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FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and
created to investigate the effectiveness of software engineering technologies when applied to
the development of applications software. The SEL was created in 1976 and has three
primary organizational members:

NASA/GSFC, Software Engineering Branch
University of Maryland, Department of Computer Science
Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effect of various methodologies, tools, and models on this -
process; and (3) to identify and then to apply successful development practices. The
activities, findings, and recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of reports that includes this document.

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771
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SECTION 1—-INTRODUCTION

This document is a collection of selected technical papers produced by participants in
the Software Engineering Laboratory (SEL) from October 1991 through November
1992. The purpose of the document is to make available, in one reference, some results
of SEL research that originally appeared in a number of different forums. This is the
10th such volume of technical papers produced by the SEL. Although these papers cov-
er several topics related to software engineering, they do not encompass the entire
scope of SEL activities and interests. Additional information about the SEL and its
research efforts may be obtained from the sources listed in the bibliography at the end
of this document.

For the convenience of this presentation, the 11 papers contained here are grouped into
5 major sections:

e  The Software Engineering Laboratory
e  Software Tools Studies

e  Software Models Studies

e  Software Measurement Studies

e  Ada Technology Studies

The first section (Section 2) presents a paper that characterizes the SEL as an experi-
ence factory and summarizes major lessons learned in the past 15 years. Studies on au-
tomated tools to aid in reuse and experience-based software management appear in
Section 3. Section 4 includes studies on models for reuse, verification and testing phase
optimization, effective management of maintenance phase changes, the software spec-
ification process, and the analysis of high-cost modules. Section 5 presents a study of
maintenance measurement as it applies to the SEL. Finally, a study on the use of mixins
in Ada and a summary of the performance of Ada within the SEL are included in
Section 6.

The SEL is actively working to understand and improve the software development
process at Goddard Space Flight Center (GSFC). Future efforts will be documented in
additional volumes of the Collected Software Engineering Papers and other SEL publica-
tions.

1-1
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SECTION 2—THE SOFTWARE ENGINEERING LABORATORY

The technical paper included in this section was originally prepared as indicated below.

e  “The Software Engineering Laboratory—An Operational Software Experi-
ence Factory,” V. Basili, G. Caldiera, F McGarry, et al., Proceedings of the
Fourteenth International Conference on Software Engineering (ICSE 92),
May 1992
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THE SOFTWARE ENGINEERING LABORATORY—AN OPERATIONAL SOFTWARE

EXPERIENCE FACTORY
Victor Basili and Gianluigi Caldiera Frank McGarry and Rose Pajerski Gerald Page and Sharon Waligora
University of Maryland National Acronautics and Space Administration/ ~ Computer Sciences Corporation
Goddard Space Flight Center
ABSTRACT ability models). However, there has been very kLittle modeling of

For 15 years, the Software Engineering Laboratory (SEL) has been
carrying out studies and experiments for the purpose of understand-
ing, assessing, and improving software and software processes
within a production software development environment at the Na-
tional Acronautics and Space Administration/Goddard Space Flight
Center (NASA/GSFC). The SEL comprises three major organiza-
tions:

* NASA/GSFC, Flight Dynamics Division
o  University of Maryland, Department of Computer Sci-

ence
e Computer Sciences Corporation, Flight Dynamics

Technology Group
These organizations have jointly carried out several hundred
software studics, producing hundreds of reports, papers, and
documents, all of which describe some aspect of the softwarcen-
gineering technology that has been analyzed in the flight dy-
namics environment at NASA. The studies range from small,
controlled experiments (such as analyzing the effectiveness of
codereading versusthat of functional testing) tolarge, multiple-
project studies (such as assessing the impacts of Ada on a pro-
duction énvironment). The organization’s driving goal istoim-
prove the software process continually, so that sustained
improvement may be observed in the resulting products. This
paper discusses the SEL as a functioning example of an opera-
tional software experience factory and summarizes the charac-
teristics of and major lessons learmed from 15 years of SEL
operations.

1. THE EXPERIENCE FACTORY CONCEPT

Software engineering has produced a fair amount of research and
technology transfer in the first 24 years of its existence. People
have built technologies, methods, and tools that are used by many
organizations in development and maintenance of software
systems.

Unlike other disciplines, however, very little rescarch has been
done in the development of models for the various components of
the discipline. Models have been developed primarily for the
software product, providing mathematical models of its function
and structure (e.g., finite state machines in object-oriented design),
or, in some advanced instances, of its observable quality (e.g., reli-
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scveral other important components of the software engineering
discipline, such as processes, resources, and defects. Nor has much
been done toward understanding the logical and physical in-
tegration of software coginecring models, analyzing and evaluating
them via experimentation and simulation, and refining and tailoring
them to the characteristics and the needs of a specific application
environment. ]
Cuireatly, research and technology transfer in software engineering
are done mostly bottom-up and inisolation. Toprovide software engi-
neering with arigorous, scientific foundation and a pragmatic frame-
wotk, the following are needed [1):
e A top-down, i evolutionary framework in
which research can be focused and logically integrated to
produce models of the discipline, which can thea be
evaluated and tailored to the application environment
*  An experimental laboratory associated with the software
artifact that is being produced and studied to develop and
refine comprehensive models based upon measurement
and evalnation
The three major concepts supporting this vision are
s A concept of evolution: the Quality Improvement Para-

digm (2}

e A concept of measurement and control: the Goal/
Question/Metric Approach [3]

e A concept of the organization: the Experience Factory
(4]

The Quality Improvement Paradigm is a two-feedback Joop
process (project and organization loops) that is a variation of the
scientific method. It consists of the following steps:
o  Characterization: Understand the environment based
upon availsble models, data, intuition, etc., so that simi-
larities to other projects can be recognized
»  Planning: Based on this characterization:
~  Set quantifisble goals for successful project and or-
ganization performance and improvement

~  Choose the appropriate processes for improvement,
and supporting methods and toolstoachieve the goals
in the given environment

»  Execution: Perform the processes while constructing the
products and provide real-time project feedback based on
the goal achicvement data

e  Packaging: At the end of each specific project:

—  Analyze the data and the information gathered to
evaluate the current practices, determine problems,

TORANS R gD
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record findings, and make recommendations for
future project improvements

—  Package the experience gained in the form of updated
and refined models and other forms of structured
knowledge gained from this and prior projects

—~  Store the packages in an experience base so they are
available for future projects

The Goal/Question/Metric Approach is used to define measure-
ment on the software project, process, and product in such a way that

¢ Resulting metrics are tailored to the organization and its
goals

*  Resulting measurement data play' a constructive and
instructive role in the organization

e Metrics and their interpretation reflect the quality values
and the different viewpoints (developers, users, opera-
tors, etc.)

Although originally used to define and evaluate a particular project
in a particular environment, the Goal/Question/Metric Approach
can be used for control and improvement of a software project in
the context of several projects within the organization [5,6).

The Goal/Question/Metric Approach defines a measurement model
on three levels:

e  Conceptuallevel (goal): A goal is defined for an object,
fora variety of reasons, with respect to various models of
quality, from various points of view, and relativeto a par-
ticular environment

*  Operational level (question): A set of questions is used
to define models of the object of study and the focuses
on that object to characterize the assessment or achieve-
ment of a specific goal

¢ Quantitativelevel (metric): A setof metrics,based onthe
models, is associated with every question in order to an-
swer it in a quantitative way

The concept of the Experience Factory was introduced to institu-
tionalize the collective learning of the organization that is at the
root of continual improvement and competitive advantage.

Reuse of experience and collective leaming cannot be left to the
imagination of individual, very talented, managers: they become a
corporate concem, like the portfolio of a buxiness or company
asscls. The experience factory is the organization that supports
reuse of experience and collective leamning by developing, updat-
ing, and delivering, upon request to the project organizations, clus-
ters of competencies that the SEL refers to as experience packages.
The project organizations offer to the experience factory their
products, the plans used in their development, and the data gath-
ered during development and operation (Figure 1). The experience
factory transforms these objects into reusable units and supplies
them to the project organizations, together with specific suppont
that includes monitoring and consulting (Figure 2).

The experience factory can be a logical and/or physical organization,
but it is important that its activitics are scparated and made inde-
pendent from those of the project organization. The packaging of
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EXPERIENCE

PROJECT ORGANIZATION FACTORY
PROJECT/ENVIRONMENT CHARACTERISTICS .
CHARACTERZE
SET GOALS
PROCESS TALORABLE GOALS. PROCESSES, TOOLS,

PRODUCTS, RESOURCE MODELS, DEFECT
MODELS FAOM SIMILAR PROJECTS

EXECUTION PLANS
PROJECT ANALY SIS, PROCESS.
MODIFICATION. ETC.
EXECUTE
PROCESS
COLLECT DATA

DATA, LESSONS LEAANED, ETC.

Figure 1. Project Organization Functions
PROJECT
ORGANZATION EXPERIENCE FACTORY
m&:c!s. MODELS,
LESSONS

PRODUCTS, LESSONS EXPERIENCE
M.sl'uum. Base

Figure 2.  Experience Factory Functions

experience isbased ontenctsandtechniquesthatare different fromtl
problem solving activity used in project development [7].

On the one hand, from the perspective of an organization producir
software, the difference is outlined in the following chart:

PROJECT ORGANIZATION EXPERIENCE FACTORY
(Problem Solving) (Experience Packaging)
Decomposition of a problem into | Unification of different solutions
simpler ones and redefinition of the problem
Instantiation Generalization, formalization
Designfimplementation process Analysisfsynthesis process
Validation and verification Experimentation




On the other hand, from the perspective of software engineering
research, there are the following goals:

PROJECT ORGANIZATION EXPERIENCE FACTORY
(Problem Solving) (Experience Packaging)
Develop representative languages for | Develop techniques for
products abstraction
processes gencralization
tailoring
formalization
analysis/synthesis
Develop techniques for Experiment with techniques
design/implementation
data collection/validation/
analysis
validation and verification
Build automatic support tools Package and intcgrate for reuse
experimental results
processes/products

In a correct implementation of the experience factory paradigm, the
projects and the factory will have different process models.
project will choose its process model based on the characteristics of
the software product that will be delivered, whereas the factory will
define (and change) its process model based upon organizational
and performance issues. The main product of the expezience fac-
tory is the experience package. There are a variety of software
engineering experiences that can be packaged: resource baselines
and models; change and defect baselines and models; product
basclines and models; process definitions and models; method and
technique models and evaluations; products; lessons leamed; and
quality models. The content and structure of an experience pack-
age vary based on the kind of experience clustered in the package.
There is, genenally, a central element that determines what the pack-
age is: a software lifecycle product or process, a mathematical
relationship, an empirical or theoretical model, a data base, etc.
This central element can be used to identify the experience package
and produce a taxonomy of experience packages based on the
characteristics of this central element:

¢ Product packages (programs, architectures, designs)

e Tool packages (constructive and analytic tools)

e Process packages (process models, methods)

*  Relationship packages (cost and defect models, resource

models, etc.)
*  Management packnges (guidelines, decision support
models)
»  Data packages (defined and validated data, standardized
data, etc.)

The structure and fonctions of an efficient implementation of the
experience factory concept are modeled on the characteristics and
the goals of the organization it supports. Therefore, different levels
of abstraction best describe the architecture of an experience factory
in order to introduce the specificity of cach environment at the right
level without losing the representation of the global picture and the
ability to compare different solutions {8].

The levels of abstraction that the SEL proposesto represent the archi-
tecture of an experience factory are as follows:

*  Referencelevel: Thisfirst and more abstractlevel rep-
resents the activities in the experience factory by
active objects, called architectural agents. They are
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specified by their ability to perform specific tasks and
to interact with each other.

»  Conceptual level: This level represents the interface of
the architectural agents and the flows of data and control
among them. They specify who communicates with
whom, what is done in the experience factory, and what
is done in the project organization. The boundary of the
experience factory, i.e., the line that separates it from the
project organization, is defined at this level based on the
needs and characteristics of an organization. It can
evolve as these needs and characteristics evolve.

¢ Implementation level: This level defines the actual
technical and organizational impiementation of the ar-
chitectoral agents and their connections at the conceptual
level. They are assigned process and product models,
synchronization and communication rules, and appropri-
ate performers (people or computers). Other implementa-
tion details, such as mapping the agents over organiza-
tional departments, are included in the specifications
provided at this level.
The architecture of the experience factory can be regarded as a spe-
cial instance of an experience package whose design and evolution
are based on the levels of abstraction just introduced and on the
ical framework of the improvement paradigm applied
to the specific architecture,
The Software Engineering Laboratory (SEL) is an operating ex-
ample of an experience factory. Figure 3 shows the conceptual
level of the SEL experience factory, identifying the primary archi-
tectural agents and the interactions among them. The remaining
sections describe the SEL implementation of the experience factory
concept. They discuss its background, operations, and achieve~
ments, and assess the impact it has had on the productioa environ-
ment it supports.

TECHNOLOGY
TPaorosaLs
el T ( expermenTeR
ECHNGLOGY
5 1 /
PROBLEMS GOALS, DATA i
SYNTHESZED
/ . mro;umou
DESIGNER/
DEVELOPER J —FEEDBAC
. -~ — MODEL
PACKAGES——___{  paCKAGER g
Figure 3. The SEL—Conceptual Level

2. SEL BACKGROUND

The SEL was established in 1976 as a cooperative effort among the
University of Maryland, the Nationa] Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC), and
Compum'Sc:ences Corporation (CSC). Its goal was to understand
and improve the software development process and its products
within GSEC"s Flight Dynamics Division (FDD). At that time, al-
though significant advances were being made in developing new
technologies (c.g., structured development prmactices, automated
tools, quality assurance approaches, and management tools), there
was very limited empirical evidence or guidance for applying these
promising, yet immature, techniques. Additionally, it was apparent
that there was very limited evidence available to qualify or to



quantify the existing software process and associated products, let
alone understand the impact of specific process methods. Thus, the
SEL staff initiated efforts to develop some means by which the
software process could be understood (through measurement),
qualified, and measurably improved through continually expanding
understanding, experimentation, and process refinement.

This working relationship has been maintained continually since its
inception with relatively little change to the overall goals of the orga-
nization. In general, these goals have matured rather than changed;
they are as follows:

1. Understand: Improve insight into the software process and
its products by characterizing a production environment.

2. Asscss: Measure the impact that available technologies
have on the saftware process. Determine which technolo-
gies are beneficial to the environment and, mostimportant-
1y, how the technologies must be refined to best match the
process with the environment.

3. Package/Infuse: Afteridentifying processimprovements,
package the technology in aform thatallowsittobeapplied
in the production organization.

These goals are addressed sequentially, in an iterative fashion, as
shown in Figure 4.

PACKAGING
- ENVIRONMENTS
« TRAINING PROGRAM
« STANDARDSAOLICIES
ITERATE
ASSESSNG ;m ________________
* TALORING APPROACHES
+ CLEANROOM
+ INSPECTIONS PROCESS
« CAPTURE ADA PROCESS
+ COMPARE TEST TECHMIGUES {FUNCTIONAL, READING,
UNDERSTANDING |+ MPACT OF STANDARDS _ _ _ o ecceecen
WHAT PROCESSES USED
RELATIONSHIP BETWEEN DEVELOPMENT PARAMETERS
+ ERRORCHANGES CHARACTERISTICS
- RESOURCE AND EFFORT CHARACTERISTICS ]
+ HOW MUCH SOFTWARE EXISTS/BUR.T Ii
TIME: -

Figure 4.  SEL Process Improvement Steps

The approach taken to attaining these goals has been to apply
potentially beneficial techniques to the development of production
software and to measure the process and product in enough detail
to quantifiably assess the applied technology. Measures of con-
cern, such as cost, reliability, and/or maintainability, are defined as
the organization determines the major near- and long-term objec-
tives for its software development process improvement program.
Once those objectives are known, the SEL staff designs the experi-
ment; that is, it defines the particular data to be captured and the
questions that must be addressed in each experimental project.

All of the experiments conducted by the SEL have occurred within
the production environment of the flight dynamics software devel-
opment facility at NASA/GSFC. The SEL production environ-
ment consists of projects that are classified as mid-sized software
systems. The average project lasts 2 to 3-1/2 years, with an average
staff size of 15 software developers. The average software size is
175 thousand source lines of code (KSLOC), counting commen-

tary, with about 25 percent reused from previous development
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efforts. Virmally all projects in this environment are scientific
ground-based systems, although some embedded systems have
been developed. Most software is developed in FORTRAN, al-
though Ada is starting to be used more frequently. Other lan-
guages, such as Pascal and Assembly, are used occasionally. Since
this environment is relatively consistent, it is conducive to the
experimentation process. In the SEL, there exists a homogeneous
class of software, a stable development environment, and a con-
trolled, consistent, management and development process.

3. SEL OPERATIONS

The following three major functional groups support the exper-
imentation and studies within the SEL (Figure 5):

1. Software developers, who are responsible for producing
the flight dynamics application software

2. Software engineering analysts, who are the rescarchers
responsible for carrying out the experimentation process
and producing study results

3. Data base support staff, who are responsible for collect-
ing, checking, and archiving all of the information col-
lected from the development efforts

During the past 15 years, the SEL has collected and archived data
on over 100 software development projects in the organization.
The data arc also used to build typical project profiles against
which ongoing projects can be compared and evaluated. The SEL
provides managers in this environment with tools (online and
paper) for monitoring and assessing project status.

Typically, there are 6 to 10 projects simultancously in progress in
the flight dynamics environment. As was mentioned eadier, they
average 175 KSLOC, ranging from small (6-8 KSLOC) to large
(300~ 400 KSLOC), with a few exceeding 1 million source lines of
code (MSLOC). Each project is considered an experiment within
the SEL, and the goal is to extract detailed information to un-
derstand the process better and to provide guidance to future

projects.

To suppont the studies and to support the goal of continually
increasing understanding of the software development process, the
SEL regularty collects detailed data from its development projects.
The types of data collected include cost (measured in effort),
process, and product data. Process data include information about
the project, such as the methodology, tools and techniques used,
and information about personnel experience and training. Product
data include size (in SLOC), change and error information, and the
results of postdevelopment static analysis of the delivered code.

The data may be somewhat different from one project to another
since the goals for a particular experiment may be different between
projects. There is a basic set of information (such as effort and
error data) that is collected for every project. However, as change:
are made to specific processes (¢.g., Ada projects), the detailed dat:
collected may be modified. For example, Figure 6 shows the
standard error report form, used on all projects, and the modifiec
Ada version, used for specific projects where Ada is being studied

As the information is collected, it is quality assured and placed in :
central data base. The analysts then use these data together witl
other information, such as subjective lessons leamed, to analyze th:
impact of a specific software process and to measure and then fees
back results to both ongoing projects and follow-on projects.

The'data are used to build predictive models for future projects an
to provide a rationale for refining particular software proccsse
being used. As the data are analyzed, papers and reports are gene:
ated that reflect results of the numerous studies. Additionally, th

results of the analysis are packaged as standards, policies, trainin
materials, and management tools.



DEVELOPERS SOFTWARE ANALYSTS
(DEVELOP FLIGHT DYNAMICS S/W) (STUDY PROCESS)
DEVELOPMENT MEASURES
STAFF 275-300 (FTE*) FOR EACH PROJECT STAFF  5-10 RESEARCHERS
TYPICAL PROJECT 150-200 KSLOC FUNCTION - SET GOALS/QUESTIONS/
SIZE METRICS
- DESIGN STUDIES/
ACTIVE PROJECTS  6-10 EXPERIMENTS
(AT ANY GIVEN TIME) « ANALYSIS/RESEARCH
: - REFINE SW PROCESS
PROJECT STAFF 15-25 PEOPLE - PRODUCE REPOHRTS/
SIZE FINDINGS
1976-1992 100 PROJECTS REFINEMENTS TO 19761992 250 REPORTS/DOCUMENTS
DEVELOPMENT PROCESS
DATA BASE SUPPORT (MAINTAIN/OA SEL DATA)
STAFF FTE L
2-5 (FTE) I SEL DATA BASE D
FUNCTION - PROCESS FORMS/DATA |
<QA
- RECORD/ARCHNVE DATA | FORMS LIBRARY II]
« MAINTAIN SEL DATA BASE
« OPERATE SEL LIBRARY I o
REPORTS LIBRARY g.
| :
1 e
*FTE = Full-Time Equilavent
Figure 5. SEL Functional Groups

4. SEL DATA ANALYSIS

The overall concept of the experience factory has continually
matured within the SEL as understanding of the software process
has increased. The experience factory goal is to demonstrate
continual improvement of the software process within an environ-
ment by carrying out analysis, measurement, and feedback to
projects within the environment. The steps, previously described,
include understanding, assessment/refinement, and packaging.
The data described in the previous section are used as onc major
clement that supports these three activities in the SEL. In this sec-
tion, examples are given to demonstrate the major stages of the
experience factory.

4.1. UNDERSTANDING

Understanding what an organization does and how that orga-
nization operates is fundamental to any attempt to plan, manage, or
improve the software process. This is especially true for software
development organizations. The following two examples illustrate
how understanding is supported in an operation such as the SEL.

Effort distribution (Le., which phases of the life cycle consume
what portion of development effort) is one baseline characteristic of
the SEL software development process. Figure 7 presents the effort
distributions for 11 FORTRAN projects, by life-cycle phase and by
activity. The phase data count hours charged to a project during
each calendar phase. The activity data count all hours attributed to
a particular activity (as reported by the programmer), regardiess of
when in the life cycle the activity occurred. Understanding these
distributions is important to assessing the similarities/differences
observed on an ongoing project, planning new efforts, and evaluat-
ing new technology.

2-7
10005788L

The error detection rate is another interesting model from the SEL
cavironment. There are two types of information in this model.
The first is the absolute emror rate expected in each phase. By
collecting the information on software ecrrors, the SEL has
constructed a model of the expected error rate in each phase of the
life cycle. The SEL expects about four errors per 1000 SLOC dur-
ing implementation: two during system test, one during acceptance
test, and one-half during operation and maintenance. Analysis of
more recent projects indicates that these absclute error rates are de-
clining as the software development process and technology

improve.

The trend that can be derived from this model is that the error
detection rates reduce by 50 percent in cach subsequent phase
(Figure 8). This pattern seems to be independent of the actual
values of the error rates; it is still true in the recent projects where
the overall error rates are declining. This mode] of error rates, as
well as numerous other similar types of models, can be used to
better predict, manage, and assess change on newly developed
projects.

4.2, ASSESSING/REFINING

In the second major stage of the experience factory, elements of the
process (such as specific software development techniques) arc as-
sessed, and the evolving technologies are tailored to the particular
environment. Bach project in the SEL is considered to be an ex-
periment in which some software method is studied in detail.
Genenlly, the subject of the study is a specific modification to the
standard process, a process that obviously comprises numerous
software methods.
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One recent study that exemplifies the assessment stage involves the
Cleanroom software methodology [9]. This methodology has been
insight into the Cleanroom process and each adding some element
of “refinement” to the methodology for this one environment.

The SEL trained teams in the methodology, then defined a
modified set of Cleanroom-specific data to be collected. The
projects were studied in an attempt to assess the impact that Clean-
room had on the process as well as on such measures as
productivity and reliability. Figure 9 depicts the characteristics of
the Cleanroom changes, as well as the results of the three experi-
ments.

The Cleanroom experiments included significant changes to the
standard SEL development methodology, thereby requiring ex-
tensive training, preparation, and careful execution of the smdies.
Detailed experimentation plans were generated for each of the
studies (as they are for all such experiments), and each included a
description of the goals, the questions that had to be addressed, and
the metrics that had to be collected to answer the questions.

Since this methodology consists of multiple specific methods (e.g.,
box structure design, statistical testing, rigorous inspections), each
particular method had to be analyzed along with the full, integrated,
Cleanroom methodology in general. As a result of the analysis,
Cleanroom has been “assessed” as a beneficial approach for the
SEL (as measured by specific goals of these studies), but specific
elements of the full methodology had to be tailored to better fit the
particular SEL environment. The tailoring and modifying resulted
in a revised Cleanroom process model, written in the form of a
process handbook [10), for future applications to SEL projects.
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That step is the “packaging™ component of the experience factory
process.
43. PACKAGING

The final stage of a complete experience factory is that of pack-
aging. After beneficial methods and technologies are identified, the
organization must provide feedback to ensuing projects by cap-
turing the process in the form of standards, tools, and training. The
SEL has produced a set of standards for its own use that reflect the
results of the studies it has conducted. It is apparent that such
standards must continually evolve to capture modified character-
istics of the process. (The SEL typically updates its basic standard
every 5 years.) Examples of standards that have been produced as
part of the packaging process include:

e Manager's Handbook for Software Development [11]

e Recommended Approach to Software Development [12]
One additional example of an extensive packaging effort in the
SEL is a management tool called the Software Management Envi-
ronment (SME). The concepts of the SME, which is now an opera-
tional too] used locally in the SEL, have evolved over 8 years.
This tool accesses SEL project data, models, relationships, iessons
leamed, and managers’ rules of thumb to preseat project charac-
teristics to the manager of an ongoing project. This allows the
manager to gain insight into the project’s consistency with or devi-
ation from the nomn for the environment (Figure 10). )
This example of “packaging” reflects the empbasis that must be
placed on making results of software projects, in the foom of
lessons leamned, refined models, and general understanding, easily
available to other follow-on development projects in a pasticular or-
The tool searches the collection of 15 years of experience archived
in the SEL 10 select appropriate, similar project data so that manag-
ers can plan, monitor, predict, and better understand their own
project based on the analyzed history of similar software cfforts.

As an example, all of the error characteristics of the flight dynamics
projects have resulted in the emror model depicted in Figure 8,
where history has shown typical software error rates in the different
phases of the life cycle. As new projects are developed and ervor
discrepancies arc routinely reported and added to the SEL data
base, the manager can easily compare error rates on his or ber proj-
ect with typical emor rates on completed, similar projects.
Obviously, the data are environment dependent, but the concepts of
measurement, process improvement, and packaging are applicable
to all environments.

5. ADA ANALYSIS

A more detailed example of one technology that has been studied
in the SEL within the context of the experience factory is that of
Ada. By 1985, the SEL had achieved a good understanding of
how software was developed in the FDD; it had baselined the de-
velopment process and had established rules, relationships, and
models that improved the manageability of the process. It had also
fine-tuned its process by adding and refining techniques within its
standard methodology. Realizing that Ada and object-oriented
techniques offered poteatial for major improvement in the flight
dynamics environment, the SEL decided to pursue experimentation
with Ada.

The first step was 10 set up expectations and goals against which
results would be measured. The SEL'’s well-established baseline
and set of measures provided an excellent basis for comparison.
Expectations included a change in the effort distribution of devel-
opment activitics (¢.g., increased design and decreased testing); no
greater cost per new line of code; increased reuse; decreased main-
tenance costs; and increased reliability (i.¢., lower error rates, fewer
interface errors, and fewer design errors).
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The SEL started with a small, controlled experiment in which two
versions of the same sysiem were developed in parallel: one was
developed in FORTRAN using the standard SEL stroctured meth-
odology, and the other was developed in Ada using an object-
oriented development (OOD) methodology. Because the Ada
system would not become operational, analysts had time to investi-
gate new ideas and leam about the new technology while extracting
good calibration information for comparing FORTRAN and Ada
Pprojects, such as size ratios, average component size, error rates,
and productivity. These data provided a reasonable means for
planning the next set of Ada projects that, even though they were
small, would deliver mission support software.

Over the past 6 years the SEL has comipleted 10 Ada/OOD
projects, ranging in size from 38 to 185 KSLOC. As projects com-
pleted and new ones started, the methodology was continnally
evaluated and refined. Some characteristics of the Ada envi-
ronment emerged early and have remained rather constant; others
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took time to stabilize. For example, Ada projects have shown no
significant change in effort distribution or in error classification
when compared with the SEL. FORTRAN bascline. However,
reuse has increased dramatically, as shown in Figure 11.

Over the 6-year period, the use of Ada and OOD has matured.
Source code analysis of the Ada systems, grouped chronologically,
revealed a maturing use of key Ada features, such as generics,
strong typing, and packaging, whereas other features, such as task-
ing, were deemed inappropriate for the application. Generics, for
example, were not only used more often in the recent systems,
increasing from 8 to 50 percent of the system, but they were also
used in more sophisticated ways, so that parameterization increased
cightfold. Moreover, the use of Ada features has stabilized over the
last 3 years, creating a SEL baseline for Ada development.

The cost to develop new Ada code has remained higher than the
cost to develop new FORTRAN code. However, because of the
high reuse, the cost to deliver an Ada system has significantly

10000467 go21
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Figure 11. Reuse Trends

decreased and is now well below the cost to deliver an equivalent
FORTRAN system (Figure 12).

Reliability of Ada systems has also improved as the environment
has matured. Although the ervor rates for Ada systems, shown in
Figure 13, were significantly lower from the start than those for
FORTRAN, they have continued to decrease even further. Again,
the high level of reuse in the later systems is a major contributor to
this greatly improved reliability.

During this 6-year period, the SEL went through varicus levels of
packaging the Ada/OOD methodology. On the carliest project in
1985, when OOD was still very young in the industry, the SEL
found it necessary to tailor and package their own General
Object-Orented Development (GOOD) methodology [13] for use
in the flight dynamics environment. This document (produced in
1986) adjusted and extended the industry standard for use in the
local environment. In 1987, the SEL also developed an Ada Style
Guide (14] that provided coding standards for the local eaviron-
ment. Commercial Ada training courses, supplemented with lim-
ited project-specific training, constituted the early training in these
techniques. The SEL also produced lessons-leamed reports on the
Ada/OOD experiences, recommending refinements to the method-
ology.

Recently, because of the stabilization and apparent benefit to the
organization, Ada/OOD is being packaged as part of the baseline
SEL methodology. The standard methodology handbooks [11, 12]
include Ada and OOD as mainstream methods. In addition, a com-
plete and highly tailored training program is being developed that
teaches Ada and OOD as an integrated part of the flight dynamics
environment.

Although Ada/OOD will continue to be refined within the SEL, it
has progressed through all stages of the experience factory, moving
from a candidate trial methodology to a fully integrated and pack-
aged part of the standard methodology. The SEL considers it base-
lined and ready for further incremental improvement.

6. IMPLICATIONS FOR THE DEVELOPMENT ORGANI-
ZATION

For 15 years, NASA bas been funding the efforts to carry out
experiments and studies within the SEL. There have been signifi-
cant costs and a certain level of overhead associated with these ef-
forts; a logical question to ask is “Has there been significant bene-
fit?”" The historical infonmation strongly supports a very positive
answer. Not only has the expenditure of resources been a wise
investment for the NASA flight dynamics environment, but mem-
bers of the SEL strongly believe that such efforts should be
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Figure 12. Costs To Develop and Deliver

commonplace throughout both NASA and the software communit
in general. The benefits far outweigh the costs.

Since the SEL’s inception in 1976, NASA has spent approximatel
$14 million dollars (contract support) in the three major suppo:
areas required by this type of study environment: research (defir
ing studies and analyzing results), technology transfer (producin
standards and policies), and data processing (collecting forms an
maintaining data bases). Approximately 50 staff-years of NAS.
personnel effort have been expended on the SEL. During this sar
period, the flight dynamics area has spent approximately $150 mi
lion on building operational software, all of which has been part «
the study process.
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During the past 15 years, the SEL has had a significant impact on
the software being developed in the local environment, and there is
strong reason to believe that many of the SEL studies have had a
favorable impact on a domain broader than this one environment.
Examples of the changes that have been cbserved include the fol-
lowing:

1. The cost per line of new code has decreased only skightly,
about 10 percent —which, at first glance might imply that
the SEL hasfailed at improving productivity. Although the
SEL finds that the cost to produce a new source statement
isnearly ashigh as it was 15 years ago, there is appreciable
improvement in the functionality of the software, as well as
a tremendous increasc in the complexity of the problems
bemgaddmued[lS] Also, there has been an appreciable
increase in the reuse of software (code, design, methods,
test data, etc.), which has driven the overall cost of the
equivalent functionality down significantly. When the
Sﬂ.mmlymmmsthecocttoprodweonenewsource
statement, the improvement is small; but when it measures
overall cost and productivity, the improvement is sig-
nificant.

2. Reliability of the software hasimproved by 35 percent. As
measured by the number of errors per thousand lines of
code (E/KSLOC), flight dynamics software has improved
from an average of 8.4 E/KSLOC in the early 1980s to
approximately 5.3 E/KSLOC today. These figures cover
the software phases through acceptance testing and deliv-
ery to operations. Although operations and maintenance
dataarenotnearly soextensive asthe developmentdata, the
small amount of data available indicates significant
improvement in that area as well.

3. The “manageability” of software has improved dramat-
ically. Inthe Iate 1970s and early 1980s, the environment
experienced wide variationsin productivity, reliability, and
quality from project to project. Today, however, the SEL
has excellent models of the process; it has well-defined
methods; and managers are better able to predict, control,
and manage the cost and quality of the software being
produced. This conclusion is substantiated by recent SEL
data that show a continually improving set of models for
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planning, predicting, and estimating all development
projects in the flight dynamics environment. There no
longer is the extreme uncertainty in estimating such
common parameters as cost, staffing, size, and reliability.
4. Othermeasures include the effort put forth in rework (c.g.,
changing and correcting) and in overall software rense.
These measures also indicate a significant improvement to

the software within this one environment.
In addition to the common measures of software (e.g., cost and reli-
ability), there are many other major benefits derived from a “mea-
surement” program such as the SEL’s. Not only has the under-
standing of software significantly improved within the research
community, but this understanding is apparent throughout the
entire development community within this environment. Not only
have the researchers benefited, but the developers and managers

- who have been exposed to this effort are much better prepared to

plan, control, assure, and, in general, develop much higher quality
systems. One view of this program is that it is a major “training™
exercise within a large production environment, and the 800 to
1000 developers and managers who have participated in develop-
ment efforts studied by the SEL are much better trained and effec-
tive software engineers. This is due to the extensive training and
general exposure all developers get from the research efforts contin-
ually in progress.

In conclusion, the SEL functions as an operational example of the
experience factory concept. The conceptual model for the SEL
presented in Section 1 maps to the functional groups discussed
under SEL opentions in Section 3. The experience base in Fig-
ure 2 is realized by the SEL data base and its archives of man-
agement models and relationships [16). The analysis function from
Figure 2 is performed by the SEL team of software engineering
aaalysts, who analyze processes and products to understand the
environment, then plan and execute experiments to assess and
refine the new technologies under study. Finally, the synthesis
function of the experience factory maps to the SEL ‘s activities in
packaging new processes and technology in a form tailored spe-
cifically to the flight dynamics environment. The products of this
synthesis, or packaging, are the guidelines, standards, and tools the
SEL produces to infuse its findings back into the project orga-
nization. These products are the experience packages of the experi-
ence factory model.

Current SEL efforts are focused on addressing two major questions.
The first is “How long does it take for a new technology to move
through all the stages of the experience factory?" That is, from
mdexstmdmg and baselining the curmrent environment, through
assessing the impacts of the technology and refining it, to pack-

aging the process and infusing it into the project organization.
Preliminary findings from the SEL’s Ada and Cleanroom expe-
siences indicate a cycle of roughly 6 to 9 years, but further data
points are needed. The second question the SEL is pursuing is
“How large an organization can adopt the expenience factory mod-
elT” The SEL is interested in leaming what the scalenp issues are
when the scope of the experience factory is extended beyond a
single environment. NASA is sponsoring an effort to explore the
infusion of SEL-like implementations of the experience factory
concept across the entire Agency.
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Abstract

A cost effective introduction of software reuse tech-
niques requires the reuse of ezisting software developed
in many cases without aiming at reusability. This pa-
per discusses the problems related to the analysis and
reengineering of ezisting software in order lo reuse il
We introduce a process model for component ertrac-
tion and focus on the problem of analyzing and qual-
ifying software componenis which are candidates for
reuse. A prolotype tool for supporting the exiraciion
of reusable components is presented. One of the com-
ponents of this iool aids in understanding programs
and is based on the functional model of correciness.
It can assist software engineers in the process of find-
ing correct formal specifications for programs. A de-
tailed description of this component and an ezample to
demonstrate a possible operational scenario are given.

1 Introduction

Successful reuse of software resources can in-
crease the overall quality and productivity in software
projects by a large factor. Some of the problems that
still limit software reuse are:

1. The difficulty of understanding a given software
product in the absence of its original developers.

2. The scarce availability of reusable objects, even
though there is a tremendous amount of available
software.

3. The difficulty of retrieving, from a large data
base, software components which can best match
the given semantics requirements.

4. The lack of extraction and adaptation techniques
that facilitate the reuse process.

10005788L
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New process models for software development
should substitute the existing ones that are not de-
fined to benefit from or support reuse. These new
models should take advantage of reuse, introduce more
reusable resources, and overcome the existing prob-
lems that limit reuse.

Developing reusable components is generally more
expensive than developing specialized code, because
of the overhead of designing for reusability and main-
taining the component repository. A rich and well-
organized catalog of reusable components is the key
to a successful component repository and a long term
economic gain. Moreover, such a catalog will not be
available to an organization unless it can reuse the
same code it developed in the past. Mature applica-
tion domains, where most of the functions that need to
be used already exist in some form in earlier systems,
should provide enough components for code reuse. For
example, Lanergan and Grasso found rates of reuse of
about 60% in business applications[l]. A technique
for extracting reusable components can improve pro-
ductivity since it provides the software developer with
components that are ready for reuse or need minor .
adaptation. Moreover, it can improve the software
quality as it helps in better understanding these com-
ponents during the extraction process.

In this paper, we use a process model[2] that serves
not only to enhance the development of the project
under consideration but also to organize and plan for
better reuse technology in future projects. This model
splits the traditional life-cycle model into two separate
organizations, the project organization and the expe-
rience factory. In this framework we introduce a pro-
cess model for component extraction and focus on the
problem of qualifying candidate software components
for reuse.

A prototype tool constituting one of the elements
of an integrated system for extracting reusable compo-
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nents is described. This prototype tool helps in under-
standing programs by deriving their specifications and
is based on the functional model of correctness(3, 4].
The tool could be applied tv program fragments as
well as to complete programs and it helps in simul-
taneously checking syntax, static semantics, and gen-
erating specifications. We conclude the paper with
an example to demonstrate a possible operational sce-
nario of the tool.

2 Organizing the component extrac-
tion

Currently, all reuse occurs in the project develop-
ment, where there is a completion deadline and the
top priority is to deliver the system on time. This
makes the objective of developing reusable software,
at best, a secondary concern. Besides, project person-
nel cannot recognize the pieces of software appropriate
for other projects.

We make use of a reuse-oriented model based on
two separate organizations(2]:

e The project organization: Its goal is to deliver
the systems required by the customer. The pro-
cess model can be chosen based upon the charac-
teristics of the application domain, taking advan-
tage of prior software products and experience.

e The experience factory: It supports project
development by analyzing and synthesizing all
kinds of experience, acting as a repository for such
experience, and supplying that experience to var-
ious projects on demand. Within the experience
factory, we can identify various sub-organizations.
One of them is the component factory which
develops reusable components, extracts reusable
components from existing systems, and general-
izes or remodels any previously produced compo-
nent.

Different conceptual architectures can be used for
the component factory(5]. At one extreme there is the
clustered architecture in which all software develop-
ment activities are concentrated in the project organi-
zation and the component factory is dedicated only to
processing already existing software. At the other ex-
treme there is the detached architecture in which the
development activities are concentrated in the com-
ponent factory and the project organization performs
only high-level design and integration. The clustered
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architecture is much closer to the way software is cur-
rently implemented. The development of the compo-
nents is probably faster in the project organization
since there is less communication overhead and more
direct pressure for their delivery. On the other hand,
the components developed are more context depen-
dent. In the detached architecture, there is more em-
phasis on developing general purpose components in
order to serve several project organizations more ef-
ficiently. On the other hand, there are more chances
for bottlenecks and for periods of inactivity due to the
lack of requests from the projects. The detached ar-
chitecture is probably better suited for environments
where the practice of reuse is formalized and mature.
An organization that is just starting with reuse should
probably instantiate its component factory using the
clustered architecture and then, when it reaches a suf-
ficient level of maturity and improvement with this
architecture, start implementing the detached archi-
tecture in order to continue the improvement.

In any case, the extraction of reusable components
is a characteristic activity of the component factory.
The next section will present in detail the features of
this activity, in the framework of a component fac-
tory. Caldiera and Basili[6] have proposed a process
model for the extraction of reusable components in
two phases: the identification phase and the quali-
fication phase (see figure 1). The necessary human
intervention in the second phase is the main reason
for splitting the process in two steps. The first phase,
which can be fully automated, reduces the amount of
expensive human analysis needed in the second phase
by limiting analysis only to components that really
look worth considering.

3 The extraction process
3.1 Identification

Program units are automatically extracted and
made to be independent compilation units. These in-
dependent units are measured according to observable
properties related to their potential for reuse in three
steps. These steps are summarized here:

1. Definition of the reusability attribute model:
A set of automatable measures that captures the char-
acteristics of potentially reusable components is de-
fined along with acceptable ranges of values for these
metrics.

2. Extraction of components: Modular units (e.g.
C functions. Ada subprograms or blocks, or Fortran
subroutines) are extracted from existing software and



completed so that they have all the external references
needed to reuse them independently.

3. Application of the model: The current reusabil-
ity attribute model is applied to the extracted, com-
pleted components. Components whose measures are
within the model’s range of acceptable values become
candidate reusable components to be analyzed in the
qualification phase.

A detailed description of the component identifica-
tion phase, a definition of a basic reusability attribute
model, and an application of this model on several
case studies using a computer-based ‘system have al-
ready been discussed in the literature(6].

ﬁ ______ — 1SR,
Existing Programs @
Components
Repository .
fidmes Gompeatan
Qualified "@'
wie Cornp
Feedback

Figure 1: Component extraction.
3.2 Qualification

The extracted components are analyzed in order

to understand them and record their meaning. The
components are packaged by associating with them a
reuse specification, a significant set of test cases, a set
of attributes based on a reuse classification scheme,
and a set of procedures for reusing the component.
This phase consists of following steps:
1. Formal specification: A précise description of
what the component does is generated and some as-
surance is obtained that the component meets the re-
quirements.

Since formal specifications are based on mathemat-
ical notations, they help in understanding the soft-
ware by removing the ambiguities which might be in-
troduced by any informal notation. Formal specifi-
cations are different from the programs they specify
since they only express the behavior of the program
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without stating how the program derives this behav-
ior. So, formal specifications are the basis for selecting
and storing software components as they improve un-
derstandability and assist in producing more reliable
and higher quality software. Since the specification of
complex tasks may in itself be complex, the process
of specification construction must be formalized and
supported by automated tools. In the next section, we
will describe a prototype tool that aids in understand-
ing programs. This tool provides automated support
for deriving the functional specifications of programs
and proving their partial correctness. In other words,
it helps in proving that the program is consistent with
its specification but does not prove its termination.

Formally specifying a software component and
proving its partial correctness do not mean that the
component will pass this step. There are several other
properties that should exist in the candidate compo-
nents for the sake of understandability. We must not
ignore other important features such as proper docu-
mentation, use of meaningful variable names, and the
structured style of programming. The informal infor-
mation that the software engineer deals with cannot be
ignored relying on the fact that the automated spec-
ifications tools will supplement those features. The
informal information is important in explaining some
intuitive ideas that are hard to explain using formal
specifications.

Since we need both formal and informal informa-
tion, a domain expert is needed to perform the specifi-
cation step. This expert extracts the formal specifica-
tion of each candidate reusable component, assisted by
the automated tools available, and examines the other
informal features that cannot be judged using auto-
mated tools. Components that are not relevant, not
correct, or whose functional specification is not easy
to extract are discarded. The expert reports reasons
for discarding candidates and other insights that will
be used to improve the reusability attributes model.

2. Testing: Test cases are generated, executed and
associated with components. Deriving the functional
specification and proving the correctness of a pro-
gram do not mean that it will not fail when compiled
and/or executed. This might simply be due to the
fact that termination of the program has not been
proven. Moreover, in most verification and specifica-
tion systems, arithmetic operations ignore things such
as overflow, underflow, and round-off errors.

Testing can take advantage of the functional spec-
ification generated by performing functional testing.
Also, structural testing can be done using a cover-
age analyzer. If, as is likely, the component needs a



‘wrapping’ to be executed, the testing step generates
this wrapping. If a component passes the testing then
test cases, wrapping, and test results are stored in the
component repository. Components that do not sat-
isfy the test are discarded. Again, the reasons for dis-
carding candidates are recorded and used to improve
the reusability attributes model and possibly the pro-
cess for extracting the functional specification. This
is most likely the last step at which a component will
be discarded.

3. Packaging: The extracted candidates are stored
in the component repository along with their func-
tional specifications and test cases. The component
repository is actually a data base of experience in
which information on software products, processes,
and measures of aspects of them is stored. That is
why we organize this data base by classifying both the
reusable components and their development histories
according to several domain dependent criteria.

Information for the future reuser is provided in a
manual that contains a description of the component’s
function and interfaces as identified during generation
of its functional specification, directions on how to in-
stall and use it, information about its procurement
and support. and information for component mainte-
nance.

At the end of each process cycle the reusability at-
tribute model is updated by drawing on information
from the qualification phase to add more measures,
modify or remove measures that proved ireffective, or
alter the range of acceptable values. This step requires
analysis and possibly even further experimentation.
The taxonomy is updated by adding new attributes
or modifying the existing ones according to problems
reported by the experts who classify the components.

4 The CARE system

4.1 Overview

The CARE[6] system(CARE!: Computer Aided
Reuse Engineering) has been designed to support the
proposed process model for extracting reusable com-
ponents. As shown in figure 2, it consists of two main
subparts: the component identifier and the component
qualifier. The component identifier consists of the
model editor. which helps in defining and modifying
the reusability attributes model, and the component
extractor which applies such model to the programs.

1The CARE system is under development at the Computer
Science Department of the University of Maryland
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The component qualifier consists of the specifier, the
tester, and the packager. The current version of the
CARE system consists of the component extractor and
the specifier. It runs on a Sun Workstation and sup-
ports ANSI C and Ada. In the rest of this section we
focus on the description of the specifier.

2
COMPONENT COMPONENT
IDENTIFIER QUALIFTIER
1.1 2.1
MODEL EDITOR SPECIFIER
2.2
TESTER
1.2
COMPONENT 2.3
EXTRACTOR PACKAGER

COMPONENTS
REPOSITORY

3 L5
METRICS MODELS
LIB B

Figure 2: CARE system architecture.

4.2 The component specification tool

The prototype specifier inciuded in the CARE tool
is the second in a series of prototype tools developed at
the Computer Science Department of the University of
Maryland under the general name FSQ, for Functional
Specification Qualifier. This prototype supports the
derivation of programs specifications and the verifica-
tion of whether or not the programs meet those spec-
ifications. It does not only help to specify and check
the partial correctness of finished programs, but it also
works on unfinished programs and program fragments.
It is a program understanding tool that is based on
a formal specification technique. CARE-FSQ; uses
Mills’ functional model of correctness(3, 4] in order to
derive the specifications. This model requires the user
to provide only the loop function and then a technique
is provided to derive the program specification. Other
techniques(7, 8] require the user to provide an entry as-
sertion, an exit assertion, and a loop assertion. Those
techniques are more useful in verifying that the pro-
gram is consistent with its specification. The process
of deriving specifications helps more in understanding
the software. Moreover, the functional method pro-



vides simple and intuitive notations that can be easily
understood.

The CARE-FSQ; prototype helps in checking syn-
tax, static semantics, and generating specifications at
the same time. CARE-FSQ- also provides the capa-
bility of carrying out some algebraic simplifications
and enables the user to make use of some well defined
mathematical functions in the specification of the loop
function.

4.2.1 Formal foundation: Each statement S is
given a meaning as a function from a program state
to another state. A state is a mapping from the vari-
able names to their current values. The square bracket
notation is used to denote the function represented by
the program construct contained inside the brackets,
i.e. [S] represents the function computed by the state-
ment S. We use four basic structures(3, 4]:

1. Assignment
The meaning of the assignment v := ¢, where v is
a variable and e is an expression, is:

[vi=e€] = {(S,T): T =S except that
[I(T) = [e}(T)}

We can define the meaning of variables and expres-
sions as a mapping from a state to a value.
2. Composition

If A and B are statements and o is functional com-
position, we have:

[4;B] = [A] o (B]
3. Alternation

[if Bthen S fi]= {(U,[S]U): [B{(U) = true}u
{(U,0) " [BXU) = false)

[if B then S) else Sy fil = {(U,[S1)U): [B}(U)
= true} U (U,[S2)U) : [BY(U) = false}

4 Iteration

(while Bdo S od) = {(T.U): 3k >0 :¥0<i<k(
((BI([ST(T)) = true A [BI([SINT)) = false
A[SIHT) = U)}

In other words. the Joop function is undefined for a
state T unless there is a natural number k£ which de-
notes the number of iterations after which the test first
fails. T is then transformed to the k-fold composition
of S on T. In order to carry out practical proofs, the
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following characterizing theorem is needed{9).
Theorem

Let W be the program fragment while B do S od,
Then f = [W] if and only if:

1. domain(f) = domain([W])
2. ([BUT) = false) = f(T)=T
3. f = [if Bthen S filo f

This theorem provides a method for deriving the
correct loop function f:

1. Guess or work out a trial function f.

2. Use the three conditions of the theorem to check
that the trial function is correct.

A trace table can be used to organize the derivation
of program meanings (by a symbolic execution of the
program)(4, 9]. ‘

The strength and weakness of the functional
method, in comparison with other specification tech-
niques, originate from the fact that even though exact
functions state accurately the meaning of a loop, they
are harder to work with than the weak assertions that
suffice when there is a loop initialization providing a
precondition.

4.2.2 The implementation: CARE-FSQ. is im-
plemented using the Synthesizer Generator[10]) and
Maple, an interactive algebraic symbolic executor(11].
An overview of the tool is shown in figure 3. The
Synthesizer Generator requires as an input a descrip-
tion of an attribute grammar and generates from it
a hybrid language-based editor that allows a combi-
nation of text editing and structure editing. As the
user edits program text and annotations, the system
creates and edits abstract syntax trees that represent
pieces of programs and their specifications. The at-
tributes of the nodes of this tree carry information
about the static semantics of the program as well as
its specifications, and they are evaluated incremen-
tally. The basic feature of Maple is its ability to sim-
plify expressions involving unevaluated elements. As
each complete statement is entered by the user, it is
evaluated and the results are printed on the output
device. Maple enables carrying out algebraic simpli-
fications during the symbolic execution. In order to
overcome the limitations of Maple in the evaluation
of boolean expressions, CARE-FSQz has an interac-
tive feature that allows the user, before writing the
specifications, to simplify boolean expressions and the
expressions containing array notations.



C Utility Language
Functions Based Editor
(SE) (LE)
Maple

Maple Procedures

Figure 3: Overview of CARE-FSQ;.

In a typical CARE-FSQ; session, the user derives
the specifications of the program using step-wise ab-
stractions. In other words, the user starts by trying to
find the correct specification of every loop in the pro-
gram as a separate entity. After succeeding in this,
the correct specification of the whole program can be
found. This methodology of step-wise abstraction en-
abies the software engineer to concentrate on small
pieces of code, one at a time, and to mitigate in this
way the difficulty of specifying the whole program.

Currently, CARE-FSQ, supports a subset of Ada
with modifications on the input/output mechanism.
The data types supported are integer, boolean, char-
acter, a restricted form of floating point, constrained
arrays, and user defined data types. The basic control
structures of Ada are supported except unconditional
‘go to’ statements, and case statements. Static se-
mantic checking is also included. A brief description
of the input/output mechanism and the specification
language is given in the rest of this subsection.

Input and output is done through atomic and
stream ports{12]. A subprogram, called an elementary
process, accepts input data from input ports, performs
computation specified with an Ada-like notation, and
returns results through output ports. The input and
output of single data items can be carried out through
atomic ports. Stream ports are used as schemes for
data types whose elements can be accessed in a linear
order. The stream ports of one process can be bound
to particular data types to produce the implementa-
tion. Input and output ports can be bound to files
to communicate with the system. This form of data
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abstraction helps in making the specification process
more general and easier. The following seven opera-
tions are defined for atomic and stream ports:

1. Receive(p): To Receive a value via the input port
p from the source associated with the port.

. Send(p): To Send a value via the output port p
to the destination associated with the port.

Initialize(p): To open the stream associated with
the stream port p for reading.

Receive(p, v): To receive a value into a variable
v from the stream associated with the input port

p.

. Send(p, v): To send the value of variable v to the
stream associated with the output port p.

. isEOS(p): A boolean function to check if end of
stream is reached in the input stream port p.

. Finalize(p): To close the stream associated with
the port p. The effect of finalization for an output
stream port is that the function isEOS becomes
true at the consumer process.

The specifications for CARE-FSQ2 are written us-
ing guarded command sets whose syntax is:

< guarded command set > ::=
< guarded command >
{| < guarded command >}

< guarded command > ::=
< boolean expr > —
< concurrent assignment >

< concurrent assignment > 1=
<var > :=<ezpr> | <var >,
< concurrent assignment > , < expr >

A concurrent assignment is an extension of the assign-
ment statement where a number of different variables
can be substituted simultaneously. The concurrent
assignment statement is denoted by a list of differ-
ent variables to be substituted at the left hand side
of the assignment operator and an equally long list of
expressions as its right hand side. The ith variable
from the left hand list is to be replaced by the ith ex-
pression from the right hand list. The expressions can
include calls to some mathematical functions such as
min, max, product, sum, factorial, iged (greatest com-
mon divisor), irem (remainder), and iquo (quotient).



An array is considered to be a partial function from
subscript values to the type of array elements. The
command a(i) := e assigns a new function to @, a
function that is the same as the old one except that at
the argument i its value is e. The notation (a,t,¢) is
used to denote the array that is the same as a except
when applied to the value i yields e. The notation
(a,indez = m..n,e) is used to denote the array that
is the same as a except when applied to index values
between m and n, i.e. m < indezx < n, it yieldse. The
expression e can be a function of the bound variable
indez. To make the two notations consistent, (a,1,¢)
is written (a,index i,e) where indez is a bound
variable. The notation defined for arrays are used for
stream ports as well. A stream port is treated as an
array whose subscript is of type integer with the first
element subscript being one.

(x:in integer atomlc

ey i
zi out

s y:in integer

pc1: integer;
1: integer;

a: integer;

b: integer;

n
Reccive(x);
Receive(y);
X1 -
¥li-y;
(tue —> x1, ¥yl =min(xl, yl), min(x1,y1))
whilexl /-yl loop
ifx1l >yl then
X1 :~x1—1;
elzse
yl:i=yl-1;
end If;
end loop;
L:i=1;
a=xl;
{a >0 ->6a,b:~0,b* foctorial(a)
l@ «~0 —->1)
while s > O loop
b:i=bL"™a;
aea-1;
end loop;
z:=b;
Send(z);
d;

P& o

aBAD 2 3

Posmitlioned ac name

oD

Figure 4: The program to be specified.

4.2.3 Example: We describe a short example, due
to the space limitation, to demonstrate a sample re-
sult obtained using CARE-FSQ-. In order to find the
correct specification of a while loop, the user should
annotate it with a trial loop function enclosed between
two curly braces. CARE-FSQ, assists the user in ver-
ifying the correctness of the loop specification by cal-
culating the composition [if ‘B then S fiJo f. The
user, on the other hand, must ensure that the three
while loop verification conditions are satisfied. After
verifying all the wihile loops in the program, the user

10005788L

expr ;: (x1-yl < 0 or yl-x1 < 0) and yl-x1 < 0
Mould you like to simplify this expression? (y/nl:
Enter the simplified expression: yl < x1

expr ¢ (x1-yl < 0 or yi=x1 < 0> and not yi-x1 < 0
Would you like to simplify this expression? [u/nl:
Enter the simplified expression: yl > xi

expr ¢ not {xi-yl < 0 or yl-x1 < O

lould you like to simplify this expression? l[y/nl:
Enter the simplified expression: yl = x1

The sumbolic execution result is :

yl < x1 -
x1, ¥l :=
min{xi-1,yl). min(xi-1.41)

>xi =
x1, 4l =
min(x1,yl1-1), min{x1.ul-1)

gl

= x1 ->
x1, yl :=
min{x1,yl?, min{xi,yl’

Figure 5: Finding the specification of the first loop.

<0 and ~3+1 < 0
like to simplify this expression? [y/nl: y
simplified expression: a > 1

expr : -3
Would uou
Enter the

<0 and a-1 <= 0
like to simplify this expression? [y/nl: y
simplified expression: a

expr : -a
Would you
Enter the

expr : not ~a < 0 and a <= 0
Would you like to simplify this expression? [y/nl: y
Enter the simplified expression: a <= 0

The symbolic execution result is @

a>1-=
a, b :=
0, bsGAMMAR(a+l>

a=1->
a, b :=
a-1, bea

I
a <=0 -

3, b s=
a, b

Figure 6: Finding the specification of the second loop.

can proceed to find the functional meaning of the
whole program.

Figure 4 shows a program that receives two integers
as input , finds their minimum, calculates its factorial



if it is positive, and then saves the result in z. First,
the verification conditions of the two while loop have
to be checked. Hence, we let CARE-FSQ; print the
composition [if B then S fi] o f to assist us in this
process. Before printing the results of the composi-
tion, the user is prompted to enter his simplifications
for some expressions if he/she desires(see figures 5 and
6).

Since the three verification conditions are satisfied
for both loops, we can therefore proceed to find the
functional meaning of the whole program which is
shown in figure 7.

The symbolic execution result is 3

-mini{x,y> < 0 ~>
x, Y, z, x1, yl, a, b :=
x, W, GRMMA(mIN(x,yd+*1), min{x.,y>.
mini{x,y>., O, GAMMA(min(x yl+1>

1
min{x,y) <= 0 =>

X, Y, Z, x1, yl, a,
x, Y. 1. mindx.y>, min(x,.yd), min(x,y>, 1

o=
=

Figure 7: Specification of the whole program.

5 Conclusion

In this paper, we have presented a process model
for extracting reusable components. It first identifies
these components using software metrics, then it qual-
ifies them. We have focused on the qualification phase
which generates their formal specifications, generates
a significant set of test cases, and packages them for
future reuse. We have then described the specifica-
tion tool of the qualification phase, CARE-FSQ;, that
helps in understanding programs by generating their
correct formal specifications. Further research needs
to be done in order to be able to qualify and tailor
large programs for reuse.
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Abstract

To effectively manage a software development project, the software manager must have ac-
cess to key information concerning a project’s status. This information includes not only data
relating to the project of interest, but also, the experience of past development efforts within the
environment. This paper describes the concepts and functionality of a software management tool
designed to provide this information. This tool, called the Software Management Environment
(SME), enables the software manager to compare an ongoing development effort with previous -
efforts and with models of the “typical” project within the environment, to predict future project
status, to analyze a project’s strengths and weaknesses, and to assess the project’s quality. In
order to provide these functions the tool utilizes a vast corporate memory that includes a data
base of software metrics, a set of models and relationships that describe the software develop-
ment environment, and a set of rules that capture other knowledge and experience of software
managers within the environment. Integrating these major concepts into one software manage-
ment tool, the SME is a mode] of the type of management tool needed for all software develop-

ment organizations.

Keywords: software management, measurement, reuse of experience, management tools

1.0 Background

Good software management is generally viewed as a critical ingredient in successful soft-
ware projects. One key aspect of good management is having access to the data that are neces-
sary to understand the strengths and weaknesses of an ongoing development effort. To provide
such access, a myriad of management-oriented tools have been developed. These tools typically
allow the software manager to perform cost and size estimation, to plan a development project,
to set up work-breakdown structures, and to provide other planning needs. Such tools are cer-
tainly useful, yet they do not provide the full scope of functionality required for a manager to ef-
fectively evaluate a software project.

Ideally, an experience-based software management tool would enable a manager to observe
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a project’s progress, to compare that progress with other projects or with a model of how a
project “normally” behaves, to predict key project parameters such as size, completion date, or
errors, to assess the project’s progress pointing out its strengths and weaknesses, and to analyze
the quality of the software project and the software product. In order to provide this
functionality, the tool would require access to key data relating to a project's status and to the
past experience necessary to understand and manage the ongoing project. Included in this
knowledge and experience is a data base of software metrics, a set of models of a development
environment, a set of management rules that provide insight into a project’s strengths and weak-
nesses, a set of quality definitions, and a set of relationships that help to define an environment’s
characteristics. Such a management tool would integrate this experience into a single environ-
ment providing the functionality required to actively monitor a software project.

A working model of the managefncnt tool described above is being developed within the
Software Engineering Laboratory (SEL) at NASA's Goddard Space Flight Center (GSFC). This
tool, called the Software Management Environment (SME) uses software measurement and the
experience acquired frérn software measurement as its basis. Other tools either are being or have
been developed that utilize measurement as a major component. These tools include TAME [1],
Amadeus[2], and GINGER[3]. SME is a unique experience-based tool because it focuses on
utilizing the measurement and the experience of a measurement program to automate support for
project managers in actually monitoring the progress of their projects. While the SME has been
constructed for a specific development environment, the concepts, architecture, and functionality
of the tool, which are described in this paper, are general enough for any organization to build a
similar tool. This paper will discuss the management activities that the SME addresses, the
components needed to build an SME, and how these components are integrated to provide the

management functions described.

3.12
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2.0 Management Activities

In order for the SME to be an effective tool, it must automate key management functions.
While the current SME is not comprehensive in its coverage of all management functions, it does
provide support for many important aspects of software management. The SME utilizes a
measurement-based approach to software management. Within this approach reusing
management experience is viewed as an important aspect of the management process. This

experience-based approach to management includes the following activities:

Observation and Comparison: The manager monitors the progress of a project by examining
key project measures such as effort, size, and errors. The manager compares the status of the
current project with past projects and with models of these measures that represent the nominal
case within the environment. By observing and comparing, the manager is able to determine the
current project's status and the differences between the current project and the normal project

within the environment.

Prediction and Estimation: The manager estimates key project parameters such as project cost
and size. The manager also, uses various models and relationships to continually update these
predictions. These activities allow the manager to determine at-completion values for important

measures and to estimate project schedule.

Analysis: Based on the measurement data, past project experience, and subjective information

about a project, the manager identifies potential project problems.

Assessment: Using available measurement data and definitions of project quality, the manager
asscsscé the overall quality of the ongoing project. For example, these quality assessments
provide the manager with an idea of the project's maintainability, correctability, and stability.

3413
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A software tool should only attempt to avtomate aspects of a process that are understood
well enough to perform manually; in the case of SME, all of the activities described above are
carried out on projects within this development environment. In fact, such activities are part of
the normal management process. The SME integrates data and experience into one tool that

provides managers with functions that help them to perform these activities.

3.0 The Software Management Environment (SME)

The Software Engineering Laboratory (SEL) has actively been developing the management
concepts that are the basis for the SME for the past 15 years. A prototype of the tcol was devel-
opec. between 1984 and 1987, this prototype provided a set of recommendations ror developing
an actual version of the tool.{4] This set of recommendations was then incorporated into ihe ac-
-ual development of the SME, which began in 1987. The remainder of this section will discuss

thie SEL and the concepts that are the underlying ideas fcr the SME.
3.1 The Software Engineering Laboratory

‘The SEL was established in 1976 and has three primary organizational members:
NASA/GSFC, Software Engineering Branch; The University of Maryland, Computer Science
Department; and The Computer Sciences Corporation, Software Engineering Operation. The
goals of the SEL are (1) to understand the software development process in the GSFC environ-
ment; (2) to measure the effects of various methodologies, tools, and models on this process; and
(3) to identify and then o apply successful development practices.[S] During the SEL’s 15 years
it has collected data on over 100 software development projects. These data include such items
as software development effort, software size, er-or data, change data, and computer utilization

data and are stored in a large repository called the SEL data base.(6] This data base has been

3-14
10005788L



used throughout the past 15 years to help the SEL to accomplish its three objectives. In the pro-
cess of studying and measuring this particular development environment the SEL has produced
numerous reports and papers which characterize this environment, evaluate various tools and
methods, and capture experience and lessons learned in various software development efforts.
(For a complete list of SEL documents and reports see the "Annotated Bibliography of Software
Engineering Literature”.[7])

Throughout the SEL’s history, this software measurement program has been used extensive-
ly in the management of actual software projects. Such use of measurement data is common
among companies that have instituted measurement programs (eg. reference [8]). As this use of
measurement as a management tool evolved, the SEL began attempts to automate the process.
Such automation is only possible through a comprehensive understanding of how to use software
measurement data within a particular development environment. Within the SEL environment,
software managers use not only the data collected on their current project, but also, the
information and experience from past projects. The studies and reports characterizing the
environment provide the manager with profiles of how particular measures behave, numerous
relationships for estimation and prediction of such measures, and lessons learned concerning
how to analyze measurement data. Automating the access to this vast corporate resource is the

goal of the SME.

3.2 SME Concepts

Understanding the SME requires a firm understanding of the three major components that
are the basis for the tool. The first is the SEL data base, it provides the historical data of past
projects, as well as the dynamic data on projects that are currently being managed. The second,
is a set of models and relationships that describe the development environment. These models
and relationships provide the profile of a normal project, as well as the necessary information to

predict and estimate key project parameters. Finally, experienced software managers analyze
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measurement data to determine a project's strengths and weaknesses. The knowledge required to
perform this analysis is captured in management rules that provide the expert analysis portion of
the SME. These three SME concepts provide the experience base needed for an organization to
construct an SME-like tool.

An important aspect of these SME concepts is that the experience they represent continually
evolves as the development environment and process changes. The SME packages the current
level of experience; as it changes, the experience base is refined to reflect these changes. The
representation of the experience, however, does not change. Therefore, the key aspect of the
SME, from the perspective of someone who wishes to build a similar tool, is the concepts and

the architecture of those concepts, not the experience itself.

W Sur

Measurement of the software development process and its products is a necessary compo-
nent of successful software management. Within the SME, data from the SEL data base is uti-
lized to provide the underlying measuremcm.data. The SEL data base captures information on
all software projects within one particular development environment. This data includes such
items as the weekly effort expended on a project, the size of the ongoing software project (in
both lines of code and number of modules), the amount of computer utilization on a project, and
the number of errors uncovered as well as the number of changes made to the source code. In
addition to these basic measures, the SEL data base contains data on such items as number of
modules designed, number of open problem reports, and the amount of time spent uncovering
and repairing errors. While these lists of data are not complete, they do provide a snapshot of the
types of data available to the SME.

The SME uses the data from the SEL data base as a basis for all of its analysis, comparison,
prediction and assessment. The data provide the information that characterize and describe the
current software development project as well as past projects of interest. Having access to so

much descriptive data allows the SME to provide its wide range of functionality. Thus, software
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measurement is the backbone of the SME. Measurement provides the basis for all other SME

concepts; neither the management rules nor the models and relationships would be possible

without it.

Models and Relationshi

The second compbnent of the SME is the models and relationships that represent the soft-
ware development process and its products. The models and relationships used within the SME
and presented within this paper are derived from numerous previous SEL reports and studies. A
summary of the types of models and relationships used can be found in the document "The
Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules".[9]

The term model is used to describe a pattern of how some measure or combination of
measures normally behaves within a software development environment. Measurement models
have been described in numerous SEL reports and papers, but they have generally all been
developed using similar methods. Typically, a model for some particular measure is developed
by examining the data for that measure over a set of similar projects. The data is then combined,
usually using some type of averaging, to develop a model of the “normal” project. Since even
within one environment all projects may not be homogeneous, different models for the same
measure are developed for significantly different project types. Within the SME, there are
currently two different model types, depending on the development methodology used on the
projects. Other models may need to be developed depending on such parameters as project type,
programming language, or development environment. Deciding what different factors constitute
a distinct model type is an important research component of developing an SME. Certainly, each
individual project is distinct, but usually projects within a development environment have many
similarities that result in reasonable models.

As an example of a model that is used by SME, Figure 1 shows how source code grows
within the SEL environment. (For the purposes of this paper, there is no need to distinguish

between various model types.) It provides a representation of the typical growth of the number
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of source lines of code within a project’s controlled library. The wide band indicates a range of
what is considered to be “normal” source code growth. (In this case the range is one standard
deviation on either side of the actual model.) As another example, figure 2 is the model of error
rate for the SEL environment. This model shows the typical errors uncovered and repaired per
line of code within the environment throughout a project’s lifetime. Again, the band represents a
range over which the error rate is considered “normal.” (In both Figures 1 and 2, lines of code is
defined as physical lines including commentary and blank lines. In Figure 2, error is defined as a
conceptual error in the software.) Another kind of model used within the SME is of the amount
of time spent in each phase of a project. This model is depicted in Figure 3; it provides a mecha-
nism for determining how much calendar time a project normally spends in each phase of the
software development life cycle.

Relationships, on the other hand, provide the SME with a way to estimate critical project
factors based on other estimates, or current status. Relationships are typically developed by
using numerous software development projects' data to determine if any correlation exists
between various measures. Normally, such data analysis is done to test hypotheses that certain
relationships exist between such measures.

As an example, within the SEL environment, a relationship has been found between lines of
code and the actual duration of a project. This relationship is shown as the equation:

D =5.450 * L ** 0.203
where,

D is the duration of the project in months (from project start through acceptance test), and

L is the total delivered lines of code in thousands.

Such a relationship allows a manager to estimate the length of a project based on an estimate of
the number of lines of code for that project. Other relationships have been established between
computer use and lines of code, effort and number of modules, etc. Such relationships provide a

software manager both a mechanism for estimating various parameters and a consistency check

for sets of estimates.

3-18
100057881



% of Total LOC

100.

7S.

S0.

25.

Schedule

Figure 1: Model of Source Code Growth

100.0¥

Errors/10C

0.0020 |—-----

0.0015 |—-----

0.0010 |—----+

0.000S [~---eecee-e

DESGN

10005788L

Schedule
Figure 2: Modal of Erxrors/Line of Code

3-19



Management Rules
Capturing how experienced software managers use and evaluate measurement data has been
investigated by the SEL.[10] These studies show that using expert systems techniques for the
capture and use of this experience is feasible in this domain. This knowledge about software
measurement has been published in numerous SEL reports and it provides a foundation for creat-
ing an experience base for utilizing software measures in management.[9] The concept of these
software management rules is that interviewing software managers and capturing how they inter-
pret certain conditions of a project provides reusable knowledge concerning the strengths and
weaknesses of a project. These interpretations are then combined into specific management rules
that describe the possible explanations for certain conditions. For example, figure 4 shows a
graphic of a simple management rule. This figure shows how one might interpret a deviation
from the normal pattern of computer use per line of source code (again represented as a model
similar to those described in the previous section). For example, early in the project if the num-
ber of CPU hours per line of code is above normal one possible interpretation is that the design
was not actually complete. Later in a project, if the measure is below normal, the possible expla-
nations might be either low productivity, or insufficient testing. Such a figure provides a simple
representation of a management rule.
Actually, a number of simple management rules can be combined to form rules that describe
the bossibilities that certain explanations are true. For example, a rule such as
If the number of programmer hours per software change is above normal and
the project is early in the code phase then possible explanations are
Good solid, reliable code (0.5)
Poor testing (0.25)
Changes are hard to isolate (0.25)
Changes are difficult to make (0.25).

describes the possible explanations for a certain condition. This rule uses numbers to show the
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certainty that each of the possible consequents are true. Thus, it is more likely that good solid,
reliable code is the explanation for the deviation then poor testing, although either explanation
could be true. This rule is then combined with other rules for other measure deviations to in-
crease the éertainty that particular explanations are correct. Using this method of evaluating
software measures provides a set of possible explanations describing a project’s strengths and
weaknesses. By using sets of rules in this manner, an automated system can examine the

empirical evidence about a project and provide some insight into the project’s status.

4.0 Using the SME

This section describes how the SME utilizes the concepts described above to provide its
functionality. While the concepts of the SME are the most important aspect of the tool,
understanding how to utilize those concepts to provide management support is also of interest.
Attempting to build an SME-like tool requires knowledge of how to integrate the experience into
a useful tool. The examples used are realistic in that they show the actual functionality of the
SME, however, due to the inability to reproduce the color SME images, the graphics images are

in black and white.

Comparison

One major function of the SME is the ability to observe data and compare it to models and
previous development efforts. Figure 5, shows an example of using the SME to compare data to
a model. In this example the manager is looking at the way error rate behaves on the project of
interest. The current project is shown as the solid line and the model is shown as a band of what
is considered “normal” for error rate. The x-axis shows the expected schedule for the project.
That is, the start date and end date shown are the manager’s estimates, however, the other phase

dates shown are the expected phase dates for the project (as calculated by the SME). The tool
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also shows the manager’s estimates for all the phase dates on the top of the screen. The Y-axis
shows the error rate in errors per line of source code in the controlled library. Note that the phas-
es represent a typical waterfall life cycle, with the major phases being design, code and unit test,
system test, and acceptance test. By using this comparison, the manager is able to track such key
items as error rate, productivity, and amount of computer time used. Additionally, the manager

is able to overlay other projects’ error rate patterns in order to compare the behavior of those

projects to the current project.

Predicti
Figure 6, provides a look at another function of the SME. This figure is similar to the com-
parison figure, except that it also shows a predicted final value for the measure. In this figure,
the measure of interest is computer use (in number of CPU hours). This is shown in absolute
terms on the Y-axis. That is, the actual amount of time used on the machine is shown (it is not
normalized). The SME allows the user to predict where the project will be when it is completed.
This function utilizes the model and a projection of the progress of the project based on the mea-
sures in SME (eg. the project is 50% of the way through the code and test phase), to predict the
final values of the measure, and of the schedule. In this example, the number of CPU hours on
the project is predicted to be 1255, while the current estimate is 990 hours. Also, the project is
predicted to take longer then the manager has estimated. Such predictions enable the software

manager to gain another perspective on the final values of project measures and on the projected

end date of the project.

Analysis
A key component of the SME is the utilization of expert systems technology for software
management. Through experience, software managers are able to improve their ability to ana-

lyze software measurement data. Based on the mieasurement data and their experience, managers

are able to identify the strengths and the weaknesses of a project. The SME utilizes a rule base

3-24
10005788L



that captures managers’ knowledge of how to perform such analysis. This rule base is then used
to analyze deviations from the normal project. An example of such analysis is found in figure 7.
In this figure, the error rate of the current project is lower then normal for this particular point in
the development life cycle. The SME uses this information, information about other measures,
and subjective data about the project to provide possible reasons for such a deviation. The top
two explanations are then displayed for the user. In this case, the explanations are that insuffi-
cient testing is being performed and that an experienced development team is producing a superi-
or project. Either of these two explanations might be correct, they only provide insight to the
user as to possible explanations for the deviations. Other explanations are certainly possible; the
user of the tool can obtain further data on why the system reached its conclusions and on the
other conclusions. The user can also provide the system with more subjective information about

the project of interest, perhaps leading to changes in the conclusions that are inferred.

Assessment

A final function of the SME is to utilize software measures to provide an assessment of the
overall quality of a software project. An example of such an assessment is shown in figure 8. In
this figure the bar graph shows the SME’s rating of certain quality measures as they compare to
the normal project in the environment at that point in its development. The quality factors shown
are maintainability, reliability, and stability. Each of these factors can be determined by combin-
ing various software measurement data. For cxamplc; the quality factor of maintainability is cal-
culated by adding the percentage of errors that are easy to isolate with the percentage of errors
that are easy to correct. Thus, as these percentages increase the maintainability of the project is
said to increase. For each quality factor displayed, SME has a specific definition for how to
compute that factor. These definitions, which are really a form of a relationship, use a specific
set of measures to compute the relative value of that quality indicator. Of course, SME also uses
a model of how these factors behave over time in order to display the normal band on the graph.

Quality assessment provides the software manager with an overall appraisal of how the project of
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interest is doing compared to the normal quality measures in the environment.

5.0 SME as a Model Tool

Currently, the SME is being used by numerous software managers in the SEL software
development environment to assist them in monitoring actual software projects. The SEL, as an
experience factory [S), has provided the concepts necessary to build an SME for this particular
software development domain. Other organizations can develop an SME-like tool by beginning
to capture the experience of their environment. While within the SEL environment all three of
the major components of SME have been well developed, other organizations may have only
limited parts of the components. Such limitations should not be viewed as detrimental to the
development of an SME. Similar tools should be developed using the experience available; they
can then evolve into more complete tools as the local experience base provides additional
artifacts for reuse.

The SME is an attempt to integrate a measurement process, the results of a longstanding
software engineering research effort, and the expertise of software managers into a tool for man-
aging and controlling software projects. As such, it provides for the utilization of corporate
experience to manage ongoing software projects. An SME has been built for one particular soft-
ware development organization. Other software development organizations should use the
SME's concepts as a model for building similar tools for their environment. By providing the
user with increased project awareness, predictions of key project parameters, expert analysis of
software measures, and assessment of the overall quality of the development effort, an SME is
extremely valuable to a software manager. Such a tool provides improved project management

through the packaging of experience.
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Abstract

This paper reports on the progress of a study which will
contribute 10 our ability to perform high-level,
component-based programming by describing means to
obtain useful components, methods for the configuration
and integration of those components, and an underlying
economic model of the costs and benefits associated with
this approach to reuse. One goal of the study is to develop
and demonstrate methods to recover reusable components
from domain-specific software through a combination of
tools, to perform the identfication, extraction, and
re-engineering of components, and domain experts, to
direct the application of those tools. A second goal of the
study is to enable the reuse of those components by
identfying techniques for configuring and recombining the
re-engineered software. This component-recovery or
software-cycle model addresses not only the selection and
re-engineering of components, but also their recombination
into new programs. Once a model of reuse activities has
been developed, the quantification of the costs and benefits
of various reuse options will enable the development of an
adaptable economic model of reuse, which is the principal
goal of the overall smudy. This paper reports on the
conception of the software-cycle model and on several
supporting techniques of software recovery, measurement
and reuse which will lead to the development of the desired
economic model.

Motivation and Scope
- Motvation for the development of an expert-assisied but

highly structured and highly automatable mode! of software
information capture and reuse siems in part from the
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recognition of the difficulty of using purely programming

. component-based approaches 10 reuse libraries. For certain

kinds of objects and components a strict programming
component-based library is adequate. The success of
object-oriented and object-based approaches have been the
most notable in this regard. However, the inability for such
libraries to capture a sufficient amount knowledge to
dramatically reduce subsequent software development costs
in a general and problem-independent way has also been
observed. On the other hand, models of software reuse
which utlize domain experts in pervasive and undirected
ways are also unlikely to provide a complete solution due
o the large amount of responsibility and effort which is
centralized in the contribution of such experts. The present
work provides a structured model of information
identification and reuse which is both feasible and suitable
for further development and refinement.

Using the Ada language, this paper provides exampies of
techniques for choosing, re-engineering, and recombining
components into programs. It also describes rudimentary
methods for quantfying the effort to extract reuszble
components from existing programs as well as the effort to
recombine them into new programs. It does not include the
cataloging and retrieval of components, nor does it include
a mechanism to quantify reusability based on
empirically-derived frequency-of-use measures. It does
model a preposed cycle of software development, use,
re-engineering, and reuse, but it does not attempt to model
other aspects of reuse within a software development
environment, such as pure knowledge and experience.
Other recent research papers and technical reports have
covered this larger scope (Basili and Rombach], [Basili and
Caldiera).

Introduction

Any componcnt of software is seen 10 be composed of
many functional and declarative details, some of which
penain to the specific problem being solved by the program
conuaining that component, some of which pertain to the
general applicaton domain of the containing program, and
some of which perntain 10 neither the problem nor the



domain, but rather define the essence of the component’s
function in the abstract. Thercfore, to dircct the sclection
and re-engineering of componcents of software, three levels
of functional specificity of the software which constitutcs
any component are defincd: 1) problem-specific details
which would be likely w differ between this and another
similar application in thc same domain, 2) domain-specific
details which are not likely to differ between this and
another similar application in the same domain but which
would be unlikely to be appropriatc outside of this domain,
and 3) essental aspects which comprisc the abstract
functional core of the component and without which the
component would be meaningless.

The three levels cannot be absolutely defined, nor can a
given detail be deterministically assigned to a level, since
from different points of view, a given detail could be
thought of as belonging to different levels of specificity.
Two analyses of a given component could possibly identify
different sets of detwails at each of the three levels.
However, an analysis of a candidate component for the
purpose of directing the re-enginecring and reuse processes
must assign each identfiable detail to one of the three
levels.

Once specificity levels have been assigned to all details of
a candidate component, a measurement of the effort
required to remove each of the problem-specific details is
obtained in order to estimate the total effort to generalize
the component for reuse within its domain, Further, a
measurement of the effort required to remove each of the
domain-specific details is obtained in order to estimate the
total effort 10 generalize the component for reuse in other
domains. If these measurements show  the
cost-effectiveness of either of these generalizations, then
the candidate component is suitably generalized and placed
in either a8 domain-specific or domain-independent
repository, as is appropriate.

In order to assign specificity levels to all the constituent
derails of a candidate component, domain experts may have
1o be consulted. However, automation to support the
idendfication of the details and to support the component
generalization through their removal can be used o
streamline the process. Further, there may be ways 0
capture the domain experis’ decisions and the reasons for
them, in order to partially automate or support any
subsequent decision making which follows similar patterns.

To support the generalization process and its quantificagon,
three styles of software component reuse which are
currenty being practiced are identified and examined for
their adapwbility to the model. These reuse styles are
termed layered, tailored, and generated reuse. Examples
illustrating them, and demonswrating how they are related
by an underlying dimension of generality, are shown.
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Along with these examples, proposals are given for how to
measurc the amount of re-cnginecring required to derive
components suitable for the different mcthods of reuse, ag
well as the amount of effort required to recombine
components using the different methods. As effont is
expended to make a componcnt more general, more
opportunitics 10 rcuse it become available, However, each
of those rcuse opportunities will have to resupply the
specifics required for the reusable component o perform its
function in the ncw context, implying an amount of rcuse
effort which is proportional to the degree of generality of
the component. '

** Therefore, an economic equation presents itself, which is

how o optimize the sometimes competing factors of
generalization effort, reuse effort, and breadth of udlity.
The solution to this equation will have to wait until more
work is done on the probability of reuse for a given
generalization, and other factors. Rather hard questions
figure in to this equation, such as the cost-benefit of
constraining a solution to take advantage of an available
component (which amounts 10 establishing and following
standards) as opposed to developing a more suitable one,
and even the cost of classifying, storing and retrieving
components. Developing a framework for an economic
model which captures these factors is the first step to a
greater understanding of these issues. The last section
relates the activities defined in the software-cycle process
model to this economic model of reuse.

The Software-Cycle Model

This section describes the model of software development
which underlies this sudy. The model proposes the
recycling of existing software into components which can
be combined into new programs. This proposed software
cycle takes place in the context of a software development
organization and allows effort already applied to the
creation of previous programs to be recaptured and used o
reduce the effort needed to create new programs. This
software-cycle model is consistent with models of
experience capwure and flow within a development
organization as described by [Basili and Rombach] and
{Basili and Caldiera]. It describes in detail, and proposes
an implementation for, one aspect of the more
comprehensive expenience factory described in those
studies.

The software-cycle model is so-named to describe the flow
of information and experience, in the form of software, into
newly developed programs where it can be recovered and
packaged for efficient reuse in subsequently developed
software programs. The capture and reuse of informaton
al the delivery point of the conventional software lifecycle
is clearly not the only ume at which such informaton is



accessible. However, this approach is chosen because at
the ome that software is delivered, the information is
packaged in a concrete form (software programs) which
can be analyzed and manipulated. Also, a substantal
gmount of information may be available from
previously-developed programs which is not recorded in
any form other than the delivered software. Further, by
instituting an approach which applies effort to capture
reusable  information at this stage, the sofiware
development organization has the choice to separate the
information recovery and repackaging from the effort 10
develop the software, and to conduct those activities
independently and in paralilel. So, for pragmatic reasons,
the present model of information flow in a software
development organization uses developed software as the
‘main source for recoverable information. (Seec also
[Caldiera and Basili].)
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As shown in Figure 1, existing programs are examined for
candidaie reusable components. For the purpose of this
study, a component can be any definable portion of
software. Obvious examples are individual, or sets of,
subroutines, subprograms, functons, paragraphs, packages,
or other structuring features of the software language in
use. - A re-engincered component can be any of these,
although it can also be nothing more than a templaie or a
set of instructions for a software gencration routine.

A
o

reuse only within a particular domain or reuse across many
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re-enginecred component can be intended either for

domains. If 8 component is only intended for reuse within
a domain, its re-engincering secks (o0 remove any
problem-specific details from it, but to allow any
domain-specific details to remain. Such components are
termed domain-specific components. If a component is
intended for reuse across domains, however, then its
re-engincering  would attempt o remove all
domain-specific details as well as the problem-specific
details, leaving only essential function. This kind of
component is termed a domain-independent component.
Leaving a component insufficiently general to be used
across domains obviously limits the number of
opportunities it might enjoy for reuse. However, there are
significant compensating advantages. A domain-specific
component retains more details which then do not have 0
be resupplied by the reuse client. Also, the generalization
effort to reach only problem-independence is usually less
than the generalization effort required to reach
domain-independence. So, by accepting a constrained
reuse scope, a component can be easier to generalize as
well as easier 1o reuse.

A candidate component for re-engineering is one which has
idendfiable problem-specific or domain-specific details and
which can be feasibly re-engineered to eliminate the

- presence of some or all of those details. A domain expert
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may be needed to differentiate between problem-specific
and domain-specific details, and measurement of the
estimated generalization effort is needed to determine the
feasibility of the re-engineering. Some components may be
candidates to yield a domain-specific component after
re-engineering but not a domain-independent component.
Other components may be candidates to yield
domain-independent components (possibly in addidon to
domain-specific components), while stll others may not be
good candidates to yield either category of reusable
component.

The goal of reuse re-engineering is to be able 10 isolate and
then to replace the problem-specific and/or the
domain-specific aspects of a component so that it can be
made to operate in different contexts. A component might
be viewed as a blend of general function, which defines its
essence, and specific function which relates to the current
context or declaradons on which the general funcdon is
performed. This is shown graphically in Figure 2a. The
general function, shown in light grey, is that which is
essential to the component or that which defines the nature
of the component. The specific functon, shown-in dark
grey, can either be problem-specific or domain-specific.
As mentioned, it may be necessary to consult domain
experts to distinguish between a problem-specific detail
and a domain-specific detail. However, given a sufficient
body of experience, it may be possible to predict the
specificity of a detail via a predicive function that is
tailored by previous expent decisions, or by stadstical



analyses of sevcral similar components in the same domain.,

Candidete componant

Qenecailzadie delalle

Figure 2a. N
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order 10 se-engineer the component inlo a more reusable one.

One possibis Inptantiation
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function remains

Re-sngineered componant

Figure 2b.

After re-engineering, the essential functionally remains in the
reusable component but problem-specific or context-specilic details
are ehminated and become the responsibility of the reuser 10 provide,
One possible instantiation could resull in the onginal component agan.
but many other inst are now p bl

Figure 2b shows an imaginary candidate component which
contains both essendal functon, which is general, and
specific details which, if altered, could allow the
component o contribute its functionality in different
contexts. These specific details, shown in dark grey, have
been removed from the body of the component to signify
that they are now viewed as only one of potenually many
possible instandations of the remaining, general
component. The re-engineering process of the
software-cycle model seeks to locate and remove these
non-general aspects (either only the problem-specific
aspects or, possibly, the domain-specific aspects as well)
and 10 relegate them o the responsibility of the reuser as
part of the component’s instantadon.  The techniques for
the removal of these details are discussed as pan of the
section on re-enginecring techniques which follows. It will
be shown there that the re-engineered component does not
nesd o be expressed in the programming language of the
original candidate component which was used to produce
it Tt might be a pre-processable component or a
component gererator which can be used to produce
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components when necessary. In these cases, it is the
template or the gencrator that is reusable, since any
subsequenty requircd components would be producced on
demand and would not, themsclves, be considered reusable.

Scparated and re-engineered (generalized) components are
stored in a repository o be made available to the
developers of new software. Similar to the process of
consulting domain experis when categorizing the details
which necd to be generalized out of candidate components,
repository experts may have to be consulied to assist in the
location and instantiation of required components in the
repository. Repository experts could possibly choose from
among various schemes to satisfy the needs of a developer.
Certain choices might provide more utility but might come
with more restrictions or limitations of options. Also, the
repository expert might choose from different methods to
arrive at functionally the same result to the requesting
developer, for example by either generating the sofiware or
by providing a tailorable component.

Components in the repository are auributed with
measurement information describing the expected effort 1o
instandate them for reuse. In many cases, this instantiation
becomes the responsibility of the reusing developer, for
example when the component is already a structural
component in the developer's language of choice and
simply must be supplied with actual parameters to serve the
developer’s need. In other cases, the instantiaton can be
the responsibility of the repository expert, who might have
to produce components for the developer from templates,
rules, instance specifications, and generator programs. In
either case, the measurement attribute of a component will
guide its users when deciding whether 10 select it or not,
and how much effort to expect to expend configuring it for
reuse.

A request for software components might be unfillable
given the current state of a repository. In this case, the
repository experts can work with the developer to design
and create a new component which will not only serve the
current need but which will become an instant candidate for
insertion into the repository, with a minimum of
re-engineering. Or, gaps in the capabilities of the
repository can be identified by the experts prior 0 a
specific need, and special developments can be guided,
specifically for the purpose of supplying components to fill
those gaps. In the software-cycle model, any new
development is done with reuse in mind, specifically. with
an eye toward further populating the component repository.

Neither of these last two topics, the selection of
components from a repository and the direct development
of components rather than through re-engineering, are
currendy part of the study. They are mendoned here in
order to complete the software cycle depicted in Figure 1.
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The major emphases of the study are the identification of
candidate reusable components from among existing
software, the re-engineering of those components to
improve their gencrality, the measurement of those
processes, and the development of an economic model
which can assist an organization in optimizing its software
cycle costs.

Reuse Modes and Methods

By studying the dependencies among software elements, a
determination can be made of the reusability of those
elements in other contexts. For example, if a component of
a program uses or depends upon another component, then
the first component would not normally be reusable in
another program where the second component was not also
present  On the other hand, a component of a software
program which does not depend on any other software can
be reused in any context (ignoring for the moment whether
or not it performs any useful purpose in that context). The
issue of software independence is at the heart of this study.

It will be seen that increased independence of a software
component often comes at the cost of functionality. The
ideal software reuse re-engineering process would provide
a means of preserving all of the function or utility of a
component while also making it independent of
problem-specific or domain-specific details. However, this
is not possible in most cases since some of the desired
functionality is likely to be captured by those specific
details, and removing the details will remove that
functionality. This study describes a compromise solution,
which is first to generalize a component, and then to
systematize the means to configure it in order to restore the
specific function required in a particular context of reuse.

A scheme to maintain generalized, reusable components in
a repository, in addition to a means of configuring them in
different ways for different domains or contexts, enables a
repository with a manageable number of components to be
described. Without the ability to instantiate a given
component in different ways for different usages, a
repository would have to contain many times as many
assets in order to serve the same need. In order to avoid
this problem, this work recommends storing fewer
components, each of which is sufficiently general to be
able to operate in various contexts, and then providing
methods to instantiate them to provide functionality in
those contexts.

By examining existing successes in software reuse, it can
be seen that there are three different but related ways of
making software components which are gencral and
independent, and yet which remain capable of being
instantiated with problem-specific details. An important
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premise of this work is that software which is general in
these ways does not necessarily need to be developed
directly. Instead, it is often possible to re-engineer existing
software so that it achieves the necessary independence.

For this study, the three modes are termed layered,
tailored, and generated. Each mode describes components
which can be combined to0 develop larger programs.
However, a tailored component can be made more flexible
and general than a layered component and a generated
component can be the most flexible and general of all. On
the other hand, a layered component is the easiest to reuse,
requiring the least effort on the part of the client o
incorporate it into a program, while a generated component
is the most difficult to reuse.

What all of these techniques strive for is the absence of
dependence from the reused software on external
declarations, which would hamper the generality of the
software. In other words, a component of reusable
software should ideally not be expected to "know" about
declarations and other components which are
problem-specific. A reusable resource which requires the
reuser to also include other common denominator
components, which contain needed declarations, is not as
reusable as one which has no such requirements.

Within the confines of a single domain, however, certain
dependencies can be tolerated, since the users can be
expected to guarantee the minimum required declaration
space across all occurrences of reuse of a component. This
result opens up vast new ranges of possibilites, since the
generality of a component need no longer be absolute but
rather need only be general with respect to a certain domain
or domains. No expectation of generality within other
domains is maintained. Domain-specific reusability
implies a certain amount of built-in dependence whereas
wide-scale reusability or generality precludes this
possibility. By allowing domain-specific constraints, the
possibilities for identifying reusable components expand
enormously but the breadth of applicability for each
component is limited to that domain,

Layered Reuse

Layered reuse is used to describe the case where reusable
functions or operations are viewed simply as abstract
primitives which are callable from within the language of
the client A math library, probably the most commonly
cited example of reuse, and onc which is often viewed as
an ideal, is an example of layercd reuse. Analogous to a
math package, other common examples are packages of
utilities which operate on universal types or concepts, such
as string handling utilides and time utilides. Other
successes in layered software reuse include user interface



or I/O toolkits, graphical display toolkits, runtime kemels,
and layered nctwork protocol software.

Layered rcusability is oftcn viewed as the goal for a library
of reusable components, where a sufficientdy rich set of
abstract operatons would be available to an applications
programmer in order to minimize the effort required 1o
generate a new. system. In addition to the previously
mentioned independence from other components, an
addidonal recommendation for the success of a layered
component is that the data on its interface be expressed in
terms of standard types. This restriction allows the client
software to communicate with the reusable component
without the additional complexity of adhering to specific
non-standard types. One reason that a math library is so
inherently reusable, for instance, is that real numbers are a
“universal way of expressing the values used by and
returned by the mathematical functions in a library. Any
language which supports real numbers can make available
a corresponding set of mathematical functions.

However, unlike the portability enjoyed when restricting
one's domain 1o a universal concept such as real numbers, 2
considerable amount of software which might otherwise be
available for reuse is written to operate on problem-specific
types and data structures. This is the case whether those
types are named and declared as in Pascal or Smalltalk, are
common data areas as in Fortran, or are merely locations in
memory as in assembly language. Components can still be
written in a layered manner but in these cases they typically
depend so heavily on specific data soructures that they are
limited to being reused only where identical data structures
or other operands are present. It is not always possible
parameterize a component with respect to all of its
assumptions about context. Because of these limitations on

the applicability of a layered component, constructing

comprehensive reusable libraries of them in languages such
as Ada has been harder than might have been expected.

Tailored Reuse

. Anaother category of successful reuse is tailored reuse,
where configuration of the reusable software is required in
order to allow it to interoperate properly with the client
software. A familiar example of such reuse is seen with
database management systems which require tailoring in
order to handle records of the user-defined structures.
Simpler examples of tailored reuse are generic data
structures which allow the client software 10 create stacks,
queues, lists, etc., of application-specific types or to search
through or sort objects of those types. Still other examples
of 1ailored reuse are forms management systems which are
customized by parameterization, expert systems which
must be initialized with rules, spreadsheets which must be
supplied with formulas, and statistics packages which must
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be provided with data sets and programs to achieve the
desired results.,

Tailoring in this way is accomplishcd before the
component is called, but it happens automatically at
execution time as part of the language behavior. Whereas
in layered reuse a client simply calls a component with the
proper  parameters, (@ilored reuse implies a two-step
process wherc a component is first molded to the specific
configuration rcquired by the currcnt context and is then
called to perform its function.

The generic feature of Ada allows certain kinds of
tailoring, in the form of generic parameterization, 1o be
accomplished. Because of the static checking enforced by
Ada, however, only a limited amount of parameterizations
are possible. Other languages have different mechanisms
for accomplishing this parameterization. Most notably,
assembly languages employ very flexible macro
expansions which can be quite powerful. However,
object-oriented languages have traditionally used a more
flexible form of layering (full inheritance) while
overlooking the possibility for component
parameterization. (Future revisions to C++, however, are
expected to include a template mechanism to allow
within-language tailoring [Ellis and Stroustrup].)

Generated Rep’se

The third category of reuse, generated reuse, occurs when
the reusable software is used as a generator program rather
than being incorporated directy into the final applicaton.
The required software is emitted as a result of the generatwor
program operafing on input tables or files. Typically, only

., the generator and not the generated software is reused. The

generated software is regencrated, as opposed to being
modified directly, if changes are required. Whereas
layered and tailored reuse take advanuage of
language-supported features (subprograms and generics in
the case of the Ada language) generated rcuse requires
additonal tooling to accomplish a kind of tailoring which is
external 10 the implementauon language.

A common example of generated reuse, which perhaps
stretches the definition somewhat, is a compiler, which
accepts files of a high-order language and emits software in
a machine-executable form. One reason that it may seem
unconventional to think of a compiler as reusable software
is that its output is not directly manipulated or even
observed by the compiler’s users. Nevertheless, it fits the
definition here for generated reuse (which could be thought
of as a batch form of tailored reuse).

Other common examples, where the generated output is
more likely to be manipulated or at least observed by the



. users of the generator, are fourth-generation languages,
user interface generators, lest casc generators, parser
generators and table-driven forms management systems.
At least one large Ada development is making substantial
use of generated reuse in an MIS system development,
through the use of a specially-developed gencrator [AIC].

Table 1 is a summary of the modes of software reuse
described and the examples mentioned for each.

Layered:
Math libraries
Common utilities packages
User interface or 1/O toolkits
Graphics kernel systems
Runtime kemnels
Network layered software

Tailored:
Database management systems
Forms management systems (runtime configured)
Expert systems
Spreadsheets
Statistics packages
Generic data structures

Generated:
Forms management systems (file driven)
User interface generators
Test<case generators
High-order languages
Fourth-generation languages
Parser generators
MIS systems

Table 1. Reuse Modes and Examples

The distinctions between these categories can sometimes
become blurred. For example, whether a reusable package
is configured at run time by parameterization (tailored) or
-in advance by tables such that it emits a separate program
(generated) may not be of any real consequence. In fact,
the examples given in one category ofien have analogs
which exist in the other category. For example, forms
management systems already exist in both gencrated and
tzilored versions. Although parser generators are typically
generated components, since they are stand-alone
grammar-driven programs which cmit desired software,
they could instead be incorporated into the end-product and
re-emit their parsers on the fly. The obvious reason not to
do this is for efficiency of repeated use of the same output.
However, an interpreter for a language can be thought of as
a compiler which is configured 10 perform as twilorable
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software. In this case, the run-time efficiency is traded off
for the flexibility of being able to alter the
“parameterization™ (the interpreted program) quickly and
casily.

A Simple Example
As a simple example of how a low-level component can be
viewed as a generalizable layer of function, consider the
following error-reporting routine.

with Text_lo;
procedure Gyro_Speed_Error is
begin
Text_lo.Put_Line ("Error: The gyros are not up to speed.”);
end Gyro_Speed_Error;

This highly specific routine represents one end of the
generality scale. It is easy to use, requiring a simple
parameterless call, but might not be likely to be widely
called upon within a program. There are thres observable
details within this unit: 1) the use of Text_lo.Put_Line to
report the error message, 2) the use of the standard output
device to display the error, and 3) the choice of the literal
string 1o be displayed.

-3

procedure Report_Error
Put_Line

Prepend asn Intro
use current output

use (ltersi steing °“Error: *

Figure 3a.

In the example from the text. procedure Report_Error was seen 1o
be composed of four decisions. Two are considered pan ol the essenal
functionality and lwo asre considered t0 be problem-specific detasls

Re-engineered procedure Report_Error

%—-‘ some oulpul destinstion

+<—- some llteral string

Prepend an Intro

Put_Line

Figure 3b.

The re-engineered version of Repori_Ermror shows the two probiem-
specitic details removed {rom the componenti. 10 be supphed by the
te-user  The inlrinsic lunchional aspecis of the componeni remamn
Other interpretations of ihe re-engineering decisions to be applied
could possibly remove one of these, as well
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A consultation with a domain expert might rcsult in our
choice o paramcicrize the €xact error message to be
reported, which might yicld thc more sensible reporting
routine, shown bclow.

with Text_lo;
procedure Report_Error (Message : String) is
begin

Text_lo.Put_Line (“Error: " & Message);
end Report_Error;

This version of the unit is depicted in Figure 3a. Had we
performed the transformation without expert consultation
we might have simply parameterized the entire message.
However, in our hypothetical problem domain we will
assume that the expert recommended retaining a
hard-coded standard prefix in order to facilitate the
post-processing of the log file. Also, this generalization
has cost us the part of the original functonality which
spelled out the exact error message. Since the client must
now supply this string, we have increased the effort to use
the unit by making it more general.

The generalization of a value (a string value in this case) is
the easiest kind of oansformation since it can be performed
with a simple value parameter. Since the parameter type is
language-defined (type String) there is no further
complexity to exposing this parameter in the procedure
interface. Also, the effort to configure the component
amounts to simply defining the error message string as a
parameter. Again, this kind of reuse is the easiest.

The procedure above still assumes that the user intends the
message to be written to the current output device using
Put_Line. That constitutes part of the retained functionality
of this component. In the process, we have also added the
detail that the standard prefix "Error: " will always appear.

Additional consultation with a domain expert might reveal
that the assumed use of the standard output device is
another problem-specific detail. A later reuser of this
component who was working on a different problem in the
same domain might not want to be bound by that
essumption. Again, Ada provides a simple way to
parameterize the component so that users can specify the
output device. Again, however, this generalization comes
at the cost of functonality. In this case, the functionality
which is lost is the assumption is that the current output
device is to be used. Default parameters can sometimes
provide an opportunity to restore such assumpdons while
retaining the generality, as will be shown later. The
parameterized version of the unit which follows removes
the assumption of using the cwrrent output device but
retains the function of writing the literal string "Error: "
followed by the caller’s message.

with Text_lo;
procedure Report_Error
(Message : String:
On_Device : Text_lo.File_Typc) is
begin
Text_lo.Put_Line (On_Device, “Error: * & Message);
end Repont_Error;

Notice that the user is now requircd to do additional work,
Instead of simply providing the error message, the desired
output device or file must be provided. That decision has
shifted from the component to the (re)user. Again, this isa
form of valuc parameterization, the easiest form of both
generalization and reuse configuration,

An additional part of the functionality of the component is
the literal string prepended to the caller’'s message. As
shown below, this could also be parameterized, again
removing that specific functionality but generalizing the
component on that behavior. This requires yet one more
piece of information from the user as part of the
information needed for this component to perform its work,
however once again it is a iow-cost value parameterization.

with Text_lo;
procedure Report_Error
(Message : String;
Intro : Sting;
On_Device : Text_lo.File_Type) is
begin
Text_lo.Put_Line (On_Device, Intro & Message);
end Report_Error;

This generalized component is depicted in Figure 3b. This
might constitute a domain-independent version of the
reporting routine, according to ouwr domain experts,
although the only way to be cerain that a component is
compatible with all domains is to ensure that it does not
depend on any other components. In Ada any such
dependencies are revealed by the context clause. A later
transformation will eliminate the dependence on Text_lo.

As noted, Ada affords us an opportunity 1o restore the
assumption of using the specific string "Error: " and the
standard output device through the use of default
parameters without reducing the generality. This is shown
below.

with Text_lo;
procedure Report_Error
(Message : Sting;
Intro : String := “Error: *;
On_Device : Text_lo.File_Type :=
Text_lo.Standard_Output) is
begin
Text_lo.Pur_Line (On_Device, Inro & Message);
end Repornt_Eror;
use of

At this point, two details remain (the
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Text_loPut_Line and the prepending of a user string). The
use of Put_Line could be removed through railoring
(below) but the removal of the choice 0 concatenate an
introductory string could not be done within the language.
For that degree of flexibility, generated reuse would be
required. Once a generalization is needed which is not
language-supporied, the costs are considerably higher. One
way to reduce those costs is to provide tool support for the
generalization, & process which amounts to establishing a
new language to accomplish the generlization. The MIS
system described in [AIC] has reduced their software
generation costs in this fashion.

This points out the obvious conclusion that the cost of a
generalization depends on the level of language or tool
support for it. One way to estimate cost is to begin with an
ordinal scale of difficulty and then 1o move to a more
detailed scale after more analysis has been done. For
example, it was noted that value parameterization is
relatively straightforward. This would be at the lowest end
of an ordinal effort scale, Above that would be tailoring
parameterization such as Ada's generic formal type and
subprogram parameters. At the hardest énd of the scale
would be software generation, with tool-supported
generation being easier than custom-built generaton. A
more detailed approach to effort would be to relate the cost
10 the number of lines of code that must be written,
changed, or added.

It can require a judgment call to choose what details to
remove and what function to leave in the component. For
example, in the above example, the fact that the original
literal string was broken up into a standard prefix and a
user-supplied message was only one possibility for
generalization. One guideline is to leave operational parts
of a component intact and to allow the operands to be
supplied by the reuser. A discussion of the separation of
operations from operands can be found in [Bailey and
Basili].

The simple error-reporting example from before can also
be re-engineered into a tailored component using the Ada
language. The difference between this result and the
layered result is that the reusers will have to perform
slightly more work in order to instantiate the component,
but then subsequent calls can be simpler. As suggested,
tailoring in Ada through the use of generics is seen as a
harder process than value parameterization but easier than
software generation. A tailored example of the component
follows.

with Text_lo;
generic )

Ingo : String := "Emror: *;

On_Device : Text_lo.File_Type := Text_lo.Current_Output;
procedure Report_Error (Message : String);
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procedure Report_Error (Message : Swing) is
begin

Text_lo.Put_Line (On_Device, Inro & Message);
end Repont_Error;

Unfortunately, this is illegal in Ada since a limited type
(Text_loFile_Type) is not permitied as a generic value
parameter. This is an example of where strong static
checking can be at cross purposes with generalization and
reuse. If it werc legal, nevertheless, the user would have
the responsibility for providing the introductory string and
the output device one tme (at the time of the generic
instandation) thus tailoring the component for further
reuse. From then on, the component would be no more
difficult to use (from the standpoint of parameterization)
than the original non-general version.

To avoid this limitation of generic parameters, a solution
could be obtained by generating the specific component
desired, using tools outside of the Ada language. The
generated component could look exactly like the original
component but the reusable software would no longer be
considered the component itself, but rather the generator
which creates it. In this case, the generator would emit &

‘Report_Error procedure which was hard-coded to write the

error message on a given device. The value of that device
would be given as a parameter to the generator. More
examples of generation are shown later,

A different tailoring would also be possible. As mendoned
earlier, the dependence on Text_lo can be eliminated by
requiring that the client tailor the component 10 use a
particular string-processing routine. This makes the
component completely indcpcngenr., with the persistence of
the use of a standard prefix as the only detail which is
retained from the original version.

generic

Inwo : Swing := "Error: *;

with procedure Put (S : Sting);
procedure Report_Error (Message : Sting);

procedure Report_Error (Message : String) is
begin

Put (Inro & Message);
end Report_Error,

Note that this most gencral version is also the least
functonal. Neverthcless, the ability to tailor the
component once within a program and to then use it with
the same level of effort as the first layered transformation
makes it of some value. The reuscr has additional work 10
do with this solution, as well. For example, unless the error
messages are to be written 10 standard output, the
subprogram 0 be passed to the generic formal Put

4-11



procedure has 10 be written. This mcans that the cffort o
reuse a tailored component could be greater than the effort
10 reuse a companent generator. So, the cffort 1o gencralize
is not always proportional 10 the comresponding cffort to
reuse.

By examining existing systems and by obscrving the
opportunitics to gencralize their parts according to these
different methods of reuse, choices become available in the
ways in which the software can be re-engincered for future
reuse. The next section describes a simple mail system in
terms of its conventional configuration as a custom-built
application and then in terms of the various ways the parts
of it can be generalized using the above methods.

Re-Engineering a Simple Electronic Mail System

This section takes a simple electronic mail system through
mansformations to Yyield components which can be
combined using the three methods described above. In the
interests of space, parts of the examples and some identifier
names have been abbreviated, and no bodies are shown.
Complete listings of the examples are available from the
authors.

In a conventional design, one component, or package, of a
mail system could be used to manage the mailboxes of the
users and a second could manage the messages, or the
constituents of a mailbox. This would represent a
conventional encapsulated or "object-based” design of the
system where the mailbox package would allow operations
such as create, add a message, delets a message, return a
message, and perhaps displaying a directory of messages,
maintaining the status of each message, and so on. The
message package would allow message creation and
display, and possibly reply construction, forwarding, etc.

In a typical arrangement, using either Ada or an
object-oriented language such as Smallualk, the mailbox
package (or object) would depend upon the message
package to obtain the use of the declaradon of message
objects, in order to arrange those objects into mailboxes. In
Ada, the specifications for each of these two packages
might reasonably be:

package Messages is
type Usememe is ...
type Line is ...
type Textis ...
type Message is private;
procedure Ser_Sender (M : in out Message; To : Username);
procedure Set_Receiver (M : in out Message; To : Username),
procedure Set. Subject (M : in out Message; To : Line);
procedure Set_Body (M : in out Message; To : Text);
function Sender_Of (Msg : Message) renum Username;
function Receiver_Of (Msg : Message) return Username;
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function Subject_Of (Msg : Message) return Line;
function Body_Of (Msg : Message) retum Texy;
private
type Message is
record
Sender : Username;
Receiver : Usemame;
Subject : Line;
Msg_Body : Text;
end record,
end Mcssages;

with Messages;
package Mailboxes is
type Message is ncw Messages.Message;
-- derive an equivalent rype Message
Max_Mailbox_Size : Natural := 1000;
subtype Box_Size is Natural range 0 .. Max_Mailbox_Size;
type Mailbox (Size : Box_Size := 0) is private;
procedure Store (Box : Mailbox; Owner : String);
procedure Retrieve (Box : in out Mailbox; Owner : String);
function Size (Of_Box : Mailbox) retum Box_Size;
function Msg_At (Position : Natural; In_Box : Mailbox)
rerumn Message;
procedure Remove (Num : Positive; In_Box : in out Mailbox);
procedure Append (Msg : Message; To_Box : in out Mailbox);
procedure Mark_Read (N : Natural; In_Box : in out Mailbox);
procedure Mark_Unread ...
procedure Mark_Answered ...
procedure Mark_Deleted ...
procedure Mark_Undeleted ...
function Is_Read
(Msg_Number : Natural; In_Box : Mailbox) return Boolean:
function Is_Answered ...
function Is_Deleted ...
No_Msg_At_Position : exception;
private
type Atributes is (Deleted, Read, Answered);
type Atr_Sets is array (Atributes) of Boolesn;
type Mail_ltem is
record
Item : Message;
Starus ; Aur_Sets;
end record;
type ltem_Array is array (Positive renge <) of Mail_liem;
type Mailbox (Size : Box_Size:=0)is .
record
Ttems : Ttem_Array (1 .. Size);
end record;
end Mailboxes;

These packages are depicted in Figure 4a. As shown, the
Messages package is an example of an independendy
reusable layer, and the Mailboxes package constitutes 2
layer on top of the Messages package. (Since the
constituent types of Usemame, Line, and Text are not
shown, it might be the case that they would be comprised
of user-defined types, making the Messages package
dependent on other client software.) Realizing that the
decision of how to implement the constituents of a message
represents one of the opportunities for generalization of this
package, the components of a message could be supplied as
parameters to a generic version of this package. This
would constitute a tailored version of the package:



generic :
Usemame is private;

type Line is private;
type Text is private;

seckage Gen_Messages is
“iype Message is private;
... — as before

end Gen_Messages;

This generalization is shown in the top part of Figure 4b.
The effort to perform this tailored generalization is in line
with other tailoring efforts discussed in the previous
section. The declaration of three generic formal parameters
is one measure of the work performed. Also, the reuse
effort implies the declaradon of actual type parameters
be associated with these generic formal types. One way
quantify the effort to generalize, then, is to claim that three
declarations are required. Three declarations are also
required of the client reuser.

pachage Messages

4-component record-type abstractlion
uee username, line, text sublypes

Exports typs Message

package Mallboxes

4.component record-type absiraction

Exporis type Mallbox, an /O array

depends on external type Messages Messsge

Figure aa.

37 Ihe conventions shown previously, this depicts the process of Miloring the
vasages and Malboxes packages (rom the text.

tsllored package Meanages

Vg 1ypes for username, etc.
b (suppiled by reusaer}

4-component reco1d-typs absirsclion

exports type Measage

taliored package Mallboxes

.'(—-—-omc message type
Messages Message,

{i.e,,
above)

+

Figure 4b

* specilic componen types of a3 Message have peen removed as wall as the
S72%ency of Malboxes on Messages

The ieuser will ie-eslabhsh this bink
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private

Going beyond this somewhat tailored version, notice that
even the stucture of a message could be a candidate
gencralization. In this case, tailoring would be difficult or
impossible within the confines of the Ada language so
generation is required. Generation is feasible since the
contents of the Messages package could be
deterministically described if one were to specify the
constient components of a message. For example, if no
subject line were wanted, the original package could
insicad have been writlen:

package Messages is
type Usemame is ...
type Text is ...
type Message is private;
-- procedures Set_Sender, Set_Receiver, Set_Body
-- functions Sender_Of, Receiver_Of, Body_Of

type Message is -- no Subject component
record ’
Sender : Username;
Receiver : Username;
Msg_Body : Text;
end record;
end Messages;

Or, if a message with a date and time stamp were desired,
the abstraction could be augmented with an additional
component, such as with the standard type Calendar. Time:

with Calendar,;
package Messages is
type Usemame is ...
type Line is ...
type Text is ...
type Message is private;
-- procedures Set_Sender, Set_Receiver, Set_Body,
- Set_Subject, and Ser_Time
-- functions Sender_Of, Receiver_Of, Body_Of,
- Subject_Of, Time_Of
private
type Message is
record
Sender : Username;
Receiver : Username;
Time_Stamp : Calendar.Time;
Subject : Line;
Msg_Body : Texy,
end record;
end Messages;

— new

Although the generic feature in Ada is not powerful enough
10 allow these variations as tailoring of a single common
package, all of the Message package examples (as well as
their corresponding bodies) could have been gencrated
automatically, given the desired set of components for
objects of type Message. This, therefore, becomes an
example of generated rcuse, where the generator is the
reusable software and not the actual message package
software. For example, a simple editor-substitution
generator has been constructed which accepts input such as



the following and emits Ada cquivalent to the example
shown above.

Generate_Package
(Context => ",
Local_Decls =>
“subtype uscrname is string(1..10);” &
“subtype line is suring(1..60)," &
“subtype text is string(1..80)",
Package_Namc => "messages”,
Private_Type => "message”,
Set_I => "set_sender”,
Ser_2 => "set_receiver”,
Set_3 => "set_subject”,
Set_4 => "set_body",
Get_1 => "sender_of",
Get_2 => “receiver_of™,
Get_3 => "subject_of”,
Get_4 => "body_of",
Local_Type_1 => “usermame”,
Local_Type_2 => “username”,
Local_Type_3 => "line",
Local_Type_4 => "text");

The effort to construct this generalization amounted to the
writing of about 20 lines of software and the building of
templates from the original unit. The effort to reuse the
component is the construction of the above call. This could
be seen as effort equivalent to declaring 17 string constants.

Note that, at this level of generality, which came at
considerably higher cost than the previous tailoring, more
than just a message package for a mail system could be
generated. Any private type implemented as a record of
components with set procedures and access functions could
be generated with such a program. Therefore, this
represents a domain-independent form of the component,
where any mail system details are supplied by the reuser.
So, the benefit of applying this substantial generalization
effort is that the component can now be used by many
domains. In fact, we will see that this same generator can
be used to replace part of the Mailbox package, as well.

Although the style of the Mailbox package is not as general
as the Messages package, there are several opportunities to
. make it more general and therefore more reusable in other
contexts. For example, it could be tailored by making the
constituent type Message and the maximum mailbox size
generic formal parameters:

generic

typ= Message is private;

Mex_Mailbox_Size : Natural ;= 1000;
package General _Mailboxes is

... -- same as package Meilboxes, above
end General_Mailboxes;

This arrangement of the Mailboxes package is shown in the

bottom part of Figure 4b. Fortunately, no operations on the
type Message were needed by the package Mailboxes,
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othcrwise those operations would have had w have been
passcd as gencric paramcters.® Thercfore, following the
convention suggestcd above, the generalization effort here
is the effot W writc two generic formal parameter
declarations. Reuser effort is the choice of a type and a
value 10 perform the instantiation.

Beyond the relatively- simple gencralization shown above,
it can be observed that the Mailbox abstraction is actually
composcd of a four-component record-type abstraction and
an array. Reusing the previously described example of
private record type abstractions, the package Mailboxes
could be divided into two separale abstractions as follows:

generic
type Message is private;
package General_Mail_Ttems is
type Mail_ltem is private;
procedure Set_Message
(An_Item : in out Mail_Item; To : Message);
procedure Set_Read
(An_ltem : in out Mail_Item; To : Boolean);
procedure Set_Answered ...
procedure Set_Deleted ...
function Get_Message (An_Item : Meil_Itern) return Message
function Is_Read (An_Item : Mail_ltem) return Boolean;
function Is_Answered (An_Item : Mail_Item) return Boolesn;
function Is_Deleted (An_Item : Mail_[tem) return Boolean;
private
type Mail_Item is
record
Itemn : Message;
Read : Boolean;
Answered : Boolean;
Deleted : Boolean;
end record;
end General_Mail_[tems;

-- amodified implementation

generic
type Mail_Item is private;
Max_Mailbox_Size : Narural := 1000;
package General_Mailboxes is
subtype Box_Size is Narural range 0 \. Max_Mailbox_Size;
type Item_Arsray is array (Positve range <) of Mail_ltem;
type Mailbox (Size : Box_Size :=0) is
record
Itemns : Item_Array (1 .. Size);
end record;

*If Ada supported full inheritance, it would be possible to
write the Mailbox abstracton so that it relies on certain
operatons to be defined for the generic formal type
Message. The user would then guarantes that any expected
functions would be available for any actual rype parameter
associated with the formal type Message, eliminating the
syntactic complexiry of passing them via zdditional generic
formal subprograms. This illustrates one of the advantages
of late binding, something that Ada disallows in order o
ensure that required operatons are available prior to the
compilation of any instzndations of the generic.



P'mcedure Store (Box : Mailbox; Owner : Saing);
procedure Remieve (Box : in out Mailbox; Owner : String);
function Size (Of_Box : Mailbox) retumn Box_Size;
procedure Remove

(Mail_ltem_At: Positve; In_Box : in out Mailbox);
procedure Append
(A_Mail_Msg : Mail_ltem; To_Box : in out Mailbox);
No_Msg_At_Position : exception;
end General_Mailboxes;

These packages are depicted by Figures 5b and 5c. In the
above case, the client could obtain the functional equivalent
1o the original mailbox package via the following

instantations:

package Mail_Ttems is

new General_Mail_Items (Messages Message);
package Mailbozxes is

new General_Mailboxes (Mail_liemns.Mail_Item);

tailored package Messages

. & types for username, ete.
+ g {supplied by reuser)

4.component record-lype ebstraclion
exports type Message

Figure 5a.

No adotional changes are made during the second pass ai tailoring the two
packages. Only by generaling the Messages package can the decisions about

+e swucture of the abstract data type be generalized, since such a run-time

miorng & not possibie within the Ada fanguage.

{i.e..

+ ;. <C—— SOMme Messege type
Messages.Message,

4-component record-typs sbstraction

Figure 5b.

sbove)

tallored, factored packsge Mall_ltams

The Mailboxes package is broken ino two componenis, one which implements

Ma3_hems as a record-type cala abstraction, above.

tallored, tactored package Maliboxes

. ‘ < Some mall ltem,
iy + from above

Exports type Masilbox, sn I/O arrey

Figure Sc¢

The cmer package lactored from the original Mailboxes package imptements
&0 it of mail ilems. This no longer comains any problem- specdic
tctsn other than implement hsis. so i can be replaced with a generai-
Fidose list absiraction. as shown in ihe lext.
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Two tradeoffs in this example are observed. First, the
specific way in which package Mail Iiem was structured
originally was modified into the more general
multi-component record shown here. This tradeoff was
accepied in order to allow this implementaton of
Mail_Items to be similar o the implementation of
Messages, which was previously shown 10 be highly
generalizable. This is an example of how standardization
limits the choices available to the implementer while
increasing the generality of the resulting programs. For
example, by adopting this approach, the generator program
mentoned before could be used w generate an equivalent
package to Mail_Items through the following input, thereby
allowing the generation of both the Messages package and
the Mail_ltems package from the same reusable
component

Generate_Package
{Context => "with messages;”,
Local_Decls =>

"type message is new messages.message;”,

Package_Name => "mail_jtems",
Private_Type => "mail_item”,
Set_1 => "set_message”,
Set_2 => “set_read”,
Set_3 => "set_snswered”,
Set_4 => "set_deleted”,
Get_1 => "get_message”,
Get_ 2 => "is_read”,
Get_3 => "is_answered”,
Get_4 => "is_deleted”,
Local_Type_l => "message”,
Local_Type_2 => "boolean”,
Local_Type_3 => "boolean”,
Local_Type_4 => "boolean");

The second tradeoff was to make the type Mailbox visible.
This was necessary since the client software will have to
gain direct access to a Mail_Item within a mailbox array in
order to perform the operations from package Mail_Items
on it Simply retumning a value of Mail_Item via a function
call would not allow the user 1o set the components of a
Mail_Item in a mailbox. An aliernative solution would
have been to implement the items in a mailbox as access
values, each designating a Mail_ltem. In this way, a
function. retuning an access value would provide the
capability for the client 1o modify the designated object, a
Mail_liem. This situatons occurs frequently when
facioring composite abstractions into their constituent
abstractions, and suggests that by presenting objects
direcdy on the interface to an abstraction, rather than just
their values, an abstraction can be made more general and
reusable.

Further generalizations are not shown in detail in the
interests of space. However, note that the above
General_Mailboxes abstraction is the only remaining
custom-made application code in the example. It amounts



to an ordered list of items of discernible size, to which
items can bc appended and from which items can be
deleted, and which can be stored 1o and retrieved from
files. Except for the ability to store and retricve the lists,
such an abstraction would probably bc available in a library
of gencric data structures. Assuming the constituent
objects are privatc and not limited private, it would be
possible to perform binary input/output on them. So, it is
not unreasonable 1o augment an existing generic abstraction
to include storage and retrieval. Such an augmentation of a
list resource could be accomplished by layering somcthing
like the following onto it.

-- Layering on a list abstraction:
with Simple_Lists;
generic
type liem is private;
type Item_Access is access Item;
package General_Mailboxes is
peckage Item_Lists is new Simple_Lists (Ttem, Item_Access);
type Mailbox is new Item_Lists.List;
procedure Store (A_Box : Mailbox; To_File : String);
procedure Retrieve
(A_Box : in out Mailbox; From_File : String);
end General_Mailboxes;

To obtain the equivalent functionality as was provided by
instances of the earlier package General_Mailboxes, the
following declaratons would now be required:

package Mail_Ttems is
new General_Mail_Items (Messages.Message); -- same
Mail_Item_Access is access Mail_Iiemns Mail_Ttem;
package Mailboxes is new General_Mailboxes
(Ttem => Mail_lierns. Mail_tem,
Itemn_Access => Mail_ltemn_Access);

The client can treat the above package Mailboxes similarly
to the earlier version; it will have all the same operations
due to the derivability of those already implemented by
Simple_Lists. Also, note that the mailbox implementation
has been made private again by using designated objects 1o
hold mail items. This would allow an Item_At function to
return an access value to the actual mail_item and not just
the value of that mail_item. This allows updates of the
item via the operations that were defined in the Mail_ltem
package (Set_Message, Set_Deleted, etc.).

Measurement Summary

Measuremen: is required at two points of the software
cycle. When candidate units are being identified and
domain-specific details are being distinguished from
problem-specific details, esumates of the generalization
effort necegsary to remove any give detail are required. At
the ume of reuse, estimates of the configuration effort
necessary to adapt a component for reuse are required.
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Obscrvations from conducting several generalizations have
shown that an initial cstimate based on an ordinal scalc is
possible. This scalc has value parametcrization as the
casiest to pcrform for both generalization and reuse.
Harder than this is type or operation parameterizalion,
which requires tailored generalization in the case of Ada.
The hardest form of generalization is building a
special-purpose component generator. This can be mads
casier through the use of code-generation support tools.

After an initial evaluation of the generalization effort has
becn made and an approach to generalization has been
determined, a more accurate assessment of the effort may
be possible. The most direct indicator of the effort required
is the number of lines of code that have (0 be written,
changed or added. In many cases, a generalization can be
accomplished with just a few lines of new or changed code.
However, in the case of unsupported component
generation, the entire generator may have to be written.

Reuse effort is easier to quantify since the component in
question is already known. The effort to configure a
generator or to instantate a generic can be estimated based
on the number of inputs or parameters required. In most
cases, the usage of a tailored or generated component is
similar regardless of whether the component was developed
from scratch or obtained from a repository. However, even
this step can be complicated by the fact that a development
might choose to be constrained in some way in order o
take advantage of an available component. The costs of
such a decision can be especially difficult to estimate. In
the long run, however, it is expectzd that the adoption of a
component, similar to the adoption of a standard, is a
cost-effective choice.

Another measure that is needed is an estimate of the future
value of a unit in a repository. It may not be the best
approach to populate a repository with many units which
were inexpensive to generalize if they will rarely be
needed. It would be better to spend the time performing a
difficult generalization if the resulting unit will more than
return that investment Here again, domain experts will
have 10 assist in making this determinauon.

Future Work

Progress is needed on metrics to quantfy generalizaton
and reuse effort. Effective metrics will open the way 0
establishing an economic model of reuse that could enable
an organizauon to choose its opumal approach to reuse
engineering. Note that the same approach or even the same
specific model would not necessarily be best for two
different organizatons. One obvious reason for this is that
one organization may concentate in a single application
domain while another organization may do work in many



domains with very liule repetition. The first organization
may find its optimal approach to reuse is to develop a
mature repository of domain-specific components while the
second organization may find that only
domain-independent components are likely to be cost
effective.

In addition to the costs of generalization and réuse, an
economic view of the software cycle suggested in this
paper would have to deal with repository maintenance,

- component retrieval, component probabilities of reuse and
cost savings, and the effort required of domain experts and
repository experts. Current progress is being made in some
of these areas by interviewing experts at one branch of the
NASA Goddard Space Flight Center where reuse has been
practiced for many years, originally with Fortran and more
recently with Ada. The results of these interviews will
assist us in formulating a2 more quantifiable model of the
costs and benefits of reuse at that organization. It is hoped
that this experience can then be extrapolated into a broader
model of reuse engineering that can be adapted for use at
other organizations.
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Abstract

Implementation bias in a specification is an arbitrary
constraint in the solution space. This paper describes the
problem of bias and then presents a model of the specifi-
cation and design processes describing individual subpro-
cesses in terms of precision/detail diagrams, and a model
of bias in multi-attribute software specifications. While
studying how bias is introduced into a specification we re-
alized that software defects and bias are dual problems of a
single phenomenon. This has been used to ezplain the large
proportion of faults found during the coding phase at the
Software Engineering Laboratory at NASA Goddard Space
Flight Center.

1 Introduction

Most informal software specifications are ambiguous,
imprecise, and incomplete. Moreover, this is usually not
evident by looking at a particular specification. This has
prompted research on desirable and undesirable charac-
teristics of specifications and specification languages. To
make specifications precise, formal languages are used.
Some of these languages are defined so that automatic
compilation or execution is possible. However, much detail
has to be included in executable specifications [5). This ex-
tra detail not only makes the specification harder to read
[6], but also leads to ‘implementation bias’.

Alas, implementation bias—an arbitrary constraint in
the solution space—is a term often used but not well de-
fined. This has resulted in two effects: Either (1) spec-
ifications are biased, or (2) they are incomplete, for fear
of bias. In fact, what has been called ‘bias’ in the litera-
ture is sometimes the desirable record of design constraints
and design decisions. The problem of bias is related to the
more important problem of software defects, because both
are manifestations of either misconceptions with respect to
the problem or preconceptions with respect to the solution;
hence, we study these two problems together.

OVERVIEW OF THE PaAPER. This paper presents a
model to help understand bias in software specifications.
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The remaining of this introduction presents our frame-
work, the problem of bias and the concept of specifica-
tion correctness. The next section presents our view of the
process of specification and design. Section 3 presents our
model of bias which is based both on the specification pro-
cess and on a classification of requirements. Within this
model, bias is not an absolute property of a specification,
but depends on the process of creation of the specified
requirements, that is bias depends on the process of spec-
ification and design. Section 4 presents the relationships
that exist between bias and defects in a specification, and
a study made at the Software Engineering Laboratory that
explains the high relative incidence of coding faults in that
environment.

1.1 Specification Framework

In this work we are considering multi-attribute specifi-
cations developed by starting from a description of require-
ments, and then refining it in several stages {3, Chapter 1).
Each stage takes a specification and produces a product,
which is a more refined specification, until a program (i.e.,
a specification for a computation) is obtained. This view is
not an endorsement of any particular developfnent. method:
it models top down development, the waterfall life-cycle
model, Boehm’s spiral model, transformational program-.
ming, and other development methods.

We first define some related concepts.

Attribute: feature or dimension that characterizes software
systems (e.g., average response time).

Requirement: constraint in the values of attributes (e.g.,
average response time shall be 0.5 seconds).

Preference measure: a measure of the goodness of the dif-
ferent values for a given attribute (e.g., smaller re-
sponse time values are better).

Specification: statement of attributes, requirements, and
preference measures for a software system.

Specificand set: set of all systems that satisfy a specifica-
tion.

Solution set: set of all systems that solve a problem.
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(d) (e) = (f)

Figure 1: Specificand §, solution P, and particular
solutions z and z"”: (a) ideal, (b) acceptable initial
specification, (c) successive specification stages, (d) in-
complete specification, (e) bias, (f) usual case.

Whereas the specificand set is defined in terms of a par-
ticular precise specification of a problem, the solution set
is defined in terms of the problem itself without reference
to any written specification. That is, the specificand set
comprises all systems that are correct with respect to the
written specification, and the solution set comprises all
systems that satisfy the user or customer. The differences
between these sets are at the heart of our model; they are
also the cause of defects in specifications.

1.2 The problem of bias

An ideal initial specification is general and precise
enough so that a software system satisfies the specification
if and only if it solves the problem at hand, that is, the
specificand set equals the solution set (Figure 1a). This
view is too optimistic, because there can be many solu-
tions that do not even involve software. In practice, we
only require software systems satisfying the specification
to be solutions, and that no substantial class of solutions
does not satisfy the specification, so that we can arrive at
an optimal or nearly optimal solution (Figure 1b). An ide-
alized development by staged specifications constrain the

specificand set (Figure 1c) by adding design decisions— -

* and nothing else. Incomplete specifications (Figure 1d)
may lead to defects; for instance, z’ satisfies the specifica-
tion but it does not solve the problem. On the other hand,
bias (Figure le) may lead to inefficiencies (e.g., optimal
solution is really z") and other development problems be-
cause the developers are overconstrained. Unfortunately,
most specifications suffer both problems (Figure 1f).

A specification is biased if some of its requirements are
arbitrary. Biased specifications overly constrain the speci-
ficand set, precluding some valid implementations as solu-
tions to the problem at hand. Hence, the amount of bias is
a common yardstick to judge software specification meth-
ods: those that are considered biased are usually rejected.
Unfortunately, bias is sometimes confused with intended
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constraints in the solution set.
1.3 Avoiding bias

A generally accepted rule to avoid bias is “A specifica-
tion should describe only what is required of the system
and not how it is achieved.”! However, this rule does not
solve the problem: it only shifts it, because whether some
requirement is a what or a how depends on one’s point of
view. For instance, the same requirement can be seen as
a how by the designer and as a what by the implemen-
tor. During the process of refining the specification, some
how’s become what's: a design decision (i.e., how to do
something) made by a designer is a requirement (i.e., what
to do) for the implementor. A how becomes a what when
a decision is made: a new requirement is incorporated into
the current specification stage.

Consider a specification for a subprogram. The exter-
nal interface of the subprogram is considered a requirement
by the programmer (it is a what), because he or she can-
not change it. This same interface was previously a how
for the designer of the whole program, because he or she
could have chosen an alternative interface. On the other
hand, internals of the subprogram (e.g., algorithms, data
structures, local variable names) are mostly how’s for the
programmer, because he or she can change them.

There is no reason to include a how in a specification:
specifications should describe what is desired and no more.
However, often some attribute that is already fixed (i.e.,
it is a what) is not specified because of {ear of bias. For
instance, if within an institution there is a convention for
local variable names for the purpose of easing maintenance,
then the adherence to this convention is a what: It is al-
ready fixed, the programmer cannot change it, so it should
be specified. We argue that this kind of constraint is not
bias; in Section 3.3 we provide a definition of bias that is
consistent with this view.

1.4 Specification Correctness

Specification bias and specification defects are inti-
mately related. As can be seen from Figure 1, bias is
related to the set difference of the solution set and the
specificand set, P — S. That is, there is bias only if there
are acceptable and preferred solutions outside the speci-
ficand set. Conversely, defects are related to the specif-
icand set minus the solution set, S — P. That is, if an
implementation i is unacceptable but is correct with re-
spect to the specification, it is in the set difference (i.e.,
tg PAi€S = 1€ S5— P). In other words, bias and

1A common statement of this rule is “A specification should
describe only what the system should do, not how it should
do it.” This modified rule is only useful with functional spec-
ifications: it views a software system as a specification for a
computation, rather than as a product.
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defects in the specification are dual problems.

Assume that for a given specification, the specificand
set is contained in the solution set. In this case, all correct
implementations are acceptable. This motivates the no-
tion of specification correctness with respect to a problem,
which is similar to the more familiar notion of implemen-
tation correctness with respect to a specification. (The
main difference between these two concepts is that specifi-
cation correctness cannot be formally verified because it is
defined relative to an abstract problem.) A specification is
correct if it is realizable (there is a correct implementation)
and complete (all correct implementations solve the prob-
lem). That is, for a correct specification it is possible to
derive an implementation and any implementation derived
solves the problem. On the other hand, a specification is
called impertinent to the problem if there is not a correct
implementation that solves the problem.

The above is formalized as follows: Let S be the speci-
ficand set of a specification and let P be the solution set
of a problem.

o The specification is realizable iff S # 0.

o The specification is complete w.r.t. the problem iff S C
P.

¢ The specification is correct w.r.t. the problem iff it is
realizable and complete.

o The specification is pertinent to the problem iff SN
P £

The following relations between these concepts are imme-
diate: correctness implies pertinence (S #9A S C P =
S N P # @); pertinence implies realizability (SN P # 0 =
S # 0); completeness and pertinence imply correctness
(because pertinence implies realizability); unrealizability
implies completeness and impertinence (S =8 = § C
P ASN P = p); there is no correct specification for a
problem without a solution (P=0=35:5S#0ASC P).

To analyze the correctness of a specification with re-
spect to a problem, consider the emptyness of the set S— P,
related to the completeness of the specification, and of the
set SN P, related to the pertinence of the specification.
There are four cases: (2) The specification is unrealizable;
{b) the specification is correct; (c) the specification is real-
izable but not pertinent; and (d) the specification is perti-
nent but incomplete, that is the specification can be made
correct by adding more requirements. Figure 2 presents
these cases, with case (d) comprising two subcases. In
cases (a) and (c), the only chcice is to backtrack, since
at this point it is impossible to derive an acceptable solu-
tion. In case (b) there are no problems of correctness, but
there can be problems of specification bias, if the preferred
solution lies outside the specificand set as in Figure le.
In case (d), the specification is incomplete, so addition of
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Figure 2: Specificand set S with respect to solution
set P: (a) unrealizable, (b) correct, (c) realizable but
impertinent, (d) pertinent but incomplete.

problem-specific information is needed to achieve a correct
specification.

2 Specification Refinement

The specification and design processes are complex pro-
cesses in which technical knowledge, art and inspiration
take part [10). Goel and Pirolli [4] describe the tradi-
tional view of design as a four-step process: “(1) an ex-
ploration and decomposition of the problem (that is, anal-
ysis); (2) an identification of the interconections; (3) the
solution of the subproblems in isolation; and (4) the com-
bination of the partial solutions taking into account the
interconnections (that is, synthesis).”

In this work we go beyond these general processes and
describe the subprocesses that occur specifically in soft-
ware design. We characterize these subprocesses by how a
current specification is updated to produce the next spec-
ification within a series, and also by how precision and de-
tail are added to the specification. There is no assumption
that all requirement analysis is done before design; on the
contrary, requirements gathering and design are supposed
to be intertwined [12].

2.1 Refinement Subprocesses

We assume that there is a written initial specification
and that successive specifications will be created by a series
of modifications to that specification. With respect to the
subprocesses that perform these modifications—typically
additions to the current specification—we postulate that
there are four main kinds of activities that modify a spec-
ification:

Ezplication: addition of a requirement by making explicit
a nonexplicit requirement.

Design decision: addition of a requirement by choosing a
particular design.
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Presentation change: change in the notation, presenta-
tion, or structure of the specification.

Retraction: withdrawal of a requirement from a previous
decision or explication.

Even though we present these as discrete changes, actual
changes to a specification usually involve a combination of
them. For example, after finding an incorrect explication
an analyst may replace the corresponding requirement by
another one: a retraction followed by an explication.

Explication

Explication is one of the main activities during require-
ments gathering. Explications make the specification more
complete, that is, ensure that software systems satisfying
the specifications are solutions. In Figure 1 the goal is
to transform a specification like (d) into one like (a). This
goal is achieved by making explicit either domain informa-
tion, problem-specific information, or consequences of the
specification, thus reducing the specificand set.

Of course, the new requirement is not always a valid
explication (e.g., something believed to be a consequence of
the requirements might not be). This is intimately related
to the concepts of specification correctness (Section 1.4)
and bias (Section 3.3).

Design Decisions

As the name suggests, design decision is the most im-
portant process during design activities. Design decisions
guide the implementation process towards a preferred set
of solutions reducing the specificand set (as in Figure 1c).
The information needed to make design decisions comes
mainly from the previous specification and the solution do-
main. For example, semantic-preserving transformations
in transformational programming are design decisions, be-
cause they preserve the functionality while improving other
attributes of the algorithm.

We have identified several kinds of design decisions: de-
composition, refinement, composition, abstraction, instan-
tiation, reuse, creation of alternatives, and choice. Some of
these are intimately related so we discuss them together.

Decomposition and refinement. Decomposition consists
of dividing the problem into subproblems. It is usually
followed by refinement, which means defining unspecified
concepts or objects. These two processes are the core of
stepwise refinement.

Composition. On the other hand, composition is the
‘process of creating a solution to a problem by combining
solutions to subproblems. That is, composition is the main
process in bottom-up development. Composition is used
most effectively in combination with reuse.
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Abstraction, instantiation, and reuse. Abstraction as a
design decision consists of specifying a solution to a more
general problem (i.e., a problem of which the problem of
interest is an instance), usually defining a set of (formal)
parameters to describe particular instances. The rationale
for solving more general problems is that it is often easier
to abstract away particulars of the problem of interest and
solve a general problem. Furthermore, the more general
solution can be reused in other contexts.

Reuse as a design decision consists of prescribing the use
of a particular solution to a subproblem. If the solution to
be reused is parameterized (i.e., it has formal parameters)
actual parameters must be provided to do the reuse. In-
stantiation is the process of defining actual parameters for
a parameterized abstract solution.

A solution to reuse need not be already implemented: it
may be simply specified as the solution to another subprob-
lem. When several subproblems in the current design are
instances of a single general problem, abstraction, instan-
tiation and reuse can be employed to “factor” the design.

Creation of alternatives and choice. When it is not im-
mediate which kind of design is the best, it is possible to
create several alternative designs using some of these tech-
niques. A valid implementation must conform to one of the
created designs. After more elaboration of these designs,
some are discarded until one design prevails. Choice is the
process of selecting among alternative designs; the choice
process is more objective when it is based on preference
measures [2].

Presentation Changes

Presentation changes are intended to change the pre-
cision, formality, readability, modularity or other aspects
of the specification itself, without affecting the specificand
set, that is, without adding more information. For exam-
ple, a condition written in English, referring to a collection
of objects can be replaced by a logical predicate in which
the collection is represented by a set.

Ideally, a presentation change does not change the
specificand set, that is, it does not create new require-
ments. However, restrictions in the specification languages
or methods used may impose additional constraints. In the
above example, should our specification language support
lists but not sets, we might have specified a list as an im-
plementation for a set. If we later coded this list in Pascal
we might have coded our list specification into an array
or linked structure rather than the more efficient set data
type that actually was originally specified. That is, as a
result of a specification language deficiency we have added
an additional arbitrary constraint for the program that re-
sulted in it being less efficient, that is, we have added bias.

Retraction
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Figure 3: Classification of requirements: explicitness.
Fictitious requirements are shown with segmented line
because they are not real requirements.

Retraction occurs when a designer realizes that the cur-
rent design is incorrect or otherwise undesirable. The goal
of retractions is to create a pertinent specification, as de-
fined in Section 1.4. As we said before, the retraction pro-
cess is usually done in conjunction with other processes
that create a new “replacement” requirement.

3 A Model of Bias

Presence of bias cannot be determined from the require-
ments alone, because it depends on the origins of require-
ments. For instance, if the origin of a particular require-
ment is in the problem, the requirement is not bias; if the
origin is a misconception it may be. Hence, our definition
of bias is based on a classification of requirements.

Requirements are classified into several classes with
subtle differences. These subtleties are what makes bias
hard to define and even harder to find. The main clas-
sification criteria we consider are explicitness and origin,
which depends on the process of creation of new require-
ments.

3.1 Explicitness

A requirement is explicit if it is present in the specifi-
cation; otherwise, it is nonezplicit.

Nonexplicit requirements are a recurring cause for mis-
understandings in product development. They are further
classified as follows (Figure 3).

Implicit requirements are those that are understood to
be part of every product in the application domain, and
so they are left unstated.

Implied requirements are logical consequences of other
requirements.

Absent requirements are requirements unintentionally
omitted in the specification, but are required by the so-
lution set. These are not part of every product in the
application domain.

Fictitious requirements [8] are assumptions made by the
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Figure 4: Classification of explicit requirements: ori-
gin.

reader of the specification and not requirements at all: the
reader believes that they are either implicit, implied or
absent requirements.

A real nonexplicit requirement is either an implicit, im-
plied, or absent requirement.

3.2 Origin

An explicit requirement is new with respect to a cer-
tain specification stage if it is first made explicit at that
stage; otherwise, the requirement is inherited from previ-
ous stages. (When the specification stage is clear from con-
text we will say simply ‘new’ or ‘inherited’ requirement.)
Of course, every explicit requirement is new to one stage,
namely the stage in which it is introduced.

The discussion in Section 2 motivates the following clas-
sification of new requirements with respect to their origin
(Figure 4).

Designed requirements are the consequence of design
decisions taken at the current specification stage.

Ezplicative requirements are created by explication of
implicit, implied, or absent requirements.

Eztraneous requirements are created by explication of
fictitious requirements.

Imposed requirements are those imposed by the limita-
tions of the specification method or language used, created
as a side effect of a presentation change.

This classification describes possible origins for the re-
quirements, but it does not provide a method to determine
the origin. For example, without a complete analysis of
the application domain, there is no definite method to tell
whether a requirement is extraneous or the explication of

* an implicit requirement.

3.3 The Nature of Bias

We define bias in terms of the-origin of the requirements
described in a specification: A specification containing ex-
traneous or imposed requirements is bigsed.
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This definition provides insight into the problem of bias,
including both its origins and consequences. The origin
of bias is either wrongful interpretation of nonexplicit re-
quirements or the limitations imposed by the specification
method. The consequences are that the specificand set
can be overly constrained or that the solution adopted can
be suboptimal. That is, a biased specification will lead
the design towards particular implementations that are not
necessarily the best possible. '

The definition does not provide a method to measure
bias content in a specification, because bias is defined in
terms of the origin of requirements and we cannot be com-
pletely sure of the origin of some requirements. Further-
more, bias is relative to the application domain and the
software engineering environment, because the domain and
environment define what is implicit.

For example, in an environment in which all programs
are written in a particular programming language, the
presence of idioms of this language in a specification is
not necessarily bias, unless another implementation lan-
guage is introduced to the environment. This is what
happened at the Software Engineering Laboratory (SEL)
at the National Aeronautics and Space Administration
(NASA).2 During the first experience with development
in the Ada language they realized that software specifica-
tions for satellite dynamics simulators were “heavily biased
toward FORTRAN. In fact the high level design for the
simulators is actually in the specifications document” [1].
This was not a problem—on the contrary, it facilitated
both development and reuse of specification and code—
until the first development in Ada: the specifications had
to be rewritten first. Given our definition of bias these
FORTRAN-oriented specifications were not necessarily bi-
ased; they contained many designed requirements. Before
Ada was introduced, the use of FORTRAN was an im-
plicit requirement. After that, the choice of appropriate
language became an ezplicit attribute, resulting in the as-
sumption of FORTRAN as a fictitious requirement.

The relative nature of bias is an essential characteris-
tic. It stems from the existence of nonexplicit requirements
and the inherent uncertainty with respect to those require-
ments. That does not imply that there is nothing to do:
an obvious task is to make explicit as much as possible
about the domain and environment. If this is done, we
are reducing considerably the possibilities of bias. How-
ever, as long as there are nonexplicit requirements, there
will be doubt about these requirements and hence possi-
bility of bias. Making explicit the implicit requirements of
a certain domain and environment still leaves two sources
of bias: restrictions on the method and languages, and
absent requirements. These two cannot be avoided com-
pletely: the first because any method that provides some

2The SEL was created in 1976 to study and improve the
software process at NASA Goddard Space Flight Center.
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guidance in the specification process will guide the design
to some particular kind of solutions; the second because at
the beginming of a project most requirements are absent.

4 Software Defects

Both bias and software defects are a consequence of
problems in the development process. Section 1.4 shows
the duality of bias and faults by analysing the differences
of the specificand set and the solutions set. Here this com-
parison is extended further. We classify software defects in
three classes [11]: faults occur in documents, errors occur
in human processes, and failures occur in automatic pro-
cesses. There is an analogy between the problem of bias
and defects: fictitious requirements are like errors (both
during human processes), imposed and extraneous require-
ments like minor faults (both occur in documents), and
inefficiencies like minor failures (both occur during auto-
matic processes). The criticality of the attributes involved
is related to whether something is considered a fault or
simply bias.

During software development, successive specifications
are written, usually starting from an incomplete specifi-
cation towards a correct specification. Every specification
inherits from all previous specifications, so if there is a
new requirement that contradicts an explicit previous re-
quirement the new specification is inconsistent and hence
unrealizable. The only solution is to retract either the
new requirement or previous requirements. Similarly, if
a new requirement contradicts a nonexplicit real require-
ment the specification is made impertinent to the problem
(i.e., it solves another problem); again, the only sclution
is to retract. All too often a specification is unrealizable
or impertinent but thisis not evident to the developers so
no retraction occurs and development continues. Thisis a
secondary but important source of defects.

We have studied these problems at the SEL. The soft-
ware analyzed are ground support systems for unmanned
spacecraft. Most systems are about 100K source lines FOR-
TRAN programs, but a sizable percentage are now in Ada.
The SEL has a database describing systems and their de-
velopment processes made in the last 15 years. The anal-
ysis that follows uses data from that database, but only
considers relatively recent data (since January 1, 1986),
because the software process has changed.

Table 1 summarizes counts of change reports classified
by type of change (e.g., requirement changes, fault cor-
rection) in all SEL projects. From the table, 49.4% of the
changes are due to faults, 12.3% correspond to planned en-
hancements and 10.6% are due to requirements changes.

Table 2 summarizes counts of the changes due to the
8074 faults of Table 1, classified by source of fault. From
the table, 74.8% of faults are related to coding and 16.3%
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Type of change Count %
Fault correction 8074 49.4
Environment change 533 3.3
Improvement of user services 1205 7.4
Planned enhancement 2018 12.3
Presentation changes 1464 9.0
Requirement changes 1730 10.6
Other 1327 8.1
Total 16351 100.1

Table 1: Changes by type in SEL projects since 1986.

[ Fault source All faults
Count % |
Requirements 76 0.9
Functional specification 242 3.0
Design 996 12.3
Subtotal specifications 1314  16.3
Code 6043 74.8
Previous change 714 8.8
Other 3 0.0
Total 8074 99.9

Table 2: Fault source in SEL projects since 1986.

of the detected faults are directly related to incorrect spec-
ifications (our definition of ‘specification’ includes three
SEL phases: requirements, functional specifications, and
design). This simple analysis demonstrates that up to 16%
of all problems can be related to implementation bias in
the specifications.

However, because requirements documents and their
changes originate outside the SEL and within some re-
quirements generation group at NASA, these changes are
not considered faults in the specifications. If we assume
that the 1730 requirements changes in Table 1 were in-
deed fault corrections, the total number of faults would
be 8074 4+ 1730 = 9804, the total number of specification
{aults would be 1314 + 1730 = 3044 and hence specifica-
tion errors would account for up to 31.0% of all faults.
This assumption is not as extreme as it looks, because
predicted changes in the requirements, improvements and
environment (hardware) changes are classified separately.
In summary, considering all faults, between 1/6 and 1/3
of all faults at the SEL are related to specifications, and
potentially are related to implementation bias.

Another source of faults related to specifications are
faults of omission: when something is not specified it is not
a problem of the code but of the specification. The fact
that the problem shows up during coding or testing does
not mean that the problem is coding. Table 3 shows counts
of faults of omission, commission, omission/commission
separated by fault source (the ‘Total’ column is not identi-
cal to the ‘All faults, Count’ column from Table 2 because
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Source Comm. Om. Both None Total
Regs. 19 40 8 9 76
Specs. 102 78 40 20 240
Design 253 550 159 34 996
Code 2302 2334 921 482 6039
Prev. chg. 289 295 79 50 713
Total 2965 3297 1207 595 8064
Percent 36.8 409 15.0 7.4 100.0

Table 3: Omission and commission faults in SEL
projects.

10 faults had invalid data). At the SEL 37% of all faults
are faults of commission, 41% are faults of omission and
15% are faults of omission/commission. Thus, about one
half of the faults are of omission and potentially can be
attributed to incompleteness in the specifications.

In conclusion, even though coding appears to be by far
the most important source of fanlts, a deeper analysis of
the specification process reveals that many coding faults
have roots in earlier stages. Implementation bias undoubt-
edly plays an important role in many of these 3000 faults
that are related to changes due to specification issues.

5 Conclusion

Even though bias is widely recognized as an undesir-
able property of specifications, it has not been adequately
studied. This has caused confusion with the related con-
cept of design decision, so that the presence of designed
requirements in specifications has been considered unde-
sirable. This is in contrast with the use of specifications
in other engineering disciplines, where a specification may
include many designed requirements (e.g., materials, man-
ufacturing methods).

In this paper we presented a model to describe the na-
ture of bias and distinguish bias from designed require-
ments and other requirements in a specification. This
model is based on a classification of all the requirements
described in a specification and also those that are not de-
scribed (i.c., nonexplicit); it explains the nature of bias,
but since it uses nonexplicit requirements it does not lead
to any definite method to detect bias. However, the model
does explain both the relative and unavoidable nature of
bias. Because bias depends on the specification process we
had to mode) that process. This modeling shed light on
the problem of software defects, a relationship that in turn
helped us to potentially explain the high relative number
of coding faults found at the SEL.

Although we have developed an explanatory model
of the design process, quantification of these concepts is
needed before we can develop practical procedures for ap-
plying them in large scale developments. Additional work
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in this direction in continuing.
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Abstract

Identification of high cost modules has been viewed
as one mechanism to improve overall system reliabil-
ity, since such modules tend to produce more than their
share of problems. A decision tree model has been
used to identify such modules. In this current paper, a
previously developed aziomatic model of program com-
plezity is merged with the previously developed decision
tree process for an improvement in the ability to iden-
tify such modules. This improvement has been tesied
using data from the NASA Software Engineering Lab-
oratory.

1 Introduction

Identification of high cost modules has been viewed.

as one mechanism to improve overall system reliability,
since such modules tend to produce more than their
share of problems. In order to idertify such modules,
Selby and Porter [2, 3] developed a decision proce-
-dure based upon decision trees. With their technique,
which we call Classification Tree Analysis (CTA), they
showed on a set of 16 large-scale programs contain-
ing over 4700 modules obtained from the NASA Soft-
ware Engineering Laboratory, that they could identify
which subset of the 74 measures obtained from each
module would produce good estimators of high-cost
modules.

Recently Tian and Zelkowitz [4] developed an ax-
iomatic model of program complexity. Based upon
this model, the 74 measures kept on each of the 4700
modules could be reduced to only 18 measures that
represented valid complexity measures. Using these
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18 measures, the decision tree process results in an
improvement over the original Selby-Porter method.

In this paper we will first describe the original de-
cision tree process, we then summarize the axiomatic
complexity model, and then demonstrate that we can

" improve on the previous model in identifying high-cost
modules.

2 Classification Tree Analysis

In a series of earlier studies by Selby and Porter,
a technique called classification tree analysis (CTA)
was used to identify high cost components. Of critical
importance to CTA is the selection of measures (or
attributes) to construct the classification tree.

We define a high cost component as one in the
uppermost quartile (i.e., 25 percent) relative to past
data. The rationale for this definition is the so called
“80:20 rule”, which states that about 80 percent of a
software system’s cost is associated with roughly 20
percent of the system.

A classification tree is essentially a decision tree
that branches on the range of values according to a
measure at an internal node repeatedly until a com-
ponent can be identified as high or low cost, or until
all measures are exhausted.

The classification tree method that was used, called
the classification paradigm, consists of the following
three integral parts:

e Classification tree generation is the central
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activity of constructing classification trees and
preparing them for analysis and feedback;

e Data management and calibration are the
activities that retain and manipulate historical
data and tailor classification tree parameters to
the development environment; and

e Analysis and feedback is the part that lever-
ages the information resulting from the tree gen-
eration by applying it in the development process.
The central piece of the application of classifica-
tion tree is to develop remedial plans and take
corrective actions.

2.1 CTA Method

The goal is to predict high cost modules in the cur-
rent project with kigh cost being interpreted as the
highest quartile. The historical data (or training set),
consisting of one project immediately preceding the

current one, are grouped into quartiles according to a

measure’s value, with all measures being considered.

Starting from the root, a measure is selected to sep-
arate modules into four subsets associated with each
arc. The number to the left of an arc is the lower
(inclusive) bound and the number to the right is the
upper (non-inclusive) bound for the subset according
to the measured value. So we have four subsets (quar-
tiles).

A set of modules associated with an arc is positively
identified if more than a threshold (termination crite-
rion) of modules are in the highest quartile of cost, and
it is represented in the tree as a terminal node marked
with a “4” sign. A set can be negatively identified
similarly, and represented correspondingly by a “—”
sign. If a set cannot be either positively or negatively
identified, another measure is selected to further clas-
sify these modules into finer subsets. This process
continues until either all modules are identified or all
measures are exhausted without being able to make
such a determination. In the latter case, the termi-
nal node is marked with a “?” sign, representing that
CTA can not make a prediction for modules in this
set.

Notice that the generation of the classification tree
depends solely on the training set and various.param-
eters selected for the technique. The current project
will only use the tree but not affect the structure of
the tree.
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Modules
my msy ma L2 7] Mg
cyclomatic complexity 3 8 13 30 45
module+function call 8 40 7 3 12

operators 30 18 10 33 58
module calls 3 4 3 0 5
prediction - 7T - - 4

l_‘ actual [ - - + - 4]

Table 1:; Predicting High Cost Modules

As an example, consider the sample (fictitious) test
data of Table 1, and the classification tree in Figure 1.
This test set includes 5 modules and 4 measures. In
this case, the CTA method predicts 3 out of 4 modules
correctly (it misses module m3) and is unable to clas-
sify module m; through the classification tree. For
example, module my follows the right most branch
from the root (cyclomatic complexity of ms is greater
than 26) and again follows the right most branch from
there (operator counts of ms is greater than 34). We
can finally predict it to be of high cost because its
module call counts falls between 4 and 10.

2.2 CTA Cost

There are two types of cost associated with the CTA
technique: the cost of building classification trees and
the cost of using them. The former is determined by
the factors: 1) the CTA parameters, 2) the size of
the available measure pool where measures are to be
selected, and 3) the implementation efficiency of the
CTA supporting tools. For the latter cost factor, the
tree size is a good measure. Because the classification
trees we are studying have fixed structure (there are
4 branches from every internal node), we can effec-
tively capture the cost of using classification trees by
counting the number of internal nodes for them.

2.3 CTA Performance

According to the match between CTA predictions
and actual cost data for the modules in a test set,
various performance measures can be defined:

Coverage: The percentage of modules (either posi-
tively or negatively) identified;

Accuracy: The percentage of correct matches between
predictions and actual data;

Comsistency: The percentage of predicted high cost
modules who are actually high cost. High consistency
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Figure 1: Component Classification Tree

indicates less “false alarms;” and

Completeness: The percentage of actual high cost
modules predicted correctly by CTA. It reveals the
power of CTA to uncover high cost modules.

3 Axiomatic Program Complexity

Most program complexity studies define complexity
as a numeric comparison between any two programs.
However, we have come to realize that some programs
are inherently incomparable. For example, it makes
litttle sense to compare the complexity between a pay-
roll system and a real-time emission control system in
a car. They each come from radically different appli-
cation domains.

Instead we view complezily as a partial ranking
among the set of programs and a complezity measure
as a function applied to specific programs as an ap-
proximation of the attribute we are trying to deter-
mine. The following summarizes this model [4].

3.1 Axiomatic model

Consider a program as a hierarchy of modules con-
sisting of instructions, data, and the underlying exe-
cution control mechanism. We initially limit ourselves
to a Pascal-like nested scope sequential control lan-
guage. Programs are represented by their abstract
syntax trees:
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U represents the set of all programs.

AST(P) represents a binary abstract tree repre-
sentation for program P. The root node of pro-
gram P is given by root(P), the left subtree of P
is left(P) and the right subtree of P is given by
right(P).

e For programs P and Q, IN(P,Q) is true if P is
a subprogram of Q (i.e., AST(P) is a subtree of
AST(Q))-

e If IN(P,Q) is true, then dist(P, Q) represents
the path length in order to go from root(P) to
root(Q).

o P with all free occurrence of z replaced by y not
in P is denoted as P;. We use P;' to mean the
renaming is carried out for all corresponding one-
to-one pairs in lists o and §, where

(var(P)—a)NB =10

(var(P) is the variable list of program P).

A complezity ranking R is a binary relation on the
set of programs. The complexity ranking between pro-
grams P and Q is R(P, Q). We interpret R(P,Q) as P
being no more complex than Q. P and Q are compa-
rable, denoted C(P, Q) , if either R(P,Q) or R(Q, P)
holds, i.e., C(P,Q) iff R(P,Q)V R(Q,P).



A complezxity measure V is a function that maps
every program into a vector of real numbers: V: U —
R". ) '

Although simple definitions, we are immediately
confronted by a difficult problem:

Theorem T1: There exist complexity rankings that
are undecidable.!

Although the general problem of complexity rank-
ing is undecidable, many practical rankings are not.
In what follows we restrict ourselves to these more
practical rankings.

Axiom AL: (YP,Q) ([P]=[Q]= ¢(P.Q) ) where
is the function of program X.

Given programs P and @, the problem of E: @
is unfortunately also undecidable. This axiom, then,
is at the center of the problem of developing effec-
tive complexity measures on real programs. We cer-
tainly want to be able to compare equivalent programs
in order to determine which is best; however, unde-
cidability says that we cannot always do this. It is
for this reason that most complexity measures have
not achieved significant breakthroughs since the un-
derlying models are rarely comparable. However, in
many practical applications, such as described above,
we know or can assume that two given programs have
the same or similar functionality.

Because of this, in practice we often use a weaker
form of this axiom that only addresses the sirnilarity
of two programs:

Axiom A1 (VP,Q) ([P]~[Q]=c(P.Q)).

A program in general consists of many hierarchi-
cally related components. As a result, we require that
a program must be comparable with a subpart of it-

self.

Axiom A2: (VP,Q) (IN(P,Q) = C(P,Q))

1 Axiom and theorem references are keyed to [4], which also
contains the proofs of the theorems. Some of the theorems
given in that paper are not relevant to this present discussion
and hence are not listed here.
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Axiom A2 brings up the intuitive notion that we
would like complexity to increase as programs become
larger, i.e., if P is a component in Q (IN(P,Q)), then
P is no more complex than Q. We left this out because
there are cases where the opposite is true. Consider
@ formed from P by addition of easily recognizable
keywords or tags; Q might be more readable, thus
easier to maintain as a result. Another case is that
loops are often more easily understood if they include
their initialization code than if presented without it.

Contextual information might help to reduce the
complexity of composite programs. But the degree
of the reduction must be limited, otherwise infinitely
large programs paradoxically might be the simplest.
On the other hand, a periodic function such as co-
sine(z) as the complexity of a program, where z is
some size measure of a program P, is clearly not ac-
ceptable. As a general trend, then, adding compo-
nents must result in a more complex program:

Axiom A3:
(3K € N)(VP,Q)(IN(P,Q) A (dist(P,Q) >
K)) = R(P,Q))

Since our goal is to compare the complexity of two
different programs, define a predicate 7 such that
T(V(P),V(Q)) is true if program P is no more com-
plex than program @. For V into R, we have the ob-
vious definition that 7(V(P), V(Q)) is just (V(P) <
V(Q)). For higher dimensions, other results are pos-

-gible (e.g., a dot product called the performance level

measure which compares alternative software designs

(2))-

T is our decision process which "determines how
well V approximates our complexity ranking R be-
tween P and @ based on the measured complexity
values V(P) and V(Q). We would like the relation-
ship to be T(V(P), V(Q)) <> R(P,Q), and in fact it
is an implied axiom in most other complexity models.
However, we believe that this is the major weakness
that has prevented most complexity models from be-
ing truly effective. Because of undecidability issues
(e.g. theorem T1), for all P and @ we cannot deter-
mine T for every R. As a result, we use a weaker
condition, namely:

Axiom A4: (VP,Q) (R(P,Q) = V(P) £V(Q)) |

Since for many useful applications, R defines a total
ranking, we then have:



Theorem T5: When R is total, i.e., (VP,Q)C(P,Q) ,

we have:

(VP,Q) (V(P) < V(Q) = R(P,Q))

In order to be useful, we would like our complex-
ity measures to distribute programs across a range of
values. If there is only a single “dominating” cluster
point, we gain little information from the measure.
Axiom A5 allows, for rough comparisons, bi-polar or
multi-polar distributions:

Axiom A5: (Vk € R)(36 > 0) (lU-{P: V(P) €
[k =6,k + 6]} = U

Axiom A5 forces our complexity measure to be
nontrivial, as in:

Theorem T7: (VP)(3Q) (V(P) # V(Q))

When V maps programs into a discrete bounded
set S, axiom A5 requires that at least two points in S
have infinitely many programs with such values:

Theorem T8: If set S of complexity values is finite,
then:

{k: (ke S)A({P: V(P)=k}=]UD} 22

3.2 A classification model

Given these five axioms, we developed a classifi-
cation model for categorizing the various complexity
measures depending upon the information they pro-
vide. A vertical classification uses a subset of the at-
tributes for the entire program, while a hierarchical
classification uses some functional relationship among
the program'’s parts.

Vertical classification

A complexity ranking R is abstract, denoted
AB(R), if given P and Q with AST(P) = AST(Q),
then R(P, Q)(and equivalently, R(Q, P)).

If two programs are syntactically identical except
for variable names, as long as two set of names are
isomorphic, the only conceivable differences is inter-
pretational (the meaning attached to each name). On
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the other hand, when considered functionally, each
name is just a surrogate for the underlying data ob-
ject. Thus we have the classification:

A complexity ranking R is functional, denoted
FN(R), if given P and Q with name sets o and S
such that AST(Pg') = AST(Q), then R(P,Q).

Hierarchical classification

Assessing complexity by using only the components
while ignoring interactions (i.e. ignoring the context
where the components are defined and used) results in
a context free ranking: A complexity ranking R is con-
text free, denoted CF(R), if given P, its ranking with
respect to any given Q can be uniquely determined
by: (1) Q and (2) root(P), the complexity ranking of
left(P), and the complexity ranking of right(P).

As a special case of context free complexity where
organizational information is completely ignored, we
can have primitive complexity: A complexity rank-
ing R is primitive, denoted PR(R), if all programs
P and Q with the same collection of AST(P) and
AST(Q) nodes (same number of occurrences for each
corresponding pair) then R(P, Q).

Also, a complexity ranking R is interactional, de-
noted TA(R), if it is not context free, i.e. ~CF(R).

Without considering interaction, the complexity of
the composite complexity is the sum of all the com-
ponents complexities. However, due to interaction
among component parts, the total complexity may be
greater than the sum. Such a complexity ranking is
called overall.

If we are allowed to modify the internal structure,
or reorganize the program according to some program-
ming practices (such as modularization, data abstrac-
tion and information hiding), we may be able to cut
down the interfacing complexity, thus the overall com-
plexity. Since the two programs are functionally equiv-
alent, they are comparable in complexity (A2).

The relationship among different hierarchical
classes can be summarized in the following tree: -



( Primitive
Contest Free PR(R)
CF(R) Non Primitive
- PR(R)
Hierarchical {
: Overall
Interactional OA(R)
IA(R) Not Overull

Using this model, we have been able to develop
Weyuker’s 9 properties for complexity measures as
special cases of our axioms [5]. Since those proper-
ties have been widely studied over the past 4 years,
and since we can model her properties with our clas-
sification model, we believe that our axioms are a rea-
sonable approximation of program complexity.

4 Application of the Model

Sixteen software systems, ranging from 3000 to
112,000 lines of FORTRAN source code, were selected
from NASA ground support software for unmanned
spacecraft control developed in the NASA /GSFC Soft-
ware Engineering Laboratory. Each required between
5 and 140 person-months to develop over a period of §
to 25 months by 4 to 23 persons. Each project contains
from 83 to 531 modules, totalling over 4700 modules.
There are 74 attributes, each quantified by a specific
measure, for each module divided into three broad cat-
egories: fault, effort, and style (or complexity).

For each application instance, one of the projects
was used as a training project in order to develop the
classification tree for the next project. This was re-
peated for the remainder of the 16 projects.

Five of the projects were of a greatly different size
than the others (by more than a factor of 3). We
deemed these to not fulfill Axiom A1’ on similarly
of functionality. This reduced the set of projects to
11 (and 10 data points) and are given as Group A in
what follows. We used a different ordering of 6 of the
projects in terms of training set to give us Group B
(and 5 additional data points). CTA refers to the orig-
inal Classification Tree Analysis process, while ACT
refers to the Axiomatic Classification Tree process de-
veloped in this paper.
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4.1 Measure Screening

From the set of 74 measures for each.module, we
first eliminate all measures that are not directly mea-
sureable from the modules themselves. Thus effort
data, e.g., number of hours to develop the module,
are eliminated. We also eliminated change and error
data since they represent interactions among program
components and the operational environment. We can
therefore reduce the number of measures to 40.

All candidate measures satisfy axioms Axiom A1’
(comparing functionally equivalent programs), Ax-
tom A2 (comparing component-composite pairs),
Axiom A4 (measures agree with their ranking), and
Axiom A5 (no single cluster). However, many of
the measures do not satisfy Axiom A3, the general
monotonicity axiom. These measures are averaging
measure such as assignment statements per 1000 eze-
cutable statements, which may be correlated with av-
erage effort per 1000 lines or 50, but not with the total

_ development effort. Therefore these measures will be
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eliminated. This reduces the candidate measures from
40 to 18, with the candidate measure set S being the
left half of Table 2.

Both abstract and non-abstract aspects contribute
to cost, so measures from any vertical class are poten-
tially acceptable. On the other hand, as we are only
considering cost and complexity at the module level,
the hierarchical classification is not relavent. The
analysis based on the measure classification scheme
does not eliminate any measure for CTA in this case.

4.2 Apggregate Evaluation

Given 18 remaining measures that meet the bound-
ary conditions based on the axioms and measure clas-
sifications, we next determine which of them best pre-
dicts total effort. The underline distribution, as we
assumed, is a four region distribution (grouped into
four quartiles) determined by historical data. A quar-
tile of modules is positively identified if more than
75% of the modules (tolerance level: 25%) have the
upper most quartile of effort. The negative sets can
be similarly identified.

Let m;(V) (i = 1,2, 3,4) be the number of modules
in quartile i using measure V; p;(V) be the proportion
of modules in m;(V) belonging or to the upper most
quartile of effort; and n;(V) be the rest proportion in
m;(V) (therefore p;(V) + ni(V) = 1). As a result,
a quartile is positively identified if p;(V) > 0.75, and



Meets Axiom A3

Fails Axiom A3

assignment statements
input-output statements
input-output parameters
source lines

comments

source lines minus comments
executable statements
function calls

module calls

function plus module calls
cyclomatic complexity
operators

operands

total operators

total operands

decisions statements
format statements

origin

assignment statements per 1000 executable statements
input-output statement per comment

input-output parameters per comment

input-output statements per 1000 executable statements
input-output statements per input-output parameter
input-output statements per 1000 source lines
function calls per comment

function calls per input-output statement

function calls per function plus module call

function calls per input-output parameter

function calls per module call

.module calls per comment

module calls per input-output parameter

module calls per function plus module call

module calls per input-output statement

function plus module calls per 1000 source lines
function plus module calls per input-output statement
function plus module calls per input-output parameter
function plus module calls per 1000 executable statements
function plus module calls per comment

cyclomatic complexity per 1000 source lines
cyclomatic complexity per 1000 executable statements

Table 2: Attributes passing initial screening

negatively identified if n;(V) > 0.75.

To formulate the objective function for the aggre-
gated selection, we need to evaluate the contribution
of each quartile. We can weight them by the num-
ber of modules falling into the quartile. Therefore, we
formulate our selection criteria as:

vni)ae.xs {Z{mu(V) «pi(V)+mi(V) = n.-(V)}} (1)

for 1 ranging from 1 to p;(V) > 0.75 v n;(V) > 0.75

This selection criterion maximizes the number of
modules in positively or negatively identified quartiles.
For each of the quartiles neither positively nor nega-
tively identified, another measure is selected using the
same criterion. The process continues until all mod-
ules are identified or all measures are exhausted.

5 Results

‘We applied both the original CTA process and the
modified ACT process to the 16 NASA projects broken

10005788L

down into the 11 projects of groups A and six projects
of B. The following sections describe the results of this
analysis.

Size of generated trees

One measure of the efficiency of the technique is
the size of the classification trees that are generated.
Figure 2 shows that the axiomatic model (ACT) re-
duces tree size approximately 27% over the original
CTA model from 188 nodes to 136 nodes in the 15
programs with average tree size dropping from 12.5 to
9.1 nodes.

The smaller the tree the more desirable (less costly
to use to navigate through the tree, fewer measures to
collect), thus a point in the upper left region represents
an improvement over the original CTA.

Performance coverage

Table 3 compares the coverage based on the original
and modified classification trees. In all the projects
except one, near 100% coverage is achieved by both
methods. Thus the decision tree analysis method al-
most always will predict a cost for a module and will
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Figure 2: Internal Node Count Comparison

individual data points average
group A group B |A B all
CTA|66 76 78 63 53 67 71 85 73 71|70 50 81 77 58{70 68 69
ACT|67 73 80 66 50 67 81 83 73 89|79 54 86 85 58{75 74 74

Table 4: Accuracy Comparison

individual data points average
group A group B A B

CTA]70 66 31 54 52 63 30 16 50 10| 7 100 33 17 65{39 35 38

ACT|67 61 37 57 56 63 50 15 50 23|43 85 40 29 65|50 S0 50

group A group B

CTA[98 98 99 98 9193 97 100 100 98[100 98 97 97 100
ACT[99 100 97 100 82 93 100 98 100 99| 98 98 100 97 100

a. individual data points

group A group B all

CTA| 971 99 97

ACT| 97 99 97
b. average comparison

Table 3: Coverage Comparison

rarely leave modules unclassified. So, we can conclude
that the CTA technique using either selection method
achieves fairly good and consistent coverage, with an
average of 97% coverage for both.

Performance accuracy

Accuracy improved about 5% with the ACT pro-
cess, as given in Table 4.

Performance consistency
Table 5 gives the constency comparison. This is

the measure that drives the whole process, being that
identification of high cost modules is the major goal
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Table 5: Consistency Comparison

individual data points average
group A group B JA B all
CTA|26 6054 62 422142336477 4 4063 47|3828 35
ACT|30 46 73 59 49 21 14 33 6 30{71 13 40 63 47{35 39 35

Table 6: Completeness Comparison

of the prediction process.

The performance level between the two selection
methods is significantly different, with the modified
ACT selection method outperforming the original
CTA method by a margin of 50% to 38%.

Performance completeness

While ACT generates many fewer “false alarms,”
(i.e., predicting high cost modules which really are
not high cost - the above consistency measure), both
methods are comparable in actually identifying the
high cost modules, i.e., the completeness measure of
Table 6. That is, both will fail to indicate high cost
modules in over half the cases.

6 Conclusions

Classification Trees are a method to use measure-
able quantities from program modules in order to de-
termine desireable attributes from the development
process. Identification of high cost modules should
correlate closely with other process measures such as
reliability.

In this paper, we presented a Classification Tree
Analysis (CTA) method and a modification to it,
the Axiomatic Classification Tree Analysis (ACT)
method, where an axiomatic model of program com-
plexity was used to develop the candidate measures in
the classification tree.
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In all important measures, the ACT was either as
good as or improved upon the original CTA model:
(1) Classification trees were smaller; (2) Coverage was
the same; (3) Accuracy improved; (4) Consistency im-
proved and (5) Completeness was the same. We there-
fore believe that we have a candidate process that im-
proves upon the original model.

Using an axiomatic basis for classification trees has
two important economic benefits:

1. By eliminating unnecessary measures from the
classificaiton tree (e.g., reducing the list from 74
to 18 in the NASA SEL experiment), we elimi-
nate the need to collect such data. This would
imply less overhead on the development process.

2. The axiomatic classification tree analysis tech-
nique generates improved results, allowing man-
agement to better control and evaluate the de-
velopment process and allow for more informed
decision making with less risk involved.

Of course there is still much more to be done. ACT
is only right on 50% of the modules it calls high cost,
and only finds accurately over one third of these mod-
ules. However, the method is improving, and is inex-
pensive to use since it is available as a byproduct of
static analysis of the developing code. Further work
will continue on developing these models.
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Abstract:

Applying equal testing and verification effort to all parts
of a software system is not very efficient, especially when
resources are limited and scheduling is tight. Therefore,
one needs to be able to differentiate low | high fault
density components so that testing [ verification effort can
be concentrated where needed. Such a strategy is expected
to detect more faults and thus improve the resulting
reliability of the overall system. This paper presents an
alternative approach for constructing such models that is
intended to fulfill specific software engineering needs, (i.e.
dealing with partial | incomplete information and creating
models that are easy to interpret). Qur approach to
classification is to (1) measure the software system to be
considered and (2) build multivariate stochastic models for
prediction. We present experimental results obtained by
classifying FORTRAN components developed at the
NASA Goddard Space Flight Center into two fault density
classes: low and high. Also, we evaluate the accuracy of
the model and the insights it provides into the software
process.

Key words: fault-prone software components, stochastic
modeling, machine learning.

1. Introduction

In this paper, we address the issue of identifying high fault
density software components via empirical stochastic
modeling. If we can identify components that produce a
great deal of faults relative to their size, then we can
concentrate the verification and testing processes on them
and thereby optimize the resulting reliability of the
developed software system. However, building such

Research this study was supported in part by NASA grant NSG
5123 and by AFOSR 90-0031

stochastic models is a difficult task. The data collected is
often incomplete and/or heterogeneous and presents many
problems with respect to model construction (e.g.
interdependencies, outliers, complex relationships). In this
paper, we present an alternative modeling process based on
both statistics and machine learning principles [M83]. We
show how the process facilitates the identification of high
fault density components based on metrics obtainable at
the end of the coding phase.

The modeling approach presented in this paper, called
Optimized Set Reduction (OSR), has been developed at the
University of Maryland [BBT91] in the framework of the
TAME project [BR88] . It is derived from the ID3 model
[Q79, Q86, BR84] which was originally developed for
automatic generation of classification/decision trees. As
discussed in [CE87,BBT91], the use of ID3 has several
inherent problems and leaves room for improvement with
respect to many data analysis and modeling issues (i.e.
small data sets, missing data values, noisy data,
heteroscedasticity). Our motivation for developing OSR
and a tool to support it was to design a data analysis
technique matching, to the extent possible, the specific
needs of building multivariate empirical models for
software engineering. The issue of using OSR for
predicting on a continuous range is addressed in [BBT91].
In this paper, we discuss using OSR 10 classify software
components into two fault density classes (low, high).

In Section 2, we present the basic principles of the OSR
algorithm and formally define the approach. This
formalism is intended to give an unambiguous
presentation of some of the features of OSR rather than a
complete definition of it. Section 3 discusses the issue of
building models based on partial information (i.e. missing
data for technical or cost reasons). Section 4 presents a
process called "pattern merging” whose goal is to facilitate
interpretation and leaming based on the generated models.
Sections 5 and 6 present some of the results obtained via
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Pattern : Distribution :
Probablity 4
CPLX = Nominal
RELY=Low == >
DATA = High — .
Productivity

Figure 1: Example of a Pattern and its Associated Probability Distribution

experimentation using OSR. Based on these results, we
can determine the accuracy of the model. Also, we can
compare OSR's outputs with those of a logistic regression
based model, which is one of the most standard statistical
techniques for classification [HL89, AG90]. Finally.
" Section 7 underlines the major conclusions and directions
for future research.

2. Optimized Set Reduction
2,1 Basic Principles

Let us assume we want to assess a particular characteristic
of an object (¢.g. the fault density of a component). We
will refer to this characteristic as the Dependent Variable
(Y). The object is represented by a set of explanatory
variables which describe the software component (called
Xs). These variables can be either discrete or continuous.
For example, a software component may be described by
two Xs, its cyclomatic complexity (continuous) and the
type of its function (discrete). Also, assume we have a
historical data set containing a set of pattern vectors that
contain the previously cited Xs plus an associated actual Y
~ value. We will call the Xs portion of the pattern vector a
measurement vector.

The goal of the OSR algorithm is to determine which
subsets of experiences (i.e. pattern vectors) from the
historical data set provide the best characterizations of the
object 1o be assessed. In other words, we try to determine
which subsets of the data set yield the "best” probability
distributions on the Y range. A good probability
distribution is a probability distribution concentrating a
large number of patiern vectors in either a small part of
the range (Y is continuous) or in a small number of
dependent variable categories (Y is discrete). One of the
commonly used probability distribution evaluation
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functions is the information theory entropy (H).
Alternative probability distribution evaluation functions
are discussed in [Q86, SP88, M89]. Each of the subsets of
the historical data set yielding "optimal” distributions,
referred to as optimal subsets, are characterized by a set of
conditions (referred to as predicates) which are true for all
pattern vectors in that subset. Each set of predicates
characterizing a subset is called a pattern. Figure 1 shows
an example of a pattern and its associated probability
distribution in the data set. The pattern is composed of
three predicates where the dependent variable to be assessed
is "development productivity”. Figure 1 shows that if
these predicates (i.e. ComPLeXity = Nominal,
RELiabilitY=Low, DATA base size = High) are true for a
project, then its productivity is most likely to be in the
second productivity class.

2.2 Formal Definition of the OSR Process

We want to identify optimal subsets in the historical data
set. We can formalize the process using set theory and
predicate calculus by defining the function Opt. Let us
assume we have a set of m explanatory variables

{x,.xz. .xm} and a corresponding set of explanatory

variable value domains {EVy,EV,, ... .EVy, }. Let us define

the measurement vector domain to be MV = X EV,.

The dependent variable value domain (DV) may be seen as
a set of classes which can be either intervals or categories.
Therefore, the value domain of the pattern vectors in the
data set can be represented as PV = DV x MV. Let
PVS be a set of pattern vectors representing the historical
data set (PVS ¢ PV). A predicate is a variable value pair
(i.e. an X; and its corresponding explanatory variable
value).
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» Definition 1: Let PSS be a subset of PVS and let the
measurement vector mv describe the object 1o assessed.
VALID(PSS, mv) is true if mv is composed by at least
one predicate which is true for all the pattern vectors in the
set PSS.

PSS ¢ PVS A mv € MV A die{l..m)

such that Vpv € PSS (mv(i) = pv(i) )
= VALIDX PSS, mv)

« Definition 2: TC(PSS, PVS) is true if the two data sets
PSS and PVS do not show a statistically significant
difference in distribution on the DV range. This is may be
evaluated by performing statistical inference tests for
comparing distributions. We currently use a binomial test
for proportions since it does not have any applicable
restraints (¢.g. minimum expected frequencies like the
Chi-squared test of independence)(CA88]. For each
dependent variable class, the probability that proportions
in PSS and PVS differ by chance is calculated. If for at
least one of the classes, this probability is below a level
of significance TC defined by the user, then we reject the
hypothesis that the two distributions are identical. TC
stands for Termination Criterion because the OSR process
will be terminated if the condition defined by TC is true.

¢ Definition 3: EMIN(PSS], PVS) is true if PSS} is one
of the subsets of PVS yielding a minimal normalized
entropy H upon all statistically significant subsets of
pattern vectors (e.g. a one vector subset has a minimal
entropy but it is not a statistically significant subset and
therefore is not relevant here).

(PSS; c PVS A — TC(PSS),PVS))
A (VPSS; c PVS (= TC(PSS,,PVS) A H(PSS)) < H(PSS;)))
= EMIN(PSS1)

where
H(PSS) = .- p(PSS,d)log.omp(PSS,d)

deDV

where
p(PSS, d) is the a priori probability that a vector
which is an element of PSS has a dependent
variable value belonging to the dependent variable

classd

* Definition 4: Opt(PVS, mv) is a function yielding a set
of optimal pattern vector subsets.

Opt(PVS, mv) = {PSS ¢ PVS | VALID(PSS, mv)
A~ EMIN(PSS, PVS) )

However, the function Opt as defined cannot be used as an
algorithm to extract the optimal subsets. The most
important reasons are:
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«The number of possible predicate combinations
makes the search execution time prohibitive.

*We want the patterns to contain a minimal set of
predicates, i.e., we want all the predicates in the
pattern to have a significant impact on the resulting
paltern entropy.

*We loose some information about the relative impact
of the various predicates in the entropy reduction
process.

*The contexts in which the various predicates appear
relevant are undetermined.

Therefore, we implement a greedy algorithm using the
function Opt which addresses the issues mentioned above.
The Optimized Set Reduction algorithm can be roughly
described by a three step recursive algorithm.

« Step 1: If the dependent variable is continuous, its range
is divided into a set of classes according to two main
factors: the necessary model accuracy and the size of the
data set. Then, the ranges / categories of the explanatory
variables are divided / clustered into classes (e.g. Classj]
.. Classjj for the explanatory variable Xj) based on
meaningful class creation techniques. For example, a
Complexity range can be divided in three classes: low,
average, high. Numerous techniques can be used in order
to create meaningful classes (e.g. cluster analysis) [DG84].
However, this issue will not be addressed in this paper.

o Step 2: Select all the pattern vectors in the data set
having a value for the explanatory variable X; belonging
to Classjk, where the X; for the object to be assessed
belongs to the same class, and where the subset
characterized by the predicate X; € Class, yields the
minimum mﬂ@mﬁmm_valuc for H. However,
several subsets (characterized by different predicates)
yielding "similar” minimal entropies (i.e. the similarity
criterion has to be defined by the user of the algorithm)
can be extracted at once. Let us call PSS; the extracted
subsets of pattern vectors.

« Step 3: Step 2 is repeated in a recursive manner on each
subset PSS; and each successive subset until the user
defined termination criteria (TC) is reached.

This OSR algorithm can be formally specified as a two
parameter recursive function where PVS is the historical
data set and mv the vector describing the object o be
assessed:
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Subsetl.1 Subset12 Subset2.1

Historical
data set (PVS)

Subset3

Subset22

O Extracted subset

\ "Subset of” relationship

Figure 2: Example of OSR Hierarchy

OSR(PVS, mv) = if Opt(PVS, mv) # ©
then

| J(OSR(PSS, mv))

PSS¢Op(PVS, mv)
else
{PVS])

The whole subset extraction process can be represented as
a hierarchy (see Figure 2). Note that this representation
should not be confused with a partition tree since: (1) the
extracted subsets are not exclusive and (2) a subset can
have several parent subsets. Each path of the hierarchy
represents a generated pattern (e.g. Figure 2:

X, € Class, AND X; € Class, defines Subsetl.1) which

is relevant to the particular prediction to be performed. As
shown in Figure 2, two patterns may yield exactly the
same subset (e.g. Subset 2.2). The extracted subsets (i.c.
leaves of the hierarchy) which form various probability
distributions across the dependent variable range may show
different trends. For each leaf probability distribution, if
the dependent variable is discrete, the dependent variable
class containing the largest number of patiern vectors may
be selected as the most likely class for the new object
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(characterized by mv) to lie in. Using an alternative
Bayesian approach, a loss | risk function could be defined
by the user [BBT91]. In this case, the dependent variabie
class yielding the minimum expected loss is selected.
Each pattern prediction (i.e. hierarchy leaf) is used to make
a final global prediction based on predefined decision rules.
In order to perform such decisions effectively, we need to
be able to evaluate the accuracy of the identified patterns.
This issue is treated in Section 3.

3. Handling Partial Information with OSR
3.1 Definition of the Problem

As mentioned above, analyzing complex data sets and
variable relationships is a very difficult task for several
reasons (i.e. incomplete / heterogeneous / small data sets,
missing data, complex interdependencies). The most
common of these is the problem of partial information.
Or lack of understanding of software processes (due to our
lack of experience and the wide variability from one
development environment to another) makes experience
difficult to reuse. Also, because of cost and schedule
related constraints, necessary data cannot always be
collected. All of these issues contribute to the
incompleteness of our data.
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Missing information reduces our ability to predict and
understand. However, we have to establish whether or not
the lack of a piece of data is an obstacle to prediction. This
means that we need a model that both generates predictions
and provides some insight into the reliability of each
individual prediction. A goodness indication at the model
level such as the coefficient of determination in least-
squares regression analysis is not sufficient since it fajls 10
yield an individual reliability measure for each prediction.

For example, let us say we wish to predict project
productivity according to collected physical features of the
system and predefined quality requirements. Suppose we
do not have any information about the team experience
related to the programming environment and the
application domain. This information might be somewhat
irrelevant, i.e. if the structural complexity of the software
and the required system reliability are low, then the
variance of the prediction is small. However, if high
reliability on a complex software system is expected, then
people rated as having low experience are likely to
generate schedule and/or budget slippages. This will make
any prediction based exclusively on other criteria
meaningless. Therefore, we need a modeling approach
that can answer the question: Do I have enough
information 10 make a reliable prediction?

3.2 Solutions to Partial Information within
the OSR Framework

For each measurement vector in the historical data set we
run the OSR algorithm using as an initial data set (i.e.
set at the top of the OSR hierarchy) the historical data set
minus the measurement vector to be predicted. It is
removed from the data set in order to avoid any bias in the
results. We therefore extract specific patterns for each
measurement vector and form a set of patterns representing
the trends observable on this particular data set.

This resulting set of patterns, or Specific Pattern Set
(SPS) may be seen as a mode! of the historical data set.
Many of these patterns will be the same or "similar” and
will therefore form classes of patterns. For each of these
classes, based on the SPS, we can evaluate statistics such
as patern reliability (i.e. percentage of correct
classification) or pattern significance (i.e. the probability
that the reliability is greater than or equal to the one
observed by chance) by comparing the predicted DV values
with the actual ones. These statistics can then be used to
evaluate predictions as explained in the subsequent
paragraphs. The process of generating a SPS will be
referred as 10 Development Environment Analysis (DEA).

In the text below, we assume the produced patierns have
the following conjunctive normal form:

Predicatel AND Predicate2 AND ... AND PredicateN
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However, a pattern is not only a logical proposition. The
order in which the predicates appear in the hierarchy
(Figure 2) is relevant from an understanding perspective.
A predicate is relevant only when the conditions defined by
its preceding / parent predicates in the hierarchy (i.c.
referred as to the context of a predicate in a particular
pattern) are true. For example, Predicate 1 significantly
reduces entropy by itself. Also, in the context of '
Predicatel, Predicate2 significantly reduces entropy.
However, based on this pattern, there is no evidence that
Predicate? significantly reduces entropy by itself.

The notion of pattern reliability and significance, as
mentioned above, can be more formally defined as follows:
the reliability of a pattern with respect to a particular
dependent variable class is the probability that the pattern
will predict the correct value for the dependent variable.

Let DVclass; be dependent variable class i. Let T equal the
number of generated pauemns (P;) that predict DVclass;.
Let C equal the number of patterns which correctly predict
DVclass;j (based on the actual DV value of the pattern
vector for which the pattern was produced during DEA).

Then we define the reliability of Pj with respect to the
dependent variable class DVclass; as:

R [DVclass; ; Pj] =C/T

The probability that a pattern appears T times yielding a
particular classification DVclassj C times correctly by
chance (P(C,T,p) ) can be expressed by the binomial
distribution:

T! T-
P(C'T'PFC—KTT@PCU‘P) ‘

where, p = p(DVclassj) , i.e. the a priori probability that
the value of the dependent variable is in DVclass;.

If the pattern reliability R is équal to 1.0, then the
binomial equation can be simplified and the level of

significance is simply pT. If R is below one, then the
pattern significance S can be calculated by using the
following formula:

S=T§P(C+i;T;p)

Since we are able to differentiate significant, reliable
patterns from the non-significant and/or unreliable ones,
we can assess the reliability of the prediction when we
make it. A prediction based on a reliable pattern with a
sufficient level of significance (e.g. S < 0.05) is
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believable, whereas, one based on a reliable pattem with a
poor level of significance is not. A poor reliability means
that a patern is not robust to "noise” (i.. the dependent
variable variations created by unknown or non-measured
explanatory variables). A poor significance may mean
that the pattern is a result of noise or more complex
phenomena which are beyond the scope of this paper.

4. A Process for Merging Patterns

Patterns are useful both for predicting variables of interest
(c.g. fault density) and providing understandable /
interpretable models. However, interpreting the patterns
generated by a DEA would force the user to deal with
useless complexity. Many of these patterns are similar and
should not be differentiated. This can prevent the user from
geiting a clear picture of the model trends. Therefore, the
patterns generated by the OSR process need (o be grouped
in order to make them more easily understandable and
interpretable. This can be done using a formally defined
statistical process (described below) where the user fixes
the desired level of "similarity” between pattern by
assigning values 10 a small set of parameters.

Let us define two patterns PT1 and PT2:

PTL: X; € Classjy ANDX; € Class;,
PT2: X; € Classjy, AND Xy € Classy

Suppose in the context where X, e Class, . the pattern
vector set for which X, e Class,, happens to show a

strong association with the one for which X, € Class,,.

This implies that these predicates capture basically the
same phenomenon. The strength of the association can be
assessed by using normalized Chi-squared based statistic
such as Pearson's Phi [CA88]. A Chi-squared test can be
performed in order to assess the statistical level of
significance of such an association. The two patterns will
be merged into one signifying that the selection of one
predicate, or the other, during the OSR process, occurs by
random. This is a result of slight differences between the
two predicates and therefore distinguishing between them
does not help to understand the object of study. This
phenomenon is mainly due 1o complex interdependencies
between Xs that are often underlying the software
engineering data sets.

The notion of a "slight difference” is rather subjective and
therefore must be defined by the user. Thus, he / she
declares either a Phi value (actually Phi 2 which better
represents in this case the degree of association [CAP88])
or a level of significance which represents the minimal
degree of association necessary to assume two predicates as
similar. This process of merging patterns based on the
similar predicates principle yields the resulting pattern
PT (1,2} which contains the composite predicate
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(X; € Classy; OR X € Classy, ), implicitly meaning
that its two component predicates are interchangeable in
this context.

PT{1,2}: X, € Class, AND (X, € Class, OR X, € Class, )

Automated merging of similar patterns can be performed if
the user provides either a Phi value or a level of
significance that would correspond to an unambiguous
definiton of pattern similarity.

In a similar manner, we can define a second merging
principle. Let us suppose we have the following patterns:

PTL: X; € Class, AND X, € Class,
PT2: X, € Classy AND X, € Class,

Let us assume that Class,, is a neighbor class of Class,

on the X, range. In this particular case, if the two
patterns characterize subsets with no statistically
significant difference in distribution on the DV range, then
they can be merged. This is because the variation from one
class to the other seems to have a non-relevant effect on

the dependent variable in the context where X, € Class .

Therefore, in order to assess if merging is possible, the
probability that differences between distributions are due to
random is calculated. For each dependent variable class, the
proportions of pattern vectors are compared between the
two distributions by calculating the probability that
difference in proportion is due to random. If for ail
dependent variable classes, the resulting minimum
probability is above a user-defined critical probability
value, we accept the hypothesis that there is no significant
difference between the two distributions. In the current
tool, this is calculated through a binomial test in order to
avoid the assumptions related to other more
computationally effective tests (e.g. Chi-squared test of
independence) [CAP8S8].

Both of the merging principles defined above can be used
simultaneously in order to obtain more general patterns.
However, the merging process using both of them must
be carefully defined. In a tool, such mechanisms can be
completely automated. The user would have to define
some thresholds / criteria allowing the algorithm to declare
two predicates similar (i.e., a level of significance, Phi
value) and/or two classes similar (i.e., critical probability
value). Before the merging process starts, the tool will
calculate the matrix containing all the phi values and
levels of significance between all predicates. Then, the
merging process for the first position predicates starts: it
is a several pass process where only two predicates can be
merged at a time, First, predicates are merged according to

_ the similar class principle. Then, the pairs of predicates



showing the strongest significant associations are merged
(similar predicate principle). During the next passes,
predicates can be merged to composite predicates and
composite predicates to composite predicates. The process
stops when no merging is possible according to the
criteria defined by the user. Once finished, association
matrices are calculated within the contexts defined by each
unique first position predicate (composite or not) resulting
from the first pass. Then, the merging process for second
position predicates begins within each context following
the rules defined above. This is repeated successively on
increasing predicate positions until a predefined (i.. by the
user) maximum merging level is reached. Thus, the user
defines the number of predicate positions he / she wants to
look at and therefore set the maximum merging depth of
the algorithm.

5. Experiment Design

Our goal in this article is to describe a technique to
distinguish between low and high risk components.

The notion of risk has multiple dimensions. We focus
here on the identification of low/high fault density
components. If we can distinguish between these two
types of components, then we can concentrate on the high
fault density ones during the verification and testing
process. Moreover, if we can build this kind of model for
each kind of fault, we can apply fault specific testing
techniques 10 localize and correct faults. Basili and Selby
showed in [BS87 ] that the effectiveness of three of the
most well known testing approaches could vary
significantly according to the type of fault considered.
Although more experiments are needed to better understand
the issue, this study supports the idea of building different
models for each type of fault.

The collected data set is based on fifieen FORTRAN
projects which were developed at the NASA Goddard Space
Flight Center in the early eighties. On all of these project,
static measures at the component level were collected
using a static code analyzer. Fault report forms were filled
out during the test phases of the development process.
Faults were identified, classified according to a predefined
taxonomy and localized in the system.

Our definition of fault density is the ratio of the number of
faults over the number of executable statements. In this
experiment we will look, as a first step, to faults related to
incorrect data structure readings or writings ( called “data
value” faults in the NASA Software Engineering
Laboratory). This type of fault represents about 50 percent
of the total number of faults collected on the projects
studied in this experiment.

6. Experimental Results

6.1 Prediction Results

We used the OSR technique to build classification models
that were intended to provide an answer to the question: Is
this component likely to be in the lowest / highest
quartiles on the “data value” fault density range? This was
done by performing a DEA on the data set which contained
399 patiern vectors. Each pattern vector was comprised of
a list of static measures which describe a software
component (i.e. the measurement vector), plus, the fault
density of that component. Thereby, we were able to
calculate an average classification correciness (i.e.
percentage of components correctly classified) of the OSR
model . Also, we try to demonstrate through examples
that reliable patterns can be differentiated from misleading

patterns.

For the sake of simplicity, we will look only at the two
first predicates (the most relevant according to the OSR
selection mechanism) of each of the generated patterns. R,
O and S are respectively the Reliability, number of
Occurrence (the number of times a pattern appeared), and
the Significance of the pattern. The explanatory variable
ranges were divided into quartiles. This method is the
simplest technique for class creation but most likely the
least effective. The class creation process is one of the
issues that remains to be investigated (See Conclusion).
OSR suggested that low and high fault density
components were partly characterized by the following
significant (< 0.05 level of significance) and non-
significant patterns:

Low Fault Density Components

Assume that Fg, Sq, Tq and Lq represent respectively the
First quartile, Second quartile and so forth, on the
explanatory variable ranges.

+ Examples of Highly-Significant Reliable Patterns:
PT1: # stmts € Lq AND # calls € Fq,

R=10, O0=18,S =0.000
PT2: # simis € Lq AND # calls € Sq,

PT3: # stmis € Lq AND # format/simt e Fq,
PT4: # stmts € Lq AND # i/o stmt / stmt € Fq,

PTS: # stmts € Lq AND # assign/stmt € Fq,
R=10, O=8,S=0.004

PT6: # sumts € Lq AND # decis_node/stmt € Fgq,
R=10, O=11,S§ =0.005

PT7: # stmts € Lq AND #funct/stmt € Tq
R=10, 0=24,S5=0.000

PT8: # decision nodes € Lq AND # calls € Fq,
R=1.0, O=14,S =0.000

PT9: # decision nodes € Lq AND # calls € Sq,
R=10, O=15,5=0.000

PT10: # decision nodes € Lq AND # i/o stmts € Fq,
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R=10, 0=11,S =0.001

PT11: # operators/stmt € Fq AND # calls € Fq,
R=10, 0=9,S=0.002

PT12: # operators/stmt € Fq AND # format/simt € Fq,
R=10, 0=6,S=0016

PT13: # operators/stmt € Fq AND # functions € Lg,
R=10, 0=8,S=0.004

» Examples of Non-Significant Reliable Patterns

PT14: # stmts € Tq AND # format/stmt ¢ Fq,
R=10, 0=2,8=025 .

PT15: # stmts € Tq AND # i/o stmt/stmt ¢ Fq,
R=10 0=2,8=025

PT16: # stmts € Tq AND # ifo stmts € Fq,
R=10, 0=2,8=025

PT17: # stmts € Tq AND # i/o stmts € Sq,
R=10, O=4,S=0.0625

PT18: # operators/stmt € Fq AND # funct/stmt € Lq,
R=10, 0=4,8 =0.0625

» Example of a Non-Significant Non-Reliable Pattern

PT19: # stmts € Tq AND # functions € Tq,
R=00, O=1,8=1.000

High Fault Density Components
» Examples of Significant Reliable Patterns

PT1: # lines € Fq AND # comment/stmt ¢ Tq,
=10, O=11,S =0.001

PT2: # stmts € Fq AND # comment/stmt & Tq,
R=094, O=17,S =0.000

PT3: # format/stmt € Lq AND # commem/stmt e Tq,
R=10, 0=10,8 =0.001

PT4: # decisions nodes € Fq AND # call/stmt & Lq,
R=095 O0=21,5=0.000

PTS: # stmts € Fq AND # calls € Sq,
R=094, O=18,S =0.000

- PT6: # stmts € Fq AND # i/o simt/simt & Sq,

R =100, O=13,8 =0.000

PT7: # stmts € Fq AND # operand/line € Sgq,
R =1.00, O=20,S =0.000

PTS: # stmts € FQ AND # operand/stmt € Sq,
R =100, O=18, S =0.000 '

PT9: # stmts € Fq AND # i/o variable/line € Fq,
R =100, O=27,8 =0.000

PT10: # stmts € Fq AND # operators € Sq,
R=091, O=11, 8 =0.006

PT11: # operator/simt € Lq AND # assign/stmt € Lg,
R=10, 0=6,S =0.015

As shown in the above results, significant reliable patterns
can be recognized and differentiated from the non-reliable /
non-significant ones. Therefore, significant reliable
patterns can be identified and used with confidence for both
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prediction and interpretation. For instance, if we take
pattern PT1 for low density components, we observe a
reliability of 100% based on 18 occurrences. This produces
a very good pattern significance. The predictions generated
by this pattern can therefore be considered very reliable and
used with confidence. Both the OSR patterns and the
logistic regression model yield an average classification
correctness of 82%. This result is very encouraging
considering that the class creation process used (i.e.
dividing the range in quartiles) was primitive and that the
explanatory variables available are all continuous (which
is an important advantage for the logistic regression
model). Moreover, note that the OSR process is entirely
automated.

The patterns produced by OSR are not always easy to
interpret. Interpretation of patterns (or any other stochastic
model) requires expert knowledge. However, in the next
subsections, we provide some rules for reading and
interpreting the above patterns. Some pattern merging
results are also provided.

6.2 Pattern Interpretation Rules

Interpretation of patterns is much easier than interpreting
regression coefficients, First, OSR takes into account the
fact that an explanatory variable can have a strong impact
in a certain context (defined by the predicates in preceding
positions) and not be relevant in another one. Second, if
strong associations exist in a given context, then the
pattern merging process makes it apparent by creating
composite predicates (see examples in section 6.3). The
variation of reliability generated by a particular predicate
can help assess the significance of the impact of an
explanatory variable (on the dependent variable) when the
explanatory variable belongs to a certain class of values
within a certain context. Let us take the following pattern
as an example: #stmts € Lq AND #calls € Fq which
yields a reliability of 100%. However, #stmts € Lq
alone only yields a reliability of 88%.

This resuit suggests that #calls € Fq is a relevant
predicate in the context where #stmts € Lq because it
shows a significant impact on the fault density.

However, a pattern must always be interpreted in context.
In some contexts (e.g. #simts € Fq), a variable (e.g.
#operators) may not take on the full range of values. The
interpretation of patterns like pattern PT10 for high
density components must be done carefully: #operators e
Sq may be interpreted as a "rather large” number of
operators because in the context #stmis € Fq, very few
components show either #operators € Tq or #operators €
Lq (i.e. # stmts is strongly associated with # operalors).
Therefore, the OSR process did not select patterns like
#stmts € Fq AND #operators € Tq since they yielded
subsets that met the termination criteria. This example
shows that even though interpreting patterns is always
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simple, it requires the support of a tool .

6.3 Pattern Merging Results and Interpretation
of Recognized Patterns

In this section, we intend to show how the merging
process can help to group similar raw patierns into
composite patterns and therefore provide more easily
interpretable information. If we simplify the raw patterns

generated by OSR using the merging criteria: Phi 22040

and critical probability value of 0.0005, we get a set of

composite patterns for each of the dependent variable
classes. In order to illustrate the point, we first show some
of the intermediate steps of the merging process. Then we
give two composite patterns: CP1 and CP2 (formed by the
merging process), which characterize low fault density
components.

For example, low density component patterns PT1 and
PT2 can be merged based on the similar classes principle.
They both show the same first predicate: # stmts € Lq.
Their second position predicate shows the same variable #
calls and two neighboring classes (Fq and Sq). Since they
do not show a statistically significant difference is
distribution (critical probability value = 0.0005), then they
can be merged in: #stmts € Lq AND # calls < MEDIAN.

Similarly, low density component patterns PT3 and PT4
can be merged based on the similar predicate principle.
They both show the same first position predicate and their
second position predicates are strongly associated (Phi2 =
0.57). Therefore, they can be merged in: #stmts € Lq
AND (#formats/stmt € Fq OR #1/O stmts/stmt € Fq).

This merging process is repeated until no more merging is
possible according to the user's criteria. CP1 and CP2 are
the final resulting composite patterns which characterize
low fault density components:

CP1: SIZE_HIGH AND CALLS & I[/O_LOW,
R=99%,0 =169, S = 0.000

CP2: SIZE_HIGH AND FUNCT_HIGH,
R = 86%, O =43, S = 0.000

' where the composite predicate SIZE_HIGH is defined as:

# suements € Fq OR # staiements € Sq
SIZE_HIGH ¢ | OR # formats € Lq OR # decision nodes € Lg
OR # operators / stmt € Fq

and, in the context where SIZE_HIGH is true, the
following composite predicates are formed:

10005788L

# calls € FqOR # calls € Sq
CALLS & 1/0_LOW ¢ | OR1/0 stmts/stmt € Fq OR # formats/smt € Fg
OR #1/O0stmis € FgOR # [/O stmus € Sq

# functions € Tq OR # functions € Lq )

FUNCT_HIGH <
OR funclions/stmt € Tq OR functions/stmt € Lgq

CP1 and CP2 actually define classes of raw patterns that
are assessed equivalent according to the user-defined
criteria. Some of the low density patterns presented in
section 6.1 belong 1o CP1: PT1, PT2, PT3, PT4, PT8,
PT9, PT10, PT11, PT12, PT14, PT15, PT16, PT17 and
others to CP2: PT7, PT13, PT18, PT19. Both of the
composite patterns suggest that large components are
likely to have low fault densities. This agrees with a study
conducted by Basili and Perricone [BP84]. This may be
partially explained by the fact that low operator densities
seem to be strongly associated with large components.
CP1 suggests that a low number of function calls or a low
number of I/O statements increase the probability of
having a low fault density. CP2 indicates that a large
component showing a high density of functions is likely
to show a low fault density.

Merging patterns is always desirable. It allows us to
combine related, rare, isolated patterns to more significant
patterns and thereby group together trends which capture
essentially the same phenomenon. This makes the
generated composite patterns easier to interpret and gives
the user a more abstract and general view of the results.
Also, as we have seen, patterns with a small number of
occurrences cannot be trusted (even though they show
good reliabilities) because of their weak level of
significance. However, if these patterns are shown to be
strongly associated with other reliable patierns, then the
significance of the generated composite pattern increases.
This allows us to gain more trust in rare reliable patierns
based on the calculated composite pattern's level of
significance. However, this should be used very carefully
and needs further investigation.

7. Conclusion

Based on the above experimental results, building useful
models for assessing the fault density of software
components, based upon early available simple metrics in
the presence of noisy data appears possible. Whenever
OSR generates a very reliable and significant pattern, the
prediction can be used with confidence. To the contrary, if
the pattern is not a reliable and significant one, an
altemnative modeling method such as logistic regression
may give 2 more believable prediction. We have seen that
problems such as partial information in the data set can be
accommodated for by assigning a relative goodness to each
prediction. Also, the patterns appear to be easier to
interpret than regression coefficients and correlation
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matrices which are the usual outputs of regression
analysis. This is due mainly to the fact that OSR produces
symbolic / logical expressions where the notion of context
is introduced by considering the order of the predicates.
Also, the merging process helps the user look at the
model at various level of abstraction. From a more general
perspective, based on previous [BBT91, BP92] and current
experimental results, OSR is a data analysis framework
that successfully integrates statistical and machine leaming
approaches in empirical modeling with respect to specific
software engineering needs. However, while the
experimental results thus far have been encouraging, many
aspects of the processes involved in OSR are still to be
optimized. Such processes include, by order of importance,
EV class definition, the refinement and automation of the
merging process, support for pattern interpretation, the
attribute selection process and the selection of termination
criteria.
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Appendix:  Definition of the Generalization
Algorithm (notation consistent with section
2.2)

This generalization process can be formalized using the
following definitions and algorithms:

« Definition Al: We define a composite predicate (cp) as
cp = Up,p € PD, which the set of all predicates.
Composite predicates can be combined to form other

composite predicates. Thus, we define cp, . = cp, U cp;:

- . . pss .
« Definition A2: An association coefficient 3 is an

assigned statistical degree of association between cpj and
cpj where PSS is the data set used to determine this
association. Let us assume the two following data subsets:

PSS, = {pv e PSS§|cp, is true}
PSS, = {pv e PSS|cp; is true}

A two row-two column contingency table is defined,
where the subsets characterizing each row and column are
respectively PSSj, PVS - PSSj, PSS, PVS - PSS;.
Based on this table, a Chi-Square based statistic (i.e.
Pearson's Phi) defining the degree of association between

the two subsets is calculated and assigned to a;”,

s Definition A3: A context is a conjunction of a set of
composite predicates that defines PSS ¢ PVS. This
defines the data subset on which an association coefficient
is calculated and therefore its domain of validity.

* Definition Ad: An association matrix AS, is a square

matrix of association coefficients calculated in a context
C, where the rows / columns represent all possible

predicates,
. PSS
example: A ~ 9 contains all a;;

where V pv e PSS, cp, A cp, IS true.

* Definition AS: Two composite predicates cpj and cp; are
said to be associated in the context of C if a;“ 2 some
minimal level of association.This will be denoted as
Cp, = Cp;-

« Definition A6: A predicate tree is a tree representation of
the patterns generated during the Development

Environment Analysis (i.e. DEA) process. As mentioned
is Section 3.2, DEA produces a set of patterns
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representing the observed trends in the historical data set.
It is expected that a significant number of these patterns
will be duplicated or similar, This representation is a

. compact way of representing the specific pattern set

(SPS). Each path of a predicate tree represent a pattern
generated by DEA. (see Figure 3)

PATTERN SET

EV,€Class; AND EV; € Class,
EVie Class) AND EVj ¢ Classy
EVieClass; AND EVj € Class)
EV4€ Classy AND EVjs ¢ Classy

EW¥ € Class
Y 1 EV € Class,
Roo
EV; € Classy
EV4 € Classl
EV; € Class,

Figure 3: Example Predicate Tree

Notice that the root of the predicate tree is a "dummy”
predicate which can be thought of as the identity predicate
cpy (i.e. cpi A cpl <& cpj ). Note that in the above
example, all of the predicates are singleton. This
represents a predicate tree before any generalization.
Branches will be merged and composite predicates created
at the nodes during the generalization process.

e Definition A7: The maximum merging depth (user
defined) is the depth in the predicate tree to which
generalization is to be performed. It defines the
observation depth of the patterns by the user.

« Definition A8: Two composite predicates cpj, cp;j are
said to be "mergeable neighboring composite predicates” if
the following conditions are fulfilled:

(1) There exist two predicates px: Xi € classjk, py:
Xi € Classj; such that px and py are one of the
disjunctive predicates of cpj and cpj, respectively.

(2) Classjk and Classj; are neighboring classes on
variable X; range.

(3) cpj and cpj yield the same classification, show a
difference of reliability below DR and a maximum

x;



pattern level of significance S (i.e. DR and S are fixed
by the user).
If these three conditions are true, then mncp(cp;, ¢pj, S, ,
DR) is true.

In order to define the generalization algorithm based on the
above definitions, we assume that it starts with the
procedure call: Generalize(predicate tree, root, cpy, 0, PHI,

DR)
We can now define the Generalize algorithm as follows:

procedure Generalize (predicate tree, node, context,
current depth, PHI, DF)

(1) If the node lsatmnmalmdeofmepredicatem
OR if depth > maximum merging depth then
RETURN

(2) while
3 cp,, cp, such that mnep (cp, , p;, S, DF) do
merge(predicate tree, node, cpj, €pj) _
(3) calculate A S the association matrix with all
cpi’s, ie(l,...,m}, in context

(4) while 3 cp;, cp; such thatcp; = cp; do

. select cpj and cpj suchas i is the strongest
association in AJe™

merge(predicatcuec node, cpj, cpj)

. recalculate A% |, the association matrix for

¢Pi, ..-» CPi-1, CPi+1s --s CPj-1, CPj+1, ---.CPm:
Cpiyj in context.

(5) for each successor of node in predicate tree

Generalize (predicate tree, successor, context A cpnode,
depth+1, PHI, DF)

end Generalize

In step (4), a call is made to procedure merge defined
merge as follows:

procedure merge (predicate tree, node, cpj, cpj)
cpj and cpj are successors of node

(1) Combine cp;j and cpj to form a single node
CPiUj .
(2) Combine all like subpaths rooted at cpjU;j

cnd merge
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A Classification Procedure for the Effective Management of Changes
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Abstract

During software operation, maintainers are often faced with numerous change requests.
Given available resources such as effort and calendar time, changes, if approved, have to
be planned to fit within budger and schedule constraints. In this paper, we address the
issue of assessing the difficulty of a change based on known or predictable data. This
paper should be considered as a first step towards the construction of customized
economic models for maintainers. In it, we propose a modeling approach, based on
regular statistical techniques, that can be used in a variety of software maintenance
environments. This approach can be easily automated, and is simple for people with
limited statistical experience to use. Moreover, it deals effectively with the uncertainty
usually associated with both model inputs and owsputs. The modeling approach is
validated on a data set provided by the NASA Goddard Space Flight Center which shows
it has been effective in classifying changes with respect to the effort involved in
implementing them. Other advantages of the approach are discussed along with additional
Steps to improve the results.

Key words: maintenance process, change difficulty, change request management.
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1 Introduction

Given the limited resources (i.e. effort and calendar time) available to the maintenance
activity within software organizations and the number of change requests proposed,
difficult decisions need to be made. These decisions include: which changes to implement,
how much optional functonality to provide in enhancements. A large amount of total
software effort is spent on maintenance [LS80, GRA87]. Changes in the form of
corrections, enhancements or adaptations effect the software source code and/or the
documentation. Some of these changes are crucial, others are less important. Therefore,
when one considers the global cost and variety of maintenance activities, management of
changes becomes an important and complex task. It requires the support of models so we
may perform systematic comparison of the costs and benefits of changes before
implementing them [RUV92]. One approach is to build such models based upon past

Pproject experiences.

To this end, effort models have to be designed to predict resource usage and optimize the
cost-effectiveness of the maintenance process. Well defined modeling procedures need to
be established so they can be repeated and refined, allowing the model to evolve
consistently as new data are collected.

This paper describes a modeling procedure for constructing a predictive effort model for
changes during the maintenance phase. This technique is intended to handle small data sets
and the uncertainty (i.e. for cost or technical reasons) usually associated with model inputs
and outputs (i.e. is this particular predication believable?). We assess the feasibility of
building such a model using a data set that describes several projects in the SEL
environment at the NASA Goddard Space Flight Center. Based upon the results of the
analysis, we also make recommendations for improving the data collection process.

2 Context of Study and Experiment Design

In this study, we use a data set consisting of 163 changes collected on four different
maintenance projects. Each change is represented by a vector consisting of a variety of
metrics associated with the change. The four projects are referred to in the paper as projects
pl, p2, p3, p4. These projects are from the same application domain: satellite ground
support software written in FORTRAN.

The change process in the SEL environment has two main phases: an “understanding”
phase where the change is determined and isolated in the system and an “implementation”
phase, where the change is designed, implemented and tested.

The effort associated with both the understanding and implementation phases is collected
on discrete scales (i.e. ordinal) in order to facilitate the data collection from a maintainer’s
perspective. The effort range is divided into five intervals: below one hour, between one
hour and one day, between one day and one week, between one week and one month,
above one month. For each change performed, the appropriate understanding effort and
implementation effort intervals are recorded by the person making the change. These effort
intervals are indexed from 1 to 5 and will be referred to as difficulty indices in the paper.

All the change-related data used in this paper was collected on a standard form (see
Appendix). The mertrics collected range from measures on a continuous scales (e.g.,
number of components added, number of lines of code added) to categorical measures
(e.g., source of the change, technical description of the change). Some of these metrics are
predictable before starting the design of the change, others can only be assessed after the
implementation of the change has begun.

In this paper, we focus exclusively on the effort spent to implement (i.e design, code, test)
a change. There are two reasons for this: 1) Almost no information is available to the
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maintainer before the understanding phase. Therefore, no predicion model can be built. 2)
In this environment, the effort expended in the understanding phase is generally somewhat
smaller than the effort expended during the implementation. It is thus more essential to use
a predictive model for the implementation phase.

The available metrics are defined as follows:
« Type of modification (correction, enhancement, adaptation).

« Origin of the error in the software life cycle. This is referred to as sowrce in the text
( requirements, specifications, design, code, previous change).

« Software products effected by the change (code only, code and design). This is referred
to as objects in the text.

» Number of components added, changed, deleted. They are referred to as comp.add,
comp.ch., comp.del., respectvely.

» Number of lines of code addcd, changed, deleted. They are referred to as loc. add.,
loc. ch., loc. del., respectively.

o Change technical description (initialization, logic/control structure, user interface,
module interface, data structures, computational) . This metric is referred to as ch.desc.

During the understanding phase, estimates can be made of the first three metrics. The
number of components involved in a change can also be approximated since the change is
isolated in the system architecture. But any prediction in terms of lines of code to be added,
deleted or changed is still complex at this point and can only be predicted at a coarse level
of precision.

3 The Modeling Approach

Considering the discrete nature of the effort data reported during maintenance, the
prediction issue becomes a classification issue, i.e. in which effort class will the change
probably lie? The maintainer can only predict values for most input metrics with a certain
degree of uncertainty. It is important that the modeling process takes this constraint into
account. This help to make the generated model easy to use. Also, our data set is small and
contains discrete explanatory variables. Therefore, we need a modeling approach which is
both effective on small samples and which handles discrete and continuous explanatory
variables in a consistent way.

3.1 The Modeling Process Steps
A high level view of the model construction process can be defined as follows:

1- Identify Predictable Metrics. Identify the metrics, among those available, that are
predictable before the implementation phase. For ratio and interval metrics that are
predictable early but only with a certain degree of uncertainty, the range is recoded as an
ordinal range with a set of ordered classes. These classes reflect a reasonable level of
prediction granularity. For example, a ratio level metric range like “number of
components added” could be divided into three intervals forming the three metric classes
low, average, and high.

2- Identify Significant Predictable Merrics. 1dendfy-a subset of the predicable metrics that
appear to be good predictors of the difficulty index, using a consistent evaluation
technique for all candidates.
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3- Generate a Classification Funcrion. Associate the fcsulting metrics in a classification
functdon which has the following form:

Predicted_Difficulty = Classification_Function (Significant_Predictable_Metrics)

where Predicted_Difficulty = some classification scheme based on the difficulty indices,
e.g., {easy, difficult} and Significant_Predictable_Metrics = (some of the predictable
metrics collected on the Maintenance Change Report Form which appear as good
predictors)

4- Validare the Model. Conduct an experiment on a representative (i.c. in terms of size
and quality) set of data. Two measures that can be used to validate the model are: Average
Classification Correctness (i.e. ratio of number of correct classification / total number of
performed classifications), and Indecision Rate (i.e. ratio of number of undecidable cases
/ total number of changes to be classified). The latter reflects the need for such a model to
deal with output uncertainty, therefore warning the user whenever a certain level of
confidence is not reached for a specific prediction.

3.2  An Implementation of the Modeling Process

This section presents a possible implementation of the previously described process. Our
goal in defining such a procedure can be described by the following points:

» We want the generated model to be as simple to use as possible.

« The uncertainty associated with the model inputs at the time of prediction must be taken
into account by the model, i.e., intervals rather than values should be used as model
inputs.

 The model should be able to provide some estimated risk of error associated with each
classificadon. Thus, the user would be able to select a minimal level of confidence (i.e.
maximum risk) that would differentiate the model classifications as believable or non-
believable.

* The steps of the procedure are:

1- Identify Predictable Metrics. The input is a set of available metrics. The output is a set of
metrics whose values are either known or predictable, with a certain degree of accuracy,
before the change implementation phase.

There are several processes for selecting the set of predictable metrics. The determination
of predictability can be cither based on interviews with people with a good knowledge of
the maintenance process (and then refined with experience) or observed through controlied
experiments [BSP83, BW84]. Both help to determine the average esimation accuracy that
can be reasonably expected for a given metrics.

The range of each continuous / ordinal predictable metric is divided into intervals (e.g.,
percentiles, natural clusters [DIL84]). The more accurately predictable the metric, the more
numerous and narrow the intervals can be. We recode the metric ranges according to their
respective predictability so the maintainer can easily select the right interval and use some
of the predictive power of metrics not measurable before the implemenzation phase. These
intervals are called merric classes in the paper.

Our need to define these metric classes for predictable metrics stems from the impossibility
of relying exclusively on measurable (at the time of prediction) metrics, e.g. building an
accurate model for predicting change effort is likely to require measures of change size that
are not available before the implementation phase. We have no choice other than taking into
consideration metrics that cannot be measured but only approximated with a certain degree
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of precision-by the maintainer after the understanding phase of the change process.

2- Idenrify Significant Predictable Merrics. The input to the second step is the set of
predictable metrics from the first step and the outputs are a subset of significant predictors
and their corresponding association table. This association table distributes the difficulty
indices across the metric classes defined on each predictor value domain.

Consider as an example Table 1 which shows the association table of the metric number of
lines of code added across the four difficulty classes (class 5 has so few changes that we
merge it to class 4). This table is calculated based on the actual distributions in the data set
considered for modeling. Each column represents a metric class (e.g. > 30 implies that the
number of loc added is more than 30) and each row an index of difficulty. With respect to
each predictable metric and using its calculated distribution of difficulty indices, an average
difficulty index (i.c ADI) is calculated for each metric class (shown in the bottom row of
Table 1). The calculation of a meaningful and statistically significant ADI requires us to set
up the metric classes in a way that guarantees 2 minimum number of changes in each of
them.

Loc added
DI <10 [10 30] > 30
1 7% 0% 0%
y.d 48% 36% 9.5%
3 42% 60% 40.5%
4 3% 4% 50%
ADI 2.40 2.68 3.40

Table 1: “number of lines of code added” distribution

Taking the association table Table I -as an example, the calculated index averages look

consistent with what was expected. The ADI seems to increase substantially with the

number of lines of code added. In general, with respect to the ratio and interval level

metrics whose the value domains have been recoded in successive metric classes (see step

1), significant differences should exist between class ADIs. Based on a F-test, a one-way

analysis of variance (ANOVA) can be performed and the statistical level of significance of
the metric class ADI differences may be estimated [CAP88]. Whenever the 0.05 level of

significance is not reached, the boundaries should be recoded in 2 way that minimizes the

level of significance. Since all the continuous metric ranges have been recoded into an

ordinal scale, we have to calculate the degree of association between the difficulty indices

and the merric classes in order to assess the predictive power of each metric. One approach

consists of computing the Chi-Square statistic (which is valid at the nominal level

[CAP88]) for each metric association table. A statstcal level of significance characterizing

the association between the difficuity indices and the metric classes is calculated based on

the generated Chi-square value. Thus, the top ranked metrics showing sufficient degree of

associaton are selected as parameters potentally usable to build a multivariate prediction

model. Some more sophisticated measures of association (i.. PRE-measures of

associations [CAP88]) can provide more intuition/information about the associations and -
therefore allow an easier selection. However, this issue is beyond the scope of this paper.

3- Generate a Classificarion Function. The input to the third step is the set of association
tables of significant predictable metrics and the output is a classification model that predicts
an expected difficulty index associated with changes. Note that although five difficulty
indices are defined on the change form, a small minority of the changes (5%) actually lie in
the exreme intervals (i.c. intervals 1,5).
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This makes classification into these intervals extremely difficult. Also, since 80% of the
chances belong to classes 2 and 3, we will first build a classificaion model intended to
differentiate these two classes: less than one day (i.e. referred as easy), more than one day
(i.c. referred as difficult). In section 4.2, we will refine our classification by dealing with a
“more than one week” class (i.c. indices 4 and 5). Thus, based on the generated
classifications the user wil} be able to make decisions with respect to the requested
implementations of changes.This is done by comparing the predicted difficulty to both the
available resources and the expected gains.

The process of building a classification function is composed of two steps:

1- Perform a regression: Based on all the available association tables and the corresponding
ADIs for each change in the. data set, we perform a stepwise linear regression [DIL84] of
the following formg

Actual,difﬁculty__indcx = W1 * ADI_metricl +... + WN * ADI_metricN

Due to interdependencies between metrics, only a subset of the preselected metrics remains
in the generated prediction function (i.c. only the one showing, based on a F-partial test, a
level of significance below 0.05). In order to make the model easier and less costly to use,
the number of parameters in the regression equation can be minimized. In this case, one or
several parameters are removed (especially when they show a statistical significance close
to 0.05) and the resulting models are evaluated. Then, the user has to assess the loss of
correlation against the ease of use gained by removing parameters from the model. If the
radeoff appears reasonable, then the new model is adopted. Weights are calculated for each
remaining parameters and the resulting optimized linear function allows us to calculate an
difficulty index expected value. This may be used to classify the change based on the
realistic assumption that: the closer the expected value of the difficulty index to an actual
difficulty index, the more likely the corresponding change belongs to the matching effort
class. Therefore the following interval-based decision rule is used to make classifications.

2- Define a decision rule for classification: the predicted difficulty index range is divided
into three intervals (i.e. easy change predicted, undecidable, difficult change predicted) in a
way that guarantees a maximal average classification correctness. For example, the
boundaries for classifying a change as either less or more than one work day can be
defined as in Figure 1. The classification of future changes will be performed according to
the interval in which their calculated difficulty index will lie.

EASY Undecidable DIFFICULT

[ 1 1
b 1 LI

1 24 2.6 5

—t

Predicted Difficulty Index Range

Figure 1 : Example of decision intervals

4-54
10005788L



The process for creating these decision boundaries can be described as follows:

1- The user defines a risk / loss function having the following form:
Expected_loss = Weight1*MR1 + Weight2*MR2

where MRn is the misclassification rate calculated for changes actually in class n.

The loss function weights can be defined according to the respective costs of
misclassification associated with each class. Most of the time, this weight will be set to
one. A search algorithm can then be used to determine the interval between two
neighboring changes on the predicted index range that provides the best decision
boundaries ( i.e. that minimizes the risk / loss function). These two neighboring changes
form the boundaries of the smallest possible undecidable interval on the range.

2- In a stepwise manner, this interval can be widened on both sides of the index range
according to some automatable process. For instance, the interval can be expanded in a
stepwise manner, including one more change at a time on each side of the interval, until a
maximal expected loss value (i.e. predefined by the user) is reached. Based on this
process, the user will be able to determine the boundaries of the decidable intervals
corresponding to the desired level of risk.

4 A Validation Study

According to the procedure defined above and based upon the previously described four
project data set, the significance of each available metric as a predictor is assessed. Table 2
shows the Chi-square-based levels of Significance. Then, in order to build the needed
classification models, the metrics yielding a good level of significance are selected. First,
we build a general mode! usable for any project in the same environment. This model is
intended to be useful at the start of a maintenance process when not enough data are
available to create a project specific model.

Then, we build an independent classification model for each project which is expected to be
more accurate with respect to future changes for each specific system, respectively. The
various results will be compared in order to assess the validity of cross-project models in
this environment. The ranges of the continuous metrics were recoded according to the
previously described procedure. Two or three merric classes were defined for each of the
metrics, according to the predictability level of the metric and the distribution of the
changes on their respective range. In other words, the interval boundaries were chosen in a
way that reflected their predicability, optimized the classification power of the metric (i.c.
optimized the chi-square) and guaranteed, to the extent possible, a sufficient number of
changes within each metric class.
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Metric Lavel of significance Metric classes

Type 0.004 Correction, enhancement,
adaptadon

. Requirements, specifications,

Source 0.0000 d:gugn, code, previous change
initialization, logic, interface,

Ch.desc. 0.0000 data structure, computational

Loc. add. 0.0000 <10, [10, 30} ,>30

Loc. Ch. 0.0000 <10, [10, 25],>25

Loc. Del. 0.0006 <, [2,15],>15

Comp. add. 0.0002 0,>0

Comp. ch. 0.0000 <2,[2,5],>5

Objects 0.0005 code only, code and design

Table 2: Level of significance and class boundaries / categories of metrics
4.1 A General Model

This model is intended to be specific to the NASA SEL environment. It has been built
based on systems belonging to the same application domain and therefore may not
represent necessarily other domains accurately. Table 3 shows for each selected metric, the
class ADIs and the corresponding result of the one way analysis of variance [ CAP88] that
assessed the statistical significance of the ADI variations across metric classes. They all
appear below 0.05 and we can therefore say that the metric classes with respect to
continuous metrics have been adequately defined because they show significant ADI
differences. :

Table 4 shows two distinct regression-based classificaton functions (PI stands for
Predicted difficulty Index). Note that the parameters of the regression equations are the
metric association table-based ADIs and not the metric values themselves. For the sake of
simplification, the names of the metrics are.shown in the equations. For each function, the
calculated regression equations are given with the respective level of significance of each
metric (i.e.shown between brackets above the equations and based on partial F-tests).

If the metric does not appear significant at a 0.05 level, then they are excluded of the

equation. The global coefficient of determination R? is also given. The first one was
obtained by performing a stepwise regression using the class ADIs of the significant
predictable metrics. Only one of the lines of code (i.e. loc) based metrics was retained in
the equation: loc.ch. Then, in an attempt to avoid the use of this metric (i.e. which is stll
the most difficult to assess despite the coarse defined metric classes), we recalculated the
equation parameters when ignoring it. The coefficient of correlation did not appear much
affected by the change. This can be explained by the higher significance of the remaining
parameters and their stronger calculated coefficients that show a strong interdependence
with loc.ch. In other words, they partially compensated the loss of explanatory power due
to the removal of loc.ch.. Thus, the generated model becomes even easier to use and does
not loose much of its accuracy (ses Table 5).
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Metrics ;é:ﬂﬁm“ ADIs for eacl'_l category

Type 0.003 -+ 1256,2.36, 2.95]

Source 0.0000 (3.04,3.29 2.42,2.33,2.27]
Ch.desc. 0.0000 (2.2,2.9,3.0,3.1,24,2.9,2.8]
Loc. add. 0.0000 [2.4,2.68,34]

Loc. Ch. 0.0000 [2.4,2.8,3.14]

Loc. Del. s 0.0001 [2.6,2.8,3.4)

Comp. add. 0.0000 [2.64, 3.63]

Comp. ch. 0.0000 [2.41,3.0,3.31)

Objects " o0l [2.63,3.03)

Table 3: Metric class ADIs

Description of the Models R-sq

Model 1 (0.0) 0.0 (0.0) {0.0008) (0.04) (0.004)

0.50
Pl=-4.22 + 0.59 Source + 0.62 Ch.desc + 0.58 loc.ch + 0.38 Comp.add + 0.36 Comp.ch

{0.0) {0.0) {0.0) (0.01) {0.0)

0.46
Pl =-3.95 + 0.68 Source + 0.69 Ch.desc + 0.49 Comp.add + 0.56 Comp.ch

Model 2

Table 4: General models

Table 5 shows the classification correctness (i.e. rate of correct classification ) obtained
when using the above models (Table 4). The decision boundaries have been optimized to
yield the best results. First, they have been selected to yield a 0% indecision rate (column
IR = 0% in Table 5). Then the undecidable interval has been widened in order i0
demonstrate the possibility of selecting decision intervals that fit the user’s need in terms of
classification correctness (colurmnn IR > 0% in Table 5). In this case, the selected interval
boundaries are arbitrary and are shown for the sake of example. The row “classification”
indicates the classification performed (i.e. easy changes = [1-2] or [1-3]). Each cell
contains, for all models, the undecidable interval boundaries between brackets and the
corresponding classification correctness. Whenever the undecidable interval has been
widened (i.e. IR > 0%), the corresponding indecision rate is given.

Despite the mediocre coefficient of determination, a particuiarly good correctness hzs been
obtained when the interval [1-3] represents easy ciianges. However, the results appear
much less satisfactory for the other classification performed. Nonetheless, this can be
substanaally improved by widening the undecidable interval. Thus, the model appears
usable for at least a subset of .the changes. However, when possible (i.e. enough project
data are available), project specific models should be used as demonstrated in the next
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paragraphs.
4.2 Project Specific Models

Table 6 shows optimal equations resulting from stepwise regressions performed
independently for each of the four projects. The format used is the same as in Table 5.
Differences between models are observable with respect to the variables selected. This does
not necessarily mean a real variation in the impact of the explanatory variables across
projects. It may be due to a lack of variation of a variable within a project specific data set.

Description of the Models R-sq
Model P (0.03) (0.0023) (0.0002) 0.68
Pla- 1.56 + 0.71 Source + 0.80 Comp.ch
Model P2 {0.0) {0.004) (0.003) o
e Pl « - 3.62 + 0.65 Source + 0.80 Ch.desc 43
Model P3 (0.001) (0.0001) (0.0016) {0.009) 0.7
Pl = - 1.34 + 0.59 Ch.desc + 0.50 Loc.add + 0.44 Comp.ch 73
Model P4 (0.002) (0.003) (0.001) 0.50

Pl = -2.95 + 0.65 Loc.add + 1.02 Loc.ch

Table 6: Project specific regression equations

The correcmess is shown to improve substantially (see Table 7), compared to the general
model results whenever easy changes = [1-2] (except for project P2). The results are only
presented for a minimal undecidable interval. However, the interval could be widened as
shown in the previous section in order to get even better correctmess in the decidable
intervals. '

PROJECT MODEL RESULTS
Indecision IR = 0%
lassification | clas. (1-2] / [3-5) |} clas. [1-3]/(4-5]
—

Model P1 }[2.39 2.80] : 88% | [3.35 3.74] : 88%
-_—

Model P2 |[2.31 2.52]: 74%; [3423.61]:93%

Model P3 |[2.45 2.54):87%| [3473.55]:92%

Model P4 | [2.45 2.54]:819 [3.473.55]:89%

hammas v e—

Table 7: Classification results
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5 Conclusions, Lessons Learned aﬁd Future Research

This modeling approach provides a simple and flexible way of classifying changes during
the maintenance process. The classificaion power of continuous explanatory variables can
be optimized by changing the class boundaries until the chi-square statistic reaches a
maximum (this can be automated). This is performed while minimizing the number of
metric classes and thereby facilitating the prediction process. It allows for an optimal use of
the available explanatory variables by considering the uncertainty associated with each of
them at the time of prediction.

A user defined loss function (i.e. risk model) can be minimized while selecting the decision
boundaries on the predicted index range until a predefined expected loss is reached.

This allows the construction of a classification model optimal and customized, for specific
user needs. Thus, by tuning the undecidable interval, he / she can handle in an appropriate
and simple way the uncertainty associated with the model output. Also, the modeling
process has shown many opportunities for a high extent of automation that would help
optimize the metric class definitions and select the most suitable decision boundaries.

Despite the fact that collecting change effort data on a discrete range (i.e. ordinal level)
makes the data analysis more difficult and the usable statistical techniques less powerful,
valuable information can still be extracted from the data while taking into account the
constraints associated with a software development environment. As presented, effective
classification has been performed among three effort classes with respect to changes within
the maintenance process.

Despite organizational issues and data collection accuracy problems, it would be better to
collect effort data at a ratio level. This would allow the use of more effective statistical
techniques. The gains in terms of management efficiency are likely to be substantal.
However, if effort data are collected in a discrete manner, each class should contain, to the
extent possible, the same number of changes. When the distribution is not uniform,
classification for small proportion classes may be difficult.

Sub-system and component characteristics that are collectible in an automated way through
code static analyzers (i.e. data binding between components, code complexity, ...) are
likely to help refine the classification models. Maintainer skills and experience with respect
to the maintained system should also be considered in the analysis in order to better select
the required level experience for minimizing the cost of maintenance. Despite encouraging
average results in the above experiments, a more complete data collection process is
" required in order to refine these change difficulty prediction models.

6 Acknowledgements

We would like to thank Jon Valett from the NASA Goddard Space Flight Center, Adam
Porter and Chris Hetmanski for their suggestions that helped improve both the content and
the form of this paper.

7 References

" [BSP83] V. Basili, R. Selby and T. Phillips. “Metric Analysis and Data Validation across
FORTRAN Projects”. IEEE Transactions on Software Engineering, SE-9(6):652-663,
November 1983

(BW84]V. Basili and D. Weiss. “A Meéthodology for Coliecting Valid Software
Engineering Data”. IEEE Transactions on Software Engineering, SE-10(6):728-738,

4-59
10005788L



November 1984

[1(93?81’88] J. Capon, “Statstics for the Social Sciences”, Wadworth publishing company,

[DIL84] W. Dillon and M. Goldstein, “Multivariate Analysis”, John Wiley & sons, 1984

[GRAS87] R. Grady, “Software Metrics: Establishing a Company-Wi gram”
Prentice-hall, 1987. £ pany-Wide Pro ’

[LS80] B. Lientz and E. Swanson, "Software maintenance management”, Addison-
Wesley, 1980. ,

[RUV92] D. Rombach, B. Ulery and J. Valett, "Toward F.ull cle Control: Addi
Maintenance Measurement to the SEL", Journal of systems and softcvzarc, May 10992. ding

4-60
10005783L



SECTION 5 - SOFTWARE
MEASUREMENT







SECTION 5—SOFTWARE MEASUREMENT

The technical paper included in this section was originally prepared as indicated below.

e  “Toward Full Life Cycle Control: Adding Maintenance Measurement to the
SEL,” H. D. Rombach, B. T. Ulery, and J. D. Valett, Journal of Systems and
Software, May 1992

10005788L






Toward Full Life Cycle Control: Adding 3
Maintenance Measurement to the SEL "~

1. SYSTEMS SOFTWARE 125§
1992; 18:125-138

g -c/

S €
&/,

o
NO2-3927p

e

H. Dieter Rombach and Bradford T. Ulery

Computer Science Department and Umiacs, University of Maryland, College Park, Maryland

Jon D. Valett

NASA, Goddard Space Flight Center, Greenbelt, Maryland

Organization-wide measurement of software products
and processes is needed to establish full life
cycle control over software products. The Software
Engineering Laboratory (SEL)—a joint venture
between NASA’s Goddard Space Flight Center, the
University of Maryland, and Computer Sciences Corpo-
ration—started measurement of software development
more than 15 years ago. Recently, the measurement
of maintenance has been added to the scope of the
SEL. In this article, the maintenance measurement pro-
gram is presented as an addition to the already existing
and well-established SEL development measurement
program and evaluated in terms of its immediate bene-
fits and long-term improvement potential. Immediate
benefits of this program for the SEL include an in-
creased understanding of the maintenance domain, the
differences and commonalities between development
and maintenance, and the cause-effect relationships
between development and maintenance. Initial results
from a sample maintenance study are presented to
substantiate these benefits. The long-term potential of
this program includes the use of maintenance base-
lines to better plan and manage future projects and to
improve development and maintenance practices for
future projects wherever warranted.

1. INTRODUCTION

Most software organizations lack satisfactory control
over their development and maintenance projects. This
lack of control is exemplified by the absence of explicit
models enabling the identification of ambiguous prod-
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St W Eng., Fachbereich Informatik, Universitaet Kaisersiautern,
Postfach 3049, D-6750 Kaiserstautern, Germany.
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uct requirements, the selection of practices best suited
to achieve given requirements, or the prediction of the
impact early project decisions may have on the quality
of the resulting products. Each organization has its own
set of control problems and reasons standing in the way
of improvement. Comprehensive measurement pro-
grams are needed as a first step toward improvement
[1]. Such programs can help identify the specific prob-
lems of an organization in quantitative terms, pinpoint
possible causes, motivate improvements, and assess
alternatives considered for improvement.

The Software Engineering Laboratory (SEL)—a
joint venture including government, industry, and
university— began measurement of satellite ground
support software development projects in 1976. The
three primary organizational members of the SEL are
the Systems Development Branch at NASA’s Goddard
Space Flight Center, the Computer Science Department
at the University of Maryland, and the Systems Devel-
opment Operation at Computer Sciences Corporation.
This collaboration has produced numerous case studies
and controlied experiments [2-6]. Results from these
case studies and experiments motivated several
improvements within the SEL [7-9].

In 1988, the SEL incorporated maintenance into its
scope of measurement. The result is an even more
comprehensive measurement program in which data is
now being collected during development and mainte-
nance of all software systems. In the SEL, pre- and
postlaunch maintenance activities are performed by
separate organizational entities. Currently, maintenance
data are oniy collected from prelaunch maintenance
activities. In the remainder of this article, the term
‘‘maintenance’’ shall refer to this prelaunch phase

PRECEDING PAGE F' ANK RNOT FILMED
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between delivery of a completed software system and
the actual launch of the related spacecraft. This mainte-
nance measurement program is customized to the perti-
nent SEL characteristics, including the definition of
maintenance, the maintenance improvement goals, and
other product, process, and people factors.

Empirical research in the SEL is based on the idea of
continuous improvement. This idea has been formu-
lated as the quality improvement paradigm [1]. Accord-
ing to this paradigm, improvement is the result of
continuously understanding current practices, changing
them, and empirically validating the impact of these
changes. Improvement requires measurement.

In the SEL, measurement goals define the data to be
collected and provide the context for data interpreta-
tion. This goal-oriented approach to measurement has
been formulated as the goal/question/metric paradigm
[1, 10, 11]. It suggests defining each goal by develop-
ing a set of analysis questions, which in turn lead to a
set of metrics and data. The short-term goals of our
maintenance measurement program have been to
increase the understanding of maintenance within the
SEL; the long-term goals are to stimulate improve-
ments in the SEL’s ability to plan and manage future
maintenance projects and —whenever needed—to moti-
vate the use of different development and maintenance
practices.

Specific characteristics of the SEL maintenance envi-
ronment 2s well as the comprehensive scope of our
measurement approach make this program unique. The
study results presented here may not be directly compa-
rable to those from other maintenance environments,
yet they do show how a comprehensive measure pro-
gram can be used to better understand and improve an
organization’s development and maintenance process
and products. Few comprehensive maintenance studies
have been published [12-14]. Most empirical mainte-
nance studies report on laboratory-style controlled
experiments [15, 16], isolated case studies [13, 17], or
project surveys [18]. A survey of maintenance studies
has been published by Hale and Haworth [19].

The purpose of this article is to state our initial
maintenance study goals and questions, present the
related results, and propose—based on what we have
learned —a revised set of goals and questions for future
studies.

The study results are organized according to the
types of data used to address the goals and questions:
quantitative maintenance baselines, comparisons
between quantitative development and maintenance
baselines, and qualitative information regarding the
cause-effect relationships between development and
maintenance. These results have increased our under-
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standing of maintenance processes and maintained
products in the SEL, commonalities and differences
between development and maintenance, and develop-
ment characteristics affecting maintenance. On occa-
sion, our results are carefully compared with resuits
from other published studies or widely believed mainte-
nance myths.

We begin our presentation with a background discus-
sion of the SEL and the new maintenance measure-
ment program (sections 2 and 3, respectively). We then
present the results of our study (section 4). We con-
clude with an assessment of the SEL maintenance
measurement program and a revised set of goals and
questions for future maintenance studies.

2. THE SEL

The goals of the SEL are to understand its software
development processes, to measure the effects of vari-
ous methods and tools on these processes, and to
identify and then apply new, improved development
practices. Improved understanding within this particu-
lar environment provides the basis for better planning
and management as well as a rationale for adopting new
practices [4].

Development in the SEL supports satellite missions.
SEL studies generally focus on attitude ground support
systems and their associated simulators. These product
lines are very siable: the system architecture, documen-
tation standards, and organizational responsibilities do
not change significantly from one mission to another.
Attitude ground support systems have 130-240K lines
of FORTRAN source code (where a line of code is
measured as a physical line, including comment lines)
and require 15-30 staff years to develop. Simulators
have 25-75K lines and require 3-10 staff years to
develop.

Research in this environment is guided by two basic
paradigms: the quality improvement paradigm (QIP)
and the goal/question/metric paradigm (GQM). The
QIP, which applies the principle of continuous im-
provement to software engineering, defines the context
for measurement within the SEL [1]. Accordingly,
software development can be improved by iterating the
following steps for each project: (1) characterize the
corporate environment; (2) state improvement goals in
quantitative terms; (3) plan the appropriate develop-
ment practices and methodologies together with mea-
surement procedures for the project at hand; (4) perform
the development and measure, analyze, and provide
feedback; and (5) perform postmortern analysis and
provide recommendations for future projects. Each QIP
iteration is characterized by its own set of goals. These
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goals reflect—and evolve with—the maturity of the
investigated organization.

Measurement in the SEL is guided by the GQM
paradigm [10]. Measurement is used to characterize
current development practices, monitor and manage
development projects, identify strengths and weak-
nesses of the current practices, and evaluate promising
new technologies in a controlled environment. The
GQM paradigm describes a goal-oriented approach
to measurement in which metrics are tied to spe-
cific measurement goals. According to the GQM para-
digm, each measurement goal is listed explicitly,
a set of specific questions is posed to address each
goal, and specific metrics and measurement proce-
dures are defined to support the questions. The result-
ing data collection procedures and interpretations are
tailormade to the study’s goals and local environment
characteristics. For instance, in the SEL, this generaily
means that metrics and measurement procedures reflect
the use of SEL-specific development practices, fit the
organizational structure, and permit comparisons with
historical data. Goals, questions, and metrics provide a
context that helps ensure that data are interpreted cor-
rectly and are compared only to data and results from
similar contexts.

Two types of measurement are common in the SEL:
routine monitoring and exploratory studies. Routine
monitoring is used to characterize the local environ-
nicui vroadly. The resuiting quatititative and qualitative
baselines are used to plan and manage new projects and
to compare the effects of newly introduced tools or
methods against [6]. Objective and subjective data are
routinely gathered for each project [20]. Objective data
include staff hours, computer utilization, source code
growth, and the number and kinds of changes made to
the source code. Subjective data characterize the soft-
ware development process and software product charac-
teristics. The data for over 100 projects monitored
over the last 15 years is maintained in the SEL
database [21].

Exploratory studies are used when the SEL is in the
initial phase of understanding a process or methodoi-
ogy. For example, the SEL is currently studying three
projects following the cleanroom methodology [22].
Special data collection procedures were designed for
these projects to permit researchers to monitor the
effort spent in reading and reviewing designs and code.

Measurement in the SEL has provided a rationale for
making evolutionary changes to NASA's development
practices, including stricter use of code-reading tech-
niques (5], guidelines for Ada projects {23], and the
adoption of the cleanroom development approach [24].
With the addition of maintenance measurement, the
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SEL is antempting to lay the foundation for similar
improvements in maintenance.

3. THE SEL MAINTENANCE MEASUREMENT
PROGRAM

The following subsections describe the SEL mainte-
nance environment and the specific goals and proce-
dures of our measurement program. A more detailed
description of this environment, its products, and main-
tenance processes appeared in the proceedings of the
1989 IEEE Conference on Software Maintenance {25].

3.1 Maintenance Environment

In the SEL, maintenance is partly defined by organiza-
tional responsibility and schedule. As depicted in
Figure 1, each product passes through three different
organizational units during its lifetime: analysts produce
the initial functional specifications used by the deve-
lopers and remain responsible for these speci-
fications throughout development and until launch:
operations assumes complete responsibility after
launch. During the period between development
and launch, the analysts have complete responsibility
for the system, including the implementation of any
changes.

In this study, maintenance refers specifically to soft-
ware change activities performed by the analysts during
the postdevelopment, prelaunch phase. By nature of
these constraints, the maintenance phase is typically
shorter in the SEL than in other environments (one to
two years), and the maintenance changes are not trig-
gered by operational failures but by failures detected
during simulated uses of the software by prospec-
tive operators and externally triggered changes of the
overall satellite mission. -

Analysis Development
- Acceptance Testing #~ Design
- Maintenance Coae - implementation
and - Tusting
Documentstion
Code

ang
Documentation

Qperations

- Opatationsl Use of Softwsere

Figure 1. Organizational structure of the SEL environment.
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The products maintained are the same simulators and
attitude ground support systems described in section 2.
Typically, the effort expended during the one- to two-
year time frame that these systems are in maintenance
is approximately 5% of the development effort. Mainte-
nance procedures vary from project to project depend-
ing on the type of system being maintained, the size of
the maintenance team (2-10 people on the projects
studied), the specific methods and tools elected by the
individual programmers, and other factors. In general,
formal change control procedures are followed; changes
are implemented one at a time, but may be tested
in groups; and one maintainer is responsible for
implementing each change.

3.2 Maintenance Measurement Goals

Consistent with the overall directions of the SEL, we
chose three general goals for the maintenance measure-
ment program: (1) to understand maintenance processes
and products better; (2) to improve our ability to
manage current maintenance projects and plan future
ones; and (3) to establish a sound basis for in proving
development from a maintenance perspective.
Following the QIP, the initial goals focus on under-
standing maintenance. Representative measurement
goals and questions selected for this study are summa-
rized in Figures 2, 5, and 11. Analysis results related to
these goals and questions are presented in section 4.

3.3 Maintenance Measurement Procedures

The data collection procedures used in this study were
designed according to the principles of the GQM
paradigm. Data were collected via exploratory inter-
views and routine data collection forms [20]. The rou-
tine data collection forms used during maintenance
include the Weekly Maintenance Effort Form and the
Maintenance Change Report Form (Appendix A). The
effort form is filled out once per week per maintainer
per system; one change form is filled out per completed
change. The weekly effort forms record the distribution
of effort (in staff hours) by type of change (correction,
enhancement, adaptation, or other') and by engineering
activity (designing, coding, etc.). The change forms
record the distribution of changes by type of change,
size of change, changed objects (e.g.. code, user’s
guide), expended staff time, fault type (if applicable),
and more. All data are validated through a series of

'All maintenance effort that cannot be attributed to an individual
maintenance change is classified as ‘“*other.”” This includes effort
related 1o management, meetings, and training.
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checks by the data entry personnel. project managers.
and SEL researchers. Data are stored and made avail-
able to researchers and developers through the SEL
database [21].

4. MAINTENANCE MEASUREMENT BENEFITS

The maintenance measurement program has already
increased understanding of maintenance in the SEL.
Previously, much of this understanding was at best
intuitive and approximate. In this section we demon-
strate what we have learned as a result of our initial
study. The results are separated into baseline character-
izations of maintenance, a comparative analysis of
development and maintenance, and an analysis of how
development decisions affect maintenance.

In this study, we restrict our analyses to three large
attitude ground support systems for which we have
complete and valid data: the Gamma Ray Observatory,
the Geostationary Operational Environmental Satellite,
and the Cosmic Background Explorer. Maintenance of
these systems was performed between 1988 and 1991.
A total of 90 changes and over 10,000 hours of effort
serve as the basis for all quantitative analyses of main-
tenance presented here.

Examining the data on these three projects has pro-
vided valuable insight into the maintenance process
within this environment. The results presented here are
intcaded o demonstraie the increased understanding
of the maintenance process that can result from a
measurement program.

4.1 Maintenance Baselines

The first step toward understanding any environ-
ment is to develop baselines describing that environment
{12, 14]. The goals and questions related to this part of
the SEL study are listed in Figure 2. They are intended

GOAL 1: Characterize the changes performed during
maintenance.
QUESTION 1
How many changes of each type are completed?
QUESTION 2
How much effort is spent on changes of each type?
GOAL 2: Characterize product evolution during
maintenance.
QUESTION 3
How much code is affected by each change?
QUESTION 4
Is code added, changed or deleted?
GOAL 3: Characterize the maintenance process stability
QUESTION 5
How do maintenance processes differ across projects?

Figure 2. Measurement goals for understanding maintenance
in the SEL.
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to characterize what kinds of changes are performed
during maintenance, which parts of the systems change
and how, and what maintenance processes are fol-
lowed. In the long term, the resulting baselines are
expected to provide a basis for determining whether
new techniques or process adjustments have any mea-
surable impact on the SEL maintenance processes or
products: Any comparison between SEL baselines and
baselines from other environments must take environ-
mental differences into account.

Each maintenance change in this environment is well
defined by a formal change request. There are several
key steps in the change process: changes must be
approved, implemented, tested, and released. In gen-
eral, more changes are approved than can be imple-
mented. This poses the difficult management problem
of selecting which changes to implement. This decision
is based on the importance of the changes approved as
well as the budget available to make changes. The
implementation of a change is performed by one pro-
grammer; there is no standard, formal methodology.
Testing, beyond debugging by the programmer, is per-
formed for several changes at once. One important
implication is that the associated effort measured cannot
be ascribed to a particular change. In fact, testing is
typically performed at two levels: the first level pro-
vides internal checkpoints for configuration manage-
ment; the second level occurs before each release.

Each mainicnance change petforined in the SEL is
classified as an enhancement, adaptation, or correction
[26]. A simple count of changes suggests that mainte-
nance is primarily corrective; however, the effort distri-

bution reveals that most effort is actually related to '

enhancements (Figure 3). Either way, adaptations do
not seem to contribute significantly (Figure 2, questions
1 and 2). Note that the average enhancement requires
just over twice the effort of the average correction.

Adaptation 8
7%

Enhancement
IT%
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This phenomenon could be caused by the fact that
enhancements are typically larger than corrections,
that enhancements are inherently more difficult to
accommodate into an existing system, or both.

As early as 1976, Belady and Lehman [14] demon-
strated the benefits of program evolution models for the
purpose of understanding the decay of software under-
going change. Figure 4 summarizes how many modules
and lines of source code have been added, changed, or
deleted per change (Figure 2, questions 3 and 4). On
average, three lines of code are added for every exist-
ing line changed or deleted. Entire modules are rarely
added and never deleted. In the SEL, maintainers do
not significantly alter the system’s architecture to make
changes. We hypothesize that the high number of lines
added reflects the high proportion of enhancements,
and that architectural stability reflects an *‘if it ain't
broke don’t fix it’’ attitude. Such an attitude could be
explained by the general lack of understanding of over-
all system architecture. The observed growth pattern
also suggests that module functionality increases during
maintenance, leading to a decrease in module cohesion.
Decreased cohesion may not be a problem during the
short lifespan of a satellite system, but may reduce
the reuse potential of modules in future developments.

Our most striking observation about SEL mainte-
nance is the extent to which the maintenance processes
vary across similar projects (Figure 2, question 5).
Some of the variability reflects the size and composition
of the maintenance teams (2-10 programmers). One
particular area where the processes differ appears to be
in the approach to testing. The projects studied have
not established weli-defined criteria for when system or
integration testing should be performed during mainte-
nance. Such variability in the process reflects the rela-
tively ad hoc nature of the maintenance environment as
compared to the development environment. In fact,

Correction
59%

Effort Number of Changes

Figure 3. Distributions of effort and number of changes by type.
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Lines of Code

Added Changed Deleted Added

Lines of Code
Figure 4. Lines of code and modules per change.

studies such as this one aim at increasing the maturity
of the maintenance process within this environment. By
identifying which aspects of the process are most suc-
cessful, a single consistent process will be identified.

4.2 Maintenance vs. Development

Applying experience from past development studies to
maintenance requires an understanding of the similari-
ties and differences between maintenance and develop-
ment. The goals of this part of the study were to
compare changes made during development and main-
tenance. tvoes of changes, and change processes
(Figure 5). These comparisons are possible because
both development and maintenance data are available
for the three systems studied.

Throughout development and maintenance, the effort
spent on each change is recorded. Effort is classified
as easy when it takes less than an hour to complete
a change, medium when it takes between an hour and a

GOAL 4: Compare changes made during development and
maintenance.
QUESTION 6
How does the effort per change compare?
GOAL 5: Compare the types of changes made to products
at both phases.
QUESTION 7
Are the faults found during maintenance different than
those found during development?
QUESTION 8
How do the distributions of errors by class
compare?
GOAL 6: Compare change processes at both phases.
QUESTION ¢
How does the distribution of effort by activity type
compare?

Figure 5. Measurement goals for understanding the similari-
ties and differences between development and maintenance.

10005788L

Changed Deleted -
Modules

day, and hard otherwise. A distinction is made between
the effort to isolate a change (understand the request
and locate the affected modules) and the effort to com-
plete the change (design, code, test). Figure 6 shows
that changes performed during maintenance generally
require more effort than those performed during devel-
opment (Figure 5, question 6). We consider two
hypotheses that might account for this pattern: changes
requested during maintenance are inherently harder
than those requested during development; and it is
more difficult to perform the same change during main-
tenance than it would be during development. While we
cannot determine whether particular modulcs are easy
or difficult to change during maintenance based on our
data, we are able to examine both hypotheses further at
the level of the individual change.

Regarding the first hypothesis, we find no obvious
difference between the effort distribution patterns for all
changes (Figure 6) and corrections only (Figure 7). We
conclude that the increased effort is not primarily due to
differences in the distributions of types of changes
requested.

Regarding the second hypothesis, various character-
istic differences between development and maintenance
are commonly thought to explain why the same change
might be more difficult to perform during maintenance.
These include product factors (such as increased com-
plexity and missing or out-of-date documentation), pro-
cess factors (such as schedule constraints, methods, and
tools), and people factors (such as a lack of familiarity
with the software). In the SEL, we cannot attribute the
maintenance difficulties to product factors because there
is already a sharp increase in change effort during
acceptance test, but little change in the products.
Instead, we suspect some combination of process and
people factors. Although we are unaware of any sig-
nificant methodological differences between the
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Figure 6. Effort to isolate and complete changes: mainte-
nance vs. development. Easy, (1 hour; medium, }1 hour and
(1 day; hard, )1 day.

way a change is implemented during development
or maintenance, development has a much higher
rate of change activity: these systems average
over 1,000 changes during testing. Although the high
number of changes may increase certain costs (e.g.,
configuration control), it may actually reduce others
(e.g., testing is not repeated once for every change).
Maintainers are not only generally unfamiliar with the
systems they maintain, but the voiume of maintenance
may be insufficient to develop such familiarity. We
expected the unfamiliarity with the maintained systems
to have 2 more dramatic impact on the isolation activity
(which might require an understanding of the entire
system) than the completion activity (which typically
requires only an understanding of individual modules).
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Figure 7. Effort to isolate and complete faults: maintenance
vs. development. Easy, (1 hour; medium, )1 hour and (1 day;
hard, )1 day.

Instead, we discovered a proportional increase in both
isolation and completion efforts (Figure 6). This may
be explained by the fact that SEL maintainers are
experts in the application domain, not software devel-
opment; therefore, they may be expected to readily
understand the change specifications, but not the code.

Both during development and maintenance a signifi-
cant fraction of the changes are corrections (Figure 3).
Figure 8 shows that the types of faults corrected during
development and maintenance are similarly distributed
(Figure 5, question 7). During maintenance, more cor-
rections are related to incorrect initialization (21 vs.
17%) and logic (25 vs. 19%), but fewer are related to
incorrect interface (19 vs. 22%), data (26 vs. 28%),
and computation (9 vs. 14%) as compared to develop-
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Figure 8. Number of faults per class: maintenance vs. development.

ment (see [20] for definition of classification scheme).
Some of the differences seem to be related to the
organizational structure of the environment. Mainte-
nance is performed by people more familiar with the
application domain and less familiar with the solution
domain. The opposite is true for the developers. In this
environment, many application-specific parameters are
reflected in the software as initialization parameters. As
such, they require a clear understanding of the applica-
tion, and faults are more easily found by maintainers.
The opposite is true for typical solution faults such as
interface and computational faults.

Figure 9 shows that the distributions of errors differ
significantly between maintenance and development
(Figure 5, question 8). During maintenance. many
more faults are attributed to inappropriate requirements
or specifications (26 vs. 3%). and a few more are
attributed to inappropriate design (11 vs. 8%): fewer
are attributed to inappropriate implementation (55 vs.
79%) or previous changes (2 vs. 1C%). In anempting tc
explain these differences, the following hypotheses have
been formulated. Few faults are autributed to previous
changes during maintenance because maintainers are
unaware of changes made during development and the

80%

4 . Maintenance
Development

60%4

Percentage of
Corrections

@/‘_‘ ( L,
Specifications

Design Code
Figure 89. Number of faults per source: maintenance vs. development.
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total number of changes during this phase is low. The
high proportion of faults attributed to the requirements
or specifications refiects the nature of the testing: appli-
cations experts are now using the systems to prepare
for the missions, whereas during development most
testing is performed by the developers themselves.

During development and maintenance, effort data
is collected according to the following process model:
isolation (understanding a requested change and
identifying the affected modules), design (proposing
a change), implementation (implement the proposed
change), unit and system test (testing the changed mod-
ules and system), and acceptance test (testing a set of
related changes). The development data include all
effort; it is not limited to changes.

Figure 10 shows that during maintenance, more effort
is spent on design activities, about the same amount
of effort is spent on implementation activities, and less
effort is spent on testing activities (Figure 5, question
9). The increase in design effort may be explained by a
lack of familiarity with the system structure, resulting
in increased effort to isolate changes. The decrease in
testing effort may be explained by different testing
procedures. During maintenance, integration testing is
almost absent because the system structure doesn’t
change much, and acceptance testing is performed for
groups of changes together.

How do these results compare with similar findings
published in the literature? While comparing baseline
data across environments is difficult, some patterns are
evident. The increased cost of maintenance changes and
corrections has been noted previously by many authors

J. SYSTEMS SOFTWARE 133
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[22, 27]. This lends support to the claim that faults
introduced during design but discovered during mainte-
nance may cost significantly more than if discovered
and corrected earlier in the life cycle [27]. As has been
noted in other environments [28], we find that mainte-
nance changes in the SEL require more ‘‘up-stream’’
(i.e., design) than *‘down-stream’’ (i.e., testing) effort).

4.3 Development for Maintenance

As a final result of the maintenance measurement pro-
gram, the SEL has enhanced its understanding of the
impact of development decisions on maintenance
(Figure 11). This increased understanding is illustrated
by our initial findings concerning the complexity of
delivered products and the quality of their documenta-
tion. The qualitative results of this section are based
primarily on subjective data from exploratory inter-
views. Nevertheless, they are essential during the early
phases of a measurement program for guiding future
improvement cycles. :

Our initial inquiries have revealed complexity prob-
lems related to intermodule structure and the encoding
global information (Figure 11, question 10). Main-
tainers reported major problems related to the fact
that global information was encoded redundantdy. For
example, constants were encoded in multiple
FORTRAN common blocks. Software modification fre-
quently resulted in inconsistent representations of global
information.

Two recurrent documentation problems have been
identified (Figure 11, question 11). These concern the

40%

Figure 10. Effort per activity: maintenance vs.
development.

Percentage of Effort
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GOAL 7: Characterize the impact of the delivered product

on maintenance.

QUESTION 10
What structural product characteristics have positive/
negative effects on maintenance?

QUESTION 11
What product documentation standards have positive /
negative effects on maintenance?

Figure 11. Measurement goal for understanding the effects
of development on maintenance.

use of program design language (PDL) and debug
statements. PDL descriptions of each module are
included in the source code as a header. Most maintain-
ers regard PDL as redundant. Furthermore, the deliv-
ered PDL is usually outdated. In the SEL environment,
developers are required to keep their design PDL as
part of the software module. Unfortunately, this PDL is
frequently obsolete by the time the module reaches the
maintenance phase; thus, it is useless to the maintain-
ers. Also, the majority of people maintaining the soft-
ware suggested that this practice be stopped entirely,
since the same level of abstraction is provided to them
in the code structure and comments.

Many maintainers suggested that the debug interface
of the code be improved. Because attitude ground
support software is highly computational, an exten-
sive debng interface is provided with each system. The
problem with the current debug interface is that fre-
quently it assumes intimate familiarity with the code in
that the output was of the form (variable) = (value).
Maintainers suggested that future debug interfaces
provide a more descriptive explanation of the output
printed.

As we learn more about the problems maintainers
have with the software delivered from development and
identify solutions to these problems, the guidelines and
standards for development [7-9] will be modified to
reflect these recommendations.

5. SUMMARY AND CONCLUSIONS

In this section, we summarize the benefits of the main-
tenance measurement study for the SEL, outline future
maintenance measurement directions within SEL, and
package some of the general lessons learned about
establishing measurement programs for use in other
maintenance environments.

5.1 SEL Maintenance Study Benefits

The most immediate benefit of this program has been
an enhanced understanding of the SEL maintenance
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environment. The quantitative baselines presented in
the preceding section resulted in a better understanding
of maintenance requests, maintained products, and
maintenance processes. They enabled us to identify
weaknesses in the SEL maintenance environment.

The comparison berween changes performed during
development and maintenance has helped us understand
where we may benefit from existing development base-
lines. For example, whereas the distributions of faults
corrected during development and maintenance are sim-
ilar, effort distributions are not. This suggests that
reuse of lessons learned from development is more
justified when they pertain to faults than when they
pertain to effort.

Baselines may also be used to compare the effects of
new development technologies on maintenance. For
example, both cleanroom and an Ada/object-oriented
design approach have been applied on recent develop-
ment projects with the expectation that **more reliabie™
systems will result. We are now in a position to vali-
date these expectations by comparing the effects of the
new approaches to traditionally run projects.

In the long term, development and maintenance are
expected to improve as a result of our increased under-
standing. At this point, recommendations for improve-
ment are based predominantly on qualitative feedback
from maintainers (rather than quantitative measurement
baselines). Most of these suggestions have to do with
the separation of the deveiopmient and analysis organi-
zations (Figure 1) and the absence of standard mainte-
nance processes. The separation of development and
maintenance means that a maintainer is entirely depen-
dent on the code and documentation acquired at the
time of delivery [29]. Consequently, inadequacies in
the code or documentation are much more of an obsta-
cle to maintenance than in an organization where main-
tenance and development are more closely related.
Each maintenance change is performed by one indi-
vidual without much guidance regarding the main-
tenance process itself. The ad hoc nature of the
maintenance processes makes it hard to measure, com-
pare measurements. and make recommendations. We
expect our measurement program to contribute to the
standardization of maintenance processes over time.

Overall, the SEL maintenance measurement program
15 perceived as successful and beneficial to this particu-
lar environment. The lessons learned from our study
have resulted in changes and additions to the SEL
standards and policies for software development [8].
Because numerous new projects are always under
development in the SEL. we will be able to examine
whether the revised standards have a measurable impact
on the quality of the development product.
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5.2 Future Maintenance Research

As we continue to learn about the SEL maintenance
environment, numerous future measurement directions
become evident. Some directions reflect changes in
the environment itself, others reflect changes in our
understanding of the environment. We must continu-
ally revise our goals, questions, metrics, and proce-
dures to reflect the current priorities and understanding.
Figure 12 contains an example set of revised questions
for each of our seven maintenance goals to guide future
maintenance studies.

We must continue to revise our measurement pro-
gram in response to previous misconceptions inherent
in our initial qualitative models of maintenance process.
For example, our current effort classification scheme
does not explicitly recognize configuration management
as a discrete activity. This effort is grouped together
with nontechnical activities such as meetings and man-
agement. In the future, we may want to update our data
collection forms to include configuration management
as a separate activity, since it seems to represent a
significant portion of current maintenance effort.

GOAL 1: Characterize the changes performed during
maintenance.
QUESTION 1
How many changes of each type are requested by
different sources (e.g., analyst, operator)?
GOAL 2: Charzcterize product evolution during
maintenance.
QUESTION 2
How does coupling /cohesion change during
maintenance?
GOAL 3: Characterize the maintenance process stability.
QUESTION 3
Which process factors determined process stability
(e.g., staffing level. familiarity with system)?
GOAL 4: Compare changes made during development and
maintenance.
QUESTION 4
What is the average change effort per module during
each phase?
GOAL 5: Compare changes made to products at both
phases.
QUESTION §
What are the distributions of requirements changes by
9
GOAL 6: Compare development and maintenance processes.
QUESTION 6
What are the distributions of change effort by activity.
GOAL 7: Characterize the impact of the delivered product
on maintenance.
QUESTION 7
What product characteristics resulting from reuse have
- positive/negative effects on maintenance?

Figure 12. Revised measurement
maintenance improvement cycles.-

questions for future
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When our empirical investigations identify important
phenomena, we must refocus our measurement goals
and questions in order to study the phenomena. For
example, one hypothesized implication of the stable
architecture of the maintained systems (very few
modules are being added or deleted) is that module
cohesion within these systems may be deteriorating.
Such deterioration may lead to weaker and weaker
system architecture, and ultimately lead to even more
difficult maintenance. Such a hypothesis needs much
closer investigation before it can be presented as a
potential problem.

When measurement does identify specific problems,
the next step is to analyze the problems and attempt to
identify viable solutions. For instance, we have quanti-
fied the types and kinds of faults uncovered during
maintenance. Next, we might begin to analyze their
causes in development. Such analysis may lead us to
mechanisms for preventing faults, or it may help us
identify better ways of detecting them.

Finally, the maintenance environment itself is contin-
ually changing. Transitions to the use of Ada and
Cleanroom development in the SEL will require peri-
odic adjustments to our measurement procedures. Such
changes are not unexpected; in fact, measurement by
nature must continue to evolve as the environment
evolves.

5.3 Measurement Lessons Learned

The extension of the SEL into maintenance not only
enabled us to gain experience with maintenance
but also with establishing a maintenance measurement
program [25].

Our first lesson is that there is a distinction, at least
conceptually, between start-up and routine phases of
measurement. During the start-up phase, there is con-
siderable freedom to reevaluate measurement goals and
redesign the metrics and procedures as our understand-
ing of the local priorities and what is feasible grows.
Once data collection forms have been designed and
reflected in the data base and once people have been
instructed in the procedures, it becomes expensive to
introduce further changes. It is therefore critical that
the start-up phase proceed cautiously. We suggest vali-
dating all measurement procedures through pilot studies.

Our second lesson concerns which questions are
suitable for routine measurement. It may be tempting to
use routine measurement as a mechanism for answering
questions that could be resolved more efficiently by
other means. For example, if the software design docu-
mentation is never maintained, it would be wasteful to
discover this via routine data collection. Routine mea-
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surement is appropriate for monitoring large-scale and
historical trends, but it is not needed to ascertain simple
facts. Many of the questions we would like to pursue
are risky, i.e., we cannot be sure that the resulting data
will prove useful.

Third, we have found the establishment of a
measurement program in a new environment o be
a time-consuming and sensitive task. Getting the pro-
gram started requires building initial models of the
maintenance organization, the maintained products, the
maintenance processes, and the specific maintenance
problems at hand. These models are used to design the
measurement procedures, but must be validated during
the start-up phase. Special care must also be taken to
establish the creditability of measurement and win the
cooperation needed to make the program a success. To
collect valid data, the people providing most of the data
need to be well motivated and instructed. Motivation
requires addressing measurement goals of direct inter-
est to the people providing cooperation and an opportu-
nity for these people to review and comment on the
resulting data and analyses.

Our analysis results demonstrate the immediate
returns possible from investment in a measurement
program. A measurement program provides invaluable
insight into the processes and products within the given
environment. As long as measurement is performed
within a context of well defined goals and questions,
such a program can be a success for any software
organization.
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WEEKLY MAINTENANCE EFFORT FORM
Name:
Project:
Friday Date:

for the project

Section A — Total Hours Spent on Maintenance (nciudes time spent on sl maintenence
writing speocification modifications)

[

Section B - Hours By Class of Mainisnance (Towl of hours in Section 8 sihould equal total hours in Section A)

Class Daefinition Hours

Correction Hours spent on ail maintenance associated with a system
tallure.

Enhancement Hours spent on all maintenance associated with modifying the
system due 10 a requirements change. includes adding,
deleting, or modifying system features as a resuitof e
requirements change.

Adantation Houre =nernt on all maintenance assoclaied with modilying a
system to adapt to a change in hardware, system software, or
environmental characteristics.

Other Other hours spent on the project (related to maintenance) not
covered above. Includes management, meetings, etc.

Section C — Hours By Maintenance Activity (Totsi of hours in Section C showid squat totai hours in Section A)

5150Q(1)-4

Activity Activity Definitions Hours

Isolation Hours spent understanding the fallure or request for
snhancement! or adaptation.

Change Hours spent actually redesigning the system based on an

Design understanding of the necessary change.

Implementation Hours spent changing the system to compiete the necessary
changs. This includes changing not only the cods, but the
associated documentation,

Unit Test/ Hours spent testing the changed or added components.

System Test includes hours spent testing the integration of the components.

Acceptance/ Hours spent acceptance testing or benchmark testing the

Benchmark Test | modified system.

Other Other hours spent on the project (related to maintenance) not
covered above. includes mansg nt, meetings, etc.

MAY 1989

Figure Al. Weekly Maintenance Report Forms.
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MAINTENANCE CHANGE REPORT FORM .
Name: OSMR Number: Dete:

Project: Date:

5

SECTION A: Change Request Information
Functional Description of Change:

What was the type of modification? What caused the change?
— Correction —— Requirements/specifications
—— Enhancement —— Software design
~— Adaptation — Code
—— Previous change
e Other

SECTION B: Change Implementation information

Components Changed/Added/Deleted:

ihrto 1dayto 1weekto
<1hr 1 day 1week 1month >1month

Estimate sffort spent isolating/determining the change:
Estimate effort to design, impiement, and test the change:

Chaeck all changed objects: it code changed, cheracterize the change (cherk most
applicabile)

—— Requiremeants/Specifications Document —— Inltialization

—— Design Document —— Logic/control structure
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Figure A2. Maintenance Change Report Form.
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The technical papers included in this section were originally prepared as indicated
below.

e  “Object-Oriented Programming with Mixins in Ada,” E. Seidewitz, Ada
Letters, March/April 1992

e  “Software Engineering Laboratory Ada Performance Study—Results and
Implications,” E. W. Booth and M. E. Stark, Proceedings of the Fourth Annual
NASA Ada User’s Symposium, April 1992
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' Ed Seidewitz
Goddard Space Flight Center
ode 552.2

Greenbelt MD 20771
(301)286-7631
eseidewitz@gsfcmail.nasa.gov

NO8~ 17471

My guess is that object-oriented programming will be in the
1980s what structured programming was in the 1970s.
Everyone will be in favor of it. Every manufacturer will
promote his products as supporting it. Every manager will
pay lip service to it. Every programmer will practice it. And
no one will know just what it is.

[Rentsch 82)

INTRODUCTION

Recently, 1 wrote a paper discussing the lack of "true” object-oriented ming language features in
Ada 83, why one might desire them in Ada and how they might be added in Ada 9X [Seidewitz91]. The approach I
took in this paper was to build the new object-oriented features of Ada 9X as much as possible on the basic
constructs and philosophy of Ada 83. The object-oriented features proposed for Ada 9X [Ada9X 91b}, while different
in detail, are based on the same kind of approach.

Further consideration of this approach led me on a long reflection on the nature of object-oriented programming
and its application to Ada. The results of this reflection, presented in this paper, show how a fairly natural object-
oriented style can indeed be developed even in Ada 83. The exercise of developing this style is useful for at least
three reasons:

1. Tt provides a useful style for programming object-oriented applications in Ada 83 until new features become
available with Ada 9X;

2. It demystifies many of the mechanisms that seem to be "magic” in most object-oriented programming languages
by making them explicit; and

3. It points out areas that are and are not in need of change in Ada 83 to make object-oriented programming more
natural in Ada 9X.

In the next four sections I will address in turn the issues of object-oriented classes, mixins, self-reference and
supertyping. The presentation is through a sequence of examples, similar to those in [Seidewitz91). This results in
some overlap with that paper, but all the examples in the present paper are written entirely in Ada 83. I will return
to considerations for Ada 9X in the last section of the paper.

CLASSES

An object represents a component of...[a] software system...
An object consists of some private memory and a set of
operations.. A crucial property of an object is that its private
memory can be manipulated only by its operations.. A class
describes the implementation of a set of objects that all

represent the same kind of system component.
[Goldberg and Robson 83]

In Ada, an object is a variable or a constant that contains a value. The declared type of the object determines
the set of possible values for the object and the set of operations that may be applied to the object. If this type is a
private type, then the value of the object may only be changed through application of an operation. This
corresponds to the object-oriented notion of a class.

Consider, for example, a simple finar®ial account class implemented as a private type:

with Finance_Types; use Finance_ Types;
package Finance is

type ACCOUNT is limited private;

procedure Open (The_Account : in out ACCOUNT;
With Balance : in MONEY) ;
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procedure Deposit (Into_Account : in out ACCOUNT;

The_Amount : in MONEY) ;
procedure Withdraw (From_Account : in out ACCOUNT:

The_Amount : in MONEY) ;
function Balance Of (The_Account : ACCOUNT) return MONEY;

private

type ACCOUNT is
record
Balance : MONEY := 0.00;

end record;
end Finance;

The type Finance.ACCOUNT represents a class of account objects. The subprograms defined in package
Finance are the allowable operations on objects of this class. The body of this package is straightforward. Note
that for simplicity I will assume that a number of simple types (such as MONEY) are defined in a Finance_Types

package.

The class defined by package Finance provides a simple but very general abstraction. In an object-oriented
approach, such general classes are used as the basis for implementing more specialized classes. For example, a
savings account is a specific kind of account that holds savings that earn interest. Other than some new operations
associated with earning interest, a savings account is the same as the original general financial account. Thus we
should be able to implement a savings account in terms of a general account:

with Finance_Types; use Finance_Types’
package Savings is

type ACCOUNT is limited private;

procedure Open {The_Account : in out ACCOUNT;

With_Balance : in MONEY) ;
procedure Set_ Rate (Of_Account : in out ACCOUNT;

To_Rate : in RATE) ;
procedure Deposit (Into_Account : in out ACCOUNT;

The_Amount : in MONEY) ;
procedure Withdraw (From_Account : in out ACCOUNT;

’ The_Amount : in MONEY) ;
procedure Earn_ Interest (On_Account : in out ACCOUNT:

Over_ Time : in INTERVAL) ;
function Balance_ Of {The_Account : ACCOUNT) return MONEY;
function Interest_On (The_Account : ACCOUNT) return MONEY;

private
type ACCOUNT is
record
Parent : Finance.ACCOUNT;
Rate : RATE := 0.06;
Interest : MONEY := 0.00;

end record:

end Savings;

While this may not seem to gain us a lot in this simple example, such incremental extension of abstractions is
fundamental to object-oriented techniques. The class of financial accounts is said 1o be the superclass of the class of
savings accounts. Each savings account (of type Savings . ACCOUNT) has a unique parent financial account (of
type Finance . ACCOUNT).

Now, three of the seven savings account operations (Open, Deposit and Withdraw) are syntactically and
semantically the same as the corresponding financial account operations. Thus, we would like 10 inherit these
financial account operations. Ada 83 has no direct way of doing this. Nevertheless, we can achieve the effect of
inheritance for our present purposes by using call-through subprograms. For example, the Savings .Deposit
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operation can easily be implemented as follows:

procedure Deposit (Into Account : in out ACCOUNT;
The_Amount : in MONEY) is

begin
Finance.Deposit (Into_Account.Parent, The_Amount)
end Deposit;

The expense of such call-throughs may be minimized through the use of pragma Inline.

Three other savings account operations (Set_Rate, Earn Interest and Interest_On) provide the
incremental new functionality of the savings account subclass. These operations are implemented in terms of the
additional components of the representation of type Savings . ACCOUNT. For example:

procedure Earn Interest (On_Account : in out ACCOUNT;
Over_Time : in INTERVAL) is

Balance : constant MONEY := Balance_Of (On_Account):;
begin
if Balance > 0.00 then

On_Account.Interest := On_ Account.Interest
+ Balance*On_Account .Rate*Over_Time;

end if;
end Earn_Interest;
Note that the Balance_Of operation used here is the subclass operation Savings .Balance_Of.

The remaining savings account operation, Balance Of, is syntactically the same as the financial account
operation, but it is semantically different. The balance of a savings account includes interest eamned up to the

present point in time:

function Balance Of (The_Account : ACCOUNT) return MONEY is
begin

return Finance.Balance_Of (The_Account.Parent)
+ The_Account.Interest;

end Balance_Of;

Note that while Balance_Of is not a call-through operation, the superclass operation Finance .Balance_Of is
used in its implementation.

The usefulness of a superclass like the financial account class comes from the fact that it can provide a common
basis for a number of subclasses. For example, a class of checking accounts may provide anotlier subclass of
financial accounts:

with Finance:;
with Finance_Types; use Finance_Types;
package Checking is

type ACCOUNT is limited private;

procedure Open (The_Account : in out ACCOUNT;
With_Balance : in MONEY) ;

procedure Set Fee (Of_Account : in out ACCOUNT;
To_Fee : in MONEY) ;

procedure Deposit {(Into_Account : in out ACCOUNT;
The_Amount : in MONEY) ;

procedure Withdraw (From Account : in out ACCOUNT;
The_Amount : in MONEY) ;

function Balance_Of (The_Account : ACCOUNT) return MONEY;
private
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type ACCOUNT is

record
Parent : Finance.ACCOUNT;
overdraft_Fee : MONEY := 10.00;

end record;
end Checking;

In this simple example, the only difference between checking accounts and financial accounts is that
overdrawing a checking account is not permitted. Further, each overdraft attempt (i.e, a returned check) is penalized
by deducting a fee from the account. Thus, the implementation of Withdraw must be changed for checking
accounts:

procedure Withdraw (From Account : in out ACCOUNT;
The_ Amount : in MONEY) is

begin

if The_ Amount <= Balance_ Of (From_Account) then
Finance.Withdraw (From Account.Parent, The_Amount):

alse
Finance.Withdraw (From Account.Parent,
From_Account .Overdraft_Fee);

end if;
end Withdraw;
The savings account and checking account subclasses of the financial account class may themselves act as
superclasses for even more specialized classes. Thus, a general class may be the root of a quite extended class

hierarchy. Each subclass in the hierarchy incrementally extends the capabilities of its superclass, while inheriting
common functionality.

MIXINS

A mixin is...a subclass definition that may be applied to
dfﬁ'erent superclasses to create a related family of modified
classes.

{Bracha and Cook 90]

A superclass may be used as the base for many subclasses. However, as described so far, a subclass is tied to
one superclass. For instance, savings accounts are based specifically on the class defined by package Finance.
There may be other types of accounts to which we want to added interest-bearing functionality such as that defined
for savings accounts. For example, an interest-bearing checking account is basically a checking account with
interest-bearing functionality added to it (or, alternatively, a savings account with checking functionality added).

Rather than recoding essentially the same interest-bearing functionality each time it is needed, we can capture
this functionality in a generic package that takes a specific superclass as a parameter:

with Finance_Types: use Finance_Types;
generic

type SUPERCLASS is limited private;
with function Balance_Of (The_Account : SUPERCLASS) return MONEY is <>;
package Interest is

type MIXIN is limited private;
type ACCOUNT 1is

record
Parent : SUPERCLASS:
Extension : MIXIN;
end record;
procedure Set_ Rate (Of_Account : in out ACCOUNT:
To_Rate : in RATE) ;

procedure Earn_Interest {On_Account : in out ACCOUNT;
Over_Time : in INTERVAL) ;

function Balance_Of (The_Account : ACCOUNT) return MONEY;
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function 1Interest_On (The_ Account : ACCOUNT) return MONEY;

private
type MIXIN is
record
Rate : RATE := 0.06;
Interest : MONEY := 0.00;

end recoxd;

end Interest;

A generic package such as this is called a mixin because it provides an increment of functionality which may be
"mixed-into” any superclass that has the operations required to fill in the generic parameters. Typically, mixins are
used within a framework of multiple inheritance. For example, we can reconstruct the savings account class by
inheriting from both the financial account class and an appropriate instantiation of the interest mixin:

with Finance, Interest;
with Finance_ Types; use Finance_Types;
package Savings is

type ACCOUNT 1is limited private;

procedure Open (The_Account : in out ACCOUNT;
With Balance : in MONEY) ;

function Interest_On (The_Account : ACCOUNT) return MONEY;

private

package Savings_Interest 1is
new Interest (Finance.ACCOUNT, Finance.Balance_Of):

type ACCOUNT is new Savings Interest.ACCOUNT;

end Savings;

The Parent component of the ACCOUNT type defined in mixin Interest is used to inherit from the parent
superclass Finance via a call-through. For example:

procedure Open (The Account : in out ACCOUNT;

With Balance : in MONEY) is
begin
Finance.Open (The_Account.Parent, With_Balance):;
end Open;

The record type Savings_Interest .ACCOUNT is defined as a visible, rather than a private, type in the mixin to
allow access to the Parent component. Note that it would not be possible to replace this use of a visible record
component with a function that returns the parent object, because we need to use the parent as an in out
parameter. The type MIXIN is never used itself outside of the mixin package.

Call-through subprograms are also needed to inherit from the mixin instantiation Savings_Interest. This
is because the equivalent derived subprograms obtained from the derived type definition of Savings .ACCOUNT
are hidden by the operations declared in the package specification, and in Ada 83 there must be a full subprogram
body for each of these declarations. For example:

function Interest_On (The_Account : ACCOUNT) return MONEY is
begin
return Savings_Interest.Interest_On
(Savings_Interest .ACCOUNT (The_ Account)):;

end Interest_On;

Having introduced the concept of mixins, we can, of course, also create a mixin that embodies the overdraft
functionality of the checking account class:
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with Finance Types; use Finance_Types;
generic

type SUPERCLASS is limited private;

with procedure Withdraw (From Account : in out SUPERCLASS;
The_Amount : in MONEY) is <>;

with functlon Balance_Of (The_Account : SUPERCLASS) return MONEY is <>;

package Draft is

type MIXIN is limited private:
type ACCOUNT is

record
Parent : SUPERCLASS;
Extension : MIXIN;
end record;
procedure Set_Fee (Of_ Account : in out ACCOUNT;

To_Fee : in MONEY) ;

procedure Withdraw (From Account : in out ACCOUNT;
The_Amount : in MONEY) ;

private
type MIXIN is
record
Overdraft Fee : MONEY := 10.00;
end record;
end Draft;

Even our original financial account class can be converted to a mixin:

with Finance_Types; use Finance Types;
generic

type SUPERCLASS is limited private;
package Monetary is

type MIXIN is limited private;
type ACCOUNT is

record
Parent : SUPERCLASS:;
Extension : MIXIN;
end record;
~ procedure Open (The_Account : in out ACCOUNT;
With Balance : in MONEY) ;
function Balance Of (The_Account : ACCOUNT) return MONEY;
private

type MIXIN is
record
Balance : MONEY := 0.00;
end record;

end Monetary;

Of course, this mixin does not require any superclass functionality to implement its operations. However, use of the
mixin construct allows monetary account functionality to be mixed into any class.

The use of mixins causes traditional class hierarchies to collapse into pieces. Each piece is a mixin that
provides a well-defined increment of functionality. We can then form specific classes gom these pieces by
instantiating a number of mixins and inheriting all necessary functionality from them. To provide a definite starting
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point for this process, we can define a root class that basically does nothing more than provide an empty record to
which we can add mixins:

package Root is
type CLASS is limited private;
private

type CLASS is
record
null; -
end record;

end Root;
While this root class seems a bit pointless, the concept will prove useful in the next section.

At last we are ready to construct an interest-bearing checking account class without rewriting any savings
account or checking account functionality. To do this, we simply mix together interest, draft and monetary account
functionality. All Interest Bearing Checking.ACCOUNT operations are implemented as call-throughs to
various mixin operations. Thus, from the three mixins Monetary, Interest and Draft, we can easily
construct an interest-bearing checking account class, as well as reconstructing our original financial, savings and
checking account classes.

Of course, in the actual Interest Bearing_ Checking package, the three mixin generics must be
instantiated in a specific sequential order. In the present case, we must first establish the basic monetary account
functionality, then mix in interest and draft functionality. This results in the following implementation:

with Root, Monetary, Interest, Draft;
with Finance Types; use Finance_Types;
package Interest_Bearing Checking is

type ACCOUNT is limited private;

procedure Open (The_Account : in out ACCOUNT;
With Balance : in MONEY) ;
function Interest_On (The_Account : ACCOUNT) return MONEY;
private
package Checking Finance is -- Basic financial account
new Monetary (Root.Class);
package Checking_ Interest is -- Mix in interest functionality
new Interest (Checking Finance.ACCOUNT, Checking Finance.Balance_ Of):;
procedure Withdraw (From_ Account : in out Checking_ Interest.ACCOUNT;
The_Amount : in MONEY) ;
-- call-through to Finance.Withdraw
package Checking Draft is -- Mix in overdraft fee functionality
new Draft (Checking_ Interest.ACCOUNT,
Withdraw,

Checking_Interest.Balance_Of);

type ACCOUNT is new Checking Draft.ACCOUNT;
-- Private type representation

end Interest Bearing_Checking;

Note that all the mixins are instantiated in the private part of the specification. Each instantiation uses the type and
subprograms from the previous instantiation as arguments. The intermediate procedure Withdraw for type
Checking Interest.ACCOUNT is necessary because the instantiated mixin Checking Interest only
provides the interest-related operations on Checking_Interest.ACCOUNT. Itis implemented as simply a call-
through to Finance.Withdraw.
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SELF-REFERENCE.

When an object of a given class is created its state components
include those of the class and all its superclasses and it can
perform operations of the class and its superclasses on the
component state. References to "self” in operations of a
superclass refer to the composite object on behalf of which the
operation is to be performed.

[Wegner 87)

In the interest-bearing checking account package at the end of the last section, the Interest mixin was
instantiated before the Draft mixin. It would seem that we could equally well have instantiated them in the

opposite order:

with Root, Monetary, Interest, Draft;
with Finance_Types; use Finance_Types;
package Interest_Bearing_Checking is

type ACCOUNT is limited private;

procedure Open {(The_Account : in out ACCOUNT;
With_Balance : in MONEY) ;

function Interest_On (The_Account : ACCOUNT) return MONEY:

private

package Checking Finance 1is ~- Basic financial account
new Monetary (Root.Class);

package Checking Draft is ~- Mix in overdraft fee functionality
new Draft (Checking Finance.ACCOUNT, Checking Finance.Withdraw,
Checking Finance.Balance Of);

function Balance_Of (The_Account : in Checking Draft.ACCOUNT)
return MONEY;
-- call-through to Finance.Balance_Of

package Checking_Interest is ~- Mix in interest functionality
new Interest (Checking Draft.ACCOUNT, Balance_ Of):

type ACCOUNT is new Checking_Interest.ACCOUNT;
~- Private type representation

end Interest_Bearing_ Checking;
Unfortunately, it turns out that this introduces a subtle error, as follows:

 In the new implementation, the Draft mixin is instantiated before the Interest mixin, using the
Checking Finance.Balance_Of operation.

+  The implementation of the Withdraw operation in the Draft mixin uses the Balance_Of operation given
as a generic formal superclass operation to determine if there is an overdraft. In this case, the actual
subprogram used is Checking_ Finance.Balance_ Of, which does not add in any eamned interest.

» The 1Interest_Bearing Checking.Withdraw operation is inherited from the instantiation
Checking Draft of the Draft mixin, so as to include the overdraft functionality.  This means that
accumulated interest is ignored when checking for an overdraft. This is clearly unfair to the customer!

The problem is that we do not really want to use the superclass Balance_Of operation in the Draft mixin
instantiation. Rather, we need to use the Balance_Of operation from the composite subclass being constructed.
However, we cannot use the-subclass type Interest Bearing Checking.ACCOUNT in the instantiation of
the Draft mixin, because that type cannot be fully defined yet. Thus, we must instead be sure to instantiate the
Interest mixin first, so that the interest-bearing functionality is mixed into the Balance_Of operation before
Draft is instantiated.

Such order dependencies are at best annoying sources of potential errors. At worst, they can introduce circular
dependencies that make it impossible to mix together certain mixins. To avoid this, we need a mechanism that
allows mixins to call subclass operations in addition to superclass operations. Following the parameterization
approach that led us to mixins in the first place, we can include a second generic formal type parameter in mixins to
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represent the subclass.

For example, we want the Dra £t mixin to use the subclass Balance_Of operation:

with Finance_ Types; use Finance_Types;
generic

type SUPERCLASS is limited private;

with procedure Withdraw (From Account : in out SUPERCLASS;
The Amount : in MONEY) is <>;

type SUBCLASS is limited private;

with function Balance Of (The_Account : SUBCLASS) return MONEY is <>;

with function Self (Parent : SUPERCLASS) return SUBCLASS 1s <>;
package Draft is

type MIXIN is limited private;
type ACCOUNT is

record
Parent : SUPERCLASS:;
Extension ¢ MIXIN;

aend record;

procedure Set Fee (Of Account in out ACCOUNT;

o we

To_Fee in MONEY) ;
procedure Withdraw (From Account : in out ACCOUNT;:
) The_Amount : in MONEY) ;
function Self (This_Account : ACCOUNT) return SUBCLASS:

private

type MIXIN is
record .
Overdraft_Fee : MONEY := 10.00;
end record;

end Draft;
The Withdraw operation for this mixin is then implemented as follows: ;

procedure Withdraw (From_Account : in out ACCOUNT:
The_Amount : in MONEY) is

begin

if The_Amount <= Balance_Of (Self (From Amount)) then
Finance.Withdraw (From_Account.Parent, The_Amount) ;
else
Finance.Withdraw (From_Account.Parent,
From_Account.Extension.Overdraft Fee);
end if;

end Withdraw;

Note the use of the function Self to convert an object of type Draft . ACCOUNT to the appropriate object of type
SUBCLASS. These odd little Self functions are the key to this approach. They allow us to use the subclass

operations as required.

The question is, of course, how can we implement such a Self function? Strangely enough, we can implement
it in terms of the superclass Self function given as a generic formal parameter:

function Self (This_Account : ACCOUNT) return SUBCLASS is
begin

return Self (This_Account.Parent);
end Self;
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Obviously, this passing of the buck must end someplace. It ends with the root class, which we reimplement as
follows:

generic

type SUBCLASS is limited private:;
package Root is

type CLASS is limited private;

procedure Initialize (The Object : in outCLASS;
To_Self : in SUBCLASS) ;

function Self (This Object : CLASS) return SUBCLASS;

private

type CLASS is
record
Self : SUBCLASS;
end record;

end Root;

Thus the mystery is resolved: the Self functions all ultimately access a Sel1f component defined in the root class.

Now, the astute reader may have noticed that we have introduced a strange sort of circularity here. The
representation of any class built on the root class will include a component of the subclass type. However, when we
finish constructing a class from the root class and mixins, the result is the very subclass with which we need to
instantiate the root class to begin with! To achieve this circularity, we must require that the subclass type be an
access type. The Self component is then intended to be a pointer back to the complete, composite subclass object.
(Actually, access types are also needed to allow the Self tions to work properly with subclass procedures that
would otherwise have in out parameters.)

With inclusion of subclass parameters in mixins, we can now correctly implement the interest-bearing checking
account class using either order of mixin instantiation:

with Finance_Types; use Finance_Types;
package Interest_ Bearing Checking is

type ACCOUNT is limited private:;

procedure Open (The_Account : in out ACCOUNT:;
With_Balance : in MONEY) ;
procedure Close (The_Account : in out ACCOUNT):
procedure Set Rate (Of_Account : in ACCOUNT;
To_Rate : in RATE) ;
private

type ACCOUNT RECORD;
type ACCOUNT is access ACCOUNT_RECORD;

end Interest_Bearing Checking;

An advantage of implementing a private type as an access type is that the details of the type representation can be
deferred to the package body by using an incomplete type definition for ACCOUNT_RECORD in the private part of
the specification. The use of an access type also allows the use of in rather than in out parameters in procedures
such as Set_Rate, which is necessary for the use of Self£ functions.

Circular definition is also achieved using the incomplete type definition for ACCOUNT RECORD. The
circle is cl y completing the definition of ACCOUNT RECORD after all the mixin instantiations in the package

body. The figure on the next page shows the structure of an Interest_Bearing_Checking.ACCOUNT object
resulting from the following implementation:
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An_Account: Interest_Bearing_Checking. ACCOUNT

ImereQ_BeaﬁLg_Chewing.ACCOUNT_RECORD

Checkigg;Draft.ACCOUNT
Checkigginanoe.ACCOUNT

Checking Root.CLASS

Self Y —
Balance :0.00

Overdraft_ Fee :10.00

Rate :0.06

Interest :0.00

with Root, Monetary, Interest, Draft;
package body Interest_Bearing Checking is

package Checking Root is
new Root (SUBCLASS => Interest_Bearing_Checking.ACCOUNT) ;

use Checking Root:
package Checking Finance is
naw Monetary
(SUPERCLASS => Checking_Root .CLASS,
SUBCLASS => Interest_Bearing_Checking.ACCOUNT) ;

use Checking_ Finance;
package Checking Draft is
new Draft
(SUPERCLASS => Checking_Finance.ACCOUNT,
SUBCLASS => Interest_ Bearing_Checking.ACCOUNT) ;

function Balance_Of (The_Account : in Checking Draft.ACCOUNT)
return MONEY;
-- call-through to Finance.Balance_ Of

use Checking Draft;
package Checking Interest is
new Interest
{SUPERCLASS => Checking Draft .ACCOUNT,
SUBCLASS => Interest_Bearing_Checking.ACCOUNT) ;

type ACCOUNT_RECORD is new Checking_ Interest .ACCOUNT;

end Interest_Bearing Checking;

(Note that to simplify the instantiations, I have taken advantage of the box defaults on the generic formal
subprogram parameters of the mixins.)

A disadvantage of using an access type is that interest-bearing checking accounts must be explicitly allocated.
We can do this as part of the Open operation:
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procedure Open (The Account : in out ACCOUNT;
With Balance : im MONEY) is

begin

if The_ Account /= null then
Close (The_Account);
end if;

The_ Account := new ACCOUNT_ RECORD;
Checking Root.Initialize
(The_Object => The_Account.Parent.Parent.Parent,

To_Self => The_Account);
Checking Finance.Open (The_Account.Parent.Parent, With Balance);

end Open:;

Note the use of the root Initialize operation to set the Self component. The figure on the previous page
shows the structure of nested records and self reference that results from the allocation and initialization of an
Interest_Bearing_Checking.ACCOUNT object

We also need to provide a way to deallocate interest-bearing checking accounts:
procedure Free is new Unchecked Deallocation (ACCOUNT RECORD, ACCOUNT):

procedure Close (The_Account : in out ACCOUNT) is
begin

Free (The_Account);
end Close;

All the rest of the interest-bearing checking account operations are inherited from one or the other of the mixin
instantiations.

SUPERTYPES

Subtyping is a substitutability relationship, i.e., an instance of
a subtype can stand in for an instance of its supertype. How
the subtype is implemented is totally irrelevant; all that
matters is that it have the right behavior so that it can be

substituted.
[Lalonde and Pugh 91)

Typically, the customer of a bank will have several accounts at that bank. Each bank account may be, say, a
savings account, a checking account or an interest-bearing checking account. To manage all the bank accounts of
one customer, we would like to create a bank account type that is the superrype of the types that represent the
various classes of accounts. We could then create lists of bank accounts, define bank account operations, etc.

As discussed in the previous sections, each class is implemented in Ada by a private type that is distinct from all
other class types. Nevertheless, we can still explicitly create a bank account supertype:

with Savings, Checking, Interest_Bearing_Checking;
with Finance_Types; use Finance Types;
package Bank is

type ACCOUNT_TYPE is (SAVINGS, CHECKING, INTEREST_ CHECKING) ;

type ACCOUNT (Kind : ACCOUNT_TYPE := SAVINGS) is

record
case Kind is
when SAVINGS => A Savings_Account : Savings.ACCOUNT:
when CHECKING => A Checking Account : Checking.ACCOUNT;

when INTEREST CHECKING => An_Interest_ Checking_ Account
: Interest_Bearing_ Checking.ACCOUNT;

end case;
end record;

in out ACCOUNT;

procedure Open (The_Account :
With_Balance : in MONEY) ;
procedure Close {(The_Account : in out ACCOUNT):
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procedure Deposit (Into_Account : in out ACCOUNT;
: The_Amount : in MONEY) ;

procedure Withdraw (From Account : in out ACCOUNT;
The_Amount : in MONEY) ;

function Balance_Of (The_Account : ACCOUNT) return MONEY;

end Bank;

’

The type Bank.ACCOUNT defines a supertype with subtypes Bank.ACCOUNT (SAVINGS),
Bank . ACCOUNT (CHECKING) and Bank .ACCOUNT (INTEREST CHECKING). Each subtype corresponds to
one of the classes defined in previous sections. Note that a private type is unnecessary here, because we wish to be
able 10 freely convert between the Bank . ACCOUNT subtypes and the class types.

The five operations defined in package Bank reflect the operations that are common to all the account types.
Semantically, we wish each supertype operation to mirror the implementation of the appropriate subtype operation.
For example, the statement:

Bank.Withdraw (From Account => A, The Amount => X);
should be equivalent to either Savings.Withdraw, Checking.Withdraw or

Interest_Bearing_Checking.Withdraw, depending on the subtype of A. Since the subtype of A can, in
general, only be determined at run-time, we are effectively asking that Bank . Withdraw be dynamically bound o

the appropriate subtype operation.

We can achieve the effect of dynamic binding in Ada by implementing the bank account operations as
dispatching or case-selection subprograms. For example:

procedure Withdraw (From Account : in out ACCOUNT:
The_Amount : in MONEY) is

begin
case Kind is

when SAVINGS =>
Savings.Withdraw (From Account.A Finance_Account, The_ Amount);

when CHECKING =>
Checking.Withdraw (From_ Account.A_Checking_ Account, The_Amount) ;

when INTEREST_CHECKING =>
Interest_Bearing Checking.Withdraw
{From_Account.An_Interest_Checking Account, The_ Amount);

end case;
end Withdraw;

Once we have the bank account supertype, we can create polymorphic data structures and operations that can
handle all kinds of bank accounts. For example:

type CUSTOMER ACCOUNTS is array(POSITIVE range <>) of Bank.ACCOUNT;

function Total Assets_Of (The_Accounts : CUSTOMER_ACCOUNTS) return MONEY is
Total : MONEY := 0.00;
begin
for I in The_Accounts'range loop
Total := Total + Bank.Balance_Of (The_Accounts(I));
end loop;
return Total:;

end Total_ Assets_Of;

The function defined above finds the total assets a customer has in his accounts, regardless of what kinds of
accounts they are,
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It is important to note that to be included in a supertype, a class need only provide implementations for all the
operations defined for the supertype. The ways in which various subtype classes implement these operations do not
have to be related at all. For example, the Bank . ACCOUNT supertype is constructed from a number of classes
implemented by various combinations of the mixins Monetary, Interest and Draft. These classes thus share
some common implementation, but this is not at all important to the construction of the supertype.

Thus, supertypes and superclasses are really distinct concepts. Looking at it another way, the supertype
provides a set of dispatching operations for those operations which are common to all its subtypes, regardiess of how
those operations may be implemented by the subtype classes or how the subtypes may be represented. A supertype
that is constructed in this way from a given list of subtype classes is said to be the union type of those classes. Thus
we have constructed a bank account supertype that is the union of the savings, checking and interest-bearing

checking account classes.

It was noted earlier that the use of mixins causes a collapse of the original class hierarchy. Using union types,
however, we can still form a type hierarchy by appropriately grouping classes. As well as the Bank . ACCOUNT
union type, such a rype hierarchy for account classes could include the union of the savings and interest-bearing
checking account classes (an investment supertype treating interest-bearing checking accounts as savings accounts)
and the union of the checking and interest-bearing checking account classes (a cash account supertype treating
interest-bearing checking accounts as checking accounts). Note how it is possible for a class to be included in more

than one union type.

CONSIDERATIONS FOR ADA 9X

There is a recognized need for improving Ada’s support for
data abstraction, and the construction of programs from pre-
existing components.

{Ada9X 91a]

The mixin-based style described in this paper combines the benefits of object-oriented mixins with the
advantages of explicit parameterization through generics. With superclass and subclass parameterization, mixins are
completely independent software components that can be mixed and matched in many combinations. This leads to a
powerful paradigm known as parameterized programming that promotes highly reusable code (see, for example,
[Goguen 84; Scidewitz and Stark 91]).

Unfortunately, as the reader can see from the examples in this paper, this style is awkward in places with
Ada 83. In particular, the following areas especially need to be addressed in Ada 9X:

1. There needs to be a way to create a subclass type by simplé extension of a class type and to parameterize this
extension with a mixin. The proposed Ada 9X record extension mechanism [Ada9X 91b] fills this need admirably

well.,

2. There needs to be a simpler way to achieve self-reference during the combination of mixins. This need seems
10 be filled by the proposed mechanism in Ada 9X to allow type extensions as generic formal type parameters
[Ada9X 91b]. This would probably necessitate the use of nested generics to allow the mixin type to be an
extension of the SUPERCLASS type parameter and the SUBCLASS type parameter to be an extension of the
mixin type. Such a construction would, however, eliminate the need for Sel£ functions.

3. There needs to be a mechanism for constructing supertypes without having to explicitly code dispatch
operations. Ada 9X does provide an automatic dispatching capability using "tagged records” {Ada9X 91bj.
However, this capability can only be used if the subtypes are implemented as subclasses (type extensions) of the
supertype. This perpetuates the confusion of superclass and supertype.

Thus the proposed object-oriented features for Ada 9X largely support the mixin style described in this paper.
Unfortunately, the tagged record mechanism confuses type extension and dispatching. This is analogous to the
equation of superclasses and supertypes in most typed object-oriented programming languages (such as C++
[Stroustrup 86]).

Requiring supertypes to be superclasses is inconvenient when we are using generic mixins to construct classes.
and wish to create a type hierarchy after the fact. Perhaps a better model for Ada 9X would be the "abstract type"
mechanism of the languages Emerald (Black et al. 87) and POOL-I [America and van der Linden 90}. Even with the currently
proposed Ada 9X features, however, a generics-based approach to mixins, such as that presented in this paper, could
be an important contribution of Ada 9X back to the object-oriented programming community.
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SUMMARY

The Ada Language Reference Manual (LRM) (Reference 1) states:

“Ada was designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency.”

Initial implementations of Ada compilers and development environments tended to favor the first two
concerns over the concern for efficiency. Similarly, initial (non-real-time, non-embedded) applications
development using Ada as the programming language tended to favor maintainability, readability, and
reusability.

As software systems become more sophisticated the need to predict, measure, and control the run time
performance of systems in the Flight Dynamics Division (FDD) is a growing concern. The transition to
Ada introduces performance issues that were previously nonexistent. More-over, this transition is often
accompanied by the transition to object-oriented development (OOD), which has performance implications,
independent of the programming language, that must be considered. To better understand the implications
of new design and implementation approaches, the Software Engineering Laboratory (SEL) conducted an
Ada performance study.

The SEL is an organization sponsored by the National Aeronautics and Space Administration/Goddard
Space Flight Center (NASA/GSFC) to investigate the effectiveness of software engineering technologies
applied to the development of applications software. The SEL was created in 1977 and has three
. organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland,
Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation.

The goals of the SEL are (1) to understand the software development process in the GSFC
environments; (2) to measure the effect of various methodologies, tools, and models on this process; and
(3) to identify and then to apply successful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing
series of reports that includes the Ada Performance Study Report (Reference 2).

This paper describes the background of Ada in the FDD, the objectives and scope of the Ada
Performance Study, the measurement approach used, the performance tests performed, the major test
results, and the implications for future FDD Ada development efforts.
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APPROACH TO MEASUREMENT

To measure the run-time performance of design alternatives and language features, two fundamental
approaches were used. The first approach measured the run-time improvement of existing systems after
an alternative had been incorporated into a baseline version of the system. The second approach used the
ACM SIGAda PIWG test suite and added tests specific to the flight dynamics environment.

Overview

Benchmark programs are commonly used to evaluate the performance of design alternatives and
language features. Such benchmark programs include (1) sample applications such as sorting programs
or, as in the FDD, simulators, (2) programs to measure the overhead associated with a design alternative
or language feature, and (3) synthetic benchmarks designed to measure the time needed to execute a
representative mix of statements (e.g., Whetstone, Dhrystone) (Reference 6). The first approach used by
this study falls into the first benchmark category, and the second approach falls into the last two.

To measure the overhead of a design alternative or language feature, the dual-loop approach is used to
subtract the overhead associated with control statements that aid in performing the measurement. This
approach uses a control loop and a test loop; the test loop contains everything contained in the control loop
and the alternative being measured. A major factor in designing a dual-loop benchmark is compiler
optimization. It is critical that the code generated by the compiler for both loops be identical except for the
quantity being measured (Reference 7). In addition, it is necessary to ensure that the statement or
sequence of statements being tested does not get optimized away.

Although the dual-loop approach can be used for synthetic benchmarks and applications, this technique
is not required if the run time of the program is long in comparison to the system clock resolution
(Reference 7). Instead, the CPU time can be sampled at the beginning of the program and again after a
number of iterations of the program. The time for the benchmark/application is then (CPU_Stop -
CPU_Start)/Number_Iterations. The same measurement can be achieved by submitting the test program to
run as a batch job and obtaining the CPU time from the batch log file. This CPU time can then be divided
by the number of times the sequence of statements being measured is executed in the main control loop of
the test program.

It is important to understand the run-time environment in which the benchmarks are run when
interpreting test results. VMS checks the timer queues once per second, which can affect measurement
accuracy. Under VMS, the Ada run-time system is bundled with the release of the operating system and
installed as a shareable executable image. Consequently, DEC Ada performance is directly dependent on
the installed version of VMS. There is also a degree of uncertainty when using CPU timers provided in
time-shared systems like VMS. In the presence of other jobs, CPU timers charge ticks to the running
process when the wall clock is updated. It is therefore possible for time to be charged to active processes
inaccurately because context switches can occur at any time. Finally, it cannot be assumed that running
benchmarks for a hosted system in batch during low usage (such as, at 11 pm) guarantees standalone
conditions (References 7 and 8). Therefore, the FD benchmarks to test individual design alternatives were
run on the weekend to minimize these effects. :
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THE FIRST APPROACH -- SIMULATOR

Several of the design alternatives examined by this study were tested and analyzed in the context of
two FDD simulators. Alternatives were chosen to be implemented in the context of these simulators for

the following reasons:

1. They were simulator-specific, e.g8., different ways of implementing the scheduler.

2. They could be implemented in an isolated part of the simulator where their impact could easily be

measured using the VAX PCA.

3. They could be implemented in an isolated part of the simulator and still have a measurable effect on

the time required for a 20-minute simulation run.

Baselined versions of the simulators were used to test each of the design alternatives. CPU times were
obtained for 20-minute simulation runs of the baselined versions from the log files created by batch runs.
PCA was used to obtain a profile of the simulators. These profiles showed what percentage of the CPU
time was spent in each Ada package of the simulator. The VAX manual Guide to VAX Performance and

Coverage Analyzer (Reference 9) contains more information on PCA.

Design alternatives were incorporated into the baselined versions of the simulators. New CPU times
were obtained for 20-minute simulation runs from the log files created by batch runs and new profiles
obtained using PCA. The following two figures show the accounting information contained in a batch log
file and a sample of PCA output. From these two pieces of information, the impact of each design

alternative was assessed.

Sample PCA Output

VAX Performance and Coverage Analyzer
CPU Sampling Data (11219 data points total) - "**

Bucket Name it e e e e R L A s T Y
PROGRAM_ADDRESS\ i
UTILITIES— . . R . I**************'***************t***i******i***tf***
SIMULATION_SCHEDULE' (22 A XS AR ERE LA XX R
SEARCH_STRING . . l************"***

SPACECRAFT_ATTITUDE | ***#** a2 akxxnnns
DATABASE_MANAGER . |*****x*xakddnaxss
ADDING_UTILITIES . |******%%x*

EARTH_SENSOR . . . |***%xxxx
UTILITIES_LONG_ . |[**#***x
DATABASE_TYPES_ . |***##»
SPACECRAFT_WHEELS | ******
AOCS_PROCESSOR . . |****%%

SPACECRAFT_EPHEMERI | *****
ENVIRONMENTAL_TORQU| *****

THRUSTERS . . . . |****»
GEOMAGNETIC_FIELD |*****
DEBUG_COLLECTOR . |[|****
MAGNETOMETER . . . |****
SADA . . . . . . . |***
SOLAR_SYSTEM . . . |***
il e o et b e e e et L L L L e
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Sample Batch Log File Accounting Information

Accounting information:

Buffered 1/0 count: 109 Peak working set size: 4096
Direct I/0 count: 1132 Peak page file size: 15304
Page faults: 11766 Mounted volumes: 0
Charged CPU time: 0 00:06:45.08 Elapsed time: 0 00:09:02.47

THE SECOND APPROACH -- PIWG

Design alternatives not isolated to a particular part of either of the simulators were tested using the
PIWG structure of measurements. The PIWG structure of measurements is based on the concept of a
control loop and a test loop. The test loop contains everything in the control loop and one alternative to be
measured. The CPU time is sampled before the execution of each loop and after many iterations of each
loop. If the test loop time duration is not considered stable, the process is repeated with a greater number
of iterations; this is accomplished through an outer loop surrounding the test and control loops. To be
considered stable, the test loop time duration must be greater than a predefined minimum time. If this
condition is met, the test loop time duration is compared against the control loop time duration, and the
number of iterations is compared against a predefined minimum number of iterations. If the test loop time
is greater than the control loop time or the minimum number of iterations has been exceeded, the results are
considered stable, and the CPU time for the design alternative is calculated. The time for the alternative is
the difference between the amount of CPU time taken for the control loop and the amount of CPU time
taken for the test loop, divided by the total number of iterations performed. Collecting control loop and
test loop CPU times, calculating design alternative times, and testing for stability were done using PIWG's
Iteration package in the test drivers for this study.

All test drivers used in this study were called three times from a main driver routine so that the CPU
time for a given design alternative could be averaged for more accuracy. All results were averaged and
recorded using PIWG's I/O package and report generator procedure. The following is a sample PIWG
report.

Sample PIWG Report

Test Name: Generic_A Class Name: Matrix - Gen
CPU Time: 117.2 microseconds
Wall Time: 117.2 microseconds Iteration Count: 128

Number of samples: 3
Test Description:
Use of generic matrix processing
- Generic package for 3x3 matrix

Test Name: Generic_C Class Name: Matrix - Gen
CPU Time: 117.2 microseconds
Wall Time: 117.2 microseconds Iteration Count: 128

Number of samples: 3

Test Description:
Use of generic matrix processing
- NonGeneric package for 3x3 matrix
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TEST OVERVIEW

Ten test groups were developed. Each test group represented a design or implementation issue
relevant to current FDD applications. The test groups were chosen as a result of an in-depth analysis of
several PCA runs with two FDD simulators. If a certain design alternative or language feature appeared to
consume a relatively large portion of central processing unit (CPU) time or memory, it was analyzed,
measured, and quantified in this study. The design alternatives or language features consuming a
relatively small portion of CPU time or memory were not studied further. Therefore, the test groups
presented here are intended to be a representative sampling, rather than an exhaustive sampling, of current
design and implementation approaches. The test groups are presented in two categories: design-oriented
tests and implementation-oriented tests.

Design-Oriented Tests

Following is a brief description of the purpose of each design test group performed on the Ada
performance study.

Group 1: Scheduling. This test group contained three tests that addressed the run-time cost of various
scheduling alternatives. This test compared a event-driven design against a time-driven design and a hard-
coded design. The event-driven design maintains a prioritized (sorted) queue of event identifiers that
specifies the time-step and next simulation event. The time-driven design iterates over an array of event
identifiers for each fixed time-step. The hard-coded design contains the event (procedure) calls in the
source code. With the event-driven design the user may vary the order and frequency of each event. In
the time-driven design the user may only vary the order of the event. In the hard-coded design there are
not options available to the user. The implications of the different approaches were analyzed and
contrasted. The results of this test group provided the applications designers with information necessary
to make trade-off decisions among flexibility, accuracy, and performance.

Group 2: Unconstrained Structures. Leaving data structures unconstrained allows greater user
flexibility and enhances future reusability. However, the additional run-time code that may be generated
can impose a significant run-time and memory overhead. This group measured the expense of
unconstrained records and arrays and proposed viable alternatives.

Group 3: Initialization and Elaboration. This test group addressed initialization of static and dynamic
data using various combinations of elaboration-time and execution-time alternatives. This test group was
relevant for applications requiring minimal initialization time.

Group 4: Generic Units. The benefits of using generic units are reduced source-code size,
encapsulation, information hiding, decoupling, and increased reuse (Reference 10). However, many Ada
compilers implement this language feature poorly. This test group addressed the options available with the
compiler implementation and how well these options were implemented.

Group 5: Conditional Compilation. The ability to include additional "debug code" in the delivered
system adds to the system size and imposes a run-time penalty even if it is never used. The test group
analyzed the current approach and proposed flexible alternatives for future systems. The results of this test
group can have applications beyond "débug code” elimination.

Group 6: Object-Oriented Programming. Two of the fundamental principles of object-oriented
programming (OOP) are polymorphism and inheritance. Ada does not directly support these principles.
However, the designer may simulate the effect of inheritance and polymorphism through the use of variant
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records and enumeration types. These OOP principles, whether direct or indirect, incur certain run-time
overhead and problems (Reference 11).

Implementation-Oriented Tests

Following is a brief description of the purpose of each implementation test group performed on the
Ada performance study.

Group 7: Matrix Storage. The most basic, and perhaps the most common, mathematical expressions
in flight dynamics applications involve matrix manipulations. This group addressed row-major versus
column-major algorithms to quantify the performance implications.

Group 8: Logical Operators. The Ada LRM clearly defines the behavior of logical expression
evaluation. The Ada Style Guide (Reference 12) recommends avoiding the short-circuit forms of logical
operators for performance reasons. The implications of this recommendation in the flight dynamics
environment were measured and analyzed.

Group 9: Pragma Inline. Flight dynamics simulators contain a large number of procedure and
function calls to simple call-throughs and selectors. The overhead of making these calls can slow the
performance of any simulator. This test measured the use of pragma INLINE as an alternative to calling
a routine.

Group 10: String-to-Enumeration Conversion. Current flight dynamics simulators contain a central
logical data base. The physical data are distributed throughout the simulator in the appropriate packages.
The logical data base provides keys (strings) that map into the physical data. The logical data base
converts these strings to the appropriate enumeration type to retrieve the corresponding data. This test
assessed the performance implications of this approach.

Test Documentation

Each performance test in this report is described in this section in the following format:

Purpose. Each test was designed with a specific design or implementation alternative in mind. The
rationale for the choice of the alternatives tested results from analysis of existing Ada systems developed in
the FDD.

Method. Some tests were performed as changes to an existing system, while other tests were
performed by creating new, special-purpose software. The basis for each method was one of two
approaches: DEC’s PCA measurement tool or the PIWG structure of measurements. The details of the
method(s) used for each test are described.

Results. The result of executing a test is some combination of CPU time and object code size. Most
tests were designed to measure the CPU run time in microseconds (is). In some cases the object code
size in bytes is relevant. The data resulting from each test run are provided.

Analysis. In many cases, detailed analysis of the test results is necessary to understand' the
implications for future projects. The analysis performed is summarized, and the implications are
highlighted.
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RESULTS

As a result of this performance study, more accurate estimation of run-time performance for future
FDD simulators is possible. Assuming future dynamics simulators are similar in function to GOADA, a
more accurate performance estimation is possible given the following information:

1. The run-time performance for a typical run of the GOADA simulator is 6 minutes, 45 seconds for a
20-minute simulation. This yields a 1:3 simulation time to real-time ratio.

2. The performance profile generated by PCA of a typical GOADA run shows the distribution of the
CPU run time resource throughout the simulator.

3. The measured results of this study that lead to more efficient design and implementation
alternatives.

The following table combines the results of the Ada Performance Study with the PCA performance
profile of GOADA. Each row of the table is measured against the baseline of 6 minutes and 45 seconds of
CPU time to perform a 20 minuter simulation.

Impact of Measured Performance Results on Dynamics Simulators

Altemative GOADA Study Results Difference
1. Looping scheduler 10.7% 2.2% 8.5%
2. Bypass logical data base 14.5% 1.8% 12.7%
3. Conditional compile debug code 2.1% 0.0% 2.1%
4. Use static data structures 45.0% 13.0% 32.0%
5. Optimized utility packages 26.6% 5.3% 21.3%
Total Percentages 98.9% 22.3% 76.6%

The first row of the table shows the performance difference between the baseline scheduler in GOADA
and the looping scheduler alternative (see test group 1, scheduling). Another option is to use the “hard-
coded” approach for the scheduler. However, the hard-coded approach sacrifices all flexibility in the

- . interest of performance. For this reason, the more flexible “looping” alternative is recommended.

The second row highlights the difference between accessing the logical data base and accessing the
physical data directly (see test group 10, string-to-enumeration conversion). This striking improvement
came from removing one string-to-enumeration type conversion from the main simulation loop. The third
row recommends the conditionally compiled debug code (see test group S, conditional compilation). The
fourth row is the estimated result of using a static record structure instead of a dynamic structure in all
simulator packages (see test group 2, unconstrained structures).

The fifth row is based on the result of comparing GOADA's baseline matrix multiply function to the
optimized matrix multiply function (Reference 13). Since the FDD deals with mainly three dimensions, an
optimized set of utilities can be developed on that basis. The fully optimized version required less than
one-fifth of the CPU time required for the baseline version.
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As this table shows, a dynamics simulator that is similar to GOADA and is implemented with the
results of this study would consume 76.6 percent less CPU than the current version, more than
quadrupling the speed. This would yield an upper bound estimate of 95 seconds to perform a 20-minute
simulation run, or approximately a 1:13 simulation-time-to-real-time ratio.

This estimate is an upper bound for three reasons. First, this study examined a representative, rather
than an exhaustive, list of design and implementation alternatives. That is, only those alternatives that held
the most promise of a large performance difference were studied. There may be many other alternatives
that offer only minor gains. However, the combined performance gain of all may be significant.

Second, coding optimizations to GOADA, or any simulator, were not studied. The goal of the study
was to identify those design and implementation alternatives that lead to optimal systems. Line-by-line
micro-optimizations on a simulator only provide information on final efficiency and lack the needed
information on how to systematically predict and achieve that level of efficiency.

Finally, the DEC Ada 1.5-44 compiler is a relatively error-free first attempt at an Ada compilation
system. The next generation of Ada compilers, which includes DEC Ada 2.0, are now available. These
second-generation compilation system includes improvements to the optimizer and code-generator. For
example, simply compiling GOADA using DEC Ada 2.0 improved the simulator's performance by 7.4%.

CONCLUSIONS

The following statements summarize the results of the Ada Performance Study:

* Design and implementation decisions that favored fidelity over efficiency were the largest contributor
to poor run-time performance. The design should continually be reevaluated against evolving user
requirements and specifications.

* Ada simulators in the FDD can be designed and implemented to achieve run times comparable to
those of existing FDD FORTRAN simulators. Inefficient systems indicate problems in the system
design or the compiler being used.

» Current Ada compilation systems still have inconvenient features that may contribute to poor
performance. Organizations using Ada should use available performance-analysis tools to assess
their compilation systems.

Design changes are much more expensive than coding changes during final system testing. Often due
to schedule and budget constraints, design changes are impossible. Therefore the important implication of
the Ada performance study results is that new technology (in this case Ada and OOD) requires
performance prototyping and benchmarking early in the design phase even in seemingly simple or
straightforward cases.

The Ada Performance Study Report (Reference 2) contains a detailed analysis of each alternative
studied and summarizes the results of this analysis with specific performance recommendations for future
OO0OD/Ada development efforts in the FDD. Different application domains may be able to apply these
results and recommendations. However, this does not preclude the necessity for application domain
specific prototyping and benchmarking to determine the application specific performance issues.
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