<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Station</td>
<td>1997-2003</td>
</tr>
<tr>
<td>Humans Return to the Moon</td>
<td>2004</td>
</tr>
<tr>
<td>Lunar Presence</td>
<td>2005</td>
</tr>
<tr>
<td>Lunar Habitat</td>
<td>2007-2009</td>
</tr>
<tr>
<td>Humans Land on Mars</td>
<td>2018</td>
</tr>
</tbody>
</table>

* Schedule currently under scrutiny by various outside Advisory Committees
Biomedical Programs

Goals

• Develop an understanding of the physiological, psychological and behavioral adaptation to space

• Ensure the health, well-being, and performance of humans in space and on return to Earth’s gravity

• Promote the application of biomedical research to improve the quality of life on Earth

Objectives

• Determine the acute and long-term physiological and behavioral adaptation to space

• Determine the psychological and sociological implications of space flight

• Determine the crew performance and mission consequences of the physiological, psychological and behavioral adaptation to space

• Develop adequate monitoring techniques and countermeasures

• Verify adequate models and/or analogs for space
INFLIGHT VALIDATION

Training Protocols
Design Requirements
Procedures
Selection Criteria
Other Procedures

Undersea Habitat Model
- Contained Link w/Outside EVA-Type Activity
 - Crew Coordination
 - Group Dynamics
 - Selection & Training
 - Immunology Studies*
 - Environmental Monitoring

Antarctic Model
- Isolation
- Self-Sufficiency
- Very Long-Duration
 - Psychological C/I
 - Crew Coordination
 - Group Dynamics
 - Selection & Training
 - Immunology Studies
 - Circadian Rhythms
 - Stress Related
 - Endocrinology
 - Advanced HIF Testing
 - Environmental Monitoring
 - Instrument Testing
 - Galactic Cosmic Radiation

GROUND VALIDATION MODELS

Simulations/Aviation
HYPOTHESIS TESTING
Computer Modelling

Feedback

Hypothesis

BASIC RESEARCH

* if longer than 2 weeks
Justification for Using the Antarctic as an Analog

- Similarities Between Extended Duration Space Missions and Antarctica Conditions
 - Long Duration
 - Extreme Environments
 - Isolated Location
 - Delayed Communications
 - Confinement
 - Small Group Dynamics
 - Diverse skill mix
 - Various Nationalities
Goal

- To use the Antarctic as an analog for space exploration to study human behavior and performance, physiology under stress, and environmental health.

Areas of Research Interest

- Space Human Factors
- Human Physiology
- Environmental Health
NASA Proposed Biomedical Research in the Antarctic (Continued)

- **Space Human Factors**
 - Crew Selection and Training
 - Isolation
 - Psychological Support/Countermeasures
 - Human-Machine Interactions
 - Work Station/Habitability Requirements
 - Workload
 - Small Group Dynamics
 - Command and Control Structure
 - Crew Composition: Gender, Nationality, Skill Mix

- **Human Physiology**
 - Stress-Related Endocrinology/Immunity issues
 - Circadian Rhythms and Sleep Disorders
 - Sedentary Issues Related to General Fitness/Motivational Aspects of Exercise

- **Environmental Health**
 - Microbiology and Toxicology Issues
 - Epidemiology of Infectious Diseases
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Meeting of the Science Working Group</td>
<td>October 11-12, 1990</td>
</tr>
<tr>
<td>NASA/NSF Research Announcement Release</td>
<td>March 1, 1991</td>
</tr>
<tr>
<td>Proposal Submission Deadline</td>
<td>June 1, 1991</td>
</tr>
<tr>
<td>Investigation Selection</td>
<td>Summer 1991</td>
</tr>
<tr>
<td>Investigation Initiation</td>
<td>Fall 1991 (FY92)</td>
</tr>
</tbody>
</table>
Charge to the Committee

The NASA/NSF Science Working Group is charged with defining specific science requirements and priorities for biomedical research to be conducted using the Antarctic as an analog for space exploration.
Attachment 9