
NASA CASE NO.

PRINT FIG.

I--9 .APPL ..-

/ 30VO

_PO-18586-I-CU

NOTICE

The invention disclosed in this document resulted from

research in aeronautical and space activities performed under

programs of the National Aeronautics and Space Administration. The

invention is owned by NASA and is, therefore, available for

licensing in accordance with the NASA Patent Licensing Regulation

(14 Code of Federal Regulations 1245.2).

To encourage commercial utilization of NASA-Owned inventions,

it is NASA policy to grant licenses to commercial concerns.

Although NASA encourages nonexclusive licensing to promote

competition and achieve the widest possible utilization, NASA will

consider the granting of a limited exclusive license, pursuant to

the NASA Patent Licensing Regulations, when such a license will

provide the necessary incentive to the licensee to achieve early

practical application of the invention.

Address inquiries and all applications for license for this

invention to NASA Patent Counsel, NASA Resident office-JPL, Mail

Code 180-801, 4800 Oak Grove Drive, Pasadena, CA 91109.

Approved NASA forms for application for nonexclusive or

exclusive license are available from the above address.

Serial Number:

Filed Date:

07/969.868

October 27z 1992

(NASA-Case-NPO-18586-1-CU) NFURAL

NETWORK TRAINING BY INTEGRATION OF

ADJOINT SYSTEMS OF EQUATIONS

FORWARD IN TIME Patent Application

(JPL) 31 p

NRO-JP_

December i0, 1992

N93-17276

Unc|as

Inventors: Nikzad Toomarian
Jacob Barhen

Contractor: Jet Propulsion Laboratory

JP_ Case No. 18586

NASA Case No. NPO-18586-I-CU

Date: September 23, 1992

NEURAL NETWORK TRAINING BY INTEGRATION OF ADJOINT SYSTEMS

OF EQUATIONS FORWARD IN TIME

AWARDS ABSTRACT

A method and apparatus for supervised neural learning of

time dependent trajectories exploits the concepts of adjoint

operators to enable computation of the gradient of an objective

functional with respect to the various parameters of the network

architecture in a highly efficient manner. Specifically, it

combines the advantage of dramatic reductions in computational

complexity inherent in adjoint methods with the ability to solve

two adjoint sytems of equations together forward in time. Not

only is a large amount of computation and storage saved, but the

handling of real-time applications becomes also possible. The

invention has been applied it to two examples of representative

complexity which have recently been analyzed in the open

literature and demonstrated that a circular trajectory can be

learned in approximately 200 iterations compared to the 12000

reported in the literature. A figure eight trajectory was

achieved in under 500 iterations compared to 20000 previously

required. The trajectories computed using our new method are

much closer to the target trajectories than was reported in

previous studies.

SerialN0._/?_ _) _

' .,," "9. [!" _/__-:

l'ci ij) (.,..,,.._" __ fzi p)

JPL Case No. 18586 Patent Application
NASA Case No. NPO-18586-1-CU
Attorney Docket No. JPL/019-92

NEURAL NETWORK TRAINING BY INTEGRATION

OF AD3OINT SYSTEMS OF EQUATIONS FORWARD IN TIME

BACKGROUND OF THE INVENTION

Origin of the Invention:

The invention described herein was made in the performance of work

under a NASA contract, and is subject to the provisions of Public Law

96-517 (35 USC 202) in which the contractor has elected not to retain

title.

Microfiche Appendix:

A computer program embodying the invention is listed in the microfiche

appendix filed with this specification. The microfiche appendix contains

material which is subject to copyright protection. The copyright owner

has no objection to the facsimile reproduction by anyone of the patent

document or the patent disclosure, as it appears in the Patent and Trade-

mark Office patent, file or records, but otherwise reserves all copyrights

whatsoever.

Technical Field:

The invention relates to methods for training neural networks and in

particular to neural network training methods using adjoint systems of

equations corresponding to the forward sensitivity equations of the neu-

ral network.
w

Background Art:

The following publications represent the state of the art in neural net-

work training techniques, and are referred to in the specification below

by author name and year:

Barhen, J., Toomarian, N. and Gulati, S. (1990a). " Adjoint operator

algorithms for faster learning in dynamical neural networks". In David

S. Touretzky (Ed.), Advances in Neural Information Processing

Systems. Vol. 2 498-508, San Mateo _s}Jl Morgan Kaufmann. ,-,,o]

Filing De"--:e__ _ 0/a "7 / _"_.

Co'_: ;',: : '. : "'3. [':" _<"': "<_-"":_ i
P.t" __'- I

J

Barhen, J., Toomarian, N. and Gulati, S. (1990b). "Application of ad-

joint operators to neural learning". Applied Mathematical Letters, 3 (3),

13-18.

Cacuci, D.G. (1981). "Sensitivity theory for nonlinear systems". Journal

Math. Phys., 22 (12), 2794-2802.

Grossberg, S. (1987). The Adaptive brain. Vol. 2, North-Holland.

Hirsch, M.W. (1989). "Convergent, activation dynamics in continuous

time networks". Neural Networks, 2 (5), 331-349.

Maudlin, P.J., Parks, C.V. and Weber C.F. (1980). "Thermal- hydraulic

differential sensitivity theory". American Society of Mechanical Engi-

neering paper WA/HT-56.

Narendra, K.S. and Parthasarathy, K. (1990). "Identification and con-

trol of dynamical systems using neural networks". IEEE transaction on

Neural Networks, 1 (1), 4-27.

Oblow, E.M. (1978). "Sensitivity theory for reactor thermal-hydraulic

problems". Nuclear Science and Engineering, 68,322-357.

Parlos, A.G., et. al. (1991). "Dynamic learning in recurrent neural

networks for nonlinear system identification", preprint

Pearlmutter, B.A. (1989). "Learning state space trajectories in recurrent

neural networks". Neural Computation, 1 (2), 263-269.

Pearlnautter, B.A. (1990). "Dynamic recurrent neural networks". Tech-

nical Report CMU-CS-90-196, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA. Pineda, F. (1990). "Time dependent

adaptive neural networks". In David S. Touretzky (Ed.), Advances

in Neural Information Processing Systems. Vol. 2, 710-718, San

Mateo, CA: Morgan I(aufmann.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). "Learning

internal representations by error propagation". In D.E. Rumelhart, J.

L. McCleland and the PDP Research Group, Parallel Distributed

Processing: Exploration in the Microstructure of Cognition,

Vol. 1, Foundations, Cambridge: MIT Press/Bradford Books.

Sato, M. (1990). "A real time learning algorithm for recurrent analog

neural networks". Biological Cybernetics, 62 (3), 237-242.

Toomarian, N., Wacholder, E., and Kaizerman, S. (1987). "Sensitivity

analysis of two-phase flow problems". Nuclear Science and Engineering,

i

99 (i), 53-81. Toomarian, N. and Barhen, J. (1991). "Adjoint operators

and non-adiabatic algorithms in neural networks". Applied Mathematical

Letters, 4 (2), 69-73.

Werbos, P.J. (1990). "Backpropagation through time: what it does and

how to do It", Proceeding of the IEEE, 87 (10).

Williams, R.J., and Zipser, D. (1988). "A learning algorithm for con-

tinually running fully recurrent neural networks". Technical Report ICS

Report 8805, UCSD, La Jolla, CA 92093.

Williams, R.J., and Zipser, D. (1989). "A learning algorithm for contin-

ually running fully recurrent neural networks",

Neural Computation, bf 1 (2), 270-280.

Zak, M. (1989). "Terminal attractors in neural networks". Neural Net-

"works, 2 (4), 259-274.

1. INTRODUCTION

Recently, there has been a tremendous interest in developing learn-

ing algorithms capable of modeling time-dependent phenomena (Gross-

berg, 1987; Hirsh, 1989). In particular, considerable attention has been

devoted to capturing the dynanfics embedded in observed temporal se-

quences (e.g., Narendra, 1990; Parlos et. al., 1991).

In general, the neural architectures under consideration may be clas-

sifted into two categories:

* Feedforward networks, in which back propagation through time (Wer-

bos, 1990) can be implemented. This architecture has been exten-

sively analyzed, and is widely used in simple applications due, in

particular, to the straightforward nature of its formalism.

* Recurrent networks, also referred to as feedback or fully connected

networks, which are currently receiving increased attention. A key

advantage of recurrent networks lies in their ability to use informa-

tion about past events for current computations. Thus, they can

provide time-dependent outputs for both time-dependent as well as

time-independent inputs.

One may argue that, for many real world applications, the feedfor-

ward networks suffice. Furthermore, recurrent network can, in principle,

be unfolded into a nmltilayer feedforward network (Rumelhart et al.

1986). A detailed analysis of the merits and demerits of these two archi-

3

tectures is beyond the scope of this paper. Here, we will focus only on
recurrent networks.

The problem of temporal learning can typically be formulated as

a minimization, over an arbitrary but finite time interval, of an appro-

priate error functional. The gradients of the functional with respect to

the various parameters of the neural architecture, e.g., synaptic weights,

neural gains, etc. are essential elements of the minimization process and,

in the past, major efforts have been devoted to the efficacy of their com-

putation. Calculating the gradients of a system's output with respect to

different parameters of the system is, in general, of relevance to several

disciplines. Hence, a variety of methods have been proposed in the liter-

ature for computing such gradients. A recent survey of techniques which

have been considered specifically for temporal learning can be found in

Pearlmutter (1990). We will briefly mention only those which are rele-

vant to our work.

Sato (1990) proposed, at the conceptual level, an algorithm based

upon Lagrange multipliers. However, his algorithm has not yet been

validated by numerical simulations, nor has its computational complexity

been analyzed. \¥illiams and Zipser (1989) presented a scheme in which

the gradients of an error functional with respect to network parameters

are calculated by direct differentiation of the neural activation dynamics.

This approach is computationally very expensive and scales poorly to

large systems. The inherent advantage of the scheme is the small storage

capacity required, which scales as O(Na), where N denotes the size of

the network.

Pearhnutter (1989), on the other hand, described a variational method|

which yields a set of linear ordinary differential equations for backpropa-

gating the error through the system. These equations, however, need to

be solved backwards in time, and require temporal storage of variables

from the network activation dynamics, thereby reducing the attractive-

ness of the algorithm. Recently_ Toomarian and Barhen (1991) suggested

a fi'amework which, in contradistinction to Pearlmutter's formalism, en-

ables the error propagation system of equations to be solved forward in

time, concomitantly with the neural activation dynamics. A drawback

of this novel approach came fl'om the fact that their equations had to be

4

analyzed in terms of distributions, which precluded straightforward nu-

merical implementation. Finally, Pineda (1990) proposed combining the

existence of disparate time scales with a heuristic gradient computation.

The underlying adiabatic assumptions and highly approximate gradient

evaluation technique, however, placed severe limits on the applicability
of his method.

SUMMARY OF THE INVENTION

The invention trains a neural network using a method for calculating

the gradients of an error functional with respect to the system's parame-

ters, which builds upon advances in nonlinear sensitivity theory (Oblow

1978, Cacuci 19S1). In particular, it exploits the concept of adjoint oper-

ators to reduce the computational costs. Two novel systems of equations

for error propagation (i.e., the adjoint equations), are at the heart of the

computational framework. These equations are solved simultaneously

(i.e., forward in time) with the network dynamics. The computational

complexity of the algorithm scales as O(N 3) per time step, the storage

requirements are minimal i.e., of the order of O(N 2), while complication

arising from the presence of distributions in our earlier framwork are

avoided. In the remainder of this specification, the terms sensitivity and

gradient will be used interchangeably.

The method of the invention trains a neural network so that a neuron

output state vector thereof obeys a set of forward sensitivity equations

over a finite repeatable learning period, the method including setting

the neuron output state vector to zero at the beginning of the learning

period, defining first and auxiliary adjoint systems of equations govern-

ing an adjoint function and an auxiliary adjoint function, respectively,

of the neural network and corresponding to the forward sensitivity equa-

tions, setting the adjoint function to zero at the beginning of the learning

period and integrating the adjoint system of equations forward in time

over the learning period to produce a first term of an indirect effect of a

sensitivity gradient of the neural network, setting the auxiliary adjoint

function to zero at. the end of the learning period and integrating the

5

auxiliary adjoint system of equations forward in time over the learning

period to produce a remaining term of the indirect effect, computing a

sum of the first and remaining terms, multiplying the sum by a learning

rate and subtracting the product thereof from a current neuron param-

eter vector to produce an updated neuron parameter vector.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagram of a recurrent neural network employed in car-

ring out the invention.

Fig. 2 is a block diagram illustrating architecture which performs

the process embodying the present invention for training in neural net-

work by integration of adjoint systems of equations forward in time.

Fig.'s 3, 4 and 5 illustrate different simulation results of a neural

network learning a circular motion using the invention.

Fig. 6 is a graph of the error as a function of the number of learning

iterations for each of the cases illustrated in Fig.'s 3-5.

Fig.'s 7, S and 9 illustrate different simulation results of a neural

network learning a figure-eight motion using the invention.

Fig. 10 is a graph of the error as a function of the number of learn-

ing iterations for each of the cases illustrated in Fig.'s 7-9.

DETAILED DESCRIPTION OF THE INVENTION

2. TEMPORAL LEARNING FRAMEWORK

We formalize a neural network as an adaptive dynamical system

whose temporal evolution is governed by the following set of coupled

6

nonlinear differential equations:

i_,_ + _,_ u,, = g'_["/"(E T,_m Urn + In)] t > 0 (I)

where un represents the output of the nth neuron (u,_(0) being the ini-

tial state), and Turn denotes the strength of the synaptic coupling from

the m-th to the n-th neuron. The constants n,_ characterize the decay

of neuron activities. The sigmoidal functions gn(') modulate the neu-

ral responses, with gain given by 7n; typically, g,(Tnx) = tanh(TnX).

In order to implement a nonlinear functional mapping from an Nz- di-

mensional input, space to an No-dimensional output space, the neural

network is topographically partitioned into three mutually exclusive re-

gions. As shown in Figure 1, the partition refers to a set of input neurons

SI, a set of output neurons So, and a set= of "hidden" neurons SH. Note

that this architecture is not formulated in terms of "layers", and that

each neuron may be connected to all others including itself.

Let/_(t) (in the sequel the overhead bar will denote a vector) be an N-

dimensional vector of target, temporal patterns, with non zero elements,

a,_(t), in the input and output, sets only. When trajectories, rather than

mappings, are considered, as we shall see in the sequel, components in

the input set may also vanish. Hence, the time-dependent external input

term in Eq. (1), i.e., L_(t), encodes component-contribution of the target

temporal pattern via the expression

{a,(t) if n E Si (2)I.(t) = 0 if 7_, 6SHUSo

To proceed formally with the development of a temporal learning

algorithln, we consider an apl)roach based upon the minimization of an

error functional, E, defined over the learning period or time interval

[to, ti] by the following expression

/i's 1 .2 dt Fdt (3)
e(_,f) = :_ ¢. =

where the error component, e.(t),represents the differencebetween the

desired and actual value of the output neurons, i.e.,

{ a,,,(t)- u,,(t) ifn 6 So (4)e,,(t) = 0 if n E SI I,J SH

7

In our model, the internal dynamical parameters of interest are the

strengths of the synaptic interconnections, Trim, the characteristic decay

constants, _n, and the gain parameters, 7n. They can be represented as

a neuron parameter vector of .IV/[:If : N 2 + 2N] components

f = { T_,,..-,Wx,_-, _-_,...,_, 7_,'",7x} (5)

We will assume that elements of _ are statistically independent. Further-

more, we will also assume that, for a specific choice of parameters and

set of initial conditions, a unique solution of Eq. (1) exists. Hence, the

state variables _ (which may, be referred to as the neuron output state

vector) are an implicit flmction of the parameters ft. In the rest of this

paper, we will denote the ptt, element of the vector/5 by p, (where the

neuron parameter index # = 1,..., kg).

Traditionally, learning algorithms are constructed by invoking Lya-

punov stability argmnents, i.e., by requiring that the error functional be

monotonically decreasing during learning time, r. This translates into

dE dE dpl,

d_ = Z dp,, d_ < o (6)
p:l

One can always choose, with a learning rate rl > 0

dpl, dE

d_- - _@,, (7)

which implements learning in terms of an inherently local minimization

procedure. Attention should be paid to the fact that Eqs. (1) and (7)

may operate on different time scales (i.e., the neural network behavior

time t of Equation 1 and the neural adaptation or learning time r of

Equations 6 and 7), with parameter adaptation occurring at a slower

pace. Integrating the dynamical system, Eq.(7), over the interval It, r +

At], one obtains,

p,,(r + At) = p,,(r) - 71 '+_'- dEdv--Td_ (s)

8

Equation (8) implies that, in order to update a system parameter p,,

one must evaluate the "sensitivity" (i.e., the gradient) of E, Eq. (3),

with respect to p, in the interval [r, r + Ar]. Furthermore, using Eq.

(3) and observing that the time integral and derivative with respect to

p, connnute, one can write

_p, = _p, dt = Op u dt + O--_ " Op----_

This sensitivity expression has two parts. The first term in the Right

Hand Side (RHS) of Eq.(9) is called the "direct effect", and

corresponds to the explicit, dependence of the error functional on the

system parameters. The second term in the RHS of Eq. (9) is referred

to as the "indirect effect", and corresponds to the implicit relationship

between the error functional and the system parameters via _. In our

learning formalism, the error functional, as defined by Eq. (3), does not

depend explicitly on the system parameters; therefore, the "direct effect"

vanishes, i.e.,
OF

c)p,

Since F is known analytically (viz.

OF/O_ is straightforward. Indeed

= 0 (10a)

Eqs. (3) and (4)), computation of

OF

O u ,, = - e,_ (lOb)

Thus, to enaMe evaluation of the error gradient using Eq. (9), the "in-

direct effect" matrix 0_i/0fi should, in principle, be computed. In the

sequel, we shall see that this is rather expensive from an algorithmic (i.e.,

computational complexity) perspective, but that an attractive alterna-

tive, based on the concept of adjoint operators, exists. First, however,

we introduce the notion of teacher forcing.

3. TEACHER FORCING A novel neural network "teacher forcing"

training method is described in co-pending patent application Serial No.

07/908,677 filed June 29, 1992 by the inventors herein and entitled "Fast

9

Temporal Neural Learning Using Teacher Forcing". As indicated in Fig-

ure 2c of the above-referenced co-pending application, the parameters

of the network are updated based upon the error accumulated over the

length of the trajectory or learning period. This method is employed

in numerical simulations of the present invention described in detail be-

low. The present invention may be combined with such teacher forcing if

desired, or the present invention may be practised without teacher forc-

ing. In order to incorporate this teacher forcing into the neural learning

formalism presented earlier, the time-dependent input to the neural ac-

tivation dynamics, Eq.(1), i.e., I,,(t) as given by Eq. (2), is modified to

read:

a,_(t) if /l, E SI
I,,(t) = 0 if n S SH (11)

)_[a,(t)]l-_[a,,(t) -- u,,(t)] 3 if n E So

At this stage, A and/3 are assumed to be positive constants. The purpose

of the term [a,_.(t)] 1-_ is to insure that I,(t) has the same dimension as

a,_(t) and u,_(t). Zak (1989) has demonstrated that in general, for/3 =

(2i+1)/(2j+1), i < j and i andj strictly positive integers, an expression

of the form [a,,- u,] _ induces a terminal attractor phenomenon for the

dynamics described be Eq. (1). Generally,/3 = 7/9 for the numerical

simulations reported below in this specification.

When learning is successfully completed, [i.e., en(t) = 0] teacher

forcing will vanish, and the network will revert to the conventional dy-

namics given by Eqs. (1) and (2). As described in the above-referenced

co-pending application, we suggest that A be modulated in time as a

function of the error functional, according to

A(r) = 1 - c -E(') (12)

The above expression should be understood as indicating that, while

A varies on the learning time scale, it remains at essentially constant

levels during the iterative passes over the interval [to, tf].

4. GRADIENT COMPUTATION ALGORITHMS

10

The efficient computation of system response sensitivities (e.g., er-

ror functional gradients) with respect to all parameters of a network's

architecture plays a critically important role in neural learning. In this

section, we will first review two of the best currently available meth-

ods for computing these sensitivities, including an explicit approach for

calculating the matrix 0_/0p, and an alternative approach, based upon

the concept of adjoint operators, which involves error back propagation

through time. This will be followed by the details of a new method,which

enables an efficient computation of the sensitivities by solving two sys-

tems of adjoint equations forward in time.

4.1 State-of-the-art Methods

/,. 1.1 DIRECT APPROACH

Let us differentiate the activation dynamics, Eq. (1), including the

teacher forcing, Eq. (11), with respect to p,. We observe that. the time

derivative and partial derivative with respect to p, commute. Using the

shorthand notation 0(...)/cgp, = (...),u we obtain a set of equations to

be referred to in the sequal as "Forward Sensitivity Equations" (FSEs):

{/,,_,. + _,..4,_,. .., 4, = S,,.,. t > 0u,_,. = 0 t = 0 (13)

in which

(14)

__ + I _'_m _lh,,T. 'Urn, ,7,_- ,o +I,,)% (15)

In the above expressions, g.i, represents the derivative of g,, with respect

to its arguments, ._ denotes the I(ronecker symbol and $,_,, is defined

as a nonhomogeneous "source". The source tern: contains all explicit

derivatives of the neural activation dynamics, Eq. (1), with respect to

the system parameters, p,. Hence, it. is parameter dependent, and its size

is (N x _,_I). The initial conditions of the activation dynamics, Eq.(1),

are excluded from the vector of system parameters/5. Thus, the initial

conditions of the FSEs will be taken as zero. Thier solution will provide

11

the matrix 0fi/0/_ needed for computing the "indirect effect" contribution

to the sensitivity of the error flmctional, as specified by Eq. (9). This

algorithm is, essentially, similar to the scheme proposed by Williams and

Zipser (1989). Computation of the gradients using the forward sensitivity

formalism would require solving Eq. (13) M times, since the source

term, Sn,_, explicitly depends on p_,. This system has N equations,

each of which requires nmltiplication and summation over N neurons.

Hence, the computational complexity, measured in terms of multiply-

accumulates, scales like N _- per system parameter, per time step. Let us

assume, fllrthermore, that the interval [*0, t/] is discretized into L time

steps. Then, the total number of multiply-accumulates scales like W4L.

Clearly, such a scheme exhibits expensive scaling properties, and would

not be very practical for large networks. On the other hand, since the

FSEs are solved forward in time: along with the neural dynamics, the

method also has inherent advantages. In particular, there is no need for

a large amount of memory. Since .u,_,, has N a + 2N 2 components, the

storage requirement scales as O(N a).

4.1.2 INDIRECT APPROACH

In order to reduce the computational complexity associated with

the above technique for evaluating the "indirect effect" term in Eq.(9),

an alternative approach can be considered. It is based upon the con-

cept of adjoint operators, and elinfinates the need to compute explicitly

_. The critical feature of this approach is that a single vector of

adjoint functions, _, is obtained, by solving an N-dimensional system of

equations once, not M times as previously. This vector contains all the

information required for computing the sensitivities of the error func-

tional, dE/dp_,, with respect to all parameters, p,. The necessary and

sufficient conditions for constructing adjoint equations are discussed in

Cacuci (19S1). Adjoint equations can be derived in a number of manners,

including variational, perturbation theoretic, differential and functional

analytic techniques. Details of derivations, based upon the differential

approach, for example, can be found in Toomarian (1987) and Maudlin

et al. (1980).

It can be shown that an Adjoint System of Equations (ASEs) per-

12

taining to the FSEs, Eq. (13), can be formally written as

- A,_._ t,._ = S,_ t > 0 (16)

where the superscript "T" denotes transposition of the ASE matrix An,_,

and the indices n and m range from 1 to N. In order to specify Eq. (16)

in closed mathematical form , we must define the source term, S*, and

the initial conditions for the system. (An initial condition may apply to

the beginning of the learning period or the end of the learning period.)

Both should be independent of _, and its derivatives. As we will see in

the sequel, a judicious choice of the source term, S*, and of the initial

conditions for the ASEs, Eq. (16), forms the cornerstone of the indirect

methods. Generall3,, the source term, S,_, is selected in such a way,

as to make its inner product with _._, identical to the "indirect effect"

contributions to the sensitivities of the error flmctional. Selection of the

time (initial or final) at which the initial conditions are specified will, on

the other hand, dictate the direction in time in which the ASEs should

be integrated. For instance, if the set of initial condition is specified at

to, the ASEs will be integrated forward in time. On the other hand, if the

initial conditions are given at tf, the ASEs must be integrated backward

in time. In the remainder of section 4.1, we will derive and discuss the

advantages and disadvantages of two algorithms, which integrate the

ASEs backward and forward in time, respectively.

a - Integration of the ASEs backward in time

In order to construct an expression which can be used to eliminate

the dependence of the "indirect effect" term of the sensitivities on g,,

we have to form the inner product of the vectors S'* and/_,. This is done

by multiplying the FSEs, Eq. (13). by pT and the ASEs, Eq. (16), by

'_._,, and by subtracting the two resulting equations. Then, integrating

over the time interval [to, ti], yields the bilinear form:

f,o"(_ [vr = $,,,) dt _ $.) dt (17)

13

In the above equation S,u denotes the inhomogeneous source term of the

FSEs, Eq. (15), and [...]_ denotes the value of the expression in brackets

evaluated at time t. By identifying

S_ = OF/Ou_ (18a)

the second integral in the RHS of Eq. (17) is seen to become identical to

the "indirect effect" term in Eq. (9). Incorporating the initial conditions

of Eq. (13) into Eq. (17), we obtain:

t_(OF)T_t,udt = oT_,udt _ [_T U,,]t (19)

How can we eliminate the undesirable presence of 5, u from the RHS of

Eq. (19)? The clear choice is

= = 0 (lSb)

resulting in the fundamental identity

_tlJ(_fft)T'u,l, dt _i I= _,Ts,_dt (20)

Since the ASEs, (Eqs. 16, and 18). and o0,, (which is known by defini-

tion) are independent of _,t,, the RHS of Eq. (20) is independent of _,.

Hence, by solving the ASEs once only, the "indirect effect" is evaluated

via the RHS of Eq. (20) for all system parameters, p. Thus, the above

identity provides the basis for a computationally efficient algorithm for

evaluating the gradient of the error functional. It is important to notice

that since the initial conditions, Eq. (18b), for the ASEs, were given at

trajectory end time, i.e., at t = tf. Eq. (16), is integrated backward in

time, i.e., from t = tf to t = to.

We note that the above 1)aradigm results in equations similar to

those obtained by Pearhnutter (19S9) using a variational approach. Both

algorithms require that the neural activation dynamics, Eq. (1), be first

r OFsolved forward in time (to provide quantities such as A,_ m, -g-_,

followed by a solution of the ASEs, Eq. (16), integrated backward in

14

time. During the backward integration, the product of the vector _ and

matrix S,u is calculated and also integrated from t = t] to t = to. The

result of this integration provides the "indirect effect" contribution to

the gradients of the error functional.

Since u,,(t) and v,_(t) can be obtained at the cost of N multiply-

accumulates per time step, and there are N equations (neurons) per

network, the complexity of this approach scales like N2L. Thus, the

principal advantage of adjoint methods lies in the dramatic reduction

of computational costs (e.g., at least O(N _) for an N-neuron network).

However, a major drawback to date has come from the necessity to store

quantities such as _', S'* and S, at each time step. Hence, the memory

requirements for this method scale as Ar-_L. Note also that the actual

evaluation of the RHS of Eq. (9) requires N2L nmltiply-accumulates,

independent whether the FSEs or ASEs are used.

b - Integration of the ASEs forward in time

Is it possible to overcome the rather severe memory limitations of

the adjoint method, while keeping its computational benefits? V_re notice

that Eq. (16) is linear in the variables p. Therefore, it is, in principle,

possible to obtain identical contributions to Eq. (9) with an alternative

choice for adjoint source and initial conditions. Indeed, let us select:

OF

and

=0)=0

where 6(t - t f) is the Dirac distribution.

(17) and recalling that, by definition of 6

r, (t - ts)dt =
o

we obtain

Inserting Eqs.

(21b)

(21) into Eq.

:.,,},=,s (22)

J,i if'" s(-o---_-) u,,,dt -- 'f,Ts,,,dt (23)

15

This expression is identical to Eq. (20). Therefore, most items discussed

in connection with this equation will hold. However, _ is now the solution

of the ASEs defined by Eqs. (16) and (21). In contradistinction to the

previous approach, the initial conditions for the ASEs are given hereat

t = to, Eq. (21b). Therefore, the ASEs can be integrated forward in

time, concomitantly with the neural activation dynamics. Potentially,

storage requirements are reduced by a large amount, since the quantities

S* and 0' are now immediately used at each time step to calculate _ and

its product with the known matrix S,l," Hence, the memory required

scales only as O(N2). The computational complexity of this method

also scales as O(N2L). A potential drawback, however, lies in the fact

that Eq. (16) now contains, from eq. (21a), the Dirac distribution,

_5(t - t f), operating directly on the adjoint functions, _. This precludes

straightforward (stable) numerical or VLSI implementation of such a

scheme.

4.2 The New Approach

At this stage, we introduce a new paradigm which will enable us to

evolve the adjoint dynamics, Eq. (16) forward in time, but without the

difficulties associated with the above formalism. Consider, again, the

bilinear form, Eq. (17), associated with the FSEs, Eq. (13), and the

ASEs, Eq.(16). Let us select

OF
3" = -- (24a)

This is similar to the choice made earlier, when discussing the integration

of the ASEs backward in time. The second integral in the RHS of Eq.

(17) will again be identical to the "indirect effect" contribution to the

sensitivity of the error functional, Eq. (9). But, in contradistinction to

Eq. (18b), we now select as initial conditions:

g_(t =0)=0. (245)

This will allow us to integrate the resulting ASEs, i.e., Eqs.(16) and

(24), forward in time. Combining Eqs. (9), (17) and (24), we obtain the

16

following expression:

__u)T_ .dt _ ($.)T u-.t,dt = (fj)T S .dt- loT u,.]ts (25)

The first term in the RHS of Eq. (2.5) can be computed by using the

values of _ resulting from the solution of Eqs. (16) and (24) forward in

time. The main difficulty resides with the evaluation of the second term

in the RHS of Eq. (25), i.e., [_T _,u]t_. To compute it, we now introduce

an auxiliary adjoint system, formally similar to Eq. (16):

Z,, nt E T _,_ > 0 (26)

Once again, the inner product of O,_, and S is required. The bilinear

form associated with flu and z is obtained in a similar f_hion to the

derivation of Eq. (17). Its expression is:

_'l jftl y
_(=; _,,,)dr- (,_, }) dt (27)[S _,,,],s -[-_ _,,,],o = -

o

By choosing

S = _(t)5(t- tf) (28a)

the last term of Eq. (27) reduced to [_T ft,f,]t_, which is the quantity of

interest. If we furthermore select

(t) =0.

and take into account the initial value of _-_,F,,Eq. (27) yields

(2sb)

(29)

Note that, even though we selected 5(If) -- 0, we are still interested in

solving the auxiliary adjoint system, Eqs. (26) and (28), forward in time.

17

Thus, the critical issue is how to select initial condition (i.e., 5(to)), that

would result in 2,(t f) = O.

Let us first provide a simple qualitative illustration of how this prob-

lem can be approached. We assume, for the moment, that the matrix A

in Eq. (26) is time independent. The formal solution of Eqs. (26) and

(28) can then be written as:

=..(t)--" (?AT('--t°)r-(_o) t < ty (30a)

5(tf) = eAT('_-'°)5(to) - _(ty) (30b)

In principle, using Eq. (30a), the RHS of Eq. (29) can be expressed in

terms of 5(to) At time t/, where 'S(t/) is known from the solution of

Eqs. (16) and (24), one can calculate the vector 2(to), from Eq. (30b),

with 5(tf) = O.

In the problem under consideration, however, the ASE matrix A

in Eq. (26) is time dependent, (viz Eq. (14)). Thus, it is practical to

integrate numerically the auxiliary adjoint equations. Usually, the same

numerical scheme used for Eqs. (1) and (16) should be adopted. For

illustrative purposes only, we limit the discussion in the sequel to a first

order finite differences approximation, i.e., we rewrite Eqs. (26,28) as

_ (5z+1 _ _l) + [.4ritz/ = 0 0 < 1 < L (31)
At

where, superscript. I implies that the numerical vahms of the quantities of

interest at time step l are used and At denotes the size of the integration

time step. Here, [AT] l denotes the ASE matrix evaluated at the time

step I. From the above equation one can easily show that

5 t+1 = B t B I-1 ...B 1 B°=.(to) = Ba=.(to) (32)

where

B t = I + At [.4T] l (l = 0,1,.--,L-I) (33)

and I denotes the identity matrix. The term B t may be referred to as

a propagation kernel. Using a numerical approximation for the integral,

the RHS of Eq. (29) can be recast as

18

[_T _t,t,]tf ._ _;T(to) [_[BT](1-1)!sl] At,t,j (34)

l

Algorithmically, the computation of lot u,i,]_s can be described as

follows. At each time step l, the values of the matrices B (l-l), and SI,,

are calculated using Eqs. (14, 15 and 33). The needed value of B (1-1)!

is computed by multiplying the stored value of B (1-2)! by B (_-1) The

result is not only stored for the next iteration, but also used to calculate

the product of B (l-1)! by St, which, in turn, is added up. The initial

conditions 2(to) can easily be found at time tf, i.e., at iteration step L,

by solving the system of linear algebraic equations:

B (L-l)! 5(to) = _(tf) (35)

To smmnarize, in this new method the computation of the gradients

of the error flmctional (i.e., Eq. (9)). involves two stages, corresponding

to the two terms in the RHS of Eq. (25). The first term is calculated

from the adjoint functions, _, obtained by integrating Eqs. (16) and (24)

forward in time along with the neural activation dynamics, Eq. (1). The

corresponding computational complexity is O(N2L). The second term

is calculated via Eqs. (34-35), and involves two steps: a) kernel propa-

gation, Eq. (34), which requires nmltiplication of two matrices B l and

B (t-l)! at each time step; hence, its computational complexity scales as

N3L; b) solution of the linear algebraic system (35) with computational

complexity of O(_¥2). Thus, the overall computational complexity of

this approach is O(N3L). Notice, however, that here the storage needed

is minimal and equal to O(\'_).

An architecture for performing the foregoing process is illustrated

in the block diagram of Figure 2. Each block in Figure 2 may be thought

of as a separate dedicated processor, although the entire process is im-

plementable with a single processor using the program of Appendix A.

Referring to Figure 2, the first step is to set the source term to the partial

derivative of the error functional F with respect to the neuron output

state vector and to set the adjoint function at the beginning of the learn-

ing period to zero (block 200). Then, the adjoint system of equations

19

(Equation 16) is integrated forward in time (block 205) to produce the

first of two components of the indirect effect of the sensitivity gradient of

equation (9) (block 210 of Figure 2) and the adjoint function evaluated

at the end of the learning period (block 215). The next process includes

blocks 220 through 265 of Figure 2 and corresponds to an integration of

the anxiliary adjoint system of equations (Equation 26) forward in time

and is performed contemporaneously with the integration step of block

205. In block 220, the integration of the auxiliary ASE's over the learn-

ing period is divided into L time steps and the time step index I is set

to zero (block 225). At each time step, the propagation kernel B is com-

puted (block 230) and the time step index is incremented (block 235).

The kernels are propagated at each time step by multiplying the current

kernel by the product of the kernels of all previous time steps at block

240 and nmltiplied by the derivative of the source term with respect to

neuron pm'ameters (block 245) and the result is summed over all time

steps (block 250). The result of block 240 corresponding to the final time

step is taken in blo& 250 for use in solving the system of Equation (35).

This solution is indicated in Figure 2 as a multiplication (block 260) of

the inverse of the propagation kernel of block 255 by the adjoint function

at the end of the learning period (of block 215). However, it is under-

stood that well-known iterative methods may be employed in solving

the system of Equation 35 rather than inversing the propagation kernel.

Finally, the results of blocks 250 and 260 are multiplied together (block

265) to produce the remaining component of the indirect effect of the

sensitivity gradient of Equation (19). This remaining component (i.e.,

the product of block 265) is added at block 270 to the first component

of the indirect effect (from block 210), the resulting sum is nmltiplied by

the learning rate (block 275) and subtracted from the current parameter

vector (block 2S0) to produce an updated parameter vector (block 285).

Then, the time t is reset and the learning time r is incremented (block

290) and the entire process repeated.

As a final remark, we wish to consider a further approximation,

based upon the requirement of small At. The matrices B l, Eq. (33),

become then diagonally dominant, and B t! can be approximated at each

2O

time step l by

B"= I + At (36)
I

This implies that the computational complexity of the proposed method

could be further reduced to O(N-'L) for certain class of trajectories.

At this stage such an approximation is merely an idea which has to be

sustained via simulations.

5. NUMERICAL SIMULATIONS

The new learning paradigm, presented in the preceding section, has

been applied to the problem of learning two trajectories: a circle and

a figure eight. Results referring to these problems can be found in the

literature (Pearlmutter 1989), and they offer sufficient complexity for

illustrating the computational efficiency of our proposed formalism.

The network that was trained to produce these trajectories involved

6 ful]y connected neurons, with 11o input, 4 hidden and 2 output units.

An additional "bias" neuron was also included. In our simulations, the

dynamical systems were integrated using a first order finite difference

approximation. The sigmoidal nonlinearity was modeled by a hyperbolic

tangent. Throughout, the decay constants t,:,,, the neural gains %, and A

were set to one. Furthermore,/3 was selected to be 7/9. For the learning

dynamics, Ar was set to 6.3 and q to 0.015873. The two output units

were required to oscillate according to

as(t) = Asinwt (36a)

aG(t) = Acos_t

for the circular trajectory, and, according to

a a(t) = .4 sin _'t (37a)

ao(t) = A sin 2wt (37b)

for the figure eight trajectory. Furthermore, we took A = 0.5 aaad w = 1.

Initial conditions were defined at to = 0. Plotting a5 versus a6 produces

the "desired" trajectory. Since the period of the above oscillations is

21

27r, t/ = 27r time units are needed to cover one cycle. We selected

At = 0.1, to cover one cycle in apwoximately 63 time steps.

5.1 Circular Trajectory

In order to determine the capability and effectiveness of the algo-

rithm, three cases were examined. As initial conditions, the values of un

were assumed to be uniform random numbers between -0.01 and 0.01 for

the simulation studies referred in the sequel as "Case - 1" and "Case -

2". For Case - 3, we set u. equal to zero, except uG which was set to 0.5.

The synaptic interconnections were initialized to uniform random values

between -0.1 and +0.1 for all three experiments.

CASE - 1.

The training was performed over tf = 6.5 time units(i.e., 65 time

intervals). A nmximum nmnber of 500 iterations was allowed. The re-

sults shown in Fig. 3 were obtained by starting the network with the

same initial conditions, u,_(O), as used for training, the learned values of

the synaptic interconnections, T,_,,, and with no teacher forcing (A = 0).

As we can see, it takes about 2 cycles until the network reaches a consis-

tent trajectory. Despite the fact that the system's output was plotted for

more than 15 cycles, only the first 2 cycles can be distinguished. Figure

6 demonstrates that most of the learning occured during the first 300

iterations.

CASE- 2.

Here, we decided to increase the length of the trajectory gradually.

A maxinmm number of S00 learning iterations was now allowed. The

length of the training trajectory was 65 time intervals for the first 100

iterations, and increased ever), 100 iterations by 10 time intervals. There-

fore, it was expected that the error functional would increase whenever

the length of the trajectory was increased. This was indeed observed, as

may be seen from the learning graph, shown in Fig. 6. The output of

the trained network is illustrated in Fig. 4. Here again, from 15 recall

cycles, only the first two (needed to reach the steady orbit) are distin-

guishable and the rest overlap. Training using greater trajectory lengths

22

yielded a recall circle much closer to the desired one than in the previous

case. From Fig. 6, one can see that the last 500 iterations did not en-

hance dramatically the performance of the network. Thus, for practical

purposes, one may stop the training after the first 300 iterations.

CASE - 3.

The selection of appropriate initial conditions for u,_ plays an im-

portant role in the effectiveness of the learning. Here, all initial values of

u,, were selected to be exactly zero except the last unit, where u6 = 0.5

was chosen. This correspond to an initial point on the circle. The length

of the trajectory was increased successiveb; as in the previous case. In

spite of the fact that we allowed the system to perform up to 800 itera-

tions, the learning was essentially completed in about 200 iterations, as

shown in Fig. 6. The results of the network's recall are presented in Fig.

5, which shows an excellent match.

5.2 Figure Eight Trajectory

For this problem, the synaptic interconnections were initialized to

uniform random values between -1 and +1. As initial conditions, the

values of u,, were assumed to be mfiform random numbers between -0.01

and 0.01. The following three situations were examined.

CASE- ._.

The training was performed over tf = 6.5 time units(i.e., 65 time

intervals). A maximum number of 1000 iterations was allowed. The re-

sults shown in Fig. 7 were obtained by starting the network with the

same initial conditions, u,(0), as used for training, the learned values of

the synaptic interconnections, T,,,,,. and with no teacher forcing (A = 0).

As we can see, it takes about 3 cycles until the network reaches a con-

sistent trajectory. Despite the fact that the system's output was plotted

for more than 15 cycles, only the first 3 cycles can be distinguished.

CASE - 5.

Here, we again decided to increase the length of the trajectory grad-

ually. A maximum number of 1000 iterations was now allowed. The

23

length of the training trajectory was 65 time intervals for the first 100

iterations, and was increased every 100 iterations by 5 time intervals.

Therefore, it was again expected that the objective functional would in-

crease whenever the length of the trajectory was increased. This was

indeed observed, as may be seen fl'om the learning graph, shown in Fig.

10. The output of the trained network is illustrated in Fig. 8. Here

again, from 15 recall cycles, only the first three (needed to reach the

steady orbit) are distinguishable, and the rest overlap. As a direct result

of training using greater trajectory lengths, orbits much closer to the

desired one than in the previous case were obtained.

CASE - 6.

The learning in this case was performed under conditions similar to

CASE - 5, but with the distinction that A was modulated according to

Eq. (12). The results of the network's recall are presented in Fig. 9, and

demonstrate a dramatic improvement with respect to the previous two

cases.

It is important to keep in mind the following observations with re-

gard to the simulation results:

1) For the circular trajectory, X was kept constant throughout the

simulations and not modulated according to Eq. (12). As we can see

from Fig. 6, in cases 1 and 2, the error flmctional was not reduced to

zero. Hence, a discrepancy in the flmctional form of the neural activation

dynamics used during the learning and recall stages occurred. This was

a probable cause for the poor pm'formance of the network. In case 3,

however, the error functional was reduced to zero. Therefore, the teacher

forcing effect vanished by the end of the learning.

2) For the figure eight trajectory, the differences between cases 5 and

6 lies in the modulation of _, (i.e., the amplitude of the teacher forcing).

Even though in both cases the error functional was reduced to a negli-

gible level, the effect of the teacher forcing in case 5 was not completely

eliminated over the entire length of the trajectory. This points toward

the fact that modulation of A not only reduces the number of iterations

but also provides higher quMity results.

24

While the invention has been described detail by specific reference

to preferred embodiments, it is understood that variations and modifi-

cations thereof may be made without departing from the true spirit and

scope of the invention.

25

NEURAL NETWORK TRAINING BY INTEGRATION

OF ADJOINT SYSTEMS OF EQUATIONS FORWARD IN TIME
ABSTRACT OF THE INVENTION

A method and apparatus for supeI'_l..ed neural learning of time de-

pendent, trajectories exploits the concepts of adjoint operators to enable

computation of the gradient of an objective functional with respect to

the various parameters of the network architecture in a highly efficient

manner. Specifically, it combines the advantage of dramatic reductions

in computational complexity inherent in adjoint methods with the abil-

ity to solve two adjoint sytems of equations together forward in time.

Not only is a large amount, of COmlmtation and storage saved, but the

handling of real-time applications becomes also possible. The invention

has been applied it to two examples of representative complexity which

have recently been analyzed in the open literature and demonstrated

that a circular trajectory can be learned in approximately 200 iterations

compared to the 12000 reported in the literature. A figure eight trajec-

tory was achieved in under 500 iterations compared to 20000 previously

required. The trajectories computed using our new method are much

closer to the target trajectories than was reported in previous studies.

N,_SAC_s_No.NpO__/_S_/_'Z'<_

n,,,

o

JE

_i I 'ŗ-- .I
-r •

C/)

°_ •

., ".

N_.SA Case No. NPCJ_'_ :p_-_//'< _

=-JSETg*: O_/O_, V(t:o) :o
I

205

INTEGRATE ADJOINT SYSTEM OF EQUATIONS

FORWARD IN TIME

tf _-210
STORE f (_) _ S,/_d_

t_) 2i0

I DIVIDE to---_tf INTO I. STEPS J

STORE

215

MULTIPLY BY /_]--_ SUBTRACT

.q

)
- I%r (tf)

FROM _/_ (7)]_- 280

T---T+Ar FL-290 _ 285

', qv, _'.

0.6 0.6

0.0 0.0

I

0.0 0.6

-0.6 -0.6

-0.6 -0.6

I

0.0 0.6

FIG. 3 FIG. 4

0.6 34 [

I CASE 1I_, -- CASE 2

°-°l
-0.61 i 0 i "",j --/ t

-0.6 0.0 0.6 0

FIG. 5

200 400 600 800

LEARNING ITERATIONS

FIG. 6

f
#

f

.f

0.6 ' 0.6

0.0

I

0.0 0.6

0.0

-0.6 I

-0.6 0.0 0.6

FIG. 7 FIG. 8

0.6

0.0

I
0.0

FIG. 9

5 1
._ _ CASE 1¢
II --- CASE 2

_, __1 CASE

I_

0 i

0 200 400 600 800 1000

LEARNING ITERATIONS

FIG. 10

