
ENGINEERING LABORATORY SERIES S EL-92-003

(* ' A SA- ~~w/v6m N 9 3 -1 7 16 1
5 0 F T k A K E F N G I N E F H I N G P A P t R S , VOLUME --THRU--
10 (N A S A) 134 p N 9 3 - 1 7 1 7 2

CD L t ET, T E 0

Unclas

G3/61 0136130

-I

SOFTWARE ENGINEERING LABORATORY SERIES SEL-92-003

Eh
COLLECTED SOFTWARE
NEERING PAPERS: VOLUME X

NOVEMBER 1992

NnsA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engintering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Admb&mtion/Goddard Space Flight Center (NASNGSFC) and
created to investigate the effectiveness of software engineering technologies when applied to
the development of applications software. The SEL was created in 1976 and has three
primary organizational members

NASA/GSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL arc (1) to understad the software development process in the GSFC
environment; (2) to measure the e&ct of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The
activities, findings, and recomqendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing d e s of reports that includes this document.

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

TABLE OF CONTENTS

Sectionl-Intmduction .. 1-1

Section %“he Software Engineering Laboratory
“fhs

2-1

arry,etal.
Section ?oftware Tools .. 3-1

“’Ibwards Automated Support for Extraction of Reusable Components,”

“Automated Support for Eixperience-Based Software Management,”

S. K AM-El-Habiz, V R. Bas& and G. Caldiera 3-3

J.D.Valett .. 3-11

Section A f t w a r e Models .. 4-1

“Tbe Software-Cycle Model for Re-Enginccrhg and Reuse,”

“On the Nature of Bias and Defects in the Software Specification

“An Improved Classification Bee

J. W. Bailey and V R. Basili

Proas,” F! A. Straub and M. V Zelkuwitz

4-3

4-19

of High Cost Modules Based
Upon an Axiomatic Definition of Complexity~ J. Tian,

“Providing an Empirical Basis for Optimizing the Verification and
%sting Phases of Software Development,” L. C. Briand,

A. Porter, and M. V. Zekowitz 4-27

V R. Basili, and C. J. Hetmanski 4-37

‘IA Classification Procedure for the E f f e d Management of Changes
During the Maintenance Process,” L. C. Briand and
V.R.Basili.. ... 4-49

Section C o f t w a r e Measurement 5-1

“’Ibward FUI Life Cycle control: Adding Maintenance Measurement
to the SEI,,” H. D. Rombach, B. T. Ulery, and J. D. Valett 5-3

Section &Ada Technology ... 6-1

“Object-Oriented Programming with Mixins in Ada,” E. Seidewitz 6-3

“Software Engineering Laboratory Ada Performance Study-Results
6-19

Standard Bibliography of SEL Literature

and Implications,” E. W. Booth and M. E. Stark

\

SECTION 1 - INTRODUCTION

, p, , /,' '

SECTION 1-INTRODUCTION

This document is a collection of selected technical papers produced by participants in
the Software Engineering Laboratory (SEL) from October 1991 through November
1992. The purpose of the document is to make available, in one reference, some results
of SEL research that originally appeared in a number of different forums. This is the
loth such volume of technical papers producedby the SEL. Although these papers cov-
er several topics related td software engineering, they do not encompass the entire
scope of SEL activities and interests. Additional information about the SEL and its
research efforts may be obtained from the sources listed in the bibliography at the end
of this document.

For the convenience of this presentation, the 11 papers contained here are grouped into
5 major sections:

The Software Engineering Laboratory

Software 'Ibols Studies

Software Models Studies

Software Measurement Studies

Ada Rchnology Studies

The first section (Section 2) presents a paper that characterizes the SEL as an experi-
ence factory and summarizes major lessons learned in the past 15 years. Studies on au-
tomated tools to aid in reuse and experience-based software management appear in
Section 3. Section 4 includes studies on models for reuse, verification and testing phase
optimization, effective management of maintenance phase changes, the software spec-
ification process, and the analysis of h ighes t modules. Section 5 presents a study of
maintenance measurement as it applies to the SEL. Finally, a study on the use of mixins
in Ada and a summary of the performance of Ada within the SEL are included in
Section 6.

The SEL is actively working to understand and improve the software development
process at Goddard Space Flight Center (GSFC). Future efforts will be documented in
additional volumes of the Collected Sufbvare EngineehgPapets and other SELpublica-
tions.

1-1
looo5788L

SECTION 2 - THE SOFTWARE
ENGINEERING LABORATORY

I

/ ., I

SECTION %TEE S0FIW.AR.E ENGINEERING LABORATORY

The technical paper included in this d o n was originally prepared as indicated below.

“The Software Engineering Laboratory-An Operational Software Experi-
ence Factory,” V. Bas& G. Caldiera, E M c G q , et al., Aoceedings of the
Fourteenth Intemaiional Conference on Sofnvmc Engineering (ICSE 92),
May 1992

2-1

THE SOFIWARE ENGINEERING LABORATORY-AN OPERATIONAL SOFWARE
EXPERIENCE FACTORY

Victor Basili and Gianluigi Caldiua
Univenity of Maryland

Frank McG.ny and Rose Pajerdti
Notional Acrvnautics and S p a Adminiantion/

Goddard Space Flight Center

Gerald Page and Sharon Wpligora
complter Sciences Corporation

ABSTRACT
For 15 years, the saftware Enghcexhg Lpbontory (Sm) has b a n
C-g Out 8lUdiU and expaimtnts fOr the purport Of lUldersbnd-
ing, assessing. and improving so- d sofrwue proc-se~

tiond Aeronautics and Space Adminhtmti~dbddd Spsoe plight
Center (NASA/GSFC). 'he SEL can- three major orgrmiU-
ti0ns:

witbin a production software development cnvirarment 8ttheN.-

~ A s A / G s ~ , p l i g h t ~ 8 ~
University of Muykod. Deputmcnt of canputa Sci-
e n a
COIltpUkX -8 -a, FLight
TechDology Group

Them organizations h8ve joh t Iy eked out r e v e d hundred
sofiwam studies, producing hundreds of reports, papers, and
documents.~ofwhichdelcribe 8omca8pcctofthesoftwuce~

namics environment at NASA. "be rtudies range from small.
controlled c x p c ~ h e n t s (mch a8 andping the effectiveness of
codertadingvenur thatof~ctiondtetting)toluge,mnltipie-
project studies (such as assessing the impacts of Ada on a p m
duction environment). The org&on's driving god is t o h -
prove the software process continually, so that sustained
improvement may be observed in the r c d b g prodUCt8. This
paper dircusses tbe SEI.. as a fimctioning example of an opexa-
tiond boftwarc experience factory and aummuizes the charac-
tenstics of and major lessons leaxned from 15 ysur of s a
operations.
1. TBE ExpERlENCE FAmORY CONCEPT
Software e n g i u c c ~ g has produced a fair amomt of reararch and
technoiogy trpasfcr in the first 24 ycus of its existence. P q k
have buih tcchnologiCq methods. and todt that am lutd by many
organizations in dcvclqmcot and maintamme d softarue
v*-
Unlike otha dihphcs, however, very little lwcuch h u b e n
done in the &dopmmt of modcls for the d w components d
the dbciplinc. Models have b t m developed prim;rrily for the
softwrve product, providing mathanatid modela of b function
and st" (e.& fulide state machitha h dbpc t -o r i en red design).

g h S I h g techaology that h88 been M d p d h the flight dy-

ol; in #nnC dvurced b-. Of b q- (e.&, &

record fmding. and make ~ommendatims for
future project improvements

- Package the elq~ricnce gained in the form of updated
and refined models and other forms of st"d
knowledge gained from this and prior pjccts

- Store the packagesin anexpcriennbasc mthey are
available f a future project,

The GonVQuestionlMetric Approarb is used to &he m-
ment on the Jofrprarc project. process, and product in mch a way that

Conceptual level (goal): A goal is defined for an object,
foravarietyofruwons,with respect tovuiousmodelr of
quality,from variouspointsofview,andrel.tivetoapar-
ticlllar enviroD"t

Opcntional level (quedon): A set of questions ir u.td
to define models of the object of study and the focuses
on that object to characterize the assessment or achi~c-
mcnt of a sptcific goal

Quantitativelevel (mchic): A set ofmetrics,bascd onthe
models, is wociated with mry question in order to an-
swer it in a quantitative way

The umccpt of the E q d c D c e F8cbry was mhpduced to hth-

root of continual impxovunent and compttitivc advantage.
tiadize the collective laming of the olgrnizrrtioo that M at the

Theexpa iearr f~orycanbea log ica land/orphys jca l~~~
but it is important that its activities axe scpanrted and made inde-
pendent f" those of the project organization. The packaging of

I I

1 I I

Flgm 1. Project o%pnfulon Fnnctions

I I
t n f 4 E c r F - Y I

I I

Figure 2. Expcrknce Factory Fnadlons

1 PROJECTORGANIZATION I EXPgRIENcBFAcMlRY

2-4

On the othcr hand, from the perspective of so- en-g
research, there are the following goals:

PROJECT ORGANEATION I EXPERIENCE FACTORY I

rpecified by their ability to perfonn spocifk tasks and
to interact with each other.
Conceptual level This level represents the interface of
the architectural agcnts and the flows of data and conlr~l

whom. what is done ia tbe expaience hctory, and what
isdoneintheprojcctorg.nizstiOn. 'hboundaryofthe
CJEPerience factoay, Le., thc line that ~cpuater it from the
pjcct orpkafion. is &6ned at this level based on the
needs and chaactcristics of an ogmization. It can
evolve as these needs lad chamctcms evolve.
hplammcl t imId: Thir kvel defines the actual

among them. They specify who canmunicates with

tochnicrl and c q a n i d d M p ~ E P t i o n of the ar-
~ . g m t r a n d t b d r c o a n e c h ' O l U a t I b C ~

'a,andoanmpnwtioaluly8Ddapp~n-

tional deputmenw ut iacluded m tbe rpecificatims

Level lhey.rsurigaedproarsandproductm&ls, r- @sople arcanpufm). 0rhai"enta-
tim &ail4 w h as mrrppine tbc agents ova organiza-

2-5

quantify the existing softwarr process and associated products. let
alone understand the impact of sp~~&cproccss methods. Thus, the
SEL staff initiated efforts to develop some means by which the
software process c d d be understood (through measu!=ment),
qualified. and meamably improved through continually expanding
understanding, experimentation, and process dinement.
This working relationship has beat maintained continually since its

nization. h general, these g d s have mahued rather than changed;

Undtrstd. Improve insight intothe softwa~~process and
its poducts by characterizing a production environment.
h u : Murmt the hprt thst avdlable technologies

gierPtbawfici.ltothecnvironmentand,mostimpo~t-
ly. how the tcchaol@es must be refined to best match the
proceuwiththsenvironmcnt

3. Pa&agt/Tnfure: Afkidentifjhgprocess improvements,
package the technology in a form that allowsit tobe applied

ThtJc g d arc .ddrersad q m t i a l l y , in an iterative fashion. as

inception with rclatively little change to the overall gods of the orga-

they afe as follows:

1.

2.
h.veoathcra4rwueprocesa D c t ~ w h i d r t c c h n o l *

intbeploQctiol lorg~on.

shown in F i p 4.

The v h taken to attaining tbese goals has been to apply
potentially beneficial techniques to tbe development of proaUctim
soflu" andto IDC.III~C theproous andproduct in cnougb detail

CQP, such as cost, diability, and/or maint.iolrbility, are defined as
the orjpnization dem"e3 . the major near- and long-term ob*
tivca for its software dcvclopment p m hppovemcnt program.

menc that is, it &tines the puriculardata to be captwed and the
questioar that must be addrrssed in each cxp&mcntal project.
All of the "rpcrimeatr conducted by the SEL have o c c d within
tbe pdnction cnvimnmcnt oftbe flight dynamics sahwart devel-
opment facility at NASA/GSFC. The SEL production ~~~Viron-
mcnt consists of projects that me c l d e d as midsized mftwarc
systans. Tbe average propa lasts 2 to 3- l/2 yezux. with an avenge
SM size of 15 software developers. The average software size is
175 thousand SOUICC lines of code (KSLOC), couoting comma-
t q . with about 25 percent reused from previous dcvelopmcnt

to gpmtithbly uaws the 8pplie.d tochodogy. Me;mrrer of cob

once ttlosc objectives arc known. the SEL ttrffdesips the cxpcri-

cffor~s. Virtually all projects in this envlmnment are aientiljc
ground-bed systems. although some embedded systems have
b u n developed. Most software is developed in FORTRAN. al-
though Ada is starting to be used more frequently. Other lan-
p a p , such as Pascal and Assembly, arc used occasiondy. Since
this enviroament is relatively consistent, it is conducive to the
experimentation process. In the SEL. there exists a homogeneous
class of software. a stable development environment. and a con-
trolled, consistent. management and development process.

3. SELOPERATIONS
Tht following threc major functional p u p s support the exper-
imentatim and sfudies within the SEL (Figure 5):

Software developers, who are responsible for producing
thc flight dynamics application softwprr
Software engineering analysts, who arc the researchers
responmble for carrying out the experimentation process
aod proaucing study results
Data base support staff, who arc responsible for collcct-
ing, checking. and archiving all of the information col-
lected from the development cffo~

D~ning tbe past 15 years. the SEL has cokcted and archived data
m over 100 rodtwve development projects in the oganization.
The dah me also used to build typical project profiles against
which ong&g projects can be compared and evaluated. 'he SEL
provides managus in this environment with tools (online and
ppa) for monitoring and Usessing project status.

?Lpicdly, thm arc 6 to 10projects sim- in progress in
the flight dynamics cnvironmcnt AS was mentioned earlitr, they
n r t ~ g c 175 BLOC, mging f" small (G 8 BLOC) to
(S 400 BLOC). with a few exceeding 1 million rolprr h e s of
code (MSLOC). Erb projuCt is considered an experiment within
the SEL, and the goid is to extract detailed information to un-
derstand the pmces better and to provide guidance to future

To s u p p i the studies and to support the g a l of c o n h d l y

SEL rcgullrfy colbcts detailed data fram its dcvelopnent pmjats.
Tbe types of data collected include cost (maswed in sort),
proae4 and e u c t data Process data bclude information .bout
&e project, mch as the methodology. tools and techniques used,
and hfonnation about PQSonnei nperitncc and W g . produa
data include size (in SLOC). change and m r information. and the
"Its of postdcvelopmcat static analysis of the dclivmd code.

Thc datnmaybe somewhat dil[ratnt from o m pmject to mother
since the gods for a particular experiment may be m e r e n t betwear
projects. Tbere is a basic set of infomation (such as effort and
error data) that is colleded for every project. Howevcr, as changec
am made to +c pmccssca (e.g., Ada projects), the detailed drtr
collected may be modified. For cxample. F i p 6 shows thc
standard error report fonn. used on all projects. and the m&ex
Ada version, used for projects wbae Ada is being studied

cenhal data bate. The analysts then use thwe data together witl
OLha infomation. such as subjective lessons lamed, to anaiyze t h 4
impact of a specific softwarc process and to measure and then fee

='data are used to build predictive models for future projects an.
to pruvide a rationale for refrning pa"lar softwprt ~UCCSSC

being used As the data are analyzed.papen andrepom ~ I C genu
ated that reflect results of the nmemus studies. Additionally, tb
results of the analysis arc padcaged as standards, policies. trPinin
materials. and management tools.

1.

2.

3.

e
iaar;lsingrrodastrndiagoftheooftwat.edcvelopmentproceu,the

AS tbe i n f ~ ~ ~ a t i ~ a is collcctd, it is quality 1 9 4 and win i

bpdr ~taulb to both ongoing pmjects and follow-m PIO~&S.

2-6

DEVELOPERS
(DEVELOP FLIGHT DYNAMICS s/w)

STAFF 275-300 (FTE')
TYPICAL PRWECT 150-200 KSLW
SIZE

ACTIVE PROJECTS 6-10
(AT ANY GIVEN TIME)

WOJECT STAFF 1525 PEOPLE
SIZE

RfFWEMENlSTO
DMLopMENTpAocEss

loo PROJECTS 19761992

SOFTWARE ANALYSTS
(STUDY PROCESS)

DEVELOPMENT MEASURES 1 FOREACHPRatECT STAFF 5-10 RESEARCHERS

19761992 250 EPORTSOOCUMENTS

FUNCTION - S E T G O A L Y O U E S T W
MRRlCS - DESlGNSTUDlESl

* ANALYSISRESEARCH - REFINE SW PROCESS

EXPERIMENTS

- PRODUCE REPORTS'
FINDINGS

QATA BASE SUPPORT (MAINTAMA SEL DATA)

I
STAFF 2-5 (FIE) I ELDATABASE

0

's

FORMS LlBRARY

*PROCESS FORMSDATA

* RECOWUAFCHNE DATA j
MAWAIN SEL DATA BASE
OPERATE SEL LIBRARY

P

In tba s u x d major stage &the arperiencc hctory, elements of the
pmcus (such as roffwue developnart techniques) me as-
sessed, and h evolving technologies arc t d o d to the partrculu

periment in which some software method is studied in detail.
Garerplly.thcsllbjaa ofthe audy is rspcci6c modi&&- to the
standard process, a process that obviously comprises numemus
 SO^" methods.

envimnment E.ch projsa in thc SEL ia Considered to be 8n ex-

2-7

2-8

' BY LIFE-CYCLE PHASE: BY ACTIVITY:

DEPENDENT REPORflNG
DATE PROGRAMMER

Flgprc 7. Mort DIstribntion

x ,
8 4

o o e r s e n t ~ ~ Y t h . 1 e x a n ~ t h e ~ t ~ ~ i n v o l v e r t h e

.ppliedOatbICCpropctlwithintheSEL,uchpmvidingdclitioarrl
clesnroan 10ftwac~odologp[9J. Thicmetfiodologyhubeca

insight into the Qeplroom pmcea and each dding lol~t elanart
of "t" to the mttbodology for this one ea-t.

he SEL trained teams in the methodology. then deiined a
modified set of Qu"-aptci6c data to be collected- l"
projects wcxc studiedin an attempt to assess the impact that Clezw
room had on the pzoccrr as well as on soch m-s as
prodocti* and ~f iabsty . EgIm 9 depictt cbe cIm" '&s d
the Clean" changes, .swell LI tbc rcIults of the t k c eXpai-
ments.

The Cleanroom expaimcatr included significant changes to the

teoaive tnining, pqmmtion, and careful exaxtion of the rtucfiu.

mdies (aa they ~ T C f a dl such cxpcrima~tr). and a c h included a
&scription of the pals. the qutsfianr that had to be addressed, and
the metrics that had to be collected to answer thc questions.

Since this methodology consistt of multiple spcci& methods (e+,
box st" derigo, Meal testing. ngorauinspationr), -h

Cleanroom methodology in gtmrrl. A. a result of the analysis.
ckan" has been uasscsred" as 8 bencficid approach for the
SEL (as measured by spacific goals of tbese studies), but apedk
elements of the full mctbodology had to be M o d to better fit the
parhdar SEL environment. The tailoring and modifying resulted
in a revised Cleanroan pnmss model, written in the fonn of a
PXQCCSS handbook [lo], for future applications to SEL projects

-dad SEL. devdopnat mctbodology, tbtnby requiring CX-

Detailed cqla5"~al p h r -re gcnartod for Uch of the

~ ~ a r ~ t h ~ ~ t o b e ~ a l O a g ~ ~ e ~ i n ~ ~ ~

That step is the "packaging" component of the experience factory
process
4.3. PACKAGING
The h a l stage of a complete experience factory is that of p s k -
aging. After beneficial methods and technologiu are identified, the
organization must provide fedback to ensuing projects by cap
tudng the process in the form of stadads, t d s . and training. Thc
SEL has pmduced a set of standards for its own use that reflect the
results of the studies i t has ccmductd. It is lrppPllent that such
standards must continually wobe to captum modified chamdcr-
iatics of tht pNnxss. (The SEL typicauy upda!es its basic SmIdaNi
mry 5 yurs) Examples of Jt.ndards that have bear produd as
put of tbe packaging process includc:

Manageri H d b d for sgtworr Development 1111
Raconvnrndrd Approoch to Sofhwm Development [12]

onc ddirionai example of an cxleruive p.clging effat. in tbe
SEL is a management tool called the Software h m t Envi-
" a t (SME). ThccaoccptsdtheS~ whicbisnow.rr open-
tional tool used locally in the Sm have evolved oyer 8 yean.
This tod a c m SEL project data, models. rtlntiondrips. iessoas

tuirtlcs to the manager of an ongoing project Thir allows the
managa to gain insight into the pws conrirteocy witb a devi-

'Ilks example of 'plck.gtrg" rr&d. the e"& that mud bo

lcmonsl~lefiwdmodelr.dgcacrrlondartPldiag, euily
rv.il.blstootbafollowroadmlapacntpropctrinaprticulata-

leuncd, and matk8gd mlm Of thmb to pltrmt p r o p C t C b -

ation hum tbc nonn for the eavirmment (Figurc lo>

placed OD making d s of softwan? projsctr, in tbc fonn of

m-i-
Thc tool~estheool lectroa ' o f 1 S ~ o f ~ u c h i V s d
iotbesBLtolclea.ppmprute * ,rimil.tpropad.ermtb.tMnrg

propctbuedon cherrulyledbidory ot rimilu roftwuo &orts.
As~e;xllaple.doftbearwchrrrteristicsoftbc~*dynmnicr

as can plm. monitor, @ct, and better understand the& awll

psojectr have d e d in the emr model depicted in Kgum 8,
w b e r e h i a t m y h u s h o w n t y p k d r d t w u e e m r ~ i n t b ~ ~
phases dthe Iife qck. Asnswprojccts me dmlaped md ermr
dseqanch 11c routinefy rqxntd and added to the sm data
kse, the manager can easily c m p a ~ ~ err01 mtes on his orberproj-
act with typical emor rata on completed, similnr pmjects

v t , p" i m y t , and ppcL.ging ~IC applic8blc
to all c " m c n t s .

5. ADAANALYSIS
A mom detailed cxampk of ooc technology that h u bat0 rtudied

Ada.

velopmmt proarr and h d 0rt.bliM nrly r e h i d p a , and
modelrthrtimpmvcdthemanrgubilityoftheproarr h h d b
Gnatuwditrpnmss by adding andre6ningtechniquerwithinb
@mdard methodoiogy. Redizing that Ada and objcct~ricnted
techniques OW p0tu1ti.l for major impnwmat in the flight

with Ada.
Tbe h t step was to set up ~g#aations and goals against wbicb
results would be The SEL's wclksbblisbed baadine
and set of measures pruvidd an exdent basb fa compuisOa.
ExpcdaUons included a change in the effort distribution of devel-
opntnt activities (e.& incre;rsed duign and deQused testi.g); no
grcatcrcost per new line of code, increased msc; dsclused mrrib
fenancc costs; and increpstddiddity (Le., lower ctror Xatu. fewer
interface e m . and fewer &sign errors).

obviauly. the dat. are cnvironmart dependensbut tbc CoDCcpEl d

in the SEL within tbe COnfeB of the C x p e r i M C c factory is that of
By 1985. thc SEL. had rbieved a good un- - gof

how Mdtwuc wudtvelopad in the FDD, it hdbadintdtbe da

dynamkrenvirmment , the SEL decided toplrrut Gxpaimcnt.riar

2-9

INSPECTIONS

5
AVERAGE NUMBER OF

REVIEWERS

AVERAGE
DURATW

EFFORT DISTRIBUTION
UPWARD TREND IN DESIGN X

4 0 1 I

DESIGN CODE TEST OTHER

SEL BASELINE
1ST EXPERIMENT

N 2 N D EXPERIMENT

ERRORS (PER K DLOC)

I 6.0

SEL 1ST 2ND
BASELINE CLEANROOM CLEANROOM

EXPERIMENT EXPERIMENT

TEST PROCESS
PER SUBSYSTEM

AVERAGE
BUILD SIZE 5500 LOC

UNCOVERING ERRORS
NO SIGNIFICANT DIFFERENCES

501
I -

40
-J

10

0
COMPUTA- DATA INITIAUZA- INTERFACE LOGIC

TION TlON
INSPECTIONS
TESTING

PRODUCTIVITY (DLOC PER DAY)

40

SEL 1 ST 2ND
BASELINE CLEANROOM CLEANROOM

EXPERIMENT EXPERIMENT

F¶gure 9. ClcrnroomAsscssmmtintbcSEL

2-10

Software Management Environment

EXPERIENCE BASE AUTOMATED TOOL (SME) MANAGEMENT AID

1. COMPARUEXPLNN
1

1. HISTORICAL DATA

[Fj DATA BASE

2. PROCESS MODELS

SME

3. KNOWLEDGE - LESSONS LEARNED - INTUITION

I a QRRENT PRQlECT
--L No. OF

ERRORS

I I

\

2-1 1

6 PROJECTS USING Ada AND OOD
100

decrcrstd a d is now well below the cost to deliver an equivalent

Reliability of Ada systems has also improved as the environment
has mrturtd Although the m o r rates for Ada systems, shown in
F i p 13. w ~ t signitkantly l o w from the start than th- for

tb hi& level of reuse in tbe later systems is a major contriitorto

FO" system (F i p 12).

F". they have continped to d4cnase even futtha Aglris

t h i s ~ y i m p v c d ~ .

Druing thiadyarpaiOd,theSELwent thnmgb v8riow lmls of
packaging b e AdJooD mdoddogy. On tbo eadiast Projea in
1985, whea OOD was sti l l vay young in the industry, the SEL
found it necessary to tailor and package their own G"l

in the flight dynamics cavironmcnt This document @ d u d in
1986) adjusted and extended the industry -dud for use io tbe
local environment In 1987. tbe SEL also developed an Ada Styk
Guide (141 that pmvided coding stadads for the local environ-

ited pmjsct-spi& b.ioing. c d t u t d the urty training io these
tschniques. The SEL rlso prodwed lessona-kar~~~d rtpom on the
A W D experiences. ncanmcnding r e h e n t s to the method-

Recently, because of the m t i m and appent benefit to the
ogpniutioa, A W D is being packaged as put of the baseline
SEL methodology. Tbc atmdprd methodology handbooks [ll, 121
i d n & Ada and OOD as mainstream methods. In addition. a cam-
pkte and highly tailored training pmpm is being developed that
taches Ada and OOD as an integrated part of the fight dyrmnks
envirwunent.

Although AnJooD wil l continue to be dined within the S w it
has progressed through all stages of the apuknce factuy. m o h g
h a candidate trial methodology to a fully intcpatcd and padr-
aged part of the standard methodology. Tbe SEL conaidus it base
lined and ready far furtha itmemental improvement

IMPLICATIONS FOR THE DEVELOPMENT ORGANI-

O b p c t - o d ~ t d D e v e l w t (GOOD) mdh&lw (13) for U&

ment. c0"ercl.l - A d a ~ g c o u n e s . ~ l ~ t e d w i t h i i m -

ology.

6.
ZATION

For 15 yurs. NASA hubem funding thc efforts to carry out

cant costs and a certain levd of overhead associpted with these ef-
forts; a logical question to ask is "Has there bccn significant b e n e
fit?" The historical information strongly supports a very positive
answer. Not only has the expcndittue of resources been a wise
investment for the NASA fight dynihcs en-ent. but mem-
ber~ of the SEL strongly believe that such efforts should be

e x p i m e d audicr within the S m There haw been Jignifi-

cosr TO DEVELOP
1.6 EFFORT PER OMLOPED STATEMENT

l., FORTRAN -
12 12

. 1 2 m a 1.1

COST 'TO DELIVER
EFFORT PER OEUYERED STATEMEW

I 1.0 1.0
1.0

E
e o - @

:
f..

0.4

02

0.0

FIgurc l2. CostsToDevelopmdDeUver

commonplace throughout both NASA and the software communit
in gcoeral. The benefits far outweigh the costs.

Since the SEL's inception in 1976, NASA has spent q q " a t e 1
$14 million dollus (coohact Npport) in the duee major suppu

ing studies and dyzing redts), technology (producin
standards and policies). and data proceasing (collecting forms an
maintaining data bases). Approximately 50 &-years of NAS
ptrso~el effort have. bem expended on the SEL. During this s m
period, tbe flight dynamics area has gptnt apmxbatdy $150 m'
lion m building apcrPtiood software, a l l of which has been part I

a r a a ~ b y t h t t y p c o f ~ ~ e n v i r o n m e n t : reseych(dtfir

the study process.

2-12

1

1 1

I 1
21

E l.

1.

rtntcmenl, ihs jrmprovanent is mr& but when it meesurcl

nificmt.
2. Reliabilitydthe~huimp~wcdby35pacalt. As

meaJuItd by the number of CPOIS per thousand lines of
code (WKSJBC), fight dynamics software hsr M p d
fnnn an avenge of 8.4 E/KsLoc in the eady 1980s to
approximately 5.3 E/KsM)c today. Tbese figures cover

cxy to g?cdons. Although opem~ons and m8bteoPllce
datnsnnotmdy soomsiveuthcdeveIopmentda@,the
small amount of data available indicates significant

OVenlu cort 8I.d pmddvity, the i"ent is rig-

the-phLICsthfo118h reoeptuIcet&ngand&&v-

improv-t in that arca 8s WelL
3. Theu- - * "OfsofrwuehmimproveddrPnut-

i d ly . fn the late 1970s and c d y tbe envhmcnt
expcncnccdwi&~onsin~vi ty ,rdinbi l i ty . aod
quality fnrm pjcct to project Today. however, the SEL
has excellent models of tbe procus; it has well-deiincd
methods. and managas rue M e r able to predid.
and manage the cost and quality of the softwan being
produced. This conclusion is substantiated by rtcent SEL
data that &ow a continually improving set of models for

planning. prediaing, and estimating all development
projects in the flight dynamics environment. Thex no
longer is the extreme uncertainty in estimating such
common parameters as cost, s t f i g , size. and reliability.
OthtrmePsurts include theeffort put forth in rcwodc (e.g..
changing and corrading) and in overall software rcusc.
Thczemeasu~dsoindicateasignifi~t improvement to
the software within this one environment.

4.

lo rdditim to the CO" mearrue~ Of mf- (e.&, COS and di-

-t" such - the SEL'S. Not only has the Under-
ability), t h e an many other major benefits derived fmm a "mea-

standing of ooftwnre significantly i m p r o d within the research
camnunily, but this mde-ding is apparent throughout the
mth &vdopcnt community within this cnvirornneat Not only
have the xwmdwsbenebted, but the deveiopm and maaagcfl
who haw kco expord to this e&ut am much bemr p q d to
plan, coatrd, and, in graenl, *lop much bigher quality
syxtemr Om view ofthisprognm i s that it is a nuj0r"training"
cxucise withia 8 large prododon envhnmcnl. and the 800 to
loo0 dmlq~n and mrnogen who have puticipted in develop
mmt effortr rhldicdby the SEL uz! much better trrriacd and effec-
tive rdrwue enginem. nis is dlw to thc extensive haining ard

n 4 l l v i n w
g t n a a l ~ d l & v e l o p m g e t f r o m t h e ~ ~ h e t T a t s C ~ t i n -

Jn coIIcIo.iQI. tb SELfuoctiars u an optIPtimd cxampk ofthe

m sstim 1 m r p to Ute ftnaiaarrl groups discussed

me2 is lralilrA by tbe SEI, data base md itr uchivcs of man-
rsrmaJmodeltmddaticnsbip8[16]. Theanalysisfuactionfrom
pislpe2 i s p u f d by tbe SEL team of oattanre engineedng
mdy- wbo m d p p a s s e s and- to understand tbs

r e h e the new technologier unda study. Fkdly, tbe synbair

pckaghg lltw pmocm and technology in 8 form t d o d qn-

syntbcrir, arpdmging, an the guideher. -dads. sod tools the

cxp"*frctorgcarapc 'Ibecanapuslmo&lforthesEL

l m d e r s E L a p e n e i m r i n ~ 3 . .raecxpkncebpreinFig-

enviroammt. tben plan 8I.d ex- expcrimentr to .sstBs .Dd

fl" O f t h e e x p c r i ~ b x y mapa to meSELb.ctiviriesin

Cifldy to rbe flight dynamics en- . Tbeproductrofthir

SPL PraQlea to infuse its findings b8ck into the proiect ag,
nimtioa lIbenplroduas an2 r h a ~ I i a l c c ~ ~ s of the expen-
aKxf.aorymodel.
Cmrrnt SEL duits an focostd on addrrssing two major questions.
The 6int is Wow long does it take for a new tcchndogy to mow
throagh dl the stages of the expcrhce f w T ' That is, fiom

g pad bwlining the c " t envirwoleot. througb
assessing the impacts of the t shudogy pad dining it. to pack-
rging the pnmsr 8nd infusing it into the proita orgmizdcm.
preliminup kndings h m SEL'r A& 8I.d Q-
ai- indicate a cyck of roughly 6 to 9]rurs. but further data
poiuts me needed. ' b e secmd question tbe SEL is pursuing is
Wow l a u p PO ogrniution c ~ l l adopt the e ~ r i a r c factory mod-
el?" " SELisintneatedinlcaming whatthe dleupissucs ue
when the acqx of the experience factory is adendad beymd 8
single environment. NASA is spoasoring m effoa to explorc tbe
infusion of SELUre implementations of the cxperimce factoy
concept YJOSS the entire Agency.
ACKNOWLEDGMENT
Matwid far this paper xcprcscnts wok not only of tbe antbors
listed, but of many other SEL staE membcn. Special a c k n d -
cdgment L #ven to Geny HcUcr of CSC, who played a key rok in
editing this PQPeL

REFERENCES
Numaws p.pcrs, reports, md d e s have bear genenrted oyer
the SEL's Isyear existence. A complete listing of t h u e caa be
found in the Annotated Bibliography of Software Engineering

2-13

Loboratory Literature. SEI-82-1006. L. MONS~CW~CZ and J. Vdctt,
November 1991.
This bibliography may be obtained by contacting:

ThCSELLibrUy

~rrcnbci~, m mn I
code552 -
NASAxiSPC

A listing of references Specific to this paper follows.
1. V. R B d , 'Towards a Mature MePIlurement EnvirWment:

Creating a Softwvt Engineering Research Envin"cn t , "b
cecdings of the Fifteenth Annual Softwatt. Engineering Work-
shop, NASGSFC. Greenbelt, Maryland, SEL-90-006, N e
vembcr 1990.

2 V.RBuili,"QuMtit.tiveEvpluofaSoftwucEnginsaing
M e t b o d o l o g y . " ~ . 8s Of the First PM PrifiC k p t C r
Ccmfcxcnce, Melboumc. A n d % September 1985.
V.R. B d and D. M. Weiss. "A Methodology for (Mlecthg
Valid Software Engineering Data," IEEE T m " s on
Software Engineering. November 1984. pp. 728-738.

4. V. R Basili,"SoftwarrDevelopnent: APanmiigmfortheFbhuc
(Keynote Address)." ' gs COMPSAC '89. <Mutdo,
F%xida, September 1989. pp. 471485.

5. V.R.BIsilimdH.D.RombPcL'lhiloringtbeSo~Rocers
to hjcct Goah and hvhnments." Proccedingr oftbe Ninth
Intemationd Carfatnce on So- EagiDeaing, Moabaey,

6. V.R.BasiiiandH.D.Ranbac4~TAMEProjecr:TawPb

actions 00 Solbare Engimering. V d 14. Na 6.. June 1988.

7. V.RBasili PndG. C a l d i c r a , " M ~ l ~ d d ~

3.

c.lifomh M d 30- A@ 2.1987, p ~ . 345-39.

bnprovcment-oriented Solhan3 ell^^"^^

pp. 758-773.

IssuuintbeExpcne~xFactory,"pIocseQl . g8oftbssixteenm
Annual sahwut E n m g W o ~ o p , NASmR2.
Greeabclt, M a r y l u r d , S o f t w p r c ~ ~ g L a b o ~ ~
I)ecembu 1991.
V. R Basili. G. Caldiem, and G. Cantane, "A Rdaenct
Architecture for the Component Fbctoq," ACM TrrngctioaS
on Software bginemhg and Methodology, V i . 1. No. 1.
Januay 1992. pp. 5-0.

8.

9. HD. Mills. M. Dyer. and RC. Linger. "Clcanroom Software
Engineering." IEEE Software, November 1990, pp. 19-24.

10. S. Green. Scftware Engineering Laboratory (SEL) Cleanroom
Process Madel. SEL91-004, November 1991.

11. L. Landis. F- E. McCany, S. Waligoxa. et al.. Manager's
Handbook for Software Development (Revision I) ,
SEL86101. November 1990.

1 2 F.E. McGarry. G. Page, S. %linger, et al.. Recommended
Appnwrch to Software Development. -81-205, Apd 1983.
Revision 3 inprepdon: schedukdforpublicatiarion June 1992.

13. E. Scidewitz and M. Stark, General ObJkct-Orieniui Software
Development. SEL86-002, August 1986.

14. E. Sdewi t z et d, A&@ StyZe Guide (Version 1.1).
SEL.47-002, May 1987.

Is. D. B o h d et rl. A Srudy on Sue and Reuse Trrndr in Attitude
G m d Support Systems (AGSSs) Developed fa he Flight
L$namics Division (FDD) (1976-1988). NASAJGSFC. CSc/
TM-89m31, pcbnury 1989.

16. W. Decker. R Hendrick, and J. Val- Sofh.mc Engineering
Labororay (Su) Relationships, hfodcls. and hfanagemenl
Rules, SEL-91401, February 1991.

2-14

SECTION 3 - SOFTWARE TOOLS

. ~~

SECTION 3-SOFIWARE TOOLS

The technical papers included in this section were originally prepared as indicated
below.

‘“lbwards Automated Support for Extraction of Reusable Components,” S.
K. AM-El-Hafiz, I% R. Basili, and G. Caldiera, Bvaedings of the IEEE Con-
ference on SoNare Maintenance, 1991 (CSM 91), October 1991

“Automated Support for Experience-Based Software Management,” J. D.
Valett, Proceedings of the Second Iwine Sojlwarr Symposium (ISS ’92), March
1992

3-1
100057Ei8L

Towards Automated Support for Extraction of Reusable
Components

S. K. Abd-El-Hafiz V. R. Basili G. Caldiera
Institute for Advanced Computer Studies,

Department of Computer Science,
University of Maryland, College Park, MD 20742, U.S.A.

Abstract

A cosi effective introduction of software reuse tech-
niques requires the reuse of etisting software devtloped
in many cases wiihoui aiming ai reusability. This pa-
p e r discusses the problems relaied io the analysis and
reengineering of ezisiing software in order io reuse i t .
We introduce a process model for componeni ettrac-
iion and focus on the problem of analyzing and qual-
ifying sobware components which are candidates for
reuse. A profoiype fool for supporting ihe edracf ion
of reusable componenis is presenied. One of ihe com-
ponenis of this tool aids in undersianding programs
and is based on ihe funciional model of correciness.
If can assist software engineers in the process of find-
ing correci formal specificaiions for programs. A de-
ta i led descripiion of ihis componeni and an ezample io
demonstrate a possible operafional scenano are given.

1 Introduction

Successful reuse of software resources can in-
crease the overall quality and productivity in software
projects by a large factor. Some of the problems that
still limit software reuse are:

1. The difficulty of understanding a given software
product in the absence of its original developers.

2. The scarce availability of reusable objects, even
though there is a tremendous amount of available
software.

3. The difficulty of retrieving, from a large data
base, software components which can best match
the given semantics requirements.

New process models for software development
should substitute the existing ones that are not de-
fined to benefit from or support reuse. These new
models should take advantage of reuse, introduce more
reusable resources, and overcome the existing prob-
lems that limit reuse.

Developing reusable components is generally more
expensive than developing specialized code, because
of the overhead of designing for reusability and main-
taining the component repository. A rich and well-
organized catalog of reusable components is the key
to a successful component repository and a long term
economic gain. Moreover, such a catalog will not be
available to an organization unless it can reuse the
same code it developed in the past. Mature applica-
tion domains, where most of the functions that need to
be used already exist in some form in earlier systems,
should provide enough components for code reuse. For
example, Lanergan and Grasso found rates of reuse of
about 60% in business applications[l). A technique
for extracting reusable components can improve p r e
ductivity since it provides the software developer with
components that are ready for reuse or need minor
adaptation. Moreover, it can improve the software
quality as it helps in better understanding these com-
ponents during the extraction process.

In this paper, we use a process model[2] that serves
not only to enhance the development of the project
under consideration but also to organize and plan for
better reuse technology in future projects. This model
splits the traditional life-cycle model into two separate
organizations, the project organization and the expe-
rience factory. In this framework we introduce a pro-
cess model for component extraction and focus on the
problem of qualifying candidate software components
for reuse.

4. The lack of extraction and adaptation techniques A prototype tool constituting one of the elements
of an integrated system for extracting reusable compo- that facilitate the reuse process.

1ooo6768L

nents is described. This prototype tool helps in under-
standing programs by deriving their specifications and
is based on the functional model of correctness[3, 41.
The tool could be applied ta program fragments as
well as to complete programs and it helps in simul-
taneously checking syntax, static semantics, and gen-
erating specifications. We conclude the paper with
an example to demonstrate a possible operational sce-
nario of the tool.

2 Organizing the component extrac-
tion

Currently, all reuse occurs in the project develop-
ment, where there is a completion deadline and the
top priority is to deliver the system on time. This
makes the objective of developing reusable software,
at best, a secondary concern. Besides, project person-
nel cannot recognize the pieces of software appropriate
for other projects.

We make use of a reuse-oriented model based on
two separat.e organizations[2]:

The project organization: Its goal is to deliver
the systems required by the customer. The pro-
cess model can be chosen based upon the charac-
teristics of the application domain, taking advan-
tage of prior software products and experience.

0 The experience factory: It supports project
development by analyzing and synthesizing all
kinds of experience, acting as a repository for such
experience, and supplying that experience to var-
ious projects on demand. Within the experience
factory, we can identify various sub-organizations.
One of them is the component factory which
develops reuable components. extracts reusable
components from existing systems, and general-
izes or remodels any previously produced compo-
nent.

Different conceptual architectures can be used for
the component factory[5]. At one extreme there is the
clustered architecture in which all software develop-
ment activities are concentrated in the project organi-
zation and the component factory is dedicated only to
processing already existing software. At the other es-
treme there is the detached architecture in which the
development activities are concentrated in the com-
ponent factory and the project organization performs
only high-level design and integration. The clustered

architecture is much closer to the way software is cur-
rently implemented. The development of the cornpe
nents is probably faster in the project organization
since there is less communication overhead and more
direct pressure for their delivery. On the other hand,
the components developed are more context depen-
dent. In the detached architecture, there is more em-
phasis on developing general purpose components in
order to serve several project organizations more ef-
ficiently. On the other hand, there are more chances
for bottlenecks and for periods of inactivity due to the
lack of requests from the projects. The detached ar-
chitecture is probably better suited for environments
where the practice of reuse is formalized and mature.
An organization that is just starting with reuse should
probably instantiate its component factory using the
clustered architecture and then, when it reaches a suf-
ficient level of maturity and improvement with this
architecture, start implementing the detached archi-
tecture in order to continue the improvement.

In any case, the extraction of reusable components
is a characteristic activity of the component factory.
The next section will present in detail the features of
this activity, in the framework of a component fac-
kory. Cddiera and Basili[G] have proposed a process
model for the extraction of reusable components in
two phases: the identification phase and the quali-
fication phase (see figure 1). The necessary human
intervention in the second pliase is the main reason
for splitting the process in two steps. The first phase,
which can be fully automated, reduces the amount of
expensive human analysis needed in the second phase
by limiting analysis only to components that really
look worth considering.

3 The extraction process

3.1 Identification

Program units are automatically extracted and
made to be independent compilation units. These in-
dependent units are measured according to observable
properties related to their potential for reuse in three
steps. These steps are summarized here:
1. Definition of the reusability attribute model:
A set of automatable measures that captures the char-
acteristics of potentially reusable components is de-
fined along with acceptable ranges of values for these
metrics.
2. Extract ion of components: Modular units (e.g.
C functions. Ada subprograms or blocks, or Fortran
subroutines) are extracted from existing software and

3-4

completed so that they have all the external references
needed to reuse them independently.
3. Application of the model: The current reusabil-
ity attribute model is applied to the extracted, com-
pleted components. Components whose measures are
within the model's range of acceptable values become
candidate reusable components to be analyzed in the
qualification phase.

A detailed description of the component identifica-
tion phase, a definition of a basic reusability attribute
model, and an application of this model on several
case studies using a computer-based 'system have al-
ready been discussed in the literature(61.

\Components I

Figure 1: Component extraction.

3.2 Qualification

The extracted components are analyzed in order
to understand them and record their meaning. The
components are packaged by associating with them a
reuse specification, a significant set of test cases, a set
of attributes based on a reuse classification scheme,
and a set of procedures for reusing the component.
This phase consists of following steps:
1. Formal specification: A precise description of
what the component does is generated and some as-
surance is obtained that the component meets the re-
quirements.

Since formal specifications are based on mathemat-
ical notations, they help in understanding the soft-
ware by removing the ambiguities which might be in-
troduced by any informal notation. Formal specifi-
cations are different from the programs they specify
since they only express the behavior of the program

without stating how the program derives this behav-
ior. So, formal specifications are the basis for selecting
and storing software components as they improve un-
derstandability and assist in producing more reliable
and higher quality software. Since the specification of
complex tasks may in itself be complex, the process
of specification construction must be formalized and
supported by automated tools. In the next section, we
will describe a prototype tool that aids in understand-
ing programs. This tool provides automated support
for deriving the functional specifications of programs
and proving their partial correctness. In other words,
it helps in proving that the program is consistent with
its specification but does not prove its termination.

Formally specifying a software component and
proving its partial correctness do not mean that the
component will pass this step. There are several other
properties that should exist in the candidate compo-
nents for the sake of understandability. We must not
ignore other important features such as proper docu-
mentation, use of meaningful variable names, and the
structured style of programming. The informal infor-
mation that the software engineer deals with cannot be
ignored relying on the fact that the automated spec-
ifications tools will supplement those features. The
informal information is important in explaining some
intuitive ideas that are hard to explain using formal
specifications.

Since we need both formal and informal informa-
tion, a domain expert is needed to perform the specifi-
cation step. This expert extracts the formal specifica-
tion of each candidate reusable component, assisted by
the automated tools available, and examines the other
informal features that cannot be judged using auto-
mated tools. Components that are not relevant, not
correct, or whose functional specification is not easy
to extract are discarded. The expert reports reasons
for discarding candidates and other insights that will
he used to improve the reusability attributes model.
2. Testing: Test cases are generated, executed and
associated with components. Deriving the functional
specification and proving the correctness of a pro-
gram do not mean that it will not fail when compiled
and/or executed. This might simply be due to the
fact tliat termination of the program has not been
proven. Moreover, in most verification and specifica-
tion systems, arithmetic operations ignore things such
as overflow, underflow, and round-off errors.

Testing can take advantage of tlie functional spec-
ification generated by performing functional testing.
Also, structural testing can be done using a cover-
age analyzer. If , as is likely, the component needs a

3-5

‘wrapping’ to be executed, the testing step generates
this wrapping. If a component passes the testing then
test cases, wrapping, and test results are stored in the
component repository. Components that do not sat-
isfy the test are discarded. Again, the reasons for dis-
carding candidates are recorded and used to improve
the reusability attributes model and possibly the pro-
cess for extracting the functional specification. This
is most likely the last step at which a component will
be discarded.
3. Packaging: The extracted candidates are stored
in the component repository along with their func-
tional specifications and test cases. The component
repository is actually a data base of experience in
which information on software products, processes,
and measures of aspects of them is stored. That is
why we organize this data base by classifying both the
reusable components and their development histories
according to several domain dependent criteria.

Information for the future reuser is provided in a
manual that contains a description of the component’s
function and interfaces as identified during generation
of its functional specification, directions on how to in-
stall and use it, information about its procurement
and support. and information for component mainte-
nance.

At the end of each process cycle the reusability at-
tribute model is updated by drawing on information
from the qualification phase to add more measures,
modify or remove measures that proved iceffective, or
alter the range of acceptable values. This step requires
analysis and possibly even further experimentation.
The taxonomy is updated by adding new attributes
or modifying the existing ones according to problems
reported by the experts who classify the components.

4 The CARE system

4.1 Overview

The CARE(G] system(CARE’ : Computer Aided
Reuse Engineering) has been designed to support the
proposed process model for estracting reusable com-
ponents. A s shown in figure 2, it consists of two main
subparts: the component identifier and the component
qualifier. The component identifier consists of the
model editor. which helps in defining and modifying
the reusability attributes model, and’ the component
extractor which applies such model to the programs.

’The CARE system is under development at the Computer
Science Department of the University of Maryland

The component qualifier consists of the specifier, the
tester, and the packager. The current version of the
CARE system consists of the component extractor and
the specifier. It runs on a Sun Workstation and sup-
ports ANSI C and Ada. In the rest of this section we
focus on the description of the specifier.

s m a m
MODEL EDITOR

2.2
TerreR

1.2

2.3
PACKAGER

EXTRACrOR

COMPoNEhS
REWSlTORY

Figure 2: CARE system architecture.

4.2 The component specification tool

The prototype specifier included in the CARE tool
is the second in a series of prototype tools developed at
the Computer Science Department of the University of
Maryland under the general name FSQ, for Functional
Specification Qualifier. This prototype supports the
derivation of programs specifications and the verifica-
tion of whether or not the programs meet those spec-
ifications. It does not only help to specify and check
the partial correctness of finished programs, but it also
works on unfinished programs and program fragments.
I t is a program understanding tool that is based on
a formal specification technique. CARE-FSQ2 uses
Mills’ functional model of correctness[3, 41 in order to
derive the specifications. This model requires the user
to provide only the loop function and then a teclinique
is provided to derive the program specification. Other
techniques(7, 81 require the user to provide an entry as-
sertion, an exit assertion, and a loop assertion. Those
techniques are more useful in verifying that the pro-
gram is consistent with its specification. The process
of deriving specifications helps more in understanding
the software. Moreover, the functional method pro-

vides simple and intuitive notations that can be easily
understood.

The CARE-FSQz prototype helps in checking syn-
tax, static semantics, and generating specifications at
the same time. CARE-FSQ2 also provides the capa-
bility of carrying out some algebraic simplifications
and enables the user to make use of some well defined
mathematical functions in the specification of the loop
function.

4.2.1 Formal foundation: Each statement S is
given a meaning as a function from a program state
to another state. A state is a mapping from the vari-
able names to their current values. The square bracket
notation is used to denote the function represented by
the program construct contained inside the brackets,
i.e. [SI represents the function computed by the state-
ment s. We use four basic structures[3, 4):
1. Assignment

a variable and e is an expression, is:
The meaning of the assignment u := e, where u is

We can define the meaning of variables and expres-
sions as a mapping from a state to a value.
2. Comnosition

position, we have:
If A and B are statements and o is functional com-

[A ; B] = [.4] 0 [B]

3. Alternation

[if B then S f i] = {(U, [qU) : [B](U) = irue}U
{ (U , U) : [B] (U) = false}

[i f B then SI else S2 fi] = {(U, [Sl]U) : [B] (U)
= true} u (11, [S?]U) : [B](U) = false}

4. Iteration

(while B do S 04 = { (T . U) : 3k 2 0 : YO 5 i < k (
((B] ([S] ' (T)) = true A [B]((Slk(T)) = false
A [SI"T) = U))

In other words. the loop function is undefined for a
state T unless there is a natural number k which de-
notes the number of iterations after which the test first
fails. T is then transformed to the k-fold composition
of S on T. In order to carry out practical proofs, the

following characterizing theorem is neededI9).
Theorem

Then f = [W] if and only if
Let W be the program fragment while B do S od,

1. d o m a i n (f) = domnin((W1)

2. ([B] (T) = false) e f (T) = T
3. f = [if B then S fi] o f
This theorem provides a method for deriving the

correct loop function f:

1. Guess or work out a trial function f.

2. Use the three conditions of the theorem to check
that the trial function is correct.

A trace table can be used to organize the derivation
of program meanings (by a symbolic execution of the
program)[4, 91.

The strength and weakness of the functional
method, in comparison with other specification tech-
niques, originate from the fact that even though exact
functions state accurately the meaning of a loop, they
are harder to work with than the weak assertions that
suffice when there is a loop initialization providing a
precondition.

4.2.2 The implementation: CARE-FSQ:, is im-
plemented using the Synthesizer Generator[101 and
Maple, an interactive algebraic symbolic executor(l11.
An overview of the tool is shown in figure 3. The
Synthesizer Generator requires as an input a descrip-
tion of an attribute grammar and generates from it
a hybrid language-based editor that allows a combi-
nation of text editing and structure editing. As the
user edits program text and annotations, the system
creates and edits abstract syntax trees that represent
pieces of programs and their specifications. The at-
tributes of the nodes of this tree carry information
about the static semantics of the program as well as
its specifications, and they are evaluated incremen-
tally. The basic feature of Maple is its ability to sim-
plify expressions involving unevaluated elements. As
each complete statement is entered by the user, it is
evaluated and the results are printed on the output
device. Maple enables carrying out algebraic simpli-
fications during the synibolic execution. In order to
overcome the limitations of Maple in the evaluation
of boolean expressions, CAREFSQz has an interac-
tive feature that allows the user, before writing the
specifications, to simplify boolean expressions and the
expressions containing array notations.

3-7

abstraction helps in making the specification process
more general and easier. The following seven opera-
tions are defined for atomic and stream ports:

Language
Based Editor

Figure 3: Overview of CARE-FSQz.

In a typical CARE-FSQ2 session, the user derives
the specifications of the program using step-wise ab-
stractions. In other words, the user starts by trying to
find the correct specification of every loop in the pro-
gram as a separate entity. After succeeding in this,
the correct specification of the whole program can be
found. This methodology of step-wise abstraction en-
abies the software engineer to concentrate on small
pieces of code, one at a time, and to mitigate in this
way the difficulty of specifying the whole program.

Currently, CARE-FSQ2 supports a subset of Ada
with modifications on the input/output mechanism.
The data types supported are integer, boolean, char-
acter, a restricted form of floating point, constrained
arrays, and user defined data types. The basic control
structures of Ada are supported except unconditional
‘go to.’ statements, and case statements. Static se-
mantic checking is also included. A brief description
of the input/output mechanism and the specification
language is given in the rest of this subsection.

Input and output is done through atomic and
stream ports(l21. A subprogram, called an elementary
process, accepts input data from input ports, performs
computation specified with ail Ada-like notation. and
returns results through output ports. The input and
output of single data items can be carried out through
atomic ports. Stream ports are used as schemes for
data types whose elements can be accessed in a linear
order. The stream ports of one process can be bound
to particular data types to produce the implementa-
tion. Input’ and output ports can be bound to files
to communicate with the system. This form of data

1. Receive(p): To Receive a value via the input port
p from the source associated with the port.

2. Send(p): To Send a value via the output port p
to the destination associated with the port.

3. Initialize(p): To open the stream associated with
the stream port p for reading.

4. Receive(p, u) : To receive a value into a variable
u from the stream associated with the input port
P .

5 . Send(p, u) : To send the value of variable t, to the
stream associated with the output port p .

6. isEOS(p): A boolean function to check if end of
stream is reached in the input stream port p .

7. Finalize(p): To close the stream associated with
the port p. The effect of finalization for an output
stream port is that the function isEOS becomes
true at the consumer process.

The specifications for CARE-FSQ? are written us-
ing guarded command sets whose syntax is:

< guarded command set > ::=
< guarded command >
{ I c guarded command >}

< guarded command > ::=
< boolean expr > -
< concurrent assignment >

< concurrent assignment > ::=
< var > := < e t p r > I < var > ,
< concurrent assignment > , < expr >

A concurrent assignment is an extension of the assign-
ment statement where a number of different variables
can be substituted simultaneously. The concurrent
assignment statement is denoted by a list of differ-
ent variables to be substituted at the left hand side
of the assignment operator and an equally long list of
expressions as its right hand side. The ith variable
from the left hand list is to be replaced by the ith ex-
pression from the right hand list. The expressions can
include calls to some mathematical functions such as
min, mas, product, sum, factorial, igcd (greatest com-
mon divisor), irem (remainder), and iquo (quotient).

3-8
1ooo57Wl

An array is considered to be a partial functio? from
subscript values to the type of array elements. The
command a(i) := e assigns a new function to a, a
function that is the same as the old one except that at
the argument i i t s value is e. The notation (a, i, e) is
used to denote the array that is the same as a except
when applied to the value i yields e. The notation
(a,indez = m..n,e) is used to denote the array that
is the same as u except when applied to index values
between m and n, i.e. m 5 indez 5 n, it yields e. The
expression e can be a function of the bound variable
indez. To make the two notations consistent, (a, i , e)
is written (a,indez = i , e) where indez is a bound
variable. The notation defined for arrays are used for
stream ports as well. A stream port is treated as an
array whose subscript is of type integer with the first
element subscript being one.

-

--. .
y1 : -y ;
{me ->xl.yl :-idn(xl.yl).min(xI.yl))

Wwle x 1 /- yl loop
i r x i > y 1 rhen

Xl :-x1- 1;
el.=

end I f ;
yl :-y1- 1;

emd loop;
b :- 1;
8 :-x1;
C m > 0 -5 a. b :-0, b * h c % o r l d (m)
I e-0 -> I)

vrmla m > 0 loop

end loop;

b :- b - 8;
m :- m - 1;

z :- b;
ScndCz);

Figure 4: The program to be specified.

4.2.3 Example: We describe a short example, due
to the space limitation, to demonstrate a sample re-
sul t obtained using CAREFSQ?. In order to find the
correct specification of a while loop, the user should
annotate it with a trial loop function enclosed between
two curly braces. CARE-FSQ? assists the user in ver-
ifying the correctness of the loop specification by cal-
culating the composition [if ' B then S fi] o f. The
user, on the other hand. must ensure that the three
while loop verification conditions are satisfied. After
verifying all the wiiile loops in the program. the user

expr : (xi-yl < 0 or yl-xl < 0) and yl-xl < 0
Uould you like t o sinplify th is expression? Cy/nl: y
Enter t h e simplified expression: y1 < xl
sxpr : (xlyl < 0 or yl-xl < 0) and not yl-xi < 0
Uould you like to shplify this expression? Cy/nl: y
Enter the sinplified expression: yl > xi
sxpc : not (xl-yi < 0 or yl-xl < 0)
b l d
Entar the sinplified expratsion: yl = x i

like to sinplify this expression? Ly/nl: y

The SrJnbOlic execution result is :
----72='=----z-=5

yl < xl ->
xi, gl :=
mirdxl-Lyl). nin<xl-l.yl)

I

yl > xl ->
xl, yl :=
nin(xl,yi-l), nin<xl.yl-1)

I

y l = xi ->
wi, yl :=
m i d xi. 81) , min(x1,yl)

Figure 5: Finding the specification of the first loop.

sxpr : -a < 0 d - a 4 < 0
Would you like to simplify this expression? ty/nI: y
Enter the simplified expression: a > 1

Would y w like to simplify this expression? Cy/nl: y
Enter the simplified expression: a = 1
expr : not -a < 0 and 8 <= 0
Uarld yau like to simplify this expression? Cy/nl: y
Enter the siwlified expression: a <= 0

G X W : -8 < 0 8 d 8-1 <= 0

Figure 6 : Finding the specification of the second loop.

can proceed to find the functional meaning of the
whole program.

Figure 4 shows a program that receives two integers
as input , finds their minimum, calculates its factorial

.

3-9

if it is positive, and then saves the result in z. First,
the verification ronditions of the two while loop have
to be checked. Hence, we let CAREFSQz print the
composition [if B then S fi] o f to assist us in this
process. Before printing the results of the composi-
tion, the user is prompted to enter his simplifications
for some expressions if he/she desires(see figures 5 and

Since the three verification conditions are satisfied
for both loops, we can therefore proceed to find the
functional meaning of the whole program which is
shown in figure 7.

-

6).

Figure 7: Specification of the whole program.

5 Conclusion

In this paper, we have presented a process model
for extracting reusable components. It first identifies
these components using software metrics, then it qual-
ifies them. We have focused on the qualification phase
which generates their formal specifications, generates
a significant set of test cases, and packages them for
future reuse. We have then described the specifica-
tion tool of the qualification phase, CARE-FSQ2, that
helps in understanding programs by generating their
correct formal specifications. Further research needs
to be done in order to be able to qualify and tailor
large programs for reuse.

A c k n o w l e d g e m e n t

Research for this study was supported in part by
NASA (Grant NSG-5123), ONR (Grant N00014-87-
k-0307), and Italsiel S . p . X . (IAP Grant).

References

(21 V. R. Basili, ”Software Development: A
Paradigm for the Future”, Proc. Compsac’89,
IEEE Computer SOC. Press, Los Alamitos, Calif.,
Order No. 1964, pp. 471-485.

[3] H. D. Mills, ”The New Math of Computer Pro-
gramming”, Communications of ACM, vol. 18,
no. 1, Jan. 1975, pp. 43-48.

[4] J . D. Gannon, R. B. Hamlet and H. D. Mills,
”Theory of Modules”, IEEE ‘12ans. on Software
Engineering, vol. SE-13, no. 7, July 1987, pp. 820-
829.

[5] V. R. Basili, G. Caldiera, G. Cantone, “A Ref-
erence Architecture for the Component Factory”,
Technical Report CS-TR-2607, Institute for Ad-
vanced Computer Studies and Dept. of Computer
Science, Univ. of Maryland, College Park, MD
20742, March 1991.

[6] G. Caldiera and V. R. Basili, ”Identifying
and Qualifying Reusable Software Components”,
IEEE Computer, Feb. 1991, pp. 61-70.

(71 C. A. R. Hoare, “An Axiomatic Basis for Com-
puter Programming”, Communications of ACM,
vol. 12, no. 10, Oct. 1969, pp. 576-580, 583.

[8] E. W. Dijkstra, ” A Discipline of Programming”,
Prentice Hall, 1976.

[9] H. D. Mills, V. R. Basili, J . D. Gannon, and R. G.
Hamlet, “Principles of Computer Programming:
A Mathematical Approach”, Boston, MA, Allyn
and Bacon, 1987.

(lo] T. W. Reps and T. Teitelbaum, The Synthesizer
Generator Reference Manual, Springer-Verlag,
1989.

[l l] B. W. Char et al, Maple User’s Guide, Watcom
Publication Limited, Waterloo, Ontario, 1985.

[12] B. Joo, ”Adaptation and Composition of Pro-
gram Components”, Ph.D. Dissertation, Dept. of
Computer Science, Univ. of Maryland, College
Park, Maryland, 1990.

[l] R. G. Lanergaii and C. A. Grasso, ”Software En-
gineering with Reusable Design and Code”, IEEE
Trans. on Software Engineering, vol. SE-10, no. 5,
Sept. 1984, pp. 498-501.

3-10

Automated Support for Experience-Based Software Management /’- (3 IVgcf3- 1 : -: ,,i 0 1$ 4 Jon D. Valett

NASA/Goddard Space Flight Center
Software Engineering Branch Code 552

Greenbelt, MD 20771
internet jvalett@gsfcmail.nasa.gov

phone: (301) 286-6564
FAX: (301) 286-9183

Abstract

To effectively manage a software development project, the software manager must have ac-
cess to key information concerning a project’s status. This information includes not only data
relating to the project of interest, but also, the experience of past development efforts within the
environment. This paper describes the concepts and functionality of a software management tool
designed to provide this infomation. This tool, called the Software Management Environment
(SME), enables the software manager to compare an ongoing development effort with previous
efforts and with models of the “typical” project within the environment, to predict future project
status, to analyze a project’s strengths and weaknesses, and to assess the project’s quality. In
order to provide these functions the tool utilizes a vast corporate memory that includes a data
base of software memcs, a set of models and relationships that describe the software develop-
ment environment, and a set of rules that capture other knowledge and experience of software
managers within the environment. Integrating these major concepts into one software manage-
ment tool, the SME is a model of the type of management tool needed for all software develop-
men t organization s.

Keywords: software management, measurement, reuse of experience, management tools

1.0 Background

Good software management is generally viewed as a critical ingredient in successful soft-

ware projects. One key aspect of good management is having access to the data that are neces-

sary to understand the strengths and weaknesses of an ongoing development effort. To provide

such access, a myriad of management-oriented tools have been developed. These tools typically

allow the software manager to perform cost and size estimation, to plan a development project,

to set up work-breakdown structures, and to provide other planning needs. Such tools are cer-

tainly useful, yet they do not provide the full scope of functionality required for a manager to ef-

fectively evaluate a software project.

Ideally, an experience-based software management tool would enable a manager to observe

3-11
1WO6788L

mailto:jvalett@gsfcmail.nasa.gov

a project’s progress, to compare that progress with other projects or with a madel of how a

project “normally” behaves, to predict key projtct parameters such as Size, completion date, or

m r s , to assess the project’s progress pointing out its strengths and wcahesses, and to analyze

the quality of the software project and the software product. In order to provide this

functionality, the tool would require access to key data relating to a project’s status and to the

past experience necessary to understand and manage the ongoing project. Included in this

knowledge and experience is a data base of software metrics, a set of models of a development

environment, a set of management rules that provide insight into a project’s strengths and weak-

nesses, a set of quality definitions, and a set of relationships that help to define an environment’s

characteristics. Such a management tool would integrate this experience into a single environ-

ment providing the functionality required to actively monitor a software project.

A working model of the management tool described above is being developed within the

Software Engineering Laboratory (SEL) at NASA’s Goddard Space Flight Center (GSFC). This

tool, called the Software Management Environment (SME) uses software measurement and the

experience acquired fiom software measurement as its basis. Other tools either are being or have

been developed that utilize measuxement as a major component. These tools include TAME [11,

Amadeus[2], and GINGER[% SME is a unique experience-based tool because it focuses on

utilizing the measurement and the experience of a measurement program to automate support for

project managers in actually monitoring the progress of their projects. While the SME has been

constructed for a specific development environment, the concepts, architecture, and functionality

of the tool, which are described in this paper, are general enough for any organization to build a

similar tool. This paper will discuss the management activities that the SME addresses, the

components needed to build an SME, and how these components are integrated to provide the

management functions described.

342

2.0 Management Activities

In order for the SME to be an effective tool, it must automate key management functions.

While the current SME is not comprehensive in its coverage of all management functions, it does

provide support for many important aspects of software management. The SME utilizes a

measurement-based approach to software management. Within this approach reusing

management experience is viewed as an important aspect of the management process. This

experience-based approach to management includes the following activities:

Observation and Comparison: The manager monitors the progress of a project by examining

key project measures such as effort, size, and errors. The manager compares the status of the

current project with past projects and with models of these measures that represent the nominal

case within the environment. By observing and coniparing, the manager is able to determine the

current project's status and the differences between the current project and the normal project

within the environment.

Prediction and Estimation: The manager estimates key project parameters such as project cost

and size. The manager also, uses various models and relationships to continually update these

predictions. These activities allow the manager to determine at-completion values for important

measures and to estimate project schedule.

Analysis: Based on the measurement data, past project experience, and subjective information

about a project, the manager identifies potential project problems.

Assessment: Using available measurement data and definitions of project quality, the manager

assesses the overall quality of the ongoing project. For example, these quality assessments

provide the manager with an idea of the project's maintainability, correctability, and stability.

A software am1 should only attempt to avtomatc aspects of a process that axe understood

well enough to perform manually; in the case of SME, all of the activities described above are

carried out on projects within this development environment In fact, such activities an part of

the n d management process. The SME integrates data and expcriensc into one tool that

provides managers with functions that help them to perform these activities.

3.0 The Software Management Environment (SME)

The Software Engineering Laboratory (SEL) has actively been developing the management

concepts that are the basis for the SME for the past 15 years. A prototype of the tcwl was devel-

ogm'. between 1984 and 1987; this prototype provided a set of recommendations rkr developing

an accrlal version of the tool.[41 This set of recommendations was then incorporated into ihe ac-

:ad development of the SME, which began in 1987. The remainder of this section will discuss

*,e SEL and the concepts that are the underlying ideas fcr the SME.

3.1 The Software EngineerihgLaboratory

The SEL was established in 1976 and has three primary organizational members:

NASNGSFC, Software Engineering Branch; The University of Maryland, Computer Science

Department; and The Computer Sciences Corporation, Software Engineering Operation. The

goals of the SEL are (1) to understand the software development process in the GSFC environ-

ment; (2) to measure the effEcts of various methodologies, tools, and models on this process; and

(3) to identify and then LCI apply successful development practices.[S] During the SEL's 15 years

it has collected data on over 100 software development projects. These data include such items

as software development effort, software size, erwr data, change data, and computer utilization

data and are stored in a lilrgc repository called the SEL data base.[6] This data base has been

3-14
1-

used throughout the past 15 years to help the SEL to accomplish its three objectives. In the pro-

cess of studying and measuring this particular development environment the SEL has produced

numerous reports and papers which characterize this environment, evaluate various tools and

methods, and capture experience and lessons learned in various software development efforts.

(For a complete list of SEL documents and reports see the "Annotated Bibliography of Software

Engineering Litemture".[71)

Throughout the SEL's history, this software measurement program has been used extensive-

ly in the management of actual software projects. Such use of measurement data is common

among companies that have instituted measurement programs (eg. reference [SI). As this use of

measurement as a management tool evolved, the SEL began attempts to automate the process.

Such automation is only possible through a comprehensive understanding of how to use software

measurement data within a particular development environment. Within the SEL environment,

software managers use not only the data collected on their current project, but also, the

information and experience from past projects. The studies and reports characterizing the

environment provide the manager with profiles of how particular measms behave, numerous

relationships for estimation and prediction of such measures, and lessons learned concerning

how to analyze measurement data. Automating the access to this vast corporate resource is the

goal of the SME.

3.2 SME Concepts

Understanding the SME requires a firm understanding of the three major components that

are the basis for the tool. The first is the SEL data base, it provides the historical data of past

projects, as well as the dynamic data on projects that are currently being managed. The second,

is a set of models and relationships that describe the development environment. These models

and relationships provide the profile of a normal project, as well as the necessary information to

predict and estimate key project parameters. Finally, experienced software managers analyze

3-15
lOoo5T88L

measunment data to determine a project's strengths and weaknesses. The knowledge required to

perform this analysis is captured in management rules that provide the expert analysis portion of

the SME. These thrte SME concepts provide the experience base needed for an organization to

construct an SME-like tool.

An important aspect of these SME concepts is that the experience they represent continually

evolves as the development environment and process changes. The SME packages the current

level of experience; as it changes, the experience base is refined to reflect these changes. The

representation of the experience, however, does not change. Therefore, the key aspect of the

SME, from the perspective of someone who wishes to build a similar tool, is the concepts and

the architecture of those concepts, not the experience itself.

Software Mea suremen t D a

Measurement of the software development process and its products is a necessary compo-

nent of successful software management. Within the SME, data from the SEL data base is uti-

lized to provide the underlying measurement data. The SEL data base captures information on
*

all software projects within one particular development environment. This data includes such

items as the weekly effort expended on a project, the size of the ongoing software project (in

both lines of code and number of modules), the amount of computer utilization on a project, and

the number of emrs uncovered as well as the number of changes made to the source code. In

addition to these basic measures, the SEL data base contains data on such items as number of

modules designed, number of open problem reports, and the amount of time spent uncovering

and repairing errors. While these lists of data are not complete, they do provide a snapshot of the

types of data available to the SME.

The SME uses the data from the SEL data base as a basis for all of its analysis, comparison,

prediction and assessment. The data provide the information that characterize and describe the

current software development project as well as past projects of interest. Having access to so

much descriptive data allows the SME to provide its wide range of functionality. Thus, software

3-16
1ooo5786L

meas”ent is the backbone of the SME. Measurement provides the basis for all other SME

concepts; neither the management rules nor the models and relationships would be possible

without it.

The second component of the SME is the models and relationships that represent the soft-

ware development process and its products. The models and relationships used within the SME

and presented within this paper are derived from numerous previous SEL reports and studies. A

summary of the types of models and relationships used can be found in the document “The

Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules”.[9]

The term model is used to describe a pattern of how some measure or combination of

measures normally behaves within a software development environment. Measurement models

have been described in numerous SEL reports and papers, but they have generally all been

developed using similar methods. Typically, a model for some particular measure is developed

by examining the data for that measure over a set of similar projects. The data is then combined,

usually using some type of averaging, to develop a model of the “normal” project. Since even

within one environment all projects may not be homogeneous, different models for the same

measure are developed for significantly different project types. Within the SME, there are

currently two different modcl types, depending on the development mcthodology used on the

projects. Other models may need to be developed depending on such parameters as project type,

programming language, or development environment. Deciding what different factors constitute

a distinct model type is an important research component of developing an SME. Certainly, each

individual project is distinct, but usually projects within a development environment have many

similarities that result in reasonable models.

.

As an example of a model that is used by SME, Figure 1 shows how source code grows

within the SEL environment. (For the purposes of this paper, there is no need to distinguish

between various model types.) It provides a representation of the typical growth of the number

of source lines of code within a project’s controlled library. The wide band indicates a range of

what is considered to be “normal” source code growth. (In this case the range is one standard

deviation on either side of the actual model.) As another example, figure 2 is the model of error

rate for the SEL environment. This model shows the typical errors uncovered and repaired per

line of code within the environment throughout a project’s lifetime. Again, the band represents a

range over which the error rate is considered “normal.” (In both Figuns 1 and 2, lines of code is

defined as physical lines including commentary and blank lines. In Figure 2, error is defined as a

conceptual error in the software.) Another kind of model used within the SME is of the amount

of time spent in each phase of a project. This model is depicted in Figure 3; it provides a mecha-

nism for determining how much calendar time a project normally spends in each phase of the

software development life cycle.

Relationships, on the other hand, provide the SME with a way to estimate critical project

factors based on other estimates, or current status. Relationships are typically developed by

using numerous software development projects’ data to determine if any correlation exists

between various measures. Normally, such data analysis is done to test hypotheses that certain

relationships exist between such measures.

As an example, within the SEL environment, a relationship has been found between lines of

code and the actual durarion of a project. This relationship is shown as the equation:

D = 5.450 * L ** 0.203
where,

D is the duration of the project in months (from project start through acceptance test), and

L is the total delivered lines of code in thousands.

Such a relationship allows a manager to estimate the length of a project based on an estimate of

the number of lines of code for that project. Other relationships have been established between

computer use and lines of code, effort and number of modules, etc. Such relationships provide a

software manager both a mechanism for estimating various parameters and a consistency check

for sets of estimates.

3-18

w
0
8

100.

73.

50.

25

m w

.....................................

.....................................

.....................................

.....................................

Schedule

100. ox

Figure 1: Modal of Source Coda G r o w t h

.................... I

.......................

.......................

Schedule

Figure 2: b b d e l of Errors/Line of C o b

3-19

-
Capturing how experienced softwaxe managers use and evaluate measmment data has been

investigated by the SEL.[lO] These studies show that using expert systems techniques for the

capture and use of this experience is feasible in this domain. This knowledge about software

measurement has been published in numerous SEL reports and it provides a foundation for creat-

ing an experience base for utilizing software measures in management[9] The concept of these

software management rules is that interviewing software managers and capturing how they inter-

pret certain conditions of a project provides reusable knowledge concerning the strengths and

weaknesses of a project. These interpretations are then combined into specific management rules

that describe the possible explanations for certain conditions. For example, figure 4 shows a

graphic of a simple management rule. This figure shows how one might interpret a deviation

from the normal pattern of computer use per line of source code (again represented as a model

similar to those described in the previous section). For example, early in the project if the num-

ber of CPU hours per line of code is above normal one possible interpretation is that the design

was not actually complete. Later in a project, if the measure is below normal, the possible expla-

nations might be either low productivity, or insufficient testing. Such a figure provides a simple

representation of a management rule.

Actually, a number of simple management rules can be combined to form rules that describe

the possibilities that certain explanations are true. For example, a rule such as

If the number of programmer hours per software change is above normal and

the project is early in the code phase then possible explanations are

Good solid, reliable code (05)

Poor testing (02s)

Changes are hard to isolate (025)

Changes are difficult to make (0.25).

describes the possible explanations for a certain condition. This rule uses numbers to show the

3-20
1oomTBBL

- t Cod. Sy8tmm t T o s t Acaaptura \ T a s t
30% 20% 155

t
h8ip
35%

Figure 3: Modal of P r o j e c t Sahedule

o.ooi0

0.0008

0.0005

0.0003

DES ON RCCTE I I

0.0008

Schedule

Figure 4 : Rule for Analyzing Computer U a e

3-21

certainty that each of the possible consequents are me. Thus, it is more likely that good solid,

reliable code is the explanation for the deviation then poor testing, although either explanation

could be true. This rule is then combined with other rules for other measu~e deviations to in-

crease the certainty that particular explanations are comct. Using this method of evaluating

software measures provides a set of possible explanations describing a project’s strengths and

weaknesses. By using sets of rules in this manner, an automated system can examine the

empirical evidence about a project and provide some insight into the project’s status.

4.0 Using the SME

This section describes how the SME utilizes the concepts described above to provide its

functionality. While the concepts of the SME are the most important aspect of the tool,

understanding how to utilize those concepts to provide management support is also of interest.

Attempting to build an SME-like tool requires knowledge of how to integrate the experience into

a useful tool. The examples used are realistic in that they show the actual functionality of the

SME, however, due to the inability to reproduce the color SME images, the graphics images are

in black and white.

ComDanso n

One major function of the SME is the ability to observe data and compare it to models and

previous development efforts. Figure 5, shows an example of using the SME to compare data to

a model. In this example the manager is looking at the way error rate behaves on the project of

interest. The current project is shown as the solid line and the model is shown as a band of what

is considered “normal” for error rate. The x-axis shows the expected schedule for the project.

That is, the start date and end date shown are the manager’s estimates, however, the other phase

dates shown are the expected phase dates for the project (as calculated by the SME). The tool

3-22
1 o O 0 5 ~ L

il 21 12 is 09 Hodcl
89 89 90 90 91 Sch

Figure 5 : R a t e o f 'Reported Errorr/Liner o f Coda' f o r P r o j e c t A

3-23

also shows the manager's estimates for all the phase dates on the top of the screen. The Y-axis

shows the error rate in errors per line of source code in the controlled library. Note that the phas-

es represent a typical watexfall life cycle, with the major phases being design, code and unit test,

system test, and acceptance test. By using this comparison, the manager is able to track such key

items as e m r rate, productivity, and amount of computer time used. Additionally, the manager

is able to overlay other projects' error rate patterns in order to compare the behavior of those

projects to the current project.

. .
l C W

Figure 6, provides a look at another function of the SME. This figure is similar to the com-

parison figure, except that it also shows a predicted final value for the measure. In this figure,

the measure of interest is computer use (in number of CPU hours). This is shown in absolute

terms on the Y-axis. That is, the actual amount of time used on the machine is shown (it is not

normalized). The SME allows the user to predict where the project will be when it is completed.

This function utilizes the model and a projection of the progress of the project based on the mea-

sures in SME (eg. the project is 50% of the way through the code and test phase), to predict the

final values of the measure, and of the schedule. In this example, the number of CPU hours on

the project is predicted to be 1255, while the current estimate is 990 hours. Also, the project is

predicted to take longer then the manager has estimated. Such predictions enable the software

manager to gain another perspective on the final values of project measuxes and on the projected

end date of the project.

Analvsls
A key component of the SME is the utilization of expert systems technology for software

management. Through experience, software managers are able to improve their ability to ana-

lyze software measurement data. Based on the measurement data and their experience, managers

are able to identify the strengths and the weaknesses of a project. The SME utilizes a rule base

3-24
"L

that captures managers’ knowledge of how to perform such analysis. This rule base is then used

to analyze deviations from the normal project. An example of such analysis is found in figure 7.

In this figure, the error rate of the current project is lower then nonnal for this particular point in

the development life cycle. The SME uses this information, information about other measures,

and subjective data about the project to provide possible reasons for such a deviation. The top

two explanations arc then displayed for the user. In this case, the explanations are that insuffi-

cient testing is being performed and that an experienced development team is producing a superi-

or project. Either of these two explanations might be correct, they only provide insight to the

user as to possible explanations for the deviations. Other explanations are certainly possible; the

user of the tool can obtain further data on why the system reached its conclusions and on the

other conclusions. The user can also provide the system with more Subjective information about

the project of interest, perhaps leading to changes in the conclusions that are inferred.

Assessment
A fmal function of the SME is to utilize software measures to provide an assessment of the

overall quality of a software project. An example of such an assessment is shown in figure 8. In

this figure the bar graph shows the SME’s rating of certain quality measures as they compare to

the nonnal project in the environment at that point in its development. The quality factors shown

are maintainability, reliability, and stability. Each of these factors can be determined by combin-

ing various software measurement data. For example, the quality factor of maintainability is cal-

culated by adding the percentage of errors that are easy to isolate with the peIcentage of emrs

that are easy to correct. Thus, as these percentages increase the maintainability of the project is

said to increase. For each quality factor displayed, SME has a specific definition for how to

compute that factor. These definitions, which are really a form of a relationship, use a specific .

set of measures to compute the relative value of that quality indicator. Of course, SME also uses

a model of how these factors behave over time in order to display the normal band on the graph.

Quality assessment provides the software manager with an overall appraisal of how the project of

8
U

w

1250

1000

750

500

250

03 09 05 09 02
ll 09 05 is
89 . 89 90 so 91

o9 Muugrr's
Schedule

03 11 06 10 03 SHE
il 04 09 20 30 R m d i c t e d

91 Sch 89 89 9 0 9 0
6 : Prrdictrd Growth in *CPU Hours* for Rtojrct A

03 09 05 09 02
11 09 05 15
89 89 9 0 90 91

o9 Manager's
Schrdulr

03 10 05 09 02 SME
15 09 M o d e l 11 21 12
9 0 91 Sch 89 89 90

Figure 7: Analyds o f *Reported Errors/Lincs o f Code' for Projmct A

3-26

Mainkinrbilit y Rdirbility Stability

Overall Aaaesamsnt for Project A

Figure 8 : Overall Assessment Function

3-27

interest is doing compared to the normal quality measures in the environment.

5.0 SME as a Model Tool

Currently, the SME is being used by numerous software managers in the SEL software

development environment to assist them in monitoring actual software projects. The SEL, as an

experience factory [5], has provided the concepts necessary to build an SME for this particular

software development domain. Other organizations can develop an SME-like tool by beginning

to capture the experience of their environment. While within the SEL environment all three of

the major components of SME have been well developed, other organizations may have only

limited parts of the components, Such limitations should not be viewed as detrimental to the

development of an SME. Similar tools should be developed using the experience available; they

can then evolve into more complete tools as the local experience base provides additional

artifacts for reuse.

The SME is an attempt to integrate a measurement process, the results of a longstanding

software engineering research effort, and the expertise of software managers into a tool for man-

aging and controlling software projects. As such, it provides for the utilization of corporate

experience to manage ongoing software projects. An SME has been built for one particular soft-

ware development organization. Other software development organizations should use the

SME's concepts as a model for building similar tools for their environment. By providing the

user with increased project awareness, predictions of key project parameters, expert analysis of

software measures, and assessment of the overall quality of the development effort, an SME is

extremely valuable to a software manager. Such a tool provides improved project management

through the packaging of experience.

3-28

References

133

141

r51

[71

P I

PI

Basili, V. R and H. D. Rombach, ‘The TAME Project: Toward Improvement-Oriented
Software Environments,” IEEE Transacrwns on Sofhvare Engineering, June 1988, pp.
758-773.
Selby, R. W., et al., “Metric-Driven Analysis and Feedback Systems for Enabling
Empirically Guided Software Development,” Proceedings of the 13th International
Conference on Software Engineering, IEEE Computer Society Press, May 1991, pp. 288-
298.
Kusumoto, S., et al., “GINGER: Data Collection and Analysis System,” Technical
Report, Osaka University, Osaka, Japan, June 1990,
Valett, J., “The Dynamic ’Management Information Tool (Dynamite): Analysis of Proto-
type, Requirements, and Operational Scenarios,” Master’s Thesis, University of Mary-
land, May 1987.
Basili, V.R., et al. “The Software Eiigineenng Laboratory - An Operational Software
Experience Factory,“ Proceedings of the 14th International Conference on Software
Engineering, IEEE Computer Society Press, May 1992.
So, M. et al., “SEL Data Base Organization and User’s Guide (Revision 1);’ SEL-89-
101, The Software Engineering Laboratory, NASA Goddard Space Flight Center, Green-
belt, Maryland, February 1990.
Morusiewicz, L. and J. Valett, “Annotated Bibliogmphy of Software Engineering Labora-
tory Literature,” SEL-82- 1006, The Software Engineering Laboratory, NASA Goddard
Space Flight Center, Greenbelt, Maryland, November 1991.
Grady, R., “Work Product Analysis: The Philosopher’s Stone of Software?,” IEEE Soft-
ware, March 1990, pp. 26-34.
Decker, W., R. Hendrick, and J. Valett, “The Software Engineering Laboratory (SEL)
Relationships, Models, and Management Rules,” SEL-9 1-00 I, The Software Engineer-
ing Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, February
1991.
Ramsey, C. and V. R. Basili, “An Evaluation of Expert Systems for Softwaxe Engineer-
ing Management,” IEEE Transactions on Sofrware Engineering, June 1989, pp. 747-759.

3-29

SECTION 4 - SOFTWARE MODELS

SECI’ION AOFIWARE MODELS

The technical papers included in this section were originally prepared as indicated
below.

“The Software-Cycle Model for Re-Engineering and Reuse,” J. W. Bailey
andV R. Basili,Pmceedings of theACM Tn-Ada 91 Conference, October 1991

“On the Nature of Bias and Defects in the Software Specification Process,”
F! A. Straub and M. V. Zelkowitz, Proceedings of the Sixteenth Intemational
CornputerSo@ulle undApprications Confeence (COMPSA C 92), September
1992

“An Improved C l d c a t i o n Bee Analysis of High Cost Modules Based
Upon an Axiomatic Definition of Complexity,” J. Tian, A. Porter, and
M. V Zelkowitz, proceedings of the Third IEEE International Symposium on
Sofrware Reliability Engineering (ISSRE 92), October 1992

“Providing an Empirical Basis for Optimizing the Verification and %sting
Phases of Software Development,” L. C. Briand, V. R. Basili, and C. J. Het-
manski, Proceedings of the mud IEEE Intmtional Symposium on Sofrware
Reliability Engineering (ISSRE 92), October 1992

“A Classification Procedure for the Effective Management of Changes Dur-
ing the Maintenance Process,” L. C. Briand and V. R. Basili, hoceedings of
the 1992 IEEE Conference on Sofrware Maintenance (CSM 92), November
1992

4-1
loO05788L

The Software-Cycle Model for Re-Engineering and Reuse
/ --/ 21 John W. Bailey’

Victor R. B a s s

Depanmcnt of Computer Science
College Park, Maryland 20742

+also consultant with Rational. 6707 Democracy Blvd. Bethesda, Maryland 20817

--d
i

The University of Maryland c

F i 9 S U 1 . 7 1 ~ ~ / S
i

Abstract

This paper reports on the progress of a study which will
contribute to our ability to perform high-level,
component-based programming by describing means to
obtain useful components, methods for the configuration
and integration of those components, and an underlying
economic model of the costs and benefits associated with
this approach to reuse. One goal of the study is to develop
and demonsmtc methods to recover reusable components
from domain-specific software through a combination of
tools, to perform the identification, extraceion. and
reengineering of components. and domain experts, to
direct the application of those tools. A second goal of the
study is to enable the reuse of those components by
identifying techniques for confguring and recombining the
re-engineered software. This component-rtcovexy or
software-cycle model addresses not only the selecuon and
re-engineering of components, but also their recombination
into new programs, Once a model of reuse activities has
been developed, the quantification of the costs and benefits
of various reuse options will enable the development of an
adapt2ble economic model of reuse, which is the principal
goal of the overall study. This paper reports on the
conception of the software-cycle model and on s t v d
supponing techniques of software recovery, maiurement
and reuse which will lead to the development of the desired
economic model.

Motivation nnd Scope

. hlouvation for the devclopment of an expert-assistcd but
highly structured and highly automatable model of software
infarmation capture and reuse stcms in part from the

‘1991 AChl 0-69791 4 5 - 7 1 9 ll1090JJ267 51 S O

lbcognition of the difficulty of using purely programming
component-based approaches to reuse libraries. For terrain
kinds of objects and components a smct programming
component-based library is adequate. ’Ihe success of
object-onenled and object-based approaches have becn the
most notable in this regard. However, the inability for such
libraries to capture a sufficient amount howledge to
dramatically reduke subsequent software development costs
in a g e n d and problem-independent way has also been
obsuved On the other hand, models of software reuse
which utilize domain experts in pervasive and undirected
ways arc aIso uniikely to provide a complete solution due
to the large amount of responsibility and effon which is
centralized in the conmbution of such experts. The present
work provides a structured model of information
identification and reuse which is both feasible and suitable
for further development and refinement.

Using the Ada language, this paper provides examples of
techniques for choosing. re-engineering. and recombining
components into programs. It also describes rudimentary
methods for quantifying the effon to exhact reuszble
components from existing programs as well as the effort to
recombine them into new programs. It does not include the
cataloging and retrieval of components, nor does it include
a mechanism to quantify reusability based on
empirically-derived frequency-of-use measures. Ir does
model a prcposed cycle of software development, use,
re-enginering. and reuse, but it does not attempt to model
other aspects of reuse within a sofnvare development
environment, such as pure knowledge and experience.
Ocher recent research papers and technicd repons have
covcrcd this larger scope [Basili and Rombach]. pasiii and
Caldiera].

Introduction

Any componcnt of software is sccn to k composed of
many functional and declarative dctails. some of which
pertain to thc spccific problem bcing solvcd by thc program
conraining that componcnt, somc of which penain to the
general application domain of thc containing progam, and
some of v:hich p c ~ n u> ncithher h e problem nor the

domain, but rathcr dcfinc thc esscnce of the component's
function in the abstract. Thercforc, to dircct the sclcction
and n-engineering of componcnu of software, thrcc lcvcls
of functional spicificity of Lhc software which constitulcs
my componcnt are dcfmcd: 1) problcm-spccilic derails
which would be likcly to diffcr bctwun this and another
similar application in thc samc domain. 2) domain-spccific
details which arc not likcly to differ bctwecn this &d
~ 0 t h ~ similar application in thc same domain but which
would bc unlikely LO be appropfiatc outside of this domain,
and 3) essential aspects which comprisc the absuact
fimctionai core of the component and without which the
component would be meaningleis. ...- - -

-* 'herefore. an economic equation presents itself, which is

Along with rhcsc examplcs. proposals are given for how to
measurc rhc amount of rc-cnginecring rcquircd to derive
componcnts suitable for thc diffcrcni mcthods of reuse. as
well as the amount of effon required to rccombine
componcnts using the diffmnt mcthods. As effon is
wrpcndcd to make a componcnt more general, mort
opportunitics to rcusc it bccomc availablc. Howcver, each
of those rcuse opportunities will have to rcsupply the
specifics required for the reusable component to perform its
function in the ncw contcxi, implying an amount of reuse
effort which is proportional to the degree of generality of
the component

The thne levels cannot be absolutely defined, nor can a
given detail be deterministically assigned to a level, since
from different points of view, a given detail could be
thought of as belonging to different levels of specificity.
Two analyses of a given component could possibly identify
different sets of details at each of the three levels.
However, an analysis of a candidate component for the
purpose of directing the re-engineering and reuse processes
must assign each identifiable detail to one of the three
levels.

Once specificity levels have been assigned to all details of
a candidate componenL a measurement of the effort
required to remove each of the problem-specific details is
obtained in order to estimate the total effort to gene&
the component for reuse within its domain. Further, a
measurement of the effort required to remove each of the
domain-specific delails is obtained in order to estimate the
total effort to generalize the component for reuse in other
domains. If these measurements show the
cost-effectiveness of either of these generaiizations. then
the candidate component is suitably generalized and placed
in either a domain-specific or domain-independent
repository, as is appropriate.

In order to assign specificity levels to all the constituent
details of a candidate component, domain experts may have
to be consulted. However, automation to suppon the
identification of the details and to support the component
generalization through their removal can be used u)

sixmline the proccss. Further, there m2y be ways to
mpmre the domain expens' decisions and the reasons for
them, in order to partially automate or support any
subsequent decision malung which follows similar patterns.

To support the generalization process and iu quantification,
three styles of softwzre component reuse which arc
currently being practiced are idendied and examined for
their adaprabilicy 10 the model. These reuse styles are
termed layered, failored. and generaled reuse. Examples
illusnaung them, and demonstrating how they are related
by an underlying dimension of gentrality. are shown.

how to optimize the somelimes competiing factors of
generalization effort, reuse effort, and breadth of utility.
The solution to this equation will have to wait until more
work is done on the probability of reuse for a given
generalization, and other facton. Rather hard questions
figure in to this equation, such as the cost-benefit of
constraining a solution to fake advantage of an available
component (which amounts to establishing and following
standards) as opposed to developing a more suitable one,
and even the cost of classifying, storing and retrieving
components. Developing a framework for an economic
model which captures these factors is the first step to a
greater understanding of these issues. The last section
relates the activities defined in the software-cycle process
model to this economic model of reuse.

The Software-Cycle Model

This section describes the model of software development
which underlies this srudy. The model proposes the
recycling of existing software into components which can
be combined into new programs. This proposed sofrwore
cycle takes place in the context of a software development
organizdon and allows effort already applied to the
creation of previous programs to be recaptured and used ro
reduce the effort needed to create new programs. This
sofnvare-cycle model is consistent with models of
experience capcure and flow within a development
organization as described by Pasili and Rombach] and
pasili and Caldiera]. It describes in detail, and proposes
an implementation for. one aspcct of the more
comprehensive experience factory described in those
studies.

The software-cycle model is so-named to describe the flow
of information and experience, in the form of software, into
newly developed programs where it can be recovered and
packaged for efficient reuse in subsequently developed
software programs. The capture and reuse of information
af the delivery point of the conventional software lifecycle
is clearly not the only time at which such information is

zcessible. However. this approach is chosen because a~
& rime that software is delivered, the information is
packaged in a concrete form (sofware prognrms) which
can be analyzed and manipulated. Also, a substantial
mount of information may be available from
previously-developed programs which is not racordcd in
any form other than the delivered softwart. Further, by
instituting an approach which applies effort fo capturt
Eusabic information at this stage, the software
development organization has h e choice to separate the
information recovery and repackaging from the effon to
develop the software, and to conduct those activities
independently and in parallel. So. for pragmatic reasons.
the present model of information flow in a software
development organization uses developed software as the
'main source for recoverable information. (Set also
[Caldiera and Bass].)

I t n
As shown in Figure 1, existing programs are examined for
candidate reusable components. For the purpose of this
study, a component can be any definable portion of
software. Obvious examples are individual, or sets of.
subroutines, subprograms, functions. paragraphs. packages,
OT othcr structuring fcaturcs of the software language in
use.. A re-engincered component can be a n y of thest.
although ir can also be nothing more lhan a template or a
sit of instructions for a software generation routine.

A re-enginecred component can be intnded either for
reuse only within a panicular domain or reuse across many

domains. If a component is only intended for reuse within
a domain, its rt-engineering seck lo remove any
problem-specific details from it, but u) allow any
domain-specific details to remain. Such components arc
tumed domain-specific components. If a component is
intended for reuse across domains, however, then its
re-engincexing would attempt to remove all
domain-specific details as well as the problem-specific
details. leaving only essential function. "his kind of
component is tcrmed a domain-independent componenr.
Leaving a component insufficiently general to be used
across domains obviously limits the number of
opportunities it might enjoy for reuse. However, there
significant compensating advantages. A domain-specific
component retains more details which hen do not have to
be resupplied by the reuse client. Also, the generalization
effort to reach only problem-independence is usually less
rhan the generalization effort required to reach
domain-independence. So. ' by accepting a constrained
reuse scope, a component can be easier to generalize as
well as easier fo reuse.

A candidate component for re-engineering is one which has
idcntifnble problem-specific or domain-specific details and
which can be feasibly mcngineered to eliminate the
presence of some or all of those details. A domain expert
may be needed to differentiate between problem-specific
and domain-specific delails, and measurement of the
estimated generalization effort is needed to determine the
feasibility of the re-engineering. Some components may be
candidarcs to yield a domain-specific component after
recnginetrinj but not a domain-independent component
Other components may be candidam to yield
domain-independent components (possibly in addition u)
domain-specific components), while still others may not be
good candidates IO yield either category of reusable
component

The goal of reuse ncngintcring is to be able to isolate and
then 10 replace the problem-specific andor the
domain-specific aspecls of a component so that it can be
made to operate in different contexts. A component might
be view4 as a blend of general function, which defines iu
essence, and specific function which relates to the current
context or declarations on which the general function is
performed. This is shown graphically in Fig- 2a. The
general function, shown in light grey, is that which is
essential to the component or that which dcfmes the nature
of the component. The specific function, shown.in dark
m y , can either be problem-specific or domain-specific.
As mentioned, it may be necessary to consult domain
experts to distinguish between a problem-specific detail
and a domain-specific dedl . Howcver, given a sufficient
body of experience. it may be possible to predict the
specificity of a detail via a predictive function that is
tailorcd by prcvious upert decisions, or by statislical

4-5

analyses of several similar componenls in the same domain.

Figure 2b

Ailer re.enginrering. the u s e n ~ i a ~ iunc~ionali~y remains in me
ieus8bIe component buI problem.specific or conleal specilic delalls
u e alimineted 8na become (he responribihcy ol Iht reusel Io piOvde
One possible inaati8lion coda rerun in the origin81 component 89.1"
bul many olher instantia~ions are now possible

Figurt 2b shows an imaginary candidate component which
contains both essential function, which is general, and
specific details which. if altered, could allow the
component to conmbute its functionality in different
contexts. These specific derails, shown in dark grey, have
ken removed from the body of the component to signify
that they are now viewed as only one of potentially many
possible instantiations of the remaining, general
component The re-enginering process of the
saftware-cycle model seeks to locale and remove these
non-general aspects (either only the problem-specific
aspects or, possibly, the domain-spa5fk aspects as well)
and to relegate them 1.0 the responsibiliry of the reuser as
part of the component's instantiation. The techniques for
the removal of these derails are discussed as part of the
=tion on re-engineering techniques which follows. It will
be shown the= that the re-engineered component dots not
need to be expressed in the programming language of the
original candidate component which was used to produce
ir It might be a pre-processable component or a
component generator which can be uscd to produce

components when necessary. In hex: cases. it is the
tunplate or the generator that is reusable, since any
subsequently requircd componcnts would bc produccd on
dunand and would not. Ihcmsclves, be considered reusable.

Separated and re-engineered (generalized) components arc
stored in a repository to bc made availnblc to the
developcrs of new software. Similar to the process of
consulting domain expens when categorizing the details
which nacd to be gcnenlized out of candidate components,
repository experts may have to bc consulmi to assist in the
location and instantiation of required components in the
repository. Repository experts could possibly choose from
among various schemes to satisfy the needs of a developer.
Certain choices might provide more utility but might come
with more restrictions or limitations of options. Also, the
repository expert might choose from different methods to
arrive at functionally the same result to the requesting
developer, for example by either generaling the software or
by providing a tailoxable component

Componenrs in the repository are amibuted with
measurement information describing the expected e f f a to
instantiate them for reuse. In many cases, this instantiation
becomes the responsibility of the reusing developer, for
example when the component is already a s m c M
component in the developer's language of choice and
simply must be supplied with actual parameters to serve the
developer's need. In other cases. the instantiation can be
the responsibility of the repository expert, who might have
m produce components for the developer from templam.
rules. instance specifications, and generator programs. In
either case, the measurement attribute of a component will
guide its users when deciding whether to select it or not.
and how much effort to expect to expend configuring i t for
reuse.

A request for software components might be unfiillable
given the cumnt state of a repository. In this case, the
repsitory expem can work with the developer to design
and crate a new component which will not only serve the
cumnt need but which will become 2n instant candidate for
insenion into the repository. with a minimum of
recnginecring. Or, gaps in the capabilities of rhe
repository can be idenufied by the experts prior to a
specific need. and special developments can be guided,
specifically for the purpose of supplying components to fill
those gaps. In the software-cycle model, any new
development is done with reuse in mind, specifically.with
an eye toward funher populating the component repository.

Neither of these last two topics, the selection of
components from a repository and the direct development
of components rather than through n-engineering, are
currently part of the study. They are mendoned here in
order tn complete the sofnvare cycle depicted in Figure 1.

4-6
1ooo6788L

The major emphases of the study are the identification of
candidate reusable components from among existing
software. the F g i n e e r i n g of those components lo
improve their gcncrality. the measurement of those
processes, and the development of an economic model
which can assist an organbation in optimizing its software
cycle costs.

Reuse Modes and Methods

By studying the dependencies among software elements, a
detmhation can be made of the reusability of those
elements in other contexts. For example, if a component of
a program uses or depends upon another component, then
the first component would not normally be reusable in
another program where the second component was not also
present On the other hand, a component of a software
program which does not depend on any other software can
be reused in any context (ignoring for the moment whether
or not it performs any useful purpose in that context). The
issue of software independence is at the hean of this study.

It will be Seen that i n d independence of a software
component often comes at the cost of functionality. The
ideal software reuse re-engineering process would provide
B means of preserving alI of the function or utility of a
component while also making it independent of
problem-specific or domain-specific details. However, this
is not possible in most cases since some of the desind
functionality is likely to be captured by those sptcific
details, and removing the details will remove thar
functionality. This study describes a compromise solution,
which is first to generalize a component. and then to
systemarize the means to configure it in order to restore the
specific function required in a panicular context of rcuse.

A scheme to maintain generalized, reusable components in
a repository, in addition to a means of configuring them in
different ways for different domains or contexts, enables a
repository with a manageable number of components to be
described. Without the ability to instantiate a given
component in different ways for different usages, a
repository would have to contain many times as many
assets in order to serve the same need. In order to avoid
this problem, this work recommends storing fewer
components, each of which is sufficiently general to be
able to operate in various contexts. and then providing
methods to instantiate them to provide functionality in
those contexts.

By examining existing successes in software reuse, it can
be Seen that there are three different but related ways of
making software components which are general and
independcnt, and yet which remain wpable of being
instantiated with problem-spccific details. An important

prunise of this work is that software which is general in
these ways does not necessarily necd to be developed
directly. Instead, it is often possible to re-engineer existing
software so that it achieves the necessary independence.

For this study, the ttuu modes (vt termed layered.
tailored. and generured. Each mode describes components
which can be combined to develop larger programs.
However, a tailored component can be made more flexible
and general than a layered component and a generated
component can be the most flexible and general of all. On
the other hand, a layered component is the easiest to reuse,
requiring the least effort on the part of the client to
incorporate it into a program, while a generated component
is the most difficult to reuse.

What all of these techniques smve for is the absence of
dependence f" the reused software on external
declarations, which would hamper the generality of the
software. In other words, a component of reusable
software should ideally not be expected to "brow" about
declarations and other components which RE
problem-specific. A reusable resource which requires the
reuser to also include other common denominator
components. which contain needed declarations, is not as
reusable as one whichhas no such requirements.

Within the confines of a single domain, however, certain
dependencies can be tolerated, since the users can be
expected to guaranw the minimum rquirtd declaration
spa= across all occurrences of reuse of a component This
result opens up vast new ranges of possibilities, since the
generality of a component need no longer be absolute but
rather need only be general with respect to a c e d n domain
or domains. No expectation of generality within other
domains is maintained Domain-specific reusability
implies a certain amount of built-in de+ndence whereas
wide-scale reusability or generality precludes this
possibility. By allowing domain-specific conspaints, the
possibilities for identifying reusable components expand
enormously but the breadth of applicability for each
component is limited to that d3main.

Layered Reuse

Layered reuse is used to describe the case where reusable
functions or operations arc viewed simply as abstract
primitives which are callable from within the language of
the client A math library, probably the most commonly
cited example of reuse, and onc which is often viewed as
an ideal, is an example of l a y e d reuse. Analogous to a
math package, other common examples are packages of
utilities which operate on universal types or concepts, such
as string handing utilities and time utilities. Other
succcsscs in layered software reuse include user interface

4-7
looo5788L

or UO toolkits. graphid display toolkits. runtime kemels,
and laycrcd nctwork protocol software.

Layered rcusability is oftcn viewed as the goal for a library
of reusable components, where a sufficienlly rich set of
abstract operations would bc availablc to an applications
programmcr in order to minimize thc effon rcquired to
generate a new system. In addition to the previously
mentioned indcpcndcnce from other componenrs, an
additional recommendation for the success of a layered
component is h a t the dab on its interface bc expressed in
terms of standard types. This restriction allows the client
solware to communicate with the reusable component
without the additional complexity of adhering to specific
non-standard types. One reason that a math library is so
inherently reusable, for instance, is that real numbers arc a
universal way of expressing the values used by and
returned by the mathematical functions in a library. Any
language which suppons real numbcrs can make available
a corresponding set of mathematical functions.

However, unlike the portability enjoyed when restricting
one's domain LO a universal concept such as real numbers, a
considerable amount of software which might otherwise be
available for reuse is written to operate on problem-specific
types and data structures. This is the case whether those
types are named and declared as in Pascal OT Smalltalk, arc
common data artas as in Foman, or are merely locations in
memory as in assembly language, Components can still be
h a e n in a layered manner but in these cases they typically
depend so heavily on specific data structures that they arc
limited to being reused only where identical data structures
or other operands are present. It is not always possible to
pvamettrize a component with respect to all of its
assumptions about context Because of these limitations on
the applicability of a layered component. constructing
comprehensive reusable libraries of them in languages such
as Ada has becn harder than might have been expected.

Tailored Reuse

. Another category of successful reuse is tailored reuse.
where configuration of the reusable sofwarc is requircd in
order to allow it to interoperate properly with the client
sofware. A familiar example of such n u s e is seen with
database management systems which requirt tailoring in
order to handle records of the user-defined strucolre~.
Simpler examples of tailored reuse art generic data
sm~ctures which allow the client software to c m t t stacks,
queues, lists, etc., of application-specific types or to s x c h
rhrough or son objects of those types. Stiil other examples
of tailored reuse are forms management systems which arc
customized by parameterization, expen systems which
must be initialized with rules, spreadsheets which must bc
supplied with formulas, ar,d statistics packages which must

be provided with data sets and programs to achieve the
desircd mults.

Tailoring in this way is accomplishcd before the
compncnt is called, but it happcns automatically at
execution time as pan of the language behavior. Whereas
in laycrcd reuse a client simply calls a component with the
proper parameters, tailored reusc implies a two-step
process wherc a component is first moldcd to the specific
configuration required by the currcnt context and is then
called to perform its function.

The generic feature of Ada allows certain kinds of
tailoring, in the form of generic parameterization, to be
accomplished. Because of the static checking enforced by
Ada, however, only a limited amount of parametenzitions
arc possible. Other languages have different mechanisms
for accomplishing this parameterization. Most nowbly,
assembly languages employ very flexible macro
expansions which can be quite powerful. However,
object-orientcd languages have traditionally used a more
flexible form of layering (full inheritance) while
overlooking the possibility for component
parameterization. (Future revisions to C++, however, are
expected to include a template mechanism to d o w
within-language tailoring [Ellis and Snousmpl.)

Generated Rege

The third category of reuse, generated reuse, occurs when
the reusable softivare is USA as a generator program rather
than being incorporated directly into the final application.
The required software is emined as a result of the generaror
pr0gn-n operating on input tables or files. Typically, only
the generator and not the generated software is reused. The
gene& software is regenerattd. as opposed t~ being
modified directly. if changes an required. Whenas
I a y d and tailored reuse take advantage of
language-suppod features (subprograms and generics in
rhc of the Ada l anpge) generated rcuse rquires
akiitional tooling to accomplish a kind of tailoring which is
external to the implementalion language.

A common example of generated reuse. which perhaps
mtches the definition somewhat, is a compiler, which
accepts files of a high-order language and emits software in
a machine-executable form. One reason that it may seem
unconventional to think of a compiler as reusable softwart
is that its output is not k t l y manipulated or even
obsaved by the compiler's users. Nevertheless, it fits the
definition here for generated reuse (which could be thought
of as a batch form of tailored reuse).

Other common examples, where the generated output is
more likely to be manipulated ur at least observed by the

4-8
100(#7ssL

users of the gentrator, are fourth-generation languages.
user interface genuators. test c a ~ c gentraton, parser
generators and table-driven forms management systems.
At least one large Ada development is making substantial

of generated reuse in an MIS systun development,
m u g h the use of a specially-developed gcncram [AIC).

Table 1 is a Summary of the modes of software muse
described and the examples mentioned for each

LaYUtd:
hbth l i b d e s
Common utilities packages
User interface or UO toolkits
Graphics kemel systems
R u n h e kernels
Network layered software

Tailored:
Database management sysrems
Forms management systems (runtime configured)
Expert systems
Spreadsheets
Sratistics packages
Generic data structures

Generated:
Forms management systems (fde driven)
User interface generators
Testcase generators
Eighiorder languages
Founh-generation languages
Parser generators
MIS sysrems

Table 1. Reuse Modes and Examples

The distinctions between these categories can sometimes
become blurred. For example, whether a reusable package
is configured at run time by parameterization (tailored) or

' in advance by tables such that it emils a separate program
Cqenerated) may not be of any real consequence. In fact,
the examples given in one category oficn have analogs
which exist in thc other category. For example, forms
management systems already exist in both gcncrated and
tzilored versions. Although parser gcncraiors are typically
generated components, since they arc smd-alone
grammar-driven programs which cmit desircd software,
t h ~ y could instead be incorporatcd into the cnd-product urd
re-emit heir parsers on h e fly. Thc obvious reason not to
do this is for efficiency of repealed usc of thc same output.
However, an intcrprcrcr for a language can bc thought of as
a compiler which is configurcd to perform as tailorable

sofw= In this CBK, the run-time efficiency is Wed off
for the flexibility of being able ta alter the
"paramererizarion' (the bltrprctcd program) quickly and
&y.

A Simple Example
As a simple example of how a low-level component can be
viewed as a generalizable layer of function, consider the
following error-reporting routine.

with Text-Io;
procsdun Gyro-Spaed_Gror is
kgin

TextIo.ht-Line ("Error: The gyros are not up to speed.");

This highly specific routine represents one end of the
generality scale. It is easy to use, requiring a simple
parameterless call. but might not be likely to be widely
called upon within a program. There are three observable
details within this unit 1) the use of Text-Io.ht-Line to
report the error message, 2) the use of the standard output
device to display the error. and 3) the choice of the literal
suing to be displayed.

uae I l t e r a l a t f lng 'Error: *

Figure 3a

In the example from Ihe lea procedure Repon-Error was seen Io
bc composed ol tow decisions Two are " a c r e 4 par! d thc esetnial
lunaionaliry m a two are comidercd to be problem.speci(ic aetails

R*-mnplnmered p r o c e d u r * R e p o r t - E r r o r

L

\ Prepend en lntro

Put-Llne

Figure 3b

The re-engineered version of Repoil-Error shows the IWO problem-
specific Oelails removed from the component. lo be supplied by lhe
re.usef The mlrinsic lunclional aspeas 01 !he componenl iemain
Other interpretations of lhe re-engineering decisions 10 be appliea
could possibly remove one of Ihese. as well

4-9
1ooo57mL

A consulmion with a domain expcrt might rault in OUT

choice LO pmc tc r i ze thc cxact error mcssagc to be
reponed. which might yicld thc mon: sensiblc reporting
routine, shown blow.

with Text-Io;
y e d u r e Report-Enor (Message : Suing) is
h w

Tcxt-Io.ht-Line ("Error: k Mcssrgc);
end Report-Error;

This version of thc unit is dcpicted in Figure 3a Had we
performed the transformation wilhout expcrt consultation
we might have simply parameterized the entire message.
However, in o b hypothetical problem domain we will
assume that the expert recommended retaining a
hard-coded standard prefix in order to facilitate the
post-processing of the log file. Also, this generalization
has cost US the part of the original functionality which
spelled out the exact error message. Since the client must
now supply this smng. we have increased the effort to use
the unit by making it more general.

The generalization of a value (a string value in this case) is
the easiest kind of aansfmation since it can bc performed
with a simple value parameter. Since the parameter type is
lwguage-defined (type String) there is no funher
complexity to exposing this parameter in the procedure
interface. Also, the effort to configure the component
amounts to simply defining the e m r message string as a
parameter. Again, this kind of reuse is the easiest.

The procedure above still assumes that the user intends the
message to be written to the current output device using
Put-Line. That constitutes part of the retained functionality
of this component. In the process, we have also added the
derail that the standard prefrx "Error: " will always appear.

Additional consultation wirh a domain expert might reveal
that the assumed use of the standard output device is
another problem-specific detail. A later =user of this
component who was working on a different problem in the
same domain might not want to be bound by that
essumption. Again, Ada provides a simple way to
parameterize the component so that users can specify the
output devict. Again, however, this generalization comes
er the cost of functionality. In this we, the functionality
which is lost is the assumption is that the current output
device is to be used Default parameters can sometimes
provide an opportunity to restore such assumpaons while
retaining the generality, as will be shown later. The
parameterized version of the unit which follows removes
the assumption of using the current output device but
retains the function of writing the literal smng "Error. "
followed by the caller's message.

with Tcxt-Io;
procedure Report-Error

k g i n

cnd Rcport-Emr;

(Marage : Suing:
h-Dcvice : Tcxt-Io.File-Typc) is

Text-Io.ht-Line (On-Device, "Error: " k Message);

Notice that thc user is now requircd to do additional work.
Instead of simply providing the error message. the dcsired
output device or file must be providcd. That decision hu
shiftcd from the component to the (re>uscr. Again, this is a
form of value parameterization, h e easiest form of both
generalization and reuse configuration.

An additional part of the functionality of the component is
the literal suing prepended to the callcr's message. AS
shown below, this could also be parameterized, again
mov ing that specific functionality but generalizing the
component on that behavior. This requires yet one molt
piece of information from the user as part of the
information needed for this component to perform its work,
however once again it is a low-cost value parameterization.

with Text-Io;
procedure Repn-Error

(Message : Suing;

OnJevice : Text-Io.File-Type) is

TcxtJo.Put-Line (On-Device, Inuo & Message);

Intro : saing;

begin

cnd Rcpon-Error;

This generalized component is depicted in Figure 3b. This
might constitule a domain-independent version of the
rcpomng routine, according to our domain expens,
although the only way to be cerrain that a component is
compatible with all domains is to ensure that it does not
depend on any other components. In Ada any such
dependencies an ~vea led by the context c l aw. A Larp
transformation will eliminate the dependence on Text-Io.

As noted, Ada affords us an oppomnity LO rtsmrc the
assumpaon of using the specific smng "Error. " and the
standard output device through the use of default
paxamelers without reducing the generality. This is shown
below.

with Text-Io;
procedure Report-hr

(Message : Suing;
HEO : Saing := "Error: ";
On-Device : TextJo.File-Type :=

Text-1o.S randard-Output) is

Text-Io.Put-Line (On-Device. Inuo & Message);
begin

end Report-Error;

At this p i n L two details rtmain (the use of

4-10

Text-IoPut-Line and the pepnding of a user suing). Thc
UD of PutLine could be removed through tailoring
@elow) but the removal of the choice IO concatenate M

introductory st& could not be done within the language.
For that degree of flcxibility, generated use would be
required. Once a generalization is needed which is not
language-suppofud, the costs arc considerably higher. One
way to reduce thosc costs is to provide loo1 suppon for the
generalization, a process which amounts to establishing a
new language to accomplish the generlization. ?he MIS
system described in [AICI has r e d u d their software
generation costs in this fashion.

This points out the obvious conclusion that the cost of a
generalization depends on the level of language or tool
support for i t One way to cstimate cost is to begin with an
ordinal scale of difficulty and then to move to a more
detailed scale after more analysis has bewr done. For
example, it was noted that value parameterimtion is
relatively straightfonvard. This would be at the lowest end
of an ordinal effort scale. Above that would be tailoring
paramettriration such as Ada's generic formal type and
subprogram parameters. At the hardest end of the scale
would be software generation, with tooI-supponed
generation being easier than custom-built generation. A
more detailed approach to effort would be to relate the cost
m rhe number of lines of code that must be written.
changed, or added.

It can require a judgment call to choose what details to
remove and what function to leave in the component For
example, in the above example. tht fact that the original
literal smng was broken up into a standard prefix and a
user-supplied message was only one possibility for
generalization. One guideline is to leave operational pans
of a component intact and to allow the operands to be
supplied by the reuser. A discussion of the separation of
operations fmm operands can be found in [Bailey and
B2siIiI.

?he simple error-reponing example from before can also
be re-engineered into a tailored component using the Ada
lmguage. The difference between this result and the
layered result is that the reusers will have to perform
slightly more work in order to instantiale the component,
but then subsequent calls can be simpler. As suggested,
tailoring in Ada through the use of generics is Seen as a
harder process than value parameterization but easier than
software generation. A W o r d examplc of the component
follows.

with TextJo;
generic ,

h o : Str ing := "Enor: ";
On-Dev ice : Text-Io. File-Type : = Text -1o.Cuncnt-Outpx;

procedure Repm-Enor (Message : S-);

Unfortunately, this is illegal in Ada since a Iimifcd tw
~ext-Io.File-Typc) is not permitted as a generic value
parameter. This is an example of where smng static
checking can be at cross purposes wirh generalization and
wsc. If it werc legal, nevenheless. the user would have
the responsibility for providing the introductory string and
the o u p ~ t device one Lime (at the time of the generic
instantiation) thus tailorin8 the component for further
reue. From then on, the component would be no more
difficult to use (from the standpoint of parameterization)
than the original non-general version.

To avoid this limitation of generic parameters, a solution
could be obtained by generating the specific component
desired, using tools outside of the Ada language. The
generated component could look exactly like the original
component but the reusable software would no longer be
considered the component itself, but rather the generator
which creates it. In this case, the generator would emit a
Report-Error procedure which was hard-coded to write the
error message on a given device. ?he value of that device
would be given as a parameter to the generator. More
examples of generation are shown later.

A different tailoring would also be possible. As mentioned
earlier, the dependence on Text-Io can bt eliminated by
requiring that the client tailor the component to use a
particular siring-processing routine. This makes the
component completely indepenienf with the persistence of
the use of a standard prefix as the only detail which is
retained ffom the original version.

gmeric
Inn0 : soing := "Enor: ";
with procedure Put (S : Suing);

procedure Repon-Ekor (Message : Suing);

procedure Repon-Error (hkssagc : Suing) is
begin

PUI f i a o 6 Mcrsage);
end Repon-Error,

Note that this most gencral version is also the least
functional. Nevenhcless, the ability to tairor the
componcn1 once within a program and to then use it with
the same level of effort as the first layered transformation
makes it of some value. The reuscr has additional work to
do with this solution. as well. For example, unless the error
messages are to bc wriiten to standard outpu~ the
subprogram LO be passed to the generic formal Put

procedure has u, be written. This mCjm that thc cffon to
reuse a lailorcd component could bc gram than the clfon
u) reuse a companent gcncrator. So, thc cffon LO gcncralize
is not always proponional ID the corresponding cffort to
reuse.

By examining existing systcms and by observing thc
opportunities to gcncralizc thcir parts according to thcsc
different melhods of rcusc, choices bccomc availablc in the
ways in which the software can be re-cnginccrcd for futurc
reuse. The next secuon dwcribes a simple mail systcm in
m s of its conventional configuration as a custom-built
application and thcn in terms of the various ways the parts
of i t can be generalized using h e above methods.

Re-Engineering a Simple Electronic Mail System

This section fakes a simple electronic mail system through
mnsformations to yield componenrs which can be
combined using the three methods described above. In the
interests of space, parts of the examples and some identifier
names have been abbreviated, and no bodies are shown.
Complete listings of the examples are available fiom the
euthors.

In a conventional design, one component, or package, of a
mail system could be used to manage the mailboxes of the
users and a second could manage the messages, or the
constituents of a mailbox. This would reprcsent a
conventional encapsulated or "object-based" design of the
system whert the mailbox package would allow operations
such as create, add a message, deletr a message. return a
message, and perhaps displaying a directory of messages,
maintaining the status of each message, and so on. The
message package would allow message crcation and
display, and possibly reply consauction, forwarding, etc.

In a typical arrangement, using either Ada or an
object-oriented language such as Smalltallc, the mailbox
package (or object) would depend upon the message
package to obtain the use of the declaration of message
objects, in order to arrange those objects into mailboxes. In
Ada the specifications for each of these two packages
might reasonably be:

peckage Mestagcs is
cypc U x m u n e is ...
rypc Text is ...
typc Message is private;
procedure Set-Sender (M : in out Mcssrge; To : Uwmme);
procedure Set-Receiver (M : in out Message; To : U s e m e) ;
procedure Set-Subject (M : L7 out Message; To : Line);
ploudure SetBody (M : in out Message; To : Text);
function Sender-Of (Msg : Message) r e m U s a n m e ;
function Receiver-Of (Msg : Message) return Usanme;

rypc Line is ...

hrnction Subjcct-Of (Msg : Messrge) retum Line;
function Body-Of (Msg : Message) rcturn Text;

type Mersage is
p i v a l e

record
Sender : Uscme;
Rcceivcr : Utcmmc;
Subject : Line;
MsLBody : Tcxr

end record;
end Mcssngcs;

with Mcssager;
packrge Mailboxes is

typc Mcrsagc is ncw MctsagesMcssage; - dcrive an equivalent type Message
Mu-Mailbox-Size : Natural := 1OOO;
rubtypc Box-Sue is Natural rmge 0 .. Mlx-Mailbox-Size;
type Mailbox (Size : Box-Size := 0) is privare;
procedure Store (Box : Mailbox; Owner : String);
procedure Retrieve (Box : in out Mailbox: Ormer : String);
function Size (Of-Box : Mailbox) return Boxs ize ;
function M s g A t (Position : Natural; In-Box : Mailbox)

procedure Remove (Num : Positive; InBox : in out Mailbox);
procedure Append (Msg : Message; To-Box : in out Mailbox);
procedure Mark-Read (N : Natural; In-Box : in out Mailbox);
procedure Mark-Unread ...
procedure Muk-Answered ...
procedure Mark-Deleted ...
procedure Mark-Undeleted ...
function Is-Read

function Is-Answered ...
function Is-Deleted ...
No-MsgAt-Position : exception;

type Attributes k (Deleted Red , Ansuwed);
type A~r -Seu is array (Amibuus) of Boolen;
type Mail-Item is

rerum Message;

(MsgNumber : Natural; In-Box : Maiibox) r e m Boolean;

private

record
Item : Mcsrage;
Sunu : Atu-Sets;

end record;
ryp Ircm-&ray is array (Positive rmgc 0) of Mail-Item;
type Mailbox (S i x : Box-Size := 0) is

Items : Item-Array (1 .. Size);
ncord

end record;
end Mailboxes;

These packages are depicted in Figure 4a As shown, the
Messages pachge is an example of an independently
reusable layer, and the Mailboxes package consticum a
layer on top of the Messages package. (Since the
constiuent types of Username, Line, and Text arc not
shown, it might be the case that they would be comprised
of user-defmed types. making the Messages package
dependent on other client software.) Realizing that the
decision of how to implement the constituents of a message
represents one of the opportunities for generalization of this
package, the components of a message could be supplied as
p m e t e r s to a generic version of this package. Thrs
would constitute a tailored version of the package:

4-12
1oO06788L

This generalization is shown in Lhe top part of Fig- 4b.
ne effort to perform this tailored generalization is in line
wilh other tailoring efforts discussed in the previous
stion. The declaration of three generic formal parameters
is one measure of the WO& performed. Also, the rtusc
effort implies the declaration of actual type parameters to
be associated with these generic formal types. One way u,
quantify the effon u, generalize, then, is to claim that three
declarations are required. Three declarations arc also
nquired of the client reuser.

peckage Memeepee

;'=\.\, peckape Mallboxwe .._.. .. .
4 - c 0 m PO n e n l r e c 0 r d-I y p e e b e I r e c 11 o n

Export. type Mil lbox. en 110 array

Figure 4.

3-3 IM conventions snown ptewourly. lhls deplns m e pocers d blormp tnc
v y n) a and Mailboxes packages from tne lex(

Going beyond this somewhat tailored version. n o l i e rhat
even the suucture of a message could be a candidate
genedizauon. In this case, tailoring would be difficult or
impossible within the confines of the Ada language so
generation is required. Generation is feasible since the
contents of the Messages package could be
deministically described if one were to specify the
constituent components of a message. For example, if no
subject line were wanted. the original package could
insLead have been writen:

package Messages u
typc U m u n e is .I
typt Text is ...
type Message is privue;
-- procedures Set-Sender. Set-Receiver, Set-Body
-- functions Sender-Of, Receiver-Of. Body-Of

rype Message is
privarc -- no Subject component

record
scndn : UsemMlc;
Receiver : Urcmame;
MsgBody : Texr

mdrecord;
end Messagu;

Or. if a message with a date and h e stamp were desired,
the abstraction could be augmented with an additional
component, such as with the standard type Calendar.Time:

with Cdendar;
package Messages is

rype Usemame is ...
typc Text is ...
type Message is privae;
-- procedures Set-Sendcr, Set-Receiver. Set-Body. -- Set-Subject, md Set-Time
-- functions Sender-Of. Receiver-Of. Body-Of. -- Subject-Of. Time-Of

type Message is

type Line k ...

private

record
Sender : Usemame;
Receiver : U s m e ;
TieStamp : Calendar.Time; - new
Subject : Line:
MsgBody : T e x ~

end record;
end Messages;

Allhough thc gcneric feature in Ada is not powerful enough
u, allow thcx: variations as tailoring of a single common
package, all of the Message package examples (as well as
their corresponding bodies) could have been generated
automatically, given h e desired set of components for
objects of type Message. This. therefore, becomes an
example of gcnerated reuse, where h e generator is the
reusable software and not the actual message package
software. For example, a simple editor-substitution
generator has k e n conslructcd which zccepts input such as

4-13
1oO06188L

the following and emils Ada quivalcnt to thc example
shown above.

Gencr ate-Package
(Context => "".
Locd~Dccls =>

"subtype usemme is soing(l..lO);" k
"subtype linc is suing(1..60);" k
"rubrypc tcxt is suing(L.80);".

Package-Nunc => "mcssagcs".
Private-Typc => "message".
Set-1 => "set-sender",
Set-2 => "set-receiver".
S e t 3 => "set-subject".
Set-4 => "set-body".
Get-1 => "sender-of'.
Get-2 => "rcccivcr-of",
G e t 3 => "subject-of'.
Get-4 => %ody-oT',
Local-Type-1 => "usernune",
Local-Type-2 => "username".
Local-Tp-3 => "line",
Local-Type-4 => "text");

The effon to construct this generalization amounted to the
writing of about 20 lines of sofrware and the building of
templates from the original unit. The effort to reuse the
component is the construction of the above call. This could
be seen as effort equivalent to declaring 17 smng constants.

Note that, at this level of generalicy, which came at
considerably higher cost than the previous tailoring, more
than just a message package for a mail system could k
generated. Any private type implemented as a record of
components with set procedures and access functions could
be generated with such a program. Therefore, this
represents a domain-independent form of the component,
wnere any mail system details are supplied by the reuser.
So, the benefit of applying this substantial generalization
effort is that the component can now be used by many
domains. In fact, we will see that this same generator can
be used to reptact pan of the Mailbox package, as well.

Alrhough the style of rhe Mailbox package is not as general
as the Messages package, there are several opportunities to

. make it more general and therefore more reusable in other
conttxts. For example, it could be tailored by maldng the
constituent type Message and the maximum mailbox size
generic formal parameters:

gncric
t y p Message is private;
Mex-Mailbox-Size : N a n d := lo00.

pxkrge General-Mailbox= is
... -- same tu package Mdboxcs. above
d Gcncral-Mailboxes;

This arrangement of the b l b o x e s pachge is shown in the
bottom pan of Figure 3b. Fonu~ te ly , no operations on h e
:)'pe Message were needed by the package Mulboxes.

othcnvk those operations would have had u) have bccn
passed as gencric paramctcrs.* Thcrcfore, following the
convention suggcstcd abovc, the generalization effort hcrr:
is the effon to writc two gcncric formal parameter
dcclantions. Rcuscr effort is the choice of a typc and a
value to perform the instantiation.

Beyond the rclativcly. simplc gcncralization shown above,
it can bc observcd that the Mailbox abstraction is actually
composcd of a four-componcnt record-type abstraction and
an array. Reusing the previously described example of
privalc record type abswctions, the package Mailboxes
could be divided into two separalc abstractions as follows:

generic
type Message is private;

package General-Mail-Items is
type Mail-Item is private;
procedure Set-Message

procedure Set-Read

procedure Set-Answered ...
prcccdure Set-Deleted ...
function Get-Mesragc (An-Item : MsiI-Item) re" Message;
function Is-Read (h-Item : Mail-Item) rerum Boolem;
function Is-Answered (An-Item : Mail-Item) r e m Boolcm;
function k-Deleted (An-Item : Mail-Item) r e m Boolean;

type MailJtem is

(AnJtem : in out Mail-Item; To : Message);

(An,Imn : in out MailJtem; To : Boolean);

p r i V a k
-- a modified implementation

record
Item : Message;
R a d : Boolean;
Answered : Boolean;
Dele:d : B o o l e ~ ;

end General-Mail-Iums;

generic

end record;

type Mail-Item is private;
Max-Mailbox-Size : N a ~ ~ r a l : = 1ooO;

package Genaal-Mailboxes is
rubcype Box-Size is Natural range 0 :. Max-Mailbox-Size;
type Item-hay is may (Positive rangc 0) of Mail-Iten;
type Mailbox (Size : BoxSize := 0) is

Item : Item-Array (1 .. Size);
rccord

end record;

*If A& supponed full inheritance, it would be possible u)
write the Mailbox abstraction so thar it relies on certain
operations to be defined for the generic formal type
Message. The user would then guarantee that any expected
functions would be available for any actual type paramete:
associated with the formal type Message, eliminating the
syntactic complexiry of pasing them vi.? zdditional generic
formal subprograms. This illustrates one of the advantages
of late binding, something thar Ada disallows in order u)
ensure thar required operadons are available prior to rhe
compilation of any insatiations of the generic.

4-14
1ooo5T8BL

+ure Stme (BOX : Mailbox: Owner : S h g) ;
procedure Remcvc (Box : in out Mailbox: Owna : String);
function Size (Of-Box : Mailbox) return Box-Sk;
procedure Rcmove

- procedure Append
(Md-Ir~n-At : Positive; In-Box : in out Mailbox);

(A-Mail-Msg : Mail-Xmn; To,Box : m out Mailbox);
No-MsgAt-Position : exception;

& General-Mailboxes;

n e s e packages arc depicted by Figures 5b and 5c. In the
above case, the client could obtain the functional quivalent

tht original mailbox package via the following
*tandati0IK:

psckqe Mail-ItmS k

pckllge mailbox^^ is
new General-Mail-Items (MuragesMtrsage);

new GenclalJvlailboxes (M ail-I~cms.MailJtcm);

1 I tailoicd pbckagc Maaaagea

- t y p e s lor urarname. ate.
@ -(supplied by reuser) & 4 -: o m p o n a nt I s cor d .I y pe b s I r e e I I on

:<.
exports typa U*..rg.

Figure Sa.

~0 add- changes are made during the second pass at ~ailoring the two
m s . Only by generating the Uersages package can the docisions a m
3 ' ~ -sure d the abrtract data type be ganeratized. since rwh a run-time

6 no(p s i b l e within the Ada tangruge.

l a l l o r e d . f a c t o r i d paelrage Mal l - l lama

$om* mabaage type (i .e..
Meraagia.Maawa9e. above)

d-com po na nt ree 0 I d- ly pe a bat I a c t 1 on

Figure 5b.

7he Mailboxes package is broken inlo two componenls. one which implements
W-hrms as a record-type Cala abstraction. above.

Figure Sc

Cwf package lanored lrom the original Mailboxes package i inpl~"xS
IL: L:! I s l of mail items
t2mUn Olher lhan lmplemenl hsis so 11 can be replaced wilh a gCneral.
r-':Jm lisl abslracllon. as shown in Ine texl

This no longer conlains any problem. SPeCrliC

Two tmdeoffs in this example are observed. First, the
specific way in which package Mail-Ircm was structured
originally was modified into the more g e n d
multi-component m r d shown here. This uadeoff was
accepted in order to allow this impiementaaon of
Mail-Items to be similar to the implementation of
Messages, which was previously shown to be highly
generalizable. This is an example of how standardization
limits the choices available to the implementer while
increasing the generality of the resulting programs. For
example, by adopling this approach, the generator program
mentioncd before could be used to gcneratt an equivalent
package to Mail-Items through the following input. thereby
allowing the generation of both the Messages package and
the Mail-Items package from the same reusable
component:

Gmeratc-Padcage
(Conrext => "with messages;".
tocal-Dsk =*
"type message is new messages.mcssage;".

Package-Name => "mail-items".
Private-Type => "mail-item",
Set-1 => "set-messqc",
Set-2 =e "set-red".
Set-3 => "set-answered",
Set-4 => "set-dtleted".
Get-1 => "get-message",
Get-2 => "is-read".
Get-3 => "is-answered".
Get-4 => "is-deleted",
heal-Type-1 => "message",
Local,Type_2 => "bo~lcsm".
LocSl-Typc-3 => " b o ~ l e ~ " ,
bd-Type-4 => "boolew");

*
The second tradeoff was to make the type Mailbox visible.
This was necessary since the client software will have to
gain direct access to a h4ailJtem within a mailbox array in
order m perfonn the operations from package Mail-Itrms
on ir Simply returning a value of Mail-Item via a function
call would not allow the user to set the components of a
Mail-Item in a mailbox. An alternative solution would
have been to implement the items in a mailbox as ~ccess

values, each designating a Mail-Item. In this way, a
function. returning an access value would provide the
capability for the client to modify the designated objecr, a
Mail-Item. This situations occurs frequently when
factoring composite abstractions into their constituent
abstractions, and suggests hat by presenting objects
directly on the interfxe to an absmction, rather than just
their values, an abstraction can be made more general and
reusable.

Further generalizations are not shown in detail in the
interests of space. However, note that the above
General-Mailboxes abstraction is the only remaining
custom-made application code in the example. It amounts

to an ordcrcd list of itcms of disccmiblc size. to which
items can bc appcndcd and from which itcms can bc
deleted. and which can bc storcd to and rcvieved from
fdes. Exccpt for UIC ability to storc and rctricvc thc lists,
such an abstraction would probably bc availjblc in a library
of generic data smcturcs. Assuming the constitucnt
objecls are privau: and not limitcd priva~e, it would bc
possible to pcrform binary inpuvoutput on thcm. So, i t is
not unnasonablc to augmcnt an existing gcncric abstraction
to include storagc and remicval. Such an augmcnution of a
list rcsourcc could be accomplished by laycring somclhing
like the following onto iL

- Layering on a list abstraction:
with Simple-LEU;
generic

type Item is privatc;
type Item-Access is access Item;

package Item-Lists is new Simple-Lists (Ikm, Ikm-Access);
rype Mailbox is new 1tem-Lists.List;
procedure Store (A-Box : Mailbox; To-Ele : String);
procedure Retrieve

end General-Mailboxes;

package General-Mailboxes is

(A-Box : in out Mailbox; From-File : String);

To obtain the equivalent functionality as was provided by
instances of the earlier package General-Mailboxes, the
following declarations would now be required:

package Mdl-Itcms is
new General-Mail-Item (Messages.Message); -- same

type Mail-I~~"Access is access Md-Ittm3vlailJrem;
package Mailboxes is new General-Mailboxes

(Item => Mail-Items.Mail-Item.
Irtm-Access => Mail-Itan-Access);

?he client can meat the above package Mailboxes similarly
to the earlier version; it will have all the same operations
due to the derivability of those already implemented by
Simple-Lists. Also. note thal the mailbox implementation
has been made private again by using designated objects to
hold mail items. This would allow an hem-At function to
return an access value to the actual mail-item and not just
the value of that mail-item. This allows updates of the
item via the operations that were defined in the Mail-Item
package (Set-Message, Set-Deleted. ctc.).

hieasurement Summary

Measurement is required at two points of the software
cycle. When candidate units are k ing identified and
domain-specfic details are being distinguished' from
problem-specific der& esdmztes of the generalization
effon necessary to remove any give d e t d are required. At
the time of reuse. estimates oi the configuiition effon
necessary to adapt a component for reusc are rquired.

Observations from conduc tins scveral generalualions have
shown hat an initial cstimatc based on an ordinal scalc is
possiblc. This scalc has valuc parametcrization as he
easiest to puform for both generalization and reuse.
Hardcr than this is typc or operation parameterization,
which requires tailored generalization in the case of Ada.
The hardest form of generalization is building a
spccial-purpose componcnt gcncrator. This can bc mad:
easier through the use of codc-gcneration support tools.

After an initial evaluation of the generalization effon has
becn made and an approach to generalization has been
detcnnined, a more accurate assessment of the effort may
be possible. The most direct indicator of the effort required
is the number of lines of code that have IO be written,
changed or added. In many cases, a generalization can be
accomplished with just a few lines of new or changed code.
However, in the case of unsupported component
generation, the entire generator may have to be written.

Reuse effon is easier to quantify since the component in
question is already known. The effon to configure a
generator or to instandate a generic can be estimated based
on the number of inputs or parameters required. In most
cases, the usage of a tailored or generated component is
similar regardless of whether the component was developed
from scratch or obtained hom a repository. However, even
this step can be complicared by the fact that a development
might choose to be constrained in some way in order to
take advantage of an available component. The COSLS of
such a decision can be especially difficult to esdmac. In
the long run, however, it is expeccd that the adoption of a
component, similar to the adoption of a standud, is a
cost-effective c ho icz .

Another m e a m Lhar is needed is an estimate of the future
value of a unit in a repository. It may not be the besl
approach to populatt a repository with many units which
were inexpensive to generalize if they will rarely k
needed. It would be better to spend the time performing a
diffcult generaliration if the resulting unit will more than
return that invesuncnt Here again, domain expem will
have to assist in making this determination.

Future Work

Progress is needed on memcs to qumufy generalizanon
and reuse effon. Effective memcs will open the way to
establishing an economic model of reuse that could enable
an organization to choose its optimzl approach to reuse
engineering. Note that the Same approach or even the same
specific model would not necessarily be best for two
different orgmizations. One obvious reason for this is diZ
one organization mzy concennate in a single application
domain while motfier organizadon mag do work in mmy

4-16
1oO0578aL

domains WiLh very litlle repetition. The fmt organization
may find its optimal approach LO r t u s t is to develop a
mature repository of domain-specific components while he
second organization may find ha! only
domain-independent components are likely to bc cost
cfrecuve.

In addition to the costs of generalization and Axe. an
Eonomic view of the software cyclc suggested in this
paper would have to deal with rtpository maintenance.
component relrieval, component probabilities of reuse and
cost savings, and the effon required of domain expens and
repository expens. Current progress is being made in some
of these arcas by interviewing expens at one branch of the
NASA Goddard Space Flight Center where reuse has been
practiced for many years, originally with Fortran and more
rsently with Ada. The results of these interviews will
assist us in formulating a more quantifiable model of the
costs and benefits of reuse at that organization. It is hoped
hat this experience can then be exnapolaltd into a broader
model of reuse engineering that can be adapted for use at
other organizations.

References

pailey and Basili] J. Bailey and V. Basili, "Software
reclamation: Improving Post-Development Reusability," in
Proceedings Eighth Annual Conference on Ada
ieehnology, Atlanta, Ga., 1990.

9asili and Caldera] V.R. Basili and G. Caldera, "A
ikference hhitecture for the Component Factory,"
Computer Science Technical Reporr Series, University of
biarylmd, College Park, MD. March 1991,
UMIACS-Tp.-91-24 or CS-TR-2607.

puil i and Rombach] V.R. Basili and H.D. Rombach,
'Suppon for Comprehensive Reuse," Software Engineering
Joumal, July 1991, (also, Computer Science Technical
Reporr Series, University of Maryland, College Park, MD.
February 1991. CS-TR-2606 or vMTACS-TR-91-23).

[Caldiera and Basili] G. Caldiera and V R . Basili.
"!dcntifying and Qualifying Rcusable Software
Components," IEEE Compurer. Vo1.24. N0.2, Fcb.1991.
~9.61-70.

!E!lis and Stroustrup] M. Ellis and B. Strousuup. "The
.%!!notated C++ Rcfcrcnce Manual," Addison Wesley,
1999, p. 341.

:AIC] Ada Information Clearinghouse. " S T A " S - R -
COBOL and C Programmers Moving Successfully to Ada."
Ada Informrion Clear ingnouse h'ewsleiicr 8.2. June 1990.

John W. Bailey is a Ph.D. candidate at the Universiry of
Maryland Computer Science Department He has been
consulting and reaching in the areas of Ada and softwart
measurement for nine years. and is cumntly consulting to
Rarional. He has an M.S. in computer science from the
University of Maryland, where hc also earned a bachelor's
and a master's degree in cello performance. He is a
member of the ACM.

Victor R. Basil; is a professor at the University of
Maryland's Institute for Advanced Computer Studies and
Computer Science Deparanent. FA research interests
include measuring and evaluating software development
and is a founder and principal of the Software Engineering
Laboratory. a joint venture of NASA, the University of
Maryland, and Computer Sciences Corporation. He
meived a B.S. in mathematics from Fordham College, an
M.S. in mathematics from Syracuse University and a Ph.D.
in computer science from the University of Texas. He is a
fellow of the IEEE Computer Society.

4-17
loood786L

On the Nature of Bias and Defects in
the Software Specification Process

PABLO A . S T R A U B
COMPUTER SCIENCE DEPARTMENT
CATHOLIC UNIVERSITY OF CHILE

Abstract

Implementation bias in a specification is an arbitmry
constraint in the solution space. This paper describes the
problem of bias and then presents a model of the specifi-
cation and design processes describing individual subpro-
cesses in terms of precision/detail diagmms, and a model
of bias in multi-attribute software specifications. While
studying how bias is introduced into a specification we re-
alized that software dejects and bias ore dual problems of a
single phenomenon. This has been used to ezplain the large
proportion of faults found during the coding phase at the
Software Engineering Labomtory at NASA Goddard Space
Flight Center.

1 Introduction

Most informal software specifications are ambiguous,
imprecise, and incomplete. Moreover, this is usually not
evident by looking at a particular specification. This has
prompted research on desirable and undesirable charac-
teristics of specifications and specification languages. To
make specifications precise, formal languages are used.
Some of these languages are defined so that automatic
compilation or execution is possible. However, much detail
has to be included in executable speafications [SI. Th‘ is ex-
t ra detail not only makes the specification harder to read
[6], but also leads to ‘implementation bias’.

Alas, implementation bias-an arbitrary constraint in
the solution space-is a term often used but not well de-
fined. This has resulted in two effects: Either (1) spec-
ifications are biased, or (2) they are incomplete, for fear
of bias. In fact, what has been called ‘bias’ in the litera-
ture is sometimes the desirable record of design constraints
and design decisions. The problem of bias is related to the
more important problem of software defects, because both
are manifestations of either misconceptions with respect to
the problem or preconceptions with respect to the solution;
hence, we study these two problems together.

OVERVIEW OF THE PAPER. This paper presents a
model to help understand bias in software specifications.

MARVIN v. ZELKOWITZ
DEPARTMENT OF COMPUTER SCIENCE AND

INSTITUTE FOR ADVANCED COMPUTER STUDIES
UNIVERSITY OF MARYLAND AT COLLEGE PARI<

The remaining of this introduction presents our frame-
work, the problem of bias and the concept of specifica-
tion correctness. The next section presents our view of the
process of specification and design. Section 3 presents our
model of bias which is based both on the specification prc-
cess and on a classification of requirements. Within this
model, bias is not an absolute property of a specification,
but depends on the process of creation of the specified
requirements, that is bias depends on the process of spec-
ification and design. Section 4 presents the relationships
that exist between bias and defects in a specification, and
a study made at the Software Engineering Laboratory that
explains the high relative incidence of coding faults in that
environment.

1.1 Specification F’ramework

In this work we are considering multi-attribute specifi-
cations developed by starting from a description of require-
ments, and then refining i t in several stages [3, Chapter 11.
Each stage takes a specification and produces a product,
which is a more refined specification, until a program (i.e.,
a specification for a computation) is obtained. This view is
not an endorsement of any particular development method:
i t models top down development, the waterfall life-cycle
model, Boehm’s spiral model, transformational program-
ming, and other development methods.

We first define some related concepts.

Attribute: feature or dimension that characterizes software
systems (e.g., average response time).

Requirement: constraint i n the values of attributes (e.g.,
average response time shall be 0.5 seconds).

Preference measure: a measure of the goodness of the dif-
ferent values for a given attribute (e.g., smaller re-
sponse time values are better).

Specification: statement of attributes, requirements, and
preference meaSures for a software system.

tion.
Specificand set: set of all systems that satisfy a specifica-

Solution set: set of all systems that solve a problem.

lOoo5188L

4-19
PRECEDING PACE BLANK PjO‘T FELMED

constraints in the solution set.

1.3 Avoiding bias

(4 (e) (f)

Figure 1: Specificand S, solution P, and particular
solutions 2 and d‘: (a) ideal, (b) acceptable initial
specification, (c) successive specification stages, (d) in-
complete specification, (e) bias, (f) usual case.

Whereas the specificand set is defined in terms of a par-
ticular precise specification of a problem, the solution set
is defined in terms of the problem itself without reference
to any written Specification. T h a t is, the specificand set
comprises all systems tha t are correct with respect t o the
written specification, and the solution set comprises all
systems tha t satisfy the user or customer. T h e differences
between these sets are at the heart of our model; they are
also the cause of defects i n specifications.

1.2 The problem of bias

An ideal initial specification is general and precise
enough so tha t a software system satisfies the specification
if and only if it solves the problem at hand, that is, the
specificand set equals the solution set (Figure la). This
view is too optimistic, because there can be many solu-
tions tha t do not even involve software. In practice, we
only require software systems satisfying the specification
to be solutions, and tha t no substantial class of solutions
does not satisfy the specification, so that we can arrive at
an optimal or nearly optimal solution (Figure Ib). An ide-
alized development by staged specifications constrain the
specificand set (Figure IC) by adding design decisions-
and nothing else. Incomplete specifications (Figure Id)
may lead to defects; for instance, z’ satisfies the specifica-
tion but i t does not solve the problem. .On the other hand,
bias (Figure le) may lead to inefficiencies (e.g., optimal
solution is really 2 ”) and other development problems be-
cause the developers are overconstrained. Unfortunately,
most specifications suffer both problems (Figure I f) .

A specification is biased if some of i t s requirements are
arbitrary. Biased specifications overly constrain the speci-
ficand set, precluding some valid implementations as solu-
tions to the problem at hand. Hence, the amount of bias is
a common yardsti& to judge software specification meth-
ods: those that are considered biased are usually rejected.
Unfortunately, bias is sometimes confused with intended

A generally accepted rule to avoid bias is “A specifica-
tion should describe only what is required of the system
and not how it is achieved.”’ However, this rule does not
solve the problem: it only shifts i t , because whether some
requirement is a what or a how depends on one’s point of
view. For instance, the same requirement can be seen as
a how by the designer and as a what by the implemen-
tor. During the process of refining the specification, some
how’s become what’s: a design decision (Le., how to do
something) made by a designer is a requirement (i.e., whot
to do) for the implementor. A how becomes a what when
a decision is made: a new requirement is incorporated into
the current specification stage.

Consider a specification for a subprogram. The exter-
nal interface of the subprogram is considered a requirement
by the programmer (it is a what), because he or she can-
not change it. This same interface was previously a how
for the designer of the whole program, because he or she
could have chosen an alternative interface. On the other
hand, internals of the subprogram (e.g., algorithms, da t a
structures, local variable names) are mostly how’s for the
programmer, because he or she can change them.

There is no reason to include a how in a specification:
specifications should describe what is desired and no more.
However, often some attribute that is already fixed (i.e.,
i t is a what) is not specified because of fear of bias. For
instance, if within an institution there is a convention for
local variable names for the purpose of easing maintenance,
then the adherence to this convention is a what: I t is al-
ready fixed, the programmer cannot change i t , so i t should
be specified. We argue that this kind of constraint is not
bias; in Section 3.3 we provide a definition of bias that is
consistent with this view.

1.4 Specification Correctness

Specification bias and specification defects are inti-
mately related. As can be seen from Figure 1, bias is
related to the set difference of the solution set and the
specificand set, P - S. Tha t is, there is bias only if there
are acceptable and preferred solutions outside the speci-
ficand set. Conversely, defects are related to the specif-
icand set minus the solution set, S - P. That is, if an
implementation i is unacceptable but is correct with re-
spect t o the specification, it is in the set difference (i.e.,
i # P /I i E S + : E S - P). In other words, bias and

’ A common statement of this rule is “A specification should
describe only what the system should do, not how it should
do it.” This modified rule is only useful with functional spec-
ifications: it views a software system as a specification for a
computation, rather than as a product.

defects in the specification are dual problems.

Assume that for a given specification, the specificand
set is contained in the solution set. In this case, all correct
implementations are acceptable. This motivates the no-
tion of specification correctness with respect t o a problem,
which is similar to the more familiar notion of implemen-
tation correctness with respect to a specification. (The
main difference between these two concepts is that specifi-
cation correctness cannot be formally verified because i t is
defined relative to an abstract problem.) A speafication is
correct if i t is realizable (there is a correct implementation)
and complete (all correct implementations solve the prob-
lem). Tha t is, for a correct specification it is possible to
derive an implementation and any implementation derived
solves the problem. On the other hand, a specification is
called impertinent to the problem if there is not a correct
implementation tha t solves the problem.

The above is formalized as follows: Let S be the speci-
ficand set of a specification and let P be the solution set
of a problem.

The specification is realizable iff S # 0.
The specification is complete tu.r.t. the problem iff S E

0 The specification is correct w.r.t. the problem iff it is

The specification is pertinent t o the problem iff S n

P.

realizable and complete.

P # 0.

The following relations between these concepts are imme-
diate: correctness implies pertinence (S # 0 A S E P j
S n P # 0); pertinence implies realizability (S n P # 0 j
S # 0); completeness and pertinence imply correctness
(because pertinence implies realizability); unrealizability
implies completeness and impertinence (S = 0
P A S n P = 0); there is no correct specification for a
problem without a solution (P = 0 *,3S: S # 0 A S E P).

To analyze the correctness of a specification with re-
spect t o a problem, consider the emptyness of the set S- P,
related to the completeness of the specification, and of the
set S n P, related to the pertinence of the specification.
There are four cases: (a) The specification is unrealizable;
(b) the specification is correct; (c) the specification is real-
izable but not pertinent; and (d) the specification is perti-
nent but incomplete, that is the specification can be made
correct by adding more requirements. Figure 2 presents
these cases, with case (d) comprising two subcases. In
cases (a) and (c), the only choice is to backtrack, since
at this point i t is impossible to derive an acceptable solu-
tion. In c u e (b) there are no problems of correctness, but
there can be problems of specification bias, if the preferred
solution lies outside the specificand set as in Figure le.
In case (d), the specification is incomplete, so addition of

S

Figure 2: Specificand set S with respect to solution
set P: (a) unrealizable, (b) correct, (c) realizable b u t
impert inent , (d) pertinent but incomplete.

problem-specific information is needed to achieve a correct
specification.

2 Specification Refinement

The specification and design processes are complex pro-
cesses in which technical knowledge, art and inspiration
take part [lo]. Goel and Pirolli [4] describe the tradi-
tional view of design as a four-step process: '(1) an ex-
ploration and decomposition of the problem (that is, anal-
ysis); (2) an identification of the interconections; (3) the
solution of the subproblems in isolation; and (4) the com-
bination of the partial solutions taking into account the
interconnections (that is, synthesis)."

In this work we go beyond these general processes and
describe the subprocesses that occur specifically in soft-
ware design. We characterize these subprocesses by how a
current specification is updated to produce the next spec-
ification within a series, and also by how precision and de-
tail are added to the Specification. There is no assumption
that all requirement analysis is done before design; on the
contrary, requirements gathering and design are supposed
to be intertwined [12].

2.1 Refinement S ubprocesses

We assume that there is a written initial specification
and that successive specifications will be created by a series
of modifications to that specification. With respect to the
subprocesses that perform these modifications-typically
additions to the current specification-we postulate that
there are four main kinds of activities that modify a spec-
ification:

Ezplicotion: addition of a requirement by making explicit

Design decision: addition of a requirement by choosing a

a nonexplicit requirement.

particular design.

4-21

Presentat ion chbnge: change in the notation, presenta-
. tion, or structure of the s,pecification.

Retruction: withdrawal of a requirement from a previous
decision or explication.

Even though we present these as discrete changes, actual
changes to a specification usually involve a combination of
them. For example, after finding an incorrect explication
an analyst may replace the corresponding requirement by
another one: a retraction followed by an explication.

Exp l i ca t ion

Explication is one of the main activities during require-
ments gat hering. Explications make the specification more
complete, that is, ensure that software systems satisfying
the specifications are solutions. In Figure 1 the goal is
to transform a specification like (d) into one like (a). This
goal is achieved by making explicit either d o m a i n in jorma-
tion, problem-specific information, or consequences of the
specification, thus reducing the specificand set.

Of course, the new requirement is not always a valid
explication (e.g., something believed to be a consequence of
the requirements might not be). This is intimately related
to the concepts of specification correctness (Section 1.4)
and bias (Section 3.3).

Des ign Decis ions

As the name suggests, design decision is the most im-
portant process during design activities. Design decisions
guide the implementation process towards a preferred set
of solutions reducing the specificand set (as in Figure IC).
The information needed to make design decisions comes
mainly from the previous specification and the solution do-
main. For example, semantic-preserving transformations
in transformational programming are design decisions, be-
cause they preserve the functionality while improving other
attributes of the algorithm.

We have identified several kinds of design decisions: de-
composition, refinement, composition, abstraction, instan-
tiation, reuse, creation of alternatives, and choice. Some of
these are intimately related so we discuss them together.

Decomposit ion a n d refinement. Decomposition consists
of dividing the problem into subproblems. It is usually
followed by refinement, which means defining unspecified
concepts or objects. These two processes are the core of
stepwise refinement.

Composit ion. On the other hand, composition is the
process of creating a solution to a problem by combining
solutions to subproblems. T h a t is, composition is the main
process in bottom-up development. Composition is used
most effectively in combination with reuse.

Abstmction, instantiation, a n d reuse. Abstraction as a
design decision consists of specifying a solution to a more
general problem (i.e., a problem of which the problem of
interest is an instance), usually defining a set of (formal)
parameters to describe particular instances. T h e rationale
for solving more general problems is that i t is often easier
to abstract away particulars of the problem of interest and
solve a general problem. Furthermore, the more general
solution can be reused in other contexts.

Reuse as a design decision consists of prescribing the use
of a particular solution to a subproblem. If the solution to
be reused is parameterized (;.e., i t has formal parameters)
actual parameters must be provided to do the reuse. In-
stantiation is the process of defining actual parameters for
a parameterized abstract solution.

A solution t o reuse need not be already implemented: it
may be simply specified as the solution to another subprob-
lem. When several subproblems in the current design are
instances of a single general problem, abstraction, instan-
tiation and reuse can be employed to “factor” the design.

C n o t i o n o j alternatives and choice. When it is not im-
mediate which kind of design is the best, i t is possible to
create several alternative designs using some of these tech-
niques. A valid implementation must conform to one of the
created designs. After more elaboration of these designs,
some are discarded until one design prevails. Choice is the
process of selecting among alternative designs; the choice
process is more objective when i t is based on preference
measures [2].

Presentation Changes

Presentation changes are intended to change the pre-
cision, formality, readability, modularity or other aspects
of the specification itself, without affecting the specificand
set, that is, without adding more information. For exam-
ple, a condition written in Enghsh, referring to a collection
of objects can be replaced by a logical predicate in which
the collection is represented by a set.

Ideally, a presentation change does not change the
specificand set, that is, it does not create new require-
ments. However, restrictions in the specification languages
or methods used may impose additional constraints. In the
above example, should our specification language support
lists but not sets, we might have specified a list as an im-
plementation for a set. If we later coded this list in Pascal
we might have coded our list specification into an array
or linked structure rather than the more efficient set da t a
type that actually was originally specified. T h a t is, as a
result of a specification language deficiency we have added
an additional arbitrary constraint for the program that re-
sulted in i t being less efficient, that is, we have added bias.

Retraction

4-22

I Explicit reqs. 1
I Explicit I

Figure 3: Classification of requirements: explicitness.
Ficti t ious requirements are shown wi th segmented line
because they a re not real requirements.

Retraction occurs when a designer realizes that the cur-
rent design is incorrect or otherwise undesirable. The goal
of retractions is to create a pertinent specification, as de-
fined in Section 1.4. As we said before, the retraction pro-
cess is usually done in conjunction with other processes
tha t create a new Ureplacementn requirement.

Inherited

Figure 4: Classification of explicit requirements: ori-
gin.

reader of the specification and not requirements a t a!]: the
reader believes tha t they are either implicit, implied or
absent requirements.

A real nonexplicit requirement is either an implicit, im-
plied, or absent requirement.

3.2 Origin
3 A Model of Bias

Presence of bias cannot be determined from the require-
ments alone, because it depends on the origins of require-
ments. For instance, if the origin of a particular require-
ment is in the problem, the requirement is not bias; if the
origin is a misconception i t may be. Hence, our definition
of bias is based on a classification of requirements.

Requirements are classified into several classes with
subtle differences. These subtleties are what makes bias
hard to define and even harder to find. T h e main clas-
sification criteria we consider are explicitness and origin,
which depends on the process of creation of new require-
ments.

3.1 Explicitness

A requirement is ezplicit if i t is present in the specifi-
cation; otherwise, i t is nonezplicit.

Nonexplicit requirements are a recurring cause for mis-
understandings in product development. They are further
classified as follows (Figure 3).

Implicit requirements are those tha t are understood to
be part of every product in the application domain, and
so they are left unstated.

Implied requirements are logical consequences of other
requirements.

Absent requirements are requirements unintentionally
omitted in the specification, bu t are required by the so-
lution set. These are not part of every product in the
application domain.

Fictitious requirements [a] are assumptions made by the

An expliat requirement is new with respect t o a cer-
tain specification stage if i t is first made explicit a t that
stage; otherwise, the reqliirement is inherited from previ-
ous stages. (When the specification stage is clear from con-
text we will say simply ‘new’ or ‘inherited’ requirement.)
Of course, every explicit requirement is new to one stage,
namely the stage in which i t is introduced.

The discussion in Section 2 motivates the following clas-
sification of new requirements with respect to their origin
(Figure 4).

Designed requirements are the consequence of design
decisions taken at the current specification stage.

Ezplicatiue requirements are created by explication of
implicit, implied, or absent requirements.

Eztmneous requirements are created by explication of
fictitious requirements.

Imposed requirements are those imposed by the limita-
tions of the specification method or language used, created
as a side effect of a presentation change.

This classification describes possible origins for the re-
quirements, but i t does not provide a method to determine
the origin. For example, without a complete analysis of
the application domain, there is no definite method to tell
whether a requirement is extraneous or the explication of
an implicit requirement.

3.3 The Nature of Bias

We define bias in terms of theqrigin of the requirements
described in a specification: A specification containing ex-
traneous or imposed requirements is biased.

4-23

This definition provides insight into the problem of bias,
including both its origins and consequences. The origin
of bias is either wrongful interpretation of nonexplicit re-
quirements or the limitations imposed by the specification
method. The consequences are that the specificand set
can be overly constrained or tha t the solution adopted can
be suboptimal. That is, a biased specification will lead
the design towards particular implementations that are not
necessarily the best possible.

The definition does not provide a method to measure
bias content in a specification, because bias is defined in
terms of the origin of requirements and we cannot be com-
pletely sure of the origin of some requirements. Further-
more, bias is relative to the application domain and the
software engineering environment, because the domain and
environment define what is implicit.

For example, in an environment in which all programs
are written in a particular programming language, the
presence of idioms of this language in a specification is
not necessarily bias, unless another implementation lan-
guage is introduced to the environment. This is what
happened at the Software Engineering Laboratory (SEL)
a t the National Aeronautics and Space Administration
(NASA).2 During the first experience with development
in the Ada language they realized that software specifica-
tions for satellite dynamics simulators were “heavily biased
toward FORTRAN. In fact the high level design for the
simulators is actually in the specifications document” [I].
This was not a problem411 the contrary, i t facilitated
both development and reuse of specification and code-
until the first development in Ada: the specifications had
to be rewritten first. Given our definition of bias these
FORTRAN-oriented specifications were not necessarily bi-
ased; they contained many designed requirements. Before
Ada was introduced, the use of FORTRAN was an tm-
plicit requirement. After that , the choice of appropriate
language became an ezplicit attribute, resulting in the as-
sumption of FORTRAN as a fictitious requirement.

The relative nature of bias is an essential characteris-
tic. I t stems from the existence of nonexplicit requirements
and the inherent uncertainty with respect to those require-
ments. That does not imply that there is nothing to do:
an obvious task is to make explicit as much as possible
about the domain and environment. If this is done, we
are reducing considerably the possibilities of bias. How-
ever, as long as there are nonexplicit requirements, there
will be doubt about these requirements and hence possi-
bility of bias. Making explicit the implicit requirements of
a certain domain and environment still leaves two sources
of bias: restrictions on the method and languages, and
absent requirements. These two cannot be avoided com-
pletely: the first because any method tha t provides some

’The SEL was created in 1976 to study and improve the
software process at NASA Goddard Space Flight Center.

guidance in the specification process will guide the design
to some particular kind of solutions; the second because a t
the beginning of a project most requirements are absent.

4 Software Defects

Both bias and software defects are a consequence of
problems in the development process. Section 1.4 shows
the duality of bias and faults by analysing the differences
of the specificand set and the solutions set. Here this com-
parison is extended further. We classify software defects in
three classes [Ill: faults occur in documents, errors occur
in human processes, and failures occur in automatic pro-
cesses. There is an analogy between the problem of bias
and defects: fictitious requirements are like errors (both
during human processes), imposed and extraneous require-
ments like minor faults (both occur in documents), and
inefficiencies like minor failures (both occur during auto-
matic processes). T h e criticality of the attributes involved
is related to whether something is considered a fault or
simply bias.

During software development, successive specifications
are written, usually starting from an incomplete specifi-
cation towards a correct specification. Every specification
inherits from all previous specifications, so if there is a
new requirement that contradicts an explicit previous re-
quirement the new Specification is inconsistent and hence
unrealizable. The only solution is to retract either the
new requirement or previous requirements. Similarly, if
a new requirement contradicts a nonexplicit real require-
ment the specification is made impertinent t o the problem
(Le., i t solves another problem); again, the only solution
is t o retract. All too often a specification is unrealizable
or impertinent but this is not evident t o the developers so
no retraction occurs and development continues. This is a
secondary but important source of defects.

We have studied these problems at the SEL. The soft-
ware analyzed are ground support systems for unmanned
spacecraft. Most systems are about lOOK source lines FOR-
TRAN programs, bu t a sizable percentage are now in Ada.
T h e SEL has a database describing systems and their de-
velopment processes made in the last 15 years. The anal-
ysis that follows uses da t a from that database, but only
considers relatively recent da ta (since January 1, 1986),
because the software process has changed.

Table 1 summarizes counts of change reports classified.
by type of change (e.g., requirement changes, fault cor-
rection) in all SEL projects. From the table, 49.4% of the
changes are due to faults, 12.3% correspond to planned en-
hancements and 10.6% are due to requirements changes.

Table 2 summarizes counts of the changes due to the
8074 faults of Table 1, classified by source of fault. From
the table, 74.8% of faults are related to coding and 16.3%

I TvDe of channe

Fault source

Requirements
Functional specification

Fault correction
Environment change
Improvement of user services
Planned enhancement
Presentation changes
Requirement changes
Other
Total

All faults
Count %

76 0.9
242 3.0

Count %
8074 49.4
533 3.3
1205 7.4
2018 12.3
1464 9.0
1730 10.6
1327 8.1
16351 100.1

Design
Subtotal specifications
Code

Table 1: Changes by type in SEL projects since 1986.

996 12.3
1314 16.3
6043 74.8

Previous change
Other
Total

714 8.8
3 0.0

8074 99.9

Table 2: Fault source in SEL projects since 1986.

of the detected faults are directly related to incorrect spec-
ifications (our definition of ‘speafication’ includes three
SEL phases: requirements, functional specifications, and
design). This simple analysis demonstrates that u p to 16%
of all problems can be related to implementation bias in
the specifications.

However, because requirements documents and their
changes originate outside the SEL and within some re-
quirements generation group at NASA, these changes are
not considered faults in the specifications. If we msume
that the 1730 requirements changes in Table 1 were in-
deed fault corrections, the total number of faults would
be 8074 + 1730 = 9804, the total number of specification
faults would be 1314 + 1730 = 3044 and hence specifica-
tion errors would account for up to 31.0% of all faults.
This assumption is not as extreme as it looks, because
predicted changes in the requirements, improvements and
environment (hardware) changes are classified separately.
In summary, considering all faults, between 1/6 and 1/3
of all faults a t the SEL are related to specifications, and
potentially are related to implementation bias.

Another source of faults related to specifications are
faults of omission: when something is not specified i t is not
a problem of the code but of the specification. The fact
tha t the problem shows up during coding or testing does
not mean that the problem is coding. Table 3 shows counts
of faults of omission, commission, omission/commission
separated by fault source (the ‘Total’ column is not identi-
cal to the ‘All faults, Count’ column from Table 2 because

Source

specs.
Design 253 550 159 996
Code 2302 2334 921 482 6039
Prev. chg. I 289 295 79 50 713
Total I 2965 3297 1207 595 8064
Percent I 36.8 40.9 15.0 7.4 100.0

Table 3: Omission and commission faults in SEL
projects.

10 faults had invalid data). At the SEL 37% of all faults
are faults of commission, 41% are faults of omission and
15% are faults of omission/commission. Thus, about one
half of the faults are of omission and potentially can be
attributed to incompleteness in the specifications.

In conclusion, even though coding appears t o be by far
the most important source of faults, a deeper analysis of
the specification process reveals tha t many coding faults
have roots in earlier stages. Implementation bias undoubt-
edly plays an important role in many of these 3000 faults
tha t are related to changes due to specification issues.

5 Conclusion

Even though bias is widely recognized as an undesir-
able property of specifications, i t has not been adequately
studied. This has caused confusion with the related con-
cept of design decision, so tha t the presence of designed
requirements in specifications has been considered unde-
sirable. This is in contrast with the use of specifications
in other engineering disciplines, where a specification may
include many designed requirements (e.g., materials, man-
ufacturing methods).

In this paper we presented a model to describe the na-
ture of bias and distinguish bias from designed require-
ments and other requirements in a specification. This
model is based on a classification of all the requirements
described in a specification and also those tha t are not de-
scribed (i.c., nonexplicit); i t explains the nature of bias,
but since it uses nonexplicit requirements i t does not lead
to any definite method to detect bias. However, the model
does explain both the relative and unavoidable nature of
bias. Because bias depends on the specification process we
had to model that process. This modeling shed light on
the problem of software defects, a relationship tha t in t u m
helped us to potentially explain the high relative number
of coding faults found at the SEL.

Although we have developed an explanatory model
of the design process, quantification of these concepts is
needed before we can develop practical procedures for a p
plying them in large scale developments. Additional work

4-25

in this direction in continuing.

Acknowledgements

This research was supported in part by grant NSG-5123
from NASA Goddard Space Flight Center to the Univer-
sity of Maryland. Thanks to Sergio Cirdenas-Garcia and
Eduardo Ostertag for their helpful comments. P. Straub
was partially supported by a scholarship from the Catholic
University of Chile while he was at the University of Mary-
land.

References

[l] Carolyn E. Brophy, W.W. Agresti, and Victor R.
Basili. Lessons learned in use of Ada-oriented design
methods. In Proceedings of the Joint Ada Confennce,
March 1987.

[2] Sergio Cirdenas and Marvin V. Zelkowitz. Evaluation
criteria for functional specifications. In Prucdings
12th Int'l Conf. on Softwan Engineering, pages 26-
33, Nice, France, March 1990.

[3] Bernard Cohen, William T. Harwood, and Melvyn I.
Jackson. The Specification of Complez Systems.
Addison-Wesley, Reading, Massachusetts, 1986.

[4] Vinod Goel and Peter Pirolli. Motivation the notion of
generic design within information-processing theory:
The design problem space. AI Magazine, 10(1), spring
1989.

[SI I. J. Hayes and C.B. Jones. Specifications are not (nec-
essarily) executable. Softwan Engineering Journal,
pages 330-338, November 1989.

[6] C.A.R. Hoare. An overview of some formal methods
for program design. IEEE Computer, pages 85-91,
September 1987.

[7] Cliff B. Jones. Systematic program development. In
N. Gehani and A.D. McGettrick, editors, Software
Specificution Techniques. Addison Wesley, Reading,
Massachusetts, 1986.

[8] Edward V. Krick. An Introduction to Engineering and
Engineering Design. John Wiley and Sons, New York,
N.Y., second edition, 1969.

[9] Harlan D. Mills, Michael Dyer, and Richard C. Linger.
Cleanroom software engineering. IEEE Software,
pages 19-24, September 1987.

[lo] Ellen Shoshkes. The Design Pmess . Whitney Library
of Design, New York, 1989.

[ll] Pablo A. Straub and Eduardo J. Ostertag. EDF: A
formalism for describing and reusing software expe-
rience. In International Symposium on Software Re-
liability Engineering, pages 106-1 13, Austin, Texas,
May 17-18 1991.

'

[12] William Swartout and Robert Balzer. On the in-
evitable intertwinning of specification and implemen-
tation. Communications of the ACM, 25(7):438-440,
July 1982.

4-26

An Improved
Modules

0 f - i N 9 3 - " J J 1 9 ? ' 0 >=

Classification Tree Analysis of High Cost
Based Upon an Axiomatic Definition

of Complexity

Jianhui Tian
Soft. Eng. Process Group
IBM Canada Laboratory

North York Ontario,
' Canada

. Adam Porter Marvin V..Zelkowitz
Computer Science Dept.
University of Maryland
College Park, Maryland

Inst. for Advanced Computer Studies
and Computer Science Dept.

University of Maryland
College Park, Maryland

Abstract

Ideniijicaiion of high cosi modules has been viewed
as one mechanism i o improve overall sysiem nliabil-
iiy, since such modules iend i o produce more ihan iheir
share of problems. A decision ine model has been
used i o identify such modules. In ihis cumni paper, a
previously developed aziomaik model of program com-
plen'iy is merged with ihe pnviously developed decision
tree process for an improvemeni in ihe ability i o iden-
tify such modules. This improvemeni has been iesied
using data f " ihe NASA Softwan Engineering Lob-
omio y.

1 Introduction

Identification of high cost modules has been viewed.
as one mechanism to improve overall system reliability,
since such modules tend to produce more than their
share of problems. In order to idelitify such modules,
Selby and Porter (2, 3) developed a decision proce-
.due based upon decision trees. With their technique,
which we call Classification n e e Analysis (CTA), they
showed on a set of 16 large-scale programs contain-
ing over 4700 modules obtained from the NASA Soft-
ware Engineering Laboratory, that they could identify
which subset of the 74 measures obtained from each
module would produce good estimators of high-cost
modules.

Recently Tian and Zelkowitz [4] developed an ax-
iomatic model of program complexity. Based upon
this model, the 74 measures kept on each of the 4700
modules could be reduced to only 18 measures that
represented valid complexity measures. Using these

18 measures, the decision tree process results in an
improvement over the original Selby-Porter method.

In this paper we will first describe the original de-
cision tree process, we then summarize the axiomatic
complexity model, and then demonstrate that we can

. improve on the previous model in identifying high-cost
modules.

2 Classification Tree Analysis

In a series of earlier studies by Selby and Porter,
a technique called classification tree analysis (CTA)
was used to identify high cost components. Of critical
importance to CTA is the selection of measures (or
attributes) to construct the classification tree.

We define a high cost component as one in the
uppermost quartile (Le., 25 percent) relative to past
data. The rationale for this definition is the so called
"80:20 rule", which states that about 80 percent of a
software system's cost is associated with roughly 20
percent of the syskm.

A classification tree is essentially a decision tree
that branches on the range of values according to a
measure at an inkrnal node repeatedly until 'a com-
ponent can be identified as high or low cost, or until
all measures are exhausted.

The'classification tree method that was used, called
the classification paradigm, consists of the following
three integral parts:

Classification tree generation is the central

4-27

I Modules I

2.1

activity of constructing clansification trees and
preparing them for analysis and feedback;

Data management and calibration are the
activities that retain and manipulate historical
data and tailor classification tree parametere to
the development environment; and

Analysis and feedback is the part that lever-
ages the information resulting from the tree gen-
eration by applying it in the development process.
The central piece of the application of classifica-
tion tree is to develop remedial plans and take
corrective actions.

CTA Method

The goal is to predict high cost modules in the cur-
rent project with high cost being interpreted as the
highest quartile. The historical data (or training set),
consisting of one project immediately preceding the
current one, are grouped into quartiles according to a ,

measure's value, with all measures being considered.

Starting from the root, a measure is selected to s e p
arate modules into four subsets associated with each
arc. The number to the left of an arc is the lower
(inclusive) bound and the number to the right is the
upper (non-inclusive) bound for the subset according
to the measured value. So we have four subsets (quar-
tiles).

A set of modules associated with an arc is positively
identified if more than a threshold (termination crite-
rion) of modules are in the highest quartile of cost, and
it is represented in the tree as a terminal node marked
with a u+" sign. A set can be negatively identified
similarly, and represented correspondingly by a u-n
sign. If a set cannot be either positively or negatively
identified, another measure is selected to further clas-
sify these modules into finer subsets. This process
continues until either all modules are identified or all
measures are exhausted without being able to make
such a determination. In the latter case, the termi-
nal node is marked with a I'?" sign, representing that
CTA can not make a prediction for modules in this
set.

Notice that the generation of the classification tree
depends solely on the training set and various.param-
eters selected for the technique. The current project
will only use the tree but not affect the structure of
the tree.

I module+rctioncall I 1 4; ; 1 1; 1
operators 30 18 10 33 58

pr 'ction - ? - - +
module calls

I - y t U a l I - - 4- - + I

Table 1: Predicting High Cost Modules

As an example, consider the sample (fictitious) test
data of Table 1, and the classification tree in Figure 1.
This test set includes 5 modules and 4 measures. In
this case, the CTA method predicts 3 out of 4 modules
correctly (it misses module ms) and is unable to clas-
sify module m, through the classification tree. For
example, module m5 follows the right most branch
from the root (cyclomatic complexity of m5 is greater
than 26) and again follows the right most branch from
there (operator counts of ms is greater than 34). We
can finally predict it to be of high cost because its
module call counts falls between 4 and 10.

2.2 CTA Cost

There are two types of cost associated with the CTA
technique: the cost of building classification trees and
the cost of using them. The former is determined by
the factors: 1) the CTA parameters, 2) the size of
the available measure pool where measures are to be
selected, and 3) the implementation efficiency of the
CTA supporting tools. For the latter cost factor, the
tree size is a good measure. Because the classification
trees we are studying have fixed structure (there are
4 branches from every internal node), we can effec-
tively capture the cost of using classification trees by
counting the number of internal nodes for them.

2.3 CTA Performance

According to the match between CTA predictions
and actual cost data for the modules in a test set,
various performance measures can be defined:

Coverage: The percentage of modules (either posi-
tively or negatively) identified;

Accumcy: The percentage of correct matches between
predictions and actual data;

Comsisicncy: The percentage of predicted high cost
modules who are actually high cost. High consistency

4-28

cyclomatic
complexity

- module: u - - ? ? + + yfl/lo\.;
- ? ? +

Figure 1: Component Classification Tree

indicates less “false alarms;” and

Completeness: The percentage of actual high cost
modules predicted correctly by CTA. It reveals the
power of CTA to uncover high cost modules.

3 Axiomatic Program Complexity

Most program complexity studies define complexity
as a numeric comparison between any two programs.
However, we have come to realize that some programs
are inherently incomparable. For example, it makes
litttle sense to compare the complexity between a pay-
roll system and a real-time emission control system in
a car. They each come from radically different appli-
cation domains.

Instead we view complezity as a partial ranking
among the set of programs and a wmplezity measun
as a function applied to specific programs as an ap-
proximation of the attribute we are trying to deter-
mine. The following summarizes this model [4].

3.1 Axiomatic model

Consider a program as a hierarchy of modulcs con-
sisting of instructions, data, and the underlying exe-
cution control mechanism. We initially li& ourselves
to a Pascal-like nested scope sequential control lan-
guage. Programs are represented by their abstract
syntax trees:

0 U represents the set of all programs.

0 AST(P) repreaents a binary abstract tree repre-
sentation for progrm P. The root node of pro-
gram P is given by toot(P), the left subtree of P
is l e f t (P) and the right subtree of P is given by
tight (P) .

.

0 For programs P and Q, I N (P , Q) is true if P is
a subprogram of Q (i.e., AST(P) is a subtree of
A W Q)) .

If I N (P , Q) is true, then dis t (P ,Q) represents
the path length in order to go from toot(P) to
r 4 Q) .

0 P with all free occurrence of 2 replaced by y not
in P is denoted as Py’. We use Pa” to mean the
renaming is carried out for all corresponding one-
to-one pairs in lists CY and p, where

(uar(P) is the variable list of program f).

A wmplcn’ty ranking R is a binary relation on the
set of programs. The complexity ranking between‘pro-
grams P and Q is R (f , 0). We interpret R(P, Q) as P
being no more complex than Q. P and Q are wmpa-
ruble, denoted C(P,Q) , if either R(P,Q) or R (Q , P)
holds, i.e., C(P, Q) iff R(P, Q) V R(Q, P) .

4-29

A wmpletiiy measure Y is a function that maps
every program into a vector of real numbers: Y : U -.,
R" .

Although simple definitions, we ate immediately
confronted by a diflicult problem:

Theorem T1: There exist complexity rankings that
are undecidable.'

Although the general problem of complexity rank-
ing is undecidable, many practical rankings are not.
In what follows we restrict ourselves to these more
practical rankings.

Axiom Al: (VP, Q) (= 3 C(P, Q)) where
[xl is the function of program X.

Given programs P and 8, the problem of =
is unfortunately also undecidable. This axiom, then,
is at the center of the problem of developing effec-
tive complexity measures on real programs. We cer-
tainly want to be able to compare equivalent programs
in order to determine which is best; however, unde-
cidability says that we cannot always do this. I t is
for this reason that most complexity measures have
not achieved significant breakthroughs since the un-
derlying models are rarely comparable. However, in
many practical applications, such as described above,
we know or can assume that two given programs have
the same or similar functionality.

Because of this, in practice we often use a weaker
form of this axiom that only addresses the similarity
of two programs:

Axiom Al': (VP, Q) (x 3 C(P, Q)).

A program in general consists of many hierarchi-
cally related components. As a result, we require that
a program must be comparable with a subpart of it-
self.

Axiom A2: (VP, Q) (I N (P , Q) 3 C(P, Q))
~ 'Axiom and theorem references an h s d to [4], which a h
contains the proofs of the t h e o m . Some of the theorems
given in that ,paper are not relevant to this present discusion
and hence are not listed hue.

Axiom A2 brings up the intuitive notion that we
would like complexity to increase as programs become
larger, i.e., if P is a component in Q (I N (P , Q)), then
P is no more complex than 9. We left this out because
there are cases where the opposite is true. Consider
Q formed from P by addition of easily recognizable
keywords or tags; Q might be more readable, thus
easier to maintain as a result. Another case is that
loops are often more easily understood if they include
their initialization code than if presented without it.

Contextual information might help to reduce the
complexity of composite programs. But the degree
of the reduction must be limited, otherwise infinitely
large programs paradoxically might be the simplest.
On the other hand, a periodic function such as co-
sine(z) as the complexity of a program, where z is
some size measure of a program P , is clearly not ac-
ceptable. As a general trend, then, adding compo-
nents must result in a more complex program:

Since our goal is to compare the complexity of two
different programs, define a predicate 7 such that
I (V (P) , V (Q)) is true if program P is no more com-
plex than program Q. For V into R, we have the ob-
vious definition that I (V (P) , V (Q)) i. just (V (P) <
Y(Q)). For higher dimensions, other results are pos-
sible (e.g., a dot product called the performance level
measure which compares alternative software designs
[11>.

7 is our decision process which-determines how
well V approximates our complexity ranking 72 be-
tween P and Q based on the measured complexity
values Y (P) and V(Q) . We would like the relation-
ship to be 7 (V (P) , Y(Q)) - R(P, Q), and in fact it
is an implied axiom in most other complexity models.
However, we believe that this is the major weakness
that has prevented most complexity models from be-
ing truly effective. Because of undecidability issues
(e.g. theorem Tl), for all P and Q we cannot deter-
mine 7 for every 72. As a result, we use a weaker
condition, namely:

Axiom A4: (VP, Q) (72(P, Q) =+ V (P) 5 V (Q))

Since for many useful applications, 72 defines a total
ranking, we then have:

4-30

Theorem T5: When 'R is total, i.e., (VP, Q)C(P, 8) ,
we have:

In order to be useful, we would l i e our complex-
ity measures to distribute programs across a range of
values. If there is only a single "dominating" cluster
point, we gain little information from the measure.
Axiom A5 allows, for rough comparisons, bi-polar or
multi-polar distributions:

Axiom A5: (Vk E R)(36 > 0) (IU - {P : V (P) E
[k - 6, k + all1 = IUD

Axiom A5 forces our complexity measure to be
nontrivial, as in:

Theorem T7: (VP)(3Q) (V (P) # V(Q))

When V maps programs into a discrete bounded
set S, axiom A5 requires that at least two points in S
have infinitely many programs with such values:

Theorem T8: If set S of complexity values is finite,
then:

3.2 A classification model

Given these five axioms, we developed a classifi-
cation model for categorizing the various complexity
mesures depending upon the information they pro-
vide. A vertical classification uses a subset of the at-
tributes for the entire program, while a hierarchical
classification uses some functional relationship among
the program's parts.

Veriical classification

A complexity ranking 'R is abstmct, denoted
AB(R), if given P and Q with AST(P) = AST(Q),
then R(P, Q)(and equivalently, R(Q, P)).

If two programs are syntactically identical except
for variable names, as long as two set of names are
isomorphic, the only conceivable differences is inter-
pretational (the meaning attached to each name). On

the other hand, when considered functionally, each
name is just a surrogate for the underlying data ob-
ject. Thus we have the classification:

A complexity ranking R is functional, denoted
FN('R), if given P and Q with name,sets a and P
such that A3T(PpO) = AST(Q), then R (P , Q).

Haerarchieal classification

Assessing complexity by using only the components
while ignoring interactions (i.e. ignoring the context
where the components are defined and used) results in
a contezt free ranking: A complexity ranking 72 is con-
tezt fne, denoted CF(R), if given P I its ranking with
respect to any given Q can be uniquely determined
by: (1) Q and (2) root(P), the complexity ranking of
l e f t (P) , and the complexity ranking of r i g h t (P) .

As a special case of context free complexity where
organizational information is completely ignored, we
can have primitive complexity: A complexity rank-
ing 7Z is primitive, denoted PR(R), if all programs
P and Q with the same collection of AST(P) and
AST(Q) nodes (same number of occurrences for each
corresponding pair) then R(P, Q).

Also, a complexity ranking R is inferactzonal, de-
noted IA(R), if it is not context free, i.e. lCF(72) .

Without considering interaction, the complexity of
the composite complexity is the sum of all the com-
ponents complexities. However, due to interaction
among component parts, the total complexity may be
greater than the sum. Such a complexity ranking is
called oucnzll.

If we are allowed to modify the internal structure,
or reorganize the program according to some program-
ming practices (such as modularization, data abstrac-
tion and information hiding), we may be able to cut
down the interfacing complexity, thus the overall com-
plexity. Since the two programs are functionally equiv-
alent, they are comparable in complexity (A2).

The relationship among different hierarchical
classes can be summarized in the following tree:

4-31

4.1 Measure Screening

Hiemnhicol
Ovemll

Not Ovemll
-OA('R)

OA('R) Intemctionol
IA('R)

Using this model, we have been able to develop
Weyuker's 9 properties for complexity measures as
special cases of our axioms [5]. Since those proper-
ties have been widely studied over the past 4 years,
and since we can model her properties with our clas-
sification model, we believe that our axiom are a rea-
sonable apprcximation of program complexity.

4 Application of the Model

Sixteen software system, ranging from 3000 to
112,000 lines of FOKI'RAN source code, were selected
from NASA ground support software for unmanned
spacecraft control developed in the NASA/GSFC Soft-
ware Engineering Laboratory. Each required between
5 and 140 person-months to develop over a period of 5
to 25 months by 4 to 23 persons. Each project contains
from 83 to 531 modules, totalling over 4700 modules.
There are 74 attributes, each quantified by a specific
measure, for each module divided into three broad cat-
egories: fault, effort, and style (or complexity).

For each application instance, one of the projects
was used as a training project in order to develop the
classification tree for the next project. This was re-
peated for the remainder of the 16 projects.

Five of the projects were of a greatly different size
than the others (by more than a factor of 3). We
deemed these to not fulfill Axiom Al' on similarly
of functionality. This reduced the set of projects to
11 (and 10 data points) and are given as Group A in
what follows. We used a different ordering of 6 of the
projects in terms of training set to give us Group B
(and 5 additional data points). CIA refers to the orig-
inal Classification n e e Analysis process, while ACT
refers to the Axiomatic Classification 'Ikee process d e
veloped in this paper.

Aom the set of 74 measures for each.module, we
first eliminate all measures that are not directly mea-
sureable from the modules themselves. Thus effort
data, e.g., number of hours to develop the module,
are eliminated. We also eliminated change and error
data since they represent interactions among program
components and the operational environment. We can
therefore reduce the number of measures to 40.

All candidate measures satisfy axioms Axiom Al '
(comparing functionally equivalent programs), Ax-
iom A2 (comparing component-composite pairs),
Axiom A4 (measures agree with their ranking), and
Axiom A5 (no single cluster). However, many of
the measures do not satisfy Axiom A3, the general
monotonicity axiom. These measures are averaging
measure such as assignment statements p e r 1000 eze-
cuiable siatemenis, which may be correlated with av-
erage effort per 1000 lines or 80, but not with the total
development effort. Therefore these measures will be
eliminated. This reduces the candidate measures from
40 to 18, with the candidate measure set S being the
left half of lhble 2.

Both abstract and non-abstract aspects contribute
to cost, so measures from any vertical class are poten-
tially acceptable. On the other hand, as we are only
considering cost and complexity at the module level,
the hierarchical classification is not relavent. The
analysis based on the measure classification scheme
does not eliminate any measure for CTA in this case.

4.2 Aggregate Evaluation

Given 18 remaining messures that meet the bound-
ary conditions based on the axioms and measure clas-
sifications, we next determine which of them best pre-
dicts total effort. The underline distribution, as we
assumed, is a four region distribution (grouped into
four quartiles) determined by historical data. A quar-
tile of modules is positively identified if more than
75% of the modules (tolerance level: 25%) have the
upper most quartile of effort. The negative sets can
be similarly identified.

Let m(V) (i = 1,2,3,4) be the number of modules
in quartile i using measure V ; p i (V) be the proportion
of modules in m(V) belonging or to the upper most
quartile of effort; and nj(V) be the rest proportion in
m(V) (therefore p i (V) + ni(V) = 1). As a result,
a quartile is positively identified if pi(V) 2 0.75, and

4-32

Meets Axiom A8

assignment statements
inpuboutput statements
input-output parameters
source h e s
comments
source lines minus comments
executable statements
function calls
module calls
function plus module calls
cyclomatic complexity
operators
operands
total operators
total operands
decisions statements
format statements
origin

Fails Axiom A3
assignment statements per 1000 executable statements
input-output statement per comment
input-output parameters per comment
inputoutput statements per 1000 executable statements
input-output statements per input-output parameter
inputoutput statements per 1000 source lines
function calls per comment
function calls per inputoutput statement
function calls per function plus module call
function calls per input-output parameter
function calls per module call
.module calls per comment
module calls per input-output parameter
module calls per function plus module call
module calls per input-output statement
function plus module calls per 1000 source lines
function plus module calls per inpuboutput statement
function plus module calls per inpuboutput parameter
function plus module calls per 1000 executable statements
function plus module calls per comment
cyclomatic complexity per 1000 source lines
cydomatic complexity per 1000 executable statements

Table 2: Attributes passing initial screening

negatively identified if % (V) 3 0.75.

To formulate the objective function for the aggro
gated selection, we need to evaluate the contribution
of each quartile. We can weight them by the num-
ber of modules falling into the quartile. Therefore, we
formulate our selection criteria as:

for i ranging from 1 to pi(V) 2 0.75 V ni(V) 2 0.75

This selection criterion maximizes the number of
modules in positively or negatively identified quartiles.
For each of the quartiles neither positively nor nega-
tively identified, another measure is selected using the
same criterion. The process continues until all mod-
ules are identified or all measuru are exhausted.

5 Results

We applied both the original CTA process and the
modified ACT process to the 16 NASA projects broken

down into the 11 projects of groups A and six projects
of B. The following sections describe the results of this
analysis.

Size of generated trees

One measure of the efficiency of the technique is
the size of the classification trees that are generated.
Figure 2 shows that the axiomatic model (ACT) re-
duces tree size approximately 27% over the original
CTA model from 188 nodes to 136 nodes in the 15
programs with average tree size dropping from 12.5 to
9.1 nodes.

The smaller the tree the more desirable (less costly
to use to navigate through the tm, fewer measures to
collect), thus a point in the upper left region represents
an improvement over the original CTA.

Performance coverage

Table 3 compares the coverage based on the original
and modified classification trees. In all the projects
except one, near 100% coverage is achieved by both
methods. Thus the decision tree analysis method al-
most always will predict a cost for a module and will

4-33
loO05788L

(CTA

/ACT/ 9 11 2 5 74 4 3 3 3 9 13 3 2 4 1112.3 2.6 9.1 I

individual dbta points average
group A I group B (A B ali

66 76 78 63 53 67 71 85 73 71170 50 81 77 58170 68 69

individual data point8 average
P U P A 1 group €3 A B d

ICTA 70 66 31 54 52 63 30 16 50 101 7 100 33 17 65 39 35 3 8

[group A group B d
ICTAI w 99 97

ICTA

b. average comparison

Table 3: Coverage Comparison

individual data points average
group A I group B A B ali

26 60 54 62 42 21 42 33 6 471 7 4 40 63 47 38 28 35

rarely leave modules unclassified. So, we can conclude
that the CTA technique using either selection method
achieves fairly good and consistent coverage, with an
average of 97% coverage for both.

individual data points
group A IgroupB

Performance accuracy

average
A B all

Accuracy improved about 5% with the ACT pro-
cess, as given in Table 4.

rCTA

Performance consistency

17 15 7 8 86 4 9 3 4 1813 6.3 4 1 17.7 3.4 12.5

Table 5 gives the consutency comparison. This is
the measure that drives the whole process, being that
identification of high cost modules is the major goal

CTA
ACT

group A gronp B
98 98 99 98 91 93 97 100 100 98 100 98 97 97 100
99 100 97 100 82 93 100 98 100 99 98 98 100 97 100

IACT167 73 80 66 50 67 81 83 73 89179 54 86 85 58175 74 741

Table 4: Accuracy Comparison

\ACT167 61 37 57 56 63 50 15 50 23143 85 40 29 65150 50 501

Table 5: Consistency Comparison

LACT(30 46 73 59 49 21 14 33 6 30171 13 40 63 47135 39 35)

Table 6: Completeness Comparison

of the prediction process.

The performance level between the two selection
methods is significantly different, with the modified
ACT selection method outperforming the original
CTA method by a margin of 50% to 38%.

Performance completeness

While ACT generates many fewer “false darmsIJ’
(ix., predicting high cost modules which really are
not high cost - the above consistency measure), both
methods are comparable in actually identifying the
high cost modules, i.e., the completeness measure of
Table 6. That is, both will fail to indicate high cost
modules in aver half the cases.

6 Conclusions

Classification Bees are a method to use measure-
able quantities from program modules in order to de-
termine desireable attributes from the development
process. Identification of high cost modules should
correlate closely with other process measures such as
reliability.

In this paper, we presented a Classification nee
Analysis (CTA) method and a modification to it,
the Axiomatic Classification P e e Analysis (ACT)
method, where an axiomatic model of program com-
plexity was used to develop the candidate measures in
the classification tree.

4-34

In all important measures, the ACT was either M

good as or improved upon the original CTA model:
(1) Classification tms were smaller; (2) Caverage was

[4] Tim J. and M. V. Zelkowitz, “A formal program
complexity model and ita application,” J . of Sys-
iemr and Softwan 17,3 (March, 1992) 253-266.

the same; (3) Accuracy improved; (4) Consistency im-
proved and (5) Completeness was the same. We there-
fore believe that we have a candidate process that im-
proves upon the original model.

15) E. J , Weyuker, ‘Evaluating Software Complexity
Measures: IEEE %-. on Software Engineer-
ing, 14, 9 (1988) 1357-1365.

Using an axiomatic basis for classification trees has
two

1.

2.

-
important economic benefits: .

By eliminating unnecessary measures from the
classificaiton tree (e.g., reducing the list from 74
to 18 in the NASA SEL experiment), we elimi-
nate the n&d to collect such data. This would
imply less overhead on the development process.

The axiomatic classification tree analysis tech-
nique generates improved results, allowing man-
agement to better control and evaluate the de-
velopment process and allow for more informed
decision making with less risk involved.

Of course there is still much more to be done. ACT
is only right on 50% of the modules it calls high cost,
and only finds accurately over one third of these mod-
ules. However, the method is improving, and is inex-
pensive to use since it is available as a byproduct of
static analysis of the developing code. Further work
will continue on developing these models.

Acknowledgements

This research was supported in part by National
Science Foundation grant CCR-8819793 and National
Aeronautics and Space Administration grant NSG-
5123 to the University of Maryland.

References

Cirdenas S. and M. V. Zelkowitz, “A man-
agement tool for the evaluation of software de-
signs,” IEEE %ns. on Soflwan Engineering 17,
9 (September, 1991) 961-971.

Porter A. A. and R. W. Selby, “Empirically
Guided Software Development Ueing Metric-
Based Classification ‘Ikees” , IEEE Soflwan,
(March, 1990) 4654.

Selby R. W. and A. A. Porter, “Learning from
example: Generation and evaluation of decision
trees for software resource analysis,” IEEE %ns.
on Soflwan Engineering 14,12 (1990) 1743-1757.

4-35

Providing an Empirical Basis for Optimizing the Verification and
Testing Phases of Software Development

I

Lionel C. Briand, Victor R. Basili and Christopher J. Hetmanski

Institute for Advanced Computer Studies,
Computer Science Department,

University of Maryland, College Park, MD, 20742

A bstract:

Applying equal testing and verijication effort to all parts
of a software system is not wry eficient, especially when
resources are limited and scheduling is tight. Therdore,
one needs to be able to differentiate low I high fault
density conlponents so that testing I ver#htion cfort can
be concentrated where nee&d Such a strategy is upccred
to detect more faults and thus improve rhe resulting
reliability of the overall system. This'paper presents an
alternative approach for constructing such models that is
intended to fuflll spec@ii sofhare engineering ace&, (ie.
dealing with partial I incomplete information and creathg
models that are easy to interpret). Our approach to
classification is to (I) measure the sofware system to be
considered and (2) build multivariate stochastic models for
prediction. We present experimental results obtained by
classifying FORTRAN components developed at the
NASA Goddard Space Flight Center into two fault density
classes: low and high. Also, we evaluate the accuracy of
the model and the insights it provides iwo the software
process.

Key work: fault-prone software components, stochastic
modeling, machine learning.

1. Introduction

In this paper, we address the issue of identifying high fault
density software components via empirical stochastic
modeling. If we can identify components that produce a
great deal of faults relative to their size, then we can
concentrate the verification and testing processes on them
and thereby optimize the resulting reliability of the
developed software system. However, building such

Research this study was supported in part by NASA grant NSG
5123 and by AFOSR 90-0031

stochastic models is a difficult task. The data collected is
often incomplete andb hcteropcous and presents many
problems with respect to model construction (e.g.
m t c r d e p d ~ i c s , outliers, complex relationships). In this
paper, we present an alternative modeling process based on
both Statistics and machine learning principles W831. We
show how the process facilitates the identification of high
fault density components based on memcs obtainable at
the end of the coding phase.

The modeling approach presented in this paper, called
Optimized Set Reduction (OSR). has been developed at the
University of Maryland PBT91 J in the framework of the
TAME project [BR88] . It is derived from the ID3 model
[Q79, Q86, BRW] which was originally developed for
automatic generation of classification/decision trees. As
discussed in [CE87,BBT91], the use of ID3 has several
inherent problems and leaves mom for improvement with
respect to many data analysis and modeling issues (i.e.
small data sets, missing data values, noisy data,
heteroscedasticity). Our motivation for developing OSR
and a tool to support it was to design a data analysis
technique matching, to the extent possible, the specific
needs of building multivariate empirical models for
software engineering. The issue of using OSR for
predicting on a continuous range is addressed in PBT91J.
In this paper, we discuss using OSR to classify software
components into two fault density classes (low. high).

In Section 2. we present the basic principles of the OSR
algorithm and formally define the approach. This
formalism is intended to give an unambiguous
presentation of some of the features of OSR rather than a
complete definition of it. Saction 3 discusses the issue of
building models based on partial information (i.e. missing
data for technical or cost reasons). Section 4 presents a
process called "pattem merging" whose goal is to facilitate
interpretation and leaning based on the generated models.
Sections 5 and 6 present some of the resulls obtained via

4-37
1oO05788L

I Distribution: I

Probablllty

CPLX = Nominal
RELY = LOW L
DATA = High

Productlviti

Figure 1: Example of a Pattern and its Associated Probability Distribution

experimentation using OSR. Bascd on these results, we
can determine the accuracy of the model. Also, we can
compare OSRs outputs with those of a logistic regression
based model. which is one of the most standard statistical
techniques for classification [HL89, AG90J. Finally.
Section 7 underlines the major conclusions and directions
for fu tm d.

2. Optimized Set Reduction

2.1 Basic Principles

Let us assume we want to 8sscss a M c u l a r characteristic
of an object (e.g. the fault density of a component). We
will refer to this characteristic as the Dependent Variable
(Y). The object is represented by a set of explanatory
variables which describe the software component (called
Xs). These variables can be eithm disc- or continuous.
For example, a software component may be described by
two Xs, its cyclomatic complexity (continuous) and the
type of its function (discrete). Also, assume we have a
historical data set containing a set of pattern vectors that
contain the previously cited Xs plus an associated actual Y
value. We will call the Xs portion of the pattem veclor a
meoswenunt vector.

The goal of the OSR algorithm is to determine which
subsets of experiences (Le. patlem vectors) from the
historical data set provide the best characterizations of the
object lo be assessed. In other words. we lry to determine
which subsets of the data set yield the "best" probability
distributions on the Y range. A good probability
distribution is a probability distribution concentrating a
large number of pattun vectors in either a small part of
the range (Y is continuous) or in a small number of
dependent variable categories (Y is discrete). One of the
commonly used probability distribution evaluation

functions is the information theory entropy (H).
Altcmative probability distribution evaluation functions
aredlxmsed in [QM, SP88, M89J. Each of the subsets of
the historical data set yielding "optimal" distributions,
refend to as o p W subsets, are characterized by a sa of
conditions (r c f u d to as predicutes) which arc m e for all
pattern vectors in that subset. Each set of predicates
characterizing a subset is called a patfern. Figure 1 shows
an example of a pattern and its associated probability
distribution in the data set. The pattem is composed of
three predicates when thedepudent variable tobe assessed
is "development productivity". Figure 1 shows that if
these predicates (Le. ComPLeXity = Nominal,
RELiabilitY=Low, DATA base size = High) are m e for a
project, then its productivity is most likely to be in the
second productivity class.

2.2 Formal Definition of the OSR Process

We want to identify oprimul subsets in the historical data
set. We can formalize the process using set theory and
predicate calculus by defining the function Opt. Let us
assume we have a set of m explanatory variables
{xl.X2.Xm} and a corresponding set of explanatory

variable value domains (EV1.EV2.EVm}. Let us define

the measurement vector domain to be M V = , . F- II EV, .
The dependent variable value domain @V) may be Seen as
a set of classes which can be either intervals or categories.
Therefore, the value domain of the paaem vectors in the
datasetcanberepresentedasPV = DV x MV. Let
PVS be a set of patiem vectors representing the historical
data set (PVS E PV). A predicate is a variable value pair
(i.e. an Xi and its corresponding explanatory variable
value).

4-38

Definition 1: Let PSS be a subset of PVS and let the
measurement vector mv describe the object to assessed.
VALID(PSS, mv) is true if mv is composed by at l a s t
one predicate which is true for all the pauern vectors in the
set PSS.

PSS E; PVS A mv E MV A S i E (l . . m)
such that Vpv E PSS (mv(i) = pv(i))
j VALID(PSS, mv)

Definition 2: TC(PSS, PVS) is true if the two data sets
PSS and PVS do not show a statistic$ly significant
difference in distribution on the DV range. This is may be
evaluated by performing statistical inference tests for
comparing distributions. We currently use a binomial test
for proportions since it does not have any applicable
restraints (e.g. minimum expected frequencies like the
Chi-squared test of independence)[CA88]. For each
dependent variable class, the probability that proportions
in PSS and PVS differ by chance is calculated. If for a!
least one of the classes, this probability is below a level
of significance TC defined by the user, then we reject the
hypothesis that the two distributions 81c identical. TC
stands for Tetmination Criterion because the OSR p m s s
will be terminated if the condition defined by TC is true.

Definition 3: EMIN(PSS1, PVS) is true if PSSl is one
of the subsets of PVS yielding a minimal normolited

subsets of entropy H upon all
pamm vectors (e.g. a one vector subset has a minimal
entropy but it is not a statistically significant subset and
therefore is not relevant here).

. . . .

where
H(PSS) = C- p(PSS.d)logiap(PSS,d)

dcDV

where
p(PSS. d) is the a priori probability that a vector
which is an element of PSS has a dependent
variable value belonging to the dependent variable
class d

Definition 4: Opt(PVS, mv) is a function yielding a set
of optimal pattern vector subsets.

Opt(PVS, mv) = (PSS s PVS I VALID(PSS, mv)
A E m (P S S , Pvs))

-The number of possible predicate combinations
makes the scarch execution time prohibitive.
*We want the patterns to contain a minimal set of
predicates. i.e., we want all the predicates in the
pamm to have a significant impact on the resulting
pauan e n m y -
=We loost some information about the relative impact
of the various predicates in the entropy reduction
Proc-.
.The contexts in which the various predicates appear
relevant me undettrmmed.

Therefore, we implement a greedy algorithm using the
function Opt which addresses the issues mentioned above.
The Optimized Set Reduction algorithm can be roughly
described by a three step recursive algorithm.

Step 1: If the dependent variable is continuous, its range
is divided into a set of classes according to two main
factors: the necessary model accuracy and the size of the
data set Then, the ranges / categories of the explanatory
variables ~ f e divided / c l u ~ t e d into classes (e.g. Classil
... Classij for the explanatory variable Xi) based on
meaningful class creation techniques. For example, a
Complexity range can be divided in three classes: low,
avaage, high. Numerous techniques can be used in order
to create meaningful classes (e.g. cluster analysis) lDG841.
However, this issue will not be addressed in this paper.

Step 2: Select all the pattem vectors in the data set
having a value for the explanatory variable Xi belonging
to ClaSSik, where the Xi for the object to be assessed
belongs to the same class, and where the subset
characterized by the predicate Xi E Class, yields the

value for H. However, minimum
several subsets (characterized by different predicates) ,
yielding ”similar” minimal entropies (Le. the similarity
criterion has to be defined by the user of the algorithm)
can be extracted at once. Let us call PSSi the extracted
subsets of pauern vectors.

Step 3: Step 2 is repeated in a recursive manner on each
subset PSSi and each successive subset until the user
defined termination criteria crc) is reached.

This OSR algorithm can be formally specified as a two
parameter recursive function where PVS is the historical
data set and mv the vector describing the object to be
assessed:

. . . .

However, the function Opt as defined cannot be used as an
algorithm to extract the optimal subsets. The most
important xea!jons are:

4-39

Subsetl.1 SubSctl2 Subset2.1 subaet2.2

I "Subset of' relationship \ Extracted subset

. . Figure 2: Example of OSR Hierarchy

OSR(PVS. mv) = ifOp(PVS, mv) f 0
then

The whole subset extraction process can be represented as
a hierarchy (set Figure 2). Note that this representation
should not be confused with a partition tree since: (1) the
extracted subsets are not exclusive and (2) a subset can
have several parent subsets. Each path of the hierarchy
represents a generated pattem (e.g. Figure 2:
x, E class,, AND x, E a s , , defines Subsetl.1) which
is relevant to the particular prediction to be prformed. As
shown in Figure 2. two pauems may yield exactly the
Same subset (e.g. Subset 2.2). The extracted subsets (Le.
leaves of the hierarchy) which form various probability
distributions across the dependent variable range may show
different trends. For each leaf probability distribution, if
the dependent variable is discrete. the dependent variable
class containing the largest number of pattem vectors may
be selected as the most likely class for the new object

(characterized by mv) to lie in. Using an alternative
Bayesian approach, a loss I risk function could be defined
by the user [BBT91]. In this case, the dependent variable
class yielding the minimum expected loss is selected.
Each pattean prediction (Le. hierarchy l@ is used to make
a f d global prediction based on predefined decision rules.
In order to perform such decisions effectively. we need to
be able to evaluate the accuracy of the identified pauerns.
This issue is treated in Section 3.

3. Handling Partial Information with OSR

3.1 Definition of the Problem

As mentioned above, analyzing complex data sets and
variable relationships is a very difficult task for several
xeasons (i.e. incomplete / heterogeneous / small data sets,
missing data, complex interdependencies). The most
common of these is the problem of partial information.
Our lack of understanding of software processes (due to our
lack of experience and the wide variability from one
development environment to another) makes experience
difficult to reuse. Also, because of cost and schedule
related constraints, necessary data cannot always be
collected. All of these issues contribute to the
incompleteness of our data.

Missing information reduces our ability to predict and
understand. However, we have to establish whether or not
the lack of a piece of data is an obstacle to prediction. This
means that we need a model that both generates predictions
and provides some insight into the reliability of each
individual prediction. A goodness indication at the model
level such as the coefficient of determination in Ieast-
squares regression analysis is not sufficient since it fails to
yield an individual retiability meawe fa each prediction.

For example, let us say we wish to predict project
productivity according to collected physical features of the
system and predefined quality requirements. Suppose we
do not have any information about the team experience
related to the programming environment and the
application domain. This information might be somewhat
irrelevant, i.e. if the structural complexity of the software
and the required system reliability are low, then the
variance of the prediction is small. However, if high
reliability on a complex software system is expected, them
people rated as having low experience are likely to
generate schedule and/or budget slippages. This will make
any prediction based exclusively on other criteria
meaningless. Therefore, we need a modeling approach
that can answer the question: Do I have enough
information to make a reliable prediction?

3.2 Solutions to Partial Information within
the OSR Framework

However, a pauem is not only a logical proposition. The
order in which the predicates appear in the hierarchy
(Figure 2) is relevant from an understanding perspective.
A predicate is relevant only when the conditions defined by
its preceding / parent predicates in the hierarchy (i.e.
referred as to the conrext of a predicate in a panicular
pattem) are me. For example. Predicate 1 significantly
reduces entropy by itself. Also, in the context of '
Predicatel, Predicate2 significantly reduces entropy.
However, based on this pa", there is no evidence that
predicate2 significantly reduces enuopy by itself.

The notion of pattern reliability and significance, as
mentioned above, can be more formally defined as follows:
the reliability of a pattern with respect to a particular
dependent variable class is the probability that the pattern
will predict the cOrrect value for the dependent variable.

Let DVclass; be dependent variable class i. Let T equal the
number of generated pauems (Pj) that predict DVClasSi.
Let C equal the number of paterns which correctly predict
DVclassi (based on the actual DV value of the pattern
vector for which the pattern was produced during DEA).

Then we define the reliability of Pj with respect to the
dependent variable class DVClassi as:

R [DVClasSi ; Pj] = C / T

The probability that a pattern appears T times yielding a
particular classification DVclassi times by
chance (P(C*T,P) Can be expressed by the binomial
distribution:

For each meaSurement vector in the historical data set we
run the OSR algorithm using as an initial data set (i.e.
set the top of the OSR hierarchy) the historical data set
minus the measurement vector to be predicted. It is
m o v e d from the data set in order to avoid any bias in the
results. We therefore extract specific pattems for each
measurement vector and form a set of pattems representing
the trends observable on this m c u l a r data set

This resulting set of patterns, or Specific Pattern Set
(SPS) may be Seen as a model of the historical data set.
Many of these patterns will be the same or "similar" and
will therefore form classes of patterns. For each of these
classes, based on the SPS, we can evaluate statistics such
as pattern reliability (i.e. percentage of correct
classification) or patiern significance (Le. the probability
that the reliability is greater than or equal to the one
observed by chance) by comparing h e predicted DV values
with the actual ones. These statistics can then be used to
evaluate predictions as explained in the subsequent
paragraphs. The process of generating a SPS will be
referred as to Development Environment Analysis @EA).

In the text below, we assume the produced patterns have
the following conjunctive normal form:

predicate1 AND Predicare2 AND ... AND PredicaleN

where, p = p@VClasSi) , Le. the a priori probability that
the value of the dependent variable is in DVClassi.

If the pattern reliability R is equal to 1.0, then the
binomial equation can be simplified and the level of

significance is simply p . If R is below one, then the
pattern significance S can be calculated by using the

T

following formula:

T-C
S= &P(C+i;T;p)

1

Since we are able to differentiate significant, reliable
patterns from the n6n-significant and/or unreliable ones,
we can assess the reliability of the prediction when we
make it. A prediction based on a reliable pattern with a
sufficient level of significance (e.g. S c 0.05) is

441

believable, whereas. one based on a reliable pattern with a
poor level of significance is not. A poor reliability means
that a pam is not robust to "noise" (Le. the dependent
variable variations created by unknown or non-measured
explanatory variables). A poor significance may mean
that the pattem is a rcsult of noise or more complex
phenomena which are k y o M the scop~ of this paper.

4. A Process for Merging Patterns

pattws arc useful both for predicting variables of interest
(e.g. fault density) and providing understandable /
interpretable models. However, interpreting the patterns
generated by a DEA would force the user to deal with
useless complexity. Many of these patterns are similar and
should not be differentiated. This can prevent the user h m
getting a cleat picture of the model trends. Therefore, the
p a t m s generated by the OSR process need to be grouped
in order to make them more easily understandable and
interpretable. This can be done using a

(described below) where the user fixes
the desired level of "similarity" between pattern by
assigning values to a smaU set of parameters.

Let us def ie two pattems FTl and PT2:

. .

m: xj E C18ssjy AND xi E classi,
Pr2 xj E Classjy ANDXk E Classk,

Suppose in the context where x, E class,. the pattem

vector set for which X, E Class, happens to show a

strong ussociation with the one for which X, E Class,.
This implies that these predicates capture basically the
same phenomenon. The strength of the association can be
assessed by using normalized Chi-squared based statistic
such as Pearson's phi [CA88]. A Chi-squared test can be
performed in order to assess the statistical level of
significance of such an association. The two panems will
be merged into one signifying that the selection of one
predicate, or the other, during the OSR process, occurs by
random. This is a result of slight differences between the
two predicates and therefore distinguishing between them
does not help to understand the object of study. This
phenomenon is mainly due to complex interdependencies
between Xs that are often underlying the software
engineering data sets.

The notion of a "slight difference" is rather subjective and
therefore must be defined by the user. Thus, he / she
declares either a Phi value (actually Phi * which better
represents in this case the degree of association [CAP88])
or a level of significance which represents the minimal
degree of association necessary to assume two p e d i ~ i t e ~ as
similar. This process of merging patterns based on the
similar predicates principle yields the resulting pattern
PT [1.2) which contains the composite predicate

(Xi E Classa ORXk E Class,), implicitly meaning
that its two component predicates are interchangeable in
this Context.

PT(1.2): X, E clrs~,AND (X, E Class,, OR X, E C h)

Automated merging of similar patterns can be performed if
the user provides either a Phi value or a level of
significance that would comspond to an unambiguous
deftnition of portem similarity.

In a similar manner, we can define a second merging
principle. Let us suppose we have the following patterns:

m xj E class, AND xi E Class,
m x, E classjr AND xi E Class,

Let us assume that Class, is a neighbor class of class,
on the Xi range. In this particular case. if the two
pattems characterize subsets with no statistically
significant difference in distribution on the DV range, then
they can be merged. This is because the variation from one
class to the other seems to have a non-relevant effect on
the dependent variable in the context where X, E CIpss, .
Therefore, in order to assess if merging is possible, the
probability that differences between distributions are due to
random is calculated. For each dependent variable class, the
proportions of pattem vectors are compared between the
two distributions by calculating the probability that
difference in proportion is due to random. If for all
dependent variable classes, the resulting minimum
probability is above a user-defined critical probability
value, we accept the hypothesis that there is no significant
difference between the two distributions. In the current
tool, this is calculated through a binomial test in order to
avoid the assumptions related to other more
computationally effective tests (e.g. Chi-squared test of
independence) [CAPMI.

Both of the merging principles defined above can be used
simultaneously in order to obtain more general patterns.
However, the merging process using both of them must
be carefully defined. In a tool, such mechanisms can be
completely automated. The user would have to define
some thresholds / criteria allowing the algorithm to declare
two predicates similur (Le., a level of significance, Phi
value) and/or two classes similnr (i.e., critical probability
value). Before the merging process starts, the tool will
calculate the matrix containing all the phi values and
levels of significance between all predicates. Then, the
merging process for the fmt position predicates starts: it
is a several pass process where only two predicates can be
merged at a time. First, predicates are merged according to
the similar class principle. Then, the pairs of predicates

4-42
1"L

showing the strongest significant associations are merged
(similar predicate principle). During the next passes,
predicates can be merged to composite predicates and
composite predicates to Composite predicates. The process
stops when no merging is possible according to the
criteria defined by the user. Once finished, association
 trice,^ are calculated within the contexts defined by each
unique first position pndicate (composite or not) resulting
from the first pass. Then, the merging process for second
p i t i o n predicates begins within each context following
the rules defined above. This is repeated successively on
increasing predicate positions until a predefined (Le. by the
user) maximum merging level is reached. Thus, the user
defines the number of predicate positions he / she wants to
look at and therefore set the maximum merging depth of
the algorithm.

5. Experiment Design

Our goal in this article is to describe a technique to
distinguish between low and high risk components.

The notion of risk has multiple dimensions. We focus
here on the identification of lowhigh fault density
components, If we can distinguish between these two
types of components, then we can concentrate on the high
fault density ones during the verification and testing
process. Moreover, if we can build this kind of model for
each kind of fault, we can apply fault specific testing
techniques to localize and correct faults. Basili and Selby
showed in pS87] that the effectiveness of three of the
most well known testing approaches could vary
significantly according to the type of fault considered.
Although more experiments are needed to beacr understand
the issue, this study supports the idea of building different
models for each type of fault

The collected data set is based on fifteen FORTRAN
Projects which were developed at the NASA Goddard Space
Flight Center in the early eighties. On all of these project,
static measures at the component level were collected
using a static code analyzer. Fault report forms were filled
out during the test phases of the development process.
Faults were identified, classified according to a predefined
taxonomy and localized in the system.

Our definition of fault density is the ratio of the number of
faults over the number of executable statements. In this
experiment we will look, as a first step, to faults related to
incorrect data structure readings or writings (called "data
value" faults in the NASA Software Engineering
Laboratory). This type of fault represents about 50 percent
of the total number of faults collected on the projects
studied in this experiment

6. Experimental Results

6.1 Prediction Results

4-

We used the OSR technique to build classification models
that wen intended to provide an answer to the question: Is
this component likely to be in the lowest / highest
quartilcs on the "data value" fault density range? This was
done by pedming a DEA on the data set which contained
399 pattern vectors. Each pattern vector was comprised of
a list of static measures which describe a software
component (i.e. the measurement vector), plus, the fault
density of that component Thereby, we were able to
calculate an average classification correctness (i.e.
percentage of components correctly classified) of the OSR
model . Also. we try to demonstrate through examples
that reliable pattems can be differentiated from misleading
"s.

For the sake of simplicity. we will look only at the two
first predicates (the most relevant according to the OSR
selection mechanism) of each of the generated patterns. R,
0 and S are respectively the Reliability, number of
Occurrence (the number of times a pattern appeared), and
the Significance of the pattem. The explanatory variable
ranges were divided into quaniles. This method is the
simplest technique for class creation but most likely the
least effective. The class creation process is one of the
issues that remains to be investigated (See Conclusion).
OSR suggested that low and high fault density
components were partly characterized by the following
significant (e 0.05 level of significance) and non-
significant pawns:

Low Fault Density Components

Assume that Fq, Sq. T4 and 4 represent respectively the
First quartile, Second quartile and so forth, on the
explanatory variable ranges.

Examples of Highly-Significant Reliable Patterns:
PT1: # stmts E Lq AND # calls E Fq,

R = 1.0, 0 = 18, S = O.OO0

R = 1.0, 0 = 17, S = O.OO0

R = 1.0, 0 = 10, S = O.Oo0

R = 1.0, 0 = 15, S = O.OO0

R = 1.0, 0 = 8, S = 0.004

R = 1.0, 0 = 11, S = 0.005

R = 1.0, 0 = 24, S = O.Oo0

m # stmts E 4 m # c a l l s € sq,

pT3: # stmts E Lq AND # format/sunt E Fq.

FT4: # stmts E Lq AND # i/o stmt / stmt E Fq,

PT5: # mts E 4 AND # assigdstmt E Fq,

pT6: # stmts E 4 AND # decis-node/stmt E F4,

Pl7: # stmts E 4 AND #funcr/stmt E Tq

PT8: # decision nodes E 4 AND # calls E Fq.

F"l9: # decision nodes E 4 AND # calls E Sq.

PTlO # decision nodes E 4 AND # i/o stmts E Fq,

R = 1.0, 0 = 14. S = O.OO0

R = 1.0, 0 = 15, S = O.OO0

43

R = 1.0, 0 = 11. S = 0.001

PTl1: # opemmdstmt E Fq AND# calls E Fq,

PT12 # operators/stmt E Fq AND # format/stmt E Fq,

PT13: # o p ” l / s o n t E Fq AND # functions E 4,

Examples of Non-Significant Reliable Pattenrs

PT14: # stmts E Tq AND # format/stmt Fq,

R = 1.0, 0 = 9, S = 0.002

R = 1.0, 0 = 6, S = 0.016

R = 1.0, 0 = 8, S = 0.004

R = 1.0, 0 = 2, S = 0.25

R = 1.0, 0 = 2, S = 0.25

R = 1.0, 0 = 2, S = 0.25

R = 1.0, 0 = 4, S = 0.0625

PT15: # ~tmts E Tq AND # i/o sImt/stmt E Fq,

PT16: # stmts E Tq AND # i/o stmts E Fq,

PT17: # stmts E Tq AND # i/o stmts E Sq,

PT18: # ope”/s tmt E Fq AND # funct/stmt E 4,
R = 1.0, 0 = 4, S = 0.0625

Example of a Non-Significant Non-Reliable Pattan

PT19 # stmu E Tq AND # functions E Tq,
R-0.0, O=l.S=l.m

High Fault Density Components

Examples of Significant Reliable Panems

PT1: # lines E Fq AND # comment/stmt E Tq,
R = 1.0, 0 = 11. s = 0.001

PT2: # stmts E Fq AND # comment/stmt E Tq.
R = 0.94, 0 = 17. S = 0.OOO

PT3: # format/stmt E Lq AND # commcnthtmt E Tq,
R = 1.0, 0 = 10, S = 0.001

pT4: # decisions nodes E Fq AND # W s t m t E Lq,
R = 0.95. 0 = 21. S = O.OO0

pT5:Usunts~FqANDd CallSESq.
R = 0.94, 0 = 18, S = 0.OOO

PT6 # stmts E Fq AND # i/o stmt/stmt E Sq,
R = 1.00, 0 = 13, S = 0.OOO

PT7: # stmts E Fq AND # operandhine E Sq,
R = 1.00, 0 = 2 0 , S = O . O O O

PT8: # stmts E FqAND# operand/stmt E Sq,
R = 1.00, 0 = 18, S = O.OO0

PT9: # sunrs E Fq AND # i/o variablelline E Fq.
R = 1.00, 0 = 27, S = 0.OOO

PTlO: # stmts E Fq AND # operators E Sq,
R = 0.91, 0 = 11. S = 0.006

PTll: # operator/sunt E 4 AND # assign/stmt E 4,
R = 1.0, 0 = 6, S = 0.015

As shown in the above results, significant reliable p a t m s
can be recognized and diffenntiaied from the non-reliable /
non-significant ones. Therefore, significant reliable
pat” can be identified and used with confidence for both

prediction and interpretation. For instance, if we take
pattem PT1 for low density components. we observe a
retiability of 100% based an 18 occumnces. This produces
a v a y good significance. l h e pedictions generated
by this pttun can therefore be considered vuy reliable and
used with confidence. Both the OSR patterns and the
logistic regnSSion model yield an average classification
correctness of 82%. This result is very encouraging
considering that the class creation process used (i.e.
dividing the range in quaniks) was primitive and that the
explanatory variables available are all continuous (which
is an important advantage for the logistic regression
model). Moreover, note that the OSR process is entirely
automated.

The patterns produced by OSR are not always easy to

model) requires expert knowledge. However, in the next
subsections, we provide some rules for reading and
interpreting the above pauerns. Some pattem merging
IWUltSiUCalSOproVided

invrprct Intapretation of patterns (or any other stochastic

6.2 Pattern Interpretation Rules

Interprccation of patterns is much easier than interpreting
regmsion coefficients. First, OSR takes into account the
fact that an explanatory variable can have a strong impact
in a CMtain context (defined by the predicates in preceding
positions) and not be relevant in another one. Second, if
strong associations exist in a given context, then the
pattern merging process makes it apparent by creating
composite predicates (see examples in section 6.3). The
variation of reliability generated by a particular predicate
can help assess the significance of the impact of an
explanatory variable (on the dependent variable) when the
explanatory variable belongs to a certain class of values
within a certain context. Let us take the following pattern
as an example: #sun& E Lq AND #calls E Fq which
yields a reliability of 10096. However, #stmts E Lq
alone only yields a reliability of 88%.

This result suggests that #calls E Fq is a relevant
predicate in the context where #sun& E Lq because it
shows a significant impact on the fault density.

However, a pattern must always be interpreted in context
In some contexts (e.g. #stmts E Fq), a variable (e.g.
#operators) may not rake on the full range of values. The
interpretation of patterns like pattern PTlO for high
density components must be done carefully: #operators E
Sq may be interpreted as a “rather large” number of
operators because in the context #sun& E Fq, very few
components show either #operatam E Tq or #operators E
4 (i.e. # stmts is smngly associated with # operadrs).
Therefore. the OSR process did not select patterns like
#sunts E Fq AND #operators E Tq since they yielded
subsets that met the termination criteria. This example
shows that even though interpreting patterns is always

simple, it requires the support of a tool .
6.3 Pattern Merging Results and Interpretation
of Recognized Patterns

In this section. we intend to show how the merging
process can help to group similsr raw patterns into
composite patterns and therefore provide more easily
inteqmtable information. If we simplify the raw pauems
generated by OSR using the merging criteria: Phi = 0.40
and critical probability value of 0.0005, we get a set of
composite patterns for each of the dependent variable
classes. In order to illustrate the point, we first show some
of the intermediate steps of the merging process. Then we
give two composite patterns: CP1 and CP2 (formed by the
merging process), which characterize low fault density
components.

For example, low density component pattems PTl and
Pn can be merged based on the similar classes principle.
They both show the same f i t predicate: # sunts E Lq.
Their second position predicate shows the same variable #
calls and two neighboring classes (Fq and Sq). Since they
do not show a statistically significant difference is
dishbution (critical probability value = O.OOOS), then they
can be merged in: #stmts E Lq AND # calls <MEDIAN.

Similarly, low density component patterns PT3 and PT4
can be merged based on the similar predicate principle,
They both show the same first position predicate and their
second position predicates are strongly associated (Phi2 =
0.57). Therefore, they can be merged in: #stmts E 4
AND (#formats/stmt E Fq OR #YO stmts/stmt E Fa.

This merging process is repeated until no more merging is
possible according to the user's criteria. CPl and CP2 are
the final resulting composite pattems which characterize
low fault density components:

CP1: SIZE-HIGH AND CALLS & VO_LoW,
R = 99% , 0 = 169. S = O.Oo0

CP2: SIZE-HIGH AND FUNCT-HIGH,
R = 865.0 = 43, S = O.OO0

where the composite predicate SEE-HIGH is defined as:

I statemenu E Fq OR I s~ancnu E Sg

OR t fanuts E 4 OR t decision nodes E 4
OR I ~ ~ ~ I O I S / smt~ Fq

and, in the context where SIZE-HIGH is true, the
following mposite predicates are formed:

I frnaimr E Tq OR t funcl ia~ E I4
OR funaionrlstrnt E Tq OR funaiaulsmt E Lq

FUNff-HIGH e

CPl and CP2 actually define classes of raw patterns that
are assessed equivalent according to the user-defined
criteria. Some of the low density patterns presented in
section 6.1 belong to CP1: PTl. PT2, PT3, PT4, PT8,
PT9, PTlO, PT11, pT12. PT14, PT15, PT16. PT17 and
others to CP2: PT7, PT13, PT18. PT19. Both of the
composite pauems suggest that large components are
likely to have low fault densities. This agrees with a study
conducted by Basili and Penicone [BP84]. This may be
partially explained by the fact that low operator densities
seem to be strongly associated with large components.
CPl suggests that a low number of function calls or a low
number of UO statements increase the probability of
having a low fault density. cp2 indicates that a large
component showing a high density of functions is likely
to show a low fault density.

Merging patterns is alwavs desirable. It allows us to
combine related. rare, isolated patterns to more significant
pattems and thereby group together trends which capture
essentially the same phenomenon. This makes the
generated composite pattems easier to interpret and gives
the usa a more abstract and general view of the results.
Also, as we have seen, patterns with a small number of
occurrences cannot be frusted (even though they show
good reliabilities) because of their weak level of
significance. However, if these patterns are shown to be
strongly associated with other reliable patterns, then the
significance of the generated composite pattem increases.
This allows us to gain more trust in rare reliable patterns
based on the calculated composite pattem's level of
significance. However, this should be used very carefully
and needs further investigation.

7. Conclusion

Based on the above experimental results. building useful
models for assessing the fault density of software
components. based upon early available simple metrics in
the presence of noisy data appears possible. Whenever
OSR generates a very reliable and significant pattem, the
prediction can be used with confidence. To the contrary, if
the pattern is not a reliable and significant one, an
alternative modeling method such as logistic regression
may give a more believable prediction. We have Sfen that
problems such as partial information in the data set can be
accommodated for by assigning a relative goodness to each
prediction. Also, the patterns appear to be easier to
interpret than regression coefficients and correlation

mauices which are the usual outputs of regression
analysis. "lis is due mainly to the fact that OSR produces
symbolic / logical expressions w h t n the notion of context
is introduced by considering the order of the predicates.
Also, the merging process helps the user look at the
model at various kvel of abslraction. From a mare general
perspective, based on previous [BBDl , BP92) and c m n t
experimental results, OSR is a data analysis framework
that successfully integrates statistical and machine lcamhg
approaches in empirical modeling with respect to specific
software engineering needs. However, while the
experimental results thus far have been encouraging, many
aspects of the processes involved in OSR are still to be
optimized. Such processes include, by order of importance.
EV class definition. the refinement and automation of the
merging process, support for pattern interpretation, the
atmbute selection process and the selection of termination
critaia

8 Acknowledgments

We thank Gianluigi Caldiaa, Denis Okkampf, William
Thomas and especially Sandro Morasca for their excellent
suggestions. We also thank the referees for their insightful
comments.

References

[AG90] Alan Agesti. "Categorical Data Analysis", wiley-
intascience. 1990

[BP84] V. Basili and B.T. Paricone, "Software Errors and
Complexity: An Empirical Investigation," Communications
of the ACM. vol. 27. no. 1. January 1984.

[BR88] V. Basili and H. Rombach. "The TAME Project:
Towards lmprovement-oriented Software Environments".
IEEE Trans. Software Engineering 14 (6).

[BS87] V. Basili and R. Selby. " Comparing the Effectiveness
of Software Testing Strategies", IEEE Trans. on Software
Engineering 13 (12).

[BR84]
Trees". Wadworth & Brook, 1984.

[BBIPl] L. Briand. V. Basili and W. Thomas. "A Pattem
Recognition Approach to Software Engineering Data
Analysis", IEEE trans. Software Eng.. Special issue on
software measurement principles, techniques and
environments, November 1992.

[BF92] L. Briand and A. Porta, "An Alternative Modeling
Approach for Predicting Error Profiles in Ada Systems",
European conference on quantitative evaluation of software
and systems (EUROMETRICS92). Brussels, Belgium, April
1992.

(CA881 J. Capon, "Statistics for the Social Sciences",
Wadworth publishing company, 1988.

L. B r e i " et al. "Classification and Regression

[CE87] J. Cendrowska, "PRISM: An Algorithm for Inducing
Modular Rules". Journal of Man-Machine Studies. 27.
pp .349

[DGM] W. Dillon a d M. Goldstein. "Multivariate Analysis",
John Wiley & sons. 1984.

[HL89] D. Hosma and S. Lemeshow, "Applied Logistic
Regression", John Wiley & sons. 1989

[M83] R. Michrlski, 'Theory and Methodology of Inductive
Laming." In R. Michalski. J. Carbonell & T. Mitchell
(Eds.), Machine learning (Vol. 1). Los Altos, CA: Morgan
Kauhann.

[M89] J. Mingers, "An Empirical Comparison of Selection
Measures for Decision-tree Induction". Machine learning 3.
pp.319, 1989.

[Q79] J. Quinlm. "Discovering Rules by Induction from Large
 collection^ of Examples". In D. Michie (Ed.), Expert System
in the microelectronic age. Edinburg University Press, 1979.

[Q86] J. Quinlm. "Induction of Decision Trees". Machine
learning 1, Number 1. pp.81, 1986.

[SP88] R. Selby and A. Porter. "Learning from Examples:
Generation and Evaluation of Decision trees for Software
Resource hdysis. . , IEEE trans. Software Eng., 1988.

4-46

Appendix: Definition of the Generalization
Algorithm (notation consistent with section
2.2)

This generalization process can be formalized using the
following definitions and algorithms:

Definition Al: We define a composite predicate (cp) as
cp = Up, p E PD, which the set of all predicates.
Composite predicates can be combined to form other
composite predicates. 'zhus, we define cp,,, = cpi u cpj.

Pss Definition A 2 An association c0efZcien.t a, is an
assigned statistical degree of association between Cpi and
cpj where PSS is the data set used to determine this
association. Let us assume the two following data subsets:

PSS, = {pv E PSS(cp,istrue)
PSS, = {pv E PSq cpj is true)

A two row-two column contingency table is defined,
where the subsets characterizing each row and column a~
respectively PSSi, PVS - PSSi, PSSj, PVS - PSSj.
Based on this table, a Chi-square based statistic (Le.
Pearson's Phi) defining the degree of association between

the two subsets is calculated and assigned to a r .

Definition A3: A context is a conjunction of a set of
composite predicates that defines PSS E PVS. This
defines the data subset on which an association coefficient
is calculated and therefore its domain of validity.

Definition A4: An ussociation matrix A& is a square
matrix of association coefficients calculated in a context
C. where the rows / columns represent all possible
predicates

PSS
examde: A:: contains all

where V PV E PSS, cpt A cp, is me.

Definition A5: TWO composite ~edicatcs Cpi and Cpj are

said to be associated in the context of C if ay 2 some
minimal level of association.This will be denoted as

cPI e cPJ'

Definition A6: A predicate tree is a tree repmentation of
the pattems generated during the Development
Environment Analysis (i.e. DEA) process. As mentioned
is Section 3.2, DEA produces a set of patterns

representing the observed trends in the historical data set.
It is expected that a significant number of these pattems
will be duplicated or similar. This representation is a
compact way of representing the specific pattern set
(SPS). Each path of a predicate uee represent a pattem
genemted by DEA. (see Figure 3)

~

PATTERN SET

Figure 3: Example Predicate Tree

Notice that the mot of the predicate tree is a "dummy"
predicate which can be thought of as the identity predicate
c p ~ (Le. cpi A c p ~ e Cpi). Note that in the above
example, all of the predicates are singleton. This
represents a predicate tree before any generalization.
Branches will be merged and composite predicates created
at the nodes during the generalization process.

Definition AI: The maximum merging depth (user
defined) is the depth in the predicate tree to which
generalization is to be performed. It defines the
observation depth of the patterns by the user.

Definition A8: Two composite predicates Cpi. Cpj are
said to be "mergeable neighboring composite predicates" if
the following conditions are fulfilled:

(1) There exist two predicates px: Xi E ClaSSik. py:
Xi E Classit such that px and py are one of the
disjunctive mcatts of cpi and q j , respeztively.

(2) ChSSik a d Classit are neighboring ClasSes on
variable Xi range.

(3) Cpi and Cpj ykld the same classification, show a
difference of rellability below DR and a maximum

e47
"788L c' '-2

pauem level of significance S (i t . DR and S are fixed
by the user).

If these three conditions are true. then mncp(qi, q j , s, ,
DR) is me.

In ordet to define the genaalization algorithm based on the
above definitions, we assume that it starts with the
procedure call: GeneraliZe@redicate tree, roof c p ~ , 0, PHI,
DR)

We can now define the Gentralize algorithm as follows:

Generalize (predicate tree, node, context,
current depth, PHI. DF)

(1) If the node is a “inaI node of the pedicate tree
OR if depth > maximum merging depth then
lz”

(4) while 3 vi, cpj such that cpi = cpj do

EQItn . select cpi and Cpj such as ai,j
association in A=
. merge(predicate tree, node. Q, Cpj)

. recalculate A X m - , , the association matrix for
cpi. ..., cpi-1, CPi+l. --.. CPj-1. CPj+l, ..., CPm.
Cpiuj in context

is the strongest

(5) for each successor of node in predicate tree
Generalizc@redicatctree,successor,context”~,

depth+l, PHI, DF)

d-

In step (4). a call is made to procedure merge defined
merge as follows:

IZUX&E merge @redicate tree, node, q i . q j)
q i and q j a ~ . SUCC~SSO~S Of node

(1) Combine Cpi and Cpj to form a single node
CPiUj

(2) Combine all like Sub- rooted at q i u j
&merge

A Classification Procedure for the Effective Management of Changes c
Lionel C. Briand and Victor R. Basili '

Computer. Science Department and Institute for Advanced Computer Studies

College Park, MD, 20742

+ - / during the Maintenance Process ---
/

/ " 5 / 2

University of Maryland
' > 4 / ,>-

p y i $ s Y92-
-

To be published in the proceedings of the IEEE Conference on software
maintenance, Orlando, Florida, USA, November 1992.

Abstract

During sofhvare operation, maintainers are often faced with nwnerous change requests.
Given available resources such as @art and calendar time, changes, if approved, have to
be planned to fit within budget and schedule consnaints. In this paper, we address the
issue of assessing the difficulty of a change h e d on known or predictable data. This
paper slzould be considered as a first step towards the construction of customized
economic models for maintainers. In it, we propose a modeling approach, based on
regular statistical techniques, that can be used in a variety of soware maintenance
environments. This approach can be easily ructomated, and is sirrlple for people with
iimited Statistical experience to Me. Moreover, is deals effectively with the uncertainry
usually associated with both model inputs and ourputs. Tht modeling approach is
validated on a data set provided by the NASA Goddard Space Flight Center which shows
it hus been effective in classifLing changes with respect to the effort involved in
implementine them. Other n d v w g e s of the qproach are discussed along with addirionul
steps to improve the results.

Key words: mainteMnceprocess, change &jjkulv, change request management.

' Research this study was supported in part by NASA grant NSG 5123 and the Wuo Corporation (XAP Member)

449
1ooo5766L

’ 1 Introduction

Given the limited r~sources (Le. effort and calendar time) available to the maintenance
activity within software organizations and the number of change requests proposed,
difficult decisions need to be made These decisions include: which changes to implement,
how much optional functionality to provide in enhancements. A large amount of total
software effort is spent on maintenance [LS80, GRA871. Changes in the form of
corrections, enhancements or adaptations effect the software source code and/or the
documentation. Some of these changes arc crucial, others arc less important. Therefore,
when one considers the global cost and variety of ” E e activities, management of
changes becomes an important and complex task It requires the support of models so we
may perform systematic comparison of the Costs and benefits of changes before
implementing them fRW921. One approach is to build such models based upon past
proj ec t experiences.

To this end, effort models have to be designed to predict resource usage and optimize the
cost-effectiveness of the maintenance process. Well defined modeling procedures need to
be established so they can be repeated and refined, allowing the model to evolve
consistently as new data arc collected

This paper describes a modeling procedure for constructing a predictive effort model for
changes during the maintenance phase. This technique is intended to handle small data sets
and the mc#rainty (Le. for cost or technical reasons) usually associated with model inputs
and outputs (Le. is this particular predication believable?). We assess the feasibility of
building such a model using a data set that describes several projects in the SEL
environment at the NASA Goddard Space Flight Center. Based upon the results of the
analysis, we also make recommendations for improving the data collection process.

2 Context of Study and Experiment Design

In this study, we use a data set consisting of 163 changes collected on four different
maintenance projects. Each change is represented by a vector consisting of a variety of
metrics associated with the change. The four projects arc referred to in the paper as projects
pl, p2, p3, p4. These projects arc from the same application domain: satellite ground
support softsvare written in FORTRAN.

The change process in the SEL environment has two main phases: an “understanding”
phase whert the change is determined and isolated in the system and an “implementation”
phase, where the change is designed, implemented and tested.

The effort associated with both the understanding and implementation phases is collected
on discrete scales (i.e. ordinal) in order to facilitate the data collection from a maintainer’s
perspective. The effort range is divided into five intcrvals: below one hour, between one
hour and one day, between one day and one week, between one week and one month,
above one month. For each change performed, the appropriate understanding effort and
implementation effort intervals are recorded by the person making the change. These effort
intervals are indexed from 1 to 5 and will be referred to as dificulty indices in the paper.

All the change-related data used in this paper was collected on a standard fonn (see
Appendix). The memcs collected range from measures on a continuous scales (e.&
number of components added, number of lines of code added) to categorical measures
(e.g., source of the change, technical description of the change). Some of these memcs are
predictable before starting the design of the change, others can only be assessed after the
implementation of the change has begun.

In this paper, we focus exclusively on the effort spent to implement (i.e design, code, test)
a change. There are two reasons for this: I) Almost no information is available to the

4-50
looo6788L

maintainer before the understanding phase. Therefore, no prediction model can be built. 2)
In this environment, the effort expended in the understanding phase is generally somewhat
smaller than the effort expended during the implementation. It is thus more essential to use
a @ctive model for the implementation phase.

The available memcs are defined as follows:

Type of modifcation (c d o n , enhancement, adaptation).

origin of the mor in the software He cycle. This is n f d to as source in the text
(requirements, sptcifications, design, code, prcVious change).

Software products effected by the change (code only, code and design). This is r c f e d
to as objects in the text

Number of components added, changed, deleted. They arc r c f d to as comp.add,
compxh., comp.del., nspccrively.

Number of lines of code added, changed, deleted. They are referred to as Zoc. add.,
LOC. ch., LOC. del., respectively.

Change technical description (initialization, logic/conuol structure, user interface,
module interface, data structures, computational). This metric is n f d to as ch.desc.

During the understanu'ingphe, estimates can be made of the first three memcs. The
number of components involved in a change can also be approximated since the change is
isolated in the system architecture. But any prdction in tums of Iines of code to be added,
deleted or changed is still complex at this point and can only be predicted at a coarse level
of precision.

3 The Modeling Approach

Considering the discrete nature of the effort data reported during maintenance, the
prediction issue becomes a classification issue, ix. in which effort class will the change
probably lie? The maintainer can only predict values for most input memcs with a c d n
degree of uncertainty. It is important that the modeling process takes this constraint into
account. This help to make the genmted model easy to use. Also, our data set is small and
contains discrete explanatory variables. Thenfore, we need a modeling approach which is
both effective on small samples and which handles discrete and continuous explanatory
variables in a consistent way.

3.1 The Modeling Process Steps

A high level view of the model consuuction process can be defined as follows:

1- IdenrifL Predictable Menics. Identify the memcs, among those available, that are
predictable before the implementation phase. For ratio and interval memcs that are
predictable early but only with a certain degree of uncertainty, the range is recoded as an
ordinal range with a set of ordered classes. These classes reflect a reasonable level of
prediction granularity. For example, a ratio level memc range like "number of
components added" could be divided into three intervals forming the three memc classes
low, average, and high.

2- Idenrifr Signijicant Predictable Menics. Identify a subset of the predicable memcs that
appear to be' good predictors of the difficulty index, using a consistent evaluation
technique for all candidates.

4-51

3- Generate a Classflcation Funcnbn. Associate the resulting metrics in a classification
function which has the following form:

PredictcdJXfficulty = Classification-Function (Sigmficant~Prcdictable-Memcs)

w h m Predicted-Difficulty = some classification scheme based on the difficulty indices,
e.g., {easy, difficult) and Significant_Predictable-Memcs = (some of the predictable
memcs collected on the Maintenance Change Report Form which appear as good

4- Validate the Model. Conduct an experiment on a representative (Le. in terms of size
and quality) set of data. Two mtasurcs that can be used to validate the model art: Average
Classificarion Comctness (i.e. ratio of number of corrtct classification / total number of
paformed classifications), and Indecision Rate (ie. ratio of number of undecidable cases
/ total number of changes to be classified). The latter reflects the nced for such a model to
deal with output uncertainty, therefore warning the user whenever a certain level of
codidence is not reached far a specltic prediction.

@-)

3.2

This section presents a possible implementation of the previously described process. Our
goal in defining such a procedure can be described by the following points:

An Implementation of the Modeling Process

We want the generated model to be as simple to use as possible.

The uncgtainty associated with the model inputs at the timc of prediction must be taken
into account by the model, Le., intervals rather than values should be used as model

The model should be able to provide some estimated risk of error associated with each
classification. Thus, the user would be able to select a minimal level of confidence (i.e.
maximum risk) that would differentiate the model classifications as believable or non-
believable.

inputs.

. The steps of the procedure arc:

1- Idennfi Predictuble Mezrics. The input is a set of available memcs. The output is a set of
memcs whose values arc either known or prtdrctable, with a certain degree of accuracy,
before the change implementarion phase.
There are several processes for selecting the set of prdctable memcs. The determination
of predictability can be either based on interviews with people with a good knowledge of
the maintenance process (and then refined with experience) or observed through controlled
experiments [BSP83, BW84J. Both help to determine the average estimation accuracy that
can be reasonably expected for a given memcs.

The range of each continuous / ordinal medictable memc is divided into intervals (e.n.,
percendes, natural clusters pIL84J). Thk more accurately predictable the metric, the more
numerous and nmow the intervals can be. We recode the memc ranges according to their
respective predictability so the maintainer can easily select the right hemal and use some
of the predictive power of memcs not measurable before the implemenzation phase. These
intervals are called mem'c classes in the paper.

Our need to define these metric classes for predictable memcs stems from the impossibility
of relying exclusively on measurable (at the time of prediction) memcs, e.g. building an
accunte model for predicting change effort is likely to require measures of change size that
are not available before the implementation phase. We have no choice other than taking into
consideration memcs that cannot be measured but only approximated with a certain degree

4-52
loo05788L

of prwkion-by the maintainer after the undcrstondingpke of the change process.

2- Idenrifi Signifscant Predictable Menics. The input to the second step is the set of
predictable metrics from the first step and the outputs are a subset of significant predictors
and their conesponding association table. This association table distributes the difficulty
&iices across the metric classes defined on each predictor value domain.

Consider as an example Table 1 which shows the association table of the metric umber of
lines of code added across the four difficulty classes (class 5 has so few changes that we
merge it to class 4). This table is calculated based on the actual dismbutions in the data set
considered for modeling. Each column represents a mcmc class (e.g. > 30 implies that the
number of loc added is more than 30) and each row an index of difficulty. With respect to
each predictable memc and using its calculated distribution of difficulty indices, an average
difficulty index (i-e ADI) is calculated for each metric class (shown in the bottom row of
Table 1). The calculation of a meaningful and statistically significant AD1 requires us to set
up the memc classes in a way that guarantees a minimum number of changes in each of
them.

4

.
I 2 I 48% I 36% I 9.5% 1

1 I

3% 4% 50%

I I I I I

I 3 I 42% 60% I 40.5% I
1 I I AD1 1 2-40 I 2.68 I 3.40 I

Table 1: "number of lines of code added" distribution

Taking the association table Table I as an example, the calculated index averages look
consistent with what was expected. The AD1 seems to increase substantially with the
number of lines of code added. In general, with respect to the ratio and intend level
memcs whose the value domains have been rccoded in successive memc classes (see step
l), significant differences should exist between class ADIs. Based on a F-test, a one-way
analysis of variance (ANOVA) can be performed and the statistical level of significance of
the metric class AD1 differences may be estimated [CAPSS). Whenever the 0.05 level of
significance is not reached, the boundaries should be recoded in a way that minimizes the
level of significance. Since all the continuous memc ranges have been recoded into an
ordinal scale, we have to calculate the degree of association between the difficulty indices
and the memc classes in order to assess the predictive power of each memc. One approach
consists of computing the Chi-square statistic (which is valid at the nominal level
[CAP88]) for each memc association table. A statistical level of significance characterking
the association between the difficulty indices and the metric classes is calculated based on
the generated Chi-square value. Thus, the top ranked metrics showing sufficient degree of
association are selected as parameters potentially usable to build a multivariate prediction
model. Some more sophisticated measures of association (Le. PRE-measures of
associations [CAP88]) can provide more intuitiodinformation about the associations and.
therefore allow an easier selection. However, this issue is beyond the scope of this paper.

3- Generate a Clarsification Function. The input to the third step is the set of association
tables of significant predictable memcs and the output is a classification model that predicts
an expected difficulty index associated with changes. Note that although five difficulty
indices are defined on the change form, a small minority of the changes (5%) actually lie in
the extreme intervals (i.e. intervals 1,5).

4-53
loo05788L

This makes classification into these intervals extremely difficult. Also, since 80% of the
chances belong to classes 2 and 3, we will first build a classification model intended to
differentiate these two classes: less than one day (Le. referred as easy), more than one day
(i.e. refemd as difficult). In section 4.2, we will refine our classification by dealing with a
“more than one week” class (Le. indices 4 and 5) . Thus, based on the generated
classifications the user wi be able to make decisions with respect to the requested

available res0m.c~ and the cxpecttd gains.

The process of building a classification function is composed of two steps:

1- Paform a regression: Based on all the available association tables and the corresponding
ADIs for each change in the. dam set, we perfom a stepwise linear regression [DL841 of
the following form:

Actual-difficulty-index = W1* ADI-memcl+ ... + WN * ADI-metricN

implementations of changes. a, ‘s is done by comparing the predicted difficulty to both the

Due to interdependencies between memcs, only a subset of the pnseltcted metrics remains
in the generated prediction function (Le. only the one showing, based on a F-partial test, a
level of s i g ” below 0.05). In order to make the model easier and less costly to use,
the number of parameters in the regression equation can be minimized. In this case, one or
several parameters are n m v d (especially when they show a statistical significance close
to 0.05) and the resulting models arc evaluated. Then, the user has to assess the loss of
correlation against the ease of use gained by removing parameters from the model. If the
tradeoff appears reasonable, then the new model is adopted. Weights arc calculated for each
remaining parameters and the resulting optimized linear function allows us to calculate an
difficulty index expected value. This may be used to classify the change based on the
realistic assumption that: the closer the expected value of the di&culty index to an actual
Miculty index, the more likely the corresponding change belongs to the matching effort
class. Therefore the following interval-based decision rule is used to make classifications.

2- Define a decision rule for classification: the predicted difficulty index range is divided
into three intervals (i.e. easy change predicted, undecidable, difficult change predicted) in a
way that guarantees a maximal average classification correctness. For example, the
boundaries for classifying a change as either less or more than one work day can be
defined as in Figure 1. The classification of future changes will be performed according to
the intend in which their calculated difficulty index will lie.

I EASY Undecidable DIFFICULT

t I I 1
1 2.4 2.6 5

I I

Predicted Dificulty Index Range

Figure 1 : Example of decision intervals

4-54

The process for creating these decision boundaries can be described as follows:

1- The user defines a risk I loss function having the following form:

Expected-loss = Wtightl*MRl+ Weight2*MR2

where MRn is the "isclassification rate &.lculatcd for changes actually in class n.

The loss function weights can be defined according to the respective costs of
misclassification associated with each class. Most of the time, this weight will be set to
one. A search algorithm can then be used to determine the interval between two
neighboring changes on the predicted index range that provides the best decision
boundaries (i.e. that minimizes the risk / loss function). These two neighboring changes
form the boundaries of the smallest possible undecidable interval on the range.

2- In a stepwise manner, this interval can be widened on both sides of the index range
according to some automatable process. For instance, the interval can be expanded in a
stepwise manner, including one more change at a time on each side of the interval, until a
maximal expected loss value (Le. pndefmed by the user) is reached. Based on this
process, the user will be able to determine the boundaries of the decidable intervals
corresponding to the desired level of risk

4 A Validation Study

According to the procedure defined above and based upon the previously described four
project data set, the significance of each available metric as a predictor is assessed. Table 2
shows the Chi-square-based levels of Significance. Then, in order to build the needed
classification models, the metics yielding a good level of sigmficance arc selected. First,
we build a general model usable for any project in the same environment. This model is
intended to be useful at the start of a maintenance process when not enough data are
available to mate a project specific model.
Then, we build an independent classification model for each project which is expected to be
more accurate with respect to future changes for each specific system, respectively. The
various results will be compared in order to assess the validity of cross-project models in
this environment. The ranges of the continuous memcs were recoded according to the
previously described prucedure. Two or three memc classes were defined for each of the
metrics. according to the urtdictabilitv level of the memc and the distribution of the
changes on their &ective*mge. In 0th words, the intcrval boiindaries were chosen in a
way that reflected their predicability, optimized the classification power of the metric (i.e.
ophized the chi-squak) and guaranteed, to the extent possibl& a sufficient number of
changes within each metric class.

4-55

Type I 0 . W

m Requirements. specifications,
Source O.oo00 &sign, code, prtvious change

Chdesc initialization, logic, interface,
O.oo00 data smrcrurt, compuultional

I Correction, enhancemau, I adamaon
1.

Comp.add.

Comp. ch.

Objects

Locadd. I O.oo00

.
O.OOO2 o,>o

O.oo00 Q, [Z 51 , >5

0.0005 code only, code and design

I c10, [lo, 301 , >30 I

-Del. I o.ooo6 I

Table 2: Level of significance and class boundaries / categories of metrics

4.1 A General Model

This model is intended to be specific to the NASA SEL environment It has been built
based on systems belonging to the same application domain and therefore may not
represent necessarily other domains accurately. Table 3 shows for each selected metric, the
class ADIs and the corresponding result of the one way analysis of variance [CAP881 that
assessed the statistical significance of the AD1 variations across memc classes. They all
appear below 0.05 and we can therefore say that the meaic classes with respect to
continuous memcs have been adequately defined because they show significant AD1
differences.

Table 4 shows two distinct regression-based classification functions (PI stands for
Predicted difficulty Index). Note that the parameters of the regression equations are the
memc association table-based ADIs and not the metric values themselves. For the sake of
simplification, the names of the memcs areshown in the equations. For each function, the
calculated regression equations are given with the respective level of signXicance of each
memc (i.e.shown between brackets above the equations and based on partial F-tests).

If the memc does not appear significant at a 0.05 level, then they are excluded of the
equation. The global coefficient of determination R2 is also given. The first one was
obtained by performing a stepwise regression using the class ADIs of the significant
predictable memcs. Only one of the lines of code (i.e. loc) based memcs was retained in
the equation: luc.ch. Then, in an attempt to avoid the use of this memc (i.e. which is still
the most difficult to assess despite the coarse defined memc classes), we recalculated the
equation parameters when ignoring it. The coefficient of correlation did not appear much
affected by the change. This can be explained by the higher significance of the remaining
parameters and their stronger calculared coefficients that show a strong interdependence
with 1oc.ch. In other words, they partially compensated the loss of explanatory power due
to the removal of 1oc.ch.. Thus; the generated model becomes even easier to use and does
not loose much of its accuracy (seo, Table 5) .

4-56

Table 3: Metric class ADIs

I Description of the Models R-XI

0.50
Model 1 (0.0) (0.0) (0.0) (0 . ~) (0.04) (0 . a)

PI - - 4.22 + 0.59 Swrce + 0.62 Ch.desc + 0.58 locch + 0.38 Comp.rdd + 0.36 Comp.ch

(0.0) (0.0) (0.01) (0.0)
+ 0.68 Swrce + 0.69 Chdesc + 0.49 Comp.add + 0.56 Cunp.ch

I 0.46 I
Table 4: General models

Table 5 shows the clarsificarion c o r r e m s (Le. rate of comct classification) obtained
when using the above models (Table 4). The decision boundaries have been optimized to
yield the best results. First, they ha;re been selected to yield a 0% indecision rate (column
IR = 0% in Table 5) . Then the undecidable interval has been widened in order to
demonstrate the possibility of selecting decision intervals that fit the user’s need in terms of
classification comcmess (column IR > 0% in Table 5). In this case, the selected interval
boundaries are arbitmy and are shown for the sake of example. The row “classification”
indicates the classification performed (i.e. easy changes = [l-21 or [l-31). Each cell
contains, for all models, the undecidable interval boundaries between brackets and the
corresponding classification correctness. Whenever the undecidable interval has been
widened (Le. IR > O%), the corresponding indecision rate is given.

Despite the mediocre coefficient of determination, a pdcularly good correctness C ~ E S k e n
obtained when the interval [1-31 represents easy changes. However, the results appear
much less satisfactory for the other classification performed. Nonetheless, this can be
substantially improved by widening the undecidable interval. Thus, the model appears
usable for at least a subset of .the changes. However, when possible (Le. enough project
data are available), project specific models should be used as demonstrated in the next

4.2 Project Specific Models

Table 6 shows optimal equations resulting from stepwise regressions performed
independently for each of the four projects. The format used is q e same as in Table 5.
Differences between models are observable with respect to the variables selected. This does
not necessarily mcan a real variation in the impact of the explanatory variables across
projects. It may be due to a lack of variation of a variable within a project specific data set

Description of the Models

(0.0023) (o.-) (0.03) Model P l
PI - - 1.56 + 0.71 Source + 0.80 Comp.ch

R-sq

0.68

(0.0) (0.004 (0.003)
Mode' p2 I PI I - 3.62 + 0.65 Source + 0.80 Ch.desc

L

PROJECT MODEL RESULTS
Indecision I R = O %
Z:lWiTcath clas. [1-2]/ [3-5] clas. [1-3] / (4-51

Model P1 [2.39 2-80] : 88% [3.35 3.741 : 88%
-

- - -
' Model pt r2.31 2.521 : 7496 [3.42 3-61 1 : 93%

I 0.45 1
I 1

I i I 0.75 I (0.001) (O.oO01) (0.001 6) (0.009)

PI = - 1.34 + 0.59 Ch.desc + 0.50 Loc.add + 0.44 Comp.ch
ModdP3 I

(0.002) (0.003) (0.001)
Model P4 I

PI I - 2-95 + 0.65 Loc.add + 1.02 Loc.ch
I 0.50 I

Table 6: Project specific regression equations

The commess is shown to improve substantially (see Table 7), compared to the general
model results whenever easy changes = [l-21 (except for project P2). The results are only
presented for a minimal undecidable interval. However, the interval could be widened as
shown in the previous section in order to get even better correctness in the decidable
intervals.

Table 7: Classification results

4-58

5 Conclusions, Lessons Learned and Future Research

This modeling approach provides a simple and flexible way of classifying changes 4uring
the maintenance process. The classification power of continuous explanatory variables can
be optimized by changing the class boundaries until the chi-square statistic reaches a
maximum (this can be automated). This is performed while minimizing the number of
metric classes and thereby facilitating the prdction process. It allows for an optimal use of
the available explanatory variables by considering the uncertainty associated with each of
them at the time of prediction.

while selecting the decision A user defined loss function (Le. risk model) can be
boundaries on the predicted index range until a predched expected loss is reached.
This allows the construction of a Classification model optimal and customized, for specific
user needs. Thus, by tuning the undecidable interval, he / she can handle in an appropriate
and simple way the uncertainty associated with the model output. Also, the modeling
process has shown many opportunities for a high extent of automation that would help
optimize the memc class definitions and select the most suitable decision boundaries.

Despite the fact that collecting change effort data on a discrete range (i.e. ordinal level)
makes the data analysis more difficult and the usable statistical techniques less powerful,
valuable information can still be extracted from the data while taking into account the
constraints associated with a software development environment. As presented, effective
classification has been performed among three effort classes with nspect to changes within
the maintenance process.

Despite organizational issues and data collection accuracy problems, it would be better to
collect effort data at a ratio level. This would allow the use of more effective statistical
techniques. The gains in terms of management efficiency are likely to be substantial.
However, if effort data are collected in a discrete manner, each class should contain, to the
extent possible, the same number of changes. When the dismbution is not uniform,
classification for small proportion classes may be difficult

Subsystem and component characteristics that are collectible in an automated way through
code static analyzers (i.e. data binding between components, code complexity, ...) are
likely to help refine the classification models. Maintainer skills and experience with respect
to the maintained system should also be considered in the analysis in order to better select
the required level experience for minimizing the cost of maintenance. Despite encouraging
average results in the above experiments, a more complete data collection process is
required in order to refine these change difficulty @ction models.

. . .

6 Acknowledgements

We would like to thank Jon Valett h m the NASA Goddard Space Flight Center, Adam
Poner and Chris Hetmanski for their suggestions that helped improve both the content and
the form of this paper,

7 References

[BSP83] V. Basili, R. Selby and T. Phillips. “Metric Analysis and Data Validation across
FORTRAN Project?. IEEE Transactions on Software Engineering, SE-9(6):652-663,
November 1983

pW841V. Basili and D. Weiss. “A Methodology for Collecting Valid Software
Engineering Data”. IEEE Transactions on Software Engineering, SE-10(6):728-738,

4-59

November 1984

[CAP881 J. Capon, “Statistics for the Social Sciences”, Wadworth publishing company,
1988.

PL841 W. Dillon and M. Goldstein, “Multivariate Analysis”, John Wiley & sons, 1984(,

[GRA87] R. Grady, “Software Mctrics: Establishing a Company-Wide Program”,
Prtntice-hall, 1987.

L S S O] B. Lientz and E. Swanson, “Software maintenance management“, Addison-
Wesley, 1980.

fRUV921 D. Rombach, B. Ulcq and J. Valett, “Toward Full Cycle Control: Adding
Maintenance Measurement to the SEL”, Journal of systems and software, May 1992.

4-60

SECTION 5 - SOFTWARE
MEASUREMENT

SECIlON 5-SOFFWARE MEASUREMENT

The technical paper included in this section was origindly prepared as indicated below.

“’lbward Full Life Cycle Control: Adding Maintenance Measurement to the
SEL,” H. D. Rombach, B. T. Ulery, and J. D. Vdett, Journal of Systems and
Software, May 1992

5-1

1. SYSTEMS SOFTWARE 125
1991: 18:125-138

<-

d L j -6/

,/j ,’. ,-% / c Toward Full Life Cycle Control: Adding
Maintenance Measurement to the SEL

f Y
3 9 0 N g 2 - 7 r - f -. - (r

H. Dieter Rombach and Bradford T. Ulery
Computer Science Department and Umiaa, University of Maryland, College Park, Matyiond

Jon D. Valett
NASA, Goddard Space Flight Center, Greenbelt, Maryland

Organization-wide measurement of software products
and processes is needed to establish full life
cycle control over software products. The Software
Engineering Laboratory (SELI-a joint venture
between NASA’s Goddard Space Flight Center, the
University of Maryland, and Computer Sciences Corpo-
ration-started measurement of software development
more than 15 years ago. Recently, the measurement
of maintenance has been added to the scope of the
SEL. In this article, the maintenance measurement pro-
gram is presented as an addition to the already existing
and well-established SEL development measurement
program and evaluated in terms of its immediate bene-
fits and long-term improvement potential. Immediate
benefits of this program for the SEL include an in-
creased understanding of the maintenance domain, the
differences and commonalities between development
and maintenance, and the cause-effect relationships
between development and maintenance. Initial results
from a sample maintenance study are presented to
substantiate these benefits. The long-term potential of
this program includes the use of maintenance base-
lines to better plan and manage future projects and to
improve development and maintenance practices for
future projects wherever warranted.

1. INTRODUCTION

Most software organizations lack satisfactory control
over their development and maintenance projects. This
lack of control is exemplified by the absence of explicit
models enabling the identification of ambiguous prod-

Address correspbndence to Pmfmor H. Dieter Rombach, AG
S t W Eng., Fachbereich Informarik. Univenitaer Kaircrsloutern,
Pactfach 3iU9, D-67SO Kaisenlauiern. Germany.

uct requirements, the selection of practices best suited
to achieve given requirements, or the prediction of the
impact early project decisions may have on the quality
of the resulting products. Each organization has its own
set of control problems and reasons standing in the way
of improvement. Comprehensive measurement pro-
grams are needed as a first step toward improvement
[l]. Such programs can help identify the specific prob-
lems of an organization in quantitative terms, pinpoint
possible causes, motivate improvements, and assess
alternatives considered for improvement.

The Software Engineering Laboratory (SEL)-a
joint venture including government, industry, and
university- began measurement of satellite ground
support software development projects in 1976. The
three primary organizational members of the SEL are
the Systems Development Branch at NASA’s Gaddard
Space Flight Center, the Computer Science Department
at the University of Maryland, and the Systems Devel-
opment Operation at Computer Sciences Corporation.
This collaboration has produced numerous case studies
and controlled experiments [2-61. Results from these
case studies and experiments motivated several
improvements within the SEL [7-91.

In 1988. the SEL incorporated maintenance into its
scope of measurement. The result is an even more
comprehensive measurement program in which data is
now being collected during development and mainte-
nance of all software systems. In the SEL, pre- and
postlaunch maintenance activities are performed by
separate organizational entities. Cumntly , maintenance
data are only collected from prelaunch maintenance
activities. In the remainder of this article, the term
“maintenance” shall refer to this prelaunch phase

@ Elsevier Science Publishing Co., hc.
655 Avenue of che Americas. New York. NY 10010

loo06788L

5-3

126 J. SYSTEMS SOFTWARE
1992: 18:125-138

H. D. Rombach. B. T. Ulery. and J . D. Valen

between delivery of a completed software system and
the actual launch of the related spacecraft. This mainte-
nance measurement program is customized to the peni-
nent SEL characteristics, including the definition of
maintenance, the maintenance improvement goals, and
other product, process. and people factors.

Empirical research in the SEL is based on the idea of
continuous improvement. This idea has been formu-
lated as the quality improvement paradigm [11. Accord-
ing to this paradigm, improvement is the result of
continuously understanding current practices, changing
them, and empirically validating the impact of these
changes. Improvement requires measurement.

In the SEL, measurement goals define the data to be
collected and provide the context for data interpreta-
tion. This goal-oriented approach to measurement has
been formulated as the goal/question/metric paradigm
[1, 10, 1 11. It suggests defining each goal by develop-
ing a set of analysis questions, which in turn lead to a
set of metrics and data. The short-term goals of our
maintenance measurement program have been to
increase the understanding of maintenance within the
SEL; the long-term goals are to stimulate improve-
ments in the SEL’s ability to plan and manage future
maintenance projects and-whenever needed- to moti-
vate the use of different development and maintenance
practices.

Specific characteristics of the SEL maintenance envi-
ronmect 3 well 32 the ccrr.;rehtr.si:.: scope of vir
measurement approach make this program unique. The
study results presented here may not be directly compa-
rable to those from other maintenance environments,
yet they do show how a comprehensive measure pro-
gram can be used to better understand and improve an
organization’s development and maintenance process
and products. Few comprehensive maintenance studies
have been published [12- 141. Most empirical mainte-
nance studies report on laboratory-style controlled
experiments [15, 161, isolated case studies [13, 171. or
project surveys [18]. A survey of maintenance studies
has been published by Hale and Haworth [19].

The purpose of this article is to state our initial
maintenance study goals and questions, present the
related results, and propose-based on what we have
learned-a revised set of goals and questions for hture
studies.

The study results are organized according to the
types of data used to address the goals and questions:
quantitative maintenance baselines, comparisons
between quantitative development and maintenance
baselines, and qualitative information regarding the
cause-effect relationships between development and
maintenance. These results have increased our under-

standing of maintenance processes and maintained
products in the SEL. commonalities and differences
between development and maintenance, and develop-
ment characteristics affecting maintenance. On occa-
sion, our results are carefully compared with results
from other published studies or widely believed mainte-
nance myths.

We begin our presentation with a background discus-
sion of the SEL and the new maintenance measure-
ment program (sections 2 and 3, respectively). We then
present the results of our study (section 4). We con-
clude with an assessment of the SEL maintenance
measurement program and a revised set of goals and
questions for future maintenance studies.

2. THE SEL

The goals of the SEL are to understand its software
development processes, to measure the effects of vari-
ous methods and tools on these processes, and to
identify and then apply new, improved development
practices. Improved understanding within this panicu-
lar environment provides the basis for better planning
and management as well as a rationale for adopting new
practices [4].

Development in the SEL supports satellite missions.
SEL studies generally focus on attitude ground support
systems and their associated simulators. These product
l i m are very stable: the system architecture. documen-
tation standards, and organizational responsibilities do
not change significantly from one mission to another.
Attitude ground support systems have 130-240K lines
of FORTRAN source code (where a line of code is
measured as a physical line, including comment lines)
and require 15-30 staff years to develop. Simulators
have 25-75K lines and require 3-10 staff years to
develop.

Research in this environment is guided by two basic
paradigms: the quality improvement paradigm (QIP)
and the goal/question/metric paradigm (GQM). The
QIP, which applies the principle of continuous im-
provement to software engineering, defines the context
for measurement within the SEL [I] . Accordingly,
software development can be improved by iterating the
following steps for each project: (1) characterize the
corporate environment: (2) state improvement goals in
quantitative terms; (3) plan the appropriate develop-
ment practices and methodologies together with mea-
surement procedures for the project at hand; (4) perform
the development and measure, analyze. and provide
feedback; and (5) perform postmortem analysis and
provide recommendations for future projects. Each QIP
iteration is characterizea by its own set of goals. These

5-4

Toward Full Life Cycle Control J. SYSTEMS SORWARF. 127
IW2; 11:125-138

goals reflect-and evolve with-the maturity of the
investigated organization.

Measurement in the SEL is guided by the GQM
paradigm [lo]. Measurement is used to characterize
current development practices, monitor and manage
development projects, identify strengths and weak-
nesses of the current practices, and evaluate promising
new technologies in a controlled environment. The
GQM paradigm describes a goal-oriented approach
to measurement in which metrics are tied to spe-
cific measurement goals. According to the GQM para-
digm, each measurement goal is listed explicitly,
a set of specific questions is posed to address each
goal, and specific metrics and measurement proce-
dures are defined to support the questions. The result-
ing data collection procedures and interpretations are
tailormade to the study's goals and local environment
characteristics. For instance, in the SEL, this generally
means that metrics and measurement procedures reflect
the use of SEL-specific development practices, fit the
organizational structure, and permit comparisons with
historical data. Goals, questions, and metrics provide a
context that helps ensure that data are interpreted cor-
rectly and are compared only to data and results from
similar contexts.

Two types of measurement are common in the SEL:
routine monitoring and exploratory studies. Routine
monitoring is used to characterize the local environ-
n m r Lroadiy . The resulting qrlwititative and qualitative
baselines are used to plan and manage new projects and
to compare the effects of newly introduced tools or
methods against [6] . Objective and subjective data are
routinely gathered for each project [20]. Objective data
include staff hours, computer utilization, source code
growth, and the number and kinds of changes made to
the source code. Subjective data characterize the soft-
ware development process and software product charac-
teristics. The data for over 100 projects monitored
over the last 15 years is maintained in the SEL
database [21].

Exploratory studies are used when the SEL is in the
initial phase of understanding a process or methodol-
ogy. For example. the SEL is currently studying three
projects following the cleanroom methodology (221.
Special data collection procedures were designed for
these projects to permit researchers to monitor the
effort spent in reading and reviewing designs and code.

Measurement in the SEL has provided a rauonale for
making evolutionary changes to NASA's development
practices, including stricter use of code-reading tech-
niques [SJ. guidelines for Ada projects [23], and the
adoption of the cleanroom development approach (241.
With the addition of maintenance measurement; the

SEL is attempting to lay the foundation for similar
improvements in maintenance.

3. THE SEL MAINTENANCE MEASUREMENT
PROGRAM

The following subsections describe the SEL mainte-
nance environment and the specific goals and proce-
dures of our measurement program. A more detailed
description of this environment. its products. and main-
tenance processes appeared in the proceedings of the
1989 IEEE Conference on Software Maintenance [XI.

3.1 Maintenance Environment

In the SEL, maintenance is partly defined by organiza-
tional responsibility and schedule. As depicted in
Figure 1, each product passes throush three different
organizational units during its lifetime: analysts produce
the initial functional specifications used by the deve-
lopers and remain responsible for these speci-
fications throughout development and until launch:
operations assumes complete responsibility after
launch. During the period between development
and launch, the analysts have complete responsibility
for the system, including the implementation of any
changes.

In this study, maintenance refers specifically to soft-
ware change activities performed by the analysts during
the postdevelopment, prelaunch phase. By nature of
these constraints, the maintenance phase is typically
shorter in the SEL than in other environments (one to
two years), and the maintenance changes are not trig-
gered by operational failures but by failures detected
during simulated uses of the software by prospec-
tive operators and externally triggered changes of the
overall satellite mission.

~~

Figure 1. Organizational structure of the SEL environment.

5-5
1"L

128 J. SYSTEMS SOFTWARE
1992; 18:12S-138

H. D. Rombach, B. T. Ulery. and J . D. Valett

The products maintained are the same simulators and
attitude ground support systems described in section 2.
Typically, the effort expended during the one- to two-
year time frame that these systems are in maintenance
is approximately 5 % of the development effort. Mainte-
nance procedures vary from project to projeg depend-
ing on the t y p of system being maintained, the size of
the maintenance team (2-10 people on the projects
studied), the specific methods and tools elected by the
individual programmers, and other factors. In general,
formal change control procedures are followed; changes
are implemented one at a time, but may be tested
in groups; and one maintainer is responsible for
implementing each change.

3.2 Maintenance Measurement Goals
Consistent with the overall directions of the SEL. we
chose three general goals for the maintenance measure-
ment program: (1) to understand maintenance processes
and products better; (2) to improve our ability to
manage current maintenance projects and plan future
ones; and (3) to establish a sound basis for in >roving
development from a maintenance perspective.

Following the QIP, the initial goals focus on under-
standing maintenance. Representative measurement
goals and questions selected for this study are summa-
rized in Figures 2, 5 , and 11. Analysis results related to
these goals and questions are presented in section 4.

3.3 Maintenance Measurement Procedures
The data collection procedures used in this study were
designed according to the principles of the GQM
paradigm. Data were collected via exploratory inter-
views and routine data collection forms [20]. The rou-
tine data collection forms used during maintenance
include the Weekly Maintenance Effon Form and the
Maintenance Change Report Form (Appendix A). The
effort form is filled out once per week per maintainer
per system; one change form is filled out per completed
change. The weekly effort forms record the distribution
of effort (in staff hours) by type of change (correction,
enhancement, adaptation, or other ') and by engineering
activity (designing, coding, etc.). The change forms
record the distribution of changes by type of change,
sue of change, changed objects (e.g., code, user's
guide), expended staff time, fault type (if applicable),
and more. All data are validated through a series of

'All t"Icnance effon that cannot k aNnbuttd to an individual
miuntcnance change IS classified as "other." Th~s includes cffon
related to management. mccungs, and training.

checks by the data entry personnel. project managers.
and SEL researchers. Data are stored and made avail-
able to researchers and developers through the SEL
database [2 11.

4. MAINTENANCE MEASUREMENT BENEFITS
The maintenance measurement program has already
increased understanding of maintenance in the SEL.
Previously, much of this understanding was at best
intuitive and approximate. In this section we demon-
strate what we have learned as a result of our initial
study. The results are separated into baseline character-
izations of maintenance, a comparative analysis of
development and maintenance, and an analysis of how
development decisions affect maintenance.

In this study, we restrict our analyses to three large
attitude ground support systems for which we have
complete and valid data: the Gamma Ray Observatory,
the Geostationary Operational Environmental Satellite,
and the Cosmic Background Explorer. Maintenance of
these systems was performed between 1988 and 1991.
A total of 90 changes and over 10,OOO hours of effort
serve as the basis for all quantitative analyses of main-
tenance presented here.

Examining the data on these three projects has pro-
vided valuable insight into the maintenance process
within this environment. The results presented here are
intciidcd io demonstraie the iucreased understanding
of the maintenance process that can result from a
measurement program.

4.1 Maintenance Baselines
The first step toward understanding any environ-
ment is to develop baselines describing that environment
[12, 14). The goals and questions related to this part of
the SEL study are listed in Figure 2. They are intended

GOAL 1 : Characterize the changes performed during
maintenance.

QUESTION 1

QUESTION 2
How many changes of each type are completed?

How much effort is spent on changes of each type?
GOAL 2: Characterize product evolution during

maintenance.
QUESTION 3

QUESTION 4
How much code is affected by each change?

Is code added, changed or deleted?
GOAL 3: Characterize the maintenance process stability

QUESTION 5
How do maintenance processes differ across projects?

Figure 2. Measurement goals for understanding maintenance
in the SEL.

5-6

1"L

Toward Full Life Cycle Control 129 1. SYSTEMS SOFTWARE
1992; 18:125-138

to characterize what kinds of changes are performed
during maintenance, which parts of the systems change
and how, and what maintenance processes are fol-
lowed. In the long term, the resulting baselines are
expected to provide a basis for determining whether
new techniques or process adjustments have any mea-
surable impact on the SEL maintenance processes or
products. Any comparison between SEL baselines and
baselines from other environments must take environ-
mental differences into account.

Each maintenance change in this environment is well
defined by a formal change request. There are several
key steps in the change process: changes must be
approved, implemented, tested, and released. In gen-
eral, more changes are approved than can be imple-
mented. This poses the difficult management problem
of selecting which changes to implement. This decision
is based on the importance of the changes approved as
well as the budget available to make changes. The
implementation of a change is performed by one pro-
grammer; there is no standard, formal methodology.
Testing, beyond debugging by the programmer, is per-
formed for several changes at once. One important
implication is that the associated effort measured cannot
be ascribed to a particular change. In fact, testing is
typically performed at two levels: the first level pro-
vides internal checkpoints for configuration manage-
ment; the second level occurs before each release.

Each idnicnance change pcrforiiieri in the: SEL is
classified as an enhancement, adaptation, or correction
[26]. A simple count of changes suggests that mainte-
nance is primarily corrective; however, the effort distri-
bution reveals that most effort is actually related to
enhancements (Figure 3). Either way, adaptations do
not seem to contribute significantly (Figure 2, questions
1 and 2). Note that the average enhancement requires
just over twice the effort of the average correction.

This phenomenon could be caused by the fact that
enhancements are typically larger than corrections.
that enhancements are inherently more difficult to
accommodate into an existing system, or both.

As early as 1976, Belady and Lehman [14] demon-
strated the benefits of program evolution models for the
purpose of understanding the decay of software under-
going change. Figure 4 summarizes how many modules
and lines of source code have been added, changed, or
deleted per change (Figure 2, questions 3 and 4). On
average, three lines of code are added for every exist-
ing line changed or deleted. Entire modules are rarely
added and never deleted. In the SEL. maintainers do
not significantly alter the system’s architecture to make
changes. We hypothesize that the high number of lines
added reflects the high proportion of enhancements,
and that architectural stability reflects an “if it ain’t
broke don’t fix it” attitude. Such an attitude could be
explained by the general lack of understanding of over-
all system architecture. The observed growth pattern
also suggests that module functionality increases during
maintenance, leading to a decrease in module cohesion.
Decreased cohesion may not be a problem during the
short lifespan of a satellite system, but may reduce
the reuse potential of modules in future developments.

Our most striking observation about SEL mainte-
nance is the extent to which the maintenance processes
vary across similar projects (Figure 2, question 5) .
Some of the variability reflects the size and composition
of the maintenance teams (2-10 programmers). One
particular area where the processes differ appears to be
in the approach to testing. The projects studied have
not established well-defined criteria for when system or
integration testins should be performed during mainte-
nance. Such variability in the process reflects the rela-
tively ad hoc nature of the maintenance environment as
compared to the development environment. In fact,

.

Enhuwvmnt
3%

Effort Number of Changes
Figure 3. Distributions of effort and number of changes by type.

5-7
loO05788L

J . SYSTEMS SOFTWARE
1992; 18:125-138

130 H. D. Rombach, B. T. Ulery, and J . D. Valett

1 -

0.0

Lines of Code
Figure 4. Lines of code and modules per change.

studies such as this one aim at increasing the maturity
of the maintenance process within this environment. By
identifying which aspects of the process are most suc-
cessful, a single consistent process will be identified.

4.2 Maintenance vs. Development

Applying experience from past development studies to
maintenance requires an understanding of the similari-
ties and differences between maintenance and develop-
ment. The goals of this part of the study were to
compare changes made during development and main-
tenance. types of changes. and change processes
(Figure 5). These comparisons are possible because
both development and maintenance data are available
for the three systems studied.

Throughout development and maintenance, the effort
spent on each change is recorded. Effort is classified
as easy when it takes less than an hour to complete
a change, medium when it takes between an hour and a

~~~ 

GOAL 4: Compare changes made during development and 
maintenance. 

QUESTION 6 
How does the effon per change compare? 

GOAL 5: Compare the types of changes made to products 
at both phases. 

QUESTION 7 
Are the faults found during maintenance different than 
those found during development? 

QUESTION 8 
How do the distributions of errors by class 
compare? 

QUESTION 9 
How docs the distribution of effort by activity type 
compare? 

Figure 5. Measurement goals for understanding the similari- 
ties and differences beween development and maintenance. 

GOAL 6 :  Compare change processes at both phases. 

Modules 

day, and hard otherwise. A distinction is made between 
the effort to isolate a change (understand the request 
and locate the affected modules) and the effort to com- 
plete the change (design. code, test). Figure 6 shows 
that changes performed during maintenance generally 
require more effort than those performed during devel- 
opment (Figure 5, question 6). We consider two 
hypotheses that might account for this pattern: changes 
requested during maintenance are inherently harder 
than those requested during development; and it is 
more difficult to perform the same change during main- 
tenance than it would be during development. While we 
cancot dete.mir.e whether partied;; mzdu!c; are easy 
or difficult to change during maintenance based on our 
data, we are able to examine both hypotheses further at 
the level of the individual change. 

Regarding the first hypothesis, we find no obvious 
difference between the effort distribution patterns for all 
changes (Figure 6) and corrections only (Figure 7). We 
conclude that the increased effort is not primarily due to 
differences in the distributions of types of changes 
requested. 

Regarding the second hypothesis, various character- 
istic differences between development and maintenance 
are commonly thought to explain why the same change 
might be more difficult to perform during maintenance. 
These include product factors (such as increased com- 
plexity and missing or out-of-date documentation), pro- 
cess factors (such as schedule constraints, methods, and 
tools), and people factors (such as a lack of familiarity 
with the software). In the SEL, we cannot attribute the 
maintenance difficulties to product factors because there 
is already a sharp increase in change effort during 
acceptance test, but little change in the products. 
Instead, we suspect some combination of process and 
people factors. Although we are unaware of any sig- 
nificant methodological differences between the 

5-8 



Toward Full Life Cycle Control 1. SYSTEMS SOFIWARE 131 
1992: 18:125-138 

0% 
E l y  W i u m  Hud 

Effort to Isolate Changes 

60% 1 
bnto- I I s D.v.iopnunt I 

Ely Modium Hud 
Effort to Complete Changes 

Figure 6. Effort to isolate and complete changes: mainte- 
nance vs. development. Easy, (1  hour; medium, ) 1 hour and 
(1 day; hard, ) I  day. 

way a change is implemented during development 
or maintenance, development has a much higher 
rate of change activity: these systems average 
over 1,OOO changes during testing. Although the high 
number of changes may increase certain costs (e.g., 
configuration control), it may actually reduce others 
(e.g., testing is not repeated once for every change). 
Maintainers are not only generally unfamiliar with the 
systems they maintain. but the volume of maintenance 
may be insufficient to develop such familiarity. We 
expected the unfamiliarity with the maintained systems 
to have a more dramatic impact on the isolation activity 
(which might require an understanding of the entire 
system) than the completion activity (which typically 
requires only an understanding of individual modules). 

40%- 

20%- 

Modi" nard 

Effort to Isolate Faults 

Ely Modium Hud 

Effort to Complete Faults 
Figure 7. Effort to isolate and complete faults: maintenance 
vs. development. Easy. (1  hour; medium, ) 1 hour and ( 1  day; 
hard, )1  day. 

Instead, we discovered a proportional increase in both 
isolation and completion efforts (Figure 6). This may 
be explained by the fact that SEL maintainers are 
experts in the application domain, not sofnuare devel- 
opment; therefore, they may be expected to readily 
understand the change specifications, but not the code. 

Both during development and maintenance a signifi- 
cant fraction of the changes are corrections (Figure 3). 
Figure 8 shows that the types of faults corrected during 
development and maintenance are similarly distributed 
(Figure 5 ,  question 7). During maintenance, more cor- 
rections are related to incorrect initialization (21 vs. 
17%) and logic (25 vs. 19%), but fewer are related to 
incomct interface (19 vs. 22%), data (26 vs. 28%), 
and computation (9 vs. 14%) as compared to develop- 

5-9 



132 J .  SYSTEMS SORWARE H. D. Rombach, B. T. Ulery. and J .  D. Valen 
1992; 18:12!5-138 

Initialization Logic lnlertace Data Computational 

Figure 8. Number of faults per class: maintenance vs. development. 

ment (see [20] for definition of classification scheme). 
Some of the differences seem to be related to the 
organizational structure of the environment. Mainte- 
nance is performed by people more familiar with the 
application domain and less familiar with the solution 
domain. The opposite is true for the developers. In this 
environment, many application-specific parameters are 
iefiectel in the s o h a r e  as iiikidization parmeters. ?.s 
such, they require a clear understanding of the applica- 
tion, and faults are more easily found by maintainers. 
The opposite is true for typical solution faults such as 
interface and computational faults. 

Figure 9 shows that the distributions of errors differ 
significantly between maintenance and development 
(Figure 5 ,  question 8). During maintenance. many 
more faults are attributed to inappropriate requirements 
or specifications (26 vs. 3%). and a few more are 
attributed to inappropriate design ( 1  1 vs. 8%): fewer 
are attributed to inappropriate implementation (55 vs. 
73%) or previous change; (7 vs. !e%). !n sttempting !c 
explain these differences, the following hypotheses have 
been formulated. Few faults are attributed to previous 
changes during maintenance because maintainers are 
unaware of changes made during development and the 

SpecifiAions Design code Previous Change 
Figure 89. Number of faults per source: maintenance vs. development. 

5-10 
1ooo6788l 



Toward Full Life Cycle Control J .  SYSTEMS SOFTWARE 133 
1992: 18: 125- 138 

total number of changes during this phase is low. The 
high proportion of faults attributed to the requirements 
or specifications reflects the nature of the testing: appli- 
cations experts are now using the systems to prepare 
for the missions, whereas during development most 
testing is performed by the developers themselves. 

During development and maintenance, effort data 
is collected according to the following process model: 
isolation (understanding a requested change and 
identifying the affected modules), design (proposing 
a change), implementation (implement the proposed 
change), unit and system test (testing the changed mod- 
ules and system), and acceptance test (testing a set of 
related changes). The development data include all 
effort; it is not limited to changes. 

Figure 10 shows that during maintenance, more effort 
is spent on design activities, about the same amount 
of effort is spent on implementation activities, and less 
effort is spent on testing activities (Figure 5 ,  question 
9). The increase in design effort may be explained by a 
lack of familiarity with the system structure, resulting 
in increased effort to isolate changes. The decrease in 
testing effort may be explained by different testing 
procedures. During maintenance, integration testing is 
almost absent because the system structure doesn’t 
change much, and acceptance testing is performed for 
groups of changes together. 

How do these results compare with similar findings 
published in the literature’? W hue comparing baseline 
data across environments is difficult. some patterns are 
evident. The increased cost of maintenance changes and 
corrections has been noted previously by many authors 

[22, 271. This lends support to the claim that faults 
introduced during design but discovered during mainte- 
nance may cost significantly more than if discovered 
and corrected earlier in the life cycle [27]. As has been 
noted in other environments [28], we find that mainte- 
nance changes in the SEL require more “upstream” 
(i.e., design) than “down-stream’’ (i.e.. testing) effort). 

4.3 Development for Maintenance 
As a final result of the maintenance measurement pro- 
gram, the SEL has enhanced its understanding of the 
impact of development decisions on maintenance 
(Figure 11). This increased understanding is illustrated 
by our initial findings concerning the complexity of 
delivered products and the quality of their documenta- 
tion. The qualitative results of this section are based 
primarily on subjective data from exploratory inter- 
views. Nevertheless, they are essential during the early 
phases of a measurement program for guiding future 
improvement cycles. 

Our initial inquiries have revealed complexity prob- 
lems related to intermodule structure and the encoding 
global information (Figure 11, question 10). Main- 
tainers reported major problems related to the fact 
that global information was encoded redundantly. For 
example, constants were encoded in multiple 
FORTRAN common blocks. Software modification fre- 
quently resulted in inconsistent representations of global 
information. 

Two recurrent documentation problems have been 
identified (Figure 1 1, question 11). These concern the 

30 

- s 
E 
W - 

Figure 10. Effon per activity: maintenance vs. 20 
Ol development. m 

ti 
L a. 

10 

0 
Dergn Implement Test Other 

Aclivily 

5-1 1 



J .  SYSTEMS SOFTWARE 
1992: 18:125-138 

134 H. D. Rombach, B. T. Ulery, and J .  D. Valett 

GOAL 7: Characterize the impact of the delivered product 
on maintenance. 

What structural product characteristics have positive/ 
negative effects on maintenance? 

What product documentation standards have positive/ 
negative effects on maintenance? 

Figure 11. Measurement goal for understanding the effects 
of development on maintenance. 

QUESTION 10 

QUESTION 11 

use of program design language (PDL) and debug 
statements. PDL descriptions of each module are 
included in the source code as a header. Most maintain- 
ers regard PDL as redundant. Furthermore, the deliv- 
ered PDL is usually outdated. In the SEL environment, 
developers are required to keep their design PDL as 
part of the software module. Unfortunately, this PDL is 
frequently obsolete by the time the module reaches the 
maintenance phase; thus, it is useless to the maintain- 
ers. Also, the majority of people maintaining the soft- 
ware suggested that this practice be stopped entirely, 
since the same level of abstraction is provided to them 
in the code structure and comments. 

Many maintainers suggested that the debug interface 
of the code be improved. Because attitude ground 
support software is highly computational, an exten- 
siuc CIeb~g ktrrfice is provided with each system. The 
problem with the current debug interface is that fre- 
quently it assumes intimate familiarity with the code in 
that the output was of the form (variable) = (value). 
Maintainers suggested that future debug interfaces 
provide a more descriptive explanation of the output 
printed. 

As we learn more about the problems maintainers 
have with the software delivered from development and 
identify solutions to these problem, the guidelines and 
standards for development [7-91 will be modified to 
reflect these recommendations. 

5. SUMMARY AND CONCLUSIONS 

In this section, we summarize the benefits of the main- 
tenance measurement study for the SEL, outline future 
maintenance measurement directions within SEL, and 
package some of the general lessons learned about 
establishing measurement programs for use in other 
maintenance environments. 

5.1 SEL Maintenance Study Benefits 

The most immediate benefit of this program has been 
an enhanced understanding of the SEL maintenance - 

environment. The quantitative baselines presented in 

the preceding section resulted in a better understanding 
of maintenance requests, maintained products, and 
maintenance processes. They enabled us to identify 
weaknesses in the SEL maintenance environment. 

The comparison between changes performed during 
development and maintenance has helped us understand 
where we may benefit from existing development base- 
lines. For example, whereas the distributions of faults 
corrected during development and maintenance are sim- 
ilar, effort distributions are not. This suggests that 
reuse of lessons learned from development is more 
justified when they pertain to faults than when they 
pertain to effort. 

Baselines may also be used to compare the effects of 
new development technologies on maintenance. For 
example, both cleanroom and an Ada/object-oriented 
design approach have been applied on recent develop- 
ment projects with the expectation that "more reliable" 
systems will result. We are now in a position to vali- 
date these expectations by comparing the effects of the 
new approaches to traditionally run projects. 

In the long term, development and maintenance are 
expected to improve as a result of our increased under- 
standing. At this point, recommendations for improve- 
ment are based predominantly on qualitative feedback 
from maintainers (rather than quantitative measurement 
baselines). Most of these suggestions have to do with 
the separation of the deveiopnient anri analysis or@- 
zations (Figure I)  and the absence of standard mainte- 
nance processes. The separation of development and 
maintenance means that a maintainer is entirely depen- 
dent on the code and documentation acquired at the 
time of delivery [29]. Consequently, inadequacies in 
the code or documentation are much more of an obsta- 
cle to maintenance than in an organization where main- 
tenance and development are more closely related. 
Each maintenance change is performed by one indi- 
vidual without much guidance regarding the main- 
tenance process itself. The ad hoc nature of the 
maintenance processes makes it hard to measure. com- 
pare measurements, and make recommendations. We 
expect our measurement program to contribute to the 
standardization of maintenance processes over time. 

Overall, the SEL maintenance measurement program 
is perceived as successful and beneficial to this particu- 
lar environment. The lessons learned from our study 
have resulted in changes and additions to the SEL 
standards and policies for software development [8]. 
Because numerous new projects are always under 
development in the SEL. we will be able to examine 
whether the revised standards have a measurable impact 
on the quality of the development product. 

5-12 



Toward Full Life Cycle Control 1. S Y S T r M S  SOFTWARE 135 
1992; 18:125-138 

5.2 Future Maintenance Research 
As we continue to learn about the SEL maintenance 
environment, numerous future measurement directions 
become evident. Some directions reflect changes in 
the environment itself, others reflect changes in our 
understanding of the environment. We must continu- 
ally revise our goals, questions, meuics, and proce- 
dures to reflect the current priorities and understanding. 
Figure 12 contains an example set of revised questions 
for each of our seven maintenance goals to guide hture 
maintenance studies. 

We must continue to revise our measurement pro- 
gram in response to previous misconceptions inherent 
in our initial qualitative models of maintenance process. 
For example, our current effort classification scheme 
does not explicitly recognize configuration management 
as a discrete activity. This effort is grouped together 
with nontechnical activities such as meetings and man- 
agement. In the future, we may want to update our data 
collection forms to include configuration management 
as a separate activity, since it seems to represent a 
significant portion of current maintenance effort. 

GOAL 1 : Characterize the changes performed during 
maintenance. 

QUESTION 1 
How many changes of each type are requested by 
different sources (e.g., analyst, operator)? 

GOAL 1: Charxterie pmduct evolution d~ring 
maintenance. 

QUESTION 2 
How docs coupling/cohesion change during 
maintenance? 

GOAL 3: Characterize the maintenance process stability. 
QUESTION 3 

Which process factors determined process stability 
(e.g., staffing level. familiarity with system)? 

GOAL 4: Compare changes made during development and 
maintenance. 

QUESTION 4 
What is the average change effon per module during 
each phase? 

GOAL 5: Compare changes made to products at both 
phases. 

QUESTION 5 
What are the distributions of requirements changes by 
type? 

GOAL 6: Compare development and maintenance processes. 
QUESTION 6 

What are the distributions of change effon by activity. 
GOAL 7: Characterize the impact of the delivered product 

on maintenance. 
QUESTION 7 

What product characteristics resulting from reuse have - positive/negative effecrs on maintenance? . 
Figure 12. Revised measurement questions for future 
maintenance improvement cyclu: 

When our empirical investigations identify important 
phenomena, we must refocus our measurement goals 
and questions in order to study the phenomena. For 
example, one hypothesized implication of the stable 
architecture of the maintained systems (very few 
modules are being added or deleted) is that module 
cohesion within these systems may be deteriorating. 
Such deterioration may lead to weaker and weaker 
system architecture, and ultimately lead to even more 
difficult maintenance. Such a hypothesis needs much 
closer investigation before it can be presented as a 
potential problem. 

When measurement does identify specific problems, 
the next step is to analyze the problems and attempt to 
identify viable solutions. For instance, we have quanti- 
fied the types and kinds of faults uncovered during 
maintenance. Next, we might begin to analyze their 
causes in development. Such analysis may lead us to 
mechanisms for preventing faults, or it may help us 
identify better ways of detecting them. 

Finally, the maintenance environment itself is contin- 
ually changing. Transitions to the use of Ada and 
Cleanmm development in the SEL will require peri- 
odic adjustments to our measurement procedures. Such 
changes are not unexpected; in fact, measurement by 
nature must continue to evolve as the environment 
evolves. 

5.3 Measurement Lessons Learned 
The extension of the SEL into maintenance not only 
enabled us to gain experience with maintenance 
but also with establishing a maintenance measurement 
program [25]. 

Our first lesson is that there is a distinction, at least 
conceptually, between start-up and routine phases of 
measurement. During the start-up phase, there is con- 
siderable freedom to reevaluate measurement goals and 
redesign the metrics and procedures as our understand- 
ing of the local priorities and what is feasible grows. 
Once data collection forms have been designed and 
reflected in the data base and once people have been 
instructed in the procedures, it becomes expensive to 
introduce further changes. It is therefore critical that 
the start-up phase proceed cautiously. We suggest vali- 
dating all measurement procedures through pilot studies. 

Our second lesson concerns which questions are 
suitable for routine measurement. It may be tempting to 
use routine measurement as a mechanism for answering 
questions that could be resolved more efficiently by 
other means. For example. if the sofnvare design docu- 
" a t i o n  is never maintained, it would be wasteful to 
discover this via routine data collection. Routine mea- 

5-13 



- 
136 J .  SYSTEMS SORWARE 

1992: 18:125-138 
H. D. Rombach, B. T. Ulery, and J .  D. Valett 

surement is appropriate for monitoring large-scale and 
historical trends, but it is not needed to ascertain simple 
facts. Many of the questions we would like to pursue 
are risky, i.e., we cannot be sure that the resulting data 
will prove useful. 

Third, we have found the establishment of a 
measurement program in a new environment to be 
a timeconsuming and sensitive task. Getting the pro- 
gram started requires building initial models of the 
maintenance organization, the maintained products, the 
maintenance processes. and the specific maintenance 
problems at hand. These models are used to design the 
measurement procedures. but must be validated during 
the start-up phase. Special care must also be taken to 
establish the creditability of measurement and win the 
cooperation needed to make the program a success. To 
collect valid data, the people providing most of the data 
need to be well motivated and instructed. Motivation 
requires addressing measurement goals of direct inter- 
est to the people providing cooperation and an opportu- 
nity for these people to review and comment on the 
resulting data and analyses. 
Our analysis results demonstrate the immediate 

returns possible from investment in a measurement 
program. A measurement program provides invaluable 
insight into the processes and products within the given 
environment. As long as measurement is performed 
within a context of well defined goals and questions, 
such a program can be a success for any software 
organization. 

ACKNOWLEDGMENTS 
Research for t h i s  s tudy  was supported by National 
Aeronautics and Space Administration grant NSG-5123 to 
the University of Maryland. 

We thank the CSC and GSFC personnel who have partici- 
pated in our maintenance measurement program-the project 
personnel, the SEL data librarians, and those who reviewed 
earlier versions of this paper-for their tremendous support. 
We also thank Bruce Blum. the editor in charge of our paper, 
and the anonymous referees for their excellent suggestions. 

REFERENCES 
1. V. R. Basili. Software development: a paradigm for the 

future, in Proceedings of the 13th Annual Interna- 
tional Computer Soft ware and Applications Confer- 
ence, 1989, pp. 471-485. 

2. M. Buhler and J.  Valett. Annotated Bibliography of 
Software Engineering Laboratory Literature. SEL-82- 
906, NASA/GSFC, Gr&nbelt, Maryland, 1990. 

3. V. R. Basili. Measuring the software process and prod- 
uct: lessons learned in the SEL, in Proceedings of the 
10th Annual Software Engineering Workshop, 1985. 

4.  F. E. McGany, Studies and experiments in the SEL. in 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23, 

Proceedings of the 10th Annual Software Engineering 
Workshop. 1985. 
R. W. Selby, Jr.. and V. R. Basili, Comparing the 
Effectiveness of Software Testing Strategies. IEEE 
Tram. Software Eng. 13: 1278- 1296 (1987). 
J. D. Valett and F. E. McGarry, A summary of software 
measurement experience in the Software Engineering 
Laboratory, in Proceedings of the 2Ist Annual Hawaii 
International Conference on System Sciences. 1988. 
F. McGarry, G. Page, S. Eslinger. V. Church. and 
P. Merwarth. Recommended Approach to Software 
Development, SEL-81-205, NASA/GSFC. Greenbelt, 
Maryland, 1983. 
Manager’s Handbook for Software Development. rev. 1. 
SEL-84-101, NASA/GSFC, Greenbelt. Maryland, 1990. 
R. Wood and E. Edwards. Programmer’s Handbook for 
Flight Dynamics Sofnvare Development, SEL-86-00 1. 
NASA/GSFC. Greenbelt Maryland, 1986. 
V. R. Basili and D. M. Wciss. A Methodology for 
Collecting Valid Software Engineering Data. IEEE 
Trans. Software Eng. SE-10. 728-738 (1984) 
V. R. Basili and H. D. Rombach, The TAME Project: 
Towards Improvement-Oriented Software Environments, 
IEEE Trans. Software Eng. 758-773 (1988). 
R. B. Grady, Measuring and Managing Software Mainte- 
nance, IEEE Software 4. 35-45 (1987). 
R. Arnold and D. Parker, The dimensions of healthy 
maintenance, in 6th Internarional Conference on Soft- 
ware Engineering, 1982, pp. 10-27. 
L. Belady and M. Lehman, A Model of Large Program 
Deveiopment. IkM Syst. J. 3 ,  225-252 (irib). 
H. D. Rombach, A Controlled Experiment on the Impact 
of Software Structure on Maintainability. IEEE Trans. 
Software Eng. SE-12, 344-354 (1987). 
C. K. S. Chong Hok Yuen, An empirical approach to the 
study of errors in large software under maintenance. in 
Conference on Software Muintenance - 1985. 1985, 

H. D. Rombach and V. R. Basili, Quantitative assess- 
ment of maintenance: an industrial case study, in IEEE 
Conference on Software Maintenance - 1987, 1987, 

B. W. Boehm and P. N. Papaccio, Understanding and 
Controlling Software Costs, IEEE Trans. Software 
Eng. SE-14, 1462- 1477 (1988). 
D. P. Hale and D. A. Haworth. Software maintenance: a 
profile of past empirical research, in Conference on 
Software Maintenance - 1988, 1988. pp. 236-240. 
G. Heller. Data Collection Procedures for the Rehosted 
SEL Database, SEL-87-008, NASA/GSFC. Greenbelt, 
,Maryland, 1987. 
M. So. SEL Database Organization and User’s Guide, 
SEL-89401. NASA/GSFC, Greenbelt, Maryland, 1989. 
H. D. Mills, Software Development. IEEE Trans. Soft: 
ware Eng. 2:265-273 (1976). 
C. Brophy, Lessons Learned in the Transition to Ada 
from FORTRAN at NASA/Goddard, SEL-89-005, 
NASAIGSFC, Greenbelt, Maryland, 1989. 

pp. 96-105. 

pp. 1 3 - 1 4 4 .  

5-14 



Toward Full Life Cycle Control 

Othor 

J.  SYSTEMS SOFIWARE 137 
1992; 18:125-138 

Othor hours spont on tho p r o j d  (nktd to nuintonma) not 
eovord abovo. includos nunrg.nwnt, mootings. 0 0 .  

24. S. Green, A. Kouchakdjian, V. Basili, and D. Weidow. 
The Cleanroom Case Study in the Software Engineering 
Laboratory: Project Description and Early Analysis, 
SEL-90-002, NASA/GSFC, Greenbelt, Maryland, 1990. 

25. H. D. Rombach and B. T. Ulery, Establishing a mca- 
surement based maintenance improvement program: 
lessons learned in the SEL, Conference on Software 
Maintenance - 1989. 1989. pp. 50-57. 

26. E. B. Swanson, The dimensions of software mainte- 
nance, in Proceedings of the 2nd IEEE Inrernationol 

Unlt tuff 
Syrtom T n t  

AccaptaW 
Bonchmarlc Toet 

0th.r 

APPENDIX A: Data Collection Forms 

Hours spont tuting tho dungod or addod components. 
lncludu hours spn t  tostlng tho Intogrstkn of tho componontr. 

Hours spont mceoptanco to.tlng or bonchnurk tostlng tho 
modltkd systom. 

Other hours spont on tho projut (rohtod to nuintonma) not 
cowd abovo. includu nurug.nwnt. m t h g s ,  otc. 

Conference on Soff ware Engineering. 1976. pp. 492 - 
497. 

27. B. Boehm. Software Engineering Economics. 
Prcntice-Hall. Englewood Cliffs, New Jersey, 1981. 

28. N. Chapin, Software Maintenance Life Cycle, in Con- 
ference of Software Maintenance - 1988, 1988, pp. 

29. E. B. Swanson and C. M. Beath, Departmentalization in 
Software Development and Maintenance. Commun. 

6-13. 

ACM 33. 658-667 (1990). 

F Q - r u r w  
WEEKLY MAINTENANCE EFFORT FORM 

N.m: 

ProJ.ct: 

FrkLy Dab: -w 
Section A -Total Houn Spent on Malntenance (Inc(udr(km.p.n(md nul- n 

I C1.u I Detlnitlon I Houn 1 ~ _ _ _  I I I IComction I Hours smnt on all nulntanrnco usocbtd with a rvstom 1 1 
I I  Ihllum. . I I 
1 1  I 

Adqptatbn 

Houn sponl on dI nulntonnco ...oclrtod with modlfylng tho 
rystom duo to a roqulmnmnb chango. includ.. adding, 
dMlng,  or modlfylng syrtam hatuns as a nsult of 
mqu lnmon~  chango. 

%c?z r p ~ !  on all ~r..lfitanrncC .uochlod wilh mociilying a 
systwn to dapt  to a chango in lureban. syrtrm softwan. or 
onvlronmntal char.ctorlstkt. 

I F  I 

Hours spont undustrnding tho klluro or mquost for 
Mh.ncwn"o or adaptation. 

Chango 
Doslgn 

Hours rpont .ctu.lly mdoslgning tho ry.1.m b . 4  on an 
udorstanding of tho n c r r u r y  ehngo. 

Hours spont chmglng tho systom to compkta tho noc.rury 
chango. Thls inciudu changlng not only tho cod., but tho 
urocktddotwmnt.tlon. 

5-15 



138 J.  SYSTEMS SOFTWARE 
1992: 18:125-138 

H. D. Rombach, B. T. Ulery, and I. D. Valen 

For "MI use- 
MAINTENANCE CHANGE REPORT FORM - 

OSMR Nu- m 

SECTION A: Change Request lntormatlon 
Functiorvl Dowrlptlon of Chengo: 

What was tho typo ot modlfiutlon? 

- Comdlon - Enhncwmnt - Adeputbn 

What causod th. ch.ng.7 - Roqulmmont~s.p.clflutbns - Soltmmduign 

- Pmviocuchango - 0th.r 

-cod. 

SECTION 8: Change Impknnntrtlon Informatlon 

Comoononts ChanaodAddo&Dol.t.d: 

l h r l 0  16.yto I r c . . k l O  
+lhr 1 6 . y  1-k lmonth >lmonth 

Eatlnute offort spont ird.Ung/dotormlning tho chengo: 
EstImato offort to dosign, Impknmnt, and tort tho chango: 

Chock ail chengd ob).as: 

- RoqulmmenUSp.clticatbns Documont 
- Doaign Documont - Cod. 
- Systom Docrlption 
- U s d s  Guide 
- Othor 

If cod. chongod, ch"trrixo tho chmgo ! c h C  most 
eppllubk) - Inltlaltzatkn - Logidcontrol struetun 

- Intorhco (intorrul) 

- lntorf.co (eaomal) 

- Data (valm or rtructuro) 

- Computational 

- Othor (nono of tho abovo apply) 

(e.9.. changod flow of control) 

(moduk to moduk communkatlon) 

(moduk to oxtoml communicatbn) 

(0.g.. variabk of velue changd) 

(0.9.. clung. of math oxpr.ubn) 

Estlmato tho numkr  of 11110s ot cod. (including comments): - 
Entor tho numkr ot compononts: - - 

addod chengd d k t d  
Entor tho numkr of tho addad componnts that aro - 

t w t y  now totdly musod m w  Wfih 

.-, - 
oddd changod delolod 

modlflutlons 

AAY 1989 

Tigure A2. Maintenance Change Report Form. 

5-16 



I 
E 

I 

i 

SECTION 6 - ADA TECHNOLOGY 





SECTION &ADA TECHNOLOGY 

The technical papers included in this section were originally prepared as indicated 
below. 

“Object-Oriented Programming with Mixins in Ada,” E. Seidewitz, Ada 
Letters, March/Aprill992 

“Software Engineering Laboratory Ada Performance Study-Results and 
Implications,” E. W. Booth and M. E. Stark, A.oceedings ofthe Fourth Annual 
NASA A& User’s Symposirun, April 1992 

6-1 





/ 

-"? - 
NTED P R O G R A W G  WITH WINS IN ADA / S G / Y D  * 

Ed Seidewitz 
Goddard Space Fli ht Center 

&de 552.2 
Greenbelt MD 20777 

(30 11286- 763 1 
eseidewitz@gs fcmail. nasa.gov 

My guess is that object-oriented programming will be in the 
1980s what structured programming was in the 1970s. 
Everyone will be in f m r  of it. Every "ufacturer will 
promote his products os supporting it. Every manager will 
pay lip semce to it. Ewry programmer will practice it. And 
no one will know just what it is. 

IRcn-h 821 

ming language f e a m  in 
Ada 83, why one might desire them in Ada and how they might be added in Ada X [seidevia91]. The approach I 
rook in this paper was to build the new objcct-oriented features of Ada 9X as much as possible on $he basic 
constructs and philosophy of Ada 83. The object-oriented fa tuns  proposed for Ada 9X IAda9X 91b1, while different 
in detail, are based on the same kind of approach. 

Further consideration of this approach led me on a long dlectbn on the nature of object-crknted programming 
and its application to Ada The results of this reflection, presented in this ppe?, show how a fairly natural object- 
oriented style can indeed be devclqcd even in Ada 83. The exacise of developing this style is useful for at least 
three reasons: 

1. It p v i d e s  a useful style for programming Object-Oritnted applications in Ada 83 until new features become 
available with Ada 9X: 

T Recently, I wrote a paper discussing the lack of "true" object-oriented 

2. It demystifies many of the mechanisms that seem to be "magic" in most object-oriented programming languages 
by making them explicic and 

3. It points out areas that are and are not in need of change in Ada 83 to make object-oriented programming more 
natural in Ada 9X. 

In the next four sections I will address in tm the issues of object-oriented classes. mixins. self-reference and 
supertyping. The presentation is through a sequence of examples, similar to those in [seidewirz911. This results in 
some overlap with that paper, but all the examples in the present paper are written entirely in Ada 83. I will r e tm 
to considerations for Ada 9X in the last section of the paper. 

An object represents a component of.. .[a] software system.. . 
An object consists of some private memory and a set of 
operatwns.. A crucial properly o an object is that its private 

describes the implementation of a set of objects that all 
represent the same kind of system component. 

[Goldbe= ud Robson 831 

In Ada, an object is a variable or a constant that contains a value. ?he declared type of the object determines 
the set of possible values for the object and the set of operations that may be applied to the object. If this type is a 
private type, then the value of the object may only be changed through application of an operation. This 
corresponds to the object-oriented notion of a cfars. 

memory can be manipulated o d y by its operatwns.. A class 

Consider, for example, a simple fmmial  account class implemented as a private type: 

w i t h  Finance-Types; use Finance-Types; 
package Finance is  

type ACCOUNT is limited private; 

procedure Open (The-Account : h out ACCOUNT; 
With Balance : h MONEY) ; - 

6-3 
loO05788L 

http://nasa.gov


procsdurr Deposit (Into-Account : ia out ACCOUNT; 
The-Amount : fn MONEY) ; 

procedure Withdraw (From-Account : h out ACCOUNT; 
The-Amount : in MONEY 1 ; 

function Balance-Of (The-Account : ACCOUNT) return MONEY; 

private 

type ACCOUNT is 
record 

and record; 
Balance : MONEY := 0.00; 

end Finance; 

'Iht type Finance .ACCOUNT npresents a class of BCCOunt objects. The subpgrams defined in package 
Finance are the allowable operations on objects of this class. 'Iht body of this paclrage is straightfonvard. Note 
that for simplicity I will assume that a number of Simple types (such as MONEY) are defined in a Finance-Types 
package. 

The class d e f d  by package Finance ppovides a Simple but very genaal abstraction. In an objezt-oriented 
approach, such general classes ~ f c  used as the basis for implementing mort specialized classes. For example, a 
savings account is a specific kind of account that holds savings that earn intereSt Other than some new operations 
Bssociated with earning intenst, a savings account is the same as the original general financial account. Thus we 
should be able to implement a savings account in terms of a general account 

with Finance-Types: um Finance-Types; 
package Savings is 

type ACCOUNT is limited private; 

procedure Open (The-Account : b out ACCOUNT; 
With-Balance : in MONEY) ; 

procedure Set-Rate (Of-Account : out ACCOUNT; 
To-Ra t e :in RATE) ; 

procedure Deposit (Into-Account : in Out ACCOUNT; 
The-Amount : in MONEY) ; 

procedure Withdraw (From-Account : Out ACCOUNT; 
The-Amount : in MONEY) ; 

procedure Earn-Interest (On-Account : Out ACCOUNT; 
Over-Time :in INTERVAL) ; 

function Balance-Of (The-Account : ACCOUNT) return MONEY; 

Zunction Interest-On (The-Account : ACCOUNT) return MONEY; 

private 

type ACCOUNT i8 
record 

Parent : Finance.ACCOUNT; 
Rate : RATE := 0.06; 
Interest : MONEY := 0.00; 

end record; 

end Savings; 

While this may not seem to gain us a lot in this simple example, such incremental extension of abswctions is 
fundamental to object-oriented techniques. The class of financial accounts is said to be the superclaw of the class of 
savings accounts. Each savings account (of type Savings. ACCOUNT) has a unique p e n t  financial account (of 
type Finance. ACCOUNT). 

Now, three of the seven savings account operations (Open, Deposit and Withdraw) are syntacbcally and 
semantically the same as the comsponding financial account operations. Thus, we wouid to inherit these 
financial account opaatims. Ada 83 has no direct way of doing this. Nevertheless. we can achieve the effect of 
inheritance far our present purposes by using call-though subprograms. For example. the Savings .Deposit 

6-4 



@on can easily be implemented as follow= 

procedure Deposit (Into-Account : in out ACCOUNT; 
The-Amount : in MONEY) is  

begin 
Finance.Deposit (Into-Account.Parent, The-Amount) 

end Deposit; 

The expense of such call-throughs may be minimized through the use of pragma Inline. 

Three other Savings Bccount OQeratiOns (Set-Rate, Earn Interest and Interest-On) provide the 
incremental new functionality of the savings account subclass. “‘Ea operations are implemented in terms of the 
additional components of the representation of type Savings .ACCOUNT. For example: 

procedure Earn-Interest (On-Account : out ACCOUNT; 
Over-The : in INTERVAL) is 

Balance : constant MONEY :- Balance-Of (On-Account); 

begin 

i f  Balance > 0 . 0 0  then 
On-Account.Interest := On-Account.Interest 

+ Balance*On-Account.Rate*Over-Time; 
end i f ;  

end Earn-Interest; 

Note that the Balance-Of operation used hen 

The remaining savings account operation. Balance O f ,  is syntactidy the same 85 the financial account 
operation, but it is semantically different. The balance 9 a savings account includes interest earned up to the 
present point in time: 

function Balance-Of (The-Account : ACCOUNT) return MONEY i 8  

begin 

the subclass opedon Savings. Balance-Of. 

return Finance.Balance-Of (The-Account.Parent) 
+ The-Account . Interest; 

end Balance-Of; 

Note that while Balance O f  is not a call-through operalion, the superclass operation Finance. Balance - Of is 
used in its implementation, 

The usefulness of a superclass like the financial account class comes from the fact that it can provide a common 
basis far a nwnber of subclasses. For example, a class of checking accounts may provide anotKer subclass of 
fmancial accounts: 

with Finance; 
with Finance-Types; use Finance-Types; 
package Checking is  

type ACCOUNT is limited private; 

procedure Open (The-Account : in out ACCOUNT; 

procedure Set-Fee (Of-Account : in out ACCOUNT; 

procedure Deposit (Into-Account : in out ACCOUNT; 

With-Balance : in MONEY) ; 

To-Fee : i n  MONEY) ; 

The-Amount : in MONEY) ; 

The-Amount : in MONEY) ; 
procedure Withdraw (From-Account : b out ACCOUNT; 

function Balance-Of (The-Account : ACCOUNT) return MONEY; 

private 

6-5 



tw ACCOUNT i 8  
record 

Parent : Finance.ACCOU?JT; 
Overdraft-Fee : MONEY := 10.00; 

end record; 

end Checking; 

In this simple example, the only difference behvm checking accounts and financial aCcountS is that 
overdrawing a checking account is not permitted. Further, each overdraft auempt (Le, a reamed check) is penalized 
by deducting 8 fee fr" the munt Thus. the impk"tati0n of Withdraw muSt be changed for checking 
accounts: 

procedure Withdraw (From-Account : in out ACCOUNT; 
The-Amount : in MONEY) ia 

begin 

if The-Amount <= Balance-Of(From-Account) then 

else 
Finance.Withdraw (From-Account.Parent, The - Amount); 
Finance.Withdraw (From-Account.Parent, 

From-Account.Overdraft-Fee); 
end if; 

end Withdraw; 

The savings account and checking account subclasses of the f w i a l  account class may themselves act as 
superclasses for even more specialized classes. Thus, a genual class may be the root of a quite extended class 
hierarchy. Each subclass in the hiaarchy incrementally extends the capabilities of its superclass, while inheriting 
common functionality. 

NS 

A mixin is..a subclass dcfintwn that may be applied to 
superclasses to create a related famiry qf modified 

[Bradu and Cook 901 

A superclass may be used as the base for many subclasses. However, as described so far, a subclass is tied to 
one superclass. For instance, savings accounts are based specifically on the class defined by package Finance. 
There may be other types of accounts to which we want to added interest-bearing functionality such as that defied 
for savings accounts. For example, an interest-bearing checking account is basically a checking account with 
interest-bearing functionality added to it (or, alternatively, a savings account with checking functionality added). 

M e r  than recoding essentially the same intenst-bearing functionality each time it is needed, we can capture 
this functionality in a generic package that takes a specific superclass as a parameter: 

with Finance-Types; use Finance-Types; 
generic 

type SUPERCLASS is  limited private; 

with function Balance-Of (The-Account : SUPERCLASS) return MONEY is  <>; 

package Interest is  

type MIXIN is limited private; 
t p  ACCOUNT is 

record 
Parent : SUPERCLASS; 
Extension : MIXIN; 

end record; 

procedure Set-Rate (Of-Account : in Out ACCOUNT; 
To-Rate : i n  RATE) ; 

prOCedUr8 Earn-Interest (On-Account : b O u t  ACCOUNT; 
Over-Time : ia INTERVAL) ; 

function Balance-Of (The-Account : ACCOUNT) return MONEY; 
6-6 



function Interest-On (The-Account : ACCOUNT) return MONEY; 

private 

type MIXIN is 
record 

Rate : RATE := 0.06; 
Interest : MONEY := 0.00; 

end record; 

end Interest; 

A generic @cage such as this is called a mixin because it provides an increment of functionality which may be 
“mixed-into“ any superclass that has the operations required to fill in the generic parameters. Typically, mixins are 
used within a framework of mulripk inhcrirancc. For exam~le, we can m n s m c t  the savings account class by 
inheriting from borh the financial account class and an appropriate instantiation of the interest mixin: 

with Finance, Interest; 
with Finance-Types; U80 Finance-Types; 
package Savings i 8  

type ACCOUNT is limited private; 

procedure Open (The-Account : in out ACCOUNT; 
With-Balance : in MONEY) ; 

... 
function Interest-On (The-Account : ACCOUNT) return MONEY; 

private 

package Savings-Interest is 

type ACCOUNT is new Savings-Interest-ACCOUNT; 

new Interest (Finance.ACCOUNT, Finance-Balance-Of); 

end Savings; 

superclass Finance via a call-through. For example: 

procedure Open (The-Account : in out ACCOUNT; 

begin 

end Open; 

The record type Savings Interest .ACCOUNT is defined as a visible. rather than a private, type in the mixh to 
allow access to the Pare5 component. Note that it would not be possible to replace this use of a visible record 
component with a function that retums the parent object, because we need to use the parent as an in out 
parameter. The type MIXIN is never used itself outside of the mixin package. 

Call-through subprograms are also needed to inherit from the mixin instantiation Savings-Interest. This 
is because the equivalent derived subprograms obtained from the derived type definition of Savings. ACCOUNT 
are hidden by the operations declared in the package specification, and in Ada 83 there must be a full subprogram 
body for each of these declarations. For example: 

function Interest-On (The-Account : ACCOUNT) return MONEY is 
begin 

end Interest-On; 

functionality of the checking account class: 

The Parent component of the ACCOUNT type defined in mixin Interest is used to inherit from the parent 

With-Balance : in MONEY) i s  

Finance.Open (The-Account.Parent, With-Balance); 

return Savings-1nterest.Interest-On 
(Savings-Interest.ACCOUNT(The-Account)); 

Having introduced the concept of mixins, we can. of coutse, also create a mixin that embodies the overdraft 

6-7 



with Finance-Types; use Finance-Types; 
generic 

type SUPERCLASS is limited private; 

with procedure Withdraw (From-Account : 
The-Amount : 

with function Balance-Of (The-Account : 

package Draft is 

type MIXIN is limited priv8te; 
type ACCOUNT is 

record 
Parent : SUPERCLASS; 
Extension : MIXIN; 

end record; 

out SUPERCLASS ; 
in MONEY) is <>; 

SUPERCLASS) return MONEY is <>; 

procedure Set-Fee (Of-Account : in out ACCOUNT; 

procedure Withdraw (From-Account : in out ACCOUNT; 

To-Fee :in MONEY) ; 

The-Amount : in MONEY) ; 

private 

type MIXIN i s  
record 

end record; 
Overdraft-Fee : MONEY :- 10.00; 

end Draft; 

Even our original fm& account class can be w n v d  to a mixin: 

w i t h  Finance-Types; use Finance-Types; 
generic 

type SUPERCLASS is limited private; 

package Monetary is 

type MIXIN is limited private; 
type ACCOUNT is 

record 
Parent : SUPERCLASS; 
Extension : MIXIN; 

end record: 

procedure Open (The-Account : in out ACCOUNT; 
With - Balance : i n  MONEY) ; 

1.. 

function Balance-Of (The-Account : ACCOUNT) return 

private 

type MIXIN is 
record 

end record; 
Balance : MONEY := 0.00; 

end Monetary; 

MONEY; 

Of course, this mixin does not require any supedass functionality to implement its operations. However, use of the 
mixin construct allows monerary account functionality to be mixed into any class. 

The use of mixins causes fraditional class hiemhies to collapse into pieces. Each iece is a mixin that 

instantiating a number of mixins and inheriting all necessary functionality from them. To provide a definite starting 
provides a well-defined increment of functionality. We can then form specific classes L t h e s c p M c t s b y  

6-8 



point for this process, we can defiie a root class that basically does nothing more than provide an empty record to 
which we can add mixins: 

package Root is 

type CLASS is limited private; 

private 

type CLASS is 
=cord 

end record; 
null; - 

end Root; 

While this root class seems a bit pointless, the concept will prove useful in the next section. 

At last we are ready to consmct an interest-bearing checking Bccount class without Fewriung any savings 
account or checking account functionality. To do this, we simply mix together interest, draft and monetary account 
functionality. All Interest Bearing Checking.ACCOUNT operations are i m p h " e d  as call-throughs to 
various mixin operations. mus, f" fie thr# mixins Monetary, Interest and Draft, we can easily 
construct an interest-bearing checking account class, as well as reconseucting our original financial, savings and 
checking account classes. 

Of course. in the actual Interest Bearing-Checking package. the three mixin generics must be 
instan- in a specific sequential order. In the p " t  case, we must first establish the basic monetary account 
functionality, then mix in interest and draft functionality. This results in the following implementation: 

with Root, Monetary, Interest, Draft; 
with Finance-Types; use Finance-Types; 
package Interest-Bearing-Checking is 

type ACCOUNT is l u t d  private; 

procedure Open (The-Account : in out ACCOUNT; 
With-Balance : in MONEY 1 ; 

... 
function Interest-On (The-Account : ACCOUNT) roturn MONEY; 

private 

package Checking-Finance is -- Basic financial account 
new Monetary (Root.Class); 

package Checking-Interest is -- Mix in interest functionality 
new Interest (Checking-Finance.ACCOUNT, Checking-Finance.Ba1ance-Of); 

procedure Withdraw (From-Account : in out Checking-1nterest.ACCOUNT; 
T he-Amoun t : i n  MONEY) ; 

-- call-through to Finance.Withdraw 
package Checking-Draft is -- Mix in overdraft fee functionality 
new Draft (Checking-Interest.ACCOUNT, 

Withdraw, 
Checking-1nterest.Balance-Of); 

type ACCOUNT is new Checking-Draft.ACCOUNT; -- Private type representation 
end Interest-Bearing-Checking; 

Note that all the mixins instantiated in the private part of the specification. Each instantiation uses the type and 
subprograms from the previous instantiation as arguments. The intermediate procedure Withdraw for type 
Checking 1nterest.ACCOUNT is necessary because the instantiated mixin Checking Interest Only 
provides the%terest-rehd operations on Checking-Interest .ACCOUNT. It is implemena as simply a call- 
through to Finance. Withdraw. 

6-9 



When an object of a given class is created its state components 
include those of the class and all its superclasses and it can 
perform operations of the class and its superclasses on the 
component state. References to "serf' in operations of a 
superclass refer w the composite object on behalf of which the 
operation is w be performed. 

Wegner 811 

In the inmest-bearing checking Bccount package at the end of the last section. the Interest mixin was 
instantiatad before the Draft mixin. It would seem that we could equally well have instantiated them in the 
opposite d e r :  

with Root, Monetary, Interest, Draft; 
with Finance-Types; use Finance-Types; 
package Interest-Bearing-Checking i 8  

type ACCOUNT i a  limited private; 

procedure Open (The-Account : in out ACCOUNT; 
With-Balance : in MONEY) ; 

... 
function Interest-On (The-Account : ACCOUNT) return MONEY; 

private 

package Checking-Finance is 

p8ckage Checking-Draft ia -- Mix in overdraft fee functionality 

-- Basic financial account 
n e w  Monetary (Root.Class); 

new Draft (Checking-Finance.ACCOUNT, Checking-Finance.Withdraw, 
Checking-Finance.Ba1ance-Of); 

function Balance-Of (The-Account : Checking-Draft.ACCOUT) 

-- call-through to Finance.Balance-Of 
package Checking-Interest is  -- Mix in interest functionality 

type ACCOUNT i s  new Checking-1nterest.ACCOUNT; 

return MONEY; 

new Interest (Checking-Draft.ACCOUNT, Balance-Of); 

-- Private type representation 
end Interest-Bearing-Checking; 

Unfortunately. it tums out that this introduces a subtle m r ,  as follows: 

In the new implementation, the Draft mixin iS instantiated before the Interest mixin, using the 
Checking-Finance . Balance-Of operation. 

The implementation of the Withdraw operation in the Draft mixin uses the Balance O f  operation given 
as a generic formal superclass operation to determine if there is an overdraft. 
subprogram used is Checking-Finance . Balance-Of, which does not add in any earned interest 

Checking Draft of the Draft mixin, so as to include the overdraft functionality. 
accumulatedinterest is ignored when checking for an overdraft. This is clearly unfair to the customer! 

The problem is that we do not d l y  want to use the superck7ss Balance-Of operation in the Draft mixin' 
instantiation. Ratha, we need to use the Balance-Of OperatiOn from the composite subclass being constructed. 
However, we cannot use the subclass type Interest Bearing Checking.ACCOUNT in the instantiation of 
the Draft mixin. becaw that type cannot be fully d&xd yet. nus, we must instead be sure to instantiate the 
Interest mixin first, so that the interest-bearing f u n c t i d t y  is mixed into the Balance-Of operation before 
Draft is instantiated. 

Such orda dependencies arc at best annoying sources of potential errors. At worst, they can introduce circular 
dependencies that make it impossible to mix together certain mixiins. To avoid this, we n d  a mechanism that 
allows mixins to call subclass operations in addition to superclass operations. Following the parameterization 
V h  that led us to mixins in the f i t  place, we can include a second generic fonnal type parameter in mixins to 

6-10 

Inihis case, the actual 

The Interest-Bearing-Checking. Withdraw operation is inherited from the instantiation 
This means that 

1ooo5786L 



represent the subclass. 

For example, we want the Draft mixin to use the subclass Balance-Of opedon: 

with Finance-Types; use Finance-Types; 
generic 

type SUPERCLASS is limited private; 

with procedure Withdraw (From-Account : in out SUPERCLASS; 

type SUBCLASS is limited private; 

with function Balance-Of(The-Account : SUBCLASS) return MONEY is <>; 

with function Self (Parent : SUPERCLASS) return SUBCLASS is <>; 

The-Amount : in MONEY) i 8  <>; 

package Draft is 

type MIXIN is limited private; 
type ACCOUNT is  

record 
Parent : SUPERCLASS; 
Extension : MIXIN; 

end record; 

procedure Set-Fee (Of-Account : Out ACCOUNT; 
To-Fee :in MONEY) ; 

The-Amount : in MONEY 1 i 
procedure Withdraw(From-Account : b out ACCOUNT; 

function Self (This-Account : ACCOUNT) miiturn SUBCLASS; 

private 

type MIXIN is 
record 

end record; 
Overdraft-Fee : MONEY := 10.00; 

end Draft; 

The Withdraw operation for this mixin is then implemented as follows: 

procedure Withdraw (From-Account : i n  out ACCOUNT; 
The-Amount : MONEY) is 

bagin 

i f  The-Amount <= Balance-Of(Self(Froxn-Amount)) then 

else 
Finance-Withdraw (From-Account.Parent, The-Amount); 

Finance-Withdraw (From-Account.Parent, 
From-Account.Extension.Overdraft-Fee); 

end if; 

end Withdraw ; 

Note the use of the function Self to convert an object of type Draft. ACCOUNT to the appropriate object of type 
SUBCLASS. These odd little Self functions are the key to this approach. They allow us to use the subclass 

The question is, of course, how can we implement such a Self function? Strangely enough, we can implement 

operations as required. 

it in teams of the superclass Self function given as a genaic f m a l  parameter. 

function Self (This-Account : ACCOUNT) return SUBCLASS is 
bwia 

end Self; 
return Self (This-Account.Parent); 

6-11 
tOoo578sL 



Obviously. this passing of the buck must end somepke. it ends with the root class. which we reimplement as 
follows: 

genezic 

type SUBCLASS is limited private; 

package Root is  

type CLASS is limited private; 

procedure Initialize (The-Object : in OutCLASS; 

function Self (This-Object : CLASS) return SUBCLASS; 

To-Self : in SUBCLASS); 

private 

type CLASS is 
record 

end record; 
Self : SUBCLASS; 

end Root; 

Thus the mystery is resolved: the Self functions all ultimately access a Self component defmed in the root class. 

Now, the astute nadn may have noticed that wc have inaoduced a mange sort of circularity here. The 
representation of any class built on the root class wil l  include a compoimt a€ the subclass type. However, when we 
finish constructing a class from the mot class and mixinn, the “it is the very subclass with which we need to 
instantiate the root class to begin with! To achieve this circularity, we must require that the subclass type be an 
~ccess type. ’Iht Self component is then intended to be a infer back to the complete, composite subclass object. 

would othawise have in out parametas.) 

account class using either order of mixin instantiation: 

with Finance-Types; use Finance-Types; 
package Interest-Bearing-Checking is  

type ACCOUNT i s  limited private; 

procedure Open (The-Account : in out ACCOUNT; 

procedure Close (The-Account : in out ACCOUNT); 

procedure Set-Rate (Of-Account : in ACCOUNT : 

(Actually, axas types arc also accdcd to allow the Self & tions to work propaly with subclass procedures that 

With inclusion of subclass parameters in mixins, we can now conectly implement the interest-bearing checking 

With-Balance : in MONEY) ; 

To-Rate : i n  RATE) : 

. .. 

private 

type ACCOUNT-FtECORD; 
type ACCOUNT is access ACCOUNT-RECORD; 

end Interest-Bearing-Checking: 

An advantage of implementing a private type as an access type is that the derails of the type representation can be 
deferred to the package body by Using an incomplete type d e f ~ t i o n  for ACCOUNT-RECORD in the private part of 
the specification. The use of an access type also allows the use of in rather than in  out parameters in procedures 
such as Set-Rate, which is necessary for the use of Self functions. 

defmition is also achieved using the incomplete type definition for ACCOUNT-RECORD. The 
circle circ%Jr is cl y compkting the definition of ACCOUNT-RECORD after all the nlixin instantiations in the package 
body. ’Iht figure on the next page shows the structure of an Interest-Bearing-Checking .ACCOUNT object 
resulting from the following implementation: 

6-12 
1oo05188L 



An-Account : Interest-Bearing-Checking.ACCOUNT 

I 

Checking-DrafLACCOUNT 

C hecking-Finance.ACCOUNT 
I 1 

Balance 

Rate :0.06 
Interest :o.oo 

i 
with Root, Monetary, Interest, Draft; 
package body Interest-Bearing-Checking is 

package Checking-Root is 

we Checking-Root; 
package Checking-Finance is 

new Root (SUBCLASS => Interest - Bearing-Checking.ACCOUNT1; 

new Monetary 
(SUPERCLASS => Checking-Root.CLASS, 
SUBCLASS => Interest-Bearing-Checking-ACCOUNT); 

use Checking-Finance; 
package Checking-Draft is 

n e w  Draft 
(SUPERCLASS -> Checking-Finance.ACCOUNT, 
SUBCLASS => Interest-Bearing-Checking.ACCOUNT); 

function Balance-Of (The-Account : in Checking-Draft.ACCOUNT) 

-- call-through to Finance.Balance-Of 
use Checking-Draft; 
package Checking-Interest is  

return MONEY; 

new Interest 
(SUPERCLASS => Checking Draft.ACCOUNT, 
SUBCLASS => Interest-Bearing-Checking.ACCOUNT); - 

type ACCOUNT - RECORD is new Checking-1nterest.ACCOUNT; 

... 
end Interest-Bearing-Checking; 

(Note that to simplify the instantiations, I have taken advantage of the box defaults on the generic formal 
subprogram parameters of the mixins.) 

A disadvantage of using an access type is that interest-bearing checking accounts must be explicitly allocated. 
We can do this as part of the Open operation: 

6-13 



procedure open (The-Account : ha out ACCOUNT; 
With-Balance : h MONEY) 58 

-gh 

if The-Account /= null  then 

end if; 
Close (The-Account 1 ; 

The-Account :- new ACCOUNT-RECORD; 
Checking-Root.Initialize 

Checkhg-Finance.Open (The-Account.Parent.Parent, With-Balance) ; 

(The-Object => The-Account.Parent.Parent.Parent, 
To Self => The-Account); 

end Open; 

Note the use of the root Initialize o m o n  to set the Self component. The figure on the previous page 
shows the structure of nestad rccords and self reference that results from the allocation and initialization of an 
Interest-Bearing-Checking.ACCOUNTObjCCt 

We also need to provide a way to deallocate intenst-bearing checking accounts: 

procedure Free is new Unchecked-Deallocation (ACCOUNT-RECORD, ACCOUNT); 

procedure Close (The-Account : in out ACCOUNT) i 8  

end Close; 

begin 
Free (The-Account) ; 

All the rest of the intaest-bearing checking BCcOunt opaations are M t c d  from OM ar the other of the mixin 
instantiations. 

Sub ing is a substitutability relationship, i.e., an instance of 

the subtype is implemented is totally irrelevant; all that 
matters is that it have the right behavior so that it can be 
substituted. 

a s 2 type can stand in for an instance of its supertype. How 

[Uonde and Pugh 911 

Typically, the customex of a bank will have several accounts at that bank. Each bmJc account may be, say, a 
savings account, a checking account or an interest-bearing checking account. To manage all the bank accounts of 
one customer, we would like to create a bank m u n t  type that is the supertype of the types that represent the 
various classes of accounts. We could then mate lists of bank accounts. define bank account operations. etc. 

As discussed in the previous scctiOns, each class is implemented in Ada by a private type that is distinct from all 
other class types. Nevertheless, we can still explicitly create a bank account supertype: 

with Savings, Checking, Interest-Bearing-Checking; 
with Finance-Types; uae Finance-Types; 
package Bank is  

type ACCOUNT-TYPE is (SAVINGS, CHECKING, INTEREST-CHECKING); 

type ACCOUNT (Kind : ACCOUNT-TYPE :- SAVINGS) is 
record 

case Kind is  
when SAVINGS => A-Savings-Account : Savings.ACCOUNT; 
when CHECKING -> A Checking-Account : Checking-ACCOUNT; 
when INTEREST-CHECKING => G-Interest-Checking-Account 

: Interest-Bearing-Checking.ACCOUNT; 
end caae; 

end record; 

procedure Open (The-Account : in out ACCOUNT; 

procedure Close (The-Account : out ACCOUNT) ; 

With-Balance : in MONEY) ; 

6-14 
1ooo5788L 



procedure Deposit (Into-Account : in out ACCOUNT; 
The-Amount : in MONEY) ; 

The-Amount : in MONEY) ; 
procedure Withdraw (From-Account : in out ACCOUNT; 

function Balance-Of (The-Account : ACCOUNT) return MONEY; 

end Bank; 

The type Bank-ACCOUNT defines a Supatype with sublypes Bank.ACCOUNT(SAVINGS), 
Bank.ACCOUNT(CHECKING)Bnd Bank.ACCOUNT(INTEREST-CHECKING). Each Subtype correspondst0 
one of the classes defined in previous sections. Note that a private type is unnecessary here, because we wish to be 
able to freely convert between the Bank. ACCOUNT subtypes and the class types. 

The five opedons Mined in package Bank refkt the opedons that are common to all the BCCOunt types. 
Semantically, we wish each supertype operation to "X the implanentation of the epproPriate subtype operation. 
For example, the statement: 

Bank. Withdraw (From-Account => A, The-Amount -> X) ; 

should be equivalent to either Savings .Withdraw, Checking-Withdraw or 
Interest Bearing Checking. Withdraw, -g on the subtype of A. Since the subtype of A can, in 
general, onlybe determkd at run-hme. we an? effecuvely asking that Bank. Withdraw be dynumicdly bound to 
the appropriate subtype operation. 

We can achieve the effect of dynamic binding in Ada by implementing the bank account operations as 
dispatching or case-selection subprograms. For example: 

procedure Withdraw (From-Account : in out ACCOUNT; 
The-Amount : in MONEY) i 8  

begin 

case Kind i 8  
when SAVINGS => 

Savings.Withdraw (From-Account-A-Finance-Account, The-Amount); 

Checking.Withdraw (From-Acc0unt.A-Checking-Account, The - Amount); 

Interest-Bearing-Checking.Withdraw 

when CEECKING => 

when INTEREST-CHECKING -> 

(From-Account.An-Interest-Checking-Account, The-Amount); 

end case; 

end Withdraw; 

handle all kinds of bank 8ccounts. For example: 
Once we have the bank account supertype. we can create polymorphic data structures and operations that can 

type CUSTOMER-ACCOUNTS is array(POSIT1VE range <>) Of Bank.ACCOUNT; 

function Total-Assets-Of (The-Accounts : CUSTOMER-ACCOUNTS) return MONEY is 

Total : MONEY := 0.00; 

begin 

for I in The-Accounts'range loop 

end loop; 
Total := Total + Bank.Balance-Of (The-Accounts(1)); 

return Total; 

end Total-Assets-Of; 

The function defmed above finds the total assets a customer has in his aocwnts. regardless of what kinds of 
accounts they arc. 

6-15 



It is important to note that to be included in a supatypc. a class need only provide implementations for all the 
operations defined for the supmypc. The ways in which various subtype classes implement these opemtions do not 
have to be related a! all. For example, the Bank. ACCOUNT supertype is Constructed from a number of classes 
implemented by various combinations of the mixins Monetary, Interest and Draft. These classes thus share 
some common implementation, but this is not at all important to the construction of the supertype. 

Thus. supertypes and sup la s ses  are really distinct concepts. Looking at it another way, the supertype 
provides a set of dispatching operations for those opemuions which am common to all its subtypes, regardless of how 
those operations may be implemented by the subtype. classes or how the subtypes may be repmented. A supertype 
that is constructed in this way from a given list of subtype classes is said to be the union typc of those classes. Thus 
we have cmsmted a bank account supextype that is the union of the savings, checking and interest-bearing 
checking account classes. 

It was noted earlier that the use of mixins causes a collapse of the original class hierarchy. Using union types, 
however, we can still form a type hierarchy by appropriately grouphg classes. As well as the Bank. ACCOUNT 
union type, such a rype hierarchy for account classes could include the union of the savings and interest-bearing 
checking account classes (an investment supertype Ecathg interest-bearing checking accounts as savings accounts) 
and the union of the checking and interest-bearing checking 8CCOunt classes (a cash aCCOunt supertype treating 
interest-bearing checking accounts as checking accounts). Note how it is possible for a class to be included in more 
than one union type. 

ATlONS FOR ADA 9X 

There is a recognized need for improving Adas support for 
data obszraction, and the construction of progrimasfrom pre- 
existing components. 

[A&9X 9181 

The mixin-based style described in this papex combines the bcnefifs of objectsiented mixins with the 
advantages of explicit parmeterhation through generics. With superclass and subclass parameterization, mixins are 
completely independent software components that can be mixed and matched in many combinations. This leads to a 
powerful paradigm known as parameterized programming that promotes highly reusable code (see, for example, 

Unfortunately, as the reader can see from the examples in this paper, this style is awkward in places with 
Ada 83. In particular. the following areas especially need to be addressed in Ada 9X: 

1. There needs to be a way to create a subclass type by simple extension of a class type and to parameterize this 
extension with a mixin. The proposed Ada 9X record extension mechanism [A&9X91bl fills this need admirably 
well. 

[Gogum W Seidewitz md St.k 911). 

2. There needs to be a simpler way to achieve self-reference during the combination of mixins. This need seems 
to be filled by the proposed mechanism in Ada 9X to allow type. extensions as generic formal type parameters 
IAdr9X91bl. This would probably necessitate the use of nested generics to allow the mixin type to be an 
extension of the SUPERCLASS type parameter and the SUBCLASS type panmeter to be an extension of the 
mixin type. Such a construction would, however, eliminate the need for Self functions. 

3. There needs to be a mechanism for consaucting s u p e r t ~  without having to explicitly code w a t c h  
operations. Ada 9X does provide an automatic dispatchmg capability using "tagged records" [ ~ & 9 ~ 9 1 b ] .  
However, this capability can only be used if the subtypes are implemented as subclasses (type extensions) of the 
supertype. This perpetuates the confusion of superclass and supertype. 

Thus the proposed object-oriented features for Ada 9X largely suppart the mixin style described in this paper. 
Unfortunately, the tagged record mechanism confuses type extension and dispatching. This is analogous to the 
equation of superclasses and supertypes in most typed object-oriented programming languages (such as Ci+ 
[Smwutrup 861). 

Requiting supertypes to be superclasses is inconvenient when we are using generic mixins to construct classes. 
and wish to create a type hierarchy after the fact. perhaps a better model far Ada 9X would be the "absmct type" 
mechanism of the languages Emerald [Black u .I 871 and POOL-I [heriu md WII der Linden 901. Even With the currently 
proposed Ada 9X features, however, a generics-based approach to mixins, such as that presented in this paper, could 
be an important contribution of Ada 9X back to the object-oriented programming community. 

T 

I would like to thank my colleague Mike StarL for a number of good suggestions that greatly improved the 
clarity of prtsentation of this paper. 

6-16 
loo0578BL 



Ada9X 91a DRAFT Mapping Ratwnale Document, Ada 9X Project Report, February 
1991 

Ada9X 91b Ada 9X Mapping Document, Draft Ada 9X Project Report (2 volumes). 
August 1991 

America and van der Linden 90 Pierre America and Franlr van der Linden, "A Parallel Object-Oriented 
Language with Inheritance and Subtyping". Proceedings of the Conference 
on Object-Oriented Programming System, Languages, and Applications 1 
European Conference on Object-Oriented Programming, SIGPLAN 
Notices, October 1990 

Black et al. 87 

Bracha and Cook 90 

Goguen 84 

Goldberg and Robson 83 

Lalonde and Pugh 91 

Rentsch 82 

Seidewitz 91 

Seidewirz and Stark 91 

Stroustrup 86 

Wegner 87 

Andrew Black, Noman Hutchinson, Eric Jul, Henry Levy and Larry Carter, 
"Disaibution and Abslr8ct Types in Emerald", IEEE Transactions on 
Sofnvorc Engineering, January 1987 

Gilad Bracha and William Cook, "Mixin-Based Inheritance", Proceedings 
of the Conference on Object-Oriented Programming System, Languages, 
and Applications I European Conference on Object-Oriented Programming, 
SIGPLAN Notices, Octobex 1990 

Joseph A. Goguen, "Paramettrized Programming". IEEE Transactions on 
Sofware Engineering, September 1984 

Adele Goldberg and David Robson, Smalltalk#: The Language and its 
Implementation, Addison-Wesley, 1983 

Wilf LaLonde and John Pugh. "Subclassing # Subtyping # Is-a", Journal of 
Object-Orien&d Programming, January 1991 

" O b j e c t ~ n t e d  hgra"ing", SICPUN Notices, September 1982 

Ed Seidewia, "Object-Oriented Programming through Type Extension in 
Ada 9X", Ada Lctters, March/Apd 1991 

Ed Seidewitz and Mike Stark "An Object-Oriented Approach to 
Parameterized Software in Ada". Proceedings of the Eighth Washington 
Ada Symposium, June 1991 

Bjarne Strousuup. The C++ Programming Language, Addison-Wesley, 
1986 

Peter Wegner, "The Object-Oriented Classification Paradigm", in Research 
Directions in Object-Oriented Programming, ed. b y  Bruce Shriver and 
Peter Wegner. The MIT Press. 1987 

6-17 
1"L 





/x y/ 
SOFIWARE ENGINEERING LABORATORY 

ADA PERFORMANCE STUDY-RESULTS AND IMPJJCATIONS 

Eric W. Booth 
Computer Sciences Corporation 
Lanham-Seabrook, Maryland 

(301) 794-1277 

r .  * * 7 .a 

v 9 3 ) -  4 ,  i;2.’3 

Michael E. Stark 
NASAKioddard Space Flight Center 

Greenbelt, Maryland 
(301) 286-5048 

SUMMARY 

The Ada Language Reference Manual (LRM) (Reference 1) states: 

“Ada was designed with three ovemding concerns: program reliability and maintenance, 
programming as a human activity, and efficiency.” 

Initial implementations of Ada compilers and development environments tended to favor the first two 
concerns over the concern for efficiency. Similarly, initial (non-real-time, nonembedded) applications 
development using Ada as the programming language tended to favor maintainability, readability, and 
reusability. 

As software systems become more sophisticated the need to predict, measure, and control the run time 
performance of systems in the Flight Dynamics Division (FDD) is a growing concern. The transition to 
Ada introduces performance issues that were previously nonexistent. More-over, this transition is often 
accompanied by the transition to object-oriented development (OOD), which has performance implications, 
independent of the programming language, that must be considered. To better understand the implications 
of new design and implementation approaches, the Software Engineering Laboratory (SEL) conducted an 
Ada performance study. 

The SEL is an organization sponsored by the National Aeronautics and Space AdministratiodGoddard 
Space Right Center (NASNGSFC) to investigate the effectiveness of software engineering technologies 
applied to the development of applications software. The SEL was created in 1977 and has three 

. , organizational members: NASNGSFC, Systems Development Branch; The University of Maryland, 
Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation. 

The goals of the SEL are (1) to understand the software development process in the GSFC 
environments; (2) to measure the effect of various methodologies, tools, and models on this process; and 
(3) to identify and then to apply successful development practices. The activities, findings, and 
recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing 
series of reports that includes the Ada Pelfonnance Study Report (Reference 2). 

This paper describes the background of Ada in the FDD, the objectives and scope of the Ada 
Performance Study, the measurement approach used, the performance tests performed, the major test 
results, and the implications for future FDD Ada development efforts. 



APPROACH TO MEASUREMENT 

To measure the run-time performance of design altematives and language features, two fundamental 
approaches were used. The fust approach measured the run-time improvement of existing systems after 
an alternative had been incorporated into a baseline version of the system. The second approach used the 
ACM SIGAda PIWG test suite and added tests specific to the flight dynamics environment. 

Overview 

Benchmark programs are commonly used to evaluate the performance of design alternatives and 
language features. Such benchmark programs include (1) sample applications such as sorting programs 
or, as in the FDD, simulators, (2) programs to measure the overhead associated with a design alternative 
or language feature, and (3) synthetic benchmarks designed to measure the time needed to execute a 
representative mix of statements (e.g., Whetstone, Dhrystone) (Reference 6). The fust approach used by 
this study falls into the first benchmark category, and the second approach falls into the last two. 

To measure the overhead of a design altemative or language feature, the dual-loop approach is used to 
subtract the overhead associated with control statements that aid in performing the measurement. This 
approach uses a control loop and a test loop; the test loop contains everything contained in the control loop 
and the alternative being measured. A major factor in designing a dual-loop benchmark is compiler 
optimization. It is critical that the code generated by the compiler for both loops be identical except for the 
quantity being measured (Reference 7). In addition, it is necessary to ensure that the statement or 
sequence of statements being tested does not get optimized away. 

Although the dual-loop approach can be used for synthetic benchmarks and applications, this technique 
is not required if the run time of the program is long in comparison to the system clock resolution 
(Reference 7). Instead, the CPU time can be sampled at the beginning of the program and again after a 
number of iterations of the program. The time for the benchmarklapplication is then (CPU-Stop - 
CPU-Start)/Number-Iterations. The same measurement can be achieved by submitting the test program to 
run as a batch job and obtaining the CPU time from the batch log file. This CPU time can then be divided 
by the number of times the sequence of statements being measured is executed in the main control loop of 
the test program. 

It is important to understand the run-time environment in which the benchmarks are run when 
interpreting test results. VMS checks the timer queues once per second, which can affect measurement 
accuracy. Under VMS, the Ada run-time system is bundled with the release of the operating system and 
installed as a shareable executable image. Consequently, DEC Ada performance is directly dependent on 
the installed version of VMS. There is also a degree of uncertainty when using CPU timers provided in 
time-shared systems like VMS. In the presence of other jobs, CPU timers charge ticks to the running 
process when the wall clock is updated. It is therefore possible for time to be charged to active processes 
inaccurately because context switches can occur at any time. Finally, it cannot be assumed that running 
benchmarks for a hosted system in batch during low usage (such as, at 11 pm) guarantees standalone 
conditions (References 7 and 8). Therefore, the FD benchmarks to test individual design altematives were 
run on the weekend to minimize these effects. 

6-20 



THE FIRST APPROACH -- SIMULATOR 

Several of the design alternatives examined by this study were tested and analyzed in the context of 
two FDD simulators. Alternatives were chosen to be implemented in the context of these simulators for 
the following reasons: 

1. They were simulator-specific, e.g., diffemnt ways of implementing the scheduler. 

2. They could be implemented in an isolated part of the simulator where their impact could easily be 
measured using the VAX PCA. 

3. They could be implemented in an isolated part of the simulator and still have a measurable effect on 
the time required for a 20-minute simulation run. 

Baselined versions of the simulators were used to test each of the design alternatives. CPU times were 
obtained for 20-minute simulation runs of the baselined versions from the log files created by batch runs. 
PCA was used to obtain a profile of the simulators. These pmfdes showed what percentage of the CPU 
time was spent in each Ada package of the simulator. The VAX manual Guide to VAX Pelformance and 
Coverage Analyzer (Reference 9) contains more infomation on PCA. 

Design alternatives were incorporated into the baselined versions of the simulators. New CPU times 
were obtained for 20-minute simulation runs from the log files created by batch runs and new profiles 
obtained using PCA. The following two figures show the accounting infomation contained in a batch log 
file and a sample of PCA output. From these two pieces of information, the impact of each design 
alternative was assessed. 

Sample PCA Output 

VAX Performance and Coverage Analyzer 
CPU Sampling Data (11219 data points total) - .*" 

+ +----+----+----+----+----+----+----+----+----+---- Bucket Name 
PROGRAM-ADDRESS\ I 
UTILITIES- . . . . I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SEARCH-STRING . . I**************** 
SIMULATION-SCHEDULEI*********************** 

SPACECRAFT-ATTITUDEI**************** 
DATABASE-MANAGER . 
ADDING-UTILITIES . 
EARTH-SENSOR . . . 
UTILITIES-LONG- . 
DATABASE-TYPES- . 
SPACECRAFT-WHEELS 
AOCS-PROCESSOR . . 
SPACECRAFT-EPHEMERI 
ENVIRONMENTAL-TORQU 

* * * * * * * * * * * * * * *  
********** 
******** 
****** 
****** 
* * * * * *  
******  
* * * * *  
*****  

I ***** THRUSTERS . . . . 
GEOMAGNETIC-FIELD I* * * * *  
DEBUG-COLLECTOR . I **** 
MAGNETOMETER . . . I **** 

I *** SADA . . . . . . . 
SOLAR-SYSTEM . . . I * * *  

+----+----+----+----+----+----+----+----+----+---- + 

23.2% 
10.7% 
7.5% 
7.5% 
7.08 
4.7% 
3.7% 
3.0% 
2.9% 
2.9% 
2.6% 
2.5% 
2.3% 
2.2% 
2.2% 
2.1% 
1.7% 
1.4% 
1.2% 

6-21 



Sample Batch Log File Accounting Information 

Accounting information: 
Buffered 1/0 count: 109 Peak working set size: 4096 
Direct 1/0 count: 1132 Peak page file size: 15304 

Charged CPU time: 0 00:06:45.08 Elapsed time: 0 00:09:02.47 
Page faults: 11766 Mounted volumes: 0 

THE SECOND APPROACH -- PIWG 

Design alternatives not isolated to a particular part of either of the simulators were tested using the 
PWG structure of measurements. The PIWG structure of measurements is based on the concept of a 
control loop and a test loop. The test loop contains everything in the control loop and one alternative to be 
measured. The CPU time is sampled before the execution of each loop and after many iterations of each 
loop. If the test loop time duration is not considered stable, the process is repeated with a greater number 
of iterations; this is accomplished through an outer loop surrounding the test and control loops. To be 
considered stable, the test loop time duration must be greater than a predefmed minimum time. If this 
condition is met, the test loop time duration is compared against the control loop time duration, and the 
number of iterations is compared against a predefined minimum number of iterations. If the test loop time 
is greater than the control loop time or the minimum number of iterations has been exceeded, the results are 
considered stable, and the CPU time for the design alternative is calculated. The time for the alternative is 
the difference between the amount of CPU time taken for the control loop and the amount of CPU time 
taken for the test loop, divided by the total number of iterations performed. Collecting control loop and 
test loop CPU times, calculating design altemative times, and testing for stability were done using PIWG's 
Iteration package in the test drivers for this study. 

All test drivers used in this study were called three times from a main driver routine so that the CPU 
time for a given design alternative could be averaged for more accuracy. All results were averaged and 
recorded using PIWG's YO package and report generator procedure. The following is a sample PWG 
report. 

Sample PIWG Report 

Test Name: Generic-A 
CPU Time: 117.2 microseconds 
Wall Time: 117.2 microseconds 

Test Description: 
Use of generic matrix processing 
- Generic package for 3x3 matrix 

Test Name: Generic-C 
CPU Time: 117.2 microseconds 
Wall Time: 117.2 microseconds 

Class Name: Matrix - Gen 

Iteration Count: 128 
Number of samples: 3 

Class Name: Matrix - Gen 

Iteration Count: 128 
Number of samples: 3 

Test Description: 
use of generic matrix processing 
- NonGeneric package for 3x3 matrix 

6-22 



TESTOVERVIEW 

Ten test groups were developed. Each test group represented a design or implementation issue 
relevant to current FDD applications. The test groups were chosen as a result of an in-depth analysis of 
several FCA runs with two FDD simulators. If a certain design alternative or language feature appeared to 
consume a relatively large portion of central processing unit (CPU) time or memory, it was analyzed, 
measured, and quantified in this study. The design alternatives or language features consuming a 
relatively small portion of CPU time or memory were not studied further. Therefore, the test groups 
presented here are intended to be a representative sampling, rather than an exhaustive sampling, of current 
design and implementation approaches. The test groups are presented in two categories: design-oriented 
tests and implementation-oriented tests. 

Design-Oriented Tests 

Following is a brief description of the purpose of each design test group performed on the Ada 
performance study. 

Group I :  Scheduling. This test group contained three tests that addressed the run-time cost of various 
scheduling altematives. This test compared a event-driven design against a time-driven design and a hard- 
coded design. The event-driven design maintains a prioritized (sorted) queue of event identifiers that 
specifies the time-step and next simulation event. The time-driven design iterates over an array of event 
identifiers for each fmed time-step. The hard-coded design contains the event (procedure) calls in the 
source code. With the event-driven design the user may vary the order and frequency of each event. In 
the time-driven design the user may only vary the order of the event. In the hard-coded design there are 
not options available to the user. The implications of the different approaches were analyzed and 
contrasted. The results of this test group provided the applications designers with information necessary 
to make trade-off decisions among flexibility, accuracy, and performance. 

Group 2: Unconstrained Structures. Leaving data structures unconstrained allows greater user 
flexibility and enhances future reusability. However, the additional run-time code that may be generated 
can impose a significant run-time and memory overhead. This group measured the expense of 
unconstrained records and arrays and proposed viable altematives. 

Group 3: Initialization and Elaboration. This test group addressed initialization of static and dynamic 
data using various combinations of elaboration-time and execution-time altematives. This test group was 
relevant for applications requiring minimal initialization time. 

Group 4: Generic Units. The benefits of using generic units are reduced source-code size, 
encapsulation, information hiding, decoupling, and increased reuse (Reference 10). However, many Ada 
compilers implement this language f e a m  poorly. This test group addressed the options available with the 
compiler implementation and how well these options were implemented. 

Group 5: Conditional Compilation. The ability to include additional "debug code" in the delivered 
system adds to the system size and imposes a run-time penalty even if it is never used. The test group 
analyzed the current approach and proposed flexible alternatives for future systems. The results of this test 
group can have applications beyond "debug code" elimination. 

Group 6: Object-Oriented Programming. Two of the fundamental principles of object-oriented 
programming (OOP) are polymorphism and inheritance. Ada does not directly support these principles. 
However, the designer may simulate the effect of inheritance and polymorphism through the use of variant 

6-23 
loo05788L 



records and enumeration types. These OOP principles, whether direct or indirect, incur certain run-time 
overhead and problems (Reference 11). 

Implementation-Oriented Tests 

Following is a brief description of the purpose of each implementation test group performed on the 
Ada performance study. 

Group 7: Matrix Storage. The most basic, and perhaps the most common, mathematical expressions 
in flight dynamics applications involve matrix manipulations. This group addressed row-major versus 
column-major algorithms to quantify the performance implications. 

Group 8: Logical Operators. The Ada LRM clearly defines the behavior of logical expression 
evaluation. The Ada Style Guide (Reference 12) recommends avoiding the short-circuit forms of logical 
operators for performance reasons. The implications of this recommendation in the flight dynamics 
environment were measured and analyzed. 

Group 9: Prugma Inline. Flight dynamics simulators contain a large number of procedure and 
function calls to simple call-throughs and selectors. The overhead of making these calls can slow the 
performance of any simulator. This test measured the use of pragma INLINE as an alternative to calling 
a routine. 

Group IO: Smng-to-Enumerution Conversion. Current flight dynamics simulators contain a central 
logical data base. The physical data are distributed throughout the simulator in the appropriate packages. 
The logical data base provides keys (strings) that map into the physical data. The logical data base 
converts these strings to the appropriate enumeration type to retrieve the corresponding data. This test 
assessed the performance implications of this approach. 

Test Documentation 

Each performance test in this report is described in this section in the following format: 

Purpose. Each test was designed with a specific design or implementation alternative in mind. The 
rationale for the choice of the alternatives tested results from analysis of existing Ada systems developed in 
the FDD. 

Method. Some tests were performed as changes to an existing system, while other tests were 
performed by creating new, special-purpose software. The basis for each method was one of two 
approaches: DEC's FCA measurement tool or the PIWG structure of measurements. The details of the 
method(s) used for each test are described. 

Results. The result of executing a test is some combination of CPU time and object code size. Most 
tests were designed to measure the CPU run time in microseconds (p). In some cases the object code 
size in bytes is relevant. The data resulting from each test run are provided. 

Analysis.  In many cases, detailed analysis of the test results is necessary to understand'the 
implications for future projects. The analysis performed is summarized, and the implications are 
highlighted. 

6-24 



RESULTS 

1. Looping scheduler 
2. Bypass logical data base 
3. Conditional compile debug code 
4. Use static data structures 

As a result of this performance study, more accurate estimation of run-time performance for future 
FDD simulators is possible. Assuming future dynamics simulators are similar in function to GOADA, a 
more accurate perfomance estimation is possible given the following information: 

1. The run-time performance for a typical run of the GOADA simulator is 6 minutes, 45 seconds for a 
20-minute simulation. This yields a 1:3 simulation time to real-time ratio. 

10.7% 2.2% 8.5% 
14.5% 1.8% 12.7% 
2.1% 0.0% 2.1% 

45.0% 13.0% 32.0% 

2. The performance proffle generated by PCA of a typical GOADA run shows the distribution of the 
CPU run time resource throughout the simulator. 

3. The measured results of this study that lead to more efficient design and implementation 
alternatives. 

The following table combines the results of the Ada Performance Study with the PCA performance 
profile of GOADA. Each row of the table is measured against the baseline of 6 minutes and 45 seconds of 
CPU time to perform a 20 minuter simulation. 

Impact of Measured Performance Results on Dynamics Simulators 

Altemative I GOADA I Study Results I Difference 1 

5. Optimized utility packages I 26.6% I 5.3% I 21.3% I 
Total Percentages I 98.9% I 22.3% I 76.6% I 

The first row of the table shows the performance difference between the baseline scheduler in GOADA 
and the looping scheduler alternative (see test group 1, scheduling). Another option is to use the “hard- 
coded“ approach for the scheduler. However, the hard-coded approach sacrifices all flexibility in the 
interest of performance. For this reason, the more flexible “looping” alternative is recommended. 

The second row highlights the difference between accessing the logical data base and accessing the 
physical data directly (see test group 10, string- to-enumeration conversion). This striking improvement 
came from removing one string-toenumeration type conversion from the main simulation loop. The third 
row recommends the conditionally compiled debug code (see test group 5, conditional compilation). The 
fourth row is the estimated result of using a static record structure instead of a dynamic structure in all 
simulator packages (see test group 2, unconstrained structures). 

The fifth row is based on the result of comparing GOADA’s baseline matrix multiply function to the 
optimized matrix multiply function (Reference 13). Since the FDD deals with mainly three dimensions, an 
optimized set of utilities can be developed on that basis. The fully optimized version required less than 
one-fifth of the CPU time required for the baseline version. 

6-25 



As this table shows, a dynamics simulator that is similar to GOADA and is implemented with the 
results of this study would consume 76.6 percent less CPU than the current version, more than 
quadrupling the speed. This would yield an upper bound estimate of 95 seconds to perform a 20-minute 
simulation run, or approximately a 1 : 13 simulation-time-to-real-time ratio. 

This estimate is an upper bound for three reasons. First, this study examined a representative, rather 
than an exhaustive, list of design and implementation alternatives. That is, only those altematives that held 
the most promise of a large performance difference were studied. There may be many other alternatives 
that offer only minor gains. However, the combined performance gain of all may be significant. 

Second, coding optimizations to GOADA, or any simulator, were not studied. The goal of the study 
was to identify those design and implementation alternatives that lead to optimal systems. Line-by-line 
micro-optimizations on a simulator only provide information on final efficiency and lack the needed 
information on how to systematically predict and achieve that level of efficiency. 

Finally, the DEC Ada 1.5-44 compiler is a relatively error-free fmt attempt at an Ada compilation 
system. The next generation of Ada compilers, which includes DEC Ada 2.0, are now available. These 
second-generation compilation system includes improvements to the optimizer and code-generator. For 
example, simply compiling GOADA using DEC Ada 2.0 improved the simulator's performance by 7.4%. 

CONCLUSIONS 

The following statements summarize the results of the Ada Performance Study: 

Design- and implementation decisions that favored fidelity over efficiency were the largest contributor 
to poor run-time performance. The design should continually be reevaluated against evolving user 
requirements and specifications. 

Ada simulators in the FDD can be designed and implemented to achieve run times comparable to 
those of existing FDD FORTRAN simulators. Inefficient systems indicate problems in the system 
design or the compiler being used. 

Current Ada compilation systems still have inconvenient features that may contribute to poor 
performance. Organizations using Ada should use available performance-analysis tools to assess 
their compilation systems. 

Design changes are much more expensive than coding changes during final system testing. Often due 
to schedule and budget constraints, design changes are impossible. Therefore the important implication of 
the Ada performance study results is that new technology (in this case Ada and OOD) requires 
performance prototyping and benchmarking early in the design phase even in seemingly simple or 
straightforward cases. 

The Ada Peflormunce Study Report (Reference 2) contains a detailed analysis of each alternative 
studied and summarizes the results of this analysis with specific performance recommendations for future 
OOD/Ada development efforts in the FDD. Different application domains may be able to apply these 
results and recommendations. However, this does not preclude the necessity for application domain 
specific prototyping and benchmarking to determine the application specific performance issues. 

1 

6-26 



REFERENCES 

1. Ada Programming Language, American National Standards Institutehiilitary Standard 18 15A, 
1983 (ANSVMILSTD-1815A- 1983) 

2. Goddard Space Flight Center, SEL91-003, Sojlware Engineering Laboratory Ada Performunce 
Study Report, E. Booth and M. Stark, July 1991 

3. Goddard Space Flight Center, SEL-88-003, Evolution of Ada Technology in the Flight Dynamics 
Area: Design Phase Analysis, K. Quimby, et al., prepared by Computer Sciences Corporation, 
December 1988 

4. Goddard Space Flight Center, FDD/552-90/010, Sofhvare Engineering Luboratory (SEL) Study of 
the System and Acceptance Test Phases of Four Telemetry Simulator Projects, D. Cover, prepared 
by Computer Sciences Corporation, September 1990 

Goddard Space Flight Center, SEL-89-005, Lessons Learned in the Transition to Ada from 
FORTRAN at NASMGoddard, C. Brophy, University of Maryland, November 1989 

5 

6. Clapp, R., and T. Mudge, Rationale, Chapter I - Introduction, Ada Performance Issues, Ada 
Letters, A Special Issue, Association of Computing Machinery, New York, NY, ISBN 0-89791- 
354-x, vol. 10, no. 3, Winter 1990 

7. Clapp, R., and T. Mudge, Rationale, Chapter 3 - The Time Problem, Ada Performance Issues, 
Ada Letters, A Special Issue, Association of Computing Machinery, New York, NY, ISBN 0- 
89791-354-x, vol. 10, no. 3, Winter 1990 

8. Gaumer, D. and D. Roy, Results, Reporting Test Results, Ada Performance Issues, Ada Letters, 
A Special Issue, Association of Computing Machinery, New York, NY, ISBN 0-89791-354-x, 
vol. 10, no. 3, Winter 1990 

9. Digital Equipment Corporation, Guide to VAX Performance and Coverage Analyzer, June 1989 

10. Goddard Space Flight Center, FDD/552-90/045, Extreme Ultraviolet Explorer (EWE) Telemetry 
Simulator (EUVETELS) Sofrware Development History, E. Booth and R. Luczak, prepared by 
Computer Sciences Corporation, 1990 

1 1. Booch, G., Object Oriented Design, The BenjaminKummings Publishing Company, Inc., 
Redwood City, CA, ISBN 0-8053-0091-0, 1991 

12. Goddard Space Flight Center, SEL-87-006, Ada Style Guide, E. Seidewitz et al., June 1986 

13. Burley, R., “Some Data from Ada Performance Study” internal FDD memorandum, September 
1990 

6-27 





i 
STANDARD BIBLIOGRAPHY OF SEL 
LITERATURE 

I 
i 





STANDARD BIBLIOGRAPHY OF SEL LITERATURE 

The technical papers, memorandums, and documents listed in this bibliography are or- 
ganized into two groups. The first group is composed of documents issued by the Soft- 
ware Engineering Laboratory (SEL) during its research and development activities. 
The second group includes materials that were published elsewhere but pertain to SEL 
activities. 

SEGORIGINA’lZD DOCUMENTS 
SEG76-001, Proceedings From the First Summet &@ware Engineering Wonkrhop, 
August 1976 

SEG77-002, Proceedings Fmm the Second Summer So@m Engineering Workshop, 
September 1977 

SEG78-005, Proceedings F” the Third Summet Software Enginem’ng Workshop, 
September 1978 

SEG78-006, GSFC So@are Engineering Research Requkments Anabsis Study, 
I? A. Scheffer and C. E. Velez, November 1978 

SEL78-007, Applicability of the Raykigh Curve to the SEL Environment, T E. Mapp, 
December 1978 

SEG78-302, FORTUN Static Some  Code A n a w  hg” (SAP) User’s Guide 
(Revision 3), W. J. Decker, W. A. Thylor, et id., July 1986 

SEG79-002, The Soware Engineering Labomtory Relationship Equations, 
K. Ereburger and V. R. Basili, May 1979 

SEG79-004, Evaluation of the Cainc, F e  and Gordon Bq” Design hnguage 
(PDL) in the Goddad Space Fhght Center (GSFC) Code 580 S o f i m  Design Envimn- 
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979 

SEG79-005, Piweedings I iom the Fourth Summer Sofiare Engineering Wonkhop, 
November 1979 

SEGS0-002, Multi-Level Expression &sign Language-Rkquiwment Level (MEDL-R) 
System Evaluation, W. J .  Decker and C. E. Goorevich, May 1980 

SEGSW5,  A Study of the Musa Reliabibty M&l, A. M. Miller, November 1980 

SEGS-, Roceedings h m  the Fiji% Annual Sofian? Engincerng Wonkhop, 
November 1980 

S E G W 7 ,  An Appraisal of Selected CostIRe”e Estimation Modelr for So@m 
System, J. E Cook and E E. McGarry, December 1980 

BI-1 



SEG80-008, %torial on Models andMetrics for SofhuareManagement and Engineering, 
V. R. Basili, 1980 

SEGs1-011, Evaluating Software Development by Anarysis of Change Data, 
D. M. Weiss, November 1981 

SEG81-012, The Ruykigh C w e  as a Model for Eflort Distriburion Over the Life of 
Mtdium Scale So@m %stems, G. 0. Picasso, December 1981 

SEG81-013,Aoceedingsofthe SixthAnnualSojlwam Engineerbag Workshop, December 
1981 

SEG81-014,Automated Collection of Sofiare Engineering Data in the Sofiware Engi- 
neering Laboratory (SEL), A. L Green, W. J. Decker, and E E. Mffiarry, September 
1981 

SEG81-101, Guide to Data Collection, V. E. Church, D. N. Card, E E. McGarry, et al., 
August 1982 

SEG81-104, lk So" Engineering Laboratory, D. N. Card, E E. McGarry, 
G. Page, et al., February 1982 

SEL81-110, E v a l w t i o n o f a n Z ~ e n t  VmFcation und 'validation (N&v) Methodol- 
ogy for Flight Dynamics, G. Page, E E. MCGarry, and D. N. Card, June 1985 

SEL81-305,RecommendedAppmch to &@are Development, L. Landis, S. Wdigora, 
E E. McGarry, et al., June 1992 

SEG82-001, Evaluation of Management Measures of Soware Development, G. Page, 
D. N. Card, and E E. McGarry, September 1982, vols. 1 and 2 

SEG82-004, Collected Sojhvare Engineering Paper: Volume 1, July 1982 

SEG82M)7, Ruceedinp of the Seventh Annual Somare Engineering Worhhop, 
December 1982 

SEG82-008, Evaluating Soware Development by Analysis of Changes: The Data h m  
the So@are Engineering Labonrtory, V. R. Basili and D. M. W e d ,  December 1982 

SEG82-102, F0RY"Static Source CodeAna&erPmgram (SAP) System Description 
(Revirion I ) ,  W. A. nylor and W. J. Decker, April 1985 

SEL82-105, Glossary of Soware Engineering Laboratory T m ,  T. A. Babst, 
M. G. Rohleder, and E E. McGarry, October 1983 

SEL82-1106, Annotated Bibliography of Software Engineering Luboratoty Literahue, 
L. Morusiewicz and J. Valett, November 1992 

SEL-83401, An Appmach to Sofiare Cost Estimation, E E. Mffiarry, G. Page, 
D. N. Card, et al., February 1984 

BI-2 



SEG83-002, Measures and Metrics for Sojlware Devebpment, D.N.Card, 
E E. McGany, G. Page, et al., March 1984 

SEG83-003, Collected Soean? Engineering Papm: Volume 11, November 1983 

SEG83-006, Monitoring Sojbvare Development k u g h  Qv"ic Wiizbles, 
C. W. Doerflinger, November 1983 

SEG83-007, heedbags of the Eighth Annual Sojlwure Engineering Workrhop, 
November 1983 

SEG83-106, Monitoring Soji~are Devebpmnt k u g h  Qvnamk Kznizbles (Revi- 
sion I ) ,  C. W. Doerflinger, November 1989 

SEG84-003, Investigation of Speijkation Measures forthe Sojbvare EngineerngLabora- 
tory (SEL), W. W. Agresti, I? E. Church, and E E. McGarry, December 1984 

SEG84-004, Rvceedings of the Nith Annual S@wm Engineering Workrhop, 
November 1984 

SEG84-101, Manager's Handbook for So- Devebpment ( . o n  l ) ,  L. Landis, 
E E. McGany, S. Waligora, et al., November 1990 

SEG85-001, A Compmison of Sofiware Vk$ieation Techniques, D.N.Card, 
R. W. Selby, Jr., E E. McGarxy, et al., April 1985 

SEG85-002, Ada Tmining Evaluation and Recommendations I iom the Gamma Ray 
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985 

SEG85-003, Collected Soware Engineering B p m :  Volume HI, November 1985 

SEG85-004, Evaluations of Sojbvare Technologes: Testing, CLEANRO.OM, and 
Metrics, R. W. Selby, Jr., and V. R. Basiii, May 1985 

SEG85-005, Software Vmpcation and T d g ,  D. N. Card, E. Edwards, E McGany, 
and C. Antle, December 1985 

SEG85-006, Roeeedings of the Tenth Annual Sojbvam Engineering Workrhop, 
December 1985 

SEG86-001, Rogrammer's Handbook for Flight Dynamics software Development, 
R. Wood and E. Edwards, March 1986 

SEL86-002, Geneml Object-Oriented Software Devebpment, E.Seidewitz and 
M. Stark, August 1986 

SEG86-003, mght Dynumics System &@ware Devebpment Envimnment (FDSISDE) 
nCtOria1, J .  Buell and R Myers, July 1986 

SEL86-004, collected Sojhare Engineeg  &pm: Volume November 1986 

b1-3 



SEL-86-005, Measuring Sofhvme Design, D. N. Card et al., November 1986 

SEL86-006, hceedings of the Eleventh Annual Sojhvare Engineering Workshop, 
December 1986 

SEG87-001, M u c t  Assurance policies and Rocedurw for Flight Dynamics Sofiare 
Development, S. Perry et al., March 1987 

SEL87402, Ada@ Styk Guide (version l.l), E. Seidewitz et al., May 1987 

SEL87-003, Guidelines for Applyhg the Composite Specification Model (CSM), 
W. W. Agresti, June 1987 

SEC87-004, Assessing the Ada@ Design A.ocesr and I& Implications: A Care Study, 
S. Godfkey, C. Brophy, et al., July 1987 

SEG87-009, Collected Sojhvam Engineering Papers= Volume t: November 1987 

SEG87-010, Rvceedhgs of the lbeljlh Annual &@are Engineering Wonkrhop, 
December 1987 

SEG88-001, System Testing of a Proriuction A& Project: The GRODY Study, J. Seigle, 
L. Esker, and Y. Shi, November 1988 

SEG88-002, Collected Sofiam Engineering P a m :  Volume W, November 1988 

SEG88-003, Evolution of A& Technology in the Flight Dynamics Area: Design Phase 
Analysis, K. Quimby and L. Esker, December 1988 

SEG88-004, Aioceedings of the ntirteenth Annual Sofrware Engineering Workrhop, 
November 1988 

SEc88-005, Proceedings of the First MSA Ada User's Symposium, December 1988 

SEG89-002, Implementation of a A.oduction A& Project: rite GRODY Study, 
S. Godfrey and C. Brophy, September 1989 

SEG89-004, Evolution ofA& Technology in the Flight DynamicsArea: Impkmentationl 
Testing Phase AM&& K. Quimby, L Esker, L. Smith, M. Stark, and E McGarry, 
November 1989 

SEG894Q5, Lessons Leamed in the Tmnsition to Ada From FORTRAN at NASAI 
Goddard, C. Brophy, November 1989 

SEG89-006, Collected Sojhvm Engineering Papers: Volume WI, November 1989 

SEG89-007, Aioceedings of the Fourteenth Annual &@ware Engineering Wonkrhop, 
November 1989 

SEG89-008, hceedings of the Second NASA Ada Users' Symposium, November 1989 

b1-4 



SEG89-103, Sofrware Management Environment (SME) Concepts and Architecture 
(Revision I ) ,  R. Hendrick, D. Kistler, and J. Wlett, September 1992 

SEG89-201, Sofrware Engineering Laboratory (SEL) Database Organizution and User’s 
Guide (R” 2), L. Morusiewicz, J. Bristow, et al., October 1992 

SEG90-001, Database Access Manuger for the So@m Engineering Laboratory 
( W S E L )  User’s Guide, M. Buhler, K. Fb~phrey, and D. Spiegel, March 1990 

SEG90-002, The Cleanmom Case Study in the &@are EngineeringLaboratory: Project 
Desc@tion and EadyAnalysis, S. Green et al., March 1990 

SEG90-003,A Study of the Portability of anAdu System in thesoware EnginemhgLabo- 
ratory (SEL), L. 0. Jun and S. R. Valett, June 1990 

SEG90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODV Exper- 
ment Summary, T. McDermott and M. Stark, September 1990 

SEG90-005, Collected Sofrware Engineering P a p :  Volume WII, November 1990 

SEG90-006, Aoceedingr of the Fifteenth Annual SopVare Engineering Wonkshop, 
November 1990 

SEG91-001, sofrware Engineering Labomtory (SEL) Relationships, M&h, and Man- 
agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991 

SEG91-003, Sofrware Engineering Labomtory (SEL) Ada P4o”ce Study Report, 
E. W. Booth and M. E. Stark, July 1991 

SEG91-004, Sofrware Engineering Labomtory (SEL) C l e a m m  ptocess Model, 
S. Green, November 1991 

SEG91-005, Collected Sojhvare Engineering Papers: Volume E, November 1991 

SEG91-006, lkceedings of the Sixteenth Annual So@m Engineering Wot4lclrhop, 
December 1991 

SEG91-102, So@are EngineeringLaboratov (SEL) Data and Information Policy (&vi- 
sion I ) ,  E McGany, August 1991 

SEG92-001, Sofrware Management Environment (SME) Installation Guide, D. Kistler 
and K. Jeletic, January 1992 

SEG92-002, Data Collkction Procedures for the Sojbvare Engineeiing Laboratory (SEL) 
Database, G. Heller, J. Wett, and M. Wild, March 1992 

SEG92-003, Collected Software Engineering Papers: Volume X, November 1992 

SEGRELATED LITERATURE 
‘OAbd-El-Hafiz, S. K., V. R. Basili, and G. Caldera, “lbwards Automated Support for 
Extraction of Reusable Components,”Rvceedings of the IEEE Conference on Soware 
Maintenance-1991 (CSM 91), October 1991 

BI-5 



4Agresti, W. W., V. E. church, D. N. Card, and P. L. Lo, “Designing With Ada for Sat- 
ellite Simulation: A Case Study,” Proceedings of the First International SVmposium on 
Ada for the NASA Space Starion, June 1986 

2Agresti, W. W., E E. McGarry, D. N. Car4 et al., “Measuring Software T ~ c ~ o ~ o ~ Y , ~ ’  
Rq” Tmnsfomration and Rqpmming Environments. New York S pringer-Verlag, 
1984 

‘Bailey, J. W., and V. R. Bad& ‘A Meta-Model for Software Development Resource 
Expenditures,“ Rvceedkgs of the F i f i  Intmuztiwull Cbnfmmee on So@are Enginem- 
ing. New York IEEE Computer Society Press, 1981 

BBdey, J. W., and V. R. Basili, “Software Reclamation: Improving Post-Development 
Reusability,” Proceedings of the Eight;hAnnual National Confmnce on Ada Technology, 
March 1990 

l@ailey, J. W., and V. R. Basili, “The Software-Cycle Model for Re-Engineering and 
Reuse,” Proceedings of the ACM Ti-Ada 91 Conference, October 1991 

‘Basili, V. R., “Models and Metria for Software Management and Engineering,” 
ASMEAdvances in Computer Zkchnobgy, January 1980, vol. 1 

Basili, V. R., lltttorial on Models and Mehics for Sopktate Management and Engineering. 
New York IEEE Computer Society Press, 1980 (also designated SEL80-008) 

3Basili, V. R., “Quantitative Evaluation of Software Methodology,” Roceedings of the 
Fitst Pan-Pac@c Computer Confwence, September 1985 

’Basili, V R., Maintenance = Reuse-Oriented &@are Development, University of  
Maryland, ’Mhnical Report TR-2244, May 1989 

’Basili, V R., Sofnvare Development: A Paradigm for the Future, University of Maryland, 
’Tkchnical Report “R-2263, June 1989 

8Basili, V. R., “Viewing Maintenance of Reuse-Oriented Software Development,” 
IEEE Soware, January 1990 

‘Basili, V. R., and J. Beane, “Can the Parr Curve Help With Manpower Distribution 
and Resource Estimation Problems?,”Journal of Systemand Sofrware, February 1981, 
vol. 2, no. 1 

%asili, V. R., G. Caldiera, and G. Cantone, “A Reference Architecture for the Compo- 
nent Factory,”ACM Tmnsactions on Software Engineering and Metbdoloa, January 
1992 

l@asili, V., G. Caldiera, E McGarry, et al., “The Software Engineering Laboratory- 
An Operational Software Experience Factory,” Bvceedinp of the Fourteenth Intema- 
tional Conference on Sofnvare Engineering (ICSE 92), May 1992 

BI-6 



IBasili, V. R, and K. Freburger, “Programming Measurement and Estimation in the 
Software Engineering Laboratory,” Joumal of System and Sojlwam, February 1981, 
vol. 2, no. 1 

3Basili, V R., and N. M. Panlilio-Yap, “Finding Relationships Between Effort and 
Other Variables in the SEI,,” Rvceedhgs of the Intemationul Computer Sofhvare and 
Applications Confmnce, October 1985 
4Basili, V R, and D. Patnaik, A Study on Fault prediction and Reliability A t  in 
the SEL, Environment, University of Maryfand, Report TR-1699, August 1986 
* B a a ,  V. R., and B. T. Perricone, “Software Errors and Complexity: An Empirical 
Investigation,” Communications of ticCe ACM, January 1984, vol. 27, no. 1 
‘Basili, V. R., andT. Phillips, “Evaluating and Comparing Software Metria in the Soft- 
ware Engineering Laboratory,” Proceedings of the ACM SIGMETUICS JLmposiuml 
Wotkhop: Qual@ Meirics, March 1981 
3Basili, V. R., and C. L. Ramsey, “ARROWSMI[TH-P-A Prototype E p r t  System for 
Software Engineering Management,” Proceedings of the LEEE/” System 
in Gin”ent JL”, October 1985 
Basili, V. R., and J. Ramsey, Stiuctrrml Covmge of Fmfionul T a g ,  University of 
Maryland, l lxhdcal Report TR-1442, September 1984 
Basili, V. R, and R Reiter, “Evaluating Automatable Measures for Software Develop- 
ment,” Rvceedings of the Workshop on Quantitative S o e m  Models for ReliabiZity, 
Comp-, and Cost. New York IEEE Computer Society Press, 1979 
5Basili, V. R., and H. D. Rombach, “Thiloring the Software Process to Project Goals 
and Environments,” Aoceedingr of the 9th International Confmnce on Sofnvare Engi- 
neering, March 1987 
5Basili, V. R, and H. D. Rombach, “‘I‘ A M E: Woring  an Ada Measurement Emri- 
ronment,” Rxeedingr of the Joint Ada Conference, March 1987 
5Basili, V R., and H. D. Rombach, “TAME Integrating Measurement Into Software 
Environments,” University of Maryland, ’It=chnical Report TR-1764, June 1987 
6Basili, V R., and H. D. Rombach, “The TAME Project: Tbwards Improvement- 
Oriented Software Environments,” IEEE Tmnsactions on Sojlware Engineehg, June 
1988 
’Basili, V R., and H. D. Rombach, TowardrA ComprehenrieI;mmework forReure: A 
Reuse-Enabling Sojhvure Evolution Envhnment, University of Maryland, Tkchnical 
Report TR-2158, December 1988 . 
8Basili, V R., and H. D. Rombach, Towanis A Conp&msive Fnzmework for Reuse: 
Model-Based Reuse Chamcterization Schemes, University of Maryland, ’kchnical 
Report TR-2446, April 1990 

BI-7 



Qasili, V. R., and H. D. Rombach, “Support for Comprehensive Reuse,” Sojbvare En- 
gineering Jozunal, September 1991 

3Basili, V. R, and R. W. Selby, Jr., ‘‘Calculation and Use of an Environment’s Charac- 
teristic Software Metric Set,”Proceedingsof the Eighth International Conference on Sop- 
ware Engineering. New York IEEE Computer Society Res, 1985 

Basili, V. R., and R. W. Selby, “Comparing the EfEectiveness of Software Testing Strat- 
egies,” IEEE Tranractionr on So@m Engineerin, December 1987 

3Basili, V. R., and R. W. Selby, Jr., “Four Applications of a Software Data Collection 
and Analysis Methodology,”Rvceedings of rhe NATOAdvanced Study Inrtirute, August 
1985 

5Basili, V. R., and R. Selby, “Comparing the Effectiveness of Software lksting Strate- 
gies,” IEEE Eansacfions on Sofhare Engineering, December 1987 

Qasili, V. R., and R. W. Selby, ”Paradigms for bpenmentation and Empirical Studies 
in Software Engineering,” Reliability Engineering and @stem Safq ,  January 1991 

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, “Experimentation in Software 
Engineering,” IEEE Tmnsactions on Sofhare Engineering, July 1986 

2Basili, V. R., R. W. Selby, and ‘I: Phillips, “Metric Analysis and Data Validation Across 
F O K I ”  Projects,” IEEE Tmnsactiom on Sojbvare Engineering, November 1983 

2Basili, V. R., and D. M. Weiss, A Methodologv for Collecting W i d  SoNare Engineering 
Data, University of Maryland, lbchnical Report TR-1235, December 1982 

3Basili, V. R., and D. M. Weiss, ‘!A Methodology for Collecting Valid Software Engi- 
neering Data,’’ IEEE Transactions on Sofrware Engineen’ng, November 1984 

‘Basili, V. R., and M. V Zekowitz, “The Software Engineering Laboratory: Objec- 
tives,” Proceedings of the Fifteenth Annual Conference on Computer Personnel Research, 
August 1977 

Basili, V. R., and M. V Zelkowitz, “Designing a Software Measurement Experiment,” 
Proceedings of the Software Life %le Management Workshop, September 1977 

lBasili, V. R., and M. V. Zelkowitz, “Operation of the Software Engineering Labora- 
tory,” Rxeedings of the Second Sofhvare Life o c k  Management Wonkrhop, August 
1978 

lBasili, V. R., and M. V. Zelkowitz, “Measuring Software Development Characteristics 
in the Local Environment,” Computers and Sauctures, August 1978, vol. 10 

Basili, V. R., and M. V Zelkowitz, “Analyzing Medium Scale Software Development,” 
Proceedings of the Third International Conference on Sojbvam Engineering. New York 
IEEE Computer Society Press, 1978 

BI-8 



b t h ,  E. W., and M. E. Stark “Designing Configurable Software: COMPASS Imple- 
mentation Concepts,” hee&g, s  of Tn’-Ada 1991, October 1991 

l h t h ,  E. W., and M. E. Stark, “Software Engineering Laboratory Ada Performance 
Study-Results and Implications,“proCeedings of the Fourth Annual NASA Ada User’s 
Symposium, April 1992 

%nand, L. C., and V. R Basili, ‘A Classification Procedure for the Effective Manage- 
ment of Changes Duringthe Maintenance F%cess,”Rvceedingsof the 1992IEEE Con- 
ference on Soware Maintenance (CSM 92), Nuvember 1992 

%xiand, L C., V R. Basih, and C. J. Hetmanski, “Rovidhg an Empirical Basis for 
Optimizing the Verification and %sting Phases of Software Development,” Proceed- 
ings of the Third IEEE Intematiunal Symposium on Software Reliizbdity Engineering 
(ISSRE 92), October 1992 

%riand, L C., V. R Basili, and W. M. Thomas ,A”n  Recognition Approach forSofi- 
ware Engineering Data Analysis, University of Maryland, ’kchnical Report “€2-2672, 
May 1991 

5Brophy, C. E., W W Agresti, and V R. Basili, “Lessons Learned in Use of Ada- 
Oriented Design Methods,” A.oceedingr of the Joint Ada Conference, March 1987 

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V R Basili, “Lessons Learned in the 
Implementation Phase of a Large Ada Project,” Proceedings of the Washington Ada 
Technical Conference, March 1988 

2Card, D. N., “Early Estimation of Resource Expenditures and Program Size,” 
Computer Sciences Corporation, lbchnical Memorandum, June 1982 

2Card, D. N., “Comparison of Regression Modeling ” i q u e s  for Resource-Estima- 
tion,” Computer Sciences Corporation, 

3Card, D.N., ‘A Software Bchnology Evaluation Program,” Annais do M I I  
Congress0 Nacwnal de Informaiica, October 1985 

D. N., and W W. Agresti, ‘‘Resolving the Software Science Anomaly,” Joumal 

6Card, D. N., and W. W. Agresti, “Measuring Software Design Complexity,”Journal of 
System and Sojiware, June 1988 

4Card, D. N., V. E. Church, and W. W. Agresti, “An Empirical Study of Software Design 
Practices,” IEEE Transactions on Sofrware Engineering, February 1986 

Card, D. N., V E. Church, W. W. Agresti, and Q. L. Jordan, “A Software Engineering 
View of Flight Dynamics Analysis System,” Parts Iand II, Computer Sciences Corpora- 
tion, %chnical Memorandum, February 1984 

Memorandum, November 1982 

of  stems 41cd SO@are, 1987 

BI-9 



Card, D. N., Q. L. Jordan, and V E. Church, “Characteristics of FO- Modules,” 
Computer Sciences Corporation, ’kchnical Memorandum, June 1984 

5Card, D. N., E E. McGarry, and G. T Page, “Evaluating Software Engineering 
khnologie~,”  IEEE Tmnsactions on Soware Engineering, July 1987 

3Card, D. N., G. T. Page, and E E. McGarry, “Criteria for Software Modularization,” 
Proceedings of the Eighth Intemational Conference on software Engineering. New York 
IEEE Computer Society Press, 1985 

lChen, E., and M. V Zelkowitz, “Use of Cluster Analysis ’Ib Evaluate Software Engi- 
neering Methodologies,” Roceedings of the Fifth Intemational Confetnce on Sojhare 
Engineering. New York IEEE Computer Society Press, 1981 

4Church, V E., D. N. Card, W. W. Agresti, and Q. L. Jordan, “An Approach for 
Assessing Software Prototypes,”ACMSo@are Engineering Notes, July 1986 

2Doerflinger, C. W., and V. R Basili, “Monitoring Software Development Through 
Dynarmc Wables,” hceedings of the Seventh Intemational Computer Sofnvare and 
Applications Conference. New York IEEE Computer Society Press, 1983 

Doubleday, D., A W  An A& Static Source Code A n a k r  Progmm, University of 
Maryland, Ihhnical Report TR-1895, August 1987 (NOTE: 100 pages long) 

6Go&ey, S., and C. Brophy, “Experiences in the Implementation of a Large Ada 
Project,” Proceedings of the 1988 Wmhington Ada Syrnposium, June 1988 

5Jeffery, D. R., and V Basili, Chamcterizing Resource Data: A Model for Logrcal 
Association of Sojhare Data, University of Maryland, khnica l  Report TR-1848, M a y  
1987 

6Jeffery, D. R., and V R. Basili, ‘Vdidating the ‘MIME Resource Data Model,” h- 
ceedings of the Tenth Intemational Confermce on So@at Engineering, April 1988 

5Mark, L., and H. D. Rombach, A Mda Information Base for Soware Engineering, 
University of Maryland, ’Rchnical Report TR-1765, J L I ~ ~  1987 

6Mark, L, and H. D. Rombach, “Generating Customized Software Engineering 
Infoxmation Bases From Software Process and Product Specifications,”Proceedings of 
the 22ndAnnual Hawaii Intenrational Conference on System Sciences, January 1989 

5McGarry, E E., and W. W. Agresti, “Measuring M a  for Software Development in the 
Software Engineering Laboratory (SEL),” hceedings of the 21st Annual Hawaii . 
International Conference on System Sciences, January 1988 

’McGarry, E, L. Esker, and K. Quimby, “Evolution of Ada khnology in a Production 
Software Environment,” h c e d n g s  of the Sixth Washington Ada symposium 
(WADAS), June 1989 

BI-10 



3McGarry, E E., J. Vdett, and D. Hall, ‘‘Measuring the Impact of Computer Resource 
Quality on the Software Development pn>cess and Product,” Proceedings of the 
Hawaiiun Internarional Conference on System Sciences, January 1985 

3Page, G., E E. McGany, and D. N. Card, ‘A Practical Experience With Independent 
Verikation andValidation,”Proceedings of the Eighth International Computer Software 
and Applications Conference, November 1984 

5Ramsey, C. L., and V. R Basili, “An Evaluation of Expert Systems for Software Engi- 
neering Management,” IEEE Tmnsactions on So@m Engineering, June 1989 

3Ramsey, J., and V. R. Basili, “Analyzing the Rs t  Process Using Structural Coverage,” 
Proceedings of the Eighth Intmtional Conference on Softwan? Engineering. New York: 
IEEE Computer Society Press, 1985 

5Rombach, H. D., ‘% Controlled Experiment on the Impact of Software Structure on 
Maintainability,” IEEE Tmnsactions on S o m a r  Engineering, March 1987 

8Rombach, H. D., “Design Measurement: Some Lessons Learned,” IEEE Soj%van?, 
March 1990 

Qombach, H. D., “Software Reuse: A Key to the Maintenance Problem,”Buttenvorfh 
Journal of Infomation and Sojbvar Technology, JanuaryFebruary 1991 

6Rombach, H. D., and V. R. Basili, “Quantitative Assessment of Maintenance: An 
Industrial Case Study,” Proceedings From the Conference on So” Maintenance, 
September 1987 

6Rombach, H. D., and L. Mark, “Software Process and Product Specifications: A Basis 
for Generating Customized SE Information Bases,” Proceedhgs of the 22nd Annul  
Hawaii Intenurtional Conference on System Sciences, January 1989 

’Rombach, H. D., and B. T. Ulery, Ertabbshing a Measurement Based Maintenance 
Improvement Pmgram: Lessons Leamed in the SEL, University of Maryland, lkchnical 
Report TR-2252, May 1989 

l%mbach, H. D., B. T. Ulery, and J. D. Valett, ‘“Ibward Full Life Cycle Control: 
Adding Maintenance Measurement to the SEL,” Journal of System and Sowam, 
May 1992 

%eidewitz, E., “Object-Oriented Programming in Smalltalk and Ada,” h e e d i n g s  
ofthe 1987 Conference on Object-Oriented Programming System, hnguages, and 
Applications, October 1987 

%eidewitz, E., “General Object-Oriented Software Development: Background and 
Experience,” h e e d i n g s  of the 21st Hawaii International Confernce on System 
Sciences, January 1988 

BI-11 



6Seidewitz, E., “General Object-Oriented Software Development with Ada: A Life 
Cycle Approach,” Proceedings of the CASE Technology Confmnce, April 1988 

gseidewitz, E., “Object-Oriented Programming Through Extension in Ada 9X,” 
Ada Letten, March/Aprill991 

1OSeidewit.q E., “Object-Oriented Programming With Mixins in Ada,” Ada Letters, 
March/Aprill992 

4Seidewitz, E., and M. Stark, ‘‘l[bWards a General Object-Oriented Software Develop- 
ment Methodology,” Proceedings of the F h t  International sLmposium on Ada for the 
MSA Space Station, June 1986 
gSeidewitz, E., and M. Stark, “An Object-Oriented Approach to Parameterized Soft- 
ware in Ada,” Proceedings of the Eighth Wwhin-n Ada Symposium, June 1991 

8Stark, M., “On Designing Parametrized Systems Using Ada,” heed ings  of the 
Seventh Washingon Ada Symposium, June 1990 
’Stark, M. E. and E. W. Booth, “Using Ada to Maximize Verbatim Software Reuse,” 
hceedings of l?U-Ada 1989, October 1989 

’Stark, M., and E. Seidewitz, “?bwards a General Object-Oriented Ada Lifecycle,” 
Proceedings of the Joint Ada Conference, March 1987 

‘OStraub, I? A, and M. V Zelkowitz, “On the Nature of Bias and Defects in the Soft- 
ware Specification Process,” Rvceedings of the Sixteenth International Computer Sop- 
waie and Applications Conference (COMPSAC 92), September 1992 

gstraub, I? A., and M. V Zelkowitz, “PUC A Functional Specification Language for 
Ada,” Proceedings of the Tenth Intemational Conference of the Chilean Computer Science 
Society, July 1990 
7Sunazuka, T, and V. R. Basili, IntegratingAutomated Suppolt for a software Manage- 
ment *le Into the U.ME System, University of Maryland, “ k a l  Report TR-2289, 
July 1989 
”?Iian, J., A. Porter, and M. V Zelkowitz, “An Improved Classification ’Ree Analysis of 
High Cost Modules Based Upon an Axiomatic Definition of Complexity,”A.oceedings 
of the lhitd IEEE International JLmposium on Softwme Reliability Engineering 
(ISSRE 92), October 1992 
k e r ,  C., and G. Caron, A Comparison of RADC and NASAISEL Sojlwate Develop- 
ment Data, Data and Analysis Center for Software, Special Publication, May 1981 
%dett ,  J. D., ‘Automated Support for Experience-Based Software Management,” 
Proceedings of the Second Irvine S 0 f h . m  Symposium (ISS ‘92), March 1992 

’Valett, J. D., and E E. McGarry, ‘A Summary of Software Measurement meriences 
in the Software Engineering Laboratory,” Rvceedings of the 21st Annual Hawaii 
Intemational Conference on System Sciences, January 1988 

BI-12 



3Weiss, D. M., and V. R. Basili, “Evaluating Software Development by Analysis of 
Changes: Some Data From the Software Engineering Laboratory,” IEEE Fansuctions 
on So@m Engineeting, February 1985 

L., V. R. Basili, and K. Reed, “A Structure Coverage ’bo1 for Ada Software Sys- 
tems,” Proceedingr of the Joint Ada Conference, March 1987 

*Zekowitz, M. V., “Resource Estimation for MediumScale Software Projects,” Rv- 
ceedings of the llvewh Confmnce on the Iizter$ace of Statistics and Computer Science. 
New York IEEE Computer Society Press, 1979 

2Zelkowitz, M.V., “Data Collection and Evaluation for Experimental Computer 
Science Research,” Empirical Foundatiom for Computer and Information Science (Pro- 
ceedings), November 1982 

6Zekowitz, M. V., “The EfEectiveness of Software Prototyping: A Case Study,” Pro- 
ceedings of the 26thAnnual Technical SVmposium of the Warhingtn, D. C., Chapter of the 
ACM, June 1987 

6Zekowitz, M. V., “Resource Utilization During Software Development,” Journal of 
Systems and So@are, 1988 

8Zekowitz, M. V., “Evolution ’Ibwards Spedcations Environment: Fhperiences With 
Syntax Editors,” Information and Sofnm Technology, April 1990 

BI-13 
1000022) 
1 1 1 ~  



NOTES: 

'This article also appears in SEG82-004, CoUected Sojhvare Engineering Papm: 
Volume I,  July 1982. 

*This article also appears in SEL83-003, Collected Software Engineering Papers: 
Volume 11, November 1983. 

3This article also appears in SEG85-003, Collected Soman? Engineering Papm: 
Volume III, Nwember 198's. 

" h i s  article also appears in SEL86-004, CoUected Sofi'ware Engineering Papm: 
Volume Nwember 1986. 

SThis article also appears in SEG87-009, CoUected So@m Engineering Papm: 
Volume November 1987. 

SThiS article also appears in SEL88-002, Colkcted Sowm Engineering Papm: 
Volume V, November 1988. 

'This article also appears in SEL89-006, Collected So@am Engineering Papm: 
Volume V I ,  November 1989. 

8This  article also appears in SEG90-005, Collected Software Engineering Papm: 
Volume VH, November 1990. 

%s article also appears in SEG91-005, Collected Sopare Engineering Papm: 
Volume E, November 1991. 

article also appears in SEG92-003, collected Sojhvare Engineering Papm: 
Volume X,  November 1992. 

b1-14 



I 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the lime for reviewing instructions. searching existing data sourcas, 
gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
cOllectiOfl Of information, including suggestions for reducing this burden, lo Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson 
Davis Highway. Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget. Papemork Reduction ProJect (0704-0188). Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 

4. TITLE AND SUBTITLE 

3. REPORT TYPE AND DATES COVERED 
Contractor Report (UM&CSCxGSFC 

14. SUBJECT TERMS 

12-1P page bibliography 

17. SHXlRlTY CLASSlFICAl" 18. SECURITY CLASSIFICAm 19. SECURIM CLAQQlflCATlON 
OF REPORT OF THIS PAGE OF ABSTRACT 

Unclassified Unclassified Unclassified 

c o l l e c t e d  Softwm Engineering Papers: VoL X 

6. AUTHOR(S) 

15. NUMBER O f  PAGES am. '00 
16. PRICE CODE 

20. UMITATDN OF ABSTRACT 

2YL 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) 

NASAK;SFC Softwm Engineering Branch 
Univ. of MD Dept. Computer Science 
Computersciences, SohmEngineering operation 

National Amnautics and Space Administration 
Washington, DC 20546-0001 

9. SPONSORING I MONITORING ADGENCY NAME(S) AND ADDRESS (ES) 

11. SUPPLEMENTARY NOTES 

12.. DISTRIBUTION I AVAILABILITY STATMENT 

5. FUNDING NUMBERS 

ASG5445 

8. PEFORMING ORGANIZATION 
REPORT NUMBER 

SEL 92 003 

10. SPONSORING / MONITORING 
ADGENCY REPORT NUMBER 

SEL 92 0 

12b. DISTRIBUTION CODE 

1 

13. ABSTRACT (Maximum 200 words) 

This document is a collection of technical papers produced 10/91-11/92. The purpose is to make available 
results of SEL m h  that originally appeared in different forums. These papers cover topics in software engineer- 
ing, but do not encompass entire mpe of SEL activities. ?ha are 5 sections: 

ThesoftwmEngineeringLabaratory 
So- Tools Studies 
Software Models Studies 
Software Measurement Studies 
Ada Technology Studies 








	Sectionl-Intmduction
	Section ?oftware Tools
	S K AM-El-Habiz V R Bas& and G Caldiera
	J.D.Valett

	Section Aftware Models
	J W Bailey and V R Basili
	Proas,ﬂ F! A Straub and M V Zelkuwitz
	A Porter and M V Zekowitz
	V R Basili and C J Hetmanski
	V.R.Basili

	Section Coftware Measurement
	the SEI,,ﬂ H D Rombach B T Ulery and J D Valett

	Section &Ada Technology
	ﬁObject-Oriented Programming with Mixins in Ada,ﬂ E Seidewitz
	and Implications,ﬂ E W Booth and M E Stark


