1992

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER
THE UNIVERSITY OF ALABAMA

NATURE OF FLUID FLOWS IN DIFFERENTIALLY HEATED CYLINDRICAL CONTAINER FILLED WITH A STRATIFIED SOLUTION

Prepared By: Jai-Ching Wang, Ph.D.
Academic Rank: Associate Professor
Institution and Department: Alabama A&M University Department of Physics

NASA/MSFC
Lab: Space Science Laboratory
Division: Microgravity Science & Application Division/ES 71
Branch: Electronic & Photonic Materials Branch/ES 75

MSFC Colleague(s): Sandor L. Lehoczky, Ph.D.
Frank Szofran, Ph.D.
Semiconductor crystals such as $\text{Hg}_{1-x}\text{Cd}_x\text{Te}$ grown by unidirectional solidification Bridgmann method have shown compositional segregations in both the axial and radial directions (Lehoczyk et al. 1980, 1981, 1983). Due to the wide separation between the liquidus and the solidus of its pseudobinary phase diagram (Lehoczyk and Szofran 1981), there is a diffusion layer of higher HgTe content built up in the melt near the melt-solid interface which gives a solute concentration gradient in the axial direction. Because of the higher thermal conductivity in the melt than that in the crystal there is a thermal leakage through the fused silica crucible wall near the melt-solid interface. This gives a thermal gradient in the radial direction. Hart (1971), Thorpe, Hutt and Soulsby (1969) have shown that under such condition a fluid will become convectively unstable as a result of different diffusivities of temperature and solute. It is quite important to understand the effects of this thermosolute convection on the compositional segregation in the unidirectionally solidified crystals. To reach this goal, we start with a simplified problem. We study the nature of fluid flows of a stratified solution in a cylindrical container with a radial temperature gradient. The cylindrical container wall is considered to be maintained at a higher temperature than that at the center of the solution and the solution in the lower gravitational direction has higher solute concentration which decrease linearly to a lower concentration and then remain constant to the top of the solution (see Fig. 1). The sample solution is taken to be salt water with its properties listed in table 1.

Table 1. Material Properties for 3.5% salt water

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass diffusivity for salt water</td>
<td>$\alpha_C = 1.3 \times 10^{-9} \text{ m}^2/\text{s}$</td>
</tr>
<tr>
<td>Thermal diffusivity</td>
<td>$\alpha_T = 1.5 \times 10^{-7} \text{ m}^2/\text{s}$</td>
</tr>
<tr>
<td>Density of salt water</td>
<td>$\rho = 920 \text{ Kg/m}^3$</td>
</tr>
<tr>
<td>Viscosity of salt water</td>
<td>$\mu = 7.6 \times 10^{-4} \text{ Kg/m-s}$</td>
</tr>
<tr>
<td>Kinematic viscosity</td>
<td>$\nu = 8.26 \times 10^{-7} \text{ m}^2/\text{s}$</td>
</tr>
<tr>
<td>Prandtl number</td>
<td>$Pr = \nu \alpha_T = 5.65$</td>
</tr>
<tr>
<td>Schmidt number</td>
<td>$Sc = \nu \alpha_C = 635.4$</td>
</tr>
<tr>
<td>Volume expansion coefficient (thermal)</td>
<td>$\beta_T = 2.75 \times 10^{-4}$</td>
</tr>
<tr>
<td>Diameter of the cylinder</td>
<td>$R = 0.005 \text{ m}$</td>
</tr>
<tr>
<td>Grashof number for temperature</td>
<td>$Gr_T = 22.23 \times 10^2$</td>
</tr>
</tbody>
</table>

Under the Boussinesq approximation, the vector form of the governing equations for incompressible fluid flow of the system are:

Momentum Conservation

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} = - \frac{1}{\rho} \nabla p + g(\beta_T(T-T_0)) + \beta_C(C-C_0) \hat{z} + \nu \nabla^2 \vec{u} \quad [1]$$

Continuity Equation

$$\nabla \cdot \vec{u} = 0 \quad [2]$$

Energy Conservation

$$\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T = \alpha_T \nabla^2 T \quad [3]$$
Solute Conservation

\[
\frac{\partial C}{\partial t} + \vec{u} \cdot \nabla C = \alpha_C \nabla^2 C \tag{4}
\]

Where \vec{u} is fluid flow velocity, T and C are the temperature and the solute concentration of the fluid, respectively, and α_T and α_C are the diffusivity for temperature and solute, respectively.

For axial symmetric boundary conditions, the governing equations in cylindrical coordinates are:

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + \omega \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \nu \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} \right) \tag{5}
\]

\[
\frac{\partial \omega}{\partial t} + u \frac{\partial \omega}{\partial r} + \omega \frac{\partial \omega}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \left(\frac{\partial^2 \omega}{\partial r^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{\partial^2 \omega}{\partial z^2} \right)
+ g \left(\beta_T (T - T_0) + \beta_C (C - C_0) \right) \tag{6}
\]

\[
\frac{u}{r} + \frac{\partial u}{\partial r} + \frac{\partial \omega}{\partial z} = 0 \tag{7}
\]

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial r} + \omega \frac{\partial T}{\partial z} = \alpha_T \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} \right) \tag{8}
\]

\[
\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial r} + \omega \frac{\partial C}{\partial z} = \alpha_C \left(\frac{\partial^2 C}{\partial r^2} + \frac{1}{r} \frac{\partial C}{\partial r} + \frac{\partial^2 C}{\partial z^2} \right) \tag{9}
\]

The equations can be nondimensionalized by setting the temperature and solute concentration as

\[
T = T_0 + \Delta TT^* \quad \text{and} \quad C = C_0 + \Delta CC^*, \quad \text{and}
\]

scaling the variables by a factor F; i.e. $V = F \, V^*$. Scaling length by R, velocity by $\sqrt{g \beta_T \Delta T}$, time by $R/\sqrt{g \beta_T \Delta T}$, pressure by $\rho g \beta_T \Delta T R$, temperature by ΔT and solute by ΔC. After the scaling and dropping all the *, the dimensionless equations become:

\[
Gr_T^{1/2} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + \omega \frac{\partial u}{\partial z} \right) = -\frac{\partial p}{\partial r} + \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} \right) \tag{10}
\]

\[
Gr_T^{1/2} \left(\frac{\partial \omega}{\partial t} + u \frac{\partial \omega}{\partial r} + \omega \frac{\partial \omega}{\partial z} \right) = -\frac{\partial p}{\partial z} + \left(\frac{\partial^2 \omega}{\partial r^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{\partial^2 \omega}{\partial z^2} \right) + Gr_T^{1/2} \left(T + (Gr_C/Gr_T) C \right) \tag{11}
\]
\[
\begin{align*}
\text{PrGrT}^{1/2} & \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial r} + \omega \frac{\partial T}{\partial z} \right) = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2}, \quad \text{and} \\
\text{ScGrT}^{1/2} & \left(\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial r} + \omega \frac{\partial C}{\partial z} \right) = \frac{\partial^2 C}{\partial r^2} + \frac{1}{r} \frac{\partial C}{\partial r} + \frac{\partial^2 C}{\partial z^2}.
\end{align*}
\]

Where the thermal and solutal Grashof numbers respectively, \(\text{Gr}_T, \text{Gr}_C \) are defined by:

\[
\text{Gr}_T = \frac{g\beta_T \Delta T R^3}{\nu^2} \quad \text{and} \quad \text{Gr}_C = \frac{g\beta_C \Delta C R^3}{\nu^2}.
\]

The Prandtl number, \(\text{Pr} \), and Schmidt number, \(\text{Sc} \), are defined by:

\[
\text{Sc} = \frac{\nu}{\alpha_c} \quad \text{and} \quad \text{Pr} = \frac{\nu}{\alpha_T}.
\]

These governing equations show that the flow characteristic are determined uniquely by \(\text{Gr}_T, \text{Gr}_C, \text{Pr} \) and \(\text{Sc} \). These equations have been solved by the FIDAP program developed by Fluid Dynamics International, Inc. Preliminary results reveal that any convection influences the solute field much more than it does the temperature field. Since the Prandtl and Schmidt numbers are properties of the particular fluid, the variations with \(\text{Gr}_T \) and \(\text{Gr}_C \) were primarily studied. Figure 1 through 4 depict the computational domain and some of the results obtained.

Fig. 1. Problem set up

Fig. 2. Concentration and temperature fields for \(\text{Gr}_T = 0.04 \) and \(\text{Gr}_C/\text{Gr}_T = 1.0 \)
ACKNOWLEDGMENT

I would like to express my sincere appreciation to the NASA/ASEE Summer Faculty Fellowship Program Administrators Drs. Michael Freeman and Frank Six for providing me the opportunity to participate in this program. The seminars and the Education Retreat are very helpful. Special thanks go to my NASA counterparts Drs. Sandor L. Lehoczky and Frank Szofran for their suggestions and guidance. I would also like to extend my sincere appreciation to Dale Warring for providing me technical consultations on the use of the FIDAP program and Dr. Ching-Hua Su for his valuable discussions. The hospitality and friendships of all the members in the Electronic & Photonic Materials Branch has made this summer very enjoyable for me.

REFERENCES

LV-4