed magnetic circuit paths which encircle air gaps

between the permanent magnet assemblies and the inner conductor. A typical family of magnetic

flux paths is shown in Figure 2-2.

Flux P_hs
Magnet_mbly

Ir Gap

Endcap

Material)

Endcap

Inner Cond Moving Actuator Coil Assembly

(FerrousI_erlat)

Figure 2-2. Magnetic Flux Lines in Inertial Actuator
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Noticethat the direction of the resulting magnetic forge E, is along the axis of the inner conductor.

Notice also that the ferrous end caps are a crucial component of the magnetic circuit. The ferrous

material of which the magnetic circuit components (magnet assemblies, end caps and inner

conductor) are composed is Venadium Permendur, which has a high magnetic saturation flux

density.

2.3 Frequency Response

2.3.1 Specifying the Mass of the Moving Actuator Coil

From a dynamic standpoint, the performance of a linear inertial actuator improves as the mass

of the moving actuator coil is increased. The reason is that larger coil masses can induce larger

inertial forces on the payload. The effect of increasing the moving actuator coil mass can be

observed in the frequency domain.

Consider the single-degree-of-freedom system shown in Figure 2-3. The mass m 1 represents

the combined mass of the isolated payload and actuator housing. The inertial mass m 1 is free to

translate with respect to ground without resistance, and is acted upon by a disturbance force Fd.

The mass m2 represents the moving actuator coil which is free to translate with respect to the mass

m 1. Relative motion of the masses m 1 and m2 is caused by the electromagnetic force F m.

[---- __

--;-k 'J Y
"--'i e._"_ Fm X

Figure 2-3. Combined Inertial Actuator/IDOF Platform System
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Itisnecessaryinthe designof real-worldactuatorsto "cage"thepositionof the moving

actuatorcoil,so thatitisoperatesroughly inthe centerof theinnerconductor. Without a caging

mechanism of some kind inplace,themoving actuatorcoilcollideswith the end caps during

operation.Such collisionsimpose disturbanceson the payload. This isundesirablesincethe

ultimategoalof an isolationsystem employing theactuatoristoremove disturbances.In realitythe

caging isdone electronically.However, itisconvenient(and reasonable)toapproximate the

dynamics of thecaging circuitby a mechanical springk (seeFigure2-3).

There isacertainamount ofslidingfrictionwhich takesplacebetween themoving actuator

coiland theinnerconductor. This sliding,or cmdombic frictionisactuallya non-linearfunction,

but itcan be approximated by a lineardashpot having a damping coefficient,c (seeFigure2-3).

The system in Figure 2-3 is broken down into two free-body diagrams which are presented in

Figure 2-4. All the forces acting on the two masses arc depictexl in the diagrams. Using Newton's

second law, the equations of motion for each mass can be derived from the fre,c-body diagrams.

I
k{x, 1 . x, I )"4_ i

IF-'"
"' I

Fm,,Q=..----

FL,...u..,I

m

n!

[

tflLHIIOS'I'

Figure 2-4. Free-Body Diagrams of Masses ml and m2

F1 = ml d2xl = c - + k(x2-xl)- Fm + Fd
d t2 di (5)

d t2 {It (6)

The Laplace transformsof equations (5)and (6)follows:
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XI(S)[S2 + (c/ml)s + (k/ml)] - X2(s)[(C/ml)S + (k/ml)]

"--Fm(s)+Fd(s) (7)

X2(s)[s2 + (c/m2)s + (k/m2)] - Xl(s)[(c/m2)s + (k/m2)]

= Fm(S) (8)

The Laplace transform of equation (4) is also required.

Fro(s) = KmI(S) (9)

Equations (7), (8) and (9) are then combined to obtain the ratio (s2Xl(S))/I(s). This ratio is the

transfer function from the actuator current input to the acceleration of the payload. The magnitude

Bode plots of this ta'ansfer function are shown for various N, in Figure 2-5. Note that the mass m2

is related to the number of turns N.

m2 = m0 + 8N (10)

where:m 0 = weightofthebobbin(gins)

B = mass ofwireperturn(gins/turn)

The amount offorcewhich must be providedby theactuatorisofcourse,dependentupon the

application.Forpayloadvibrationisolationsystems,therequiredforceisspecifiedby thenann'e

of the disturbances acting on the payload. The power spectral density function associated with the

uncontrolled vibration environment on the payload is integrated to obtain the cumulative power, or

"cure-power". The cure-power is a single number having the units g2. The square root of this

value is the root-mean-square (rms) of the vibration disturbanc_ to be abated (units of g). The peak

force required of the actuator is then the product of the rms acceleration and the mass of the

payload (including the actuators). It is advisable to provide more force than the above calculations

dictate, in order to insure that whatever impulsive forces acting on the payload can be abated as

well.

Figure2-6isthepower spectraldensityofthevibrationdisturbancesmeasuredon thepayload

oftheIDOF experiment,whilethepayloadwas supportedwithan airbearing.The rms ofthis
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function is about 2 milli-g, depending on the time of day the psd is obtained. For a 50-pound

payload the force required to abate a 2-miUi-g disturbance is about 0.5 Newtons. A value of 2.0

Newtons was chosen, allowing a factor of safety of 4.

2.3.2 Inductance Considerations

The moving actuator coil is in itself an AC circuit. A simple circuit diagram of the coil is

shown in Figure 2-7. In this figure Ra and L a are the resistance and inductance of the windings,

respectively. The current flowing through the circuit is denoted i a.

(°) _ 91R0257

Figure 2-7. Circuit Diagram for Armeture (Moving Coil)

An opposing voltage, or "back-emf" is created which is proportional to the relative velocity

between the masses m 1 and m2 as shown below.

s (11)

where: Kg = generator constant (kg*m/A*s)

The differentialequationwhich describesthevoltageand currentbehaviorofthecircuit,isobtained

by Kirchoff'sVoltageLaw. The sum ofallthevoltagesarounda closedpathisequaltozero.

-v a + iaR a + L. (12)

The Laplace transform of this equation is presented below.

Va(s)= la(s)(Las+ Ra) + X2(s)Kgs -X 1(s)Kgs (13)

2-8



By combining equations (7), (8), (9) and (13) the ratio of Va(s) to Ia(s) can be obtained. Bode

plots of this wansfer function are shown in Figure 2-8.

Notice that the magnitude function of the response shown in Figure 2-8 rises at 20 dB/decade

above about 8 Hz. This behavior is typical of an inductive circuiL As the inductance is increased,

the frequency at which the magnitude function begins to rise, decreases. Another way to express

the same ideas is that the amount of voltage requited to drive the coil increases with frequency, and

with in_,_ing inductance. The inductance L a is related to the number of coil turns N, by the

relation below.

L a = N2/R e (14)

where: Re = reluctance (A2*s2/kg*m 2)

The reluctance is to a magnetic circuit, what resistance is to an electric circuit.

Based on the above arguments, there is a tradeoff between the mass and the inductance of the

moving actuator coil. Increasing the moving actuator coil mass improves the actuator from a

dynamic standpoint However, the larger number of coil turns associated with the increased mass,

requires more voltage fi'om the drive electzonics.

The Bode plots in Figure 2-5 depict the acceleration response of the actuator/payload system to

a current input. Above the fzequency comer of the coil position caging loop 3, this function is a

constant. This function is much easier to work with than the response to voltage commands.

Figure 2-9 shows the acceleration response of the actuator/payload system to a voltage input.

A current amplifier is employed in the actuator circuitry to provide current outputs which are

directly proportional to voltage inputs.

3. Recall that an electronic spring is used to insure that the moving actuator coil remains roughly in the center of the
inner conductor.
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2.4 The Stiction Problem

As mentioned in the previous section, there is coulombic friction which acts between the

moving actuator coil and the inner conductor. This friction can cause the moving actuator coil to

"stick" at the extremes of the travel.

Several methods for reducing this friction have been proposed and tested. In one

configuration the moving actuator coil spool was fabricated out of polycm'bonate, and the inner

connector was polished to a fine tolerance. In another configuration the polycarbonate spool was

replaced with a spool which employed Teflon bushings. A third solution involved coating the

inner conductor with a ceramic material. A high frequency "dither" can be added to the actuator

command signal in order to reduce the stiction, but this method involves introducing disturbances

to the system. It was found through iteration that the most effective means for reducing the stiction

was to inmxiuce an integral air bearing to the moving actuator coil spool. This concept is

illus_'ated in Figure 2-10.

Aiiln Aiiln

WINDINGS

Figure 2.10. Moving Actuator Coil Spool Employing Integral Air Bearing

2.$ Other Design Considerations

The wire gage used on the moving actuator coil must be large enough to carry the required

current without burning. On the other hand, lower gage (higher diameter) wire must be wound
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with greater tension, which can warp the spool. If the spool is warped it will not slide freely on

the inner conductor.

As the mass of the coil increases, more air must be forced through the air bearing in order to

overcome the gravitational force. If the flowrate of air is not sufficient, then the weight of the co/1

will cause it to rest on the top surface of theinner connector.

2.6 Final Design Configuration

A schematic of the final design of the linear inertial actuator is presented in Figure 2-1 I. The

design considerations described in Sections 2.3 through 2.5 were accommodated by using 550

turns of 26 AWG insulated magnet wire. This wire gage can be used to carry amperage in excess

of 1.5 Amps, and the maximum current deliverable by the drive electronics is about 1.0 Amps.

The resulting mass of the moving actuator coil measured 0.12 kg. The force constant of the

actuator is roughly 2.0 Newtons/Amp. At the maximum current available from the drive

electronics, the peak force output is about 2 Newtons. A brief summary of the actuator

spec_cations is presented in Table 2-1.

Table 2.1. Brief Summary of Actuator Specifications

Size:

Weight:

Force Constant:

Stroke:

Frequency Response:

Peak Force:

7.20'(18.3cm) Long x 3.43[8.70cm] High

8.1Ib[3.7kg]

CompositeCoilForm 0.5N/A

AirBearing0.5- 1N/A

:1:2.0" [.+.5.1 cm]

0- 500Hz

Composite CoilForm 2N

AirBearin s Coil Form >2N

A circuit diagram of the actuator electronics is presented in Hgure 2-12. The moving actuator

coil is shown in the lower right-hand congx of Hgure 2-12. The elecu'orfics directly above the

moving coil stage are the coil position caging circuitry. The current amplifier resides in the upper

right-hand corner of the diagram. The cLrguiffy in the upper left-hand comer is a modulation

oscillator used in the coil position caging process.
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3.0 CONTROL SYSTEM ACCELEROMETER SELECTION

3.1 Sensor Selection Criteria

The selection of the inertial accelcrometcrs used in the 1DOF and 3DOF vibration isolation

experiments was based on the transfer functions and the noise floors associated with the candidate

sensors.

The transfer function of a given sensor contains information about the phase loss, scale factor

and useable frequency range. Excessive phase loss can lead to instabilities in the closed-loop

control systems. In fact, the bandwidths of the control systems have been dictated by the available

phase margins, and the majority of the phase loss in the open-loop control systems has been

attributed to the sensors.

The noise floor associated with a given sensor provides a measure of the smallest excitation

which that sensor can measure reliably, as a function of frequency. The noise floor is generally

presented as a power spectral density (psd) function. In the frequency band of control, the

amplitude of the noise floor psd must be lower in amplitude than that of the disturbances that are to

be rejected by the vibration isolation control system.

3.2 Candidate Sensors

There isalimitedselectionofaffordableinertialaccelerometerstochoose from, which have

adequate n'ansferfunctionsand noisefloors.ATA has evaluatedmany sensorsover theyears,and

has identifiedseveralsensorswhich aresuitedforthistype of application.Itshould be noted that

the research that ATA has performed in this area has not been exhaustive. There may well be a

number of sensorson the market which are wen suitedforthisapplication,and are not mentioned

in thissection.Three sensorswhich ATA has evaluatedarc discussedbelow.

3.2.1 Endevco 7751-500

The Endevco 7751-500 isa piezoelectric,linear,inertialaccelerometer.The operating

principle of this sensor is illustrated in Figure 3-1. The motion of the case 7-,0, causes the motion

z, of the inertial mass, m. The motion of the inertial mass elastically deforms the piezoelectric

crystal, creating a charge buildup on the faces of the crystal. This charge is then convened to a

voltage signal, which is proportional to the acceleration of the case.
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Figure 3-I. Operating Principle of Endevco 7751-500 Accelerometer

Flicker noise, often called "I/f noise" prevents the 7751-500 from measuring excitations

having frequency components below about 0. I Hz. For this mason, a highpass filter has been

added to the electronics to attenuate the response of this sensor below about 0.5 Hz. Above 0.5

Hz the sensor transfer function is essentially "fiat" (equal to a constant over frequency) out to 5000

Hz. This sensor has a scale factor of about 0.5 V/g.

.

The magnitude of the transfer function is presented in the calibration sheet provided by the

manufacturer. An example calibration sheet is shown in Figure 3-2. The magnitude function is

presented here in terms of the percent deviation from the nominal scale factor, between 5 and 2000

Hz. At higher frequency the actual magnitude is shown in units of dB. The peaks above 10 kHz

are the mechanical resonance of the sensor.

The phase behavior and noise floor of this sensor were measured by ATA, and are presented

in Figures 3-3 and 3-4, respectively.
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3.2.2 Teledyne-Geotech S-500

The Teledyne-Geotcch 5-500 is an inertial, linear accelerometer. The basic elements of this

acceleromcter are a spring-suspended mass and a sensor to sense motion between this mass and the

sensor case. Hgurc 3-5 provides an intuitive illustration of the operating principle. The motion of

the case 7_.0 causes the morton z, of the inertial mass. The position sensor measures the relative

displacement of the case and the inertial mass, m. The signal positioning then derives from the

relative position measurement, a signal which is proportional to the acceleration of the sensor case.-

Figure 3-5.

/4
, I ._'o ,,.,.,-,

T L_.
l -:v

m

ii

' k

Operating Principle of Teledyne-Geotech S-500
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The frequency response (wansfer function) of this sensor is presented in Figure 3-6. The

noise floor of this sensor was measured by ATA, and is shown in Figure 3-7.

3.2.3 Sunstrand QA-2000

The SunstrandQA-2000 isa inertial,linearaccelerometerwhich functionson an

electromagnetic principle. Figure 3-8 provides and intuitive illustration of the operating principle.

The inertialmass iscomposed ofa magnetizedmaterial,and producesarounditself,a magnetic

field.An opposingmagneticfieldisproducedby a coilbeneaththeinertialmass. The intensityof

the opposing magnetic field is controlled by varying the current in the coil. The inertial mass is

supported by the repulsion between the permanent and controlled magnetic fields. A position

sensor measures the relative displacement of the inertial mass and the sensor case. When the

sensor case accelerates, the relative displacement between the inertial mass and the case, Z0-z

changes. The current in the coil is continuously adjusted in a closed loop, such that the repulsive

magnetic force restores the relative displacement to a null reading. By altering the current in the

coil, the inertial mass is held fixed with respect to the sensor case (to within some tolerance).

Therefore, the current required to maintain this condition, is at all times proportional to the

acceleration of the case. The voltage drop across a resistor in the coil circuit is used to back out a

voltage signal, which is proportional to the current by Ohm's Law.

Bode plots of the frequency response (transfer function) of this sensor were generated by

ATA, and are shown in Figure 3-9. The peaks at high frequency are caused by the test apparatus,

and not by the sensor itself. The phase loss however, is caused by the sensor.

The noise floor of the QA-2000 has been measured by ATA over a limited frequency band.

The measured noise floor is presented in Figure 3-10.

3.3 C_mparison of Sensor Performances

The performancegoalofthevibrationisolationsystemwas presentedinFigureI-2.Itis

desirabletoemploy a sensorhavinga noisefloorthatisatleastan orderofmagnitudebelow the

smallest disturbance to be rejected. Thus, if at some frequency the performance goal is 1 micro-g,

then the level of the noise floor should be at most, 0.1 micro-g. This requirement specifies a

performance curve for the sensor noise. In Figure 3-11 the platform performance goal, the sensor

noise goal, and the noise floors discussed above are presented on the same plot.
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The most impressive noise floor is that associated with the Teledyne-Gootech S-500.

However, this sensor causes an unacceptable phase loss in the open-loop control system response.

The magnitude response is attenuated at -80 dB/decade. It is possible to implement a digital filter

which "flattens out" the response above 100 Hz, in order to improve the phase behavior.

However, this filter must be implemented in the Digital Signal Processor (DSP), where it

consumes limited computation time. In addition, the coefficients of the required digital filter are

large because of the relatively high frequency comer (100 Hz), and the order of the polynomials.

The DSP does not operate correctly when the coefficients of the difference equations become too

large. An analog implementation of the filter is difficult to implement with acceptable noise

performance .....

An alternative to the corrective filter is to alter the electronics of the S-500 itself. The

mechanical dynamics of the sensor create an attenuation of only -40 dB/decade above 100 Hr.. The

other two orders of rolloff are due to a second-order lowpass f'dter at 110 Hz. This filter is added

(by Teledyne-Geotech) because the mechanical resonance has an unpredictable amount of peaking,

which is undesirable from a marketing standpoint. The lowpass filter can be removed, which
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would simplify the corrective filter from fourth-order to second-order. Unfortunately, the cost and

schedule delays associated with this modification were unacceptable.

The Sunstrand QA-2000 exhibits an acceptable noise floor as well. The phase loss associated

with the QA-2000 is also acceptable. Unfortunately large bias errors are inherent in the signals

generated by this sensor.

The SunstrandQA-2000 sensorwas usedinthecontroloftheIDOF system.The biaserrors

wereremoved by externalelectronicsbeforethesignalenteredtheDSP. However, more sensors

were requi_ to control the 3DOF system, and electronics were not available to condition all of the

sensor outputs in this system. For this reason, Endevco 7751-500 sensors were employed in the

3DOF system.
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4.0 SINGLE-AXIS (IDOF) VIBRATION ISOLATION SYSTEM DEVELOPMENT

4.1 Simulation of Orbiter Environments

The linear inertial actuator was developed for space-based experiments, and thus it made sense

to demonstrate the performance of the actuator in a vibration environment similar to that

experienced on orbiting spacecraft. When contrasted with ground-based experiment environments,

the most pronounced characteristic of the space envirortment is the absence of the 1-g acceleration

vector, directed radially toward the center of the earth.

There are many approaches to the simulation of space environments, ranging from neutral

buoyancy floatation to parabolic aircraft trajectories. The most affordable schemes simulate

"weightlessness" in fewer than six axes. Examples include magnetic suspension systems and air

bearing tables.

The linear inertial actuators themselves have significant mass (about 8 pounds per actuator),

and other peripheral hardware having substantial mass is requlr_ to realize the isolation system.

Magnetic suspension systems become increasingly expensive, and draw larger supply currents as

the weight of the payload increases.

After evaluating the alternatives, ATA engineers elected to perform tests to verify the

feasibility of employing air bearing tables to simulate space environments. The objective of the

testing was to show that the disturbances induced by the air bearing could be rejected by the control

system.

The Physics Department of the University of New Mexico uses a single-rail, linear air bearing

table for classroom demonstrations. It was assumed that ATA could fabricate a precision air

bearingtableemployingtwo parallelrails,which would be more quiet,and couldsupportmore

weight.Resultsfrom testspc'formedon thesingle-railairbearing(owned by theUniversity)

couldthenbe treatedasa "worst.case"disturbanceenvironment.ATA engineersinsm.u'ncnteda

carriagewhich floatson thesingle-railairbearingwithlinearaccclerometers.Power specwal

density(psd)functionsofthemotionexperiencedon thefloatedcarriagewere obtainedinorderto

determinetheamplitudeofthedisturbancesasa functionoffrequency.Intheseteststwo sensors

were mounted back-to-backon theairbearingcarriage,in-linewiththeairbearingrail.This

configurationisshown inFigure4-I.
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Figure 4-1. Single-Rail Air Bearing Test Configuration

The coherent power psd 4 associated with both back-to-back sensors are overlaid in Figure 4-2.

The platform motion specification line discussed in Section 1 is also included in Figure 4-2.

Comparison of these results to the specification line dictated that rejection of between 20 and 30 dB

would be necessary to negate the disturbances. This requirement seemed reasonable, and air

bearings were then selected as the mechanism for the simulation of the space environment.

4.2 Single-Axis (I-DOF) Air Bearing Table Configuration

A dual-rail air bearing table was designed and fabricated in order to simulate "weightlessness"

in a single horizontal axis. The configuration of this table is shown in Figure 4-3. One of the rails

is turned up on end such that the contact between the rail and the skate is triangular. The other

rail/skate interface is flat. This configuration prevents motion in other axes. The two rails are

attached to a welded steel frame with adjustable alignment screws. Adjustable feet provide

additional leveling capability.

Air is supplied to the table by an electric ring compressor. The compressor requires three-

phase power, and is capable of delivering up to 150 cubic feet of _ per minute.

The actuators, sensors and other support electronics are mounted on the carriage. The digital

signal processor (DSP) boards are mounted in a card cage, which is in turn fastened to the bottom

of the carriage.

4 A discussionof the signal processingtechniquesemployed in the DAMPEReffort is providedin the ATA
report"DigitalActive MaterialsProcessing Experiment(DAMPER) TransferFunctionDetermination,February,
1991.
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4.3 Single-Axis (IDOF) Vibration Isolation Control System

A block diagram of the 1DOF vibration isolation control system is shown in Figure 4-4. The

reference input is zero, because it is desired to minimize platform motion. The transfer function

which describes the carriage acceleration due to an actuator force input is labeled as the "plant" in

Figure 4-4. This function is climbing at 2 orders of magnitude per decade at frequencies below the

mechanical resonance of the system. At frequencies between the mechanical resonance and the

first structural resonance of the carriage, this funcdon is flat. There is a slight "dip" in the air

bearing rails in which the carriage seeks equilibrium. The spring forge which dictates the

frequency of the mechanical resonance is produced by the gravitational attraction to that equilibrium

point. The mechanical resonance is roughly 1.0 Hz.

The actuator has a flat response between 0.1 and 500 Hz. Below 0.1 Hz the low-frequency

caging circuitry attenuates the actuator response. Above 500 Hz the response is attenuated by a

second-order lowpass filter. The purpose of this filter is to prevent the excitation of modes above

500 Hz.

The Sunstrand QA-2000 accelerometer is also flat in the frequency range from 0.1 to 100 Hz

(see Figure 3-9). The uncompensated, open-loop frequency response of the system is predicted in

Figure4-5. Thisresponserequirescompensationbecausethereisno definedpointat which the

magnitudefunctioncrossesthe0-dB line.The requiredcompensationisa combinationofa Rrst-

orderlowpassfilteratabout3 Hz, and a second-orderlowpassfilterat30 Hz. Thisf'tlter"rolls

off"theresponseatI orderofmagnitudeperdecadebetween3 Hz and 30 Hz, and at3 ordersof

magnitudeperdecadeatfrequenciesabove30 Hz. The steeproll.offabove 30 Hz isrequiredto

preventthestructuralresonancepeaksfrom protrudingabovetheO-dB line,atfrequenciesatwhich

thereisno phasemargin.The compensationfiltersarcirnplcmentedasdigitalfiltersby mapping

them from thecontinuousdomain tothediscretedomain. A completediscussionofthismapping

is presented in the ATA report entitled "Digital Active Materials Processing Experiment (DAMPER) ,!_

IDOF Platform Development Task Final Report". The compensated, open-loop frequency

response of the system is predicted in Figure 4-6.

Notice that the compensation forces the magnitude function in Figure 4-6 to cross the 0-rib

line at a well defined frequency of about 13 Hz. Notice also that the phase margin at 13 Hz is

acceptable.
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The closed-loop response of the control system can be predicted from the response presented

in Figure 4-6. With a zero-valued reference input, the closed-loop frequency response is also the .

¢zror rejection function for the control system.

I
Gc (jw) - G.(jw) = I + Goi(jw) (15).

The predicted closed-loop frequency response of the system is presented in Figure 4-7. At this

value of the open-loop gain, the rejection is maximum at about 18 dB. However, a small amount

of amplification between 0.1 and 0.5 I-Lz, and between 15 and 50 Hz is unavoidable. Increasing

the open-loop gain will increase the rejection between 0.5 and 15 I-Iz, at the expense of further

amplification between 0.1 and 0.5 Hz, and between 15 and 50 Hz.
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-_ 4.4 Single-Axis (IDOF) Vibration Isolation System Digital Electronics Hardware

and Architecture

The active vibration isolation control algorithms are computed in real time using a Motorola

56001 DSP board. Figure 4-8 shows the conceptual layout of the digital electronics hardware, and

the manner by which it is interfaced with other system components.

The DSP electronics consist of a set of electronics boards. The boards include the DSP itself,

the analog input (A/D) and the analog output (D/A) cards. The boards are installed in a card cage

on the single-axis air bearing carriage. The user communicates with the DSP from an BM PC.

The PC and DSP are interconnected by an RS-232 interface, as shown in Figure 4.8. All software

development for the DSP is performed on the PC. The executable (machine language) codes

required to perform the calculation of the control algorithms are obtained by n'ansladon of the DSP

assembly (orC) language codes,writtenon thePC. The executablecodes are thendownloaded

from thehostcomputer (PC) to theDSP viathe RS-232 interface.
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Signal conditioning and drive electronics, external to the DSP provide the interface between

the computer/DSP system, and the sensors and actuators on the platform. These electronics

include (among other things) low-frequency highpass filters which are used to AC-eouple (remove

unwanted DC biases in) the sensor and drive signals.
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5.0 RESULTS OF SINGLE-AXIS (1DOF) VIBRATION ISOLATION

SYSTEM TESTING

5.1 Open-loop Transfer Function Testing

The predicted uncompensated and compensated open-loop frequency responses of the 1DOF

vibration isolation system were presented in Figures 4-5 and 4-6, respectively. These figures

should be compared with the measured responses presented below in Figures 5-1 and 5-2. The

Bode plots of Hgures 4-5 and 5-1 are in fairly good agreement. However, the phase loss depicted

in Figure 5-1 is more significant than that shown in Figure 4-5. One possible explanation for the

discrepancy is that the sensor drive electronics were not set up correctly when the test which

produced Figure 5-1 was run. Improper wiring of Sunstrand QA-2000 accelerometers can result

in unwanted phase loss. Note that the frequency locations of the structural resonances in Figures

4-5 and 4-6 are arbiwary, and that these resonances are not intended to depict modeled phenomena.

The compensated responses shown in Figures 4-6 and 5-2 are in good agreement as well. As

before, the phase loss is more pronounced in the test data than it is in the model. The data

presented in Figure 5-2 implies that the control loop can be closed at about 12 Hz. The resulting

rejection is about 21.88 dB, which exceeds the value predicted in Figure 4-6.

5.2 Closed-loop IDOF Control System Performance Testing

There are several methods for assessing the performance of a vibration isolation system. The

first involves driving the closed-loop system, and obtaining Bode plots of the closed-loop transfer

function. The result would presumably look something like the response shown in Figure 4-7.

A more direct method can be used however. A disturbance can be imposed on the payload,

and a psd of the resulting motion can be acquired while the loop is inactive. This psd is then

compared with a similar measurement acquired while the loop is active. The difference between

the controlled and uncontrolled platform motion can then be conveniently assessed by overlaying

these two psd functions on the same plot. Figure 5-3 is such a plot. The disturbance was injected

by mounting a second inertial actuator in parallel with that used to abate the disturbance. The

second actuator was driven with a swept sine input from the frequency analyzer while the psd

functions were obtained. The actuator used to inject the disturbance was not equipped with an

integral air bearing, and had a low frequency stiction problem. Consequently, the psd functions
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shown inFigure5-3 are not reliableatfi'cquenciesbelow about 4.2 Hz. However, in thereliable

frequencyband of themeasurement, thepredictedrejectionof about 20 dB was realized.

A thirdand fmai assessmentof thepcrformance of a vibrationisolationcontrolsystem

involvesacquiringthepsd functionsdescribedabove,without injectinga disturbance.

Comparison of thesemeasurements indicatestheabilityof the system toabatetheambient vibration

environment. The psd functionsof the payload ambient vibration(withthepayload floatedon the

airbearing),and thepayload vibrationwith thecontrolloop active,areoverlaidinFigure5-4.

Again, a maximum disturbancerejectionof about 20 dB isapparent(notethat20 clBisone order

of magnitude). .

The payload vibrationspecification(goal)lineissuperimposed on the psd plotsinFigure5-4.

Note that20 dB of rejectionisnot quiteenough tobringthe disturbancedown below the

specificationline.Two improvements could be made tothisconnol system inorder toincreasethe

disturbancerejection,and bringtheambient vibrationdown below the specificationline.The first

would be the additionof a more exoticcompensator which booststheopen-loop transferfunction

gain between 2 and 30 Hz. The problem with employing thisfalteristhatitintroducesphase loss
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to the system. The system is already in short supply of phase margin (see Figure 5-2). As was

mentioned in Section 5.1, part of the open-loop phase loss may have been due to incorrect

electrical hookup of the Sunsa'and QA-2000.

The second improvement would be to improve the noise performance of the accelerometer.

Figure 3-11 suggests that the noise performance of the Sunstrand QA-2000 accelemmeter is

adequate for this application. However, possible problems with the electrical hookup of these

sensors may be to blame for noise performance which was not consistent with Figure 3-11. The

coherence function between two redundant QA-2000 accelerometers, both mounted on the payload

was calculated while the loop was active, and while no artificial disturbance was being injected into

the system. This function is shown in Figure 5-5. If the noise performance were as presented in

Figure 3-11, then the coherence function in Figure 5-5 would have a value very nearly equal to

unity, across the frequency band.
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Despite the fact that the residual vibration levels were not forced completely below the

specification line, the performance data presented in Figures 5-3 and 5-4 does illustrate the

feasibilityof employing inertialactuatorsinpayload isolationsystems. The inertialactuatorwas

not one of thcfactorswhich limitedtheperformance of the isolationsystem.
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6.0 THREE-AXIS (3DOF) VIBRATION ISOLATION SYSTEM DEVELOPMENT

6.1 Three-axis (3DOF) Air Bearing Table Configuration

The 3DOF experiment employed a dual-rail air beating table for the simulation of the orbiter

environment, as did the 1DOF experiment. However, the 3DOF air bearing table configuration

differs from the 1DOF table in that both rail/skate interfaces are fiat. The 3DOF air bearing table

configuration is shown in Figure 6-1. When floated, the carriage can rotate about the azimuth axis,

as well as u'anslate along both horizontal axes. The rafts and skates are considerably wider than

thoseinstalledon theIDOF table,so thatmore weightcan be supported.Again,therailsare

mounted on a welded steel flame, with leveling adjustments in the feet and in the rail mounts.

One of the lessons learned in the IDOF experiment was that the structura.I resonances of the

carriageassemblyinterferewiththecontrolsystemfzequencyresponses.Resonantspikesoften

protrudeabovethe0-riBlineintheopen-looptransferfunction,atfrequenciesatwhich thereisno

phasemargin.Thiseffectcancausethecontrolsystemstobe unstable.The idealcarriagewould

behavelikea pureinertia,exhibitingno resonanceswhatsoever.

An effort was made to stiffen the 3DOF carriage assembly, so that it would better emulate a

pure inertia. Ribs and stiffening struts were added to the 3DOF carriage in order to push the

resonances out to higher frequencies. The actuators, sensors and the pneumatic system tubing and

fittings were mounted on the carriage, but all other components were located off to the side.

A subtle"dip" in therailsoftheIDOF airbearingtablewas introducedinordertocagethe

carriagein.somenominalposition.Thismethod doesnotmake senseinthe3DOF experiment,so

thespringram oftheattachmentcablesisusedasthecagingmechanism.

6.2 Three-axis (3DOF) Vibration Isolation Control System

The motionineachof thethreeaxesiscontrolledby a separatecontrolsystem.Therearethus

3 parallel, classical control systems which ate run simultaneously in the 3DOF experiment. The

competingapproachwould be a modem, or "state-space"controller.Such controllersaredesigned

tocontrolmulti-input/multi-output(MIMO) systemsasa whole,takingintoaccountthecoupling

effectsbetweentheaxesofmotion.Ifthedesignerhasmodeled thesystemvery
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accurately, then the coupling between the axes of motion can be removed by a modem controller.

The controller which performs this function is essentially the inverse of the plant dynamics matrix,

cascaded with a diagonal matrix of easily controllable frequency responses. The resulting system

is equivalent to separate, classical control loops, with no coupling between the axes.

Modern control systems have serious shortcomings however. The system under control may

havedynamicswhich changesignificantlyovertime.Ingeneralaveryaccurate,time-invariant

model oftheplantdynamicsisnotavailable.Unmodeled,poorlyplacedortime-varyingpoles

can, and generally do, lead to instability. To make matters worse, when a modern control system

becomes unstable, or exhibits poor performance, it is not always intuitively obvious what is

requiredtocorrecttheproblem.Furthermore,themodern controlapproachoftenrequiresmore

computertime,becausemore digitalf'dtersmust be calculatedina singlecycleoftheconu'oHer.

Forexample,a modem controllerfora 3DOF systemwithsecond-orderdynamicsiscomposed of

6,sixth-orderdifferenceequations.Controllingtheaxesseparately(andignoringthecoupling

betweentheaxesofmotion)requiresonly3,third-orderdifferenceequations5 . The questionmust

thenbe asked:Can thecouplingbetweentheaxesofmotionbe ignored?

The only practical way to answer this question is to test the system. If indeed the coupling

effects can be ignored, then the compensated, open-loop transfer function indicates the amount of

rejection that can be realized by the system. For example Figure 5-2 suggests that rejection of

roughly 18 dB should be attainable from the 1DOF system (coupling can undoubtedly be ignored

in this system). This rejection is attained at a specific value of the loop gain. If the loop gain is

increased, the rejection will improve. However, if the gain is increased above a certain limit, then

the system will be unstable. That limit is in general, the phase margin of the control system. Once

compensated, these systems are typically tested by increasing the gain until the system becomes

unstable. The best rejection is usually realized just at the brink of instability. The loop gain which

corresponds to the maximum rejection (near instability) can be predicted fa'om the uncompensated

(unity gain) open-loop transfer function. If it is not possible to increase the gain to the predicted

value without the system becoming unstable, then there are two possibilities: (1) there is something ."/

wrong with the system (i.e. saturated signals, the wrong compensator, malfunctioning

components, etc.), or (2) the coupling between the axes of motion cannot be ignored.

5 Assumingthatthesamecompensationisusedforeachaxis,andth_ theIDOF conu'olsystemdescribedin
Section4.3isemployed
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If the coupling between the axes of motion cannot be ignored, then the effort must expended

to obtain an accurate model of the system dynamics. A working modern controller can be then be

developed and implemented. In some cases it possible to improve the coupling characteristics of

the system by altering the physical system itself (mechanically). If the coupling can be reduced to a

sufficiently low level, then parallel controllers can be employed after all 6.

Testing of the 3DOF system has shown that 3 parallel, classical control systems are sufficient

to control the carriage motion. The coupling effects are less significant than the sensor noise and

phase margin limitations.

6.3 Three-axis (3DOF Vibration Isolation System Digital Electronics Hardware

and Architecture

The computer configuration for the 3DOF platfom_ was similar to the 1DOF system.

Motorola 56001-based Digital Signal Processor (DSP) hoards were used to calculate and execute

thecontrolalgorithms.The A/D convertersand D/A converterson the hoardswere employed

because theirconversiontime was significantlyfasterthantheotherVME hoards available.This

allowedthe truepcrformance of theactuatortobe investigatedwithoutlimitationsintroducedby

otherhardware in theloop.

Three inputswere required,on foreach controlloop,and fouroutputswere needed, one for

each actuator.This was accomplished by using two DSP boards,each of which has two input

channelsand two outputchannels.The y-axislinearcontrolloop was performed with one DSP

and one pairof actuatorsand the x-axislinearand z-axis'rotationalloops were handled by thc

second DSP and the otherpairof actuators.A video tapeof the3DOF platform inoperationwas

recorded and isavailableforthoseintercstecLThe sample and updateratewas 10KI-Izforthe DSP

boards.The high ratepreservedphase margin inthecontrolloop allowingthe actuator

performance tobe investigatedmore accanmely.

6 Blackbtwn, J. "Methods for Minimizing the Interaction Between Coupled Parallel Control Systems," Fifteenth
Biennial Guidance Test Symposium Proceedings, September 1991.
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7.0 RESULTS OF 3-AXIS (3DOF) VIBRATION ISOLATION SYSTEM TESTING

7.1 Open-loop Transfer Function Testing

The compensation for each of the three 3DOF control systems was a single, first-order

lowpass filter at 5 hertz. After adding stiffening ribs to and removing weight from the carriage (see

section 6.1), the strucazral resonances were moved out to higher frequency. The need for second-

order lowpass filters at high frequency was not as dire as was the need in the 1DOF experiment.

Furthermore, there were not adequate computer resources to compute additional second-order

filters for all 3 of the 3DOF experiment control systems.

Figure 7-1 shows the uncompensated and compensated open-loop transfer functions for the x-

axis control system. These Bode plots are measured out to 100 hertz. A similar plot for the 1DOF

experiment was presented in Figure 5-1. Comparison of Figures 7-1 and 5-1 verifies that the

structural resonances have been moved out to higher frequency.

However, the effects of the structural resonances are still visible at higher frequency. At

freqiaencies below 100 hertz the y and z-axis open-loop transfer functions are quite similar to the x-

axis response. Plots of the compensated y and z-axis open-loop transfer functions, measured out

to 1000 hertz, are presented in Figures %2 and 7-3, respectively. Notice that the sa'ucttaal

resonances in these plots are quite pronounced at frequencies above 100 Hz.

7.2 Closed-loop 3DOF Control System Performance Testing

The Endevco 7751-500 linear accelerometers were employed in the 3DOF control systems

(see Section 3). These sensors have a noise floor which is too high to realize rejection of the

ambient vibration environment. The performance of each of the 3DOF control systems was thus

assessed by introducing disturbances with an auxiliary linear, inertial actuator (see Section 5.2).

Figures 7-4, 7-5 and 7-6 show the differences between controlled and uncontrolled carriage motion

in the x, y and z-axes, respectively. This data was obtained while all 3 loops were closed, at the

same time.

The best rejection was obtained in the x-axis, and had a peak value of about 20 dB. This is

about as much rejection as can be expected from a active, payload isolation system. The y-axis

loop gain does not appear to have been high enough, because the compensated open-loop transfer
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function for this axis suggests that over 20 dB of rejection should be attainable. The measur_l y-

axis rejection peaked at about 15 dB. The z-axis performance seems to be limited by the structural

resonances at high frequency. No more than about 10 dB of rejection can be realized in this axis

before the resonant spikes begin to protrude above the 0-dB line, at frequencies where there is no

phase margin.

The rejection performance could be improved by employing sensors which introduce less

phase loss to the open-loop transfer function. Another improvement would be to increase the

available computer resources so that second-order lowpass filters at high frequency can be added,

as they were in the 1DOF experiment.
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8.0 ADVANCED APPLICATIONS OF THE LINEAR INERTIAL ACTUATOR

8.1 Source Vibration Isolation Systems

A distinction was made in Section 1.1 between payload and source vibration isolation

systems. The systems discussed in the previous sections are payload isolation systems. Such

systems are intended to reduce the level of vibrations experienced at a payload location. The intent

of the 1DOF and 3DOF systems was to minimize the vibration levels experienced on the air bea_g

carriage.

In conwast, source vibration isolation systems attempt to prevent disturbances generated by

the payload from reaching the environment. The disturbances generated by a large piece of rotating

machinery can be partially abated before entering the host environment, by placing springs or

rubber grommets at the machine/floor interface. This is an example of passive source vibration

isolation. Active isolation technology can also be applied to the same problem.

Consider the system in Figure 8-1. A rotating imbalance is created when the mass m, is

rotated about point O. The platform P is supported by hydraulic cylinders, and motion is assumed

to occur in the vertical direction only. The forces experienced at points (1) and (2) when the

system is at rest are due only to the static weight of the system.

Figure 8-1.
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Suppose it is desired to hold the forces at points (1) and (2) constant, at their static values,

as the mass m, rotates about the point O. Forces can be applied between the platform P, and

ground by controlling the flowrates ql and q2' of fluid moving in and out of the cylinders. In

order to hold the forces at points (1) and (2) constant, the flowrates must be adjusted so that the

platform is free to translate vertica//y in a given direction, until the rotating imbalance causes the

acceleration vector to change direction. The purpose of this example is to illustrate intuitively, that

the platform translations which must be permitted in order to accomplish this task are substantial.

Now consider a similar system pictured in Figure 8-2. In this system, the platform P, is

supported by a mechanical spring and dashpot. The hydraulic cylinders are replaced by linear

inertial aeaiators which are at, ached to the platform. The actuators apply inertial forces in the

vertical direction. It should be apparent that by transferring the disturbance energy to the actuator

proof masses mp, the vertical position of the platform P, can be held constant, while maintaining

constant forces at points (1) and (2).

Figure 8-2.

I •

mp_ mp

Source Vibration Isolation System Employing Linear Inertial

Acutators

The two examples presented above illustrate one of the advantages of inertial actuation in

source vibration isolation applications. Namely, the "rattlespace" in which the platform P

translates (or rotates) can be reduced significantly.

Another interesting application of "m_ actuation involves the isolation of an environment

fi,om disturbances induced by a person jumping up and down on a trampoline. Suppose that the

rotating imbalance m, in Figures 8-1 and 8-2 is replaced by a person jumping up and down on the
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platform, P. In order to hold the forces at points (1) and (2) constant, the platform P in Figure 8-1

would have toexertno resis_e totheperson'sstep. Inthiscase therewould be essentiallyno

finnsurfaceon which to land.The system inFigure 8-2 could bc modified forthisapplication

without sufferingthisshortcoming. Indeed,inertialactuationistheon/y way tosolvethe

"trampolineproblem".

8.2 Structural Damping

One of the challenges of operating equipment in space is that the structures requited to host

the equipment have a tendency to oscillate for long periods of time, following a disturbance. There

arcboth passiveand activeapproaches todamping out oscillationsinsu'ucturcs.The linearinertial

actuatorisclearlysuitedforactivedamping ofthistype. The examples below illustratethispoint.

Consider the system shown in Figure 8-3. Suppose that the position of the mass m, is

changed from position (1) to position (2) by rapidly rotating the hub, and then holding the hub

fixed. The mass will overshoot point (2), and begin to oscillate in a cantilever fashion about the

point O.

(1)
m

Hub

Rod

91R0257 x •

Figure 8-3. Cantilever Oscillation

This oscillation couid be counteracted by instrumenting the mass m, with a linear inertial

accelerometer and a linear iner_ actuator, as shown in Figure 8-4.
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Figure 8-4.

Linear Inertial
Accelerometer

Linear InerUal
Actuator

Cantelever Instrumented with Linear Inertial Accelerometer and

Actuator

The forcesappliedtothemass by theactuatorwould be commanded proportionallyby theoutput

of the accelerometer. If a relative force actuator were employed to impart forces between the mass

m, and ground, then the system would no longer be a cantilever.

Finally,considerthesystemshown inFigureg-5.The massesm I and m 2 areconnected

by a flexiblerod.The oscillationdescribedby thephantom linesinFigure8-5couldcontinuefor

some timeinspace,becausethereisverylittledamping.

• % • %

i t r I

t n u !
% / % /

Figure 8-5. Double Cantilever Oscillation

However,bothmassescouldbe instrumentedwithaccelerometersand linearinertialactuatorsasin

thelastexample,making itpossibletoactivelycanceltheoscillation.The useofrelativeforce

actuatorsclearlydoesnotmake senseinthisapplication.
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While they are often far more complicated, oscillations in space and ground-based

structures resemble the two simple examples above. These examples demonstrate that the use of

momentum interchange is crucial to the control of structures.

8-5



9.0 COMMERCIALIZATION PLAN

The intent of the Small Business Innovative Research (SBIR) program is to provide funding

for promising technologies in an attempt to create commercial products for small businesses while

addressing the sponsor's needs. Phase I of an SBIR is typically a proof of concept effort. Phase

II provides funding to develop working prototypes. Phase HI is the responsibility of the small

business and its focus is to find commercial sponsors or develop the technology into a commercial

product.

Efforts to develop the DAMPER inertial actuator were focused in two areas. The first was to

protect the intellectual property by perparing and submitting a patent application to cover the

device. Working through a patent attorney, ATA reveiwed the possible competitors, prepared the

patent application and submitted the documents to the U.S. Patent Office. Approval is expected in

1992.

The second thrust toward commercialization involved promoting the sensor. The main

emphasis was placed on displaying the actuator at microgravity conferences and producing a video

tape describing the need for and perfonm_e principles of the actuator. ATA has had several

interested companies and is continuing to investigate actuator applications.

Anotherpossibleusefor theactuatoristo provideforce inputs to systems.An inertialmodal

actuator or a device to inject high frequency vibration into commerical angular rate tables are

options being investigated.

The actuatorisalsobeing consideredforinertialisolationofopticaltablesby a company with

whom ATA hasworked previously.To fosterdevelopmentoftheactuator,ATA hasrequested

andreceivedpermissionfrom NASA Lewis toretainthehardwaredevelopedunderthePhaseII

contract.Thisequipmentwillbeusedtosupportinvestigationsofactuatorapplications.
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10.0 CONCLUSION

Applied Technology Associates, Inc. has developed a linear inertial actuator for

space mbilizafion applications. The actuator was designed and fabrk.a_ w meet the

n_quizcments of single-axis (IDOF) and du-ce-axis (3DOF) payload vibration isoladon

experiments. The performance of the actuau_ was dcmonswated by the iv.sdts of the

1DOF and 3DOF e_ts. In these experiments it was shown that linear inertial

actuation is equivalent to ttlative forc, actuation in payload vibration isolation systems.

The linear inertial acmatm"has nummms co_ applications including source
r

vibration isolation and su'ucnwal damping. Indeed, there are a number of applications in

which momentum interchange is the only means of actuation that makes sense. The

commotion of the linear inertial actuator is being pursued as the third phase of the

SBIR process.
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This report includes a brief discussion of these applications, as well as a commercialization plan for the actuator.
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