
NASA-TM-IOSI23

i(NASA-TM-!O8123) WORKING NOTES

FROM THE 1992 AAAI WORKSHOP ON

AUTOMATING SOFTWARE DESIGN. THEME:

DOMAIN SPECIFIC SOFTWARE DESIGN

(NASA) 161 p

G3/61

Working Notes from the 1992 AAAI Workshop on

Automating Software Design

Theme: Domain Specific Software Design

July 12-16, 1992

San Jose Convention Center

San Jose, CA

RICHARD M. KE_ER (EDITOR)

STERLING SOFTWARE

ARTIFICIAL INTELLIGENCE R,ESEARCH BRANCH

MS 269-2

NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94035-1000

N93-17499

--THRU--

N93-17528

Unclas

0136874

s

=

=

=

_:____- _-flJ/_A Ames Research Center

.................... Artificia_ !_!ntelligence Research Branch -

....... Technical_ Report F1A-92-18

=

...... July, 1992 =

i

_ TZ-'-_-- ±

-I

_L

. I
T

Workshop Notes
AAAI-92 Workshopon Automating SoftwareDesign

Theme: Domain-SpecificSoftwareDesign

July 12-16,1992
SanJoseConventionCenter

SanJose,CA

Workshop Committee

RichardM. Keller
Sterling Software
NASA Ames Research Center

David Barstow

Schlumberger Laboratory For

Computer Science

Michael R. Lowry

RECOM Technologies

NASA Ames Research Center

Christopher H. Tong

Rutgers University

L

Contents

-?

Preface .. iii

Schedule .. iv

Workshop Participants ... v

Papers

Developing Satellite Ground Control Software through Graphical Models 1 _-/

Sidney Bailin, Scott Henderson, Frank Paterra, and Walt Truszkowski

Formalization and Visualization of Domain-Specific Software Architectures 6 2.--

Paul D. Ballot, David R. Luginbuhl, and John S. Robinson

The KASE Approach to Domain-Specific Software Systems 11-3

Sanjay Bhansali and H. Penny 2Vii

Domain Specific Software Architectures- Command and Control 16 _/

Christine Braun, William Hatch, Theodore Ruegsegger, Bob Balzer, Martin Feather,
Nell Goldman, Dave Wile

Issues in Knowledge Representation to Support Maintainability: A Case Study
in Scientific Data Preparation ... 23-_-

Steve Chien, R. Kirk Kandt, Joseph Roden, Scott Burleigh, Todd King, and Steve Joy

GATOR: Requirements Capturing of Telephony Features 29 -(_

Douglas D. DankeU II, Wayne Walker, and Mark Schmalz

Modeling Software Systems by Domains ... 35 "7
Richard D'Ippolito and Kenneth Lee

Approximation, Abstraction and Decomposition in Search and Optimization 41 -
Thomas EUman

Meta-Tools for Software Development and Knowledge Acquisition 43-
Henrik Eriksson and Mark A. Musen

Software Design as a Problem in Learning Theory 48-/_
Leona F. Fass

Towards Automation of User Interface Design .. 50 -//

Rainer Gastner, Gerhard K. Kraetzschmar, and Ernst Lutz

Towards Domain-Specific Design Environments 56-/-2._
Sol Greenspan and Mark Feblowitz

Interactive Specification Acquisition via Scenarios: A Proposal 60 -/3
Robert Hall

Distributed Intelligent Control and Management (DICAM) Applications and
Support for Semi-Automated Development .. 66 -/

Fredrick Hayes-Roth, Lee D. Erman, Allan Terry, and Barbara Hayes-Roth

Model-Based Software Design ... 72 _/.5_

Nell Iseoe, Zheng-]rang Liu, Guohui Feng, Britt Yenne, Larry Van Sickle, and Michael BaUantyne

i

Description of Research Interests and Current Work Related to Automating

Software Design .. 78 _!_

Herraann Kaindl
Automating the Design of Scientific Computing Software 8014

Elaine Kant

Domain Specific Software Design for Decision Aiding 86-! _

Kirby Keller and Kevin Stanley

Knowledge-Intensive Software Design Systems: Can too much knowledge be a
burden? ... 9_

Richard Keller

Automating Software Design System DESTA ... 99 "_0

Vladimir A. Lovitsky and Patricia D. Pearce
t't]

Generic Domain Models in Software Engineering 105"_ z

Nell Maiden

Domain-Specific Functional Software Testing: A Progress Report 111"._ %

Uwe Nonnenmann

A Domain-Specific Design Architecture for Composite Material Design and Aircraft 0_
part Redesign .. 115 ":_v

W. F. Punch III, K.J. Keller, W. Bond, and J. Sticklen gL_

RT-Syn: A Real-Time Software System Generator121<-El

Dorothy SetIiff {

Automating FEA Programming ... 127-_ _9

Naveen Sharma

Knowledge Modeling for Software Design .. 134 _j_O

Mildred Shaw and Brian Gaines

The Use of Typed Lambda Calculus for Comprehension and Construction of _

Simulation Models in the Domain of Ecology .. 139_ l

Michael Uschold

Knowledge-Based Design of Generate-and-Patch Problem Solvers that Solve
Global Resource Assignment Problems ... 141F)- _

Kerstin Voigt

CARDS: A Blueprint and Environment for Domain-Specific Software Reuse 148

Kurt C. WaIlnau, Anne Costa Solderitsch, and Catherine Smotherman

ii

/2/Q/_ _/'Irz/h"

T
w

PREFACE

In recent years, there has been an increase in research and development effort aimed at the

production of domain-specific software design systems - knowledge-intensive systems that aid in

the design of software for specific classes of problems in science, engineering, telecommunications,

manufacturing, business, education, and other areas. Despite substantive progress in developing

general-purpose software design techniques, the application of these techniques to large, real-world

software design tasks has proven di_cult. As a result, there is a growing realization that special-

purpose, domain-specific techniques will play a critical role in moving research into practice. When

restricted to a specific domain, software design systems can avail themselves of additional sources

of knowledge and constraints that simplify the overall design process.

The goal of this workshop is to identify different architectural approaches to building domain-

specific software ge%ign systems and to explore issues unique to domain-speclfic (vs. general-

purpose) software design. Some general issues that cut across the particular software design domain

include:

Knowledge representation, acquisition, and maintenance: In building a domain-specific

software design system, decisions must-be made about what domain knowledge isnecessary

to support the design task and what formalism to use for the representation. In addition,

knowledge-intensive design systems cannot be deployed without seriously addressing the extra

burden that comes along with acquiring an-cT_ta_u_nga significant body of domain knowl-

edge.

Specialized software design techniques¢_ By restricting both the domain and the class of

software design tasks to be addressed by a sTstem, it becomes poss_le to utilize specialized

design techniques that may simplify and.speed up the overall design process.

_ _' _ User interaction J_ user interface{The typical end-user of a domain-specific software design

system is an application specialist, not a progr_er with special analytic skills. As a result,

domain-specific systems need to pay Special attention to the interaction b_een the user and

the system.

C.)

We hope that you find the workshop and the papers in this collection both stimulating and
informative.

Richard Keller

Workshop Chair

ill

SCHEDULE

AAI Workshop on Automating Software Design
Theme: Domain Specific Software Design (DSSD)

San Jose, CA Sunday, July 12, 1992

8:30 - 8:45 AM Workshop overview - Richard Keller
8:45 - 9:30 AM Historical perspective an djssues - Dave Barstow
9:30 -10:00 AM DARPA DSSA Program Overview - Erik Mettala

10:00-10:30 AM
10:30-12:15 PM

BREAK

Panel: Approaches to DSSD -- Exploring the
generally/power trade-off

Sanjay Bhansali: Generic architectures approach
Neil Goldman: Application generator approach
Neil Iscoe: Domain modeling approach

Discussants: Tong & Keller

12:15- 1:45 PM
1:45- 3:30 PM

LUNCH

Panel: Practical experience & issues relating to
building and fielding DSSD Systems

Elaine Kant: SINAPSE
Richard Keller: SIGMA

Uwe Nonnenmann: KITSS
Discussant: Barstow

3:30- 4:00 PM
4:00- 5:00 PM

BREAK

Individual DSSD System Presentations
Dorothy Setliff: RT-Syn
Naveen Sharma: PIER

Discussant: Lowry

5:00 PM Closing discussion & wrap-up

iv

Participants

Ashok Agrawala

University of Maryland

Department of Computer Science

College Park, MD 20742

sgrawMaOcs.umd .ed u

Guillermo Araago

Scklumberger Laborstory for Computer Science

8311 North FM 620

Austin, TX T8?20, USA

Sidney C. Bailin

CTA Incorporated

6116 Executive Boulevard Suite 800

Hockville, MD 20852

sbLilinO ct u.com

Prof. Paul D. Bailor

Air Force Inst. of Technology

AFIT/ENG

WPAFB, OH 45433-6583

p baiio rO gal&xy, aft t.af.m/]

David Bzrstow

Schlnmberger Laboratory for

Computer Science

50, Avenue Jean Jaures,

B.P. 620-05

92642 Monlronge Cedex

FRANCE

burst owOslcse.slb.com

S&njny Bhausnli

Knowledge Systems Laboratory

Dept. of CS

701 Welch Road, Bldg. C

Stanford University

Stunford, CA 04304

bhausaliOsumez- aim.8 t an ford.edu

Christine Brsun

GTE Federal Systems

15000 Conference Center Dr.

Chnntilly, VA 22021

Steve Chein

JPL M/S 625-3080

4800 Oak Grove Drive

Pasadena, CA 91109-8099

chienOai- cyclops.jpl.nnsa.gov

Douglus Duukel

E301 CSE, CIS

Uuiveristy of Florida

GainesvLlle, FL 32611

dddQciJ.nfl.edn

Premkumar Devaubu

2B417, AT&T Bell Labs

600 Mountain Ave.

_,furrty Hill, NJ 0?0?4

prem4mresearch,ut t .corn

Richard D'lppolito

Software Eng. Institute

Carnegie Mellon University

Pittsburg, PA 16213-3890

rsdOsei.cm u.edu

Thomas Ellman

Dept. of Computer Science

Hill Center for Mathematical Science

Ratters University

New Brunswick, NJ 08903

eilmanOcs.rutgers.edu

Heurik Erikssou

Section on Medical Informatics

Stanford University MC

Stnnford, CA 04306-84T0

eriksson Osumex-aim.st an ford.edu

Lee D. Ermau

Cimflex Teknowledge

1810 Embarcadero B.oad

P.O. Box 10119

PMo Alto, CA 94303

lermun 0 t eknowledge.com

Leona Fans

P.O. Box 2014

Carmel, CA 93921

_,Inrk Feblowitz

GTE Laboratories Incorporated

40 Sylvan Road

W_ltham, MA 02264

feblowitzOgte.com

Brian Gaines

The University of Calgary

Dept. of Computer Science

2500 University Drive, NW

Calgary, Alberta CANADA T2N IN4

gaiuesQcpsc.ucalgary.ca

R. Gastuer

Forwiss

Am Weichselgarten 7,

D-8520 Erlangen

West Germany

gut nero forwiss.uai-erlaugeu-de

Nell Goldmun University nf Southern CA

Information Sciences InJtilute

467g Admiralty Wuy

Marina del Rey, CA 90202-8905

goldmanOisi.edn

Cordell Green

]Kestrel Institute

5280 Hillview

Palo Alto, CA 04304

green O ke* t rel.ed a

v

Sol Greemspzn
GTE LuborLlories Incorpor,ted

40 Sylvan RoLd
WulthLm, MA 02254

greeuspan O ate.corn

Robert Hull
AT&T Bell Laborntories
600 Monntnin Aven, Rm 3D-458
P.O. Box 636
Murray Hill, NJ 07974-0636
hLllOLllegrL.ut t .corn

Frederick H,yes-Rotb
Cim fiex Teknowledge
1810 EmbLrcLdero Road

P.O. Box 10119

Pulo Also, CA 04303

rhnyes- r O tek nowledge.com

Neil Iscoe
EDS ReseLrch - Austin LLb.
1601 Rio Grnnde Sue. 500

Austin, TX 78701
iscoeOLuslin.eds.com

Herm&nn K&indl
Siemens AG Osterreich

Program & System Engineering
Gens,nguse 17
Vienna, Austria 1030, Europe
kLih @siegnd .siemens. co. Lt

ElLine Kant

Schlumberger Lab. for
Computer Sc/ence
P.O. Box 200016
Austin, TX 78720
kLn tOslcs.slb.com

Richard Keller
AI ReseLreh Brunch

M/S _60-2
NASA Ames ReseLrch Center

Moil'ell Field, CA 0403,5

keLlerO piolem y.arc,unsn.gov

Kirby Keller
McDonnell Aircraft Company
Dept. 313, MC I00-520_,
P,O. Box _10

St. Louis, MO 03106-0516
kellerOLicen t er.m dc_com

Kenneth Lee

Software Eufi. Institute

Carnegie Mellon University
Pittsburg, PA 15213-3890
klOsei.cmu.edu

Vladimir LovitJky
Software Engineering Dept.
Institute of Radioelectronics

Khnrkov, Ukruine

Mike Lowry
AI Research Brunch

NASA Ames Research Center

MIS 209-2
Mofrett Field, CA 94035-1000
LowryOptolem y.urc.n M L.KOV

Nell Mniden

Department of Business College
City T.Jstiversity
London ECIV OHB, UK
ec5690cit y_Lc.uk

David McAllesler

MIT Artificial Intelligence Laboratory
545 Technology Square
CLmbridge Mass. 02139

LTC Erik G. Mettulu, Ph.D
Deputy Director
Softwnre & Intelligent Systems
Technology Office
Defense advanced Research

Projects Agency
3701 N. Fnirfnx Drive

Arlington, Va 22203 1714
(703) g90-2210
met tLILQdurpa.mil

Penny Nil

Knowledge Systems Laboratory
Dept. of CS
701 Welch RoLd, Bldg. C
Stamford University
Stanford, CA 94304
niiQ su mex-aim.stLnford.ed n

Uwe r_onnenmLnn
AT&T Bell Labs

(tOO MonntLin Avenue
Murray Hill, NJ 07974
uaQreseLrch.utt.com

W. F. Pnnch
Michignn Susie University
Depart. of Computer Science
A-YI4 WeBs Hu It

East Lansing, MI 40824-1027
punch Ocps.msu.edu

John S. Robinson

Air Force Inst. of Technology
AFIT/ENG
WPAFB, OH 43433-5583

M. Scbmnls

Dept. ef Computer sad Info. Sci.
Univ. of FloridL
Guinesville, FL 32611
mszO m osquito.cis.ufl.ed n

vi

Dorothy Setli_

Electrical Engineering Dept.
University of Pittsburgh
Pittsburgh, PA 15201
dot tieGjogusr.ee.pit t .edu

Naveen Shtrma

ICM

Dept. ef MLth/CS
Kent State University

Kent, OH 44240
skarmaQmcs.heut.edu

Mildred Shaw
Tke University of Colgary
Dept. of Computer Science
2b00 University Drive, NW

Calgary, Alberto CANADA T2N 1N4
show Qcpsc.ucalgnry.flt

Nancy Solderitsch

Poramax Systems Corporation

Uuisys
T0 E. Swedesford Road

Paoli, PA 19301
nancy Q prc.u u/sys.com

Kevia Stonley
McDonnell Aircraft Compony
Dept. 313, MC I06-]_205
P,O, Box 516
St. Louis, MO 6316g-0816
st &nley Qaicem ter.mdc.com

Chris Tong
Dept. of Computer Science
Hill Center

Busch Campus
RuSsets Uoiver|it y
Hew Brunswick, NJ 08003
ctongOcs.rutgers,edo

Mike Uschold

AI Applicotions Inst.
University of Edinburgh
80 South Bridge
Edinburgh EHI IHN
m fu 0 aiai.edin bo rgh.ac.uk

Steve Vest ol

Honeywell
S&RC MN05-2100

3680 Technology Drive,
MN Sb418

vest olOsrc.bonDr.

Vladimir Lovitsky

c[o Pat Pearce
Department of Computing

Polytechnic South West
Drake Circus

Plymouth
Devon
PL4 8AA
United KiagdomcyweU.com

Kerltiu Volga
Computer Science Dept.
Ratters University
New Brunswick, NJ 08003

voigtOcs.rotgerJ,edu

Woyne Walker
E301 CSE, C1S
University of Florida
Gainesvillc, FL 32811

ww0Ocis.afl.edu

Kurt WoIinLu
PLTLmLX Systems Co,poratiou

UnSays
70 E. Swedesford Road

Paoli, PA 19301
walloouOCords.COM

Richard Wuters
Mitsabishi Electric Research Laboratories

201 Broadwoy

Cambridge MA 02139
dickQmerLcom

vii

%

Ballin

Developing Satellite Ground
Graphical Models

Sidney Bailin, Scott Henderson, and Frank Paterra

CTA Incorporated
Rockville, MD

Walt Truszkowski

N93"
Control Software through

17500

..)/- G /

/s yvf

NASA/Goddard Space Flight Center
Greenbelt, MD

1 Introduction

The old maxim goes, "A picture is worth a thousand
words"--ten thousand, if you believe Larkin and
Simon (1987). Most people, when faced with the
problem of understanding the behavior of a
complicated system, resort to the use of some picture
as an aid in thinking about the system. Barwise and
Etchmendy (1991)-make a strong case for the
effectiveness of diagrams, over and above other
representations, in certain problem solving situations.

[-'.-_ This paper discusses a program of investigation
_ into software development as graphical modeling.

The goal of this work is a more efficient development
and maintenance process for the ground-based software
that controls unmanned scientific satellites launched
by NASA. The main hypothesis of the program is
that modeling of the spacecraft and its subsystems,
and reasoning about such models, can--and should---
form the key activities of software development; and
that by using such models as inputs, the generation
of code to perform various functions (such as
simulation and diagnostics of spacecraft components)
can be automated. Moreover, we contend that
automation can provide significant support for
reasoning about the software system at the diagram
level. _ .

The outline of this paper is as follows. We
describe the application domain in the next section,
and the graphical modeling technique in Section 3.
Sections 4 and 5 de4cribe the approach to generating
diagnostic and simulator sof_tware from these models.
In Section 6 we describe the work we are doing in
automated reasoning about the diagrams. Finally, in
Section 7, we summarize what we think are the
prospects for this program, the key issues, and major
risks and unknowns.

2 The Domain: the Intelligent

Ground System

Simulation and diagnostics play a key role in a
satellite control center. They support the two
principal activities of the control centerm

commanding and monitoring the spacecraft.
Development of command loads prior to spacecraft
launch employs simulation to verify their proper
operation. Monitoring involves fault detection,
isolation, and recovery when telemetry values received
from the spacecraft fall outside of defined limits. In
our work implementing a testbed for an advanced
control center, which we call the Intelligent Ground
System (IGS), we found that simulation and
diagnosis activities tend to derive from the same set
of knowledge, namely models of the spacecraft
components. An integrated approach, in which
diagnosis and simulation are both driven by the same
run-time models, seems feasible to us; at this point,
however, we are aiming at a less ambitious goal,
which is the generation of distinct programs to
support the respective functions from the same
graphical model. We can view this as "design time
integration" rather than "run time integration."

The importance of such models is a result of an
object-oriented system architecture, which is one of
the defining characteristics of the IGS. The object-
oriented architecture describes the IGS as a model of
its environment. This environment consists
primarily of the spacecraft, its subsystems, and
payload, and the users of the IGS (the Flight
Operations Team, or FOT), who are divided into
several distinct roles within the control center. The
environment may also be viewed as including the
communications systems through which the IGS and
the satellite interact, and various other ground
systems to which a control center is typically
connected. Each of these environmental elements is
represented as a distinct object in the IGS. This
approach enables us to make the IGS "intelligent" by
making each such object a knowledge-based system in
its own right, with its own simulation capability,
diagnostic capability, etc.

There are various consequences of this architecture
for the operation of the IGS, including the need for a
cooperative framework, and for an intelligent user
interface. The object-oriented architecture defines the
IGS as a collection of interacting knowledge-based
systems. This interaction models the interaction

Ballin

found in the system's environment, but it must also
include means for cooperative problem solving
among the system's components. For example, the

successful diagnosis of telemetry anomalies may
require interaction between the diagnostics of several
subsystems. Thus, a key requirement of the IGS is a
set of problem-solving protocols through which
multiple knowledge-based systems, in conjunction
with the FOT, can converge towards a goal. A
framework for such cooperation is described by Bailin
et al (1989).

The need for an intelligent user interface follows
from the fact that he IGS does not operate
autonomouslymthe health and safety of the spacecraft
precludes such an approach. The FOT are active
players in the cooperative process just described.
Thus, the IGS must model the FOT roles in a way
that a) facilitates communication between the human

and the machine, and b) enables the system to
interpret human actions within the cooperative
protocols.

2.1 Implications for Software

Development

The IGS architecture makes everything a model. The
software models the states, behaviors, and interactions
of elements in its environment. Given this role for

the software, it seems appropriate to look for a
language in which such information can be made
explicit. Graphical modeling of objects, their
behaviors, and their interactions is an obvious choice

for such a language; there is nothing new in our
advocacy of diagrams to express such information.
Our contention, which may be more questionable, is
that the real complexity of the software lies in the
interactions expressed by the graphical models, not in
the implementation details of the eventual code.

We contend that the structure of the implemented
code, for at least certain functions of the IGSm
specifically, simulation and diagnosis is sufficiently
well understood to permit us to generate it
automatically, and therefore to allow us to redefine
the development process as one of developing and
reasoning about the graphical models. The following
sections describe the progress we have made to date in
demonstrating this idea. Similar ideas have been put
forward in a recent article by Harel (1992).

The more advanced IGS functions--the cooperative
framework and the intelligent user interface---go
beyond our current view of what can be automatically
generated from graphical models. The reason is
simple: we do not yet have an adequate understanding
of these functions. Our work on the IGS is

attempting to make inroads into these areas,
especially the cooperative framework, but this work
is still exploratory. We expect that with the
definition of cooperative protocols, code
implementing such protocols would be provided as

reusable library assets. It is conceivable, therefore,
that they could form a part of the automated
development framework towards which we are
working.

3 The Graphical Models

The diagrams consist of objects described by
behavioral annotations and connected to each other by
influence paths. Each object has a set of state
variables, some of which serve as input ports
(receiving influences), some of which serve as output
ports (creating influences), and some of which are
internal to the object. In translating such a diagram
into a simulator, the influence paths are implemented
as data flows. The influences paths may, however,

correspond to the transfer of physical attributes, e.g.,
heat transfer, in the modeled system itself. Thus, the
graphical representation is somewhat different from
the conventional notion of a dataflow diagram.

The object behaviors are described in terms of

states and transitions, but the representation is more
powerful than that of a finite state machine. Each
internal and output state variable has a finite number
of "transitions" associated with it, but each such
transition is a mathematically specified function.
Thus, the domain of each transition is a set of
possible initial state values; the resulting state, and
any corresponding outputs, are a function of the
initial state. This function may be defined in a
piecewise fashion: that is, the set of possible initial
states may be partitioned into a finite number of
subsets, and the transition may then be defined on
each subset by an appropriate expression. This seems
to be similar to the approach recently advocated by
Pamas (1990), in which tables are used to specify the
discontinuities often present in functions that

software is required to compute.
Components are stored in a library, so that they

may be reused in many applications. Components
are typed, and intuitively fall into a class hierarchy,
although the library system does not yet support
inheritance. Components may contain
subcomponents as well as the state variables
discussed above. In such cases, the interconnection of
the subeomponents via influences forms part of the
parent component description. There are no
"systems" per se in the library: everything is a
component. A system can be stored in the library as
a new component, in which case it is available for
use as a component in a still larger system in the
future.

4 Generating Diagnostic Rules: the

Knowledge from Pictures System

The Knowledge from Pictures (KFP) tool builds a
knowledge base to perform fault detection, isolation,
and recovery from a diagram of the monitored system.

Bailin

The generated knowledge base takes the the form of
facts and rules in the C Language Integrated

Production System (CLIPS), an expert system shell
developed by NASA/Johnson Space Center. The
diagram is also used as the basis for the user interface
of the diagnostic system.

Assertions derived from the behavioral descriptions

of the diagram's components are used to determine
when a component is in a state other than those in its
definition (for example, a temperature sensitive object

operating outside of its design temperature range).
When such a situation has been detected, a fault has
occurred. Alarms are defined as collections of

component states. In the generated knowledge base,
each alarm condition is represented by a CLIPS rule.

The rules generated by KFP use the influence paths
shown in the diagram to isolate failed components.
When an alarm is detected, a search begins for the

faulted object causing the alarm. The search is
performed by tracing back through the paths of
influence that are input to the alarming object. The
influence paths form a collection of chains of objects
that either directly or indirectly influence the

components contributing to the alarm. The tracing is
performed via a collection of rules that examine the
objects in each path. When these rules fire, they use
information about the known states of the object

being examined, and the states of the objects that
influence it, to determine whether the examined object
is behaving correctly. If the object being examined is
not in the correct state, then the fault has been
isolated. If it is in the correct state, the objects that
influence it are examined next.

After a fault has been detected and isolated, the

recovery phase begins. At present the recovery phase
is represented by a template for recovery rules---one
for each fault/object pair. The action part these rules
must be fdled in by the knowledge engineer.

In KFP, the diagram of the system being
monitored is also intended to serve as the basis for the

diagnostic system's user interface. The control center
operator should see a display of the system as a
graphical model, with the status of its components
expressed through color coding or similar
conventions. The current KFP tool does not do this,

but the concept has been demonstrated by another
prototype system, the Generic Spacecraft Analyst
Assistant (GenSAA). 1 Our plan is to integrate KFP
with the next version of GenSAA by the end of this

year.

1 The GenSAA project is directed by Peter Hughes of

NASA/Goddard's Automation Technology Section

(Code 522.3).

5 Generating Simulator Software: the

Multi-Aspect Simulation Tool

Our generic simulation architecture is based on the
connection manager approach described in the
Software Engineering Institute's (SEI)
recommendations for flight simulators (Lee, 1990).
In this approach, the influences between objects are
simulated as data flows, and the data flows are

implemented by connection managers--objects whose
specific role is to manage the connections between
application objects. The benefit of this approach is
that the application objects themselves remain
ignorant of the context in which they are used, and
thus can be reused in quite different contexts.

In the Multi-Aspect Simulation Tool (MAST) we
have extended SEI approach by independently
formalizing each aspect of a component's behavior,
by integrating work on discrete event simulation done
by Zeigler (1990), and by implementing the design
using the object-oriented techniques of multiple
inheritance and virtual base classes.

Simulations typically represent system behavior
along several dimensions. In MAST these
dimensions are rendered by the interactions of
independent aspect managers. Each manager is
concerned with different component attributes. A

gravitational manager, for example, is concerned with
a component's position and mass, but not with its
shape or color. All components subject to a manager
appear to that manager with the same form, regardless
of their actual structure. The manager can therefore
assess and manipulate the components in terms of
this standard form, oblivious to interactions occurring

within the component with other aspects of its
behavior. For example the gravitational manager
should be able to change a component's position
oblivious to the fact that the change also modified the

component's shape. This homomorphy is available
in C++ through multiple inheritance and virtual
methods.

MAST integrates both discrete event simulation
and continuous simulation techniques. For
continuous aspects of the simulation, the associated
aspect manager schedules re-evaluations at regular
intervals of simulated time. These intervals can be

decreased during the simulation to enhance the fidelity
of the behavior rendered for a particular passage, and
then lengthened to speed the simulation through a
passage where little is changing. For discrete aspects
of the simulation, the associated aspect manager
schedules re-evaluation at the time of the most
imminent event known. When that simulated time

is achieved, the aspect manager executes the
associated event, propagates its effects, and then
computes the next imminent event for scheduling. A
central simulation manager decides how to advance
the logical clock by perusing each manager's

3

Bailin

schedule. The clock is advanced to the most
imminent re-evaluation time, and the managers who
are scheduled for that time are executed.

Although not yet implemented, we view it as a
straightforward task to generate the connection
management code automatically from the graphical
models, and plan to do so in the near future.
Generating the specific algorithms of each aspect
manager, using the associated behavior specifications
from the graphical model, would be a far more
difficult task, which we do not plan to tackle in the
near future.

6 Reasoning about the Diagrams

We have been working for several years on an
automated reasoning system that takes diagrams as
input. The GROVER system attempts to interpret the
diagram as a high-level description of a proof plan,
and it attempts to carry out the plan using an
underlying "conventionaI" theorem prover (Barker-
Plummer and Bailin, 1992). Recendy we have begun
to apply these ideas to the problem of reasoning
about software. The graphical models that we
discussed in the previous sections are interpreted by
this (as yet unnamed) tool as plans for proving
assertions about the software design.

The particular type of assertions processed by this
tool grew out of an actual experience in debugging
part of the IGS testbed. In testing a particular
simulator program it was found that the behavior of
the system was not as expected, but no errors could
be found in any of the simulator components. The
problem turned out to be one of missing connections
between objects in the simulator. Since the
simulator architecture keeps each object
autonomous---completely ignorant of the objects to
which it is connected in a given applicationmthe
absence of these connections did not result in any
anomalous behavior on the part of any object, but the
system itself was not behaving as expected.

Thus we decided to apply the planning concept to
verifying statements of the form, "If event x occurs at
object A then event y will occur at object B." The
planner takes event y at B as a goal, and tries to
construct a plan that starts from event x at A as an
initial condition (typically, various other context
conditions are specified as well). A goal is reduced to
subgoals by traversing the connections specified in
the diagram: if a goal state in an object D follows,
according to D's behavior description and the
connections specified in the diagram, from a certain
state in object C, then this state in object C becomes
a subgoal of the goal state. A failed plan, when
presented to the developer, serves to identify missing
connections that may have been overlooked in
defining the system.

We have noticed a similarity in the logic of this
planner and that of the KFP tool, which similarly

traces back through the influence paths in the diagram
in generating fault isolation rules. We have not
studied this similarity in enough detail to decide
whether the two tools can make use of a single
"influence traverser" mechanism, but there seems to
be some promise of this.

7 Conclusions

We have made a start at what we hope will become an
integrated graphical modeling and development
system, in which software development becomes
synonymous with defining and reasoning about
graphical models. The prospects for such an
integrated environment are based on a few empirically
perceived similarities:

• Similarity between the information used
to simulate a system and that used to
diagnose faults

• Similarity between the logic used to
reason about system behavior during
development, and that used to diagnose
faults during operation (backward
chaining over influence paths)

• Similarity in the program structure of
specific simulators and specific
diagnostic systems, which has allowed
us to define generic architectures for
each of these applications

We noted in Section 2 that the full IGS concept
includes a lot more than a collection of simulation
and diagnostic programs. We are not yet in a
position to say whether these advanced capabilities
can be accommodated in our application development
framework. Even if they are not, however, the
current framework raises the level of abstraction at
which a significant amount of development for a
control center is performed.

Within the scope of the current framework, there
ate perhaps two major open issues: 1) the impact of
scale-up on the performance of the generated code, and
2) the feasibility of automated reasoning about
additional aspects of the models.

The efficiency of the generated fault detection,
isolation, and recovery rules for a large, complex
system is an open issue. The examples we have
worked with to date in KFP have been obtained from

actual systems (either existing or being developed),
but they are very small subsets of these systems.
There is a solid basis of real-time scheduling theory
(e.g., rate-monotonic scheduling) with which we can
address scale-up performance issues for the generated
simulator code, but we lack such a finn basis for a
rule-based diagnostic system. The solution to this
problem may be tO_evolve to a more thoroughly
model-based approach to diagnosis, in which there is
no production rule interpreter at all. This would, in

4

Bailin

addition, permit a greater degree of integration
between the diagnostic and the simulator code.

An open issue concerning reasoning about the
models is whether automation can support reasoning
about issues other than the pre-condition/post-
condition behaviors currently addressed. One major
area that we would like to investigate is support for
reducing the state space of a set of interacting
components. This problem arises in "reachability
analysis," in which one tries to prove (or at least to
convince oneself) that no unexpected states are
entered. In the area of communications protocols,
this has proven to be a difficult but necessary process
that can be supported by a variety of heuristic
techniques, some of which are automated (Holzman,
1992; Lin and Liu, 1992)

References

Bailin, S., Moore, J., I-lilberg, R., Murphy, E., and
Baher, S., 1989. A logical model of cooperating
rule-based systems. Telematics and lnformatics, Vol.
6 Nos. 3/4, pp. 331-349.

Barker-Plummer, D. and Bailin, S. Proofs and
pictures: proving the diamond lemma with the
G R O V E R theorem proving system. A AAI
Symposium on Reasoning with Diagrammatic
Representations, March 1992.

Barwise, J. and Etchmendy, J., 1991. Visual
information and valid reasoning. Preprint.

I-Iarel, D., 1992. Biting the silver bullet: Toward a
brighter future for system development. IEEE
Computer, January 1992.

Holzman, G., 1992. Protocol design: redefining the
state of the art. IEEE Software, January 1992.

I

Larkin, S and Simon, H., 1987. Why a diagram is
(sometimes) worth ten thousand words. Cognitive
Science, 11, pp 65-100.

Lee, K. et. al., 1990. An OOD paradigm for flight
simulators, 2nd edition. Technical Report of the
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh.

Lin, F. and Liu M., 1992. Protocol validation for
large-scale applications. IEEE Software, January
1992.

Parnas, D., Asmis, G., and Madey, J., 1990.
Assessment of safety-critical software. Technical
Report 90-295, ISSN 0836-0227.
Telecommunications Research Institute of Ontario.
Queens University, Kingston, Ontario.

Zeigler, B., 1990. Object-oriented simulation with
hierarchical, modular models. New York: Academic
Press.

5

Ballor

N98-1750l

Formalization and Visualization of Domain-Specific
Software Architectures

Paul D. Bailor, David R. Luginbuhl, and John S. Robinson

Department of Electrical and Computer Engineering

Air Force Institute of Technology

Wright-Patterson Air Force Base, Ohio 45433

pbailor@galaxy.afit.af.mil

(513) 255-3708

i]:INTRODUCTION

This paper describes a domain-specific software design

system based on the concepts of software architectures

engineering [Lee and others, 1991] and domain-specific
models and languages [Prieto-D{az and Arango, 1991].

In this system, software architectures are used as high
level abstractions to formulate a domain-specific soft-

ware design. The software architecture serves as a

framework for composing architectural fragments (e.g.,
domain objects, system components, and hardware

interfaces) that make up the knowledge (or model)
base for solving a problem in a particular applica-

tion area [Lee and others, 1991]. A corresponding soft-

ware design is generated by analyzing and describing

a system in the context of the software architecture

[Lee and others, 1991]. While the software architecture

serves as the framework for the design, this concept

is insufficient by itself for supplying the additional de-

tails required for a specific design. Additional domain

knowledge is still needed to instantiate components of

the architecture and develop optimized algorithms for

the problem domain. One possible way to obtain the

additional details is through the use of domain-specific

languages. Thus, the general concept of a software ar-

chitecture and the specific design details provided by

domain-specific languages are combined to create what
can be termed a domain-specific software architecture

(DSSA).

2 DESCRIPTION OF DOMAIN

SPECIFIC SOFTWARE DES-

IGN SYSTEM

The overall goal of our research is to prototype the

technology required to formally specify, design, and de-

velop an Ada application system using the DSSA ap-

proach described above. A key part of this effort is the

creation and use of formal, domain-specific languages

to generate software architectures whose architectural

fragments and associated composition rules are main-

tained in a formal knowledge base of objects. These

languages allow definition of the objects making up the

components of the DSSA in terms of the components'

structural and behavioral properties. Additionally, the

domain-specific languages are used to compose the de-

fined objects into a corresponding software design and

resulting Ada implementation. In fact, the production

rules of the grammar for the domain-specific language
can serve as the basis for system composition. This is

consistent with the approach suggested by Batory for

composing hierarchical software systems with reusable

components [Batory and O'Malley, 1992].

From a user interface perspective, software engi-

neers use the domain-specific languages to define object

classes and object composition rules to be placed into

the knowledge base of objects. Alternately, application

specialists (system end-users) use the languages to in-
troduce new object instances and to compose object

instances that currently exist in the knowledge base.

Within the knowledge base, the objects and composi-
tion rules are maintained as executable, formal specifi-

cations providing the software engineer and application

specialist with the ability to rapidly prototype and val-

idate desired system behaviors without having to build
Aria components first.

In addition to the domain-specific languages, some

type of object base language is required to formalize

the architecture and corresponding design representa-

tion. Such an object base language would also provide
the ability to analyze and manipulate the objects de-

fined and composed by the domain-specific language.

This object base definition and manipulation language

is used for the continued development of the domain-

specific design and corresponding Ada software compo-

nents. That is, the manipulation language is used to

formallymanipulatethearchitecturalobjectstoobtain
acorrespondingAdadesignrepresentationandAdaim-
plementationof that object.Also,theobjectbasema-
nipulationlanguageis thekeyto developinganapplica-
tionsystemthat iscomposedof existingandvalidated
Adasoftwarecomponents.

Thus,a formalframeworkfor definingsoftwarear-
chitecturesanddomainspecificlanguageswouldhave
to consistof the componentslistedbelow.Therela-
tionshipor generalconfigurationof the componentsis
shownin Figure1.

1. A formalizedobjec_ base that serves two functions:

(a) Formal specification of the concept of a soft-
ware architecture consisting of a set of general
abstractions associated with software archi-

tectures and a mathematical model of these

abstractions.

(b) Formal specifications of architectural frag-

ments and instances of these fragments devel-

oped through the use of domain-specific lan-

guages as well as the object base manipulation

language.

2. Formal specifications of domain-specific languages

for describing and manipulating objects in the
DSSA.

3. An Ada development capability that uses the for-

mal specification of the architectural components

to generate Ada components and allows for the
composition of existing and validated Ada compo-

nents into an application system.

4. A sophisticated user interface for both the appli-

cation specialist and the software engineer. Note
that visualization capabilities for both the domain-

specific language constructs and the object base are

highly desirable components of the user interface.

For this research effort, a prototype implementa-

tion of the technology will be done using the Software

Refinery TM Environment [Systems, 1990] that consists

of the following components.

1. The Refine wide-spectrum language.

2. The Refine formal object base that is analyzed and

manipulated via the Refine language.

3. The Dialect tool that allows for the definition of

formal languages whose syntactical structures are

directly mapped to objects in the object base. Note

that this mapping is done in such a way that an

abstract syntax tree relationship is maintained be-

tween the language components and corresponding

objects in the object base. This relationship pro-

vides a significant advantage for language transfor-

mation purposes.

7

Bailor

4. The Intervista tool that provides an X-windows

based capability for graphical interaction with the

object base.

Figure 2 graphically depicts the Refine framework. It

provides an ideal platform to prototype the proposed

DSSA technology. The Dialect and Intervista Tools are
used for the User Interface aspect as they provide the

means to define domain-specific languages, map domain

language structures to a formal object base, and visu-

alize both the domain language structures and the soft-

ware architecture. The Refine language provides the

means to manipulate objects in the object base for per-

forming operations such as transforming the formalized
objects into Ada components, analyzing the object's

behavior for validation/verification purposes, and com-

posing sets of objects into a higher level application
system. An important advantage of the Refine frame-

work is that it reduces tool development time to zero.

Thus, it allows the research to focus on the develop-

ment of the new technology immediately.

3 Research Issues

The domain-specific software design system described

above has several important research issues associated

with it that we are currently attempting to address.

.

2.

What are the abstractions associated with the con-

cept of a software architecture, and how can we

formally model these abstractions?

What is the feasibility of developing the required

domain-specific languages? There are a number of

relevant Air Force application domains that have

already been analyzed and at least partially struc-

tured using the concepts of a software architecture;

for example, the electronic combat domain of The

:Joint Modeling and Simulation System (J-MASS)

[ASD/RWWW, 1990, ASD/RWWW, 1991], the

C3I domain [Plinta and Lee, 1989], and the radar

tracking domain [:lensen and Ogata, 1991]. Addi-

tionally, the DARPA Domain-Specific Software Ar-

chitecture project is funding research in an attempt
to define software architectures in four application
areas. All of these could serve as candidates for de-

velopment of domain-specific languages; however,

we must first address three important sub-issues:

(a) How difficult is it in general to encode the

domain-specific knowledge required to com-
pose objects in the domain into the produc-

tion rules of a grammar? Alternatively, how

difficult is it to develop and formalize the

domain-specific knowledge required for this

and place it into a knowledge base of com-

position rules?

Baiior

f USER INTERFACE

I

visualization
of domain

language and
object base

I DOMAIN- 1,s c Hc

FORMALIZED
OBJECT BASE

FOR DSSA

[domain behavior]

SOFTWARE ENGINEER:

DEVELOP ARCHITECTURAL COMPONENTS

APPLICATION SPECIALIST:,

DEVELOP APPLICATION USING COMPONENTS

J f Ada DEVELOPMENT CAPABILITY

develop
Ada

components Ada

- component
library

component (
composition

rules

J

OBJECT BASE

MANIPULATION

LANGUAGE

APPLICATION

SYSTEM

Figure 1: General Configuration for Formalizing a DSSA

8

Bailor

GRAPHICAL
PRESENTATION

AND

INTERACTION

DOMAIN
SPECIFIC

LANGUAGE

INTERVISTA

DIALECT

REFINE

OBJECT

BASE

REFINE LANGUAGE
• TRANSFORM OBJECTS
• ANALYZE OBJECTS

DEVELOP ADA

COMPONENTS

DEVELOP APPL.

(COMPOSE
COMPONENTS)

Figure 2: Refine System Framework

(b) Can the same domain-specific language be
used by both the software engineer and the

application specialist?

(c) Is there a core of language constructs that are
common to all domain languages?

3. What is the feasibility of using a knowledge-based

transformation system to develop a highly visual

interface to the domain-specific software design

system that is useful to both the software engineer
and the application specialist?

We have focused our short-term research objectives

towards addressing the above issues first. Specifically,

the research objectives for the first two years of this
effort are to:

1. Define the abstractions associated with the concept

of software architectures and develop a mathemati-

cal model of these abstractions. The Refine system

will be used to prototype and analyze formal mod-
els of software architectures.

2. Analyze a part of the electronic combat domain

and develop the required formal domain lan-

guage(s).

3. Use the Software Refinery Environment to build

a working prototype of our DSSA system that in-

dudes the ability to build a formal object base of

architecture fragments and to apply composition

rules to the fragments to construct domain-specific

software designs in the form of a DSSA.

4. Develop visualizations of both the formal domain

language(s) and the object base.
9

In the following years, we expect the major concentra-

tion to be on using the formalized object base as a basis

for developing the corresponding Ada components and

as a basis for composing an application system within

a domain. Additionally, methods and tools for scaling

the technology up for large scale applications will be

investigated.

4 SUMMARY

We feel the proposed research can have a significant

impact on the methodologies for implementing the con-

cepts of software architectures and domain-specific soft-

ware design, especially in the areas of formalizing soft-

ware architectures and formalizing the application of

domain-specific languages to software specification and

design. Additionally, this research should provide much

insight into the process of object-oriented development
of validated and reusable Ada components that can be

quickly and validly composed into an application sys-

tem for a particular domain.

References

[ASD/RWWW, 1990] ASD/RWWW. Joint Modeling

and Simulation System (J-MASS): System Concept
Document. Technical report, CROSSBOW-S Archi-

tecture Technical Working Group, December 1990.

[ASD/RWWW, 1991] ASD/RWWW. Software Struc-

tural Model Design Methodology. Technical report,
Architecture Technical Working Group, June 1991.

[Batoryand O'Malley, 1992] Don Batory and Sean

O'Malley. The Design and Implementation of Hi-

erarchical Software Systems With Reusable Compo-
nents. Technical Report TR-91-22, Department of

Computer Sciences, University of Texas at Austin,

Austin, Texas, January 1992.

[Jensen and Ogata, 1991] Paul S. Jensen and Lori

Ogata. Final Report for Automatic Programming

Technologies for Avionics Software (APTAS). Tech-
nical Report LMSC-P000001, Lockheed Software

Technology Center, Palo Alto, California, July 1991.

[Lee and others, 1991] Kenneth J. Lee et al. Model-

Based Software Development (Draft). Special Report

CMU/SEI-92-SR-00, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, Pennsylva-

nia, December 30 1991.

[Plintaand Lee, 1989] Charles Plinta and Kenneth
Lee. A Model Solution for the C3I Domain. In

Tri-Ada Conference, pages 56-67. New York: ACM

Press, 1989.

[Prieto-D_az and Arango, 1991] Prieto-
Diaz and Arango. Domain Analysis and Software

Systems Modeling. IEEE Computer Society Press :
California, 1991.

[Systems, 1990] Reasoning Systems. Refine User's

Guide. Reasoning Systems, Inc., 1990.

Bailor

10

_' o

Bhansali

 93-1750 KJ

THE KASE APPROACH TO DOMAIN-SPECIFIC
SOFTWARE SYSTEMS

San jay Bhansali and H. Penny Nii

Knowledge Systems Laboratory
Stanford University

701 Welch Road, Bldg. C, Palo Alto, CA 94304
bhansali@ sume x-aim.sta n ford.edu

nii@sumex-aim.stan ford.edu

S 3 -6,/

/ 3

1. Introduction

Designing software systems, like all design activities, is a
knowledge-intensive task. Several studies, (e.g. [Adetson &
Soloway, 1985; Guindon, Krasner, & Curtis, 1987]) have
found that the predonfinant cause of failures anmng system
designers is lack of knowledge - knowledge about the
application domain, knowledge about design schemas,
knowledge about design processes. The goal of domain-
specific software design systems is to explicitly represent
knowledge relevant to a class of applications and use it to
partially or completely automate various aspects of the
design activity for designing systems within that domain.
The hope is that this would reduce the intellectual burden on
the human designers and lead to more efficient software

development.
In this paper, we present a don_ain-specific system built

on top of KASE, a -lmowledge-assisted software engineering
environment being developed at the Stanford Knowledge
Systents Laboratory. We introduce the main ideas underlying
the construction of domain specific systems within KASE,

illustrate the application of the idea in the synthesis of a
system for tracking aircrafts from radar signals, and discuss
some of the issues in constructing domain-specific systems. : _

2

2. Domain Specific Software Systems

using KASE

KASE is a knowledge-based sol'tware development
environment that is designed to provide active assistance in
the design of software systems. Some of the basic
characteristics of the KASE environment are: a domain-

independent representation mechanism for software
architectures, a graphical interface that perrnits smooth

navigation between different views of a software system
[Guindon, 1992], an integrated editor that permits
modifications to the architecture from any view, and a

constraint checker that can help a user maintain various

syntactic and stylistic constraints betweendifferent
components of the architecture[Nii, Aiello, Bhansali,
Guindon, & Peyton, 1991].

The construction of domain specific software systems in
KASE involves the identification of a generic problem or

task, a generic architecture suitable for the task, a model of
tile application domain in temls of primitive entities (e.g.

object, relations, events), and a set of customization tools
that can be used to construct a specific system for a

particular problem.

.,/

Generic problem [

I Editing commands

I Pr°ble m specX_ificati°n _ ,,,._

I Generic architecture __'__1

,/ --g--

Problem-specific Iarchitecture

Fig. 1 Customizing an architecture

11

, Bhansali

As shown in figure 1, the soft_vare design activity consists
of instantiating the generic architecture with respect to a
given problem statement and the domain model using the
customization tools and results in the creation of a problem-
specific architecture. We call this process customization -
cnstomize a generic architectttre to fit an application.

A generic problem represents a class of problems. By
identifying problem classes, one can design knowledge
representation schemes, architectures, and reasoning
processes which are appropriate for the general problem, and
reuse them for several different problem instances. The
specification of a generic problem results in the creation of a
problem schema which specifies the high-level stmclnre of a
problem specification. A schema has certain roles which

represent the parameters of the problem, and constraints on
the values of the roles. Instantiating these roles with
specific values results in the creation of a specific problem
SlX_Cification.

Figure 2 shows the schema for an example generic
problem: tracking a set of mobile objects by interpreting
signals that are being continually generated by the objects.
(This generic problem can be instantiated, e.g. to the
problem of tracking aircrafts from radar and voice signals
(Brown, Schoen, & Delagi, 1986) or tracking ships from
sonar data (Nit, Feigenbaum, Anton, & Rockmore, 1982)).
This problem has three parameters: (i) the specification of
the input signal(s); (it) the main body or functional

description of the problem in the fore1 of an extremely high-
level program; and (iii) certain characteristics of the domain
and the environment. The constraints on the schema roles

are specified by specifying a grammar for instautiating the
roles.

Associated with each generic problem is a set of
(poss.'!.bly one) generic architectures, which can be used to

create a system for solving instances of the generic probliml.
A generic architecture is a collection of parameterized
modules and intermodtdar dependencies. A paramelerizcd
module is a logical collection of software entities like
procedures, types, etc. in which some of the entities are

abstracted as parameters. A parameter can be, among other
things, an algorithm, a representation scheme, or a sub-
module. The design process is viewed as an instantialion of

the various parameters comprising a generic architecture.
However, the parameters can be fairly complex entities and
the design task is non-trivial.

The structure of the generic architecture determines the
basic solulion strategy for solving the problem. For
example, the continuous signal interpretation problem given
earlier can bc solved using a symbolic, knowledge based
aPlgroach, or by statistical analysis of the data and the two
soltltions would have radically different architectures. A

modtdc description includes information about the input and
oulpnl data flows of the module, the
subnaodtdes/snl_erfiaodules structural relations, the services it

requires from other modules, the services it provides to an
external module, the precondition and postconditions for
each service provided by the module, and/or a program
template that implements each service. The most interesting
aspect of the module description is that some of its
attributes are viewed as parameters of the module.
Associated with each parameter attribute is a method which
can be nsed to determine the vahte of the parameter. The

complexity of the method depends on the type of the
parameter. For example, it may be a simple process of
selectino between a pre-determiued list of alternatives, or it
may involve sophisticated reasoning using domain
l_lowledge and heuristic ntles.

Continuous-Signal-Interpretation :Generic-problem
Signal-Inputs:)<var> : (SEQ :FROM <int> :TO <int> (<fields>)

<field-description>)] *
Body: WHILE <formula> DO <statements> ENDWHILE
Task Assumptions: <task-assumptions>
/,I.'h _r_'

<fields> ::= <identifier> I<identifier> <fields>
<field-description> ::= EXIST <objects> SUCH-THAT <condition>
<statements> ::,,, <statement> ; <statements> [<statement>
<statement> ::= (IF <formula> THEN-DO <statement>) I

(FORALL <vars> <fonnula> DO <statement>) l
(PRINT <terms>)

<task-assumptions> ::= (UNRELIABLE-SIGNAL <var>)l
(REDUNDANT-SIGNAL <vat>) I
(ASYNCHRONOUS-SIGNAL <vat>)I

Fig. 2. Specification of the generic problem of continuous signal inteqgretation.

12

Bhansali

I ReportAcceptor

Signal-interpreter

Situatior_ board

Blackboard Panel

Level-I J

l Level-2 [

Control Panel

Tracking-co mpone nt

[Ksource-1]

Ksotu'ce-2]

Contrc,ller

Fig. 3. A functional decomposition of the generic architecture for the continuous-signal inteq_retation problem. The architecture
shows the main modules comprising the architecture.

Signal-Interpreter isa module
submodules Situation-board, Tracking-component, Controller
supermodule CSl-system
inpu ts ?s : SEQ(signal)
o u t p u t s ?r : SEQ(report)
requires (print-report ?r), (read-next-signal) :signal, (start-execution)
provides (main)
c a IIs report-acceptor, signal-rceder
called-by nil
parameters

constraints

1) Controller
2) SituationBo,'u'd

l) Controller is instantiated to an EventDriven-Controller iff SituationBoard is
mstantiated to an EventDriven-SituationBoard.

2) Only the TrackingComponent should have a dataflow into the SituationBo,'u'd.
3) Only the Controller module can call the Tracking-Component.

Fig. 4. Representation of the Signal-interpreter module in the generic architecture.

Figure 3 shows the structural decomposition of a generic
archilecturc for the continuous-signal-interpretation problem

class and figure 4 shows a partial description of the signal-

interpreter module of the generic architecture.
The domain model provides the ontology of terms and

operations used to describe an application domain
independent of a specific task; several different problems can
bc specified in a high-level language using this ontologY.
The prmmry components of the domain model are objects
and relations between the objects. An object is an
abstraction of some entity in the application domain, e.g.,
an aircraft or a signal. Associated with each object is a set of
attributes which are properties that describe an instance of an

object and operations that change the state of an object. The
description of an operation includes pre- and post-conditions

and optionally, a code template that implements the
operation.

2.1 CUSTOMIZATION PROCESS

The customization process consists of refining a selected

generic architecture into a detailed architectural specification
based on the model of the domain and the problem

specification. In KASE, the customization process is
performed in an interactive and mixed-initiative setting. The
role of KASE in the design process is that of an intelligent

13

, Bhansali

design associalc lhat provides suggestions on how to refine

the archilecturc, carries out the commands invoked by the
user, informs the designer of constraint violations in the
design, keeps a record of the design steps and the
dependencies between the steps so that incremental
modifications to the design can be done efficiently.

The knowledge used by KASE in providi,tg these kinds
of assistance includes general, domain independent
knowledge about software design, architecture-sl)ecifie
knowledge for the instantiation of various architectural

parameters, as well as specific heuristic knowledge about
design related to _ particular domain. Most of the domain
independent design h_owledge is represented in the form of
constraints (e.g. those relating different levels of a data flow
diagram), and KASE contains mechanisms which
automatically keep track of these constraints as well as

heuristics for resolving constraint violations (Nil et al.
1991). The architecture specific knowledge inch,des a set of
constraints governing the relationships between different
components of the architecture, a library of reusable modules
and schemas which can be used to instantiate the

architectural parameters, and a collection of design roles and
procedures that can be invoked by a designer to instantiale
certain parameters and opth-nize tile design.

To illustrate the customization process, consider the
generic architecture shown in fig. 2. The parameters in the
genenc architecture include the following: 1) the submodules
of the blackboard panel, 2) the type of information stored in

the control panel, 3) the submodules of the tracking
component, and 4) the scheduling and focusing strategies of
the controller. Different instantiations of these parameters
result in the creation of a widely different systems with

different perfomlances. KASE contains a set of design rifles
for instantiating these parameters, and a set of
transformation rules that optimize the design (e.g. merging
certain kinds of control signals into one for increased
efficiency). The customization process for an implemented
example in KASE is described in [Bhansali & Nii, 1992].

2.2 REDESIGN

Software design is characterized by frequent modifications
either due to a design error or as a result of a change in the
problem requirements or the computing envirotmaent. KASE
uses different mechanisms to support these two kinds of
modifications.

2.21 Redesign due to error in original design. KASE
automatically checks for violations of several kinds of
consVaints and helps the designer modify the architecture to
resolve the iqconsisteucies. The constraints in KASE are

currently divided into three categories: 1) General
architectural constraints (e.g.

every data link must have a consumer and a producer); 2)
Sl)ccific architectural constraints (e.g. there must be no data
flow or control flow between submodules of the tracking
component); and 3) Stylistic constraints that are derived

from design pril_ciplcs that are considered 'good' (e.g a
module must not be decomposed into more than n
submodulcs at any level of abstraction).

Each constraint in KASE is associated with a trigger, a
predicate, and an optional resolving-action. A trigger is a
set of actions that can potentially cause the constraint to be
violated, a predicate is a Lisp expression that checks to see

whether the constraint is actually violated, and resolving-
action is a set of actions that may be taken to remedy the
constraint violation. KASE monitors the design activity and
flags each constraint thal is triggered by a user action.
When a user iqdicates the completion of a design session,
KASE checks the predicates for each flagged constraint to
see whether the cot_straint is actually violated. Quite often, a
constraint that gets violated by a design action is resolved by
a later aclion, and such constraint vio'latioqs should be, and

are, transparent to the designer.
When KASE reports a constraint violation, the designer

can ask KASE for a list of suggestions on how to resolve
the error. Depending on the nature of the constraint, KASE
presents a list of different actions that may be taken to
remove the constraint violation. The user can then choose

either one of the actions suggested by KASE or take some
other action.

2.2.2 Redesign due to change in requirements. KASE

provides tools that can help a designer in modifying parts of
a design to meet new requirements without having to start
from scratch. First, KASE maintains a history of all the
design steps and allows tile user to go back to any previous
state of the design. It does this by replaying the design
history from the initial state to the desired state.

A second redesign support provided by KASE is in
localizing the effects of a design change. KASE uses
dependencies between design steps to stn_cture a linear
design history into a lattice. When the t,ser warns to undo
the effect of a particular design step, KASE uses the

position of that design step in the derivation history to
determine what other design steps are affected by it
[Bhansali, 19921.

3. Discussion

In this section we briefly discuss some of the issues,
advantages, and limitations in our approach. One of the

major issue in the design of domain-specific systems is
concerned with acquiring and maintaining the extensive body
of knowledge from multiple sources. This task, also known
as domain modeling, is a manifestation of the classic

14

F

Bhansali

knowledge acquisition problem in expert syslems. One way

of viewing generic l)roblems/tasks and architectures is to
Consider then! as providi!!g a skeletal knowledge base or
shell which can bc inslanliaied'for diffcmnl applications. Our

long term goal is to provide a library of generic problems
and associated architectures, which would provide a base
from which various domain models can be instanliated.

A second issue is concerned with the flexibility of the
resulting system. Domain specific systems utilize
specialized design techniques which are well suited for a
particular class of applications. However, since it is not
possible to anticipate all subsequent changes in
requirements, the specialised design techniques may nol be
adequate for extending the system beyond 1he original
intended application. A major effort in the KASE project
has, therefore, been expended in providing a domain--
independent infrastructure which enables a user to modify an
architecture through an integrated editor, pictorial and
symbolic visualizations of the design from various
perspectives, and a constraint maintenance subsystem that
supports oppor_tmistic design 0ased on i,sights draw_, from
empirical studies of human designers [Guindon, 1990].

A third issue is concerned with the usefulness of the

approach. Our approach involves a considerable investment
in temas of building the initial knowledge structure, and we
believe that the payoff is in being able to reuse generic
architectures to design solutions for a family of problems.
We need to identify such archilectures arkl problem classes
and use KASE for designing software systems for problems
belonging to such problem classes.

The KASE system represents our initial attempt in
building a prototype environment that can offer varying
degrees of assistance to a software designer by employing
diverse sources of knowledge. Our current work is focusing
on extending the domain modeling representation 1o capture
the dynamic behavior of a system by modeling states,
transitions, events, and actions. We are also exploring the
issue of design rationale capture and its reuse during
redesign. KASE's current redesign capabilities were
mentioned briefly in this paper. We are interested in
extending these capabilities so that KASE can automatically

incorporate certain changes in problem requirements into the
design by using the design rationale.

Acknowledgements

The KASE system is a result of several people's work. We
gratefully acknowledge the contributions made by Nelleke
Aiello, Raymonde Guindon, Liam Peyton and Go Nakano
who wrote most of the code for KASE.

References

Adelson, B. & Soloway, E. (1985). The role of domain
experience in software design. IEEE Transaction on
Software Engineering, SE- 11 (11): 1351 - 1360.

Bhansali, S. (1992). Generic software architecture based

redesign. AAAI Si)ring Syml)osiun_ on Compt,tatiolml
ConsideratiOns in Suppo=ling h_cremcntal Modification
and Reuse, Slanlortl, CA.

Bhansali, S. & Nil, H. P. (1992). KASE: An integrated
environment for software desion 2ml International

Co_g'erence on Artificial Intelligence in Design,
Pittsburgh, PA.

Brown, H. D., Schoen, E., & Dclagi, B. A.(1986). An
Experiment in Knowledge-Based Signal Understanding
Using Parallel Architectures. Department of Computer
Science, Stanford University, Technical Report STAN-
CS-86-1136.

Graves, H. (1991). Lockheed Environment for Automatic
Programming. 6lh Knowledge-Based Software
Engineering Conference, Syracuse, NY: 78-89.

Guindon, R. (1990). Designing the Design Process:
Exploiting Ol)POrtunistic Thoughts. Human-Computer
lmeroction, 5:305-344.

Guindon, R. (1992). Requirements and design of

DesignVision, a,t object-oriented graphical interface to an
intelligent software design assistant. ACM Proceedings

ofCHl'92, Monlen'ey, CA.

Gnindon, R., Krasner, H., & Curtis, B. (Eds.). 1.1987).
Breakdowns And Processes During The Early Activities
Of Software Design By Professionals. Ablcx Publishing

Corp.

Nii, H. P., Aiello, N., Bhansali, S., Guindon, R., &
Peyton, L. (1991). Knowledge Assisted Software

Engineering (KASE): An introduction and status June
1991. Knowledge Systems Laboratory, Computer Science
Deparlment, Stanford University, Technical Report KSL-
91-28.

Nil, P.(1989). Blackboard Systems. In A. Barr, P.
Cohen, & E. Feigenbaum (Eds.), Handbook of Artificial
Intelligence. New York, NY: Addison-Wesley.

O"_iti';!'4¢L?'_.O.t! IS

OF PO(.sR QUALITY

15

Braun

DOMAIN SPECIFIC SOFTWARE ARCHITECTURES -- COMMAND AND CONTROL

9 3 - 17 5 0 3
William Hatch

Theodore Ruegsegger
GTE Federal Systems

15000 Conference Center Dr.
Chantilly, VA 22021

Bob Balzer
Martin Feather
Neil Goldman

Dave Wile
USC/Information Sciences Institute

Marina Del Re),, CA 90292

Abs_act

GTE is the Command and Control contractor for the Domain

Specific Software Architectures program. The objective of

this program is to develop and demonstrate an architecture-
driven, component-based capability for the automated

generation of command and control (C2) applications. Such

a capability will significantly reduce the cost of C2

application development and will lead to improved system

quality and reliability through the use of proven architectures

and components.

A major focus of GTE's approach is the automated

generation of application components in particular
subdomains. Our initial work in this area has concentrated in

the message handling subdomain; we have defined and

prototyped an approach that can automate one of the most

software-intensive parts of C2 systems developmenL

This paper provides an overview of the GTE team's DSSA

approach and then presents our work on automated support

for message processing.

The DSSA ConcePt

DSSA is based on the concept of an accepted generic

software architecture for the target domain. As defined by

DSSA, a software architecture describes the topology of

software components, specifies the component interfaces,

and identifies computational models associated with those

components. The architecture must apply to a wide range of

systems in the chosen domain; thus it must be general and
flexible. It must be established with the consensus of

practitioners in the domain.

Once an architecture is established, components that

conform to the architecture--i.e., that implement elements of

its functionality in conformance with its interfaces---will be

acquired. They may be acquired by identifying and

modifying (if required) existing components or by

specifically creating them. One of the ways they may be

created is through automated component generation.

DARPA has sponsored work in this area at USC Information

Sciences Institute -- the AP5 application generator projecL

and is interested in incorporating this or related technology.

The existence of a domain-specific architecture and

conformant component base will dictate a significantly

different approach to software application development. The

developer will not wait until detailed design or

implementation to search for reuse opportunities; instead, he/

she will be driven by the architecture throughout. The

architecture and component base will help define

requirements and allow construction of rapid prototypes.

Design will use the architecture as a starting point. Design

and development tools will be automated to "walk through"
the architecture and assist the developer in the selection of

appropriate components. The ultimate goal is to significandy

automate the generation of applications. A major DSSA task

is to define such a software lifecycIe model and to prototype

a supporting toolset.

These activities will be accompanied by extensive
interaction with the develoi_ment c6mmunity f0r the _et

domain, and by technologytransition activities. One aspect

of this is that each domain team is working closely with a

DoD agency that carries out major developments in the

designated area. The GTE team is working with theUS Army
Communications and Electronics Command.

Why Command and Control?

There are many reasons Why the command and control

domain is an excellent target for DSSA technology. It is a

high payoff area; command and control systems are needed

even in the current military climate. (This is particularly tree

when one recognizes that applications such as drug

interdiction fall within the C-'2 "umbrella".) It is a well-

understood area; most of the processing performed in C2

16

Braun

applications is not algorithmically complex. However, C2
applications are very large, and much of this size comes from

repeated similar processing -- for example, parsing hundreds
of types of messages. In addition to this commonality within
applications, there is much commonality across applications.
Multiple C2 systems must handle the same message types,
display the same kinds of world maps, etc.

The kinds of commonality in C2 applications are very well-
suited to DSSA techniques. In some areas, components can
be reused identically; these can be placed in the DSSA
component base and highly optimized. In other areas,
components will be very similar in nature but differ in the
particulars, e.g., message parsing. These areas are a natural
fit to the DSSA component generation technology, allowing
a table-driven generator to quickly create the needed specific
component instances.

GTE's Approach

Figure 1 illustrates GTE's overall approach to the DSSA pro-

gram.

Initially, project work will follow two parallel threads. The
first will define a software process model appropriate to

architecture-driven software development and will develop a
toolset to support that process. The second will establish a
capability that implements the process for the command and
control domain, based on a C2 architecture and a set of
reusable C2 components.

The DSSA process model will address all aspects of the
software life cycle. It will describe activities for establishing
system requirements, developing the software system, and
sustaining the system after delivery. The DSSA toolset will
support all of these activities, automating them as far as
possible. In particular, it will automate system development
activities by using the architecture as a template, guiding the
selection of available reusable components, and automating
the generation of specific required components. The toolset
will be constructed insofar as possible from available tools -
- both commercial products and products of the research
community. In particular, it will make use of USC/ISI's AP5
application generator, DARPM STARS reuse libraries, and
DARPA/Prototech tools. Open tool interfaces will be
emphasized to minimize specific tool dependencies, thus
making the toolset usable in the widest range of
environments.

Fundamental to the C2 DSSA capability is the development

prov)oe_
dornai_r'_

STARS.

ARCADIA,
other ISTO

I Commerc_l i

Off-Th_Shd

(COTS)Too_

Figure 1. GTE's DSSA Approach

17

Braun

of a C2 software architecture. This starts with development

of a multi-viewpoint domain model, created through

interaction with all elements of the DoD C2 community. The

automated Requirements Driven Development (RDD)

methodology will be used in model creation. From this, an

object-oriented software architecture will be developed. The
architecture will tie back to the multi-viewpoint model so

that mappings to different views of the domain functional

decomposition are apparent. George Mason University's

Center for C3I will play a major part in this modeling and

consensus-building activity. A base of components

conforming to the architecture wilt then be developed. Many

of these will be existing components, perhaps modified to fit

the architecture. Others will be automatically generated

using AP5.

The DSSA capability will be demonstrated by development

of a prototype C2 system, most likely an element of the Army

Tactical Command and Control System (ATCCS). An

independent metrics/validation task will assess the

effectiveness of the approach and gather metrics. The

methodology and toolset will be revised based on findings
and further necessary research will be identified.

Throughout the program, a technology transfer task will

present results in conferences, papers, seminars, and short

courses. The George Mason University Center for C3I will

serve as a focal point for technology transfer.

AoolicaLion Generation

The Technoio_

Application generators are tools that permit software

developers to create software application programs in a much

higher-level language tailored to the application domain.

These programs are automatically translated by the

application generator to a lower-level language, thus

"generating applications." This greatly reduces the effort

required to create working applications, typically by at least

an order of magnitude. The benefits are analogous to those

achieved by moving from assembly language development

to use of standard procedural languages such as FORTRAN,
C, and Ada.

Fourth Generation Languages (4Gl.,s) are application

generators for DBMS-oriented information system

applications. Because 4GLs focus on a narrow class of

applications, they can include very powerful constructs that

allow software to be developed quickly and easily by those

familiar with the application domain. Management

Information System (MIS) developers using 4GLs achieve
productivity improvements of as much as 50-100 times over

traditional (usually COBOL) language users.

Application generators can be (and have been) developed for

other types of applications as well. They are best suited to

narrow domains, or subdomains of large domains such as C"2.

Because they require a domain specific vocabulary for

expressing applications, they are generally unique to the
domain or subdomain and not easily modified to handle other

domains. Creation of an application generator for a particular

domain, furthermore, is a significant undertaking.

Development of an application generator is most appropriate
in domains that are well-understood and in which many

different developments perform primarily the same kinds of
processing.

USC Information Sciences Institute (ISI) has developed a

capability (called AP5) that supports the development of

application generators. AP5 is based on the concept of

relational abstraction. The application developer identifies

abstract data objects and the logical relationship among

them. Effectively, the developer has access to a "virtual
database" expressed succinctly in terms of the known

structure of the domain's data model. Application behavior is

then expressed in terms of these data objects, accessing them
associatively via queries and modifying them based on

values of other objects. This allows the user to concentrate on

behavior rather than representation, and provides the power

to express that behavior at a very high level.

Providing an AP5 application generator for a particular

subdomain requires the development of a domain-specific

language for that domain. This is a relatively straightforward

task because the language, regardless of domain, involves the

same fairly simple set of relation-oriented constructs for
expressing data relationships, validations, and actions. It is

also a critical task, because the expressive capability of this

language is what provides the application generator's power.
A translator is then developed to map the language to an

underlying program generator, which produces executable

procedural code. This is also not too complex, as all

languages contain similar constructs. Most of the work is

done by the underlying generator. (Currently the system

generates LISP; an Ada generator is in development.)

A drawback to many existing application generators is poor

efficiency of the generated code. This has, in many cases,

made these generators suitable only for developing

prototypes. AP5 addresses this problem by allowing the user

to specify annotations that provide guidance to the translator

on desired implementations of specific operations. These

annotations can be added incrementally while tuning to
achieve desired performance.

AP5 can play a key role in the C2 DSSA program. We

anticipate that a number of C"2 subdomains will be amenable

to this approach. By developing generators for those

subdomains we can achieve two major advances in

productivity:

18

Braun

• DSSA users can use the generators to create specific
components in the subdomain with far less effort.

• DSSA architects can use the generators to create
reusable subsystems that can then form part of the
component base available to DSSA users.

We have already identified the message handling subdomain
as a candidate for AP5 technology; a tentative choice for the

next area to tackle is fusion processing.

Figure 2 shows the activity flow that will be followed:
identifying classes of components (subdomains) to be
addressed, based on the architecture; defining domain

specific languages and producing generators; developing
annotations to permit optimization; and generating reusable
application components.

C2 Message Handling

As indicated in Figure 3, the message handling subsystem is
one of the key interfaces between a C2 system and the
"outside world". It provides a means of communicating
information between different C2 systems and to/from other
C2 resources (such as vehicles and weapon installations).
Messages may be text or bit streams; we will deal here with
text messages. Some text messages are free-form, but most
today follow standard prescribed formats; we wilI deal with
formatted messages.

C2 messages are created by humans (on the transmitting side
of the interface) according to a written description of the
formats. The receiving side parses the message (according to
an encoded understanding of the standard format), validates
it for correcmess, and places the received information in the
database for use by other parts of the system (for example,
decision support).

There are several standard families of messages, for example

NATO and JINTACCS messages. Each of these can include
several hundred message types; for example, there are
approximately 300 NATO message types. (Many types of
messages are shared by several message families.) Message
formats are described in massive documents using ad hoc,

non-standard description methods. Typically the descriptions
involve much prose. For example, Figure 4 shows the
description for a single line in one type of message.
Furthermore, it is not a complete description; many field
descriptions cross-reference to other descriptions.

A message consists of a number of such lines (called
datasets-- may be more than one physical line) grouped
together in an envelope (which contains from/to information,
classification level, etc.). While each type of message can
contain only certain kinds of datasets, many are optional and

their order is generally not prescribed (though there are
exceptions). Validity ofdatasets can depend on other datasets
in the message. Each dataset contains a prescribed sequence
offields, separated by slashes, with a required order and a
well- defined format. Field validity can depend on values in
other fields of that dataset as well as in other datasets in the

message. Figure 5 is an example message (excluding the
envelope).

The code involved in writing the software to implement
message handling is extensive and error prone. Working
from the prose specification, programmers write code to
extract each field from each dataset, validate it according to
the specified rules, translate it to the appropriate internal
representation, build database update transactions, and write
to the database. Typically, a single message type can take
from 5000 - 100,000 lines of HOL code. The Navy
WWMCCS system uses approximately 4 million lines of
code to implement 30 message types. Clearly this is a partof
C2 system development that should be considered for
automation.

Figure 2. DSSA Application Generation Activity Flow

19

Braun

DEVICES

I SENSORS

DECISION !_ P_mCENTER Okea
ExeoJte

. rnr_ (_

DATABASE

Figure 3. C2 System Operations

Automating C2 Message Handling Using AP5

To automate C2 message handling using AP5, we have

developed a language specific to the message handling

subdomain that provides constructs for specifying message
formats, for indicating required validations, and for
describing desir&idamSase Updates.

Soecifvin_ Message Format_

Message formats are described in a simple set language that

indicates which datasets are allowed and which are optional

for a particular message type. For example,

type SPOT = (FORCE), (SHIPTK IAIRTK [AIRCRAFT),

SHIP

would indicate that a SPOT message consists of an optional
FORCE dataset, an optional occurrence of one of the

SHIPTK, AIRTK, or AIRCRAFT datasets, and a required
SHIP da_L

Message format descriptions can be accompanied by
validations that indicate which combinations of datasets are

valid. For example,

type SPOT = (FORCE). (SHIPTK IAIRTK IAIRCRAFt),
SHIP

validations

disallow MSGID.message-serial-numbcr;
require SHIP.location

no SHIPTK and no AIRTK requires FORCE;

indicates that the message-serial-number field of the MSGID

dataset must not be present, the location field of the SHIP

dataset must be present, and, if no SHIPTK dataset and no
AIRTK dataset is present, the FORCE dataset must be

presenL

Soecifvin_ Datasets

Dataset formats are described in terms of the fields that make

up the dataset and the format of each of those fields. Fields

are ordered, so each dataset is characted_ by a sequence of

fields. Optional fields are indicated by parenthesizing them.

Mutually exclusive fields are indicated by alternative bars.
As for message formats, dataset descriptions can include

validations. For example, a dataset description of a MSGID
dataset might be:

dataset MSGID = message-code-name (originator)
(mess age -_'ial-number) (as-of-month)
(as-of-year) (as-of-DTG)

validations

as-of-DTO precludes as-of-month;
as-of-DTG precludes as-of-year;
as-of-year requires as-of-month;

message-code-name/= SPOT requires originator,
message-serial-number and no as-of-DTG

requires as-of-month;
field message-code-name = A'26;

20

Braun

Data Set ID: MSGID

bld Element Descriptive Name

1 Message Code Name

2. Originator

3. Message Serial Number

4. As-of-Month

5. As-of-Year

Edit Rule

1. Must be a member of the
approved set of message code
words.

1. Must be a plain language
address or approved short
title

I. Positive integer between
the values 001 to 999.

2. Out of sequence may indi-
cate missing message. See
rules for specific msg. code
word.

1. Standard abbreviation for

month message sent.

1. May not be a future year.

Remarks

a. Plain language addresses are
validated against values found
in the references

a. May be required for specific
messages.

b. Sequence is restarted on 1
Jan each year. May be rolled
over when upper limit is reached.
c. For Command authorities serial
may be validated to maintain order
when processing reports.

a. Required if serial number is
used and as-of-DTG not present.
b. Not allowed if as-of-DTG not
xesent.

As-of-Month must be present

Figure 4. Example Message Line Description

NATOUNCLASSIFIED

SIC: NSR

EXER /OPEN GATE 91//

MSGID /NAVSITREP/CINCIBERLANT/135/DEC/91//

PART /I/HOSTILE//

FORCE /OR523/3/37000NO-OI2000W3/145/17K/H//

SHIP /OR523A/KARA/-/CG/-/UR//

SHIP /OR523B/KRESTA//

SHIP /OR523C/KRESTA//

SUBTK /OR734/33000N6-OIOOOOWI/O95/9K/M//

SUB /OR734/TANGO//

PART /II/UNKNOWN/NC//

PART /III/FRIENDLY//

FORCE /CTU 405.1.2/5/420015N2-1333440W8/175/20K//

FORCE /CTU 387.3.2/2/36010NO-OO4380W5/O90/SK//

AMPN /MINE SWEEPING GROUP...//

AIRTK /934/33000N6-OIOOOOWI//

AMPN /ONE P-3 SEARCHIN BOX...//

Figure 5. Example Formatted Message

21

Braun

field originator = A'25;
field message-seria]-number = N 3;
field as-of-month - month;
field as-of-year = N d;
-- as-of-DTG in form: DDHHMMZS MMMYY

field as-of-DGT - day, hour, minute, (Z), SUM1. month,

year;
field SUM1 = N 1;

field day = N2;
field hou_ = N 2;
field minute = N 2;
field month = A 3;
field year = N 2;

Svecifvin_ Database Transactions

The C2 message description language also includes a means

for describing the transactions to be carried out for each

received message. An example of a segment of such a

specification is:

{insert msg__Orig._Sr(ORIGINATOR = PROSIGN.FN,
MSG_TYPE = MSGID.Cod_,

MSG_DTG = sortable_date (ENVELOPE.DTG),
CLASSIFY = classification_code(ENVELOPE.See));

The database update language also includes tests of field
values, so that updates can be conditional on those values,

and a capability to allow a sequence of updates to be named

and reused in other update instructions. This simple language
provides all the power needed to describe the database

transactions resulting from received messages.

Implications

Clearly, automated generation of message handling software

can save greatly on the labor involved in creating such

software. A message handling subsystem that requires 4
million lines of HOL code should require less than 1% of that

in the message description language.

Perhaps more significantly, there will be little reason to write

most of the code more than once. The code required to parse

and validate a message of a particular type is not specific to

the system being implemented. Once the message

specification is developed in the message description

language, itcan be reused. Minor changes in the specification

of required database updates can be easily implemented for

individual systems.

An even more far-reaching impact of this work is the

development of a precise, unambiguous way of describing
message formats. Rather than the ad hoc prose descriptions

now used in describing message formats, the message

description language can be used directly. This will eliminate

errors in understanding and correctly implementing message

descriptions.

This precise message descripdon mechanism, along with the

built-in incentive to reuse message description

implementations, will contribute substantially to the

development of more error-free message handling

subsystems. A major aspect of this benefit is improved

interoperability, as systems will no longer be dependent on

the programmers' understanding of message formats. All

implementations will share a common understanding and be
able to interoperate with the full power and precision

envisioned for formatted messages.

The work described in this paper has been supported by the
Defense Advance Research Projects Agency through U.S.
Army Communications-Eleclronics Command Contract No.

DAAB07-92-C-Q502 and through NASA Ames Research
Center Contract No. NCC 2-520.

References

[1] Balzer, Bob and Martin Feather, Neil Goldman,

Dave Wile, "Proposal for DS Languages for C3

Messages," USC/ISI working paper, 1992.

[2] Braun, Christine L. and William L. Hatch,

"Software Reuse Through CCIS Architecture

Standardization," Proceedings of the 11th AFCEA

Europe Symposium and Exposition, October 1990.

[3] Hatch, William, "Example Message Descriptions

and Database Transactions," GTE working paper,
1992.

[4] Ruegsegger, Theodore, "Domain Specific Software

Architectures -- Command and Control," briefing
slides, CECOM Real-'lime/Reuse Technical

Interchange Meeting, Ft. Monmouth, NJ, February
1992.

[5] Wile, David S., "Adding Relational Abstractions to

Programming Languages," Proceedings of

workshop on Formal Methods in Software

Engineering, Napa Valley, CA, May 1990.

[6] Balzer, Robert, "A 15 Year Perspective On

Automatic Programming," IEEE Transactions on

Software Engineering, Nov. 1985

[7] Cohen, Donald, "Compiling Complex Database

Triggers," Proceedings of 1989 ACM SIGMOD
(1989), ACM

[8] Goldman, Neil and K. Narayanaswamy, "Software

Evolution through Iterative Prototyping," to appear

in the Proceedings of the 14th ICSE Conference,
IEEE, Melbourne Australia 1992.

22

Chlen

Issues in Knowledge Representation to Support Maintainability:

A Case Study in Scientific Data Preparation /

Steve Chien, R. Kirk Kandt,

Joseph Roden and Scott Burleigh

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109-8099

i ! _z.,,. Abstract
Scientific data preparation is the process of
extracting usable scientific data from raw
instrument data. This task involves noise
detection (and subsequent noise classification and
flagging or removal), extracting data from
compressed forms, and construction of derivative
or aggregate data (e.g. spectral densities or
running averages).

A software system called PIPE provides
intelligent assistance to users developing scientific
data preparation plans using a programming
language called Master Plumber. PIPE provides
this assistance capability by using a process
description to create a dependency model of the
scientific data preparation plan. This dependency
model can then be used to verify syntactic and
semantic constraints on processing steps tO
perform limited plan validation. PIPE also
provides capabilities for using this model to assist
in debugging faulty data preparation plans. In this
case, the process model is used to focus the
developer's attention upon those processing steps
and data elements that were used in computing the
faulty output values. Finally, the dependency
model of a plan can be used to perform plan
optimization and runtime estimation. These
capabilities allow scientists to spend less time
developing data preparation procedures and more
time on scientific analysis tasks.

Because the scientific data processing modules
(called fittings) evolve to match scientists' needs,
issues regarding maintainability are of prime
importance in PIPE. This paper describes the
PIPE system and describes how issues in
maintainability affected the knowledge
representation used in PIPE to capture knowledge
about the behavior of fittings.

Todd King and Steve Joy

InstituteofGeophysicsandPlanetaryPhysics

UniversityofCaliforniaatLos Angeles

Los Angeles,CA 90024-1406

Introduction

Scientific data preparation is defined as the application of
multiple transformations to collected data sets in order to
produce data in an easily usable form. The questions a
scientist asks dictate which data arc to be collected as well
as which transformations are to be applied. The need for
simplified scientific data preparation has increased due to
the volume of data now collected and the diverse uses for

any specific type of data. Automated scientific data
processing systems can be used to simplify this process.

While general scientific data processing systems have
existed for some time, the complexity of data types and
transformations required in specific domains renders these
systems of limited utility. As a result, many scientific
teams develop their own software systems to accomplish
the data preparation required in their specific domain.
These systems suffer because they become too specific,
and the effort spent developing such systems arc only of
value within the context of a particular domain and task.
Because scientists desire to reuse their work, hybrid

systems are appearing which provide useful analysis tools
and definition of domain-specific data types and
transformations. Plans arc developed in these systems
which specify which of the transformations to apply to a
collection of data sets. By the nature of the processing
steps required in many domains, these plans can become
quite complex. We arc now at a point where the
complexity of these tools requires significant expert
knowledge to use.

Master Plumber [King & Walker 1991] is a software tool
developed by the UCLA Institute of Geophysics and
Planetary Physics to create programs to prepare scientific
data. While its primary area of application has been time-
series magnetometer data, the tool is applicable to the
general task of scientific data preparation.

Master Plumber is a dataflow system. Thus, in Master
Plumber, data elements are represented by columns, which
are streams of data being processed as they move through
the system. Data processing steps are called fittings, and a

23

plantoprocessaparticu_1_1_1_fgrmof a dataset into another
form is calleda blueprint.'

Thus, as shown in Figure 1, raw data might be read in
using an intro_flatfile fitting, a running average computed
using a runstat fitting, and the results written into an output
file.

i. intro flatfile infile=foo

columns=bx

2. runstat length=f287 shift=l

columns=bx

3. write_flatfile outfile=bar

columns=bx, rabx overwrite=YES

Figure 1: A Simple Blueprint

A major difficulty in constructing blueprints is tracking the
many fitting and column interactions. While a typical
blueprint might use 25 columns and 20 fittings, the more
complex blueprints use hundreds of columns and 30 or
more fittings. Because of the number 0f possible
interactions, constructing and debugging scientific data
preparation blueprints is a time-consuming task requiring
expert knowledge.

Because of the complexity of the data preparation task,
users sometimes make errors in blueprint construction.
One type of construction error occurs when a user forgets
to set up the data needed for a particular step.
Unfortunately, this type of error can go unnoticed until far
into the execution of the blueprint, wasting valuable time.

Another common situation is that the exact method of
processing the data is dependent upon the character of the
data. In this case the user will use some _lt methods
for processing the data, examine the results, and modify the
options. This tuning cycle continues until the data is in a
satisfactory form.

The final aspect of blueprint development which
complicates the development process is that new fittings
are added to a system as new needs and requirements arise.
In addition, new fittings also evolve with new options and
characteristics being added. Any intelligent tool must be
readily changed to remain useful in such a dynamic
environment.

Currently there are approximately 65 fittings which are
part of the standard Master Plumber system. These fittings
perform a variety of transformations on the data flow, such
as: introducing and writing data into several formats;
displaying data on the screen; and actual numerical
transformations. There are support libraries which allow
for fittings to be written in either C or FORTRAN. A
special fitting called PLISP takes programs written in a C-
like language and performs the transformations on the data
flow. This allows for new processing steps to be initially
tested as PLISP programs and later be integrated as full-
fledged fittings into the Master Plumber system.

Some scientists use data preparation systems indirectly
with the help of software support personnel who write and

Chlen

debug the actual data preparation plans. The goal of PIPE
is to make Master Plumber easy enough to use such that
this type of support is not necessary. The combination of
PIPE and Master Plumber will allow the blueprint
developer to develop blueprints easier and faster, allowing
them to spend more time on data analysis and less time on
data preparation.

Overview

To achieve these goals of assistance in the scientific data
preparation process, PIPE [Chien et al. 1992] provides four
capabilities:

,

2.

3.

4.

constraint checking to detect invalid blueprints
before execution;

diagnosis assistance of blueprints through
dependency analysis;

optimization of blueprints through dependency
analysis; and,

runtime estimation, using models of fitting
runtime performance.

The architecture of the PIPE system is-shown in Figure 2.
PIPE accepts a blueprint file and a set of descriptors for
datafiles and uses a fittings knowledge base to construct a
dependency graph representing the computations to be
performed by each of the fittings in the blueprint. This
blueprint parsing phase uses knowledge of fittings and their
options to construct a dependency graph, which indicates
for each fitting which columns are accessed and used to
modify existing columns, create new columns, or remove
existing columns. This dependency graph can then be used
by the constraint checking module which determines if any
of the constraints associated with the fittings have been
violated.

In cases where blueprints must be debugged, PIPE can
use the dependency graph to support isolation of the fault
in the blueprint. Because the dependency graph tracks all
of the operations upon the columns, when the user detects

an error in one of the output columns, PIPE can present a
list of fittings which modified the column in question. The
user can then focus his attention upon these fittings, to
determine where the error was introduced into the data,
sometimes by plotting intermediate data. After isolating
the first fitting at which the column is faulty, the user can
query PIPE for information on the fitting to determine
which columns were used to compute the changed column.
This process continues until the fault is isolated to the data,
fitting option settings, orq_tting code itself.

PIPE also provides an optimization capability. Because
PIPE constructs a full computation dependency graph,
PIPE can determine the';ast fitting in which each column of
data is used in the blueprint. Thus unneeded data can be
removed from the dataflow, decreasing the execution time
Because many fittings operate on data by default, PIPE
distinguishes between default processing and explicit

24

Chien

Optimizer

Blue

Input Files'

Blueprint)endenc_ Debugging
Parser Graph Tool

Constraint
Checker

Knowledge

RunUme
Estimator

Figure 2: PIPE System Architecture

processing. Default computation which does not result in a Additionally, for any new or modified columns, PIPE

program output (e.g. plot, output file) can also be removed, determines:
Finally, PIPE provides a runtime estimation capability.

Using the dependency graph to determine which columns • the set of columns accessed in computing the
each fitting processes, and models of runtime for each value for the column.
fitting type, PIPE can provide an estimate of how long the
blueprint will take to run to completion for the specified
datafiles.

Blueprint Parsing

In order to provide assistance in blueprint development,
PIPE constructs a dependency network representation of a
blueprint. When a blueprint is read in by PIPE, it is
processed from the first step onward. For each fitting,
PIPE uses:

• methods stored in the fitting knowledge base,

• default values stored in the fittings knowledge
base,

• fitting options,

• a list of existing columns in the flow, and possibly

• an input file

to determine:

• any new columns created by the fitting,

• any existing columns modified by the fitting,

• existing columns deleted by the fittings.

Because columns may be processed by default or explicidy
selected, the dependency network also makes note of this
distinction. This facet of the processing is important in
order to take appropriate action when optimizing the
blueprint (see below).

Constraint Checking

Constraint checking occurs while the blueprint file is being
parsed (i.e., prior to execution). A description of the
constraint checking algorithm follows.

purinq Parsing

for each fitting in the blueprint

for each option specified

check option type constraints

check for required options

for each parsed fitting in blueprint

for each option in fitting

check option value constraints

check inter-option constraints

check dependency constraints

check inter-_itting constraints

25

Chlen

Diagnosis Assistance

PIPE also provides a blueprint diagnosis facility. This
capability supports two basic types of queries: column-
centered queries and fitting-centered queries. The column-
centered queries are of the form

"What fittings affected <column>

before <fitting>?"

and default to the entire blueprint. This question can be
easily answered using information from the dependency
network. PIPE steps through the fittings in the blueprint
and determines those fittings which cream, modify, or
delete <column>. This list of fittings is then displayed to
the user in graphical form. The fitting centered queries are
of the form

"What columns did <fitting>

affect?", and

"What columns did <fitting> access

in performing its processing to
affect these columns?"

These types of queries can be answered by interpreting the
dependency graph information on the designated fitting.

The first query can be answered by determining the set of
columns created, modified or deleted by the fitting. The
second query can be answered by accessing dependency
network information regarding which columns were
accessed by the fitting M performing these operations.

Blueprint Optimization

PIPE also provides a limited blueprint optimization
capability. In this capability, PIPE examines the
dependency graph of each column and determines the last
fitting at which each column is accessed explicitly (i.e., not
by default). PIPE then recommends removing this column
immediately after this fitting. If this column is not

processed in the remainder of the blueprint, this removal
does not significantly alter the runtime of the blueprint.
However, many of the fittings process all of the columns in
the flow by default. Thus, when a column that is processed
in the remainder of the blueprint is removed from the data
flow a significant speedup can result. While commonly
used blueprints are likely to have unused columns
optimized by hand, automating this process relieves the
user of the burden of determining the point at which a
column can be removed. Additionally, by allowing PIPE
to automatically determine the correct places to remove
columns, PIPE reduces the chance that a user will
inadvertently prematurely remove a column from the data
flow, which would cause an error.

Runtime Estimation

The final capability that PIPE provides is runtime
estimation. PIPE estimates the runtime of a blueprint for a
specific data set by applying the following algorithm:

for each fitting in the blueprint

identify fitting runtime model

compute runtime given dataset size
add runtime to total runtime

compute new size of dataset

Tracking the size of a dataset in Master Plumber can be a
difficult task. Original data set sizes are determined from
input files. When data of different temporal granularity are
introduced into an existing flow, or when decimation
operations are performed, data set sizes will need to be
recomputed. Sometimes a fitting can affect the size of the
dataset in a manner that depends on the exact data
processed. In these cases, the exact dataset size cannot be
determined, so PIPE' estimates the size of the dataset at the

output of the fitting. These estimations are sufficient for
giving the user reasonably accurate runtime estimates.

An Example

We now illustrate each of the capabilities of PIPE using
example blueprints. For an example of constraint

checking, suppose a user has created a blueprint containing
the following statement:

4. bin columns=bx delta=60.0 min max

Because the option min max requires that a value be
specified, PIPE would indicate a constraint error such as:

• Fitting 4. bin option min max

required value not found; string

type required.

As another example of the constraint checking, consider
the following blueprint statement:

7. crossavg except=time avgname=xavg

Assuming the user removed the column named time
earlier in the data flow, PIPE would issue a conswaint error
indicating:

• Fitting 7. crossavg option except
undefined column time; a column

with that name was deleted at

fitting 4. drano.

An example of the d_osis eapabili_ supported by PIPE
is illus_ated in the _llowing _enario. Figure 3 shows a
Muter Plumber blueprint file. Suppose that the user

26

Chien

examines the output of the blueprint and determines that
column o2 is producing results that are incorrect. The user
tries to determine what may have affected column o2 by
querying PIPE:

Q: Which fittings created or

modified column o2?

A: Fitting i0. drano created column
02.

Fitting 12. plisp modified column
02.

The user determines that the 02 column was still incorrect
before fitting 12. plisp, SOthe user wants to determine
what columns were accessed by and were used in creating
02.

Q: Which columns were accessed by

fitting I0. drano in order to

create column o2?

A: Column raraby was accessed by

fitting i0. drano in order to

create column o2.

The user then continues backtracking through the blueprint
to isolate the error:.

Q: What fittings before fitting 10.

drano modified column raraby?

A: Fitting 9. runstat created and

modified column raraby.

By using PIPE in this way, the user can focus his attention
directly upon the possibly faulty fittings instead of having
to examine every fitting and column.

PIPE also uses the dependency graph to optimize
blueprints. Because PIPE can determine which fittings
modify which columns in the blueprint, PIPE can
determine the last point at which each column is needed in
the blueprint. In the example blueprint shown in Figure 3,
PIPE makes the following recommendations for removal:

never introduce column rim

remove sens_x, senx_y, sens_z and bz

after fitting 4

remove bx, by after fitting 8

remove rabx, raby after fitting 9

remove bxc, byc, bzc, and stime

after fitting 12

PIPE also provides runtime estimation capabilities. For the
optimization example shown above, PIPE estimates that the

non-optimized blueprint will take 11:32 +/- 1:04 to run and
the optimized blueprint will take 9:58 +/- 0:58 to run.

Issues in Design for Maintainability

The central concern in the PIPE knowledge representation
was that the PIPE knowledge base be easy to maintain.
While this is a concern in any knowledge-based system, it
was particularly important in PIPE because fittings
capabilities, options, and defaults, evolve because of
changing scientists' needs. The majority of the knowledge
represented in PIPE is used for the pre-runtime constraint
checking. Thus, we focussed upon ensuring that these
constraints be in a form that requires minimal change when
fittings are changed.

In order to be easily maintainable, fitting constraints are
implemented in three ways. First, basic option
requirements constraints and argument requirements are
specified in a simple language. This specification is then
combined with a Iranslator to generate C code which
checks the options and option values against type and
option requirement constraints. For example, each option
for a fitting may be optional, or required (e.g., all fitting of
this type must have this option specified) or be allowed to
appear multiple times. Additionally, for each option
arguments have associated constraints (e.g., all occurrences
of this option must have an argument specified with the
option). This structure affects maintainability as follows.
When a change to a fitting is made which affects this
information, the specification must be changed in the
fitting knowledge base file. A translator is then used to
automatically regenerate the associated constraint checking
code SOthat the future constraint checking corresponds to
the updated fitting.

The second type of constraint are simple, commonly
oecuring constraints, such as range constraints and inter-
option range constraints (e.g., the value of option 1 must be
greater than the value of option 2). These constraints are
represented in a simple constraint language and stored in
the fitting knowledge base file. When the fitting and
option information in the blueprint is extracted, these
constraints are checked by a C code module which uses the
constraint information in the fitting knowledge base file to
check the extracted options and arguments. Thus, when a
change to the fitting is made which affects this constraint
information, the constraint information in the fitting
knowledge base t'de must be updated. Thereafter, when the
fitting is parsed, the updated constraint information will be
used.

The third type of constraint information is represented
directly as C code. This flexibility is needed as there are
certain forms of constraints among options which are not
easily represented in general languages or may occur so
infrequently as to be impractical to support in the general
case. This type of constraint information is contained in an
explicit C function, whose name is specified in the fitting
knowledge base file. When changes to the fitting impact
this information, the code relevant code must be modified,
compiled, and re-hnked.

27

Another type of knowledge encoded in a flexible fashion
is the runtime models. This information indicates how
much time each processing step will take as a function of
parameters including: the option settings, the number of
data records in the dataflow, and the computer being used.
Fitting models to cover new fittings can be constructed in
two ways. First, existing runtime models can be used as
templates. In this case creating a runtime model for a new
fitting coresponds to filling in the appropriate parameters in
the model. Second, a new fitting model can be created
from scratch (and would serve as a potential template for
future fittings).

Discussion

The current prototype version of PIPE was completed in
July 1991. It is implemented in CommonLISP and
LISPView and runs on Sun workstations. It operates as
described in this paper with the exception that it does not
distinguish between columns accessed for different
computations in a fitting (i.e. it only determines the set of
columns used to compute all of the new or modified
columns). For instance, suppose the runstat fitting uses
column bx to create column rabx and also uses column by
to create column raby. The current implementation will
only be able to state that the the fitting uses columns bx and
by to create columns rabx and raby. In contrast, the new
implementation will be able to isolate bx as the column
used to create column rabx, and by as the column used to
create column raby. Also, the current prototype version
operates on actual blueprint files but is not integrated with
Master Plumber or MPTOOl, a menu driven interface for
blueprint construction in Master Plumber.

Work is underway on the deliverable version of PIPE.
This version is being implemented in C++, and is expected
to be completed in May of 1992. The deliverable version
of PIPE will use the more refined dependency
representation described in this paper. This version will be
integrated with Master Plumber and MPTool, and is
intended to be delivered to and used by IGPP personnel at
UCLA. This version of PIPE will also incorporate
feedbackuponthe"lookand feel"oftheinterfacespecified
by IGPP personncl.

There are numerous relatedprojectsin providing
intelligentassistancein scientificcomputing. The
Kincticist'sworkbenchprojectatMIT [Abelsonetal.1989]

targetsmodellingand analysisof dynamicsystems.The
SINAPSE system[Kantetal.1990]assistsinconstruction

ofnumericalmodelsfordatainterpretationbutisspecific
to seismicmodels representedas finitedifference
equations.The Reason system [Atwood et al.1990]

supportsanalysisof highenergyphysicsdata(andisa
dataflowsystem). Finally,the ScientificModeling
Assistantproject[Keller1991] addressessupportto
facilitatedevelopmentofscientificmodels.

Chlen

Summary

This paper has described a system to assist in the
development of scientific data preparation programs and
discussed issues in design for maintainability. This issue of
maintainability was particularly important because the
processing modules (fittings) are constantly evolving due
to changing scientists' needs. In order to maximize
maintainability of the constraint knowledge base,
information for each fitting is encapsulated in a fitting
knowledge base file and as much as is practical, constraint
information is represented in a general declarative fashion.

Acknowledgements

This work was performed by the Jet Propulsion laboratory,
California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.

References

[AbeIson et al. 1989] H. Abelson, M. Eisenberg, M.
Halfant, J. Katzenelson, E. Sacks, G. Sussman, J. Wisdom,
and K. Yip, "Intelligence in Scientific Computing", Comm.
ACM, 32(5):546-562, May 1989.
[Atwood et al. 1990] W. Atwood, R. Blankenbecler, P. F.
Kunz, B. Mours & A. Weir, "The Reason Project",
Stanford Linear Accelerator Technical Report #SLAC-
PUB-5242, April 1990.
[Chien et al. 1992] S. Chien, R. K. Kandt, R. Doyle, I.
Roden, T. King, and S. Joy, "PIPE: An Intelligent
Scientific Data Preparation Assistant", Proceedings of the
International Space Year Conference on Earth and Space
Science Information Systems, Pasadena, CA, February
1992.

[Kant et al. 1990] E. Kant, F. Daube, W. MacGregor, J.
Wald, "Synthesis of Mathematical Modeling Programs",
Schlumberger Laboratory for Computer Science Technical
Report Number TR-90-6, February 1990.
[Keller 1991] R. Keller, "Building the Scientific Modeling
Assistant: An Interactive Environment for Specialized
Software Design", Technical Report FIA-91-13, NASA
Ames Research Center, Moffett, Field, CA, May 1991.
[King & Walker 1991] T. King and R. Walker, "The
UCLA Data Flow System," Technical Report #3522,
Institute of Geophysics and Planetary Physics, University
of California at Los Angeles, CA 1991.

28

Dankel

GATOR: Requirements Capturing of Telephony Features

Douglas D. Dankel II
ddd@cis.ufl.edu

Wayne Walker
ww0@cis.ufl.edu

E301 CSE, C.I.S.
University of Florida

Gainesville, FL 32611
(904) 392-1387 (Office)
(904) 392-1220 (FAX)

Mark Schmalz
msz@mosquito.eis.ufl.edu

I. Introduction

During the past twenty years the
telecommunications industry has become
increasingly dependent upon software-
controlled switching systems. The software of
these systems automates the billing of long
distance calls, supports direct dialing of
overseas calls, and provides features (e.g., call
waiting, call forwarding) that many people
consider essential components of everyday life.
While telephony software has become both very
large and complex in function and structure,
the methods of software description have
changed little over the past two decades. All
existing characteristics and features as well as
any modifications or additions to this software
are described through natural language
requirements specification documents.

These documents present a real dilemma
to both the developers and customers. While
these documents are essential to describe of the

functionality of telephony features, the
ambiguity and uncertainty inherent within
natural language often leads to
misinterpretations which can severely impact
the resulting implementation of the
functionality, the user acceptance of these
features, and/or the development cycle.

_'_We are developing a natural language-
based, requirements gathering system called
GATOR (for the GATherer Of Requirements)
that assists in the development of more
accurate and complete specifications of new

: telephony features. GATOR interacts with a
feature designer who describes a new feature,
set of features, or capability to be implemented.
The system aids this individual in the
specification process by asking for clarifications
when potential ambiguities are present, by
identifying potential conflicts with other
existing features, and by presenting its
understanding of the feature to the designer.
Through user interaction with a model of the
existing telephony feature set, GATOR

constructs a formal representation of the new,
_"to be implemented feature. Ultimately
GATOR will produce a requirements document

:and will maintain an internal representation of
this feature to aid in future design and

specification.

This paper consists of three sections that
describe (1) the structure of GATOR, (2) POND,
GATOR's internal knowledge representation
language, and (3) current research issues. • ,

2. The Structure of GATOR

GATOR consists of three major
components, illustrated in Figure 1:

1. The User Interface (consists of the
Parser, Lexical & Grammatical
Knowledge Base, Predicate Generator,
and Response Generator) accepts

natural language requirements
descriptions ana reports its
understanding of these requirements to
the user. Additionally, the User
Interface answers user queries
regarding the system's understanding of
a feature and requests clarification of
input which may be ambiguous or may
contain recognizable errors.

2. The Command Interpreter
(consists of the Interpreter) receives
information and commands from the user
interface, and issues queries and update
instructions to the Knowledge Base/Data
Base. This information specifies actions

to be taken by the telephone switching
circuits and software (e.g. The
Directory Number is always transmitted
to the terminating office as a part of the
Initial Address Message."), provides

structural/organizational knowledge
(e.g., Calling Number Delive,ry
Blocking (CNDB) is a CLASS feature.),

or describes act!ons for displaying
information (e.g., Display a call with
CNDB and Three-way Calling (3WC).),

29

locating - info_ation within the
representation (e.g.; 'TChat are the parts
of a call?"), creating new knowledge that
must be stored (e.g., "After the access
code is entered, it is checked for

validity."), or ,, modifying existing
knowledge (e.g., The check for CNDB

validity is made after the access code is
verified as a valid code.).

3. The Knowledge/Data Base is a
repository of information about the

eneral structure of a call, existing
atures, and the new feature being

defined. It consists the three levels,
described in the next section.

Dankel

3. Knowledge/Data Base

The Knowledge/Data Base contains specific
knowledge of the components of a call and all
existing features. It was built using POND
[DANK92] (the Pantological Organization of
New Delineations), a knowledge representation
structure based on the family of KL-ONE
languages [BRAC85, BRAC89, WOOD90].
While most of the KL-ONE languages divide
knowledge into two partitions, called the
Terminological Box or TBox and the
Assertional Box or ABox, POND consists of
three distinct knowledge levels as shown in
Figure 2:

..froprtate f

Generator

&

Icates

IInterpreter

Predicate
Generator

POND KnowledgeRepresentation Interface [

/
U ares & QuerlesfI -

S

Uscr

N.L.

about _

U_o_ --.,

I

Grammatical /

l Lexieal
Data

!

Granm_Ueal

Knowledge

Q_Ueries &
pdates

Figure 1. Internal System View

3O

C
0
N
C
E
P
T
S

Hierarchy of Basic Knowledge Concepts

- Pre-constructed
- Built by System using Composition

Provides Structure for Instance Knowledge

Dankel

I
N
S
T
A
N
C
E
S

Hierarchies of Knowledge Describing: A

- Basic Call [\
- Various Feature _d [\

Feature Classes / _

- Pre-constructed Call i
- User-DeIkned Dcserlpdon.

Hierarchy

Feature

Hierarchy

M

0
D
E
L
S

Constructed Model of a Call with
Particular Feature(s) Used to:

- Reason About Call Structure
- Simulate Call Actions

- Develop Requirements Document

Model

Figure 2. A Conceptual Diagram of the Knowledge Levels within the Call
& Feature Knowledge Base

I. Concepts. High-level conceptual
knowledge used to structure all of the
knowledge within the knowledge base_

2. Instances. Specificdescriptions of
the components of a call, existing
features, and the dynamic specification
ofthe feature under definition.

3. Models. A constructed model of a

articular call containing specific
atures.

A short descriptionofeach of these components
follows.

3.1. Concepts

Knowledge on the Concept Level provides a
structure for the knowledge on the Instance

and Model Levels. Conceptual knowledge
includes definitions off

1. The concepts that represent
telephone call andfeature components.
Each concept contains several slots (i.e.,
:features-) that define the type and
number of permitted values. Concepts
can additionally include references (i.e.,
:ako) to other concepts on which they

are based and applicable constraints
(i.e.,:annotation).

2. Special slots,or attributes,of the
concepts,which definea set of restricted
values or define relationships between
concepts. For example, the category
slotdefines a restrictedset of allowable

slot values, while the children and

31

_trent slots define relationships
ween slots.

3. Temporal relations [ALLE85]
required for specifying temporal
ordering within instances and models.

3.2. Instances

The Concept Level defines knowledge
fundamental to instances on the Instance
Level. A particular concept associates with
each instance providinga structure and certain
internal values for the instance. Instance
knowledge includes descriptions of call and
feature components. For example, a call
initially decomposes into the logical
components (instances) of go-off-hook,

make-call, and disconnect-call. Each of
these components is, in turn, further
decomposed on the Instance Level. The
temporal relationships associated with each

Dankel

instance define the instance's location to the
other instances.

Instance Level knowledge also includes
descriptions of the various telephony features.
Each feature, such as Three-Way Calling
(3WC) and Calling Number Delivery Blocking
(CNDB), decomposes into a structure similar to
the decomposition of a ca i I shown in Figure 3.
These decompositions detail the individual
operator actions that enable each feature,
resultant system actions, and temporal
relationships between feature components and
ca 11 components.

Besides modeling individual features, the
feature descriptions contain restrictions and
special interactions between features. For
example, since the features of 3WC and CNDB
are compatible but interact, the interaction
must be specified. See Figure 4.

CNDB

Part-of Links

..... Temporal Links
no

I I

.... p n uonrestricted flag

I I
I I I

I I -
I l I

i loor
treatment announcement I I announcement

continue
call

Figure 3. Decomposition of CNDB

32

Dankel

I ']l_-ee-way

/

: ,"

s"

.. °."

................Corn _po:ted-ofLinks
Part-of Links

CNDB Interaction I

_u.tlo,,lI csvB_I I cNvB I l_vcco=_l I CND8
[.,c II I _,Cod_ I I '_n_ I I _'_" I I _,,,t-_,_,

Figure 4. Feature Interaction with the Feature Hierarchy

Part-oflinks

_-] Call Nodes _ Temporal l_nks

I HG°_°k [........... lVlal_-t.;al, [.......... I°ft.[_ _ I M.:._,"'.. [] Disc_ect-]

Figure 5. Model Representation of a Call with C_B

3.3. Models

The Model Level facilitates the building of
a description of a particular telephone call
exhibiting specific features. While the
knowledge on the Concept Level changes very
little (due to the operation of Composition
[DANK92]) and the primary goal of GATOR is
for the user to build Instance Level knowledge
of some new feature, the Model Level is
significantly more dynamic.

While operating GATOR, the user can
request a description of a telephone call which
exhibits a particular, feature or set of features.
The system examines its Instance Level
knowledge and retrieves the appropriate
instances representing a general call and the
set of features of interest to the user. These
instances combine to develop a model of the

requested call type as shown in Figure 5. The

instance ordering depends upon any explicit or

implicit interactions and dependencies that
ernst between features and the feature

specification order.

Upon completion, models are presented to
the user. The display of a model allows_ the
user to verify that knowledge represented on
the Instance Level is correct and complete.
Errors detected generally result from
incomplete or incorrect specifications on the
Instance Level. Each must be identified and

corrected by the user. After locating and
correcting an error, the user can verify that
appropriate corrections were made by creatin_
another model and examining its revisea
structure.

4. Status and Plans

Our current research
requirements gathering includes:

in automated

33

1. Improvements and extensions to
POND. POND, as originally,
constructed, provides a ricn
environment for specifying set/member
and part/sub-part relations. While the
system currently includes the ability to
specify temporal information, it does not
provide a unified temporal reasoning
component or subsumption, each of
which require further definition and
incorporation.

2. Expansion of the knowledge base
to include additional feature
knowledge. Currently, the feature
knowledge base consists of a limited set
of telephony features. This knowledge
base needs to be significantly expanded
to provide an adequate environment for
developing new features, specifying
feature interactions, testing model
building, and expanding the natural
language interaction.

3. Development of a Specification
Document Generator. Once feature

knowledge has been captured within
GATOR's knowledge base, it must be
made more accessible to developers,
implementors, and customers. An
output generation system is currently
under design with which the user will be
able to produce a feature requirements
specification document.

4. Extension of the Natural

Language Capabilities. The current
system is limited in the range of input
which is can process. We are expanding
the syntactic and semantic capability of
the system to more closely model the
range of language used by designers
when they describe a feature's
structure.

While our research has concentrated on
telephony, our approach is applicable to a wide
range of domains. An initial examination of
telephony features has shown that GATOR can
capture 80 to 90 percent of the func_tional
requirements of a feature Contained in a typical
specification document. We expect that the use
of such an automated tool, in this and other
domains, will significantly reduce ambiguities
and uncertainties within specification
documents, thereby decreasing development
time and expense.

5. References

[ALLE85] Allen, J., Maintaining Knowledge
about Temporal Intervals, in Reading m
Knowledge Representation, edited by
R. J. Brachman and H. J.. Levesque,

Dankel

Morgan Kaufman, Los Altos, CA, pp. 509 -
521, 1985.

[BRAC85] Brachman, R. J. and J. G. Schmolze,
An Overview of the KL-ONE Knowledge
Representation System, Cognitive
Science, Vol. 9, No. 2, pp. 171 - 216, 1985.

[BRAC89] Brachman, R. J., A. Borgida, D. L.
McGuinness, and L. Alperin Resnick, The
CLASSIC Knowledge Representation
System, or, KL-ONE: The Next Generation,
Workshop on Formal Aspects of
Semantic Networks, Santa Catalina
Island, CA, 1989.

[DANK92] Dankel, D. D., W. Walker, and M.
Schmalz, POND: A Knowledge
Representation Language which Facilitates
Requirements Capturing, Working Paper
submitted to the 12th International
Avignon Conference, 1992.

[WOOD90] Woods, W. and J. Schmolze, The
KL-ONE Family, TR-20-90, Center for
Research in Computing Technology,
Harvard University, Cambridge, MA, 1990.

34

AAAI-92
D'lppollto

,_oH] 15, 1992

Modeling Software Systems by Domains

Richard D'Ippolito and Kenneth Lee N 0
Software Engineering Institute /3

Carnegie Mellon University

The Software Architectures Engineering (SAE)
Project at the Software Engineering Institute (SEI)
has developed engineering modeling techniques that
both reduce the complexity of software for domain-
specific computer systems and result in systems that
are easier to build and maintain. These techniques
allow maximum freedom for system developers to
apply their domain expertise to software.

We have applied these techniques to several types of
applications, including training simulators
operating in real time, engineering simulators
operating in non-real time, and real-time embedded
computer systems. Our modeling techniques result
in software that mirrors both the complexity of the
application and the domain knowledge
requirements. We submit that the proper measure of
software complexity reflects neither the number of
software component units nor the code count, but
the locus of and amount of domain knowledge. As a
result of using these techniques, domain knowledge
is isolated by fields of engineering expertise and
removed from the concern of the sotiware engineer.
In this paper, we will describe kinds of domain
expertise, describe engineering by domains, and

provide relevant examples of sot_ware develope_l for
simulator applications using the techniques. L

Separation of Concerns by Domain

Expertise

We classify computer system developers by expertise
and role using three categories: systems analyst,
domain engineer, and software engineer. Systems
analysts are responsible for defining the policy,
strategy, and use of the application to be developed,
e.g., the concept of operations, and the training
requirements. Domain engineers are the modelers
responsible for determining which real-world
entities need to be modeled to satisfy the policy,
strategy, and use defined by the systems analysts.

This work is sponsored by the U.S. Department of Defense.
The SAE project members are Richard ITIppolito, Kenneth
Lee, Charles Plinta, and Jeffrey Stewart.

Domain engineers determine if and how the entities
selected to be modeled can be specified within the
constraints imposed by the sottware engineers.
Finally, they express the models in the language
natural to their domain. Software engineers are
responsible for defining a consistent software
structure into which the domain expertise will go,

and providing translations from the domain-specific
=

natural languages into executable software.

It is not generally possible to reduce the amount of
domain knowledge required to either develop or
enhance a software-dependent system. To borrow a
phrase from Albert Einstein, our system models
should be as simple as necessary, but no simpler. If
we can separate the design of the models from the
design of the software, we can separate the tasks of

__e domain engineer from the tasks of the software
engineer. This would allow the software engineer to
make simplifications in the software packaging and
execution structures which would not affect the way
the domain engineer expresses the models. It would
also allow the domain engineer the freedom to

= design model algorithms without requiring
specialized software knowledge. In effect, each
engineer is relieved of the burden of becoming an
expert in other domains of expertise.

We have found that this separation of concerns by
domain expertise is what enables us to simplify the

- overall design process and gain a more enhanceable
(maintainable) computer system.

Engineering by Domain

In our vocabulary, a domain is a specific field of
engineering expertise. Engineering expertise is
classified by families of models and related sets of
practices for applying the models, not by the
problems to which the expertise is applied. Common
classifications of engineering domains are: electrical,
civil, nuclear, mechanical, chemical, and (the as yet
undefined field of) software engineering. An
application area consists of related problems that
can be described using models from a variety of
domains. Examples of application areas are
command and control systems, factory automation

35

AAAI-92

systems_ embedded systems, and simulator
systems'. Thus, a flight simulator application
requires domain expertise in aeronautical

engineering, electrical engineering, mechanical
engineering, and so on.

Models are reusable, adaptable, engineering assets
because they are patterns expressed in their most

general form and are scalable, usually through
templates. A good example of a templated model is a
dress pattern, where all of the cut-lines are given by
dress size.

We classify models using two major types, which we
call product mode/s and practice models 2. The
product model, when scaled, results in a component
of the delivered product. The dress pattern is an
example of a product model, as is the set of
engineering drawings for an I-beam or a DC motor.

Clearly, the dress pattern is no good without the
practice know-how of fabric and thread selection,
cutting, stitching, hemming, pleating, and all of the
other activities needed to produce the final product.
As a commercial venture, dress-making would
require in addition to the product models the
assembly-line models, materials-handling models,
business and economic models, and so on. All of

these models are what we call the practice models,
because they define the established body of practice
around the product models. Interestingly, the more
mature an engineering discipline, the more the
product and practice models will be public. In a
mature discipline, the business enterprise seeks
value added through system composition (model
application), not model creation or refinement,
which are seen as adjunct activities to be

undertaken only when necessary to complete an
application.

In the construction industry (civil engineering and
architecture), for example, all engineering firms

1. As an example, consider the domain of a rope where
force is transmitted through tension in a flexible
member (try using a rope under compression to push
an object). Mechanical engineers have no problem
applying the same rope design models, i.e., the
domain expertise, to suspension bridges, elevators,
cranes, and fishing rods, yet the application areas will
seem quite unrelated to those not proficient in the
domain.

2. We have deliberately avoided the overloaded term
process, preferring to reserve it for its traditional
engineering reference to a controlled activity within a
plant or machine. We use practice to refer to those
engineering activities that support product
development.

D'ippolito
April 15, 1992

have access to the same materials, material costs,
implementation practice (labor), and labor costs. In
these cases, the firms compete on system
composition, where success is meeting the
customer's needs with a timely and economical
design. Electrical engineers do not manufacture
their own wire, integrated circuits, resistors, and
other electrical and mechanical components, but
compete on the basis of using these components
efficiently to satisfy a need. The information on the
components themselves is found in engineering
databooks (usually manufacturer's publications),
and engineering handbooks which are compendia of
the practice knowledge. Both require an experienced
practitioner with an in-depth education to interpret,
however, as one cannot learn and practice an
engineering discipline solely from the handbooks.
With that education, however, the use of the
handbooks will go a long way toward guaranteeing a
successful routine (precedented) design. The use of

the handbooks are not intended to support
innovative design.

SAE has been very successful in applying models
across various software application areas because
our models have captured patterns of structure and
behavior at the domain level. The Object.
Connection.Update (OCU) model 3 is a good example
of a building block that allows the domain engineer
to capture the patterns of structure and behavior of

the real-world subsystems being modeled 4.
Originally created for flight simulators, the OCU
was immediately applied to the design of the seeker
subsystem of an anti-tank missile and is now being

used in the design of subsystems for engineering
simulators. What made these applications of the
model possible was the capturing of the basic
pattern of subsystem operation into a few
standardized architectural elements 5 (models), each

responsible for a particular subsystem task
Complexity is reduced because any subsystem can
(and must) be expressed using only these basic
elements, thus constraining the choice of solution

structures available for consideration. Systems
analysts, domain engineers, and software engineers

3. The seminal report on the OCU is CMU/SEI-88-TR-30,
An OOD Paradigm for Flight Simulatora, 2nd
Ed/t/on. This report, however, is dated relative to
current SAE experience and is being updated. We are,
also, in the process of writing a series of white papers
that will fully describe the OCU and the engineering
of soRware-dependent systems.

4. In our terms, the total application is composed of
subsystems so that those who wish may apply the
term system to the whole.

36

AAAI-92

are ableto make use of the OCU as the basis for

their separation of concerns; the OCU is the
framework that ensures all activities will work

together.

OCU Subsystem Examples

The OCU, produced by the soitware engineers,
guides the systems analysts and domain engineers
by providing the fundamental pattern of analysis

and the structure for model capture. The systems
analysts, with the foreknowledge that the ultimate
soRware implementation will be subsystems
captured by the OCU, will be guided to view the

5. The basic elements are controllers, objects, import

areas, export areas, surrogates, and device handlers.

Controllers are the loci of subsystem connection and

operation information; objects provide the subsystem

services; import areas provide the subsystem with a
view to the external world; export areas provide a

window into the subsystem state for the external

world; surrogates translate information from external

formats to internal formats and back; and device
handlers handle external-world communications. All

instances of each of these elements are of the same

form (implementation structure).

Subsystem Form

Subsystem Name:

Description:

Overview of RequIrements:

Objects:

Imports:
Name Type Soume

Exports:
Name Type Destination

Update Algorithm:

D'lppolito
April 15, 1992

Ob_cts

Figure 1: OCU Subsystem Diagram

application as a collection of subsystems. The

domain engineers, with the same foreknowledge,
will be guided to compose models as collections of
subsystems, each composed of objects organized by a
controller. We will show in the following examples,
taken from a simulator application, how the OCLT
provides this guidance.

Before we describe how the OCU provides this
guidance, we will provide more detail about the OCU

Controller Template

package <subsystem name>_ControUer is

-- every subsystem controller has an update procedure
-- called by the executive
procedure Update;

end <subsystem_name>_Controller;

with SEU; -- global types
with <subsystem_name>Types; - the 'local' types
with <subsystem_name> Imports;
with <subsystem_name>Exports;

- aU objects that am part of t.J'_ssubsystem
with <Object_l>_Manager:
with<C_ect_2>_Manager;
with <Object_3>_Manager;
with <Object._4>_Manager;
with <Object 5> Manager;

package body <subsystem name>.Control|er is
-- local variables declared here

type <type1>;
type <type2>;

procedure Update is
begin

- conUoller update algorilhm goes here
end Update;

end <subsystem_name>_ControUer;

Figure 2: Subsystem Specification Form and Controller Template

37

AAAI-92

itself. Wehave found that the general patterns of
operation of subsystems in any domain can be
captured in a universal structure. These patterns

involve separation of mission from operation,
localization of state, activation and control of
subsystems, and transfer of information. Separation
of mission from operation is derived from a principle
that is fundamental to all human and machine

behavior: the mechanism of making decisions should
be separate from the mechanisms used to carry out
the decisions. Localization of state is derived from

the fundamental software engineering principle of
information hiding. In the OCLT (Figure 1), the
controller is the locus of decision making, and the
objects provide the service mechanisms and the
localization of state.

We knew that we could reduce the software

complexity by repeated use of a small number of
elements, a standard method of information
transfer, and a standard method of control. We also

knew that a maintainable system required closely
related services be isolated from other, unrelated,
services. In software engineering terms, this means
coupling between unrelated entities is minimized,

Sonar Subsystem Form

D'lppolito

April 15, 1992

cohesion between related entities is maximized, and
maintainability is enhanced by repeated use of the
same patterns. In the OCU, isolation and

information transfer is provided by the import and
export areas. Cohesion among the objects in a
subsystem is enforced by having the controller be
the sole entity that implements connections to
objects. We have found this set of elements: objects,
controllers, export areas, and import areas, to be
sufficient for describing any real-world subsystem.

We, as software engineers, have implemented the
elements of the OCU in Ada. We have captured the
patterns with a subsystem specification form and a
set of element code templates.

The OCU is applied with the aid of the subsystem
specification form and the element code templates,
subsets of which are shown in Figure 2 (only the
controller template is shown). The subsystem form
provides a standard way for the systems analyst and
domain engineers to record the specifications of
subsystems in terms of the known compositional
elements of subsystems, as shown in Figure 3. The
subsystem templates provide a standard way for the

Sonar Controller Code

Subsystem Name: Sonar

The sonar aubsys_m ts umd to locaten_ne-likeobjects.Itsblnsrnit power
leveland pulm repptJdonrate are contmiledbytheconsole operator.The
receivedI_naJs are sont to _ console.

Overviewof Reoulrements:
Referencu: SWSTO-EO-MMO-020

SonarSoundhead
Tilt PotonUomet_

FlowControlsorvo_Vidvo
Rotwy Actuator

Reu_C_t
Xmit_Lm_ Cm_
Slew l_to._.Limlt._Cm<:l
m__mm_t._Cm+
Sormr_Received SiOmd

Hydmur¢_PreMme_Available

Sonar_Tilt_PotentJometer_Voltage
Compo_teVideo
SonarTransmittedSignal

pp. 3-5
pp.7- d
FO-8
FO-12
Te4ernetryData Format
MNV-EngtnsedngWorksheet
Sclxlmalic Slide

Volt= Elecvonic=Unit
Xmit_Le_ ElectronicsUnit
Slew_Reto_Umit ElecVonicsUnit
Range_Reset ElectronicsUnit
Sormr._Signal Environment
Pulso Rep_on_Rate ElecVor_.=Unit
Hydmulic_Pmuure HydraulicSystem

Volt= ElectronicsUnit
so_'_V_eo_Signal Electronic=Unit
Sonar._S_gn=l Environment

packageSonarContro_ is

- every subsystem controller has an update procedure
- called by the executive
Ixocedure Updato;

end Sonar_Controller;

with SEU; - global types
wl_ Sonar_Types; - the 'local' types
with Sonar_Imports;
wllhSonar_Exports;

- a, objectsthatarepartofIt_ subsystem
wi_ Flow_ControLServo_VaJve__;
wireRota,'y_Actua_xManager;
wt_SonarSoundhead_Manage_;
withSonar_Tlit_Potentlometer_Manager;

packagebodySonar_ControllerIs

procedureUpdateIs
begin

Row_ControLServo_Vaive_.Manager.Updato(
Sonar_Imports.Rate_Command,
Sonar_lmports.Hydraultc..Pressure..AvaJlable,
Sonar_Expo_s.Controlled_Pressure);

Rotary...Actuat,x_Manger.Upda_
Sonar_Exports,Controlled_Pressure,

Sonar_E xports.Contmlled _Torque);

Figure 3: Completed Subsystem Specification Form and Controller Template (truncated)

38

AAAI-92

sot_wareengineerto mapthe designof the models,
captured on the forms, directly into an Ada
implementation of the elements, also shown in
Figure 3.

We can now describe how the OCU provides
guidance to systems analysts and domain engineers.
The systems analyst, in consultation with the
customers and users, analyzes the application to
identify subsystems consistent with the concept of
operation and patterns of use of the application.
Each of the subsystems is assigned a specification
form and passed to the appropriate domain engineer
for completion. In addition to the identification of
subsystems, the systems analyst will provide the
domain engineer with a mapping of the training

requirements expressed in terms of model fidelity,
operational modes, and malfunctions.

Figure 4 shows a sonar subsystem schematic from a
Navy remote-controlled, minehunting, undersea
vehicle. This diagram was constructed by sonar
engineers and represents the real-world sonar
subsystem. The schematic captures the knowledge
needed by the domain engineer to model how the

D'lppolito

April 15, 1992

sonar subsystem is constructed. For the construction
of a complete simulator, the systems analyst will
gather representative schematics and provide them,
with the specification forms, to domain engineers.

A domain engineer receives a partially completed
form and some subsystem schematics from the
systems analyst. The domain engineer then models
the real-world subsystem to match the fidelity
requirements expressed on the form. Each element
of the model is mapped to an element of the OCU,
the element models are parameterized to realize the
specified operational modes and malfunctions, and
the parameterized models are captured in a
language natural to the domain engineer. The
domain engineer completes the specification form by
recording the mapping and forwarding the form,
containing the natural language description of the
parameterLzed models, to the soRware engineer.

Figure5 shows a representation of the sonar
subsystem as modeled by the domain engineer. The
objects remaining are those sufficient to simulate
the subsystem to match the fidelity requirements,
modes, and malfunctions. Some connections to other

Legend
1. Segment gear
2. Sonar moundhead a_embly
3. Sonar mounting drive gear
4. Sonar mounting bracket
s. Bearing
6. Sarew
7. Index holes
8. Ih_tentiometermounting clamp
9. Sonar position indicating potentiomotor
10. Set _rew

11. Adapter
12. Sonar clamp retaining m_ew
13. Shear plate
14. Actuator mounting screw
15. Actuator mount

16. Alignment spring pin
17. Rotary ac'cuator

7

Figure 4: Sonar Subsystem Schematic

39

AAAI-92
D'lppolito

April 15, 1992

Comparator
sonar tilt

cmd

(+/- Volts)

transmtt level
pulse rap. rate
slew rate limit
range reset

(E)
(Env)

I
I

Sonar
Soundheacl

tranemit

-" recleve

position

composite video

sonar UIt
Electroni_ angle
Subsystem (+/- volts)

---- ,,,

--- =.oun=.m
(E) = Energy II

(Env) = Environment II
(p) = Pressure I!

Figure 5: Modeled Sonar Subsystem

Sonar Tilt
Potentiometer

(E)

subsystems on the undersea vehicle are shown as

well. Figure6 shows an OCU diagram for the
modeled sonar subsystem.

Conclusions

Using a fixed set of templates means that the
interface mechanism between elements is known

ahead of and independent of model design. All
subsystems look (structurally) alike, and each
subsystem can be made to lie within a single
domain, with communication between subsystems
also being handled by common structures. This
means that the software engineer can proceed with
executive and test harness design. It also means
that the model specifiers can work independently in
their own domains, knowing that their models will
fit into the completed system.

Thus, a completed simulator application will consist

of as many instances of the OCU subsystem model
as required by the use and fidelity requirements.
Space limitations prevent us from describing the
additional elements used to compose the simulator

executives, but the same techniques and the OCU
are used there as well.

We conclude that composition by domain-specific
subsystems allows maximum freedom for the

systems analysts, domain -engineers, and soRware
engineers to apply their expertise, and that having
common software structures results in software

applications that are more easily understood and
enhanced, i.e., systems which have reduced

complexity. ::_

Sonar I SonarTilt l I R°tary
Soundhesd Ip°tentl°meter I ServoValve l Actuator

Object I Oblect I Object I Object

Figure 6: Sonar Subsystem Diagram

- 40

EIIman

N93-17507

Approximation, Abstraction and Decomposition in
Search and Optimization

Thomas Ellman
i

Department of Computer Science

Rutgers University

ellman_cs.rutgers.edu

1. Synthesis of Search Control

Heuristics

One portion of my research has focused on auto-

matic synthesisof search controlheuristicsfor con-
straintsatisfactionproblems (CSPs). Ihave developed

techniquesfor automaticallysynthesizingtwo types of
heuristicsforCSPs: Filteringfunctionsare used tore-

move portions of a search space from consideration.
Evaluation functions are used to order the remain-

ing choices.My techniquesoperate by firstconstruct-
ing exactlycorrectfiltersand evaluators.These oper-
ate by exhaustivelysearching an entireCSP problem

space. Abstracting and decomposing transformations
are then appliedin order to make the filtersand eval-

uators easierto compute. An abstractingtransforma-

tion replacesthe originalCSP problem space with a
smaller abstractionspace. A decomposing transfor-

mation splitsa single CSP problem space into two

or more subspaces, ignoringany interactionsbetween
them. Both types of transformationpotentiallyintro-
duce errors into the initiallyexact filtersand evalua-

tors. The transformationsthus implement a tradeoff

between thecost ofusingfiltersand evaluators,and the

accuracy of the heuristicadvice they provide. I have

shown these techniques to be capable of synthesizing
usefulheuristicsindomains such asfloor-planningand

job-scheduling,among others.(See [Ellman, 1992].)

2. Synthesis of Hierarchic Problem

Solving Algorithms

Another portion of my research is focused on automatic
synthesisofhierarchicalgorithmsforsolvingconstraint

satisfactionproblems (CSPs). Ihave developed a tech-

nique forconstructinghierarchicproblem solversbased
on numeric intervalalgebra.My system takesasinputs

a candidate solutionspace S and a constraintC on

candidate solutions.The solutionspace S isassumed
to be a cartesianproduct R n where R isa setof inte-

gers.The constraintC isassumed tobe representedin

terms ofarithmetic,relationaland boolean operations.

From these inputs the system constructsan abstract

solutionspace SG as a cartesianproduct R_ where Ra

isa setofdisjointintervalsthat coversR. The system
alsoconstructsan abstract constraintCa on abstract

solutions.The abstractconstraintCa isobtained from

the originalconstraintC by replacingordinary arith-

metic operations with intervalalgebraoperations and

replacingboolean operations with boolean set opera-
tions.The abstra_t space Sa and abstract constraint

Ca are then used to build a hierarchicproblem solver

that operates in two stages. The firststage finds an
abstractsolutionin the space Sa of intervals.The sec-

ond stage refinesthe abstractsolutioninto a concrete
solutionin the originalsearch space S. I have shown

this approach to be capable of synthesizingefficient

problem solversindomains such as floor-planningand
job-scheduling,among others. (See [Ellman, 1992].)

3. Decomposition in Design

Optimization

Another portion of my research isfocused on auto-
matic decomposition ofdesign optimizationproblems.

We are using the design of racing yacht hullsas a
testbed domain for this research. Decomposition is

especiallyimportant in the design of complex physi-

cal shapes such as yacht hulls. Exhaustive optimiza-
tion is impossible because hull shapes are specified

by a largenumber of parameters. Decomposition di-
minishes optimizationcostsby partitioningthe shape

parameters intonon-interactingor weakly-interacting
sets. We have developed a combination of empiri-

cal and knowledge-based techniques for finding use-
ful decompositions. The knowledge-based method ex-

amines a declarativedescriptionof the function to be

optimized in order to identifyparameters that poten-

tiallyinteractwith each other. The empiricalmethod

runs computational experiments inorder to determine
which potentialinteractionsactuallydo occur in prac-

tice.We expect thisapproach to finddecompositions
that willresultin fasteroptimization,with a minimal

sacrificein the qualityof the resultingdesign. Imple-

mentation and testingofthisapproach are currentlyin

progress.(Iam pursuing thisresearchincollaboration

with Mark Schwabacher.) (See [E11man el aZ., 1992].)

41

4. Model Selection in Design

Optimization

Another portionofmy researchisfocusedon intelligent

model selectionindesign optimization.The model se-

lectionproblem resultsfrom the difficultyofusing ex-
act models to analyze the performance of candidatc

designs. For example, in the domain of racing yacht

design, an exact analysis of a yacht's performance
would requirea computationally expensive solutionof

the Navier-Stokesequations.Approximate models are
thereforeneeded inorder diminish the costsofanalyz-

ing and evaluating candidate designs.In many situa-
tions,more than one approximate model isavailable.

For example, in the yacht design domain, the induced

resistanceof a yacht can be predictedby solvingLa

Place'sequation - an approximation of Navier-Stokes
- or by using a simple algebraicformula. The two ap-

proximations differwidely in both the costs of com-
putation and the accuracy of the results.Intelligent

model selectiontechniquesare thereforeneeded tode-

termine which approximation isappropriate during a
given phase of the design process.

We have attacked the model selectionproblem in

the context of hillclimbingoptimization.We have de-

veloped a technique which we call"gradientmagnitude
based model selection".This techniqueisbased on the

observationthat a highly approximate model willof-
ten sufficewhen climbing a steep slope,because the

correctdirectionof change iseasy to determine. On
the other hand, a more accurate model willoften be

requiredwhen climbing a gradual incline,because the
correctdirectionofchange isharder todetermine. Our

technique operates by comparing the estimated error

ofan approximation to the magnitude ofthe localgra-

dient ofthe function to be optimized. An approxima-
tionis considered acceptable as long as the gradient
islargeenough, or the errorissmall enough, so that

each proposed hillclimbingstep is guaranteed to im-

prove the value of the goal function. Implementation

and testing of this approach are currently in progress.
I am pursuin_ this research in collaboration with John
Keane. (See [Ellman etal.,1992].)

References

T. Ellman, J.Keane, and M. $chwabacher. The rut-

gets cap projectdesign associate.Technical Report
CAP-TR-6, Department of Computer Science,Rut-

gersUniversity,New Brunswick, hrJ,i992.

T. Ellman. Idealization-basedmethods for con-

straintsatisfactionproblems. Working Notes of the
AAAI Workshop on Approximation and Abstraction

ofComputational Theories (Forthcoming),July 1992.

Ellman

42

Eriksson

• N93-1750
Meta-Tools for Software Developmen anct

Knowledge Acquisition

Henrik Eriksson* Mark A. Musen

Medical Computer Science Group

Knowledge Systems Laboratory

Stanford University School of Medicine

Stanford, CA 94305-5479

"Man is a tool-using animal Without tools he is
nothing, with tools he is all."
Thomas Carlyle (1795-1881)

Abstract

The effectiveness of tools that provide sup-
port for software development is highly depen-
dent on the match between the tools and their

task. Knowledge-acquisition (KA) tools consti-
tute a class of development tools targeted at
knowledge-based systems. Generally, KA tools
that are custom-tailored for particular applica-
tion domains are more effective than are gen-
eral KA tools that cover a large class of do-
mains. The high cost of custom-tailoring KA
tools manually has encouraged researchers to
develop rneta-tools for KA tools. Current re-

search issues in meta-tools for knowledge acqui-
sition are the specification styles, or mela-views,

for target KA tools used, and the relationships
between the specification entered in the meta-

tool and other specifications for the target pro-
gram under development. We examine differ-
ent types of meta-views and meta-tools. Our
current project is to provide meta-tools that
produce KA tools from multiple specification
sources--for instance, from a task analysis of the
target application.

Introduction

Knowledge-acquisition (KA) tools are programs that
help developers to elicit and structure domain know-
ledge for use in application programs (e.g., in expert
systems). Typically, KA tools allow nonprogram-
mers who are specialists in some domain area to en-

ter structures relevant for the application program
without the aid of an intermediary who is proficient
in programming. Thus, KA tools are, in a way, code-
generating software-engineering tools for a restricted

type of software and for a particular group of users.
To increase the usability of KA tools, researchers in
knowledge acquisition have experimented with spe-
cializing the tools in various ways. For instance, KA
tools have been specialized to knowledge-acquisition

"On leave from the Department of Computer and
Information Science, Link6ping University, S-581 83
Link6ping, Sweden

43

methods, problem tasks, domains, and even appli-
cations. In most cases, specialized KA tools are re-
ported to be more effective than general ones, be-
cause the users are nonprogrammers familiar with
the domain terminology. In addition to those that in-
volve the elicitation of knowledge from experts, there
are approaches to KA tool support that rely on know-
ledge acquisition from texts, and there also are meth-
ods that incorporate machine learning from example
solutions.

Custom-tailoring KA tools can be a laborious
task. When the benefit of domain-specific KA
tools is compared to the effort of developing them,
the tool-development cost is often unacceptable for
small projects. Also, development of domain-specific
tools can in itself be a software-engineering problem.
These problems have been addressed with supportive
tools and, to a certain extent, with tool-development
methodologies. Just as code-generator writing sys-
tems can be used to produce code-generating tools,
me_a-_ools for knowledge acquisition can help devel-
opers to implement domain-specific KA tools. Sev-
eral meta-tools that generate target KA tools auto-
matically from specifications provided by the devel-
opers have been implemented by researchers in know-
ledge acquisition. Although KA tools are generally
intended for nonprogrammers, variants of such tools
can be used by programmers to increase software
quality and programmer productivity. A meta-tool
can be used to create the tool required by program-
mers.

An important aspect of a meta-tool is the speci-
fication strategy, or me¢a-view, for target tools that
the meta-tool provides to the developers. The meta-
view comprises the conceptual model of the target
tool that the meta-tool supports, as well as the spec-
ification language for target tools. Depending on the
view of target tools, several types of recta-views are
possible. Domain-specific tools for software develop-
ment are desirable in many situations. Meta-tools,
however, preferably should be domain-independent
so that they can produce domain-oriented tools for a
broad area of applications.

Much of the work in meta-tool support for know-
ledge acquisition is relevant for software engineer-
ing, especially approaches to domain-specific devel-
opment tools. If the design and implementation of
such domain-oriented software-engineering tools are

laborioustasks,meta-leveltoolsarecertainlyre-
quired.In this paper,wediscussalternativemeta-
viewsanddescribetheirimplementationindifferent
meta-tools. "

Background
Knowledgeengineeringandsoftwareengineeringare
partiallyoverlappingdisciplines.Moreover,toolsfor
knowledgeengineeringandcomputer-aidedsoftware
engineering(CASE)toolshavegonethroughsimi-
lar developmentstages,in thesensethat increas-
inglyspecializedtoolshavebeenconsidered.The
first-generationAI developmenttoolsweregeneral
andwereessentiallyprogramminglanguageswithin-
tegrateddevelopmentenvironments.Examplesof
suchtoolsareEMYCIN,KEE,ART_andS1. Only
skilledprogrammersandknowledgeengineerscould
usethesetools,sothetoolswereinaccessibleto do-
mainspecialistswhohadnothadextensivetraining
in computerandinformationsciences.

Simultaneously,investigatorsattemptedto devel-
opedtoolsthat acquiredexpertisedirectlyfromdo-
mainspecialist.Initially,theseKA toolswerealso
general.In the mid-1980s,thesegeneralKA tools
werefollowedby a secondgenerationof KA tools
thatwerespecifictoparticularproblemtasks--forin-
stance,to classification,configuration,orscheduling.
Evenif thescopeofthetoolisrestrictedtooneprob-
lemtask,however,nonprogrammersmayhavediffi-
cultyusingthetool [Marcus,1988].A thirdgenera-
tionof evenmorespecializedKA toolswastherefore
developed.Researchersstartedto experimentwith
domain-specificKA tools. Suchtoolsaredesigned
suchthat domainspecialistscanusewell-knowndo-
main conceptsin the tool dialog[Eriksson,1992;
Musenel al., 1987].

Domain-oriented KA tools can provide effective
support within their area, because they draw their
power from built-in domain concepts that users can

identify easily. However, the development of such
KA tools is costly, since the amount of programming
required to implement such domain-specific tools is
large in comparison to the scope of the tools' ser-
vices. There are three fundamental approaches to
this problem: (1) balancing tool generality versus
domain-orientation to achieve a reasonable trade-off

between utility and cost, (2) improving further gem
eral tools, and (3) reducing the cost of developing
domain-oriented KA tools (e.g., through technologi-
cal means).

We have chosen the third approach. Our goal is,
thus, to make it easier for developers to design and
implement tools tailored for their needs. Meta-tools
can help developers to create new domain-specific
tools as well as to custom-tailor existing tools for
a domain. There are two principal roles for meta-
tools in this approach: (1) to address the software-
engineering problem of developing (and specializing)
target tools, and (2) to support the target-tool design
and specification process. In addition to meta-tools,
development methodologies that-incorporate special-
ization of development tools can help the developer
to control the development process and to reduce its

44

Eriksson

cost.

One feature that distinguishes KA tools from other
development tools is the intended tool user. KA tools
are primarily intended for use by domain specialists,
whereas code-generating software-engineering tools
are generally designed to be use by developers with
programming knowledge. So far, we have primarily
worked with KA tools for knowledge-based systems.
Nevertheless, several of our results can be generalized
to other types of software-development tools.

Meta-Views

The most important aspect of a meta-tool is the
specification model of the target tools that it pro-
vides to the developer. The meta-view adopted by
the meta-tool guides the specification process, and
determines the scope of the meta-tool. Meta-tools
can differ substantially, depending on what aspects
the meta-tool developer chooses to emphasize in the
recta-view. Preferably, the meta-view should in some
way reflect the way that developers think about the
target tools, and should provide a natural way of
specifying target tools. Several groups of meta-views
can be identified.

The Method-Oriented View

The method-oriented view provides a framework for
describing the problem-solving method to be used in
the final application in a way that makes the descrip-
tion useful for generation of KA tools. Meta-tools
implementing a method-oriented view produce tar-
get KA tools from a partial instantiation of a generic
problem-solving method (e.g., planning, scheduling,
or troubleshooting methods). Target KA tools are
fully instantiated according to the expertise required
by the problem-solving methods for performing their
tasks. For example, the developer can instantiate

a planning method by providing descriptions of ac-
tions (and their preconditions as well as ramifica-
tions), constraints, and goals. A domain-specific KA
tool that allows specialists to enter and edit skeletal
plans can be produced from such an instantiation of
the planning method by a meta-tool supporting the
planning method. Typically, meta-tools adopting a
method-oriented view incorporate some form of a pri-
ori design of the target tools. One of the advautages
of the method-oriented view is that the instantiatiou

of a generic method structures the development pro-
cess and guides the developer. Another advantage
is that the target tool can be developed rapidly if a
problem-solving method for the application is known.

There are, however, drawbacks of the method-
oriented view. A significant problem is that the

meta-tool is restricted to one particular problem-
solving method. KA tools that acquire knowledge
for other problem-solving methods, including KA
tools for domains where the problem-solving method
supported is unsuitable, cannot be specified using
the method-oriented approach. Another problem is

that the type of KA tools produced for a particu-
lar domain is fixed (i.e., it is possible to have only a
one-to-one correspondence between an instance of a

problem-solving method and its KA tool. due to the

a prioriKA tool design).Adaptinga meta-toolfor
anotherproblem-solvingmethodis currentlya labo-
rioustaskthat mayinvolveamajorredesignof the
meta-tool.

The Abstract-Architecture View

The abstract-architecture view is based on an archi-

tectural model of the target tool. In this approach,
the developer specifies components of the target KA
tool, such as the user interface, the internal represen-
tation, and the generator for target code. In other
words, to create a target KA tool, the developer has
to instantiate each of the components in the KA tool
architecture and to link together the components.

(Naturally, this task requires a prior analysis of tile
domain and of the requirements on the KA tool.)

Meta-tools adopting this meta-view produce KA
tool implementations from abstract specifications of
target KA tool components. In a way, the abstract-
architecture view is similar to specification languages

found in compiler compilers (e.g., Yacc and Bi-
son). The abstract-architecture view differs from
the method-oriented view in that it focuses on the

target tool rather than on the application program
under development. The abstract-architecture yiew

provides more flexibility for the developer than does
the method-oriented view, because many tools po-

tentially can be specified for one domain.
The major advantage of the abstract-architecture

view is that target KA tools can be specified inde-
pendently of the problem-solving method adopted.
Hence, the meta-tools do no_ have to rely on spe-

cific problem-solving methods (or on any other class
of domains). There are, however, other limitations:
The abstract-architecture view imposes restrictions
on the types of target tools that can be specified. For
instance, a recta-tool supporting architectural com-
ponents for graphical editing and browsing cannot
easily be used to produce debugging tools (which
require a completely different set of architectural

components). Another disadvantage of the abstract-
architecture view is that the developer needs to be
aware of the architecture of the target KA tools,
which knowledge is not required for the method-
oriented view (where the developer is required to
know only the problem-solving method).

The Organizational View

The organizational view captures the intended orga-
nizational context for the system under development.
The idea is to derive the target system's role froln
an organizational model (e.g., an enterprise model)
and to identify the task of the system from its role.
When the task of the system has been established, it
can be used together with the organizational model
to specify target KA tools to a recta-tool. To spec-
if v a target KA tool according to the organizational
view, a developer must (1) identify the actual organi-
zational structure from a library of typical organiza-
tions, and (2) indicate the relevant position and role
in the organization for the system. In essence, the
organizational perspective is an approach to create a
job description for the system.

45

Eriksson

The organizational view provides a broader per-
spective on KA tool specification than do the
method-oriented and abstract-architecture views.

The broad perspective is an advantage of the organi-
zational view, since it helps to clarify how the system
is to be used and to make this information available

to the recta-tool. Another advantage of the organiza-
tional view is that organizational information is often
easily available and can be provided by nonprogram-
mers. One of the problems with the organizational
view, however, is that it is not clear whether such a
model is sufficient to specify a KA tool completely.
Additional information, such as identification of ap-
propriate problem-solving methods and other techni-
cal issues, might be needed to produce automatically
or semiautomatically target KA tools that can be

used by people in the organization (i.e., nonprogram-
mers) to develop the system. A pure organizational
model would not provide sufficient information, but

an extended organizational model might be practical

for the tool generation.

The Ontological View

Tile ontological view is based on the idea that do-
main concepts and relationships can be used for gen-
eration'of domain-specific KA tools that incorporate
such concepts and relationships. Concept definitions

in the ontology can be used as a basis for automated
generation of domain-oriented editors in the KA tool.
Target KA tools can then be used to acquire details
about the domain concepts. For example, instances
of domain-specific classes in the ontology can be en-
tered and edited in the target KA tool by developers
and by domain specialists. To complete a target KA
tool, however, the developer might have to provide
additional information in the ontology (e.g., infor-
mation about how to edit certain concepts). The on-
tological view differs from the previously mentioned
meta-views in that it focuses on declarative struc-

tures required in the applicatiou system.

Composed Meta-Views

An important question is whether we can combine
several meta-vieu" such that u'e avoid some of the

disadvantages of particular meta-views. For in-
stance, a combination of the method-oriented and
the abstract-architecture views can potentially ren-
der a meta-view that provides the guidance of a pre-
determined problem-solving method and the capa-
bility to custom-tailor the target tool (e.g., for in-
dividual users). There are, however, several con-
ceptual and technical obstacles to implementation
of composed meta-views. For example, meta-views
can be partially incompatible, and changes to spec-
ifications made according to one meta-view might
affect--and even invalidate_other specifications ac-

cording to other meta-views.

Meta-Tools

There are several recta-tools that implement the
recta-views described in the previous section. We
shall briefly examine four different recta-tool imple-

mentations,andshall relatethemto their meta-
views.

PROT]_G]_
PROTI_aI_[Musen,1989a;Musen,1989b]isa meta-
tool thatadoptsa method-orientedview.PROT_GI_
supportsa particularproblem-solvingmethodfor
planning(skeletal-planrefinement),whichalsois the
basisfor themeta-viewin PROTI_GI_.Historically,
PROTI_GI_wasabstractedfromadomain-specificKA
tool (OPAL) that acquires skeletal plans, or protocols,
for cancer therapy. PROTI_GI_ incorporates an a pri-
ori design of target KA tools that is similar to the
design of OPAL. The meta-view in PROTt_GI_ com-

prises concepts related to skeletal planning--for ex
ample, planning entities (which are processes that
take place over finite periods of time), task-level ac-

tions (which are operations that control the planning
entities and modify the plan during run time), and
input-data specifications.

To build a KA tool with Prtow_a_, the devel-
oper must instantiate the skeletal-planning method
supported by PROT_G_ for the domain in question.
This instantiation involves describing planing enti-
ties, task-level actions, and input data in detail.
PROT_GI_ produces a target KA tool, which can be
used by domain specialists to enter and edit s_keletal
plans, from the instantiated problem-solving method.
In turn, the target KA tool produces the application
system from the skeletal plans entered.

An important achievement of PROTI_GE is that it
demonstrated how recta-tools can be used to instan-

tiate KA tools from descriptions of problem-solving

methods (i.e., PItOT_GI_ demonstrated the feasibil-
ity of the method-oriented view). Nevertheless, the
principal drawback of PROTI_GI_ is inherited in its
meta-view--the meta-tool is limited to one problem-
solving method.

DOTS

DOTS [Eriksson, 1991] is a meta-tool that is based on
the abstract-architecture view. Like r'ROT_Sag, DOTS

is abstracted from a domain-oriented KA tool, but

_OTS focuses on the architecture of the target tool,
rather than on the problem-solving method of the
application system. DOTS generates target KA tools
from architectural specifications. Furthermore, DOTS

assumes that the target tools conform to a particu-
lar architecture scheme (i.e., DOTS cannot be used to
develop any type of software; it is tailored for devel-
opment of graphical KA tools).

The meta-view in DOTS comprises (1) a variety of
editors that can be custom-tailored to edit domain-

specific structures, (2) a specification language for
the internal representation (which represents what
is entered in the editors internally) and other data
structures for the target KA tool, (3) a set of update
rules that can be configured to ensure consistency

between the internal representations and the editors
in the user interface, and (4) a set of transformation
rules that is used to produce target code from the
representation internal to the KA tool. To develop a
KA tool with DOTS, the developer must analyze the

46

Eriksson

domain and design a KA tool architecture for the
domain, enter specifications fox" the domain-specific
editors in DOTS, specify the internal representation
for the target KA tool, declare the relationship be-
tween the editors and the internal representation in
the form of update rules, and write transformation
rules for code generation from the internal represen-
tation. DOTS produces a target KA toot from these
architectural descriptions.

DOTS demonstrated how an abstract-architecture

view can be implemented in a recta-tool. Unlike
PROTI_GI_, DOTS is not restricted to a particular
problem-solving method or to any other domain
class. DOTS, however, is restricted to a particular
type of architecture for target KA tools.

SIS

Another meta-tool that implements an abstract-
architecture view is sis [Kawaguchi et at., 1991]. SIs

differs from DOTS in that it is designed for generating
interview-based KA tools (i.e., KA tools that conduct
a question-and-answer dialog with domain specialists
to elicit domain information and knowledge), rather
than graphical KA tools based on interactive editing
for which DOTS is designed. The components of the
architecture scheme supported by sls, therefore, are
different from those found in DOTS.

Spark

Researchers at Digital Equipment Corporation (DEC)
have explored the organizational view as a basis for
morn-tools. They have developed Spark, a meta-tool
that implements the organizational view [Klinker et
al., 1991].

To implement a KA tool using Spark, the devel-
oper must identify the organizational type (e.g., man-
ufacturing industry, service organization, or govern-
ment), identify the role of the system in that organi-
zation using a diagram of typical organizations, and
assemble a performance system using reusable pro-

gram mechanisms from a library. Spark configures
an appropriate KA tool from the description of pro-
gram mechanisms and the information requirement

for each of the relevant mechanism. The original
Spark approach has been modified; the group at DEC

is now considering mechanisms with a finer gram_lar-
ity.

Spark is part of a tool set that contains two other
tools: Burn and FireFighter. Burn is the run-time
system that controls the knowledge-acquisition ses-
sion and invokes appropriate KA tools. FireFighter
is a debugging tool that helps developers and do-
main specialists to debug and maintain application
systems developed.

Programming Languages as Meta-Tools

General programming languages (e.g., C, Pascal, and
ADA) also can be regarded as recta-views and their
compilers can be seen as recta-tools, since they can

be used to implement target KA tools. Program-
ming languages, however, provide neither much sup-
port for tool implementation, nor any high-level con-
structs for tool specificalion (especially for interac-

, _' ' G

tive tools with graphical user interfaces). The use of
programming languages can certainly provide flex-
ibility in the tool design, but the implementation
cost is often too high, Nevertheless, programming

languages can play a role in implementation of tool
functions that cannot be specified with an available
meta-view.

Summary and Conclusions

Domain-specific development tools, including
domain-oriented KA tools, are often reported to be
more successful than are their general counterparts.

Consequently, specialized development and KA tools
are emerging. Since the development of such custom-
tailored tools is relatively laborious given their re-
stricted scope, researchers have experimented with
meta-tools that support the design and implementa-
tion of domain-specific tools. Although it is prefer-
able that meta-tools be domain-independent, their

generality must be restricted if they are to be prac-
ticable and supportive. One such restriction is the
class of target tools the recta-tool produces.

A meta-view is the specification strategy for tar-

get tools adopted by the meta-tool. The method-
oriented view focuses on a problem-solving method
that is applicable to many domains. The developer
specifies domain-oriented target tools by instantiat-
ing a problem-solving method for the domain in ques-
tion. The abstract-architecture view, on the other

hand, focuses on the architecture of the target tool.
In this approach, domain-oriented tools are specified
through instantiation of architectural components
(e.g., graphical editors, internal structures, and sets
of transformation rules). The organizational view
provides a model of generic organizations in which
the role of the application system can be identified.
Such roles are used as basis for generation of target
tools.

The meta-views examined in this paper represents
complementary approaches to specification of target.
tools. Since each meta-view has advantages and dis-
advantages, the choice of meta-view depends largely
on the requirements on the target tool, development.
philosophy, and personal preferences. Ideally, meta-
tools should support target-tool specification accord-

ing to multiple paradigms.
With appropriate meta-tools, development of

application-specific tools (rather than domain-
specific) custom-tailored to particular development
situations can be made feasible. Target tools can be

changed during the course of the project to support
different project stages in different ways. For exana-
ple, target tools can serve as specification tools and
then as maintenance tools, as the project evolves.

We are currently developing a meta-

tool (PROTF, GI_ lI) that will support a Combination
of meta-views [Puerta et at., 1991]. PROT_G_ II will

support two different development tasks simultane-
ously. One part of the emerging PROTI_GI_ II system
will allow the developer to create basic performance
systems by configuring tasks and problem-solving
methods from a library of reusable components, the
other of part PROT_GI_ II is concerned with gener-

47

Eriksson

ation of domain-oriented KA tools (which are used

for acquiring knowledge from domain specialists for
the basic performance systems). For the KA-tool

generation component, we are currently considering
a combination of the abstract-architecture and onto-

logical views. Since PROTI_GI_ II is also intended for
configuration of tasks and problem-solving methods,
the combined recta-view will incorporate ideas from
the method-oriented view also.

Acknowledgments

This work has been supported in part by grants
LM05157 and LM05208 from the National Library

of Medicine, by a gift from Digital Equipment Cor-
poration, and by scholarships from the Swedish Insti-
tute, from Fulbright Commission, and from Stanford
University. We are grateful to Angel Puerta for com-
ments on drafted versions of this paper and to Lyn

Dupr_ for editorial assistance.

References

Eriksson, Hen'rik 1991. Meta-Tool Support for

Knowledge Acquisition. PhD thesis 244, LinkSping
University.

Eriksson, Henrik 1992. Domain-oriented knowledge
acquisition tool for protein purification planning.
Journal of Chemical Information and Computer
Sciences 32(1):90-95.

Kawaguchi, Atsuo; Motoda, Hiroshi; and Mi-
zoguchi, Riichiro 1991. Interview-based knowledge
acquisition using dynamic analysis. IEEE Ezpert
6(5):47-60.

Klinker, Georg; Bhola, Carlos; Dallemagne, Ge-
offroy; Marques, David; and McDermott, John
1991. Usable and reusable programming constructs.
Knowledge Acquisition 3(2):117-135.

Marcus, Sandra, editor 1988. Automating Know-

ledge Acquisition for Ezpert Systems. I,:luwer Aca-
demic Publishers, Norwell, Massachusetts.

Musen, Mark A.; Fagan, Lawrence M.; Combs,
David M.; and Shortliffe, Edward H. 1987. Use of
a domain model to drive an interactive knowledge-

editing tool. I, ternalio_al Journal of Man-Machine
Studies 26(1):105-121.

Musen, Mark A. 1989a. Automated Ge,era-

tion of Model-Based h'nowledge-Acquisition Tools.

Morgan-Kaufmann, San Mateo. California.

Musen, Mark A. 1989b. An editor for the con-

ceptual models of interactive knowledge-acquisition
tools. In tern ational Jo _trn al of Ma ,-.lla ch i71e St ud-

ies 31(6):673-698.

Puerta, Angel R.; Egar, John W.; and Musen,
Mark A. 1991. Automated generation of adaptable
knowledge-acquisition tools with Mecano. Technical
Report KSL-91-62, Knowledge Systems Laboratory,
Stanford University, Stanford. CA.

°Introduction: Background and Motivation

Our interest in automating software design has come out

of our research in automated reasoning, inductive inference,

learnability and algebraic machine theory. We have

:investigated these areas extensively, in connection with

specific problems of language representation, acquisition,

processing and design.

In the case of formal context-free (CF) languages we

established existence of finite learnable models ("behavioral

realizations') and procedures for constructing them

effectively. We also determined techniques for automatic
construction of the models, inductively inferring them from

finite examples of how they should "behave'. These results

were obtainable due to appropriate representation of domain

knowledge, and constraints on the domain that the

representation defmed.

Fass

SOFTWARE DESIGN AS A PROBLEM IN LEARNING THEORY

(A Research Overview)

 93" 17509
conveyed to the design system: an algorithm or technique

for converting the knowledge into an implementation.

Should designed software be given, then the knowledge

might be conveyed to a testing/verification system to

determine correctness of the design. If incorrectness were

detected, errors could be removed and flaws repaired. The

theoretical system need only reiterate these steps until it

conclusively determined the software to be defect-free.

It was when we sought to generalize our results, and

adapt or apply them, that we began investigating the
possibility of determining similar procedures for

constructing correct software. Discussions with John

Cherniavsky, Dick Hamlet and Elaine Weyuker led us to

examine testing and verification processes, as they are

related to inference, and due to their considerable

importance in correct software design. Motivating papers

by Cherniavsky [1], Hamlet 13], Weyuker [4] and also,

Fetzer [2], led us to examine these processes in some depth.

Here we present our approach to those software design
issues raised in [1-4], within our own theoretical context.

We describe our results, relative to those of [1-4] and

conclude that they do not compare unfavorably.

Our Approach To Software Design

We approach problems of software design as examples

or applications of a general learning theory. Our

perspective is logical and algebraic: to us, a program or

system fulfilling a specification S is "just like" any other

realization of a specified behavior. The process of

constructing software to perform a particular function or set

of tasks, thus is an instance of synthesizing a behavioral

realization. The testing of given software for incorrectness,

or its verification as correct, are cases of checking a

potential model, or realization, against its behavioral

domain. If it is determined to exhibit all "good behavior"

(positive domain data, as specified by S) and no "bad

behavior" (negative data, i.e., the complementary domain

elements, relative to S) the software is then established as

COrrect.

Within our theoretical framework, successful software

design requires analysis of desired behavior for

identification of its essential components, and a means of

defining--often through constraints--the domain in which the

behavior lies. This knowledge must be represented and

In each of these aspects of software design, our theory

assesses as successful a process that is proven to terminate

effectively (many would also demand efficiency),
determining correct software as its end-product. This

implies that all possible behavior must be conveyed fmitely;

that algorithms and techniques for construction, testing or

verification of software operate in finite time and space; and

that each process concludes, producing a resultant finite
behavioral model.

If the above can be achieved it is a small step from
effective determination of correct software to its automated

determination or, design. We need only implement the
algorithm or technique for the software construction, testing

or verification, to create an automated "design system".

Then we need only define an appropriately characterizing
finite selection of behavioral data that the "system" may use

to automatically determine a correct software design. To do

so, we might adapt those techniques we devised to find

correct language models [5-8], so that instead they produce

software that behaves correctly, as specified.

Once a "design system" is implemented, it should be

possible for an application specialist to provide it with

domain-specific behavior examples. The system should then

observe and generalize, to automatically determine software

that realizes, or produces, the correct domain behavior in its

entirety. At first, this appears to work very well, in theory.

However, our theoretical perspective leads us to examine

software design problems somewhat more carefully, relative

to those algebraic, constrained problem domains within
which we obtained our initial learning theory results. We

next describe some of the relationships between our theory

and actual practice.

Results, "Results" and Conclusions

While there are, indeed, many similarities between

theoretical learning problems and those encountered in

practice, what we mainly find is that the constraints that

make problems solvable in theory do not, in practice,

generally apply.

We began this research overview by describing our

theoretician's perspective, and our interest in adapting or
applying our specific learning theory results to the case of

48

(automated)softwaredesign.Withintheframeworkof
theory,wenotedthats.oftv_atedesignis "just like" any

other modelling process. E.g., if we can infer a grammar

generating a language from suitable linguistic examples

then, surely, we can infer a program to produce that same

language, and be certain that it is correct.

All of the general results in learning theory that come

out of our specific CF language learning research were

made possible by appropriate knowledge representation, and
domain constraints. These enabled us to determine finite

realizability of the CF languages and, also, the conclusive

effective testability of potential language models. When

sufficiency of testing is established, and tests conclusively
detect no incorrectness, we establish correctness of a model.

We call this "verification by default" [6-9].

In the case of language learning, we were able to

establish an inference/testing/verification paradigm [6-10]

that could result in automatic design of language models,
obtainable in a number of ways. We showed that if the

language has a model inferable from a finite sample of

positive domain data ('good behavior') then a potential

model could be conclusively, effectively tested and thus

might be verified, by default, as correct. What we

established was that the domain sample of positive data

sufficient for inference defined a similar sample of positive

and negative data ('good and bad behavior') that was
sufficient for conclusive, effective tests.

As Hamlet noted in [3] and in our discussions, and as

we have confirmed, these results are dependent on

characterizing all necessary behavioral information in a

finite way. (Our domain constraints gave us finite

realizability and decidable membership queries: we could

determine what was good behavior vs what was not [6-10]).

While in any typical software design environment our

domain constraints and conditions do not apply, we believe

our theoretical results compare, not unfavorably, with those

of other theoreticians. Cherniavsky [1] noted testing can do

more than detect errors in software, and we showed one can

test to show software is correct. Fetzer [2] claimed

verification was "impossible" and we showed inferable

models could be testable, and verified automatically, by

default. Weyuker [4] described inference-based testing to

establish an approximate method of determining equivalence
of a program and its specification. We concur and believe

our logical and algebraic approach, and some domain-

specific imposed constraints, will result in approximately
automated software design. This will improve upon

techniques currently in practice.

REFERENCES

[1] Chemiavsky, J. C., "Computer Systems as Scientific

Theories: A Popperian Approach To Testing',

Proc. of the Fifth Pacific Northwest Software

Quality Cot_, Portland (Oct. 1987), pp. 297-308.

[2] Fetzer, J. H., "Program Verification: The Very

Idea', CACM, Vol. 31 (1988), pp. 1048-1063.

49

Fass

[3] Hamlet, R., _Special Section on Software Testing _,

CACM, Vol. 31 (1988), pp. 662-667.

[4] Weyuker, E. J., "Assessing Test Data Adequacy

through Program Inference', A CM Transactions on

Programming Languages and Systems, Vol. 5

(1983), pp. 641-655.

Relevant Publications and Presentations by the Author

[5] Fass, L. F., "Remarks on Inductive Inference and

Testing', presented at the Association for Symbolic

Logic 89-89 Annual Meeting, University of

California, Los Angeles, January 1989.

Abstracted in the J. Symbolic Logic, Vol. 55,

No. 1 (March, 1990), p. 374.

[6] Fass, L. F., "A Common Basis for Inductive

Inference and Testing', Proc. of the Seventh

Pacific Northwest Software Quality Conf.,

Portland, (Sept. 1989), pp. 183-200.

[7] Fass, L. F., 7Acquiring Knowledge by Positive or
Negative Means', presented at the Association for

Symbolic Logic 90-91 Annual Meeting, Carnegie

Mellon University, January 1991. Abstracted in

the J. Symbolic Logic, Vol. 57, No. 1 (March

1992) pp. 356-357.

[8] Fass, L. F., "Learning Through Inductive Inference

or Testing', Proc. Florida Artificial Intelligence

Research Symposium, Conf. on Machine Learning,

Cocoa Beach, (April 1991), pp. 176-180.

[9] Fass, L. F., "Inference, Testing and Verification',

presented at Ninth International Congress on

Logic, Methodology and Philosophy of Science and

Logic Colloquium 91, Section on Foundations of

Logic, Mathematics and Computer Science,

Uppsala, Sweden, August 1991. Abstracted in

Congress Volume I, p. 193.

[I0] Fass, L. F., "Perfect Learning (More or Less)', to be

presented at the 1992 Meeting of The Society For

exact Philosophy, University of Southwestern

Louisiana, Lafayette, May 1992. Extended version

in preparation.

Leona F. Fass received a B.S. in Mathematics and Science

Education from Cornell University and an M.S.E. and Ph.D. in
Computer and Information Science from the University of
Pennsylvania. Prior to obtaining her Ph.D. she held research,
administrative and/or teaching positions at Penn and Temple
University. Since then she has been on the faculties of the
University of California, Georgetown University and the Naval
Postgraduate School. Her research primarily has focused on
language structure and processing; knowledge acquisition; and the
general interactions of logic, language and computation. She has

had particular interest in inductive inference processes, and
applicatinns/adaptations of inference results to the practical
domain. She may be reached at
Mailing address: P.O. Box 2914

Carmel CA 93921

Gastner

N0S-175 0 '

Towards Automation of User Interface Design

PLainer Gastner Gerhard K. Kraetzschmar Ernst Lutz

Research Group Knowledge Acquisition

Bavarian Research Center for Knowledge Based Systems (FORWISS)

Am Weichselgarten 7, 8500 Erlangen, Germany

e-mail: gas tner@forwiss.uni-erlangen.de

Abstract

arduous. According to the changes of a data

structure the extent of the redesign task may
cause pretty n_ch effort.

This paper suggests an approach to automatic soft-

ware designinthe domain ofgraphicaluserinterfaces.

_There are stillsome drawbacks in existingUIMSs

iwhich basiclyofferonly quantitativelayoutspecifica-

tionsviadirectmanipulation. Our approach suggests

a convenientway toget a defaultgraphicaluser inter-

face which may be customized and redesignedeasily

in furtherprototyping cycles. =

1 Introduction

The automation of software design becomes more

powerful if the target systems generated are limited
to a certain domain. The domain addressed in this

paper is the dass of graphical, highly interactive sys-

tems for accessing data of specified data structures

by end users. The focus of thispaper isfurtherre-

• Due to the lack of adopted GUI design guide-

lines,for similardata structuresin differentap-

plicationsa differentGUI may existwhich iscon-

tradictiousto user interfaceconsistency[10].

The approach introduced in this paper to address

these problems isthe automatic generation of GUIs

from a high levelspecification.This generation is

performed by a knowledge-based meta-tool which is

used by a GUI designer.Questions which have to be

tackledincludethe following:(i)To what extentcan

the designer be supported in the specificationtask?

(2) What kind ofuser interfaceshould the meta-tool

have. (3)Which kind d knowledge isdomain invari-

ant and which isapplicationspecific(and therefore

needs to be entered by the designer)?(4) Which set

ofdefaultdesign decisionsare adequate?

Our approach to answer these questions isbased

stricted.It concentrateson the automation of the on the followingidea: The designer specifiesdata

design of a graphical user interface(GUI) for these= struct,ures,data types and operat!onswhich the user

systems, of the target system has to perform with an user-

Building GUIs with GUI toolkitsor user interface friendlyGUI. Corresponding GUI dements realizing

management systems (UIMSs) is stilla laborious, theseoperationsare associatedautomaticallyand the

time-consuming task even ifitissupported by di- GUI isgenerated. The designer in turn refinesthe

rect manipulation facilities[6].The basic p_oblerns GU! by interactivlycustomizing the _ta-tools ssso-

we identifiedare the following: ciationand specifyingqualitativelayoutconstraints.

• The GUI designer has to decide which graphi-

cal dement isappropriatefor a desiredinterac-

tion,Le. given a data structureand data type

descriptionsof the dements to be accessed and

a set of GUI dements the designerhas to per-

form a mapping between the data structureand

the GUI dements.

• With directmanipulation an initialGUI may be

builtbut ifthe data structureor the data types

are changed the manual adaption of the GUI is

This approach facilitatesusers who have no knowl-

edge about interfaceprogramming toconstructa GUI

easily.Since the GUI of a meta-tool itselfisin the

domain our approch isapplicablefor the design of
meta-tool'sGUI as well.

In section2 the addressed domain is introduced

in more detail.Section 3 discusses the problems of

configurationand generation of the target systems.

In section4 our approach isdescribed to solve these

problems. Section 5 compares our approach to re-

lated work and section6 givessome concluding re-

5O

Gastner

marks and perspectives on future work.

2 Domain

The domain our meta-tool addresses isthe classof

GUIs that allow the access of specifieddata struc-

tures whose dements are characterizedbe specific

data types. The accesscomprises additon, deletion,

modification,selectionand browsing of data struc-

turesand instances.

There existratherdifferentinterpretationsofwhat

the notion GUI should mean [6].Inour meta-tool the

GUI isbuiltwith a set of objectswhich have a de-

scriptionof a graphicalpresentationand methods to

handle the displaypresentationand the communica_

tion with the underlying window system. Examples

are buttons, settingsor text fields.No other func-

tionalityisadded to the GUI. The GUI objectsare

described within an object-orientedclasshierarchy

adopting inheritance.This isthe common approach

how state-of-the-artGUI toolkitsand UIMSs are re-

• Since an initiallygenerated GUI in most cases

• does not meet the end user'swhishes rapid proto-

typing facilitiesfor iterativerefinement and cus-

tomization isneeded.

• The specificationfacilitymust allow only con-

sistentspecifications,i.e.the designer'sspecifi-

cation has to be syntacticallyand semantically

correctand the generator willproduce a GUI

insidethe domain. Row can we support specifi-

cationconsistency?

The followingsection discussesour approach to-

wards an automation of the GUI design addressing

the questionsgiven above.

4 Approach

State-of-the-art LrIMSs mainly deal with a user-

fziendlycomposition of the GUI. Prom thispoint of

view only the syntacticalaspects in building GUIs

are addressed. But naturallyGUIs are builtfor user

interactionswhich have certainsemantics. For in-

Our rneta-toolproduces specializationsof classes stance,when the GUI designer using a directma-

in a class hierarchy provided by the GUI toolkit nipulation UIMS selectsa button and arranges it

Tx/spView [1]and instantiationmethods. LispView in the targetinterfacevia mouse dragging he knows

providesan interfacesbetween Sun CommonLisp and the reason why he selectsa button and which opera.

OpenWindows. The same structureisgenerated by tion should be performed by dicking on the button.

the GUI devolopment system Open WiRclov_sDerel' The GUI components are nothing else than graphi-

operb C-u/de [3]. ca] presentationsof abstractinteractions.The map-
ping fi'omthe semantics of these interactionsto cor-

responding GUI dements isthe main task ofan GUI

3 Problem Description

The design of a meta-tool for automating the design
of GUIs fzom specifications of data structures, data

types and operations raises some questions which

mainly influence the meta-tool design decisions:

• Which kind ofknowledge has to be represented

to support the generation and which kind of

knowledge representationshould be used?

• Which part of the knowledge isdomain specific

but applicationinvariantand which part is ap-

plication specific?

• What kind of default configurationdecisions

makes sense? Can specificsubdomains be identi-

fiedfor which specificconfigurationmacros may

be used?

• What is the most efficient way to enter geometric

layout specifications?

designer.

Our approach for specifying GUIs starts fzom a se-

mantic point of view and focuses on this mapping.
The GUI designer does not specify a composition of

the GUI components itself rather than the interac-

tions the GUI components shall be used for. That

means the focus of the specification is not how to

present interactions on the screen but wha$ kind of
interactions shall be established. The interactions we

consider are the access operations specified in section

2. The mapping fzom the interaction specification

to the GUI components is done by the meta-tool

automatically. In a further step the designer may

customize the generated GUI either by changing the

mapping or specifying additional qualitative layout
constraints.

4,1 Configuration Process

In this section the configuration process is discussed.

Figure 1 provides an overview of the configuration
steps. The actions the designer has to perform are

51

Gastner

._ GUI geieration

C evaluation

/./
)

\

o.k.

Figurel: iterative GUI configuration process

specificationand evaluation representedas round-

cornered boxes. The rmta-tool activity(the genera-

tion of the GUI) isrepresentedas a rectangularbox.

The designer startswith the specificationof the

desiredinteractionson data structures.Then an ini-

tialGUI isgenerated by the meta-tool usingdefault

mapping and layoutconfigurationsstoredina knowl-

edge base (seesection4.2).The initialgenerationhas

to be evaluated by the designer.Then one of the fol-

lowing four choicesmay be marie:

I. The designeragreeswith the generated GUI and

the configurationprocess is finished.

2. The designerspecifiesqualitativegeometric lay-

out constraints to rearrange the GUI compo-
rents on the screen.

3. The designer altersthe mapping between the

specifiedinteractionsand thecorresponding GUI

component.

4. The designer manipulates the interactionspeci-

fication,e.g.a new dement isadded to a data

structure.

In case of a new or re-specificationa new genera-

tion cyclestarts.The order given above impliesthe

extent of the GUI redesign in a cycleafterevalua-

lion.Choice 2 affectsonly the geometric positionof

GUI dements, choice3 affectsthe presentationof an

interaction,and choice 4 affectsthe interactionit-

self.Explorativerapid prototyping by iteratingthe

configurationcyclesissupported conveniently,since

the designerstartswith a specificationofabstractin-

teractionsomitting GUI aspects in the initialphase.

In followingcycleshe can customize presentationas-

pects very quicklyor redesignthe interactions.

Since end users are supposed to design the GUIs

the meta-tool rrrastprovide user-friendlygraphical

interfacesitself.To support specificationconsistency,

the specificationis menu--driven as far as possible.

Menus with appropriate selectionsmay be c_ered
which isfurtherdiscussedin section4.2.An interest-

ing issueisthat the GUI ofthe meta-tool toenterthe

specificationisitselfin the domain ofthe meta-tool.

Since the meta-tool allows to use the specification

languages directlywithout the corresponding GUI a,

the GUI for the n_ta-tool can be generated by the
meta-tool itself.

4.2 Configuration Knowledge and

Representation

This sectiondeals with the knowledge needed to an-

tomate the GUI configuration. We distinguishtwo

classesofknowledge. Knowledge isneeded tosupport

an efficientuser-friendlyspecificationand to gener-

ate a GUI with an minimal specification.This kind

of knowledge isapplication-invariantand referedas

domain-specific (in the GUI domain). On the other

hand application-specific knowledge nmst be enterd

by the designer to build an GUI for a set of certain

interactions. The following two subsection discuss

these two knowledge dasses.

4.2.1 Domain-speciflc knowledge

The followinglistedknowledge categoriesare stored

in the meta-tool's knowledge base in order to sup-

port specificationand generation. Note that this

ismainly knowledge abo_ the possibleapplication-

specificknowledge (e.g.possipletypes of layoutcon-

straints)and thereforerneta-knowledge.

• model of target architecture; the structure

of the code generated by our meta-tool isgiven

by the code structurethe Developer'sGuide for

LispView interfaces[3]generates.

• a library of interaction types and data

types; interactiontypes includeread and write

access to data and selection of data. Cur-

rently the libraryof data types includes enu-

meration, character,real,integer,string,sym-

bol,and object-class.

I Otherwise there v_uld be recta-tool tower never ending.

52

Gastner

• a library of GUI elements; this libraryis

given by the used GUI toolkitLispView [1].

• mapping of interaction specifications to

GUI elements; the mapping isstoredas a ma-
trixin which for certainconditions made in a

data type specificationa set of possible GUI

components isassociated.The GUI component

selected by defaultis marked (see also section

4.4.

• library c£ layout constraints; currently

we have realized 36 layout constraint types

which are hierarchicallyorganized and offeredin

menus. Furthermore, there exitsa layout con-

straintconstructionfacilityforthe me•a-tool de-

signerto implement additionalconstrainttypes

based on a combination oftypesfrom a basicset.

• standard configurations; see section4.4.

The domain--specificknowledge isstored in ASCII-

filesin specialrepresentationlanguages. The files

may eitherbe edited directlyby a text editoror be

generated from graphical specifications.An inter-

preter reads these filesand maps the external rep-

resentationto internalobjects.

4.2.2 Application-specific knowledge

As shown in figure I there are three specification pos-

sibilities providing input for the generator.

• interactions; the specificationcomprises the

type of operation and the data type to be ac-

cessed. The data type is specifiedseparately.

Thus n_re than one interactionmay accessdata

of the same data type in different ways. The ex-

ample below shows the declarative specification

generated from the graphical specificationenvi-

ronment. A manipulation interactionisspecified

on data of an integerslot.The valuerange isre-

strictedbetween 100 and 500, the slotissingle-

valued, and the value mast be unique and en-
tered.

(de_-intertc¢ion

:id ' ongLno-nmnbor -nemipulat ion

:opera_£on _manipula¢ ion

•da_ a-_ype 'engine-number-type)

(def-integor

rid Jongino'-aumbor-¢Tpo

"OC[UI_.OrKTOIt o]r 100

:lessorequel
mincard 1

mUcard 1

:unique T)

The declarativespecificationlanguages may also

be used directlyby the designer. Both inter-

actionsand data types are offeredin menus to

the designer. The menus are configured dy-

namically according to certainspecificationcon-

straints;e.g.the followingconstraintmay not be

violatedin the example above: (lessorequal
mlncard maxcard).

association of interactions and GUI com-

ponents; ifthe designerdoes not agreewith the

me•a-tool's associationhe may selectanother

associationor more than one associationsfor a

given interactionfrom a menu. The menu items

consistofallGUI components which are accept-

able presentationsfor the interactionasserting

a consistentspecification.Ifthe designer ••so-

dates n-_)rethan one GUI component to an in-

teraction,the interactionispresented indifferent

fashions in the GUI. For instance,the interac-

tion in the example above may be presented as

numeric field_ a slider.The meta-tool would

selectthe numeric fieldby defahlt.

layout constraints; the qualitativelayoutcon-

straintsmay be specifiedusing a declarative

specificationlanguage or a GUI generating sen-

tencesof thislanguage. The followingexample

demonstrates the power and user-friendlynessof

our layoutmechanism:

Let Bl, B,j Bs be boxes which shall be m-ra_ed m

follows: _ and B_ _ be at the bottom _ the layout

fi'mrne; BI shell be ht the upper left corne_ d" the kyout

frame; and B.j shall be over B._ md/_. Thia k expressed

m follows"
(bottom-marginB4 Bs)
(upped-left-cornerBI)
(over/_(/h Ss))

Entering the fast layout constraint via the specification

GUI B4 md then _ would by selected with the mouse on

the _creen and then the co.train• bo_Sm-margia m)uld

be selected _om the menu.

4.3 Layout computation

Each GUI dement has a rectangular bounding-box

which provides the size for the layout generato:. The

36 layout constraints are one-dimensional geometric
relationships between these boxes. N-ary relation-

ships are resolved into binary ones which are con-

nected with a conjunction. The corners d the boxes

are represented by variables and the constraints are

always inequations of the following form:

__<=j-__<_
These unequations can be solved using a longest-path

53

Gastner

algorithm suggested in [11]. If there are inconsisten-

des in the specified constraint set our algorithm re-
tracts contradictious constraints. The boxes are ar-

ranged fulfilling the specified constraints and are po-

sitioned in the upper left corner of the layout frame.

In a second cycle overlapping boxes (this may oc-

cur if the constraint set is not restrictive enough)

are solve by adding additional contraints with dis-
junctions: A box B1 and a box B_ do not over-

lap if (beside BIBs) V (beside B2B1) V (over
B1B_) V (over B2B1) holds. Since there may be

a huge number of layout configurations solving the

constraint set without overlapping the layout algo-

rithm gets a certain time for processing (e.g.three

seconds). The algorithm generatesa set ofsolutions

and then selectsthe best solutionwhcn the time is

over. The selectioncriteriaadopted currentlyisei-

ther to minimize the area of the layoutframe ifthe

sizeisnot prespecified_ to arrange the boxes with

equal distancesbetween them ina fixedlayoutframe.

4.4 Standard Configurations

In order to give support in the specification of GUI

component associations to interactions and to select

default associations we (partly) represent knowledge

found in the OPEN LOOK application style guide-

lines [2]. This knowledge is stored in a matrix in this

way that for each GUI component it is marked under

which conditions it is appropriate and if it should be
selected by default. Furthermore, OPEN LOOK pro-

vides a unique look-and-feel for all the target GUIs

and the GUI sepecification environment of our recta-
tool.

It is possible to preconfigure special editor types
which include a number of fixed interactions. For

instance,a logineditorconsistsalways of two inter-

actions,one foreaateringthe user'sname and one for

entering the password. These two interactionsare

preconfigured as a symbol and stringmanipulation

interaction.Furthermore, a layoutframe with a fixed

sizeisconfigured,layoutconstraintsare specifiedthat

both GUI components (the meta-tool willassociate

two text fields)should be centered and the textfield
for the user's name should be located over the field

for the password entry. The configuration is stored

as subclass d" a preconfigured editor class. Other

specialized editors may be partly preconfigured and

layouted like object editors or browsers. Preconfig-

ured GUI classes can be dynamically added by the

designer.

Adopting this configurartion library and the repre-

sented OPEN LOOK style guidelines we facilitate the

generation of GUIs which have a common structure

and supports GUI consistency [10].

4.5 Implementation

Our recta-tool is implemented in Sun CommonLisp,

CLOS and LispView [1]. Object-oriented program-

ruing is adopted basically. The target code is gener-
ated using templates which are expanded according

to the designer's specification or standard configura-

tions. By replacing the templates it is possible to
generate other GUI target code as well.

5 Related Work

In the last decade human-computer interaction and

the user interfaces have become an important re-

search field. UIMSs try to improve GUI development

and support mechanisms for GUI and dialogue spec-
ification, representation and management [6] [9]. In

[7] several generations of UIMSs are identified. It

is predicted that future UIMSs will be knowledge-

based and generate a user interface automatically us-

ing the specification of the underlying application.
Our approach is a step in this direction. Currently

the interactions have still to be coded by a GUI de-

signer, but there should be a way to generate the

interaction specification from application programs
automatically as well.

A number of development methodologies have been

suggested for user interfaces. Most of them claim

explorative prototyping as our approach (see figure

1), e.g. the star life cycle suggested in [7].

User interfaces may be specified language--based

with special user interface description languages,

graphical-based with direct manipulation facilities
with automatic generation from interaction descrip-

tions [9]. Since our recta-tool generates code which

can be manipulated by the Developer's Guide [3]

our approach combines these three possibilities which

may be alternatively used.

Similar approches for automatic generation of

GUIs are used in the GADGETS system [8] and

the PRED system [13], but they lack qualitative
layout specificati_ons. Automat-_--i_r_s-enliai_onsys-

tems for information llkeSAGE [12]also use recta-

information to selectan adequate presentationstyle.

A similarapproach of defaultconfigurationsof edi-

torsisappliedin the rrmta-toolDOTS [4].

54

6 Concluding Remarks and

Future Work

We suggested an approach towards automation of

user interfacedesign which startsfrom a semantic

point of view. The initialspecificationonly deals

with uAa_ the GUI istobe buil_forand not how. Par-

ther prototyping cyclesallow to customize the gen-

ated GUI qualitati,ely.Since the generated GUI

code isinterpretableby the directrr_nipulationtool

Developer'sGuide [3],also quantitativelayouting is

availableand may be adopted alternativly.Since the

rneta-tool'sGUI isinthe meta-tool'sdomain itselfa

reflexiveapplicationof the rneta-toolispossible.

In the project KME (Knowledge Maintenance

Environment) 2 we designed a meta-tool calledKME

workbench [5] for generating maintenance compo-

nents forknowledge basesofexpert systems. A main-

tenance component for updating objectsofan object

oriented representationneeds a GUI of the domain

described in thispaper. Thus the GUI designmeta-

toolispart ct"the KME workbench. We experienced

in thisproject that qualitativelayout specifications

are very convenient and allow rapid explorativepro-

totyping.The GUI specificationenvironment alsoal-

lows end users (e.g.knowledge engineers with only

few programming experience)tobuildadequate GUIs

easily.

We acquired GUI design knowledge from the

OPEN LOOK GUI application stljle guidelines [2]

which isrepresentedin a matrix representationand

allows the rneta-tool to l_ovide defaultconfigura-

l_ons. Furthermore, the explicitrepresentationcan

easilybe changed and augmented.

Currently we work on the extensionofdefaultcon-

figurationsand GUI facilities.Special editortypes

are identifiedin rr_re specificapplicationdomains

and represented.We willevaluatehow the GUI spec-

ificationcan be acquired automaticallyfrom the un-

derlying application.In the knowledge maintenance

context we willtry to generated a defaultdialogue

controlsupported by a transactionmanagement.

References

[1] IAsp V/ew Programming Manual. Sun Microsys-

terns, Inc., 1989.

[2] OPEN LOOK Graphical User Interlace Appli-
cation _yle Guidelines. Sun Microsysterns, Inc.,

Addison-Wesley, Rending, Massachusetts, 1990.

2KME was stextedas joint project betweenFORWISS end
the compm_v BMW, Munich.

Gastner

[3] OpenWindows Developer's Guide 1.1, User's
Manual Sun Microsystems, Inc., 1990.

[4] Henrik Eriksson. Meta-Tool Support for Knowl-
edge Acquisition. PhD thesis, Linkoeping Uni-

versity, Sweden, 1991.

[5] Rainer Gastner, Gerhard K. Kraetzschmar,
and Ernst Lutz. Kme--workbench: a meta-

tool for designing maintenance components for

knowledge based systems, paper submitted to

ECAI92, January 1992.

[6] H. Rex Hartson and Deborah Hix. Human-
computer interface development: concepts and

systems for its rrmnagement. AUM Computing

Surveys, 21(1):5-92, March 1989.

{7] H.R.. Hartson and D. Ktx. Toward empirically

derived methodologies and tools for hurnan-

computer interface development. Int. Journal of

Man-Machine Studies, 31(4):477-494, October
1989.

[8]Johannes L. Marals. The gadgets user interface

management system. _rnc_ured Programming,

12(2):75-89, 1991.

[9] Brad A. Myers. User-interface--tools: introduc-

tion and survey. 1F_EE Soflmare, 15-23, January
1989.

[10] Jakob Nielsen, editor. Coordinaiin# User Inter-

faces for Consistency. Academic Press, London,
1989.

[11] Thomas Ottmann and Peter Widmayer. .41-
goritl_men und Datenstrukturen. BI Wis-

senschaftsverlag, Mannheim, 1990.

[12] Steven F. Roth and Joe Mattis. Automat-

ing the presentationof information. In Sen.

entl_ 1EEE Conference on Artificial In_eUigenee

Applications, pages 90-97, IEEE, IEEE Com-

puter Society Press, Washington, February, 24-
28 1991.

[13] S. Xie and P. H. W'mne. Kamit: a knowl-

edge acquisition and maintenance interface tool.
In M. H. Hamza, editor, Ezpe_t 5yatems The.

oW and Applications, pages 115-118, IASTED -

Acta Press, Anaheim, 1988.

55

G_enspan

N93- 17511

TOWARD DOMAIN-SPECIFIC DESIGN ENVIRONMENTS

Some Representation Ideas from the Telecommunications Domain

J '

Sol Greenspan and Mark Febiowitz

GTE Laboratories Incorporated
Computer and Intelligent Systems Lab

40 Sylvan Road
Waltham, Massachusetts 02254

617-466-2962

greenspan@gte.com

Introduction

ACME t is an experimental environment for investigating
new approaches to modeling and analysis of system
requirements and designs. ACME is built on and extends
object-oriented conceptual modeling techniques and
knowledge representation and reasoning (KRR) tools
[Greenspan, et. al. 1991]. The most immediate intended use
for ACME is to help represent, understand, and
communicate system designs during the early stages of
system planning and requirements engineering.

While our research is ostensibly aimed at software
systems in general, we arc particularly motivated to make
an impact in the telecommunications domain, especially in
the area referred to as Intelligent Networks [IEEE Comm.,
Dec. 1988], [IEEE Comm., Feb. 1992]. Intelligent
Network (IN) systems contain the software to provide
services to users of a telecommunications network (e.g.,
call processing services, information services, etc.) as well
as the software that provides the internal infrastructure for
providing the services (e.g., resource management, billing,
etc.). The software includes not only systems developed by
the network proprietors but also by a growing group of
independent service software provide_

The kind of software design problem we are interested in
is at a high level. It involves, among other things, deciding
where, in a distributed heterogeneous system, to locate
program logic, data, and other resources; conceptually
speaking, how to assign responsibilities and capabilities for
carrying out the services [Greenspan 1991]. The situation is
often an evolving one: given an existing situation, new
requirements arise, such as the need for a new service or a
new capability, and the design problem is how to (re)design
the system to respond to the change.

1 ACME is an acronym for A Conceptual Modeling
Environment.

We are quite sure that IN systems analysts and designers
use a great deal of domain knowledge to make decisions
about how to design an IN system to meet new
requirements, and that their familiarity with the domain is a
dominant factor affecting the ultimate success of the system
design. The question is what that knowledge is and how it
can be represented in a domain-specific environment. In this
paper, we will briefly survey a few of these representation
ideas and how they contribute to the goal of domain-
specific software design. To the extent that these ideas are
cogent applications of general software engineering
principles, their essence should apply to other domains as
well.

Design from domain-specific building

blocks

In the telecommunications domain, there are several
mandates for having a stable set of building blocks from
which service software can be composed and rapidly
implemented. One impetus for building blocks is the need
for the industry to agree on a basic set of services and
capabilities that can be assumed as universal so that
services can interwork over company and national
boundaries. Another impetus is that the US federal
government seeks to promote fair competition by making
sure that a common set of building blocks is available to
all potential service developers/providers (not only to the
telecommunications network proprietors).

Although the forces that motivate the use of building
blocks may be largely nontechnical or quasi-technical, the
emphasis on a building block approach turns out to be a
valuable idea from a design point of view. It narrows the
search space for solution software because all solutions
must be composed from officially sanctioned building
blocks. Moreover, the resultant software can be more
correct, reliable, and so on, since building blocks are
subject to intense scrutiny and analysis. The building block
approach may appear to bring with it a loss of design

56

freedoms,sincesoftwareis not allowed to decompose into
arbitrary software components, but the premise here is that
the gain in manageability of the design process is
worthwhile compensation for this

The essential ideas of a building block approach are as
follows. First, building blocks need to be (a) adequate to
compose the desired set of services, and Co) implemented
effectively in components of the systems that provide the
services. Secondly, building blocks need to be reliably,
efficiendy, safely (etc.) implemented in the embedded
system base. Thirdly, the introduction of new building
blocks into the system fabric needs to be a controlled
process. Suppose an organization desires to offer a new
class of services that requires building blocks not already
available in the system; the newly required building blocks
need to be carefully identified, implemented, and tested, and
importantly and nontrivially, their interactions with the old
building blocks need to be taken into account.

It is important not to confuse the building block
approach with the general notion of reusable components.
The main idea of reuse, in its most general sense, is an
asset management idea, namely that prior investment in
software artifacts (code, specifications, or whatever) can be
capitalized on by reusing the artifacts. If an enterprise
restricts its software development to a specific domain, then
the existence of domain-specific reusable components may
enable one to achieve a higher degree of reuse. It has been
pointed out that domain analysis is a way to achieve this
(e.g., see [Arango & Prieto-Diaz, 1991]). However, this is
still not the idea of building blocks. Reusable components
refer to a library of assets that happen to be available to
designers, while building blocks refer to the set of software
components that have been designed into the system
infrastructure of the operational system.

We suspect that a building block approach is already
being used in other software domains and is worth making
an explicit principle for building domain-specific
environments. Further insights can be gained by drawing
parallels between software development and other forms of
manufacturing, where a set of building blocks (or "parts")
are used to assemble products. Software is different in the
respect that an infinite variety of "parts" can be created,
which is both an opportunity and a management problem.

Domain.specific layering based on design

decisions

In the telecommunications domain, standards groups are
discussing a four-level IN conceptual model [Duran &
Visser 1992] that organizes Intelligent Network systems in
a useful way that might apply to other domains. While the
model itself is not complete in any sense and is continually
evolving, there are some ideas worth noting. We wm not
give a literal description of the four-plane IN conceptual
model but rather give a rough summary and extract some of
the key ideas, using vocabulary convenient for the purposes
of this paper.

Greenspan

The layers/planes are roughly the following, from top to
bottom:

1) Services -- The software applications for the end
user.

2) Service Building Blocks -- As discussed above,
software components that are used to compose
services and which are provided by the underlying
service-providing system/network.

3) Logical System Entities -- A set of standard
system components (called "functional entities"
by the standards groups), each of which offers
methods that implement the building blocks.

4) Physical System Entities -- A set of available
system components that can be developed or
procuredand installed in the embeddedbase.They
are,conceptually,packagesof logicalsystem
entities.Vendorsbuildthese.

These planes are usefully chosen so that the relationships
between adjacent levels involve key types of design
decisions. We already discussed the relationship between
Services (level 1) and Service Building Blocks (level 2).

The main rationale for level 3, Logical System Entities,
is that the industry needs to have a way of identifying,
specifying, and integrating systems in a vendor-independent
manner. Besides this motivation, level 3 also seems to be
the focal point for several design concerns. Level 3
identifies the perceived infrastructure of logical, service-
providing systems. Elaboration of this plane would describe
the perceived standard subsystems that comprise the
domain, such as making phone calls, billing, reporting
error messages, and so on. This level will be quite rich
with domain-specific content, representing, in effect, a
model of the service-providing enterprise (discussed further
below).

The relationshipbetweenServiceBuildingBlocksand
LogicalSystem Entities(i.e.,between levels2 and 3)
concernhow capabilitiesare distributedamong logical
systemcomponents.The relationshipbetween Services
(levell)and LogicalSystemEntities(level3) concern
design decisions about what systementities are responsible
for playing various roles in services.

The design decisions relating Logical and Physical
System Entities 0evels 3 and 4) mosdy concern designing
a physical system to meet nonfunctional requirements.
Logical systems will have associated nonfunctional
requirements (e.g., concerning performance, reliability,
security, etc.) that must be met by the physical system
entities. The original sources of nonfunctional requirements
might actually be traceable to any of the levels. In any
particular domain, one must identify and specify the
nonfunctional properties that are most critical to success in
that domain. Arguably, the design knowledge about how
designers design physical systems to successfully meet the
nonfunctional properties seems one of the most difficult
subjects to formalize and automate.

This discussion of the four-plane model is intended to
point out some of the more generic (high-level) design
issues that might transfer across domains. The industry has

57

developed other, more detailed, layered models (such as the
seven-layer OSI architecture), which is more intensely
domain-specific to communications and less likely to
transfer.

Enterprise domain knowledge

The domain-specific design environment for systems in our
domain should be able to take advantage of the fact that all
of these systems ultimately are part of an enterprise that
provides services (either to end-users or to internal agents
responsible for tasks necessary for providing the service).
Given what is known about the nature of these systems,
there are a lot of assumptions and constraints that can be
built into the design environment.

For example, in the domain of telecommunications
services, there are customers who subscribe to services.

Services are tasks performed by service provider agents for
customers, usually involving sensing and changing the
state of objects in the customer environment and
performing communication acts across a network of
objects. It is further known that when a customer signs-up
for (or subscribes to) a service, some service-related objects
may need to be installed (e.g., a telephone at the customer
premises, a wire to the customer's residence, customer
information in a system database -- this is called
"provisioning"). Another part of the domain is that services
are performed in exchange for payment, which requires data
on the use of services by customers. These and other
aspects of the enterprise can be and should be part of a
domain specific environment for designing systems in that
domain.

One advantage to be gained by ACME from the presence
of enterprise domain knowledge is that model acquisition
can be supported by intelligent assistance, as in
[Reubenstein 1990]. For example, since the assistant
knows that provisioning is done when a new customer
signs up for a service, the system can know something
about what information needs to be specified (and can
partially fill it in).

Designing systems in terms of the enterprise domain
knowledge is much easier than working at a general
systems level. General-purpose CASE environments,
which offer generic concepts such as objects, properties,
entities, processes, and so on, leave too large a semantic
gap between the subject matter and the representation
scheme. (On the other hand, we are in favor of building on
general-purpose modeling concepts; see [Greenspan, et. al.
1991].) In [Greenspan 1991], we actually propose the use
of an intermediate level of domain-specificity, called
Service-Oriented Systems (SOSs), that takes advantage of
some of the knowledge of service-providing systems in our
domain but still remains relatively generic.

Process domain knowledge

The above argument for using domain knowledge can be
extended to process knowledge, namely the process of
designing and developing the system, This is sometimes

Greenspan

called process knowledge or methodology modeling.
Process domain knowledge deals with how the
system/software artifacts are created and how they evolve.
Given that we know that the artifacts we are designing
belong to a specific domain (e.g., systems that provide IN
services), we can specialize our view of the process that
creates these artifacts. We are not creating just programs, or
subsystems -- we are creating services, service-providing
systems, and so on. Each of these concepts refers to a type
of artifact that needs to be designed, maintained, and
evolved. This process domain knowledge needs to be
represented in the environment, too.

A service-providing system in our domain is built (or
evolves) by specific actions such as Create Service, Install
Capability, and so on. These process operations can be
considered as services themselves, where the user is the
software designer/developer/maintainer rather than the usual
service customer. The ability to rapidly create new services
and alter the enterprise systems to provide the services is
critical and therefore comprise important (meta-)services in
themselves.

Thus, we think that work on general models of software
process should be specialized to specific domains.

Summary

By exploring some of the manifestations of domain-
specificity in our domain of IN systems, we have found
some representation concepts that could have parallels in
other domains.

Note how some general SE principles were instantiated
but restricted to impose constraints that help gain control
over the domain.

Domain-specific building blocks are like reusable
components that result from domain analysis of the
services and service-providing systems in the domain.
However, they play a stronger role in constraining
the design.

Domain-specific levels based on design decisions are
similar to levels of abstraction in software
engineering but there is a f'Lxednumber of levels. We
do not do an analysis/design to find out how many
levels a system will have.

We study systems in the domain and then design a
fixed set of appropriate levels.

Enterprise domain knowledge is similar to knowledge
represented in generic environments. However, this
knowledge is built into the environment (at the meta-
level) to become part of a domain-specific framework.

Process domain knowledge specializes the vocabulary
and tools of the software process, so that domain
experts have a more direct understanding of the
process.

We close by mentioning a couple of issues that could be
discussed at the workshop:

58

Howcanwe build on general-purpose/vanilla methods
and tools? Some fairly w_li-ufiderstood vanilla notions of
behavior, function, structure, etc. are converging in AI.
Similarly, some forms of object models, dataflow
diagrams, state-U'ansition, etc. from the CASE world are
becoming fairly standard. We need to understand now to _
systematically construct domain-specific structures on top
of (or next to) these.

Are there some common subdomains whose subject
matter knowledge and design knowledge would be useful
across several different domains? Is anybody working on
representation and reasoning frameworks for important
domains and packaging them to be shared across domains?

What is a "good" high-level design? For example,
suppose high-level design includes assigning
responsibilities to agents and assigning ownership of
resources to agents. Then a "good" design might be one in
which all agents who have responsibility for an action own
the resources needed to carry out the action. However, this
might be too restrictive; a suitable design might be one in
which an agent responsible for an action either owns the
needed resources or has access to an agent who does. This
needs to be developed, and a framework for expressing
designs is needed. (If there is already some work on this, we
would like to become aware of it.)

Greenspan

References

Greenspan, S., M. Feblowitz, C. Shekaran, and J.
Tremlett, 1991. Addressing Requirements Issues Within a
Conceptual Modeling Environment. In Proceedings of the
International Workshop on Software Specification and
Design.

IEEE Communications Magazine, December, 1988. Issue
Featuring Building the Intelligent Network 26(12).

IEEE Communications Magazine, February 1992. Issue
Featuring Intelligent Networks 31(2).

Greenspan, S.1991. Analysis and Design of Composite
Service Systems. In Proceedings of AAAI Symposium on
Composite System Design.

Arango, G.; Prieto-Diaz, R., 1991. Introduction and
Overview: Domain Analysis Concepts and Research
Directions. In Prieto-Diaz, R., and Arango, G. (eEls),
Domain Analysis and Software Systems Modeling, IEEE
Computer Society Press, 1991.

Duran, L; Visser,'J., 1992. International Standards for
Intelligent Networks. in [IEEE Comm., Feb. 1992].

Reubenstein, H., 1990. Automated Acquisition of
Evolving Informal Descriptions. Ph.D. diss., M.I.T.
Technical Report 1205.

59

N93"

Hall

17512

Interactive Specification Acquisition via Scenarios:
A Proposal

' Abstract

Some reactive systems are most naturally specified
by giving large collections of behavior scenarios.
These collections not only specify the behavior of
the system, but also provide good test suites for
validating the implemented system. Due to the
complexity of the systems and the number of sce-

narios, however, it appears that automated assis-
tance is necessary to make this software develop-
ment process workable. ISAT is a proposed inter-
active system for supporting the acquisition and
maintenance of a formal system specification from
scenarios, as well as automatic synthesis of control
code and automated test generation. This paper
discusses the background, motivation, proposed
functions, and implementation status of ISAT.

Note: This work is still in its early stages; com-
ments, criticisms, and literature pointers are not
only welcomed, but actively sought.

Background and Motivation

Some reactive systems, such as telephone switches and
other control systems, seem to be most naturally spec-
ified informally by giving a set of behavior scenarios,

consisting of interleaved sequences of applied stimuli
and verified system responses. Here is such a scenario
from the domain of telephone switches:

Assumptions: X, Y, and Z are idle stations.

Stimulus: Y activates Call Forwarding to Z.
Response: Y receives a confirmation tone.

Stimulus: Place a call from X to Y.
Response: Y receives a redirect notification.
Response: Z rings.

Stimulus: Z answers the call.

Response: X and Z are connected.

A comprehensive collection of these scenarios forms

both an informal system specification and a suite of

Robert J. Hall

AT&T Bell Laboratories

600 Mountain Ave.

Murray Hill, New Jersey 07974-0636

hall@allegra.att.com

system tests. There are, however, several major prob-
lems with incorporating this specification and testing
technique into a software development process:

• Too many scenarios. For systems as complex as
modern phone switches, for example, there are too
many scenarios' (typically many thousands) for the
entire suite to be manually executed even once per
software release (of which there may be many per
year). Furthermore, if bugs are found during an ex-

ecution of the scenarios, there is no time to go back
and revalidate each bug fix.

• Ambiguity. Informal English descriptions can be am-
biguous. For example, the scenario above does not
specify the technique that Y must use to activate
Call Forwarding, but some such techniques may not
result in a confirmation tone. Thus, the outcome
of the test execution can be dependent on how the
ambiguity is resolved.

• Inaccuracy. Informal English descriptions can be in-
correct. For example, the default administration of
stations dictates that they do not receive redirect no-

tifications unless this feature is explicitly activated.
Thus, the scenario above will fail, unless the tester

inserts the missing administration step.

• Consistency Maintenance. It is difficult for humans
to maintain the mutual consistency of these scenario
sets as the system evolves over time, and the devel-
opers come and go. For example, an early scenario
may specify that a call to a busy station is denied,
with the caller receiving a busy signal; subsequently,
the system may be changed so that a later scenario
specifies that a call to a busy station is redirected to

an automated answering feature. This change causes
the first scenario to fail in system test.

• Testing Pragmatics. In running a batch of system
tests sequentially, it is crucial that one test leave
the stations in a known "default" state, so that sub-
sequent tests' initial assumptions are satisfied. The
scenario above violates this felicity condition by leav-

ing Call Forwarding activated and leaving X, Y, and
Z offhook. Thus, a batch test run can fail, even

6O

Hall

though the software is really correct, simply because
of the ordering of the tests.

A First Try- KITSS

In the KITSS project (Nonnenmann and Eddy, 1992), 1
the goal is to ameliorate these problems by translat-
ing from English into a formal test script language
which can be automatically executed on a system test
harness. KITSS operates in the domain of telephone
switch software, using a knowledge-based domain rea-
soner that both assists in the translation and audits the

scripts for consistency with a domain model. KITSS has
the potential to help with all of the problems noted
above: the translation process disambiguates the in-
put, using sophisticated reference resolution and prag-
matic reasoning, as well as a library of domain plans.
Next, the auditing phase maintains consistency with
the domain model and detects inconsistencies result-

ing from inaccurate scenarios. Finally, a planner uses
domain knowledge to repair incomplete plans and to
restore the system state at the ends of scenarios.

While it is beyond the scope of this paper to analyze
all of the successes and failures of the KrTSS project,
I believe there are several lessons of the project with
direct impact on this proposal.

The reasoner's model cannot be static. One basic

assumption of KITSS is that there is a highly com-
plete and virtually static domain model that can be
built once and changed only very slowly. If this were
true, then the effort of building this model could be
amortized over all applications of the system. Unfor-
tunately, change seems to be the rule rather than the

exception. In one case study of only the knowledge re-
quired to support the natural language semantics mod-
ule, I calculated that I had to add (or change) roughly
one knowledge unit s for every five sentences processed

successfully. This was measured in adding the knowl-
edge required to allow the system to correctly translate
all sentences of 38 scenarios (roughly 400 sentences).
Moreover, the frequency of knowledge addition was
not "converging" as the test coverage grew. The sim-
ple reason is that broader coverage means new things
to talk about and new ways of talking about things.
While this is hardly a definitive study, it is neverthe-
less suggestive that the domain model will constantly
undergo evolution, rather than remaining fixed.

Experience with other KITg$ system modules, such
as the automated reasoner and the natural language
parser, indicates this phenomenon applies to them as

1KITSS was reported on in last year's Workshop (Non-
nenmann and Eddy, 1991) as well.

2A "knowledge unit _ is a qualitative unit of effort de-
fined with respect to the knowledge formalisms employed
in the KITSS system. Its key properties are that it must
be added manually to the system by a relative expert in
the domain model, and each knowledge unit is of roughly
the same complexity to add (as measured by the time to
discover and add it).

well. Each time a system release includes a new fea-
ture, the reasoner's domain model must be extensively
updated to allow for it. Even if no new feature is added
in a release, it is typical that some aspect of the spec-
ified behavior is either changed or simply better de-
fined. Commonly, unanticipated feature interactions
need to be defined or repaired; for example, it may be
necessary to change what happens if a Priority Call is
placed to a station with Call Forwarding active, since
such calls are not treated as normal calls. Of all KITSS

modules, only the natural language parser (Jones and
Eisner, 1992) has addressed the issue of automating
the acquisition process.

The natural language semantics problem is too hard.
At the start of the KITSS project, it was believed that
the natural language used in writing the scripts was
constrained enough to make possible automatic under-
standing. While this seems to be true for the syntactic
aspects of the English used (Jones and Eisner, 1992),
it appears that the semantic aspects are wildly uncon-
strained, with sentence styles varying from simple and
action-centered to elliptic, imprecise, inaccurate, sub-
junctive, and even metaphorical. An example is

Station B2 wants to talk privately with Station

B1, so presses the Consult button.

This is elliptic, in that the second half of the com-

pound sentence leaves out who is pressing the button.
It is metaphorical in that stations cannot really have
desires, and cannot really talk. To fully handle phe-
nomena such as metaphor and ellipsis, a system must
have a great deal of pragmatic, common sense knowl-
edge. It is well known that the problem of common
sense knowledge is extremely difficult. A result of this
observation is that we cannot depend on perfection in
the natural language component, so an interactive in-
terface is required that makes it possible for the user
to examine each translation and repair it as necessary.

The benefits of imperfect natural language processing
may not justify the knowledge and processing costs. In
another informal study, I used KITSS to translate 14
test cases. I did this in two ways: first, by having the
natural language component try to translate the sen-
tence and only repairing those sentences inaccurately
or not translated; and second, by simply manually typ-

ing the translation essentially directly into the logical
language used by the domain reasoner. The session
which used the natural language component required
47 minutes, while the session without only required 49
minutes. The key reasons for this, I believe, are that
(i) the translation is usually extremely easy to find
for someone familiar with the logical language, and (2)
the processing time in the domain reasoner was large
enough that there was plenty of time for the human
reasoner to think about the paraphrase in parallel with
this processing.

61

Hall

A New Approach: ISAT

The subject of this proposal is a new tool called ISAT,
for Interactive Specification Acquisition Tool. The
first point of departure with KITSS is to acknowledge
the model acquisition and maintenance problem as the

overriding problem. This has impact throughout the
tool's design, starting with a different role for the user.
Whereas in KITSS the user's task is knowledge-assisted
translation of scenarios, given a static system and do-
main model, the ISAT user's task is to synthesize a sys-
tem model (specification) which is consistent with the
scenarios. Translation of the scenarios into automated

test scripts is a by-product of this process, rather than
the primary goal. Thus, whereas the users of KITtS are

system testers, the users of ISAT are the developers and
designers of the system. Of course, the testers still ben-
efit from fully automated and maintainable test scripts.

Note that there is a subtle difference between KITSS's

domain model and ISAT's system model. The domain
model in KITSS has evolved into a collection of con-

straints, plans, and inference rules. It is not, however,
a predictive model of the switch, as this would require
completeness. Such completeness is impossible to at-
tain in a system with a fixed domain model. Thus,
KITSS is capable only of checking certain aspects of
scenario consistency, and uses plan recognition to fill
in missing scenario steps.

By contrast, ISAT'S system model is assumed to be
predictive. It must be complete enough to predict all
observations in all scenarios. Whenever there is an

unpredicted observation or an inconsistency, the user
must fix either the scenario or the model. By design-
ing ISAT for maintainability, however, this is accept-
able. Note that I wilI use the terms "specification" and
"system model" interchangeably throughout to denote
a predictive model of the stimulus/response behavior
of the target software.

One might wonder why it should be possible to ac-
quire such a specification from the user, since tradi-
tionally software specifications have been extremely
difficult to produce. There are two answers to this

question. First, the goal is to acquire a behavioral, in-
put/output specification of the system similar to what
one might find in a user's manual for the target sys-
tem. Since, for example, there are those who claim to

understand how to use their phones, we might expect
this level of specification to be much simpler than a
full specification of the switch software itself. A full
specification would include far more detail than is nor-

mally seen by a user, such as constraints imposed by
hardware resources. Second, in the ISAT project I am
not requiring a complete and accurate specification up
front. Instead, the specification is fundamentally an
evolving entity which undergoes continuous, but con-
trolled, change. By designing for maintainability, and
supporting automatic code synthesis (see below), 1SAT
sidesteps the difficulties of full specification.

In view of the observations above about natural inn-

guage processing, ISAT will not accept English input;
rather, it will accept formal input only. Thus, each
scenario must be manually transcribed into a formal

stimulus/response language. Furthermore, the system
model itself will be expressed in a formal rule language
with a clear semantics.

I believe that this problem redefinition, even though
it places a larger burden on the user, allows much

more leverage on the testing and maintenance prob-
lems. The next section will discuss in detail the ben-

efits which I believe should accrue from this change.
Broadly speaking, ISAT (like KITS$) is an apprentice
system, i.e. one which assists engineers in doing a task
by automating the routine subtasks and tracking as
many details as possible. Examples of this paradigm in
the literature abound: the LEAP system (Mitchell, et
al, 1985) was an apprentice VLSI design assistant, and

the MIT Programmer's Apprentice Project (Rich and
Waters, 1990) supported research on many different
apprentice systems, such as KBEmacs, the Design Ap-

prentice, and the Requirements Apprentice (Reuben-
stein, 1990).

Proposed Tool Functions

Through an extended interactive dialog, augmented by
batch-mode processing of various subtasks, the system
supports the user in constructing a predictive model
of target system behavior that is complete enough to
predict every response in every test scenario. With

such a model, several important software development
tasks can be carried out. The primary functions of the
proposed ISAT apprentice system are given here and
discussed in more detail below.

• Scenario checking. Verify that each response in a

given scenario is predicted by the model, given the
assumptions and stimuli in the scenario.

• Model Maintenance. Control and analyze a user's
changes to the system model, performing impact
analysis and regression testing to ensure that such
changes are consistent with all known scenarios.
Provide diagnostics and explanations when conflicts
arise.

• Automatic Programming. At any time when the sys-
tem model is known to be consistent with the scenar-

ios, compile the model into an efficiently executable
control module for the target system.

*--Generation of Automated Test Scripts. Put out
scripts in the low-level executable form necessary for
execution on a test harness. This includes filling in
missing steps necessary to leaving the system in the

default state, error recovery, etc. (This is essentially
the KITSS task.)

• Test Suite Enhancement. Fill in individual scenarios

with additional response verifications that were left
out of the input scripts, based on the predictions
of the model. Possibly suggest additional scenarios

62

for testing known gaps in scenario coverage, such as
model rules that are never fired or state variables

that never change.

Scenario Checking

The fundamental mode of interaction in acquiring the
model is for the user to present a scenario to the sys-
tem, which the system then "simulates" using its cur-
rent system model (represented in a simple pattern-
action rule form based on a simple notion of state).
The system then informs the user whether the behav'
ior specified by the scenario is successfully predicted by
the system's model. Exceptional conditions are raised
when any of the following conditions arise:

• a response specifed by the user contradicts some de-
duced consequence of the system's model,

• a response specified by the user, though not contra-
dictory, fails to be predicted by the system's model
(indicating possible incompleteness of the model),

• a stimulus applied by the user is deduced to be illegal
in the system's current state

• the system model reaches an inconsistent internal
state (which may not be observable as a system re-
sponse in the scenario).

Whenever such an exception arises, it could be due
either to an incomplete or inaccurate system model
held by the system, or to an incomplete or inaccurate
scenario presented by the user. Thus, the first impor-
tant automated facility of the ISAT system is the ability
to fully ezplain any deduced state condition. This ex-
planation is presented in terms of the pattern-action
rules constituting the system's model and the scenario
stimuli and configurational information given by the
user. The user can then use this explanation to isolate
the difficulty, resulting in either changing the scenario
definition or fixing the model.

Note that this explanation facility hinges on a key
property of reactive system control software: each
event results in a relatively small number of internal
state changes. This allows us to construct a fully ex-
plained and complete execution trace of the system
model on a given scenario input. This property does
not hold true of other types of software, such as data
processing software, compilers, etc. They typically
have enormous traces, involving millions of internat
states. It is practically impossible to build and query
a complete trace of such a system.

Another function potentially performed by the
checker is to compare the final state of a scenario with
the assumed default initial state of all scenarios. ISAT

can then point out when the state is left in a non-
default state, and even assist in planning some steps
for correcting it.

Model Maintenance

If the difficulty lies in the system's model, the user
must decide how to repair the model. Usually, for any

Hall

given model repair, the biggest difficulty lies in un-
derstanding how the proposed change will effect the
correctness of the system on other scenarios. That is,
does this fix break anything that worked before?

In rSAT, this is not a problem because of our insis-
tence on complete explainability. In principle, each sce-
nario can be re-checked; any that no longer complete
successfully provide full explanations of why they fail,
allowing the user to quickly locate the unintended in-
teractions. In practice, we can speed up this process by
orders of magnitude for small model changes by exam-
ining the justification structures built up in originally
checking them; a small model change will not effect
many scenarios, so this checking can quickly determine
that the original structure still applies (this is analo-
gous to the difference between deriving a proof and
checking an existing proof). In my experiments with
the current prototype of ISAT, this simplified impact
analysis is roughly 40 times faster (for localized model
changes) than a full recheck of all scenarios would be.

The above technique applies to changes in model
rules; I anticipate there will be analogous protocols
for dealing with other types of model changes, such
as changing the types of model functions, adding and
deleting state variables, etc.

Automatic Programming

Since the system model is predictive, it can serve as
a controller for the target system, assuming the hard-
ware and low-level primitives support the stimulus and
response primitives directly. Specifically, I assume that
the system substrate can be coded to supply typed
interrupts when sensors indicate the presence of real

stimuli (such as when a button is pressed, or a phone
goes offhook). I also assume that the substrate sup-
ports actuators for each of the observable signals de-
duced by the system model (such as a status lamp
lighting or a tone being emitted). Given this substrate,
which may or may not exist in current day designs, we
can synthesize a controller by essentially treating the
sensor interrupts as stimulus statements in a scenario.

Then, when the system model computes the next ob-
servable system state, the changed observables are sent
as updates to the actuators.

The only difficulty with this direct approach is the
efficiency of the controller: even if there are no hard
real time constraints (which there may be), large sys-
tems like phone switches must handle many interrupts
per second to be usable. Fortunately, I believe it should
be quite possible to compile the system's model into an
extremely efficient program. The run-time system need
not track rule justifications, and rule chains can be pre-
computed at compile time. Thus, the event handlers
for the system at run-time needn't do term matching,
justification construction, or consistency computation.

Note that there are several benefits to this automatic

programming approach.

• 1atrial Coding is fast. This is because the control

63

Hall

part is generated from the system model automati-
cally. Because of the extremely simple model of com-
putation in the system and the limited domain, I hy-
pothesize that this automatic programming problem
can be fully automated.

* Subsequent releases are relatively painless. In many
domains, new system releases tend to involve mostly
changes to the high-level control, rather than the
sensor-actuator substrate. Thus, future releases can
be produced by first getting them correctly reflected
in the ISAT system model and then automatically

regenerating the controller, leaving the system sub-
strafe the same.

* Bug fixing turnaround is fast. Another benefit lies in
debugging the actual system. If a user calls up with
a bug report, it can be simulated in ISAT'S model, to
see if it is replicated there. If it is not, then the bug
is localized to the sensor-actuator substrate. More

likely, however, is that the bug is manifested in the
model, where the full explanation facilities oflsAw al-
low quick localization, fixing, and regression check-
ing. This can potentially lead to extremely rapid
turnaround for bug fixing. Note that quick bug lo-
calization based on querying scenario traces depends
on the special properties assumed of this class of re-
active control systems.

Even though I believe the automatic programming
task in this domain is tractable, challenges remain. For
example, compiling arbitrary rule patterns into effi-

cient code is still challenging. For example, when a
rule's condition contains the pattern (connected][?y),

the naive compilation performs a linear search among
all stations to see which are connected to B1. It would

be desirable to compile this into a hash-table based
representation of the set of connected stations to X.

There is much existing research on this and related
compilation problems, however.

Generation of Automated Scripts

The challenge here is to translate from the high-level
stimulus and response statements appearing in the sce-
narios into the particular low-level language used by
the test harness. This will involve two steps. First,
each high-level step, such as "Activate Call Forwarding
from Station X to Station Y" must have one or more

compound action methods defined telling the system
how to translate it into a sequence of primitive stim-
uli understood by the system. I believe this is prop-
erly part of the system model acquired from the user.
The final step is to do a more-or-less standard compi-
lation step from the event primitives in the model into
the language of the test harness. The event primitives
should be designed to make this relatively easy.

Note that the checking phase of ISAT is presumed to
have already made sure that each scenario leaves the
system in a known default state.

Test Suite Enhancement

There are two different types of enhancement that ISAT

can easily perform: first, each single scenario can be
"filled out" with missing observations, to increase con-
fidence in the proper working of the switch. It can do
this based on the predictions of its model. For example,
it might insert checks for dial tone after each off-hook
operation. Of course, we must be careful not to bog
down the scenarios in endless checking of details, since
there are so many to execute on the test harness.

The second type of enhancement is to the coverage
of the suite as a whole. If a model rule is never fired in

any scenario, this probably indicates that one or more
scenarios should be created to exercise it. (Otherwise,
why would the user put it in?) Similarly, if a certain
type of state variable either always has the same value
or is never determined in all scenarios, scenarios should
be created to see if it is possible to cause a change. At
the very least, these types of conditions can be brought
to the user's attention. More ambitiously, the system
can do goal-basec[planning to try to bring about the

conditions necessary to firing the rule or changing the
variable's value.

Implementation Strategies

To date, I have implemented an initial prototype
demonstrating some of ISAT'S capabilities. In particu-
lar, the system can check scenarios and perform impact
analysis for individual rule changes. It can also emit
low-level streams of stimulus/response statements as
the first step in producing automated scripts. I have
used ISAT to build several different models of different

combinations of telephone switch features. The most
complex is a model that layers Priority Calling and
Call Forwarding on top of Plain Old Telephone Ser-
vice for multiple call-appearance phone stations. Since
this model acquisition was done in parallel with ISAT

implementation, it is premature to attempt to gauge
how well I was supported in this by XSAT. I have used
the model to successfully check 17 scenarios taken from
actual pre-existing AT&T system test documents.

The formalism I've adopted is based on simple
pattern-action rules used to form partial descriptions
of state transitions.

if (CALL-STATE (CA ?l ?N)) = :IDLE, and

(SELECTED-CA ?X) = (CA ?X ?N), and

(HOOK! ?X :OFF) - :TRUE,

then (CALL-STtTE (CA ?X ?N)) - :PRE-DIALING

This rule says that if call appearance number ?N at
station ?X is idle and is the selected appearance of
?X and ?X goes off'hook, then in the next system
state the CALL-STATE of that appearance is ":PRF_,-
DIALING". There are two types of model rules: state
change rules, like the above, are used in a "forward"
manner; that is, they are executed to quiescence after
each stimulus event is applied. Demand rules, like

64

Hall

if (CALL-STATE (CA ?X ?N)) ,, :DENIED, and problem head-on, I believe many major benefits are

(SELEffrED-CA ?X) = (CA ?X ?N), and achievable, such as specification acquisition and main-
(0NHOOK? ?X) ,, :FALSE tenance, automatic synthesis of control systems, test

then (RECEIVED-TONE ?X) - :BUSY-TONE
enhancement, and automated script compilation. An

are only used when a response event asks about one or initial prototype of ISAT is currently under construc-
more of the predicates in the rule's conclusion. Thus, tion, with several of the main functions implemented.
the above rule will only be used when the scenario It has been tested on several scenarios from a "real
executes an observation_of the received-tone of some

station. Demand rules _ 0gcessary so that the sys-
tem need not forward chain to deduce a large number
of observations that won't be used in a given state.
For example, there are quadratically many potential
connections between stations, but by making the ob-
servable connected predicate only deduced on demand,
the model can execute in linear time.

Note that, unlike state rules, the demand rules do
not chain arbitrarily. They are used only one level
deep. This makes the system's efficiency much more
predictable, and I have found it no significant restric-
tion in expressive power.

ISAT deals with the classical AI frame problem (how
to consistently carry forward unchanged facts when a
small aspect of the state changes) by distinguishing
different declared ontological statuses of terms. Any
term consisting of an application of a function declared
:PERSISTENT by the user has its old value brought for-
ward, unless an explicit contradiction is deduced by
a rule firing. Any non-persistent terms must be red-
educed in each state. Most such terms are deduced

by demand rules, though, so they do not incur a large
unnecessary cost.

Because of the extremely simple formalism and se-
mantics, the current prototype is able to support sev-
eral useful explanation functions. Of course, it can

answer (wilY? <fact> <state>) by simply giving the ex-
plicitly maintained justification in terms of rule appli-
cations, external inputs, etc. Another extremely use-
ful capability is the ability to answer (WHY-NOT? <fact>

<state>). Obviously, in its most general form, this
is too open-ended to be meaningful; but in the con-
text of 1SAT this is interpreted to mean the following.
First, tell me any contradictory facts (optionally ex-
plaining them); then, tell me all the rules that could
have deduced the fact and tell me why they didn't
fire (by telling me which of their conditions are not
satisfied). This has been very useful in building the
models I have already built. An analogous facility is
(METHODS? <action statement> <state>), which gives a
description of which compound action methods apply
in the state for the given compound action application,
and which fail to apply and why.

world" application.

Acknowledgements

This proposal has grown out of work on the KITSS
project at AT&T Bell Labs. I have learned a great deal
from this project and the people involved with it: Van
Kelly, Mark Jones, John Eddy, and Uwe Nonnenmann.
Some of the ideas and opinions expressed in this paper
are clearly derived from the conceptual foundation of
KITSS. However, I make no claim as to whether the
individual project members (except me) agree with the
specific opinions expressed here.

References

Jones, M.A.; and Eisner, J.M. 1992. A probabilistic

parser applied to software testing documents. In Pro-
ceedings of the Tenth National Conference on Artificial
Intelligence. Cambridge, MA: MIT Press.

Mitchell, T.; Mahadevan, S.; and Steinberg, L. 1985.
LEAP: A learning apprentice for VLSI Design, In Pro-
ceedings of the Ninth International Joint Conference
on Artificial Intelligence, vol 1, pp 573-580. Los Altos,
CA: Morgan Kaufmann.

Nonnenmann, U.; and Eddy, J.K. 1992. KITSS - A
functional software testing system using a hybrid do-
main model. In Proceedings of the Eighth IEEE Con-
ference on Artificial Intelligence Applications. Mon-
tery, CA: IEEE.

Nonnenmann, U.; and Eddy, J.K. 1991. KITSS - To-
ward software design and testing integration. In Pro-
ceedings of the AAAI-91 workshop: Automating Soft-
ware Design: Interactive Design. AAAI.

Reubenstein, H. 1990. Automated Acquisition of
Evolving Informal Descriptions, Technical Report, AI-
TR-1205. M.I.T. Artificial Intelligence Laboratory.

Rich, C.; and Waters, R. 1990. The Programmer's
Apprentice, New York, NY: ACM Press.

Summary

The proposed tool, XSAT, is a software development tool
environment for reactive control systems, such-as tele-

phone switch software. It is motivated by, and builds
on lessons learned from, the KITSS project. By redefin-

ing the problem and meeting the model acquisition

65

Hayes-Roth

DISTRIBUTED INTELLIGENT CONTROL AND MANAGEMENT

(DICAM) APPLICATIONS
AND SUPPORT FOR SEMI-AUTOMATED DEVELOPMENT 1

SH- /

Introduction

Frederick Hayes-Roth, Lee D. Erman, Allan Terry,
Teknowledge Federal Systems,

Cimflex Teknowledge Corp.

& Barbara Hayes-Roth
Knowledge Systems Laboratory

Stanford University

We have recently begun a 4-year effort to develop a new
technology foundation and associated methodology for the

:rapid development of high-performance intelligent
controllers. Our objective in this work is to enable system
developers to create effective real-time systems for control
of multiple, coordinated entities in much less time than is
currently required. Our technical strategy for achieving this
objective is like that in other domain-specific software
efforts: analyze the domain and task underlying effective
performance, construct parametric or model-based generic
components and overall solutions to the task, and provide
excellent means for specifying, selecting, tailoring or
automatically generating the solution elements particularly
appropriate for the problem at hand.

For intelligent control tasks, we believe that the domain-
specific software approach holds the promise of providing
great leverage on the software development task whether
software generation is manual, automated, or semi-
automated. In our view, complex and mission critical
systems generally must have a human analyst in the loop
both to specify desired behavior and to validate tested
designs. Until this process is made extremely regular and
routine, the human will necessarily be involved in nearly
every step of the software development process as well.
Given the lack of regularity and proven automatic
generation means, the human's ability to validate overall
designs requires insight into and hands-on experience with
the details of the software design and generation.
Nevertheless, we believe that significant progress on the
"time to market" for such systems requires much of the
same supporting infrastructure, regardless of the extent to
which productivity enhancements are achieved through
automation or merely improved methodology. This
position is similar to that held by experts in many fields
who state that one should not automate poorly characterized,
highly variable processes. First, we must attempt to
regularize the process, support it with an effective and
efficient methodology, and then automate those portions of
the process which give the greatest return on investment.

: In this paper, we first present our specific domain focus,
:briefly describe the methodology and environment we ate

1 This work reported here has been supported in part by
DARPA and the US Army ARDEC through contract
number DAAA21-92-C-0028. The opinions expressed here
are those of the authors, not the sponsors.

N93.17513 "

developing to provide a more regular approach to software
development, and then later describe the issues this raises
for the research community and this specific workshop.

Project Objectives and General Approach

Our project aims to develop a new technology
foundation and associated methodology for the rapid
development of high-performance intelligent controllers.
These controllers will be employed in distributed intelligent
control and management (DICAM) applications. Examples
of such applications include intelligent highway systems,
military command and control systems, and factory floor
control systems. Our near-term domain of application is
vehicle management systems, where one or more controllers
may be employed to control a single vehicle, and these
composite controller/vehicles are further aggregated and
organized into higher-levels of control and capability. In a
military context, for example, a single controller may be
used for each subsystem within a tank, each tank system
may be controlled by collectively organizing its
subsystems, the overall tank may be controlled by another
controller that coordinates the tank system controllers,
several tanks may combine to form a platoon with its own
control level, one or more platoons may form a battalion,
and so on.

Our research project is one of several sponsored by
DARPA (the Defense Advanced Research Projects Agency
of the US Defense Department) and the US Army to
advance the technology for domain-specific software
architecture (DSSA). Our project for the Army address the
specific vehicle management task of a howitzer, a tank-like
vehicle that aims at more distant targets. The project has
four principal focus elements. First, we are formulating a
reference architecture for intelligent control. Second, we are
supporting the construction of applications in a
development workspace in which system requirements are
ultimately satisfied by choosing design components that
specialize and particularize components of the generic
reference architecture. Many of the specialized modules and
particular data used to instantiate a design are taken from a
repository. The entire development process is supported by
a rich array of development tools, which incorporate
numerous techniques from both software engineering (e.g.,
control law specifiers, code generators, protocols,
compilers, debuggers) and knowledge engineering (e.g.,
domain modeler, requirements manager, and various
knowledge-based design assistants).

66

Hayes-Roth

The DICAM Framework and

Supporting Technology

We are developing DICAM simultaneously as a "model"
or framework for understanding control problems and as an
architecture and related environment for building controllers.
There are many reasons why we seek to formulate such a
unifying framework. Foremost among_these is our belief
that the difficult, time-consuming and often unsatisfactory
process of controller development would benefit from a
more "standard" but flexible approach. Our DICAM
framework provides a generic but customizable model of
controllers that seems to unify a variety of views and
experiences in the control, software and knowledge
engineering disciplines.

DICAM is closely related to the NASA/NBS reference
model for teler0bot control systems (NASREM) [Albus,
McCain, & Lumia, 1989]. The reference architecture
includes two principal components in any distributed

functions to determine on a cyclical basis which pending
action is best to execute next: an agenda manager to store
and evaluate pending actions; a scheduler to determine the
next action based on the degree of fit between goals of a
control plan and actions pending on the agenda; and, finally,
an executor gives control to the selected actions.

Our basic methodology for development of DICAM
applications consists of a blackboard-like environment
where the "blackboard" is a development workspace and the
"knowledge sources" are system developers augmented by a
wide variety of computer-based tools, including some expert
systems that are capable of autonomous development

" activity. We are assembling an Application Development
Support Environment (ADSE) for DICAM applications (see
Figure 1) to provide these capabilities.

The development workspace contains a representation of
the emerging system being developed incrementally over
time. Its elements represent decisions or specifications
linked into a "web" of mutually supporting decisions that
both specify the system design and justify it. We haveintelligent control and management application. First, an

- combined three lines of research in formulating thisinformation base and world model (IBAVM) is a
"conceptually centralized" database/knowledge base that
represents the state of the world. The second principal
component of the DICAM reference architecture is a
collection of semi-autonomous interconnected controllers.
These controllers are differentiated in terms of the scope of
behavior they address, the resources they control, and the
time frame spanned by their decisions.

Each controller is actually divided into two separate but
interrelated components called the domain controller (DC)
and the recta-controller (MC). The DC contains several
modular functions and prescribes how they interact using
data flow conventions. The functions include sensing, input
filtering, situation assessment, planning, plan assumption
analysis, execution and effector activation. Each controller
has its own local world module which is a cached view of
the global state represented by the IB/WM. Several
messages flow into and out of the DC. The inputs include
messages received from a superior controller specifying
goals for the controller, messages from sibling controllers
at the same level (such as another vehicle in the same
group), and messages from subordinates, typically reporting
on the outcomes of their efforts. Outputs include subgoals
assigned to subordinates for delegated execution as well as
messages to siblings, for example, to report on current plan
execution objectives or status or to request operating
resourcd_.

Although this general DC structure has proved effective
in applications such as the Pilots Associate [Smith &
Broadwell, 1989; Lark et al., 1990] and robotics ['Becker,
1989], dataflow programs in general exploit only weak
knowledge about when to execute functions. The general
rule is to compute any function when all of its inputs are
available. However, there are often too many possible
instantiations to execute all simultaneously, or even with a
small delay. Thus, in situations where more knowledge is
required to achieve excellent results with scarce resources, a
metal-level of control is required [Garvey & Hayes-Roth,
1989; Hayes-Roth, 1985; Hayes-Roth, 1990]. Our recta-
controller is based on the knowledge-based scheduler of the
BB 1 blackboard system. This controller utilizes three basic

development workspace. First, we have drawn on the
blackboard model and opportunistic reasoning [Erman et al.,
1980; Hayes-Roth & Hayes-Roth, 1979; B. Hayes-Roth et
al., 1986] as an organizing methodology for incremental
design and development processes. Second, we have adopted
the emphasis of the domain analysis and domain-s_cific
architecture approach to software specification, reuse and
rapid development [Prieto-Dfaz & Axango, 1991]. Lasdy,
we have adopted and generalized the approach of module-
oriented pro__rammin_ from our previous research on ABE
[Erman, Lark & Hayes-Roth, 1988; F. I-Iayes-Roth et al.,
1989; F. Hayes-Roth et al., 1991]. This includes the ideas
of recursive modular composition, distributed control
through message passing using ADTs, system construction
through module composition, and system realization by
deferred binding of processors to modules.

Specifically, the workspaee provides a multi-faceted,
multi-level representation of DICAM software applications.
It provides means for describing the domain model, i.e., the
general characteristics of the task and environment in which
the vehicle or machinery will operate. The general domain
model is then augmented with specialized information about
the specific application being built, such as how many
vehicles, the distances to be traveled, the specific threats and
so forth that the application will address.

At a lower (more concrete) level, the workspace provides
means for representing the functional components and the
physical resources that make up the controlled system, and
it describes how the functional components are composed
and how they are implemented using specific processors,
communication capabilities or other machinery.

In addition, the workspace provides means for
representing the status of the software development process,
including the history of activities and characteristics of the
current overall development.

As is typical of blackboard systems, the workspace
provides means of representing decisions and using state
change to trigger the invocation of appropriate tools.
Decisions in this workspace range from abstract
characterizations of components such as requirements or

67

Hayes-Roth

Oeve°0ment' s0ac Ioomn e0sr,oo[]oooo[][][]."
I Model: _ ,'1[][][][],p cato
co [-

- IOOE
• [Tools (compilers,

i expert syst_m shells,

I simulators, etc.)

l_Kno_ _ d_le:based TM

JComponeh_ IDes i 1 _is_ts

JComm.,
JServices,

Resources:

Figure 1. The Application Development Support Environment.

goals to particular specifications, including detailed
functional characterization or specific software or hardware
packages that realize the required capability. We have not
yet settled upon final or formal representation sublanguages
for each level, but are considering various alternatives that
are being suggested in other groups' efforts to conceive
potentially standardizable descriptions of modules and
module interfaces (e.g., the DARPA module interconnect
formalism, the DoD STARS repositories, etc.). Regardless
of which specific formalism is used, the description of
modules must include input/output datatypes, function
characterization, implementation requirements, domain
assumptions, and performance metrics. When making a
design decision, the developer specifies some or all of these
attributes along with his or her name and some rationale.
As in all blackboard systems, decisions are changeable, and
multiple competing decisions may coexist. Ultimately,
those decisions that form the best coherent "web" win:
these decisions constitute the overall system specification,
from requirements to implementation, which particularizes
the domain and application models.

Other features of the ADSE that we are developing and
assembling include: A To-Do List keeps an agenda of
pending tasks for the software developers. As with
blackboard systems, actions are triggered when the state of
the Workspace matches a pattern of interest. A Process Plan

is supported that effectively maps patterns of interest found
in the Development Workspace and the current To-Do List
into proposed actions. The proposed actions (shown as Pz)
in the figure might include any of the following: make a
specific design decision; apply a particular tool to a
particular design component with certain parameters; raise
the priority on doing one pending task over others, etc. Our
plan is to support a wide variety of SE methodologies by
providing a general mechanism for representing and
implementing corresponding process plans. A Repository of
reusable components is provided that stores, classifies, and
searches for previously used Development Workspace
structures. Typically these include reusable domain models,
application characteristics, generic function modules,
specific implementation modules, and data to customize or
particularize generic functions for specific application
domains. A Tool Registry provides mechanisms for
enrolling software development tools, describing their
required inputs and associated outputs in terms of patterns
that match characteristics found in the Workspace or Process
Plan and, finally, providing Tool Activators that can
automate or semi-automate invocation and application of
tools. The tools consist of compilers, generators,
simulators, expert system shells, etc. Lastly, the ADSE
incorporates specialized tools called K.BDAs that provide
knowledge-based assistance in to the software development
process. These tools can include, for example: requirements

68

Hayes-Roth

Table 1. As
,,,

Aspect
Opportunistic Design

Controller Architecture

Information Base/
World Model

KB Design Assistants

Repository

Engineering Foci

Component Characterization

)ects of the Development Methodology
Elements

Multiple levels and representations
Abstract to particular characterizations
Incremental decisions
Linked decisions form design web
Prescriptive process models permitted
Humans and computer tools cooperate
Generic modules
Flexible, tailorable controllers
Schema of ADTs for IB/WM
Message processing using ADTs and intermodule protocols
Distribution
Fractal control model
Shared data managed by IB/WM
Conceptually centralized, single-copy, but allows physical

partitioning
Typically distributed
Time response must satisfy requirements ranging from sub-

millisecond to a few seconds
Different levels of aggregation
Different meta-types: data, propositions, rules, plans
Temporally organized and continually renewing
Mini-expert systems watch process state and advise user at key

events
Tool-use expert systems help humans apply development tools
Stores and uses partial matches to retrieve "components" at any

level
Components classified in taxonomy from generic to particular
Domain-specific customizations available to particularize generics
Domain modeling
Requirements engineering
Knowledge engineering, about DICAM and DICAM development

tools and methods
Performance objectives , measurement and attainment
Goals & Constraints
Models: Behavior, timing, functionality
Interfaces:

Datatypes
Module partners
Conversation types
Protocols
Messages to other devices

Resource/environment prerequisites

analyzers that suggest appropriate reusable components;
redesign advisors that suggest ways to modify an existing
design in light of a change in requirements or capabilities;
and intelligent interfaces that set up and run complex tools
to assist a developer in generating or analyzing some code.

To implement the ADSE we are using a number of "off-
the-shelf" technologies. Chief among these are: ABE IF.
Hayes-Roth et al., 1991], as an integration environment for
tools, a composition framework for modular, real-time
applications, and a catalog and classification system for the
reuse repository; BB1 lB. Hayes-Roth, 1985], as an
incremental workspace, process model interpreter, and
agenda manager; M.4, a commercial expert system shell, for
building the KBDAs; and the Requirements Manager (RM),
a DARPA-sponsored software product for collecting,
managing, and evaluating application requirements and

validating application designs against requirements [Fiksel
& I-Iayes-Roth, 1990]. We are also evaluating many other
commercial and research SE tools for use in the ADSE [cf.
NIST ISEE Working Group, 199I].

Development Methodology

The overall approach we are taking to development is
summarized in Table 1. The seven principal facets fall into
three basic categories of methods. The controller
architecture and information base/world model constitute the
reference architecture for the domain of intelligent control.
The repository, engineering foci, and component
characterization concerns define our approach to domain-
specific software engineering. The opportunistic design and

69

KB design assistants define our approach to defining a
process of software development that can, at least, be semi-
automated.

We are currently applying the methodology to
demonstration problems chosen from defense applications.
As an example, consider the task of achieving intelligent
comrol of field artillery systems, such as mobile howitzers.
Howitzers, like other military vehicles, are self-propelled,
mobile vehicles with offensive guns. Their primary
mission is ground-based artillery shelling of over-the-
horizon targets. They are very similar to tanks, armored
personal carriers, and helicopters in general information
processing terms. Thus, all military vehicles of this sort
share elements of the domain model, but differ increasingly
as these models and the corresponding application model
become detailed.

The general DICAM architecture is specialized for Army
Vehicle Management Systems by the selection of levels:
battalion, battery, platoon, vehicle (section), system,
subsystem. Then it is further specialized for a particular
howitzer, e.g. the "ABC Howitzer," by the selection of
functional controllers and their relationships. Each group of
ABC howitzers is headed by a Platoon Leader who reports
to higher headquarters. The Chief of Section of each vehicle
reports to the Platoon Leader and is responsible for the Gun
Control, Loading, and Driving functions.

Following the domain-specific approach, after
developing the generic domain model, the next task for
system developers is to elaborate the application model. The
task application model enumerates desired functionalities
associated with each level of control. Several generic
functions appear repeatedly across different control levels,
such as tasking subordinates with subgoals or performing
external and system status analyses as part of situation
assessment. These functionalities are also common across

the analogous components in other vehicles: tanks, missile
launchers, infantry fighting vehicles, etc. Thus, there are
two levels of functional similarity:

• across different components within a vehicle, and
• across the similar components in different vehicles.
To convert the informal task analysis into a more

formal, explicit application model, the system developer
selects from among generic functionalities in the reference
architecture, specializing and customizing them for the
particular needs of the target application. Then to construct
an application system, the developer uses these refined
specifications either to select components from the
repository that can perform these functions or to drive
automatic, semi-automated, or manual code generation.

Issues Raised

Our research raises many issues, some of which are
highlighted here:

• Is our methodology (as described in Table 1) effective?
• Does our reference architecture provide enough structure

to make specification practical and component software
reusable?

• How can a critical mass of reusable components be
clotted?

• How can modules be characterized?

Hayes-Roth

• How can the languages used for characterizing modules
be standardized?

- How can modules be designed so that they can be
specialized or customized to new applications?

• Which tasks in the development process are most
worthy of automated support?

• How can the space generated by a diversity of vehicles,
environments and control objectives be structured to
maximize the potential for reusability of specifications and
solution components?

References

[1] Albus, J. S., McCain, H. G., and Lumia, R.
"NASA/NBS standard reference model for telerobot
control system architecture (NASREM)," National
Bureau of Standards, Tech. Note 1235. 1989.

[2] Becker, J. M. "The genetic control level: a unifying
view," Prec. ROBEXS 89, Pale Alto, CA, 1989.

[3] Erman, L. D., Hayes-Roth, F., Lesser, V. R., and
Reddy, R. "The Hearsay-II speech-understanding
system: Integrating knowledge to resolve uncertainty,"
Computing Surveys 12(2), June, 1980, pp. 213-253.

[4] Erman, L. D., Lark, J. S., and Hayes-Roth, F. "ABE:
An environment for engineering intelligent systems,"
IEEE Transactions on Software Engineering, 14(12),
December, 1988.

[5] Fiksel, J. and Hayes-Roth, F. "A requirements
manager for concurrent engineering in printed circuit
board design and production," Prec. of the Second
National Symposium on Concurrent Engineering,
Morgantown, WV, February, 1990.

[6] Garvey, A. and Hayes-Roth, B. "An empirical analysis
of explicit vs. implicit control architectures," in
Jagannathan, V. and Dodhiawala, R. T. (eds.), Current
Trends in Blackboard Systems, Academic Press, 1989.

[7] Hayes-Roth, B. "Blackboard architecture for control,"
Artificial Intelligence, vol. 26, pp. 251-321, 1985.
Reprinted in: Bond, A. and Gasser, L. (eds.), Readings
in Distributed Artificial Intelligence, Morgan
Kaufmann Publishers, Inc., 1988.

[8] Hayes-Roth, B, "Architectural foundations for real-
time performance in intelligent agents," Real-Time
Systems: The International Journal of Time-Critical
Computing, 2(112), 1990, pp. 99-125.

[9] Hayes-Roth, B. and Hayes-Roth, F. "A cognitive
model of planning," Cognitive Science, 1979, 3,275-
310. Reprinted in A. Collins and E. E. Smith (eds.),
Readings in Cognitive Science: A Psychological and
Artificial Intelligence Perspective. Morgan Kaufmann,
1988; and in J. Allen, and J. Hendler, and A. Tate
(eds.), Readings in Planning, Morgan Kaufmann,
1990.

Hayes-Roth, B., Johnson, M.V., Garvey, A., and
Hewett, M. "Applications of BB1 to arrangement-
assembly tasks," Journal of Artificial Intelligence in
Engineering, 1986.

Hayes-Roth, F., Davidson, J.E., Erman, L.D. and
Lark, LS. "Frameworks for developing intelligent
systems: The ABE systems engineering
environment," IEEE Expert, June, 1991.

Hayes-Roth, F., Erman, L. D., Fouse, S.,Lark, L $.,
and Davidson, J. "ABE: A cooperative operating

[10]

[111

[12]

70

Iscoe

Model-Based Software Design*
N93-17514

Nell Iscoe, Zheng.Yang Liu, Guohui Feng, Britt Yenne, Larry Van Sickle, Michael Ballantyne

EDS Research, Austin Latx_ratory
1601 Rio Grande, Ste. 500

Austin, Texas 78701
iscoe@auslin.eds.com

Abstract

Domain-specific knowledge is required to create
specifications, generate code, and understand existing
systems. Our approach to automating software design is

: based on instantiating an application domain model with

_.industry-specific knowledge and then using that model to
_achieve the operational goals of specification elicitation

and verification, reverse engineering, and code generation.
;Although many different specification models can be
created from any particular domain model, each
specification model is consistent and COtTect with respect to
the domain model.

Introduction

Although empirical field studies (Curtis, et al., 1988)
have shown that application domain knowledge is critical
to the success of large projects, this knowledge is rarely
stored in a form which facilitates its use in creating,
maintaining and evolving software systems. Capturing ,and
managing this knowledge is a prerequisite to automating
software design.

Unfortunately, domain knowledge is implicitly
embodied in application code rather than explicitly
recorded and maintained in separate documents. Even
when documents are mainufined separately from the code,
the knowledge is stored in voluminous natural language
documents in an informal rather than a formal manner.

Although problem-specific languages are designed to
remedy this situation, domain-specific knowledge is still
captured in an ad hoc instead of a systematic manner.
Furthermore, these languages are generally not designed in
such a way that the results can be generalized or even
replicated.

We are attempti,ag to capture the domain-specific

knowledge about different industry ,areas as a set of
application domain models. Application domain models
are representations of relevant aspects of application
domains that can be used to achieve specific software
engineering operational goals. Operational goals are
always implicit in the construction of a domain n)odel and

* An earlier version of this paper was presented at the
Asilomar Workshop on Change of Representation and
Problem Reformulation, April 1992.

are essential to understanding the form and content of that
model. Unlike generalized knowledge representation
projects such as Cyc (Lenat, 1990) that attempt to provide a
basis for modeling encyclopedic knowledge, domain
modeling explicitly acknowledges the commonly held view
(Amarel, 1958) that representations are designed for

particular purposes. These purposes-the operational goals-
inherently bias any particular solution and dictate tim final
form of the model.

Many different ot_erational goals and modeling projects
are being pursued within the field of domain modeling
(Iscoe, et al., 1991). This paper begins with an overview of
the domain modeling research at EDS and our
corresponding operational goals. We explain our approach
to automating software design as a paradigm which
facilitates the creation of multiple-specification models
fi-om a domain model. Finally, we discuss a set of issues
that we have encountered in achieving our goals.

Programming-in-the-Large

EDS produces large software systems for a variety of
industries such as utilities, finance, health insurance, and so
on. Associated with each industry area is a rich body of
knowledge which is critical to specifying and
implementing the proper software system. This knowledge

includes legal, financial, technical, and other expertise
which is acquired by personnel over a period of years.
EDS is orgmfized into strategic business units (SBUs) so
that the organization's knowledge about a particular
industry can be levemged through reuse,

At the EDS Austin research laboratory, we are building a
domain modeling system which is designed to achieve the
following operational goals:

• Requirements & Specifications_Eliciting, verifying,

and formalizing software requirements and specifications,
• l_ograrn Transforrnation/Generation--Tr,'msforming a

specification into efficient executable code,
• Reverse Engineering--Identifying the semantics of

existing code in terms of a partial specification.
The realization of these operational goals is consistent

with our long-term plan for creating knowledge-based lt×)ls
to support programming-in-the-large (Barstow, 1988). The
domain modeling approach provides ample opportunities
for creating an automated software development paradigm.

72

Iscoe

", ' iiiiiiiiiliiii,,iii iliiiiii! ! iii,,ii',ii,,ii',iiiiiii!iiii!' ii',J

iiiiiii! i!iiiiii!ii
All Programs/Systems
Scoped by SBU

/ /
:::

!iiiiiiiiiiiiiiiiiiiiiiiii!iii!iiiiiiiiiiiiiiii!iiiiiiiii!!iii

iiiiiiiiiiiiiiiiiiiiiiiiiii!iiiii!iiiiiiiiiiiiiiiiiiiii!i!iii!"
.:.:+:-:+:-:.:.:.:.:.:.:.:.:.:.:.:.:+:.:.:.:.:.:+:.:.:

!i ii ji!i!ili!ii!iiiiiiiiiiiiiii!iii!i!

Requirements &Specifications)--1_

i :.:+:.;.:+:,:-:-:.:.:.:.:-:.:.:.:.:.:.:.:.:,:.:.:.:.:.:-:+:.:,:+:,:.:.:.:.:.:+:.:,:,::+:+::

.._(Program Transformation)

i:_:::::::::.',i.!:!.!! !.!I:::!:}:}:i::

Reverse Engineering)= -,,. I_

, Single Program/System

Figure I -- Domain Modeling with Operational Goals

Figure 1 illustrates the context in which we operate. The
industry knowledge for each SBU is instantiated into a
domain model, which then serves as a source of knowledge
for programs (the ovals) to achieve operational goals, such

as reverse engineering source code or eliciting system
specifications. The figure actually illustrates two different
processes. The left side of figure 1 shows the process of
domain model instantiation while the right side illustrales
the domain model being used to produce a single
specification. The System Specification (rectangle)
illustrates a specification for a single specific system within
an application domain. However, a multitude of system
specifications can be created from a domain model.

 l-onLanguage

 o,i;i; Modoi
'.SI U Spe¢tlIc hi formation, I

• Dotnatn Poiic_._, -i-

• D6m alil'siiecif_ C°iiStraln_, I

• _.llril_ute _icti_:m:u'yl :; t

1

Figure 2 _ Instantiating Specification Models

Figure 2 illustrates the two separate modeling tasks
required by our approach. Domain experts interact with a
system to represent their knowledge in terms of domain
modeling constructs. Specification designers then u_ the

system to build specification models which satisfy
consu'aints in the domain model. In order to create a

system specification, the application designer selects a set
of relevant policies ,and constraints from the domain model
that must be included and enforced in the specification
model. The constraints include intra-attribute as well as

inter-attribute relationships within and across classes
relevant to the task at hand.

Because one of our goals is to generate executable code,
we require that a particular specification model be
consistent. A very large but finite number of specification
models can be created which are consistent and correct

with respect to a particular domain model.

Reverse Engineering

We ,are using reverse engineering to help instm_tiate both

domain and specification models. Figure 1 illustrates how
application domain knowledge and programming
knowledge are used to extract partial specifications from
source code. The box labeled "programming knowledge"

currently represents knowledge of COBOL syntax, coding
conventions, and program plans and structures (Van Sickle,
1992). This knowledge crosses all of the targeted
application domains and is the basis of a separate code
browser that operates independently of the operation shown
in Figure 1.

We are also attempting to mechanically pre-instantiate
domain models by using the data gathered from the
applications of an EDS entity-relationship-based CASE
tool that is used by SBUs for data modeling and code
generation. By analyzing data models, we have access to
tens of thousands of specific entities, relationship.,;, and

73

constraints which have been used to specify programs and
are useful for partially instantiating domain models.

Modeling Considerations

Models are inevitably abstractions of reality that capture
information to achieve specific goals. A domain model
determines the items of interest that exist in the world and

sanctions the types of inferences allowed [Liu and Farley,
1990; Davis, 1991]. A model is die result of conscious
decisions about what to describe and what to ignore. No
model is complete or correct in the sense that it is
applicable to all tasks.

Domain models in our system are structured to represent
the type of information that is used within EDS SBUs to
achieve our operational goals. Although EDS serves a
wide range of industries, we are not attempting to model
real-time or other application areas which diverge from
standard business transaction processing. A general issue
of interest in this research is the extent to which any
particular representation/model can be mutated to hold

differeut types of information for different tasks whilc still
effectively achieving the original operational goals.

One requirement for our models is that they be
consistent. Domain and specification model consistency is
maintained by a specialized theorem prover. The theorem
prover, STR+VE, is an upgraded version of the prover
presented in (Bledsoe, 1980) for proofs of theorems iu
general inequalities. A TMS is being constructed to
interface between the modeling system and the theorem
prover.

Dynamic Knowledge Structure

The remainder of this paper presents one aspect of
domain model representation and gives a glimpse of the
relationship between specification and domain models and
the organization of domain models.

While most would agree that hierarchical organizationM
strategies provide a re,'t_onable way to structure knowledge
within complex domains, the creation of a hierarchical
structure, like any type of representational scheme, imposes
a particular view of the world. Unfortunately, there is no
particular view that is optimal for every application.
Although the programs wilhin a particular application share
the same legal, physical, and economic constraint.% the

construction of auy particular specification model depends
upon a set of policy decisions that determine how cases are
handled. Furthermore, soJhvare in the large systems ,are

continually changing in such a manner that the concept of a
static hierarchy is insufficient to capture the process of
system evolution.

Consider software systems that manage the payme,t of
health insurance claims. Although conceptually simple,
these systems handle hundreds of thousands of different
cases. One way to represent these cascs is to enumerate file

leaf nodes of the hierarchies created by the appropriate
partitioning of attributes such as gender, age, lmnily status,
previous_condition, employment, deductibles, copaymenls,

Iscoe

prognosis, and so on. Unfortunately, the tree structure
created by case expansion not only obscures relevant and
interesting cases, but is also a monolithic structure. A
p,'uadox of object-oriented approaches is that well-adapted
structures ,are not adaptable to new situations.

Because of the combinatorial explosion of the leaf
nodes, it m:&es sense to handle the cases at as high a level
as possible. Term subsumption systems such as CLASSIC
(Borgida, et al., 1989) automate this process by
determining the place in a hierarchy in which terms arc
subsumed. But subsumption systems assume a single
structure in which all sub-models can belong. In the case
of applications such as health insurance, individual
modules may have different hierarchical structures and still
maintain the integrity and constraint rules of the domain
mtxlel.

Attribute Definitions

Atuibutes are normally considered as data values or slot

fillers within a c_ass or frame. However, the standard
treaunent of attributes as lists of data values with some
underlying machine representation fails both to capture

sufficient semantic information from the application
domain and to state definitions with sufficient formality to
allow semantics-related consistency checks.

Attributes are functions which define how a set of

objects is mapped within a class. One type of attribute has
a value sel represented by a nominM scale which consists
of a set of values, q_(A) = {CI, •. • Cn}.

One of the ways that the modeling process maps the
world into a domain model is by creating categories in
such a way that items to be categorized with respect to a
p,'u'ticular attribute _ as homogeneous a_ possible within a
category and as heterogeneous as possible between
categories. Examples of nominal scales abound and map
cleanly to the notion of enumerated type as shown below:

(Colors

:type nominal_scale
:values (Red Yellow Green Blue)

The next type of attribute is an ordinal scale--a nominal

scale in which a total ordering exists among the categories.
ll_terval and ratio scales are the more quantitative scales
and add definitions of dimensions, units, and granularity.

This brief description of attribute type was included to
allow the reader to understand file examples in this paper.
Attributes have additional types and a number of other
properties which are explained in (Iscoe, et at., 1992).

Hierarchical Decomposition

Hierarchies are a natural way to view and organize
information and, at some level of abstraction, are a part of
most object-oriented and knowledge representation
languages. Unfortunately, the simplicity of these concepts
can sometimes obscure die semantics that a model is

attempting to capture. That one's needs dictate ones

ontological choice is a fundamental premise of knowledge
engineering. The ability to systematically define a new set
of attributes by partitioning the value sets of old attributes
and then using these new attributes to reclassify the domain
in accordance with the new requirements is an important
aspect of our attribute characterization. By preserving the
"ontological map" as a component of the attribute, the

domain modeler can shift between the differing paradigms
modeled by various classes of objects.

Attribute characterization provides a representation and
systematic methodology for the partitioning of attributes
that facilitates the way they are organized, subdivided, and
built into hierarchies. An attribute restriction is a new

attribute whose value set and set of applicable relations are
subsets of the original attribute.

Creating a new attribute serves the dual purpose of
creating a set of views on the old attribute as well as
creating a new attribute. Often, new attributes are defined

in terms of old attributes by partitioning the original value
set and then equating each new attribute value with an
element of the partition. As an example, an accounts

receivable (AR) system may use the attribute
days_to_payment wlmse value is the average number of
days it takes for the client to pay a bill.

(days_to_payment:
:type ratio_scale
:dimension time

:unit days

From the standpoint of AR applications, a more useful
attn'bute might be :

(type_of_payer:
:type Ordinal_scale

:Ordered_by lateuess_of_payment
:values (pays_on_time slow_pay dead_beal))

days to rJayment:
-Ratio_male Time in Days (Min 0) (Max 360)

Pay_on_time S lowpay Deadbeat

Figure 3 _ Partitioning days_to_payment

This new attribute will be defined by partitioning the
value set of days_to_payment by subdividing the range of
values, then equating each value with one of the elements
of the partition as illustrated in figure 3 and described as
follows:

(type of_payer

:mapped_from days_topayment
(pays on_thne (<=30)

(slow_pay
(AND (> 30) (< 90)))

(dead_beat (>= 90))))

lscoe

Note that the days_to_payment attribute is based on a

quantitative attribute while the type_of_payer attribute is
based on a qualitative attribute. In general, an attribute
mapping represents a loss of information (in this example,
the number of days overdue) in return for a more useful

and inherently less detailed category.

Using Population Parameters

Population parameters are used to help automate tile
process of creating new attributes from old ones. For
example, some graduate admissions committees use GRE
scores to separate applicants into acceptance categories.
Population parameters ",allow application designers to create
new attributes based on restrictions to the origimd attribute
as shown below:

GRE_Score: hhlcrval_._ale Score in GRE utfilk_

(mill 400) (max 1600)
(dis! normal) (mean 1100) (stddev 125)

- CikE SCORE_ f..Sz, p.sid¢ r GRIE-S(_qRE _Ac.c¢ pl

Figure 4 _ Using Population Parameters to
Restrict an Attribute

Figure 4 shows the GRE score as an attribute which could

be attached to a student. Understanding tile distribution of
values within the value set of GRE scores allows

application designers to create partitions in any one of a
variety of ways. For example, assume that an application
designer wanted to create an initial partition based on the
requirement "accept all students who score in the top x%
on the GRE, consider those who score bem'een x_, and y_,,
and reject those who score in the bottom y%." Given this
type of requirement, the domain model contains the
appropriate information to use and an algorithm to produce

the correct raw score numbers to achieve such a pax!it!on.
An0daer way that these requirements are sometimes

stated is t6 build a partition based on an absolute raw score.
For example, a requirement like "accept all students who
score above 1450 on the GRE" is easily displayed and
modeled. Furthermore, this type of specification can be

used interactively so that the designer can juggle between
raw scores and percentiles until the partitions appropriate
h_r tile application domain are produced.

Domain and Specification Models

In this section we focus on relations between attributes

within a single domain model class. For the purposes of
this discussioq we define the following attributes:

(Name :type ideqtifier)
(Gender :type nominal_scale

:values (male female))

75

(Eye_color :type nominal_sc_de
:values (brown, blue, green))

(Benefits :type nominal_scale
:values (Soc sec, RR, none)

(Age :type ratio_scale
:dimension (time)
:unit (year)

:granularity (1)
:derived (diff_date cur_date birth_date)

(Medicare_payment :type ratio_scale
:dimension (money)
:unit (dollar)
:granularity (.01))
:popparms ((rain 1)(max 10000)(me,'m 225)))

(Age_m type: ordimd_scale
:values (under65 65_and_over)

:mapped_from age
(under65 (< 65))
(65_and_over (>= 65)))

Although many other constraints exist, domain model
classes can be regarded as consisting of sets of attributes

which are either required or might be included within a
particular domain model. These constraints are expressed
as follows:

must_have(c, a,) _ attribute a must be used in
class c in a model.

applicable(c, a) _ atuibute a c,'m be used in

class c in a model depending on the choice of
specification designer.

cond_must_have(c, a, cond) _ attribute a must
be used in class c in a model if condition cond
evaluates It true.

cond_applicable(c, a, cond) -- attribute a c,'m be
used in class c a model if condition cond
evaluates to true.

Within any particular specification model, an attribute is
simply cla,;sified as used within a class.

used(m, c, a) _ within model m, attribute a is
used in class c in model m.

The most straightforward relationship between a domain
model and a specification model is that must_have
attributes are used in all specification models and
applicable attributes are selected by the specification
designer. The following rules formalize the semantics of
the four constraints on the use of attributes within classes
listed above.

(1) must_tmve(c,a) _ Vm used(m, c, a)

(2) applicable(c, a) _ 3m used(m, c, a)

(3) (cond_applicable c a ((Pl al v 1)...(Pu an Vn)))
--->Vm, object
[(used m c a)

(used m c al) ^ ...^(used m c an) ^

Iscoe

[(instance m c object) ^ (in (a object) ¢,_a))
(Pl (al object) Vl) ^ ... I',

(Pn (an object) Vu)]]

(4) (cond_must_have c a ((Pt al vt)...(Pn an vn))
Vm,object

[(used m c al)^...^(used m c an)
--->(used m c a) ^

[(Pl (al object) Vl) ^
... ^

(Pn (an object) Vn) ^ (instmlce m c object)
(in (a object) ¢{a))]]

For example, in a domain model, name might be
required for all specification mcxlels, while eye_color could
be selected only if it were appropriate for the particular

specification model.
(person

:must_have ((Name 0)

:applicable ((eye_color 0)
...)

The application of these constraints when cond is
vacuously true is a fairly standard feature in most modeling
languages of this type. However, name and eye_color are
attributes which are total functions and are not as

interesting as the cases that occur when the attributes ,are
partial functions.

Conditions for Function Evaluation

Recalling that an attribute is a function which maps
objects to a particular property, cond can be interpreted as
the condition which must be satisfied for the attribute to be

a total instead of a partial function. In other words, cond
defines the subset which is the domain of applicability of
the partial function. For example for a person class
medicare_payment is only applicable if age is 65 or over
and benefits is none.

(cond_applicable person Medicare_payment
((= Age m 65_and_over) (= Benefit_ none)))

The domain modeling system is designed so that the
conditions required to establish the proper domain for an
attribute are automatically maintained. These conditions
are constrained in such a way that tractability is maintained
and are of the form ((Pl al vl)... (Pn an Vn)), where pits
the name of a predicate, ai is the name of an attribute, and
v, is a value of the attribute.

A user can create a specification model with any
particular class hierarchy as long as the domain policies
and constraints are satisfied.

We are currently experimenting with ways to capture
and verify domain modeling constraints by presenting
redundant information in a variety of ways. We believe

that many of the specification problems in large systems
,are created when value set changes cause a single case to

be changed but fail to correct cases that were identified
from a previous inference.

76

For example, if we assume that Mcdic,'ue_pay,ncal is
only applicable if age is 65 or over and benefits is none, the

system can infer that Medicare_payment c,'mnot apply to a
person who is younger than 65.

In fact, assume

(cond_applicable person Medicare_payment
((= Age_m 65_,'rod over) (= Benefits none))),

then

Vm, object

((used m person Medicare_payment)
(u_d m person Age_m)^(used m person Benefits)^

((instance m person object) ^
(in (Medicare_payment oh jet0 [1 10000])

(= (Age_m object) 65_mid_over) ^
(= (Benefits object) none))) (5)

After Medicare_payment is used in a model, if user is

trying to assign a Medicare_payment to a person who is
younger than 65, using rule (5) will lead to a contradiction.

A key point is that when people are presented with wdue
sets they automatically and unconsciously perform
substitutions such as the ones listed above. This is a

reasonable way to build a model until a v_due set changes.
In large systems, value sets are frequently changed.
Consequently, conclusions that were drawn by using
negation to infer values become invalid. We use the

applicability of conditions and the system's knowledge of
value sets to attempt to provide the proper cases for the
domain modeler to check when conditions ch,'mge.

Discussion

In this paper, we have presented the concept of modeling
application domains in order to achieve the operational
goals of program specification, code generation, and
reverse engineering. The main concept is that multiple
specification models can be created thai are consislenl and
"correct" with respect to a domain model. Domain models

represent information about a particular industry area.
Specification models represent information about a
particular system.

The middle oval on the right side of figure 1 represents
the process of code generation through program
transformation. Given a specification model, executable
code can be generated by performing a series of

correctness-preserving transformations on fl_e specification.
The goal of this part of the project, which is not yet active,
is to produce efficient code that satisfies the original
specification.

Domain and specification models are constructed by
using a graphic_d interface to interactively create a set of
rules based on attribute value set partitions and the

preceding axioms. The system is being implemented using
Motif GUI on SPARC workstations. Although it is
currently operating in a single user mode, it is being
designed to be accessed simultaneously by multiple domaiu

Iscoe

modelers. We ,'ue also trying to accelerate the knowledge
capture process by reverse engineering data models that
have been captured by an existing EDS case tool and
insumtiatiug them into the appropriate domain models.

Acknowledgments

We wish to thank Betty Milstead and Raman
Rajagopalan for their comments on earlier drafts of this

paper.

References

Amarel, S. 1968. "On Representations of Problems of
Reasoning About Actions," in Machine Intelligence 3, D.

Michie, Ed., American Elsevier, New York, pp. 131-171.
Barstow, D. 1985. "Domain-Specific Automatic

Programming," IEEE Transactions on Software
EngineeNng, vol. SE-11, no. 11, pp. 1321-1336.

Barstow, D. 1988. "Artificial Intelligence and Software
Engineering," in Shrobe, H., Ed., Exploring Artificial
Intelligence. AAAI. Morgan Kaufmann, San Mateo, CA.

Bledsoe, W. W., and Hines, L. M. 1980. "Variable
Elimination and Chaining in a Resolution-Base Prover for
Inequalities," Proceedings of the 5th Conference on
Autongtted Deduction, Les Arcs, Fr,'u)ce, Springer-Verlag,
pp. 70-87.

Borgida, A., Brachman, R.J., McGuinness, D.L., and
Resnick, L.A. 1989. "CLASSIC: A structural data model
for objects," in Proceedings of the 1989 ACM SIGMOD

International Conference on Management of Data, pp. 59-
67.

Curtis, B., Krasner, H. and Iscoe, N. 1988. "A Field
Study of the Software Design Process for Large Systems,"
Communications of the ACM, vol. 31, no. 11, pp. 1268-
1287.

Davis, R. 1991. "Knowledge Representation:
Broadening the Perspective," AAAI-91 Panel, Amdleim,
CA.

Iscoe, N., Browne, J.C., Werth, J., and Liu, Z.Y. 1992.

"Attributes - Building Blocks for Modeling Application
Domains," Submitted to IEEE TSE.

lscoe, N., Williams, G. and Arango, G., Eds. 1991.
Donutin Modeling for S_ware Engineering, Proceedings
of Domain-Modeilng Workshop, Austin, Texas.

Lenat, D.B., Guha, R.V., Pittman, K., Pratt, D., and

Shepherd, M. 1990. "Cyc: Toward Programs with
Common Sense," CACM, vol. 33, no. 8, pp. 30-49.

Liu, Z.Y. and Farley, A. 1991. "Tasks, Models,
Perspectives, Dimensions," The 5th International

Workshop on Qualitative Reasoning Austin, Texas, pp. 1-
12.

Van Sickle, L. 1992. "Reconstructing Data Integrity
Coastrainls from Source Code," Proceedings of Workshop
on Artificial Intelligence and Automated Program
Understanding, Tenth National Conference on Artificial
Intelligence, San Jose, CA.

77

Kalndl

N93-17515
Description of Research Interests and Current Work Related to

AUTOMATING SOFTWARE DESIGN

Hermann Kaindl
SIEMENS AG Osterreich, PSE

Geusaugasse 17, A-1030 Vienna, Austria

Research Abstract

While I am working in industry in a department
dedicated to software engineering, major part of my
research dealt with various aspects of artificial
intelligence. As can be seen from the enclosed list of
selected and recent publications, my research •
interests include heuristic search, machine
learning, knowledge acquisition and knowledge-
based systems. Moreover, [performed applied
research in the areas software engineering and
human-computer interaction. "

Recently, I became more and more interested in
combining methods from these areas, for instance
we used hypertext for improving the process of •
knowledge acquisition. Moreover, I emphasize the
relationship between the fields, for instance the
relations between AI frames and objects in object-
oriented approaches. I think that there are many
issues in common in knowledge acquisition and
object-oriented analysis. Generally, the task of
building knowledge-based systems appears to me to
include many aspects of software engineering. °

Partly, we develop conventional as well as
knowledge-based software for telecommunications,
and partly we work for the European Space
Agency. While we did not really get to the point of •
building domain-specific software design systems
yet, I completely agree that domain-specific
knowledge plays a major role in developing
software. For instance, the functionality of the
software for one satellite is typically not so much •
different from that of the soi_ware for the next
satellite. I feel that improvements in the general
software development process (e.g., object-oriented
approaches) will have to be combined with the use
of large domain-specific knowledge bases.

Selected Bibliography
• K611,A., and Kaindl, H., "A New Approach to •

Dynamic Weighting",to appear in Proc. Tenth
European Conference on ArtificialIntelligence
(ECAI.92), Vienna, August 1992, Chichester,
England: Wiley. .

• Kaindl, H., and Scheucher, A., "Reasons for the
Effects of Bounded Look-Ahead Search", to
appear in IEEE Transactions on Systems, Man,
and Cybernetics (SMC), 1992.

• Snaprud, M., and Kaindl, H., "Knowledge
Acquisition Using Hypertext", to appear in •
Expert Systems with Applications. Earlier
versions are available in Proc. World Congress
on Expert Systems, Orlando, Florida, December

78

1991, 781-788, New York: Pergamon Press, in
Proc. AAAI-91 Workshop on Knowledge
Acquisition, Anaheim, CA., July 1991, and in
Proc. Artificial Intelligence and Knowledge-
Based Systems for Space, ESTEC, Noordwijk,
May 1991.
Kaindl, H., and Ziegeler, H.G., "Object-oriented
Approaches, Frames, and Access-Oriented
Programming", to appear in Object-Oriented
Programming in AI (Scott Woyak und
Zhongmin Li, Eds.), AAAI Press.
Lercher, L., and Kaindl, H., "Problems,
Communication, and Common Sense", to appear
in ACM SIGART Bulletin.
Kaindl, H., and Ziegeler, H.G., "Reasoning
Types and AI Programming Paradigms", to
appear in Software Engineering and Knowledge
Engineering. (IJSEKE). An earlier version is
available m Proc. Third International
Conference on Software Engineering and
Knowledge Engineering (SEKE'91), June 1991,
96-101.
Kaindl, H., and Ziegeler, H.G., "HIS--An
Information System about Hypertext on
Hypertext", to appear in ACM SIGLINK
Newsletter 1.
Kaindl, H., Shams, R., and Horacek, H.,
"Minimax Search Algorithms with and without
Aspiration Windows", IEEE Transactions on
Pattern Analysis and Machine Intelligence
PAMI-13(12), 1991, 1225-1235.
Kaindl, H., and Snaprud, M., "Hypertext and
Structured Object Representation: A Unifying
View", in Proc. Third ACM Conference on
Hypertext (Hypertext '9I), San Antonio, Texas,
December 1991, 345-358. An earlier version is
available in Proc. Fourth International GI
Congress on Knowledge-Based Systems,
Munich, Germany, October 1991, 231-242,
Berlin: Springer-Verlag.
Kaindl, H. (Ed.) "Proc. Seventh Austrian
Conference on Artificial Intelligence", Vienna,
Austria, September 1991. Berlin: Springer-
Verlag.
Mehlsam, G., Kaindl, H., and Barth, W.,
"Feature Construction during Tree Learning",
in Proc. Fifteenth German Workshop on
Artificial Intelligence (GWAI-9I), Bonn,
Germany, September 1991, 50-61, Berlin:
Springer-Verlag.
Shams, R., Kaindl, H., and Horacek, H., "Using
Aspiration Windows for Minimax Algorithms",
in Proc. Twelfth International Joint Conference
on Artificial Intelligence (IJCAI-91), Sydney,

Australia, August 1991, 192-197, Los Altos,
Calif.: Kaufmann.

• Kaindl, H., and _Ziegeler, H.G., "Comparing
object-oriented programming, frames, and
access-oriented programming", in Proc. AAAI-
91 Workshop on Object-Oriented Programming
inAI, Anaheim, CA, July 1991.

• Kaindl, H., and Ziegeler, H.G., "Knowledge-
Based Systems: Their User Interface and
Dependability", in Proc. IFIP Workshop on
Dependability of Artificial Intelligence Systems
(DAISY_91), Vienna, Austria, May 1991, 53-
62, Amsterdam: North-Holland.

• Kaindl, H., and Ziegeler, H.G.,
"HyperAuthor--An Authoring Tool Based on
Hypertext", in Proc. H_pertext/ Hvperrnedia '91,
Graz, Austria, May].991, 156-163, Berlin:
Springer-Verlag.

• Ziegeler, H.G., and Kaindl, H., "A Cyclic
Pattern Resulting from a Constraint
Satisfaction Search", in Proc. CAIA-91: Seventh
IEEE Conference on Artificial Intelligence
Applications, Miami Beach, Florida, February
1991, 337-344. An earlier version has been
presented at the AAAI-90 Workshop on
Constraint Directed Reasoning, Boston, Mass.,
July 1990.

• "Tree Searching Algorithms", in "Computers,
Chess, and Cognition" (T. A. Marstand and J.
Schaeffer, Eds.}, 133-158, New York: Springer-
Verlag, 1990.

• Kaindl, H., and Ziegeler, H.G., "Knowledge
Acquisition for a Configuration Task", in Proc.
AAAI-90 Workshop on Knowledge Acquisition,
Boston, Mass., July 1990.

• Kaindl, H., and Ziegeler, H.G., "So,me Aspects of
Knowledge-Based Configuration, in Proc.
AVIGNON '90 - Expert Systems & their
Applications--Artificial Intelligence,
Telecommunications & Computer Systems,

Avignon, May/June 1990, 41-54;,
• Seheucher, A., and Kaindl, H., The Reason for

the Benefits of Minimax Search", in Proc.
Eleventh International Joint Conference on
Artificial Intelligence (IJCAI-89), Detroit,
August 1989. 322-327, Los Altos, Calif.:
Kaufmarm.

• "Portability of Software", SIGPLAN Notices
23(6), 1988, 59-68.

• "Minimaxing: Theory and Practice", AI
Magazine 9(3), 1988, 69-76.

Appendix: Technical Biography

Hermann Kaindl received the Dipi.-Ing. degree in
computer science in 1979 and the Doctoral degree
m technical science in 1981, both from the
Technical University of Vienna in Austria.

Since 1984, he has been a lecturer on artificial
intelligence at the Technical University of Vienna,
and in 1989, he received the venia docendi for
"Praktische Informatik", which is comparable to
tenure. He is currently with the department of
Program and System Engineering, Siemens AG
0sterreich, where he leads software pro_ects and is
in charge of a group of software engineers. His
research interests include planning and search,
machine learning, knowledge acquisition,
knowledge-based systems, as well as certain

79

Kaindl

aspects of software engineering and human-
computer interaction.

Dr. Kaindl is a member of the Austrian Society
for Artificial Intelligence, the American
Association for Artificial Intelligence, and the
International Computer Chess Association.

Kant

Automating the Design of Scientific

N93-17516

Computing Software

Elaine Kant

Schlumberger Laboratory for Computer Science

P.O. Box 200015

Austin, Texas 78720-0015 USA

kant@slcs.slb.com

Abstract

SINAPSE iS a domain-specific software design sys-

tern that generates code from specifications of
" equations and algorithm methods. This paper de-

scribes the system's design techniques (planning in
a space of knowledge-based refinement and opti-
mization rules), user interaction style (user has OP-
tion to control decision making), and representa-
tion of knowledge (rules and objects). It also sum-
marizes how the system knowledge has evolved
:over time and suggests some issues in building
software design systems to facilitate reuse.

Introduction

SINAPSE is a domain-specificsoftware design system
that generates code from specificationsof equations

and algorithm methods. Our goalisforSINAPSE tobe
a practicalprogram-synthesissystem that solvesa re-

strictedclassofproblems. In particular,we aim to re-

duce mathematical modelers' programming choresby

enabling modelers to specifyprograms at the levelat ..

which they are describedin technicalpapers.

A trend toward three-dimensionalmodeling (previ-

ouslytoo expensive to attempt formany applications)

isboth making programs more complex and requiring

implementation on parallelarchitectures(foraccept-

able performance). Both consequences of this trend
argue stronglyforautomatic code generation- toavoid

errorsin programs and to save modelers from having

tolearnabout rapidlychanging architectures.Because

efficiencyof code and interfacingwith other codes are

factorsfor many ofour users,the code generationsys-
tem must be understandable and modifiable.

The currentSINAPSE implementation focuseson one
classofalgorithms- finitedifferencemethods forsolv-

ing partialdifferentialequations. We have used the

system togenerate about a dozen familiesofprograms
for solvingacousticwave propagation problems of in-

terestto Schlumberger modelers. With these pro-

grams (forwhich no comparable hand-coded versions

existed),the modelers have achieved new resultsin

the applicationareas. However, allthe programs were

specifiedby knowledgeable users, and we manually

optimized criticalcode sections afterexperimenting

with the automatically generated program. Current

research involves generating more efficient code and
making the system more easily accessible to modelers.

Although we primarily apply the system to finite dif-
ference problems, we have also generated several rather
different types of codes and have used subsets of the
system in other applications. Approximately half of
the system (consisting of the synthesis framework and
an array-level language to target code translation) is
independent of the domain, although focused on scien-
tific computing. We have used this part of the system
to generate some geometric modeling codes, starting
from an array-level specification lan_mage.

The lessons from SINAPSE are similar to those of

other knowledge-intensive systems: it is important to
design representations that are close to the users' men-

tal models; abstraction of concepts is important; and
rules and objects provide useful representation tech-
niques. An emerging concern is how to encourage more
sharing among software design systems. The last sec-
tion of this paper suggests that reuse of components
and reasoning algorithms may be possible among dif-
ferent software design systems themselves.

Specializing Design Techniques

The driving force in the implementation of SXNAPSE
has been the collection of design techniques appropri-
ate for our applications. The classes of design tech-
niques as well as the problem itself then determine the
types of user interaction that are required. Finally, the
knowledge representation is strongly suggested "by the
reasoning techniques and user interface requirements.

Given our fairlynarrow applicationdomain and goal

of practicalprogram synthesis,the most appropriate

design technique is knowledge-based refinement, in-

cludingthe applicationof optimizing transformations.

Refinement choicesare made by heuristicsor mod-

eler specification.Although our approach includes
knowledge-based optimization,as the performance de-

mands on synthesized code have scaled up, we have

seen more need for traditionaltypes of optimization

such as code motion supported by data-flowanalysis.

We have explicitlychosen not to use some types

ofreasoning techniques.For example, learning about

choicesin context and learning about run-time'code

performance might eventuallybe appropriate,but we

chose not to address learning,discovery,or complex

8O

search issues in the current system. We also do not at-
tempt inference by theorem proving; this would require
very detailed domain models before any progress could
be made, and these formalisms would make it difficult
to allow the kinds of not-strictly-correctness-preserving
approximations that modelers frequently make. How-
ever, we are attempting to develop a clean character-
ization of the semantics of the synthesis constructs.
This is a good guideline for domain analysis and helps
make the meaning of the constructs independent of the
implementation. A clean semantics makes a construct

easier to explain to users and easier for developers to
modify.

The states in the problem space in which SINAPSE
operates include descriptions of (partially imple-
mented) programs and facts about the specifications
and implementations. The space is navigated by car-
rying out sequences of synthesis tasks. Originally we
tried to streamline the problem-solving mechanism by
letting the actions in program synthesis carry out the
navigation, with design choices being presented to the
user as needed, but this proved confusing to the users
and difficult to modify. Therefore we are moving to-
wards an explicit plan representation. We expect to
conclude by declaratively encoding the set of goals
about program function and performance, plans for
achieving those goals, and control knowledge about
which plans to use for different circumstances. The
plans consist of partially-ordered (sub)goals, bottom-
ing out at actions that include asking the user for in-
formation, applying program refinement rules, and ap-

plying program optimizations.
A specification in SINAPSE is a collection of design

decisions, most of which can be thought of as con-
trol information about which program refinements to
make, or which facts to declare. In addition, sometimes
a specification actually defines a new refinement and
then asserts that the new alternative is the refinement
that should be made.

SINAPSE is implemented in Mathematica[Wo188].

Mathematica is both an algebraic manipulation sys-
tem, useful for scientific programming, and a program-
ming language with modern features such as a pattern
language and rules. Other implementation languages
would also be reasonable choices, but Mathemalica al-
lows us to have everything in one language in which

our target users are comfortable.

Phases of Design

In order to make the system comprehensible to devel-

opers and end users, and to encourage collaboration
with others, we have divided the software design pro-
tess into a series of phases:

• problem set up

• algorithm synthesis

• program optimization

• target code generation

How common these stages are in other design systems
for scientific computation is an open question, but
evidence for them can be found in [PC91; AEH+89;

Kant

Coo90]. A more detailed, though somewhat dated, de-
scription of these phases is given in [KDMWgl].

The first phase, problem set up, involves help-
ing the user define the problem. The result should
be a set of equations such as would be described in

a modeling article. In our application, problem set
up is accomplished by working through a network of
choices (goals and tasks) that set up the equations
to be solved. For applications about which SINAPSE
is knowledgeable, it presents parameterized equation
generators; otherwise the user must define the equa-
tions mathematically, x Mathematical formalization,
when the equations are not given directly by the user,
involves a relatively straightforward knowledge-based
expansion. Next, SINAPSE may reformulate the equa-
tions via simplification, normalization, and redundant
equation elimination. Other reformulations, such as
averaging of material values, depend on user specifi-
cation. Mathematica's algebraic manipulation is espe-
cially useful at this stage.

The problem set up phase should probably be viewed
as three distinct phases. Two, which are independent,
are describing the physical model in general terms,
reusable for a number of specific problems, and describ-
ing the target properties of the computing environ-
ment in which a specific problem must be solved. Prop-
erties of the target environment might include machine
architecture (such as type of parallelism available) and
limitations on run time and storage space. A specific
problem description would then be the next phase,
that would customize a physical model to a specific set

of knowns and unknowns (and any desired interpre-
tation or analysis of the computed results) and might
modify the equations to be used based on the specifi-
cation of target environment properties.

SINAPSE'S algorithm synthesis begins with select-
ing an algorithm schema corresponding to the mod-

eler'sdesign decision(s) and then filling in the details.
This level includes all the domain-specific computing
knowledge that an applications expert would have, typ-
ically the numerical approximation methods to be ap-
plied to the equations. The types of implementation
decisions are those that would be reported in a de-
tailed technical article. At the end of this phase, pro-
grams will be expressed in Psiam, an array-level lan-
guage that we are developing. The search for effective
combinations of design decisions is currently left to the
user if the default choices are not acceptable. Program
details are filled in by refinement rules. Elaboration
of the design decisions often involves the use of alge-
braic manipulation for computing approximations. If
desired, the modeler can Specify fragments of code di-
rectly in Psiam. The schema instantiation may involve
elaborating parts of code such as initializations or out-

puts that eventually need to migrate to other sections

tin otherapplications,such a.smechanics and circuits
problems,systems oftenhave more detaileddescriptions
ofthe physicsofthe systems and toolsto instantiatethe

physicallawsina specificproblem.The instantiationoften
involvesmuch unguided objectslotfillingratherthan the
guided,dependent,goalsatisfactionused in SINAPSE.

81

Kant

of code. The migration is done too explicitly now; we
will evolve to a more general mechanism with partial
orderings and data flow analysis.

Performance choices are made at the next stage,
program optimization. This level includes all the
types of knowledge that any good scientific program-
mer should know regardless of the application domain.
Some examples of design decisions made at this stage
are store vs. recompute decisions, data structure se-
|ection (array representation, primarily space compres-
sion techniques), and the corresponding operator im-
plementations. Data and control parallelism from the
domain have been explicitly represented and main-
tained through the program transformations until, at
this level, parallelism is either exploited or, for tar-
get languages not supporting it, expanded into loop
ing constructs or sequentialized. A number of optimiz-
ing transformations are applied. To support the data
structure selection and optimizations, there is some in-
ferencing to determine data types of dimensions, prop

erties of arrays, and simplifications of conditionals (for
example, to transform conditionals on array indices
into loops with specific bounds). Currently SINAPSE
uses special case reasoning for such inferences; it would
benefit from an interface with an inequality prover and
probably other provers or decision procedures.

The result of expansions of the previous step is ex-
pressed in MathCode, another language that we have
developed. MathCode is a procedural language that
abstracts away from Fortran and C constructs but has
almost no remaining implementation freedoms. The fi-
nal phase of target code generation from Ma_hCode
is accomplished by a recursive-descent parser with ac-
tion rules for each different target language.

Interacting with Users

Our initial concern in user interaction was simply
to ensure that modelers could specify their problems

and override SINAPSZ's default design decisions. A
SINAPSE specification, which contains a set of design
decisions, might "ideally" contain just decisions at the
level of specifying the problem. In reality, of course,
the system does not have enough information to make
all the algorithm and implementation choices. Even
when the system thinks it has enough knowledge, not
all modelers will agree with the choices. The evolution
of these aspects of the interface will be discussed here.
Some other issues concerning the modeler's interface to
scientific codes are outside the scope of this discussion.
For example, while our total environment will involve
an interface for specifying the geometry of the world
being modeled and an interface for visualization of the
results, these are largely separate research efforts.

The philosophy of partitioning the problem-solving
load between the user and SINAPSE was discussed in
[Kan90]. The conclusions, to which we still subscribe,
can be summarized by:

• SINAPSE should structure the problem-solving ses-
sions because people are smarter than software de-
sign systems and can adapt; however, SINAPSE

should present the user with significant decision

points and alternative implementation choices that
match problem-solving models.

• S1NAPSE should cooperate by making suggestions
(heuristics about appropriate choices, help in finding
similar specifications or concepts); however, people
should have ultimate veto power over system choices.

• SINAPSE should be able to explain, at least mini-
mally, specification choices and decisions that have
been made.

• SXNAPSE should have a system for helping users and
developers add new knowledge.

• SINAPSE should share knowledge bases so progress
for any purpose (synthesis, explanation, knowledge
acquisition, or system integration) is tested by and
contributes to progress for all purposes.

Current Interface

Currently, the user must be reasonably knowledgeable
to set up a SINAPSE specification. Specifications are
usually made in a text file that is loaded at the begin-
ning of a session, but most choices can dso be spec-
ified interactively with simple menus (for enumerable
choices) or fill-in-the-blank interfaces. Also, although
program fragments can be specified-at the array level

(effectively defining new refinement rules at specifica-
tion time), there is no interactive support for this. In
the interactive mode, the user can request text string
explanations of the decision issues, alternatives, and
system heuristics. Answers provided by the user are
checked against legitimate patterns. In addition, the
user can confirm or modify in_eractively the choices
suggested by system heuristics or a previously loaded
text-fih specification. SINAPSE can write out a text
file of the decisions made interactively, or made by a
mix of previously specified text and interactions.

We have begun to make SINAPSE more accessible
to modelers. We are adding pointers to examples
of specific choices and their realization in target pro-
grams based on our demo suite. A graphical interface
with modern menus, multiple status and help windows,
and hypertext navigating is being implemented, and a
minimalist-style user manual is being written. Because
of the large number of design decisions and the different
classes of anticipated users (some modelers care more
about approximation method choices, some about ef-
ficiency of implementation), we also will need a mech-
anism to control which design decisions are visible to
the user. One possibility is to make visibility depen-
dent on the phase in which the decisions are made and
on whether the decisions are based on hard constraints

(forced choices) or heuristics or simple defaults.

Declarative Decision Structures

A good interface is critically dependent on the cor-
rectness and understandability of the underlying do-
main models. Indeed, users cannot even write text-file
specifications if they do not have a good understand-

ing of what needs to be specified. Although we have
had some difficulty in explaining how the system works
to different domain experts, the specification language

82

Kant

seems to be converging as we gain better understand-
ing of the domain. Earlier versions of SINAPSE did not
have all decisions explicitly represented, but we are
adding a definition mechanism that ensures that all

design decisions are properly inserted in a global task
network. Correctly representing the domain means not
only having the right set of design decisions, but order-
ing the decisions sensibly and representing dependen-
cies between decisions. Although SINAPSE was able to
generate the same set of programs with a more un-
structured representation, having a good, declarative
representation of the decision structure turns out to be
critical for acquiring a specification, for storing out a
specification in text format for later use, and for ex-
plaining specifications and system decisions to users.

Dependencies between Decisions

An explicit representation of all dependencies between
design decisions would be useful for helping the user
understand what must go into a specification, for
recording specifications made interactively, and for re-
playing revised specifications. For example, the depen-
dency network helps the user understand that a par-
ticular decision may not even be relevant unless some
other set of choices has been made. SINAPSE distin-

guishes between nser-specified decisions and decisions
inferred by the system based on those decisions. Only
decisions in the first class need be recorded in the text-

file specification. Decisions in the second class can be
made again automatically if the specification is resub-
mitted. This argument assumes a static synthesis sys-
tem. If more alternatives for a decision are added at a

later date, the existing heuristics may no longer force
a choice. Hence, it might also be useful to record the
full history of inferences to help the user augment the
specification in the face of an evolving system.

Currently, synthesis times are all under 20 minutes,
and the decision making portions are usually on the
order of minutes, so simply recording the primary de-
cisions and recomputing the rest has been acceptable
and it has not seemed necessary to build a full-fledged
truth maintenance system. We do have a simple de-
pendency network that records definitions and uses of
synthesis facts. Because we wish to record decision de-
pendencies for purposes of explanation, at some point
the expense of building an incremental change system
may be justified.

Because the user can help make implementation de-
cisions, we also foresee a need for representing de-
pendencies between user specifications. This general
phenomenon of specifications accommodating to im-
plementations is discussed in [Swa82]. One example

that we have seen in SINAPSE is that a modeler may
combine periodic and taper boundary declarations _to

implement an absorbing boundary condition when the
target language is SIMD Connection Machine Fortran

(to enable the use of an efficient circular shift oper-
ation). Even if a boundary isn't really periodic, the
tapering operation makes the effective boundary value
nearly zero on both edges, which means declaring the
boundary to be periodic is not harmful. These depen-

dencies should be recorded because if the target archi-
tecture is changed, we want to reconsider the choices of

periodic and taper boundaries (even though both were
user-specified) in the light of the new architecture.

Ordering Decisions

Users are sensitive to the order in which specifica-
tion decisions are made; this order must make sense

to them. Ordering is constrained by dependencies be-
tween decisions. In general, of course, the ordering
of the decisions will follow the ordering of the phases
described in the previous section, with implementa-
tion decisions such as data structure representations
following problem set up specifications such as bound-

ary conditions. However, some details can vary with
the application. For example, in some cases all depen-
dent variables may depend on the same independent
variables so it might make sense to define independent
variables first and then list dependent variables. In
other cases, it might make more sense to define each
dependent variable in terms of its specific independent
variables. To support this, SINAPSE can present a dif-
ferent set of design decisions with alternative orderings
for different applications.

Currently, when used in the interactive mode, the
SINAPSE system presents the design choices in a lin-
ear sequence, and modelers do not always understand
why a particular ordering is used. It would help con-
siderably if we represented the partial ordering on the
design choices, with a user interface that allows specifi-
cation according to the partial ordering rather than an
arbitrary linearization of that ordering. We do believe
however that the system should explicitly present the
decisions in the partial ordering rather than expecting
the user to write the decision in arbitrary order in a
text file or to navigate around a large collection of ob-
jects and to know what properties must be filled in or
what commands must be issued. We plan to experi-
ment with a graphical depiction of the decision network
that is actively modified as choices are made.

Explanation

Representing information about decisions could help
generate good explanations for how to set up specifi-
cations or why the system made the specific choices
[WMK92; Swa83]. It both cases, a likely priority is:
most heavily weight the choices involving problem de-

scription decisions (user choices before system choices),
then the state of the implementation design so far, then
the user's generic preferences, then the system's heuris-
tic rules, and finally the system defaults.

Representing the Knowledge

The representation of knowledge in Sinapse has been
discussed elsewhere [KDMW91] and so will not be re-
peated in detail here. We simply note that our goals
for code generation and user interaction suggest that

our knowledge representations be declarative, object-
oriented descriptions of design choices and algorithm
schemas. The object-oriented representation for de-

sign constructs includes the use of multiple inheritance,

83

Kant

with a small number of fairly flat hierarchies for algo-
rithm type, application type, and so on. As discussed
earlier, since the initial system designl the importance
of more explicit goals and plans for the user interface
has become clear. In addition to the declarative repre-
sentations, there are procedural languages that can be
used in describing programs: Psiam at the array level,
and MaihCode at the imperative level. The seman-
tics of Psiam are still evolving; MalhCode is the most
mature and stable of all the representations. Mathe-
matica's pattern matching and symbolic simplifications
are useful in defining transformation rules for both re-
finement (elaboration) and optimization. Recently we
have also added a mechanism to record some of the ma-

jor transformation steps (by transformation name and
by before and after states). While we do not expect to
record every single transformation step, we expect to
eventually have more control over transformation ap-
plications; currently most are just anonymous Math-
ematica rules that fire whenever they match rather

than being explicitly applied. Most likely there will
be named sets of transformation rules that are applied

at specific phases.

Evolving the Knowledge

To measure the evolution of knowledge in SINAPSE, for
the past 16 months we have kept records about changes
to the system. A regression test suite is maintained so
that changes can be tested for compatibility and com-
pared for performance. Although the records are only
as good as the effort people put into keeping them and
more careful analysis is need, some rough generaliza-
tions can be made.

Overall, the total system has grown steadily. The
initial effort, before detailed records were kept, was

mostly in adding domain knowledge and very primi-
tive code generation knowledge. Since that time, we
have focused on generating efficient code for multiple
target languages and architectures, on adding domain
knowledge that fills gaps in our application domain,
and on making the system more understandable via ad-
ditional explicit knowledge about design decisions and
explicit representation of dependencies between deci-
sions. There have been no huge waves of expansion
and compression of the entire system representation,
although individual components do grow and shrink
as knowledge is added or more concisely represented.

Some basic information about size may give a gen-

eral picture of the evolution of knowledge. The current
system is now more than 20,000 lines of Mathematica
code, a 38% increase over the system of 16 months
ago. The declarative representations of the domain
knowledge and problem-solving structure have grown
the most - from 13% to 19% of the system, a 111% in-

crease. There are currently about 100 types of design
facts of the fill-in-the-blank form and 33 menu-choice
decisions with an average of 3 alternatives. There are

currently about 60 program-synthesis tasks; as well as
adding new tasks, the ordering among the tasks has
been refined over time. Procedural knowledge about

how to refine domain descriptions to algorithms and

coding constructs has grown only 15% and slipped from
41% to 35% of the system. (No count on the number
of rules or functions is available. This is a place where

the content of the knowledge has increased, but the
representation has gotten more concise, so the overall
growth looks low.) Knowledge about code generation
has increased 35%, but as a percentage of the entire
system held almost even, moving from 30% to 29%.

(Much of the work that has gone into code optimiza-
tion is not complete and is not reflected in the version
of the system described here. The code-optimization
techniques will add approximately 5,000 more lines of
code.) The program-synthesis framework, while grow-
ing 54%, has only gone from 16% to 17% of the totM
system. The growth has been in the areas of mech-
anisms for the expanded knowledge about synthesis
tasks and the recording of major transformation steps.

Of the 360 recorded changes to the system (in terms
of number of entries, not number of lines of code or

numbers of facts involved), 30% have involved changes
to the internal representation or knowledge about the

program-synthesis process, 15% have been changes vis-
ible in the human interface, 15% have been changes

to domain knowledge, 35% changes to programming
knowledge (reflected in the generated code), and 5% to
the operating system interface. Overall, 20% of these
changes were described as new capabilities, 24% as gen-
eralizations of existing capabilities, 20% as bug fixes,
5% as efficiency improvements, 28% as improvements
in the clarity of the system or the code it generates,
and 5% as other.

The frequent occurrence of changes to improve repre-
sentation clarity reflects both improved understanding
of the domain and deficiencies in the original represen-

tations of design goals and actions. Improvement is
still needed in expressing dependencies between deci-
sions, both the order required by the decisions, in terms
of definition-use chains, and task-ordering preferences.

We also expect it would be useful to be able to express
a difference between hard constraints (forced choices),
heuristics based on available information, and default

choices (based on no information).
Analyzing the types of changes that are made should

help us determine what sort of knowledge acquisition
tools we should build. At present only a minimal
number of rudimentary knowledge-building aids exist
in SINAPSE. They help inspect the structure of syn-
thesis tasks and dependencies and check for complete-
hess of information about design decisions. Based on
analysis of the changes and conversations with model-
ers, we have identified a small number of knowledge-
acquisition activities that we would like to support
more automatically for end users as well as for devel-

opers. These activities include the addition of new ap-
proximation operators, of variations on input/output
handling, of new algorithm schemas, and the packaging
of existing algorithms inside user-defined outer loops.

Sharing among Design Systems

The amount of knowledge required for automating soft-

ware design is very large, even for quite restricted

84

classesof problems. The automated software design
community would be likely to make faster progress if
it explored the possibilities of reuse among design sys-
tems as well as reuse within a single domain-specific
system. How do we design our systems to facilitate
this sharing? Possibilities include reuse of system com-
ponents (some domain-independent), reuse of reason-

ing algorithms, and reuse of interface languages (such
as a Psiam-like array-level language). Similar propos-

als have been made before of course, such as Generic
tasks for expert system building blocks [Cha86J, com-
positional modeling for engineering modeling [FF91],
standardization work in the knowledge-representation
community, and the suggestion of working out theories
for program synthesis [Smi91].

Reuse of system components might be possibleif

we could divide systems into components with well-
definedinterfaces.This means we firstneed to agree

on the meaning or content of any specificationlan-

guages or intermediaterepresentations.We alsoneed

to formalizethe form of the interfaces.Ironically,the

methodology forfiguringout how to implement a spec-

ifiedneed in terms of existingcomponents, or how to

adapt components to a function,willprobably itself
exploitautomated software design techniques. Some

components may be large,some may be clustersof

knowledge about well-definedconcepts.

In SINAPSE we are attempting to identify some ma-
jor phases in the design of scientific computing soft-
ware and to provide different languages for some of
the levels. The languages may vary to exploit math-
ematical formulations, array-manipulation, and con-
ventional applicative languages so that specifications
can be entered in the most convenient style. Next, we
need to determine whether these stages make sense for
other applications. Within these levels, there might
be formalizations of abstractions such as coordinate

transforms, pointers, I/O, and parallelization. Ideally,
SXNAPSE would then be able to interface to other sys-
terns, for example to generate a different target lan-
guage, or call subroutines rather than generate code
for specific tasks.

The reasoning-technique (shell) approach is another
cut at providing tools. We might ask what sorts of
tools for different reasoning strategies would be useful
for automating software design. For example, SINAPSE

could use someone else's inequality prover, or an out-

side tool for analyzing data flow, or an expression opti-
mizer to minimize operator costs according to a declar-

ative cost model or to order for optimal numerical sta-
bility. It would be useful to have language-independent
compiler optimization tools.

If we could find a useful set of common tools or com-

ponents, major barriers (besides the not-invented-here
syndrome) might be standardizing the interfaces and
achieving portability of tools. Even though it is now
possible to interface many different languages, in a sys-
tem with multiple implementation languages, the over-
head in both execution and modifiability can be quite
high. Nevertess, even if it requires reimplementation, a
clearly specified set of tools and algorithms for accom-

Kant

plishing the goals of the tools should facilitate reuse.

Acknowledgements

Current and past members of the SIt, APSE project who
should be recognized for their work on the concepts
and implementation of the system include Ira Baxter,
Hung-Wen Chang, Francois Danbe, Bill MacGregor,
and Joe Wald. Many thanks to Ira Baxter and Ursula

Wolz for comments on drafts of this paper.

References

H. Abelson, M. Eisenberg, M. Halfant, J. Katzenel-
son, E. Sacks, G. J. Sussman, J. Wisdom, and K. Yip.
intelligence in Scientific Computing. Communications
of the A CM, 32(5):546-562, May 1989.

B. Chandrasekaran. Generic Tasks in Knowledge-
Based Reasoning: High-Level Building Blocks for Ex-
pert System Design. IEEE Expert, 1(3):23-30, Fall
1986.

G. O. Cook. ALPAL, a Program to Generate Physics
Simulation Codes from Natural Descriptions. Inter.

national Journal of Modern Physics, 1(1):1-55, 1990.

B. Falkenhainer and K. D. Forbus. Compositional
modeling: finding the right model for the job. Artifi-
cial Intelligence, 51:95-143, 1991.

E. Kant. Human and Computer Responsibilities in
Program Synthesis. In Workshop Notes-Knowledge-
Based Human-Computer Communication, pages 65--
67, Stanford, CA, March 1990.

E. Kant, F. Daube, W. MacGregor, and J. Wald.
Scientific Programming by Automated Synthesis. In
M. K. Lowry and R. D. McCartney, editors, Automat-
ing Software Design, chapter 8, pages 169-205. AAAI
Press/The MIT Press, Menlo Park, CA, 1991.

R. S. Palmer and J. F. Cremer. SIMLAB: Automat-

ically Creating Physical Systems Simulators. Techni-
cal Report TR 91-1246, Department of Computer Sci-
ence, Cornell University, Ithaca, New York, Novem-
ber 1991.

D. Smith. Theory-Based Support for Software De-
velopment. In Workshop Notes-Automating Software
Design: Interactive Design, pages 162-165, Los An-
geles, CA, July 1991.

W. Swartout. On the Inevitable Intertwining of Spec-
ification and Implementation. Communications of the
A CM, 25(7):438--440, July 1982.

W. Swartout. XPLAIN: A System for Creating and
Explaining Expert Consulting Systems. Artificial In-
telligence, 21 (3) :285-325, September 1983.

U. Wolz, K.R. McKeown, and G.E Kaiser. Auto-
mated Tutoring in Interactive Environments: A Task-
Centered Approach. In M.J. Farr and J. Psotka, edi-
tors, Intelligent Instruction by Computer, theory and
practice. Taylor and Francis, Washington DC, 1992.

S. Wolfram. Mathematica: a System for doing Math-
ematics by Computer. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1988.

85

Keller, K.

Domain Specific Software Design for Decision Aiding

Kirby Keller and Kevin Stanley D/_

McDonnell Aircraft Company
McDonnell Douglas Corporation /3 _ _ _ _

McDonnell Aircraft Company (MCAIR)
is involved in many large multi-discipline
design and development efforts in the
production of tactical aircraft. These
involve a number of design disciplines
that must be coordinated to produce a
integrated design and successful product.
Our interpretation of a domain specific
software design (DSSD) is that of a
representation or framework that is
specialized to support a limited problem
domain. Figure 1 contrasts domain
specific vs. domain independent
approaches. A DSSD is an abstract
software design that is shaped by the
problem characteristics. This parallels the
theme of objected-oriented analysis and
design 1 of letting the problem model
directly drive the design. The DSSD
concept extends the notion of software
reusability to include representations or

frameworks. It supports the entire
software life cycle and specifically leads
to improved prototyping capability,
supports system integration, and
promotes reuse of software designs and
supporting frameworks.

Initial prototyping is improved if one can
start development with a framework that
is suited to the characteristics of the

problem. This framework can be
specialized as the development evolves to
provide a more efficient means for the
domain expert to prototype The effect is
to shorten the distance between the

domain expert and the working prototype
by providing a domain language to state
requirements and supporting automated
code generation. This concept of a

1 Rumbaugh, et al, Object-Oriented Modeling and
Design, Prentice Hall, 1991.

supporting framework can be extended to
the systems level. Multi-discipline design
efforts may require the integration of
individual DSSDs which are critical to

concurrent engineering efforts. Domain
specific designs that capture problem
solving representations can be leveraged
in future work. These designs offer
flexibility by addressing a problem
domain and hence are a better starting
point for reuse than particular application
modules. It may also be possible to
create libraries of such designs that can be
matched to problem characteristics.

The example presented in this paper is the
task network architecture or design
which was developed for the MCAIR
Pilot's Associate program. The task
network concept supported both module
development and system integration
within the domain of operator decision
aiding. It is presented as an instance
where a software design exhibited many
of the attributes associated with DSSD

concept. The Pilot's Associate program
(contract #F33615-86-C-3802) was

sponsored by the Defense Advanced
Research Projects Agency and
administered by the United States Air
Force. More recent work in this area has
been performed in conjunction with
McDonnell Douglas Research
Laboratories and Michigan State
University.

Pilot Decision Aiding Example:
As part of the Pilot's Associate (PA)
program, McDonnell Aircraft (MCAIR)
Company developed and demonstrated an
"associate" system for tactical aircraft
performing an air-to-ground battlefield
interdiction mission. The demonstrated

mission functionality included threat

assessment, system capabilities
assessment, threat reaction planning,

86

Keller, K.

Support for
System

Development

l Domain Specific

Domain Independent

!':i':!iiiiii',i',',ii_,i_',_i;i_i;iii;!_:i!;i_i!i_:_!_!i!iii_

Problem Domain

Figure 1. Domain Specific Software Design Provides Improved Support for
Specific Problem Domains.

target attack planning, pilot monitoring,
and information management.
Appropriate controls and displays were
developed to support the demonstration in
a manned aircraft dome simulator. The

system development approach and
software architecture is based upon a task
network system model. The activities of
the pilot, PA and external agents such as
a wangman are modelled by objects called
tasks. Tasks may be decomposed into a
complex sequence, or network, of more
detailed subcomponents. This model of

the task sequences and their functionality
define a hierarchical network of tasks

which allow the representation of
complex system and pilot activity for both
steady state behavior and reaction to
changes in the environment. It captures

dependencies and interactions between
acuvmes and pr6vid_ a megnAfor byerall

control of the PA problem solving
process. The structure derived from the

task network system model provides: 1) a
domain specific requirements language or
representation that is shared by the
domain expert and software developer, 2)
data structures and frameworks for the

software design, and 3) visibility into the
system behavior that helps create a more
intuitive interface and system operation.

The top-level architecture of the task
network framework is shown in Figure
2. The main components of the

framework are: input packet post-
processing, the context model, the task

network mission model, exception
handling and task execution. Data flow
in this architecture consists of

communication from external processes
through packet post processing which
appropriately manipulates the data to
update objects in the context model.
Events are signalled to the task network
mission model, resulting in changes in
task status or the execution of an

exception handler. When tasks are

activated they are placed on a task agenda
and executed in order of priority. The
execution of tasks may result in the
modification of internal models (internal
actions) or the communication of data to

other processes (external actions).

The task network is modelled after the

procedural network structure, first

proposed in the NOAH system 2. The
partially ordered sequence of tasks in the
network identifies control flow and
context information for the state of the

mission. Through an explicit
representation of system and pilot tasks,
the system may reason about it's Own

2 Sacerdoti, Earl D., A Structure for Pl=n_ and

(Elsevier: Computer Science Library,
1977).

87

Keller, K.

i EXCEPTION IHANDLER 1

/ ur, n=_ _ Events | i*_r_ n=l wvnr_ I

I "i ''''--
TASK I

EXECUTION I Ext_nal

Figure 2. Task Network Top-Level Architecture

activities. Typically, this reasoning
involves predicting system timeliness,
interactions between tasks, errors of

omission by an external agent (e.g. a
pilot), the information requirements of the
pilot, or responses to failure conditions of
the task. Each task is represented as a
specialist responsible for performing a
function when activated.

Tasks are defined in a hierarchical manner

such that they may be decomposed into
subtasks which refine the activities that

they represent. This is useful for
reasoning about tasks at different levels
of abstraction in monitoring, planning,
and execution. The task network

provides mechanisms for:
1) system coordination,
2) maintaining assumptions

about the environment,

3) handling exceptions, and
4) representation of

interaction with the pilot.

The task network allows dependencies to
be placed on states of the environment,
the pilot, and the PA system through a
subset of the task network framework
referred to as the Context Model. The

Context Model is developed as an
hierarchical, distributed, object-oriented
database. It is used to represent
information about the external

environment, the pilot, the aircraft, and

the PA system itself. This representation
was designed to allow the detection of
events from state data. Since PA has

relatively little control over actions in the
external environment (e.g. hostile threats,
weather, etc.), it must make many
assumptions_dufing plan generation and
execution. PA must be able to adapt
quickly and correctly when the external
environment changes in a way that
invalidates the planned system behavior.
Dependencies allow the tasks to represent
complex relationships between the tasks
and the state of the environment (i.e. the
context of the current situation). These

dependencies are checked when changes
are made to the Context Model

parameters. When dependencies are
violated, this is signalled to the task.
This signal is referred to as an exception.

Exceptions represent violated
dependencies which require a response
by the system. This response is referred
to as an exception handler. These
exception handlers are defined for tasks
to aid in the recovery of violations in the
assumptions of the plan. Exception

handlers may be either local or system
exception handlers. Local handlers are

implemented using methods on the task
which result in minor, local changes to
the plan or states of various systems.
System handlers involve the creation of
System Response Plans which use the
task network framework as a control

mechanism for replanning portions of the
currently executing task network.

The task network architecture is a domain

specific design in that it is a framework

88

Keller, K.

that provides support for requirements
specification, design, and development at
the module and system level. The
benefits of the task network architecture
are realized from a set of features which

aid in the development of an application
which lies in the real-time decision

support domain. The components of the
architecture support system integration by
providing a uniform representation of the
elements of the domain. These

components and their inter-relationships
were developed to address the
requirements of the PA domain but it has

been implemented as a explicit framework
that is readily applicable, in part or in
whole, to problems with similar
characteristics. These features are

described in the following sections.

Explicit Representation of System Plans
The requirements of the PA system are
often described in terms of the aircraft

mission. This mission description
includes the objectives of the pilot and his
weapon system in a hostile and uncertain
environment. Mission decomposition is
usually performed using a number of
representative scenarios. This mission
decomposition is a key characteristic of
the domain. Mission decomposition is a
top-down approach for dissecting a
combat mission into its functional

segments. These functional segments are
then divided into the tasks which are

required to complete each segment. As
functions and tasks become more

specific, they can be analyzed in terms of
information flow and functional

partitioning. The task network supports
this specification through it's explicit
representation of the sequence of tasks in
the mission.

The explicit representation of functions as
tasks in the system provides advantages
in software design by supporting graceful
adaptation through reasoning about task
timeliness, the explicit representation of

parallelism in task execution, by
promoting modular coding techniques,
explicit control synchronization between

tasks, and visibility into system operation

through the use of mnemonic names for
tasks.

Enables Control Reasoning

Completing tasks by their assigned
deadlines is the very definition of a hard
real-time system. However, the character

of the Pilot's Associate prompted us to
expand the definition to include the
concepts of both hard and soft deadlines.
While meeting hard deadlines is a

requirement for correctness, meeting soft
deadlines is not strictly required, but is

certainly desirable. Control reasoning is
useful for a decision support system
which is attempting to optimize its
performance outside of hard scheduling
constraints. _The system may predict
missed deadlines, delete unnecessary
steps to meet imminent deadlines, and
perform reasoning about solution
quality/timeliness trade-offs. Control

reasoning is also supported by the
management of system priorities on
tasks.

Supports Coordination and Cooperatiorl
Knowledge partitioning is a natural and
inevitable approach to the design and
development of large systems. The PA
system was partitioned into modules,
each of which is a knowledge based
system with the possibility of concurrent

execution. While concurrency may not
be utilized physically, the components of
the PA are intended to operate in a
functionally distributed fashion.

Functional distribution, in this context,
merely means that the components are
designed to allow the possibility Of
concurrent operation. Each component is
a real-time system. That is, each
component receives events and data

asynchronously and carries out steps of
assessment, planning and execution, all
constrained by timing requirements. For
such a collection of real-time knowledge
based systems to form an integrated
system, they need to behave in a

coordinated manner that is also timely,
responsive, and adaptive to a changing
environment. Coordination refers to a

system-wide coherence among tasks and

89

Keller, K.

plans, to a resource management scheme
based on a global perspective, and to
dynamic adjustment of tasks and plans to
accommodate changes in overall system
performance goals.

f)p_portunisti¢ Execution of Tasks
Quite often in system design, the correct
sequence of execution of system tasks is
unknown. The task network

representation allows the specification of
incomplete temporal constraints on
control flow. The non-linear plan
representation allows ambiguity of task
ordering. The execution of pamUel tasks
may be performed opportunistically and
behavior is situationally dependent. This
allows the system to improve and tune
it's performance based on the context of
the current situation.

Exception Handlers Modify Behavior
Through Changes in ExplicitPlans

The PA problem domain is dynamic and
hostile. Subsequently, plans may be
expected to be invalidated quite often.
This adds complexity to the system
requirements and design. The Task
Network Architecture handles this

through an explicit link between
environmental data and tasks referred to

as dependencies. Exception handlers are
procedures which are implemented to
respond appropriately to events. Each
task is responsible for handling these
events by one of several classes of
reactions such as: abandoning the task,
retrying to achieve the results of a task,
choosing an alternate method for
accomplishing the task results, or
repairing the cause of the error. The

complexity of exception handlers may be
quite simple, or may require extensive
replanning of the mission.

_eplanning and Execution Are

It is not possible to predict the time that
events impacting the mission will be
encountered. Deliberation on new plans
often involves extensive processing
resources devoted to solving problems
encountered in the execution of plans.

However, a real-time system cannot
afford to halt execution while replanning
is underway. Due to this, the system
must be capable of replanning portions of
the mission, while completing unaffected
portions. The current design of the task
network allows the system to inhibit the
execution of tasks which are in an

exception state, while continuing to
execute other tasks which are unaffected

by the exception.

Control Flow Manipulated Graphically
One of the tools available to software

developers for managing complexity is
that of graphical interfaces. The partially
ordered sequence of tasks lends itself
very well to a graphical depiction of the
sequence of tasks performed during the
mission. The implementation of tools for
the graphical manipulation of tasks
provides an efficient and intuitive
interface for system control specification.
At the same time, these tools will also

provide aid in debugging the performance
and functionality of the system since the-
current state of the system is represented
pictorially through the state of the tasks in
the network.

One of the key features of the task
network approach is the ability to
describe tasks from the perspective of a
mission, and then use that same
description as a foundation for code

............... This philosophy is
supported by the encapsulation of

functionality as provided by object-
oriented programming. The most

efficient means of designing and
modifying a task network data structure is

through the use of a graphical interface
which allowed for direct manipulation 3 of
the task network. The task network

3 Hutchins, E.I_., Hollan, J.D., and Norman, D.A

(1986). Direct Manipulation Interfaces in D.A.
Norman, W.S. Draper reds.): User Centered

System Design: New Perspectives in Human-
Machine Interaction, Hillsdale London:

Lawrence Erlbaum, 1986).

90

Keller, K.

implementation offers a mechanism by
which application code could be

seamlessly integrated with code generated
via these graphic descriptions.

Requirements S_cification Lan_age
The task network framework is a

programming paradigm for the
development of intelligent systems. The
task network architecture provides
support through the entire software
development process, from requirements
generation (specification) through
maintenance as shown in Figure 3. Each
module function is developed using the
task network framework for planning,
assessment, and human interface

functions. The goal of the framework is

to provide a common language between
the requirements specifier, system
designer, and system user. This will lead
to systems which have traceable

requirements in the program design and
whose operation may be easily
understood by the user. The program
structure serves as a model of the user in

performance of the mission. The

network of tasks describe the sequence of
tasks to be performed by the system and
user. Unplanned events must also be
accounted for in the system design. The
design for the detection of unplanned
events, the dependency mechanism,
makes the conditions for plan failure
explicit.

Requirements Deflnltlon/Deslgr

Human Factors
PIIohi _ Knowledge Engineers

Domain Expem Engineering Pilots

Software Operation
Implementatior and

and Malntenanc(
Test

S/W and H/_
Engineering _> Pilots

Figure 3 - Software Model Supports the System Life Cycle

The analysis of the mission results in
identification of pilot and system activities
as they relate to various phases of the
mission. This analysis includes the
identification of mission objectives, tasks
that need to be performed, information
required to perform the mission
successfully, candidate approaches for
automation and decision aiding support,
and the identification of constraints

imposed by combinations of the above.

Sequencing tasks in the mission identifies
the context within which tasks are to be

performed and the temporal constraints
for efficient and effective mission

performance. Through the process of
mission decomposition, functional

requirements are identified along with the
context in which they are to be executed.
This is a result of the representation of the
mission sequence--mixing pilot and
system activities together in a coordinated
fashion.

User Activity Model

Interactive decision Support systems must
provide more aid than they require in user

attention to the system. The primary goal
for modeling the user in the task network
architecture is to minimize interactions

between the system and the user and
thereby develop a non-intrusive,
cooperative decision support framework.
Through modeling the user, the system is
supplied with necessary context

91

Keller, K.

sensitivity to work efficiently with the
user.

The pilot monitoring approach which was
adopted, focussed on the state of the
world represented in the Context Model,
rather than on explicit pilot interaction.
The approach isolates the monitor from
the need to identify all methods of
performing a task, all actions that may
undo a given task, and explicit legal time
intervals for tasks. The result is concise,

robust, task-monitoring rules that can be
incrementally enhanced as the Context
Model grows richer. The task network
represents the activities of the user by
activating tasks when evidence indicates
that they are being performed or have
been completed. Active tasks identify
activities which are being performed by
the user which may be used to identify
the information which is required by the
user of the system. This provides a
mechanism for providing both timely,
and relevant information to the user.

Issues:

The major benefit of DSSD promises to
be the creation of a library of reusable
designs which can be classified by

problem characteristics or domain to
which they are applicable. An application
developer could then quickly piece
together a development framework from
these designs. What is needed is an
enumeration of the fundamental designs
and a description of the range of domains
that they cover.

The DSSD concept supports the notion
that the initial prototyping effort should
be directed at establishing or assembling a
design for the particular application. This
will allow leveraging the
representations/frameworks associated
with component DSSDs. The

development of a application design
based on existing DSSDs should be a
goal in order to achieve system

modularity, reuse, and development
efficiency (eg. automated code

generation).

Traditionally the press for real-time
performance tends to drive designs
toward system representations that are fiat
and efficient at the expense of rich
representations which support the
management of design complexity and
effective interface design. It becomes a
matter of development costs vs. the need
for a real-time design.

The integration of DSSDs to support and
integrate different design disciplines is a
key to the application of the DSSD idea to
large systems. In the PA example, the
task network is used as a means to

analyze the human factors elements of
information management and automation,
threat assessment, mission and tactical

replanning, and as a means to determine
the effect of system failures on mission
activities. A focus on the concepts of
DSSD should result in frameworks for

integrating lower level module designs
into a more coherent system design.

92

Keller, R.

Knowledge-Intensive Software Design Systems:
Can too much knowledge be a burden?

Richard M. Keller I_ 9 _" 1 7 5] _

Sterling Software
NASA Ames Research Center - Artificial Intelligence Research Branch

Mail Stop 269-2, Moffett Field, CA 94035-1000

(415) 604-3388 (Phone); 604-3594 (FAX); Kelle1@ptolemy.arc.nasa.gov

Abstract

: While acknowledging the considerable benefits of domain-specific, knowledge-intensive
approaches to automated software engineering, it is prudent to carefully examine the costs
of such approaches, as well. In adding domain knowledge to a system, a developer makes
a commitment to understanding, representing, maintaining, an,d communicating that
knowledge. This substantial overhead is not generally associated with domain-

: independent approaches. In this paper, I examine the downside of incorporating additional
knowledge, and illustrate with examples based on our experience building the SIGMA
system. I also offer some guidelines for developers building domain-specific systems.

i. Introduction

One of the long-prevailing tenets of artificial intelligence
research is that "knowledge is power" -- the more
knowledge made available to a system, the better. The
knowledge-based software engineering (KBSE)
community, as evidenced by its self-designation, embraces
this philosophy no less than other disciplines within AI.
Traditionally, the knowledge represented and used by
practitioners of KBSE has been knowledge about the
programming discipline, itself. Increasingly, however,
researchers are recognizing the utility of representing and
using knowledge about the target programming domain
(e.g., business, manufacturing, science,
telecommunications, engineering, etc.) to facilitate
automation of various facets of the software engineering
process [1,2,3]. In fact, the seductive "knowledge is
power" maxim has even found a receptive audience in the
mainstream software engineering community, where
several workshops on the topic of "Domain Modeling"
have been held over the past few years [4].

The migration toward domain-specific systems comes as
no great surprise. Despite progress in developing general-
purpose methods for automated software engineering [5],
the practical application of these techniques has met-with
limited success. In some cases, these methods have failed
to scale up appropriately; in other cases, the methods

93

have proven too mathematically-sophisticated to appeal
widely to the practicing community of software engineers.
However, by incorporating additional domain knowledge
and constraints, it becomes possible to specialize and
simplify these methods to a point where they are more
tractable and less daunting to apply. While
acknowledging the considerable benefits of domain-
specific, knowledge-intensive approaches to automated
software engineering, it is prudent to carefully examine
the costs of such approaches, as well. In adding domain
knowledge to a system, a developer makes a commitment
to understanding, representing, maintaining, and
communicating that knowledge. This substantial
overhead is not generally associated with domain-
independent approaches. In this paper, I examine the
downside of incorporating additional knowledge, and
question whether adding knowledge introduces as many
new problems as it solves. _:

Ove r the past _y_eral y__e_'s,I have been involved in the
development of a domain-specific software design system
for scientific modeling. To ground my remarks, I will
briefly de._cr_e this system and its knowledge
requ_ments. Then I will describe some of the additional
burden placed on the developers: as a result of the
knowledge-intensive nature of this system. Finally, I will
attempt to generalize from our experience and present
some guidelines and caveats for others developing domain-
specific KBSE systems.

2. SIGMA : A knowledge-based
scientific software environment

The goal of the SIGMA project [6] is to provide
computational support for scientists engaged in computer
modeling and simulation of physical systems. Examples
of such systems include planetary atmospheres, forest
ecosystems, and biochemical systems. Generally, these
systems can be modeled as a set of algebraic and ordinary
differential equations, where the terms in the equations
interrelate the physical quantities of interest. Although
computer models play a crucial role in the conduct of
science today, scientists lack adequate software engineering
tools to facilitate the construction, maintenance, and reuse
of modeling software. Usually, scientific models are
implemented using a general-purpose computer
programming language, such as FORTRAN. Because
this type of general-purpose language is not specifically
customized for scientific modeling problems, the scientist
is forced to translate scientific constructs into general-
purpose programming constructs. This manual
translation process can be very complicated, labor-
intensive, and error-prone. Furthermore, the translation
process obfuscates the original scientific intent behind the
model, and buries important assumptions in the program
code that should remain explicit. The resulting software
is typically complex, idiosyncratic, and difficult for
anyone but the primary scientific author to understand.

We are building a knowledge-based software environment
that makes it easier for scientists to construct, modify, and
share scientific models. The SIGMA (Scientists'
Intelligent Graphical Modeling Assistant) system

Keller, R.

functions as an intelligent assistant to the scientist.
Rather than construct models using a conventional
programming language, scientists will be able to use
SIGMA's graphical interface to "program" visually using
a more natural high-level graphical data flow modeling
language. The terms in this modeling language denote
scientific concepts (e.g., physical quantities, scientific
equations, and datasets) rather than general programming
concepts (e.g., arrays, loops, counters). The scientist-user
interacts with the system to construct a syntactically and
semantically valid data flow graph, such as the one
illustrated in Figure 1. In this graph, the lettered nodes
represent scientific quantities, such as temperature,
pressure, and density. These quantities are input to
scientific equations (depicted by numbered nodes in Figure
1) which calculate output quantities.

The data flow graph in Figure 1 represents part of a
planetary atmospheric model developed at NASA Ames
Research Center [7]. The model computes the temperature
(T) at some altitude point above a planetary surface based
on input data (r)' measuring the extent to which a radio
signal refracts upon penetrating the atmospheric gases at
that altitude.

Although visually simple, the graph masks a number of
non-trivial technical problems that must be addressed to
actually execute the corresponding program. For example,
the input refractivity value is a vector quantity, not a
scalar, so there is an implicit iteration being performed.
Note also that Equation # 4 is a differential equation that
must be numerically integrated to solve for P. In
addition, the scientific units specified for the various
inputs to an equation may not be compatible and must be

lractivlly number mass

date lint density density preasum temperature

r _,(D_n---_ _----_ q)-_P----_ (_)_T

molecular gr itatio

mixing rlltlo: f, /I Weight: ILL _ : g"

g I
gN reh'_llvlly: :IK'_ planet maluo: x. I . -- sud-,_e gmlly: (J_

I!illtuoe: am

i

r

Q n= Z,f,_.i. _ dP= _pgdz

© p_-nZ e N. o Qn= -kT

Figure 1: Data flow graph representing a portion of a planetary atmospheric model. Letters represent physical quantities.
Numbered circles correspond to equation application nodes.

g4

convenedtoacommonunitsystembeforethatequation
canbe applied. SIGMA's interpreter handles these details
automatically for the user.

On the surface, SIGMA appears similar to a large class of
data flow based visual programming environments that
have been developed recently. These systems help users
graphically construct software in a variety of application
areas, including image processing and scientific
visualization (Khoros/Cantata [g], Iconicodc/IDF [9],
AVS [10], apE [11]), scientific instrument design
(LabVIEW [12]), and simulation (STELLA/IThink [13],
Extend [14]). In all of these cases, however, the software
tool has fairly limited knowledge of the application
domain. Although the tools enforce simple syntactic
checks on the data flow graphs and perform some type-
checking, none of these tools has a deep semantic
understanding of what the data flow program is doing and
whether the operations on the data make sense. As a
result, it is possible with these tools to create a
syntactically valid flow graph that is semantically
meaningless to a domain specialist. In contrast, SIGMA
assists the scientist during the model-building process and
checks the model for consistency and coherency as it is
being constructed. In particular, SIGMA's domain
knowledge assists the system in interpreting the user's
intentions and in constructing a semantically meaningful
program.

SIGMA is closer in spirit to 00 [15]. 00 is a domain-
specific automatic programming system constructed to
assist in generating oil well log interpretation software.
The system was designed for direct use by petroleum
scientists, who would use it to construct geological
models expressed as a set of quantitative equations relating
geological parameters of interest. Like SIGMA, O0

Keller, R.

makes extensive use of scientific domain knowledge to aid
in the program synthesis process. The next section
describes SIGMA's domain knowledge.

3. SIGMA's Domain Knowledge

SIGMA's domain knowledge is represented and stored in a
hierarchically-structured, frame-based knowledge base of
over 500 concepts which contain information about
scientific equations, physical quantities, scientific units,
numerical programming methods, scientific domain
concepts, and bibliographic citations. A partial overview
of the knowledge base is depicted in Figure 2.

SIGMA's knowledge can be partitioned into four
categories:

l. Cross-disciplinary scientific knowledge:
General knowledge available to persons with a
scientific background, including knowledge about
various physical quantities, scientific domain
objects, scientific measure units, foundational
equations, and scientific handbook data.

. Area-specific scientific knowledge:
Quantities, domain objects, equations, and data
pertaining to a specific scientific discipline (e.g.,
biology, ecology, physics).

. Problem-specific knowledge: Domain
objects and relations pertaining to the specific
physical system being modeled by the scientist.

l SIGMA Knowledge BaseL._ _
_ Datanow

Da_t'_"''''_/ / \ X \ _ "_Tr_sform graph
I Atmosp_ric / D,_ X _ _
/ Object / Cntatton_ \ \ I

I .inc_al _ Chemical _ \ _ subroutine equa,fion

- /I __ Object Phy;ical _ _ I

/] p_,_e,_ry _ Quantity _ _] ideal_gasI
phyiical I _ __ = , X \ I hydrostadc-lawl
e i mol ule ressure gravity-eqn
e_ity] pla_e/t m_6on _c _'_. t.urel .. _ _ IClausius-Clapeyronl

[. . ! elracUvlty _vlessure
physical radiation [w.amrI I " \1 ,,el
sys '-o' ject- I nergy I _I \

=eZ" ass factortholin
atmJsphe_tance]methane] _tt_ [co_=ble

parcel / [hydrogen[u_nt Physical

par .el I / X Corn]taut

c_ mass pressureu it unit IB°ltzmann[

cloud naze IPlanck I
IArgon_ q

latmospherel Ietc I
Ielc 1

Figure 2: Overview of SIGMA's knowledge base

95

Keller, R.

. Programming knowledge: Knowledge about
numerical programming methods, data structures,
control, etc. fin the current version of SIGMA,
much of this knowledge is implicit in the data flow
interpreter.)

Although a detailed discussion of SIGMA's knowledge
base and representational structures is outside the scope of
this paper, I will briefly describe one of the key elements:
SIGMA's equation representation.

Each SIGMA equation consists of a syntactic equation
formula plus a semantic interpretation for each of the
symbols in the formula. Each symbol is identified with
an attribute of some class of domain objects in SIGMA's
knowledge base. The domain objects associated with the
various equation symbols are constrained to obey specified
relationships among each other. Consider Figure 3,
which illustrates how Equation 1 of Figure 1 is
represented internally within SIGMA. Equation 1 states
that the number density (n) of a gas mixture (i.e., the
number of particles per volume of mixture) is equal to the
refractivity index (r) of the entire mixture divided by a

weighted sum of the refractivity indices (rg) of the
individual gases within the mixture.

As shown in Figure 3, the semantics of this equation are
represented in terms of the domain objects that the
equation interelates, namely the gas mixture (called an
atmospheric-parcel), the homogeneous pure-gas
subcomponents of the mixture (called constituents), and
the individual gases that are included in the mixture. The
symbols "r" and "n" in the equation are linked to the
refractivity and number-density attributes of the same
atmospheric-parcel. The subscript "g" is identified with

the constituents attribute of that same atmospheric-parcel.
The constituents attribute stores a pointer to each
constituent within the atmospheric-parcel. The symbol

"fg" is linked to the mixing-fraction of a constituent, and
stores the percentage of this constituent as a fraction of
the total quantity of gas within the atmospheric-parcel.
The symbol "rg" represents the refractivity attribute of a
gas that is contained by the constituent. Finally "L"
refers to a physical-constant called Loschmidt's Number.

In essence, this representation provides a set of domain
constraints that must be satisfied for the equation to apply
legitimately in a given domain situation. As a scientist
builds up a data flow graph such as the one in Figure I,
he or she is unknowingly constructing an invisible
constraint network of domain objects and relations similar
to the one illustrated in Figure 3. This constraint network
provides a sound semantic interpretation for the graph.

4. SIGMA's Knowledge Burden

The rationale behind our decision to invest considerable
time and energy into representing domain knowledge for
SIGMA is simple and, we believe, compelling: How can

a machine interact intelligently and synergistically with a
scientist to create modeling software if the machine has no
understanding of the scientific problem under study?
Without this shared understanding, SIGMA would have to
rely on user guidance for many of the functions it now
performs automatically. Our users have expressed an
impatience with systems that need to be "spoon-fed";
given an option, they would rather drop down into
FORTRAN and code the model themselves! Our only
alternative, it seems, is the knowledge-intensive route.

iTemperature:

Gravity"

Conltituent.: f;

CONS_TUENT

MixingFractlon
NumberDensity:__

MassDenslty"
Pressure"

Figure 3: Representation for Equation 1 in Figure 1.

96

TheCatch-22in this situation is that the addition of

domain knowledge imposes burdens on the developer,
maintainer, and users of the interactive software design
system:

• The Comprehension Burden: System developers
must analyze and understand the application domain
and the class of problems to be solved.

Our experience with SIGMA is that a significant
amount of time (several person-months of effort) is
required to sufficiently understand the scientific
modelingproblemspresentedby ourcollaborators
in planetary and ecosystem sciences. Of course the
difficulty is a function of many variables, including
the developer's prior background knowledge and
experience in the application domain, the caliber of
expert advice and guidance, the complexity of the
scientific modeling problem, etc.

• The Representation Burden: Developers must
design suitable representations to capture the
knowledge.

In our experience, the problem of representing
domain knowledge is a significant modeling
problem in itself. Within SIGMA, we have
identified a need for representing quantities,
quantitative and qualitative relationships, part-
whole and subsumption relationships, temporal and
spatial relationships, modeling assumptions, and
other difficult representational constructs. A
comprehensive treatment of all of these issues is
beyond the scope of any single project. (However,
see [16] for an ambitious effort in this vein.)

• The Maintenance Burden: System maintainers
or users must add new knowledge, update old
knowledge as it becomes outdated, and generally
maintain the integrity of the knowledge base.

For example, novice and intermediate SIGMA users
will want to enter new equations and new physical
quantities into the system. Sophisticated SIGMA
users may wish to modify the original domain
theory that was captured and encoded as a by-
product of discussions with our expert
collaborators. In fact, the domain theory (i.e., the
domain objects, attributes, and relations) is as
much a part of the scientist's model as the
equations. Because the equations are intimately
linked to the underlying domain theory (as
discussed in Section 3), entering a new equation is
complicated, and modifying the domain theory has
wide-ranging implications. As a result, the current
version of SIGMA does not permit users to modify
thedomaintheory.

• The Communication Burden: Developers must
implement tools and techniques that adequately

Keller, R.

convey the system's knowledge to the user, and
viceversa.

Consider once again SIGMA's equation
representation. It is non-trivial to convey this type
of a representation scheme to a naive user without
exposure to knowledge-based or object-oriented
techniques. Building an adequate user-friendly
editor for SIGMA will be a challenging (and no
doubt time consuming) task. Navigating and
editing the concepts in the knowledge base pose
similar difficulties.

Although these problems are significant, most of them are
pose no greater or lesser challenge than those faced by
developers, maintainers, and users of any sophisticated
knowledge-based system. Software engineering, after all,
is just another application area for knowledge-based
techniques.

5. Easing the Burden

Despite the extra effort involved, and the new problems
introduced, I still believe it is worth the effort to
incorporate domain knowledge as an integral part of an
automated software engineering environment. Ibelieve
the newly-introduced problems are challenging, but
tractable. And without incorporating additional
knowledge, I see no way to provide more intelligent and
domain-sensitive tools to practitioning software engineers.
In this spirit of pragmatism, I offer the following
recommendations to those building knowledge-intensive,
domain-specific tools:

• Generality: Keep the knowledge base and the
representations general, without going overboard.
This will facilitate entry of new information into
the knowledge base, and encourage reuse of existing
knowledge and representational constructs in new,
similar domains.

• Stability: Choose an application for @hich the
domain knowledge is relatively stable. This will
minimize the maintenance burden.

• Scope: Choose an application-for which knowledge
is well-circumscribed, yet broad enough to make
the endeavor worth your effort. If the knowledge
can be reused in other applications, the
development costs can be amortized over a shorter
period of time.

• Content: Choose an application for which the
domain theory is well-understood and commonly
accepted. This will simplify the process of
building an acceptable domain theory and reduce
maintenance and communication costs.

97

• Terminology: Use vocabulary that is as familiar as
possible to users.: This will ease the
communication burden.

• Grainsize: Avoid modeling phenomena in more
detail than necessary for the task -- unless
warranted due to generality and subsequent
reusability.

Of course the developers of software systems do not
always have control over the selection of an application
domain. In this case, the above recommendations can be
used to evaluate the suitability of domain-specific
approaches with respect to a particular domain.

6. Conclusion

Yes, I still believe in the "knowledge is power" axiom.
But more than ever, I feel it is important to heed its most-
overlooked corollary: "There is no such thing as a free
lunch". Caveat emptor[

Acknowledgments

Thanks to the SIGMA group, and especially to Michal
Rimon, who implemented the current version of our
system. Thanks also to Pandu Nayak who provided us
with his RML representation language.

References

[1] D.Barstow, "Domain-Specific Automatic
Programming", IEEE Transactions on Software
Engineering, Vol. SE-11, No. 11, pp. 1321-1336,
Nov. 1985.

[2] E.Kant, F.Daube, W.MacGregor, and J.Wald,
"Scientific Programming by Automated
Synthesis", in Automating Software Design, pp.
169-206, M.R.Lowry and R.D.McCartney (eds.),
AAAI Press, Menlo Park, CA, 1991.

[3] D.Setliff, "On the Automatic Selection of Data
Structure and Algorithms",in Automating Software
Design, pp. 207-226, M.R.Lowry and
R.D.McCartney (eds.), AAAI Press, Menlo Park,
CA, 1991.

[4] N.Iscoe, "Domain Modeling -- Evolving
Research",Proc. Sixth Annual Knowledge-Based
Software Engineering Conference, pp. 234-236,
IEEE Computer Society Press, Los Alamitos, CA,
1991.

[5]

[6]

[7]

[8]

[9]

[1o]

[11]

[12]

[13]

[14]

[151

[16]

Keller, R.

M.R.Lowry and R.Duran, "Knowledge-Based
Software Engineering", chapter in Handbook of
Artificial Intelligence, Vol. IV, A.Barr and
P.Cohen (eds.), Addison-Wesley, New York, 1989.

R.M.Keller and M.Rimon, "A Knowledge-based
Software Development Environment for Scientific
Model-building", AI Research Branch technical
report #FIA-92-12, NASA Ames Research Center,
Moffett Field, CA, forthcoming July 1992.

C.P.McKay, J.B.Pollack, and R.Courtin, "The
Thermal Structure of Titan's Atmosphere", Icarus,
vol. 80, pp. 23-53, 1989.

Khoros/Cantata software product, Khoros
Consortium, EECE Department, University of
New Mexico, Albuquerque, NM.

Iconicode and IDF software products, Iconicon,
Palo Alto,/CA.

AVS software product, Stardent Computer, Inc.,
Sunnyvale, CA.

ape 2.0 software product, Ohio Supercomputer
Center, Columbus, OH.

LabVIEW software product, National Instxgments,
Austin, TX.

STELLA and IThink software products, High
Performance Systems, Lyme, NH.

Extend software product, Imagine That, Inc., San
Jose, CA.

D. Barstow, R. Duffey, S. Smoliar, and S. Vestal,
"An Overview of _nix", in Proc. National
Conference on Artificial Intelligence (AAAI-82),
pp.367-369, Pittsburgh, PA, August 1982.

R.V.Guha and D.B.Lenat, "Cyc: A Mid-Term
Report", A/Magazine, 11(3), 1990.

98

5 2o-6 /

_ Lovitsky

N93-17519

Automating Software Design System
DESTA

Vlad/rmr.4.Lov/isl_;v
Associate Professor

Software Engineering Department
Institute of Radioelectronics

Kharkov, Ukraine
(0572) 409 113 (Fax)

Patr/c/a0.Pearce

Professor, Head of Computing Depar:tment

University of Plymouth

Drake Circus, Plymouth

Devon, PL4 8AA, UK

pat@uk.ac.psw.cd

(0752) 232 541 (Office)

(0752) 232 540 (Fax)

Abstract

"DESTA" " is the acronym for the _alogue Evolutionary _/nthesizer of

_rnkey Algorithms by means of a natural language (Russian or English)functional

specification Of algorithms or"software being developed. _ _ :_
DESTA represents the computer-aided and/or automatic artificial

intelligence "forgiving" system which provides users with software tools support

for algorithm and/or structured program development.

The DESTA system is intended to provide support for the higher levels and
earlier stages of engineering design of software in contrast to conventional CAD

systems which provide low level tools for use at a stage when the major planning
and structuring decisions have already been taken.

DESTA is a knowledge-intensive system. The main features of the

knowledge are procedures, functions,modules, operating system commands, batch

files,theirnatural language specifications and their/hterlinks

The specific domain for the DESTA system is a high level programming

languages likesTurbo Pascal 6.0.

The DESTA system is operationaland runs on a IBM PC computer.

99

Lovltsky

I. Introduction

At present software development is the biggest obstacle to major new

breakthroughs in computing. The biggest limitation in software development is the

failureof imagination that people tend to project: "A user only really knows what

he wants when he sees a f/nishedattempt"

How we develop software at present. We tend to develop software in the

same way we did it in the 1960s i.e. it's one instruction after the other. We really

haven't yet got to the point where CAD system or CASE-type tools help out very
much. In order to move toward what we call higher levels of software automation

in the future, we are going to be using more standardized systematic-type modules

for developing software systems.
The end aim of automatic programming is a complete system without the

need to write any code. At present you don't see automatic programming, where

you simply say to the computer: '_ Ineedaprogram to do this,and 1o andbehold,
out/t comes'_

This paper describes aspects of applied research related to the development

of an intelligentsystem DESTA. The idea is very simple: we must get lots of

differentsoftware from lots of differentplaces that must work together and must

talk to each other and the output of one can be used as input of the other.

Obviously we need to have vast knowledge base for it.The software should be

developed from reusable software comiPonents: "software chip_. To do it we

need to consider some general issue:

• Knowledge content, structure, representation, acquisition, and main-

tenance.

• Inference engine.
• Human-computer interaction,natural language

program development environment.

interface, integrated

2. Knowledge Base

Software development is an intensely knowledgebased activity. The

functioning or activity of any intelligent system (natural or artificial) can be

reduced to solving a set of suitable problems, 93% of which belong to so-called
"ill-defined" problems whose solution cannot be expressed by formulae or by

means of using classical or modern mathematics. In this case it is more
convenient for the end user to specify their requirement to the computer by means

of natural language (NL)

By an intelligent system we shall understand a system which enables us to

solve intelligentproblems

100

Lovitsky

2.I. InteM/gent Problem

Intuitivelyunder the problem T they will understand the four <X,Q,F,Y>, in

which X stands for the finite set of input data and their specification; Q

represents the goal descriptions,and F is the finite sequence (or set) of rules

transforming X intoY. Thus Y is the finiteset of output data.

Proceeding from a given definition it is easy to single out at least three

classes of problems, which are characterized by the following relations:

X&Q&FI--Y, (1)

X&Q&YI--F, (2)

X&QI--F=> Y, (3)

where symbols "&", "1--" and "=>" stand for "and", "give" and "implication"

respectively.

Intelh'gentproblems are characterized by relations (2) and (3). In this

case the problem to define software chips can be represented by:

T = <5p(x),Dt(x),Nm(F),As(F),Sp(F),Cnd(F),Dc(F), Pr(F),Sp(y),Dt(y)>,

where Dt(x) and Dt(y) are the "input"and "output"data, respectively;

Sp(x) and 5p(y) are their "spec/fication'_

Nm(F) is the "algorithmname" coincidingwith the problem name Nm(T);

Dc(F) represents the "declarativedescription" of the finitesequence (or

set) of rules called the "algorithm'. Having availableDc(F) the system Knows

How to solve the problem T, but itCannot (isnot able to)solve thisproblem;

Pr(F) is the "program representation" of F called "program" (or

"module'). Having availableonly Pr(F) the system Does Not Know How to solve

the problem T, i.e.it cannot describe declarativelythe course of its solution,but

because the description of Pr(F) is "intelligible"tothe system it Can Execute

F (i.e.Can Solve the problem);

The descriptionof "functionality"-As(F), the "condition"ofits execution -

Cnd(F) and its "specification'-5p(F) Includingthe language for the description

of F, the method of solving, the required computational resources for its

implementation etc are brought to conformity with every F.

2.2. Content and Structure of KB

The activity of any natural (or artificial)intelligent system is just

connected wlth solving different problems. Hence, knowledge of these systems

must be predisposed to realize such activity. In our opinion the KB should

consist of three components:

(I) Knows WHAT,

(2) Knows HOW,

101

Lovitsky

(3) CAN DO 5omethlng.

According to the traditional approach to knowledge representation, the

knowledge is divided into "Declarat/vt" and "Procedura/" that does not permit one

to realize the main capability of the human mind: "bootstrapp/ngpr/nc/p/e'.

One can distribute among the three part of KB the elements of problem
notion:

(I) Knows WHAT: Sp, Dr, Nm, As, Cnd

Here all the declarative components connected with the specification of the

problem being solved are interlinked.
(2) Knows HOW: Dr(F),

(3) CAN DO Something: Pr(F)

At present there can be no doubt that the possibilities of the artificial

intelligence system (AIS) are defined to a large degree by the organization of the

knowledge store. In the general case, under the memory organization one should

understand the regularity of data distribution in memory assuring the storage of
various links between separate elements of information and representing the main

principle of gestaltpsychoiogy, i.e. "the Whole, Is greater than the sum of the
parts'. In other words, the structure obtained as a result of integration should

contain more information than had been used for its creation. Apparently this

defines the striking ability of a human being for generating and understanding an
endless number of sentences based on the limited experience with a limited
number of sentences.

Moreover, at every moment of time both a man and AIS deals only with

relatively small fragments of the external world. The corresponding structures are
needed to integrate these fragments separated in time into the integral picture.

All kinds of binary relations can De divided into just four classes: "one-

to-one. "one-to-many. "manyto'one" and "manytomany" For im-

plementation of these classes of binary relations the four types of elements

corresponding to them are suggested: I-elements, Z-elements, Y-elements

and X-elements. Different combination of these elements determine the

different attributes of the structures. The KB of DESTA-system are provided by
the interaction of the different structures as follows:

- L-tree-structure (combination of I- and Z-elements). This is an

initial structure which provides the recognition of new words, the normalization

of well-known words and the determination of direct links with the corresponding
nodes of 5m-structure, Md'structure and Set-structure.

- TB-structure (combination of I-, Y- and Z-elements). Provides the

understanding of new words.

- Sm-structure (combination of i-, Y-, Z- and X-elements). Provides

the handling of new or well-known sentences or sequences of words.

102

Lovitsky

- Md-structure (cOmbination of I-, Y- and Jl,-elements). Provides the

mapping of the In-, Out-parameters and Cnd(F) interaction for different

modules and algorithms.

- Set-structure (combination of I-, _- and Y-elements). Usually each

module is associated with several other modules logically including it or included
by it. This structure permits the system to map such links.

- PrRl-structure (combination of I-and Jt,-elements). Provides the

storing of production rules and direct access to them.

3.1nference Engine

In the past AIS development was based on the Logical Paradigm, the main

idea of which was to extract the problem solving from some theorem proof using,

for example, first order predicate calculus (or Horn clause logic which is the
restrictionform of firstorder predicate calculus).

At present Itis understandable that the KB of the real AI5 is Incomplete,

inconsistent and should be open. In such a case it would be natural to devote

more attention to the human inference process which is based on "plausible

reasoning" using maximum "argumentation" about problem solving within the
framework of KB.

One can single out at least three relativelyindependent mechanisms serving
the "naturalinference" source:

- integration of information;

- additlon of information;

- cognitive transformations.

The idea of the _tructuredaDDroach for naturalinference isconsidered.

4. Natural Language Interface

The natural language (NL) was chosen as:

• an external language for knowledge descriptions;

• an internal language for knowledge representation;

• a specification language of the problem being solved and non-procedural

or procedural algorithm;

• a com-/nunicationlanguage between the end users and DESTA system.

Any NL-text handling is performed as followsi

• Any NL-sentence is divided into so-called "nuclear" (the simplest)

sentences. By nuclear sentence (NS) ismeant:

- a simple or a simple extended sentence with the direct order of words,

where the subject group can be expressed only by a noun.

103

Lovitsky

- a simple or a simple extended sentence with the direct order of words,

where the subject-group is expressed by a verb in the form of the imperative mood.

• Any NS is transformed into a form of the NL-statement. The verb of

any NS is just a name of active or state statement. Active NS looks like a

module description (e.g. Remove(what, from, to]) and state NS - as a specifier

(e.g. Be(what, where)). Every NL-statement consists of the operation name plus

respective parameters determined by the valence of this operation or its
management model or its role frames.

NL-statements represents A-statements, S-statements or R-
statements. A-statement is the statement of action or the active NL-

statement. S-statement is a state NL-statement or a statement of relations

with a subject of inactive state. R-statement represents some relations like

syno-nym, antonym, apart of and so on (e.g."Deletea cursor isa synonym to erase

a cursor, "Ascending sort algorithm as opposed to descendfng sort algorithm,

"TB-structureis a part of DESTA knowledge base ")

There isa semantic equalitybetween the initialsentence and the finiteset
of NL-statements.

• The finiteset of NL-statements for initialNL-sentence is represented as

a "concept'.

5. Conclusion

At present DESTA is software implemented to proof the correctness of a

paradigm being suggested. In short the keystone of this paradigm is as follows:

• For the end user It Is more convenient to specify their requirement to the

computer by means of natural language.

• The system has to automatically yield a readily comprehensible good

structured rapid prototype which in all stages of structured growth should be
executable.

• • Software development Is-an intensely knowledgebased activity.

Using NL-specification we can include in the KB functional descriptions of

"software chips" (SC): modules, procedures, functions,batch files,operating

system commands and algorithms. The SC can be implemented on any program-

ming languages: module-oriented, object-oriented and/or active declarative

languages.The NL-specifications allow us to join them in whole software systems

(we are not discussing here about compatibility SC for different programming

languages).

• Using NL-specification DESTA either extracts from the KB the suitable
SC in accordance with the NL-specification or asks the user for a more detailed

description of the problem being solved.

104

Maiden

,

Generic Domain Models in Software Engineering

Neff Maiden

Deparunent of Business Computing
City University

London EC1V OHB, IlK.
Tel: +44-71-253-4399 x3422

E-mail: ec559@city.ac.uk

Abstract

=This paper oudines three research directions related m

domain-specific software development: (i) reuse of generic
models for domain-specific software development; (ii)
empirical evidence to determine these generic models,
namely elicitation of mental knowledge schema possessed

: by expert software developers, and; (iii) exploitation of
generic domain models to assist modelling of specific
applications. It focuses on knowledge acquisition for
domain-slx_ific software development, with emphasis on
tool support for the most important phases of software

development.

Introduction
Domain-specific software deign has aroused considerable
interest over the last decade. Most of the research effort

has focused on supporting the latter stages of software
development, typified by program uansformafional
techniques and systems (e.g. Feather 1987). However, it is
now agreed that most costly problems occur during the
early stages of system development, when systems'
requirements are ill-defmed and poorly understood.

Therefore, domain-specific software development (as
opposed to design) must provide effective guidance during
requirements engineering and high-level software design
as well as during system implementation. Unfortunately
requirements engineering differs from system design in its
focus on the identification and embedding of systems in
their environment rather than prescribing systems'
functionality. This broad view can often preclude the
complete capture of all domain knowledge, implying only

partial automation of domain-specific software
development. This paper proposes, as a first research
direction, that it is more beneficial to model generic

domain models rather than specific application domains,

automating requirements engineering and high-level
software design.
Domain modelling is needed for domain-specific software

development. However, ease histories of successful
domain modelling and effective methods for modelling
complex applications have been lacking in the literature.
Innovative work by Neighbors (1980) indicated that
domain analysis was both difficult and time-consuming,
even for experienced analysts. Recent ['mdings have
supported this view, for instance Prieto-Diaz (1991)
reports difficulties in maintaining a domain model
represented as a faceted classification scheme supporting
reuse within a single application. Furthermore, models of
specific applicafiofis _ only support development within
that application, while many organisations develop
software for many applications, thus _ucing _e potential
payoff from such application modelling. Generic domain
models providean alternative domain knowledge_urce

which can provide greater payoff to software developers
because of their applicability to many appficatibfis. Reuse
of such mocle]s has been proposed elsewhere (e.g.
Reubenstein & Waters 1991), although little is known

about the nature, contents and applicability of generic
domain models for effective requirements engineering. As
a result, a second research direction proposed in this paper
istodeterminetheknowledgeswacutresofgenericdomain

modelswhichsupporteffectiverequirementsengineering.

Generic domain models ha_e been proposed-tos_rt
requhements engineering activities, however they may also
provide effective guidance for longer-term domain
modellingactivities. The problem is akin to knowledge

acquisitionduring knowledge.based system (KBS)

development.Recentadvancesinknowledgeacquisition

techniquespromote reuse of generic,partialdomain

models as templates supporting top-down knowledge

and to exploit these genetic models for guiding rather than acquisition and modelling (e.g. Wielinga et al. 1991,
105

Malden

Chandrasekaran 1986). A third research direction proposed
in this paper is to exploit generic domain models to assist
application modelling within a comprehensive domain
modelling framework.

The remainder of the paper investigates these three
research directions, namely reusing genetic models for
domain-specific software development, determining the
nature of these generic models from empirical studies, and
exploiting generic domain models to assist subsequent
modelling of specific applications.

Evidence for Generic Domain Models

Evidence for the likelihood of generic domain models to
assist requirements engineering comesfor current software
engineering research,recent advances in knowledge
acquisition and empirical evidence of software engineering
expertise. Each is examined in turn.

Generic Domain Models in Software Engineering

Generic domain modelling in software engineering
research has arisen as an issue in both automated software

development and domain analysis. Reusable generic
domain models have been proposed in several research

projects (e.g. Reubenstein & Waters 1991). The well-
known Requirements Apprentice (Reubcnstein & Waters
1991) exploits cliches representing general software
engineering concepts, including domains, however few
clues are provided about the nature and boundaries of these

cliches. Furthermore object-oriented paradigms have been
limited to design and implementation phases of software
development while object-oriented analysis has focused on

object definition rather than object structure within
domains. This would suggest that abstraction in software
engineering is poorly understood,and requires further
investigation.

Iscoe (1991) reviewed evolving research in domain
modelling, with emphasise on meta-modeis instantiated
into application domains. His research issues include
domain class!fieationand analysis,implying the need for a

Generic Knowledge Structures in Knowledge

Acquisition

Knowledge acquisition techniques and methods (reviewed
in Ncale 1988) have implications for domain analysis for at
least three reasons. First the task of requirements analysis
is similar to knowledge acquisition. Aspects of KBS
development such as informatiOn analysis, application
selection, project management, user requirement capture,
modular design and reusability are similar to those
encountered in software development. Indeed the KADS
project (Wielinga et al. 1991) proposes a sequential
development method based on modelling activity and an
operational model that exhibits some desired behaviour in
terms of real-world phenomena, similar to many existing
software development methodologies including SSADM
(Cutts 1987) and JSD (Jackson 1983). A second reason is
that knowledge acquisition techniques like KADS are
relevant to requirements engineering because they focus
support on the earlier, analytic stages of KBS development
while domain-specific software design paradigms support
later stages such as program specification, transformation
and maintenance (e.g. Feather 1987). Finally knowledge

acquisition approaches introduce techniques not found in
otherwise equivalent software development methodologies,
so a review of knowledge acquisition techniques in respect
to requirements engineering is warranted. The following
knowledge acquisition projects were identified as having
implications for generic domain models.

Generic Tasks:Chandrasekaran and his colleagues at Ohio
State University propose generic tasks to provide an
outline or framework for expert system design. This
framework claims that complex knowledge-based
reasoning tasks can often be decomposed into generic
tasks, each with associated types of knowledge and family
of conu-ol regimes (Chandrasekaran 1986). Six generic
expert system tasks are identified in terms of knowledge
types-and conu'ol regimes: classification, state abstraction,

theory of software engineering abstraction, howe_,er he-knowledge-directed retrieval, object synthesis by plan

gives few clues about the nature of this abstraction. Several
domain meta-modeis have been reported in the literature

(e.g. Lubars 1988, Dardenne et aL 1991, Chung et al.
1990), however this work has not been sufficiently

developed as application examples and in practice to
determine generic domains. Prieto-Diaz (1990) also
reviewed domain analysis and emphasised the importance
of abstractionin domain modelling. However, he could
offer no guidance for this abstraction process beyond

current structured analydc techniques such as SSA (De
Marco 1978) and domain analyst expertise. Furthermore
absWaction was limited to identification of important
domain features rather than generification from application
instances.

selection and refmemenL hypothesis matching, and
assembly of compound hypotheses for abduction. These
tasks encompass both declarative and procedural
knowledge in reoccurring patterns. They emphasise the
importanceof domain knowledge and the reuseof large
knowledge structuresakin to complexobjects.

The KADS Project:. KADS is an ESPRIT project (ESPRIT-
1 P1098), providing the knowledge engineer with reusable
partial knowledge models as templates to support top-
down knowledge acquisition and modelling, based on
recognition that parts of the model are not specific to

certain applications. The success of this approach has been
documented in many domains, including diagnosis of

106

Maiden

movementdisorders,paintselection, commercial wine
making and smtisticaiconsultancy(Wielinga et ai. 1991),
suggesting the potential effectiveness of the retrieval and
exploitationof genericknowledgestructuresincomplex,
ill-slzuctured modelling activity. Generic models are
categorised by system structure, solution type and the
discrepancy between observed and expected behaviour,
based on a modified and extended version of Clanccy's
(1985) description of problem types.

KADS's domain recta-model is based on a tentative

topology of primitive problem solving actions, or
knowledge sources, consisting of concepts, their attributes,
the values of these attributes, the structure of concepts, sets
and set instances. It is derived from the type of operation

that is carried out by the knowledge source, demonstrating
the importance of contextnality linked to functionality of
knowledge needs. KADSs' generic models demonstrate the
importance of a topology of primitive problem solving
actions based on a taxonomy of problem solving types.
This approach has lead to considerable modelling success
in a number of complex applications. Unfortunately the
meta-model is weak due to the varied nature of domains
tackled by the KADS approach.

Generic Mechanisms: Klinker et ai.'s generic mechanisms
(1991) result from comprehensive research to develop
constructs which are both usable and reusable during
knowledge acquisition and modelling. These mechanisms
represent generic tasks reoccurring in many domains, for
example sizing and scheduling tasks occur in both the
computer and aerospace industries. Klinker's current
knowledge acquisition tool is populated with at least 14
such mechanisms which are also aggregated into larger
applications in which they often _m" A theory of
mechanisms is currently being developed from experiences

with the knowledge acquisitio n tool in new applications,
leading to a more refined and complete mechanism library.

several determinants of generic domain models, such as
their appropriate level of abstraction, granularity and
effective knowledge structures, to decide how big or small
these generic domain models should be. Intermediate
findings point to potential research directions, namely the
contextual nature of these models and the need to validate

them through empirical evidence in software engineering,
for instance software engineering domains are very
different to those of commercial winemaking or diagnosis
of movement disorders (Wielinga et al. 1991).

Software Engineers' Expertise

Software engineers' expertise offers one form of empirical
evidence for validating generic domain models. Expert
software developers possess preformed abstract mental
schema of domains which allow them to classify, structure
and scope each problem (Guindon 1990) and develop
multiple mental domain models (Pennington 1987).

Experts' mental schemata can be assumed to be effective
generic representations due to successive refinement
during requirements engineering experiences in many
applications, which may suggest why experienced software
engineers are much sought-after individuals. Intelligent
software development mimicking experts' knowledge
structures may be one direction for research to proceed.
Again however, current empirical evidence of software
engineers' mental schema is limited due to a lack of
relevant and comprehensive studies, so more effective,

empirical research is needed to determine generic domain
models in software engineering.

An Initial Model of Software Engineering
Abstraction

Studies of generic models in software engineering,
knowledge acquisition and expert analytic behaviour
suggest the validity of a genetic domain modelling
approach to domain-specific software development.

The approach of Klinker and his colleagues differs from However, the nature of these generic models is less clear,
those of Chandrasekaran and KADS in terms of the so a three-phase research strategy was adopted at City

_h methods used, which employ empirical evidence University to determine their contents and structure:
to determine generic task mechanisms and their .investigation of analogical specification reuse as one
aggregation. This most comprehensive generic domain means of defining generic domains underlying this
analysis demonstrates the importance of multi-level reuse, to be followed by validation and extension of these
abstraction and granularity for generic domain models, generic domain models using:
with a need to aggregate domain models in several .empirical studies of software engineers' mental
dimensions such as common application groupings, knowledge structures via knowledge acquisition

techniques, and
Smmnary:. Recent knowledge acquisition approaches .domain analyses of large, real-world applications to
demonstrate the feasibility of guidance based on generic verify generic domains in terms of recognisable
domain and task models during complex modelling instantiationsandinstantiationaggregati°ns"
activities like requirements engineering. However, a model The first phase is partially complete while the second and

of generic tasks and domains, implying an underlying third phases are the focus of an ESPRIT Basic Research
theory of abstraction, is not readily available for software Action. The In'st phase has led to a tentative model of
engineering researchers. Such a theory must identify software engineering domains which provide the basis for

107

Malden

a reu'ieval mechanisms supporting analogical specification
reuse, and described in Maiden & Sutcliffe (1991).

Generic Domain Models Supporting
Specification Reuse

Maiden (1991) identified an initial model of genetic
domain models through studies of analogical specification
reuse, such that two specified domains are analogous if
theyarebothinstancesofthesame genericdomainclass,

as demonstrated in Figure 1. As such the scope, granularity
and level of abstraction of these generic knowledge
structures is constrained to most effectively support reuse
of functional specifications.

Maiden's model (1991) proposes that generic domain
classes are differentiated by key state transitions, hence a
generic resource hiring domain, of which library loans is
an example, can be distinguished from a generic resource
containment domain (e.g. stock control) by the key

transition of return (see Figure 2). Similarly two classes of
object allocation domain can be differentiated by the
transitions send to and remove from waiting lists, for
example the reservation system of a local cinema may not
include waiting lists once all seats for a performance are
sold. Additional determinants of distinct domain classes
were identified in terms of these critical transitions

between domain states. The following recta-schema for

describing critical genericdomainsand their instantiations
was developed,with each knowledge type describingone
or more critical dimensions:
• actions leading to state transitions with respect to a

knowledge structure. These actions represent system
intervention in the domain to maintain or change the

domain from a possible to a required state. Actions and
state transitions are central to the model, for example the
allocation action in the theatrereservation example
causes the object (theatregoer booking) to change state
from an in-requirement state to an occupying-resource
state (from required-booking to reserved-booking);

• object structural knowledge describing both problem and
required domain states in the form of conceptual
relations between objects. For example, theatre contains
many seats, each containing one or no theatregoer
booking. Furthermore, required knowledge structures
such as maximise seat occupation, can be imposed on
these domain states;

• pre/post-conditions on state transitions identified from
values describing the current state of objects, for
example a state transition moving the theatre reservation
to the seat only occurs if the reservation and the seat
have similar constraints such as non-smoking, price
<£20. seat is unreserved, etc.;

• object types describe object roles in the context of slate
u'ansitions, for example customer bookings is a type of
requirement while theatre seats are resources available

to satisfy those requirements;
functional transformations which may be causally-
related to state transitions in the domain model, for

example the functional transformation allocate from
waiting list results in a state transition moving the
theatre booking from the waiting list to theatre seats
while functional transformations in library systems are

typically lend and return;
state transitions can also be distinguished by their
triggering events. Domain events which cause state
transitions are either initiated by the information system
or by eventsexternal to it,for example the theatre

reservationdomainmay inpartbe distinguishedby the

scopeof triggeringdomain eventsbecauseallocating

customerbookingstotheseatsavailableisinitiatedby

theinformationsystemwhileremovingcustomersfrom
allocatedseatsresultsfromexternalevents.

requirement resources

[save to list allocate _ "_

waiting list

<world.reqt_set.has one>
<world. resource_set.has_one>
<world.list.has one>
<reqt_set.reqt.eontams_one>
<resource set.resource.has_many>
<resource.reqt.contams one>
<aliocate.reqt.reqt_set.resource.o ne>
<reqt.reqt_type>
<resource .resource type>
<aUocate.matchtng_propertles>

theatregoer theatre with seats

[[i'i-[] "---- i!.i|:.llmnmm

__]_$sveto list allocate

thealre waiting list

Figure 1: simple theatre reservati on domain

and its generic domain class, including partial

definition of that class

To sum, thismodel of geneticsoftwareengineering

domainswas developedfrom example-based studiesof
suchdomainsinthecontextofreuse.Itsdevelopmentwas

drivenby domain-basedstudiesof importantknowledge

structuresin softwareengineering,a constraintwhich

108

Malden

distinguishes it from existing met,a-models of software
engineering domains such as TELOS, (Chung et al. 1990).
The extent and nature of this example-driven analysis is
descn_oodbriefly in the following section.

Example Generic Domain Models

Current research has identified 35 genericdomain models
through the relatively weak proof of trial by example, see
Figure 2 and Maiden (1992). These models were
hierarchically-structured to identify classification and

specialisation of basic domain types, for instance library
and stack cona'ol domains are both specialisations of a
more generic object containment domain. Furthermore
generic domains were aggregated to identify standard
applications incorporating many domain classes in unique
patterns, for example a comprehensive library system can
involve lending, stock updating, allocating and reserving
activities which are all instantiations of different domain

classes. The validity of this current approach is suggested
by a prototype specification reuse tool incorporating 10
such generic domain models in a specialisation hierarchy
to support successful retrieval and explanation (Maiden
1992). However, further work is needed to extend and
validate the current model.

Domain Modelling From Generic Domain
Models

This paper reports studies which reveal domain analysis to
be a problematic task akin to knowledge acquisition.
Parallel experiences in knowledge acquisition suggest that
generic domain models may assist in this task. A domain
modelling framework incorporating reuse, similar to the

Summary
This paper proposes that greater benefits can be achieved

from modelling generic domains rather than specific
applications, so overcoming domain modelling bottlenecks
by mimicking expert software engineering practice.
Intelligent tool support founded on genetic domain

knowledge can assist during requirements engineering in
the following tasks:
• identification and validation of application models to

assist effective requirements capture, providing
intelligent feedback on system requirements and models;

• procedural guidance for requirements engineering tasks,
using genetic domain hierarchies to focus on critical
domain features and incrementally specialise them;

• support for reuse through categorisation of problems
based on generic domain classes (Maiden & Sutcliffe
1991).

We would also intuitively expect generic domain models
to provide the basic building blocks for complex
application modelling then domain-specific software
design. Acquiring these knowledge structures therefore
takes on considerable importance for intelligent support
during requirements engineering and software design. To
this end we suggest that much research effort should be
focused on practical and empirical research to determining
the most effective knowledge structures for supporting
domain-specific software development.

References
Chandrasekaran B., 1986, Genetic Tasks in Knowledge-

Based Reasoning: High-Level Building Blocks for Expert
System Design, IEEE Expert 1(3), 23-30.

KADS method,isneededtomake effectiveuseofgenericChun-g L.,Katal/JgafianosP.,_s M.,MertikasM.,

domainmodels.Inparticularsuch-modelsprovidepieces Mylopoul0sJ.A Vassilou=Y., I_, From Information
of the genetic skeleton to be instantiated and fleshed out
with additional knowledge types until the domain model is

complete.

mmy borrowers

Figure 2: examples of generic doma in models:

(i) renewable resource, e.g. libra ry,

(ii) non.renewable resource, e.g. stock control.

System Requirements to Designs: A Mapping
Framework, Technical Report CSRI-245, University of
Toronto, September 1990.

Clancey WJ., 1985, Heuristic Classification, Art_cial
Intelligence 27, 289-350. = :

Cutts G., 1987, SSADM - Structured Systems Analysis and
Design Methodology, Paradigm Publishing.

Dardenne A., F'ickas S. & Larnsweerde A., 1991, Goal-
directed Concept Acquisition in Requirements Elicitation,
Proceedings of 6th Intl Workshop on Software
Specification and Design, Como (It) 25-2601 October

1991, IEE Computer Society Press, 14-21.
De Marco T., 1978, Structured Systems Analysis and
Specification, Prentice-Hall International.

Feath_ M.S., 1987, A Survey and Classification of some

Program Transformation Approaches and Techniques,
Program Specification and Transformation, ed. L.G.L.T.
Meertens, Elsevier Science Publishers.

Guindon R., 1990, Designing the Design Process:

Exploiting Opportunistic Thoughts, Human-Computer

109

Maiden

Interaction 5, 305-344. -_ -

Iscoe N., 1991, Domain Modelling: Evolving Research,
Proceedings of 6th Knowledge-Based Software
Engineering Conference', Syracuse NY, 22-25th
September 1991, 300-304.

Klinker G., Bhola C., Dallemagne G., Marques D. &
McDermott J., 1991, 'Usable and Reusable Programming
Constructs', Knowledge Acquisition 3, 117-135.

Lubars M.D., 1988, A Domain Modelling Representation,
MCC Technical Repon STP-366-88, Software
Technology Program, MCC, Austin Texas, November
1988.

Maiden N.A.M., 1992, Analogical Specification Reuse
during Requirements Analysis, Phi) Thesis, Department
of Business Computing, City University.

Maiden N.A.M., 1991, Analogy as a Paradigm for
Specification Reuse, Software Engineering Journal 6(1),
3-15.

Maiden N.A.M & Sutcliffe A.G., 1991, Analogical
Matching for Specification Retrieval, Proceedings of 6th
Knowledge-Based Software Engineering Conference,
Syracuse IVY, 22-25th September 1991, 101-112.

Neale I., 1988, First Generation Expert Systems: A Review
of Knowledge Acquisition Methodologies, The
Knowledge Engineering Review 2, 105-145

Neighbors J.M., 1980, Software Construction using
Components, Ph.D. Dissertation, Department of
Information and Computer Science, University of
California, Irvine.

Pennington N., 1987, Comprehension Strategies in
Programming, 2nd Workshop of Empirical Studies of
Programmers, ed. G. Olson, $. $heppard and E. Soloway,
Ablex, 100- 113.

Prieto-Diaz R., 1991, 'Implementing Faceted
Classification for Software Reuse', Communications of
the ACM 34(5), 88-97.

Prieto-Diaz R., 1990, Domain Analysis: An Introduction,
ACM SIGSOFT Software Engineering Notes 15(2), April
1990, 47-54.

Reubenstein H.B. & Waters R.C., 1991, 'The
Requirements Apprentice: Automated Assistance for
Requirements Acquisition', IEEE Transactions on
Software Engineering 17(3), 226-240.

Wielinga BJ., Schreiber A.Th. & Breuker J.A., 1991,

"KADS: A Modelling Approach to Knowledge
Engineering',Technical Report ESPRIT Project P5248
KADS-II, May 1991.

110

Nonnenmann

N@3-. 1752 .

DOMAIN-SPECIFIC FUNCT_iONAL SOFTWARE TESTING:

A PROGRESS REPORT

Uwe Nonnenmann

AT&T Bell Laboratories

600 Mountain Avenue

Murray Hill, NJ 07974
un@research.att.com

1 Introduction

Software Engineering is a knowledge intensive activ-
ity that involves defining, designing, developing, and
maintaining software systems. In order to build ef-
fective systems to support Software Engeneering ac-
tivities, Artificial Intelligence techniques are needed.
The application of Artificial Intelligence technology
to Software Engineering is called Knowledge-based
Software Engineering (KBSE) [Lowry & Duran, 1989].
The goal of KBSE is to change the software life cycle
such that software maintenance and evolution occur by
modifying the specifications and then rederiving the
implementation rather than by directly modifying the
implementation. The use of domain knowledge in de-
veloping KBSE systems is crucial.

Our work is mainly related to one area of
KBSE that is called automatic specification acqui-
sition. One example is the WATSON prototype
[Kelly & Nonnenmann, 1991] on which our current
work is based. WATSON is an automatic program-
ming system for formalizing specifications for tele-
phone switching software mainly restricted to POTS,
i.e., plain old telephone service.

Other examples of such systems are IDeA
and Ozym. The Intelligent Design Aid (IDEA)
[Lubars & tIarandi, 1987] performs knowledge-based
refinement of specifications and design. IDeA gives
incremental feedback on completeness and consis-
tency using domain-specific abstract design schemas.
The idea behind Ozym [Iscoe et al., 1989] is to spec-
ify and implement applications programs for non-

programmers and non-domain-experts by modeling do-
main knowledge.

However, despite two decades of moderately suc-
cessful research, there have been few practical demon-
strations of the utility of Artificial Intelligence tech-
niques to support Software Engineering activities
[Barstow, 1987] other than such prototypes as men-
tioned above. Our current approach differentiates it-

self from these other approaches in two antagonistic
ways: On the one hand, we address a large and com-
plex real-world problem instead of a "toy domain" as
in many research prototypes. On the other hand, to

allow such scaling, we had to relax the ambitious goal
of complete automatic programming, to the easier task
of automatic testing.

2 KITSS Overview

In the Knowledge-Based Interactive Test Script Sys-
tem (KITSS), we have taken this philosophy and ap-
plied it to the task of functional software testing. In
functional testing, the internal design and structure of
the program are ignored. It corresponds directly to
uncovering discrepancies in the program's behavior as
viewed from the outside world. This type of testing
has been called black box testing because, like a black
box in hardware, one is only interested in how the in-

put relates to the output. The resulting tests are then
executed in a simulated customer environment which

corresponds to verifying that the system fulfills its in-
tended purpose.

Tests are by definition correct but not exhaustive.
KITSS checks and augments given tests and generates
related new ones but does not generate the full spec-
ification as in WATSON. KITSS can be seen as per-

forming testing from examples. KITSS' strength lies
in its very domain-specific approach [Barstow, 1985]
and customized reasoning procedures. It will change
the software life cycle by modifying the functional

tests and then rederiving the system tests which cor-
responds to finding and eliminating software prob-
lems early in the development process as in the KBSE
paradigm. Therefore, we designed KITSS to be well
integrated into our existing design and development
process [N0nnenmann & Eddy, 1991].

KITSS achieves this integration by using the same
expressive and unobtrusive input medium, namely test
cases. They describe in English the high-level details
of the external design and are written before coding
begins. KITSS also produces the same output as be-
fore, executable test scripts written in an in-house test
automation language. These are low-level descriptions
derived from test cases for specific test equipment.

To support this integration, KITSS has a natural
language processor that is trained in the domain's tech-

nical dialect [Jones & Eisner, 1992] and converts the

111

Figure 1: KITSS Architecture

test cases into a formal representation that is au-
dited for coverage and sanity. To accomplish this,
KITSS uses a customized theorem prover-based ana-
lyzer (based on WATSON technology) and a hybrid
knowledge base as the domain model using both a
static terminological logic and a dynamic temporal
logic. These two modules have been feasible only
due to the domain-specific knowledge-based approach
taken in KITSS. Finally, a translator takes the cor-
rected test case and converts it from temporal logic
into a test script language that can exercise the switch
using dedicated test equipment. Figure 1 shows the
overall architecture of KITSS.

In summary, KITSS helps the test process by gen-
erating more tests of better quality and by allow-
ing more frequent regression testing through automa-
tion. Furthermore, tests are generated earlier, i.e.,
during the development phase not after, which should
detect problems earlier, thus resulting in reduced
maintenance costs (for more details on KITSS see
[Nonnenmann & Eddy, 1992]).

3 Knowledge Representation Issues

As we used a highly domain-specific approach, the do-
main model is one of the center pieces of KITSS. In the
following section we will highlight the key design deci-
sions made and the knowledge representations chosen.

Testing is a very knowledge intensive task. It in-
volves experience with the switch hardware and testing
equipment as well as an understanding of the switch
software with its several hundred features and many
more interactions. There are many binders of feature
descriptions for PBX software, but no concise formal-
izations of the domain were available before KITSS.
The focus of KITSS and the domain model is on an

end-user's point of view, i.e., on (physical and soft-
ware) objects that the user can manipulate. Figure 2

Nonnenmann

gives an overview of KITSS' domain model.

The static model represents all telephony objects,
data, and conditions that do not have a tempo-
ral extent but may have states or histories. It de-
scribes major hardware components, processes, log-
ical resources, the current test setup, the dial plan
and the current feature assignments. All static parts
of the domain model are implemented in CLASSIC

[Brachman el al., 1990], which b'elongs to the class of
terminological logics (e.g. KL-ONE).

The dynamic model defines the dynamic aspects of
the switch behavior. These are constraints that have to

be fulfilled during testing as well as the predicates they
are defined upon. Objects include predicates, stimuli
which can be either primitive or abstract, and observ-
ables. Additionally, the dynamic model includes in-
variants and rules as integrity constraints. Invariants
are assertions which describe only a single state, but
are true in all states. These are among the most im-
portant pieces of domain knowledge as they describe
basic telephony behavior as well as the look 8J feel of
the switch. Rules describe low-level behavior in tele-

phony. This is mostly signaling behavior.

Representing the dynamic model we required ex-
pressive power beyond CLASSIC or terminological log-
ics, which are not well-suited for representing plan-like
knowledge. We therefore used the WATSON Theo-
rem Prover, a linear-time first-order resolution theorem
prover with a weak temporal logic. This non-standard
logic has five modal operators holds, occurs, issues, be-
gins, and ends. As an action occurs, the response to
that action may endure until some other action occurs
or it may be transient. An enduring actions begins and
holds until, in response to some other action, it ends.
In the transient case, the switch merely issues the re-
sponse. These modals are sufficient to represent all
temporal aspects of our domain. The theorem proving
is only tractable due to the tight integration between
knowledge representation and reasoning.

In adding the dynamic model, we were able to in-
crease the expressive power of our domain model and to

increase the reasoning capabilities as well. The integra-
tion of the hybrid pieces did produce some problems,
for example, deciding which components belonged in
which piece. However, this decision was facilitated be-
cause of our design choice to represent all dynamic as-
pects of the system in our temporal logic and to keep
everything else in CLASSIC.

The domain model consists of over 600 domain con-

cepts, over 1,700 domain individuals, and more than
160 temporal axioms.

The domain model was built in the initial phase of
the project as the reasoning modules depended on the
underlying representations being created first. In this

phase the domain model changed constantly as we still
enhanced our understanding of the domain. Then, we
left the domain model mainly unchanged through the
development phases until a milestone was reached. We

112

Nonnenmann

D O M A I N

CORE
PBX

MODEL

TEST
EXECUTION

MODEL

LINGUISTIC
MODEL

STATIC MODEL

• Major hardware

components
• Static data
• Phenomena

• Proce.q $ • s

• Logical resources

• Configuration model
• Automated test

language model

• Telephonese statistics
• Telephonese concepts

tERMINOLOGICAL LOGIC

¢

M 0 D E L

DYNAMIC MODEL"

• Predicates

• Primitive stimuli
• Abstract stimuli

• Observables

• Integrity constraints
- Invariants
- Rules

TEMPORAL LOGIC

Figure 2: KITSS Domain Model

then typically performed a major revision of the do-
main model based on problems encountered. The do-
main model went through three iterations like that and
has been stable since. Of course, we continually add
new knowledge but the representations are mainly un-
changed.

Although we anticipate that the domain model will
grow only linear with the number of features cov-
ered, we already had great difficulty in acquiring new
knowledge and maintaining the existing domain model
as both tasks have been done completely manual so
far. Therefore, knowledge acquisition and maintenance
support is crucial. At least we have gained an under-
standing on how to design such automated tools. The
above experience is the main motivation for another

approach included as a proposal in this workshop's pro-
ceedings [Hall, 1992].

4 Status

At last year's ASD workshop, we initially reported on
KITSS. Since then, we had a major evaluation of the
KITSS prototype with the following results.

System execution speed has not been a bottleneck
due to continued specialization of the inference capa-
bility. However, it is not clear how long such optimiza-
tions can avoid potential intractability of the theorem
prover. Another result we found was that it is easier
to train the natural language processor than it is to
achieve coherence in the reasoning audits. The initial
scaling phase from the proof-of-principle demo (3 test
cases) to the first prototype (38 test cases) was suc-
cessful but tool< too long and KITSS was too brittle in
general. Although KITSS has been designed from the
beginning as an interactive system (the 'T' in KITSS),
we pushed the machine initiative in this scaling phase
as far as possible as an experiment. However, this was
the limiting factor for rapid progress.

The current schedule is to expand KITSS to cover a
few hundred test cases in the next couple of months.
To achieve such scMing, we changed some of KITSS'
design to make it much more robust. Despite the fact
that the natural language processor performed well, we
augmented it with a paraphrasing mechanism, i.e., in
case the English input cannot be understood, the user
can rephrase this input using a paraphrase language
based on our temporal logic. When the analyzer en-
counters problems, it intensely questions the user to
explain unclear passages of test cases. This approach
has only been possible because KITSS is very respon-
sive. Additionally, we changed all reasoning modules
to produce "soft-failures", i.e., in case the system fails
to fully understand the test case it still continues to
translate user inputs as an assistant.

In general,, our strategy has shifted from a nearly
fully automatic system to one that is much more in-
teractive and might resort to the assistant paradigm
occasionally. However, we still have the full KITSS
approach in place so that we can improve e.g. the an-
alyzer incrementally without any change for the user
other than reduced interactions.

5 From Research Into Practice

In 1987, the initial prototype of WATSON was com-
pleted. Today, five years later, KITSS is a prototype
with a more restricted scope in the same doma.in al-
though with broader coverage. So where is the big
progress? Or in other words: How do we get from a
research prototype to a deployed real-world system?
Is this "just" technology transfer? Another question
might also be: Can we build a research prototype in
a toy domain and expect it to work on a real-world
problem?

The answers to these questions I are not easy, but we
would like to give at least partial answers based on our
experience.

In scaling from WATSON's toy domain to KITSS'
real-world telephony domain we had to address a num-
ber of new research issues (which we can just list here

without further explanation). For example, we had
to extend our temporal logic, restructure the domain

model into a hybrid one (static/dynamic), create tele-
phony "micromodels" and understand their interac-
tions, reason with multiple agents instead of single
ones, significantly enhance the planning component,
understand the "purpose" of inputs to be able to gener-
alize and specialize them, perform more complex non-
monotonic reasoning etc. Additionally, we had to in-
corporate and customize a natural language module to
cover input test cases in English instead of a limited
scenario language.

KITSS being so different in all these respects, WAT-
SON cannot be seen as a core system to which we just

1These questions are based on a personal discussion with
Ron Brachman.

113

Nonnenmann

added domain knowledge. For KITSS, we had to ba-
sically rewrite and enhance WATSON and add com-
pletely new modules. We see KITSS based on technol-
ogy that WATSON has proven feasible. Therefore, we
do not see KITSS as technology transfer at all but as
a research project that covers a real-world domain.

Yet despite such research progress, we were still
required to further change KITSS' design to achieve
practical solutions (see Section 4). No matter how im-
pressive a research prototype looks, we believe there is
still a lot of research to be done in order to scale to
real-world use.

So: "Can we build a research prototype in a toy do-
main and expect it to work on a real-world problem?"
The answer is: "Probably not".

6 Conclusions

KITSS is a domain-specific system to generate exe-

cutable functional tests using the KBSE paradigm. Its
main difference to previous approaches is that it covers
a real-world domain instead of a toy domain. However,
therefore the initial goal of automatic programming
had to be limited to the easier problem of automatic
testing.

KITSS converts input tests into a formal represen-
tation interactively with the user. To achieve this,

we needed to augment the static domain model repre-
sented in a terminological logic with a dynamic model
written in a temporal logic. Knowledge acquisition has
been performed manually and is a major problem that
has not been addressed yet.

In general, scaling from a research prototype toa
real-world system involves much additional research

before the actual technology transfer can begin. To
achieve such scaling, we had to further move toward
more user interaction. Although scaling-up remains a
hard task, KITSS demonstrates that our KBSE ap-
proach chosen for this complex application is feasible.

References

Barstow, D.R.: Domain-specific automatic program-

ming. IEEE Transactions on Software Engineering,
November 1985.

Barstow, D.R.: Artificial Intelligence and Software
Engineering. In Proceedings of the 9th International
Conference on Software Engineering, Monterey, CA,
1987.

Brachman, R..]., McGuinness, D.L., Patel-Schneider,
P.F., Alperin Resnick, L., and Borgida, A.: Living
with CLASSIC: When and how to use a KL-ONE-Iike

language. In Formal Aspects of Semantic Networks,
J. Sowa, ed., Morgan Kaufmann, 1990.

Hall, R.J.: Interactive specification acquisition via
senarios: A proposal. In Proceedings of the AAAI'92

Workshop on Automating Software Design, San Jose,
CA, 1992.

Iscoe, N., Browne, J.C., and Werth, J.: An object-
oriented approach to program specification and gener-
ation. Technical Report, Dept. of Computer Science,

University of Tezas at Austin, 1989.

Jones, M.A., and Eisner, J.: A probabilistic parser
applied to software testing documents. In Proceedings
of the 10th National Conference on Artificial Intelli-
gence, San Jose, CA, 1992.

Kelly, V.E., and Nonnenmann, U.: Reducing the
complexity of formal specification acquisition. In Au-
tomating Software Design, M. Lowry and R. McCart-
ney, eds., MIT Press, 1991.

Lowry, M., Duran, R.: Knowledge-based Software

Engeneering. In Handbook of Artificial Intelligence,
Vol. 1V, Chapter XX, Addison Wesley, 1989.

Lubars, M.D., and Harandi, M.T.: Knowledge-based
software design using design schemas. In Proceedings
of the 9th International Conference on Software En-
gineering, Monterey, CA, 1987.

Nonnenmann, U., and Eddy J.K.: KITSS - Toward
Acknowledgments

Many thanks go to John Eddy, Van Kelly, Mark Jones,
and Bob Hall who also contributed major parts of the
KITSS system. Additionally, we would like to thank
Ron Brachman for his support throughout the project.

software design and testing integration. In Automat-
ing Software Design: Interactive Design - Workshop
Notes from the 9th AAAL L. Johnson, ed., USC/ISI
Technical Report RS-91-287, 1991.

Nonnenmann, U., and Eddy, J.K.: KITSS - A func-

tional software testing system using a hybrid domain
model. In Proceedings of the 8th Conference on Ar-
tificial Intelligence for Applications, Monterey, CA,
1992.

114

9 3 o 2

A Domain-Specific Design Architecture for
Composite Material Design and Aircraft part Redesign

W. F. Punch III 1, K.J. Keller, W. Bond and J. Sticklen 2

1 Polymer Composite Materials

Advanced composites have been targeted as a "leapfrog" technology that would provide a unique global
competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach
to designing, manufacturing, and marketingof products developed utilizing the new materials of construction'.
Numerous studies extending across the entire economic spectrum of the United States from aerospace to
military to durable goods have identified composites as a "key" technology.

A typical chronology for designing a composite material is as follows [5]. First, macroscopic properties
which are desired in the completed composite are set. Properties such as final material tensile modulus,
resistance to acids and alkalis, and electrical resistance are parameterized. Based on these desired properties,
the composite designer proposes an initial plan for the production of the composite. This plan includes
both an ingredients list for all materials to be initially present, and a preliminary protocol which states
how the initial mixture is to be processed. Next, the composite designer estimates how well the proposed
composite design meets the initially stated, desired properties. This estimate is carried out along two paths.
The composite designer may actually produce samples of the composite, then perform laboratory testing
to determine properties of interest. Or the designer may model the proposed composite to estimate its
properties. Ultimately, a proposed composite design will result in an actual material which can be subjected
to laboratory testing. But, one goal of composite researchers is to provide better models for proposed designs

in order to limit the number of candidate materials which must actuai[y be fabricated for testing. Following

one round of design proposing, and matching to specifications, succe_ive rounds of redesign are usually
required before convergence of proposed composite properties to desired properties takes place.

In general there have been two approaches to composite construction: build models of a given compos-
ite material, then determine characteristics of the material via numerical simulation and empirical testing
a(haders along this path include the research groups of Dr. Larry Drzal and Dr. Martin Hawley, Michigan
State University Composites Center), nd experience-directed construction of fabrication plans for building
composites with given properties (e.g., the recent work of Frances Abrams at AFWAL Materials Lab at
Wright Patterson). The first route set a goal t0 capture basic understanding of a device (the composite)
by use of a rigorous mathematical model; the second attempts to capture the expertise about the process
of fabricating a composi_ (to date) at a surface level typically expressed in a rule based system. The first
important point is that, from an AI perspective, these two research lines are attacking distinctly different

problems. Secondly, both tracks have current limitations. The mathematical modeling approach has yielded
a wealth of data but a large number of simplifying assumptions are_needed to make numerical simulation
tractable. Likewise, although surface level expertise about how to build a particular composite may yield

important results, recent trends in the KBS area are towards augmenting surface level problem solving with
deeper level knowledge.

1.1 Redesign of Existing Metal Parts from Composites

Utilizing composite parts in engineered devices offers multiple advantages over the use of traditional metal
parts. These include weight savings, strength::weight ratio increase, and greater flexibility in processing.
Because of these relative advantages, there is great interest in retrofitting existing metal components with
composite material counterparts. However, although such retrofitting is under way, many of the advantages
of composite materials are not being fully exploited. Current practice throughout many industries is to
take an existing metal part, and try to redesign it piece wise as a set of very simple composite material

l Author to whom correspondence should be sent.

_Punch and Sticklen are with the AI/KBS Lab., Computer Science Department, Michigan State University, East Lansing,

MI 48824. They can be contacted at punch@cl_.msu.edu and stlcklenOcpe.msu.edu, respectively. Keller is with the AI Center,

Bond is with the McDonnell Douglas Research lab, of the McDonnell Aircraft Company St. Louis, MO 63166-2995

115

Punch

components. From a design perspective, given present state of the art, this is a reasonable practice: the

larger the composite part, and the more geometrically complex, the more difficult the design task becomes.

Many of the relative advantages of composites; e.g., the strength::weight ratio; is most prominent when
the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies

in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section

composite are currently very difficult. It is in fact, this di_culty that our research will address.

2 The Design Problem

In redesigningan existingaircraftpart with a new composite part, the composite engineer isfaced with

numerous design and manufacturing options with interrelatedeffectson allaspectsof the product lifecycle

(strength,weight, producibility,survivability,maintainability,and supportabilityare some of the issues).

Capturing and managing these interrelationshipsisnecessaryforsuccessfulimplementation of an optimum

design environment.

This proce_ requiresthe integrationof knowledge and data from many disciplinesresidingon multiple

platforms and repositories.Most design decisionshave interrelatedeffectswhich are extremely dii_cultto

predict.For instance,a limitedknowledge ofcomposite materialscould resultin a design that willnot meet

temperature requirements,isimproperly layed-up,willnot conform to the manufacturing process,or results

in a high scrappage rate when manufactured. Redesign of an existingpart ismore complex since italso

requiresthe designerto reconstitutean understanding ofthe functionsofthe originalpart.

An intelligentdesign system which could integrateand arbitrateknowledge and calculationsobtained

from multiplesourceswould be a vMuable resourcetoboth the inexperienceddesign engineerwho must design

"simple" parts and alsoto the experienced engineer who isfocusingon more complex designs.This system

must be flexibleand expandable to accommodate advances in composite material design and manufacturing

methods and to facilitatethe incorporationof knowledge and calculationsfrom multiple sources. We plan

to meet thesechallengesby developing a framework which can bring appropriateproblem solvingtechniques

to bear at the correcttime.

2.1 Testbed Design Complexity

Our initial works concentrates on _simple" composite parts. The processes required to produce these parts

are generally well known and proven. In addition, the parts that fall into this category are numerous. Simple

parts include clips, brackets, avionic shelves, doom, etc. Complex parts such as outer moldline skins and
internal bulkheads, frames, and longerous typically account for only 10 percent of the number of parts that

go into an airframe.
The current design process is outlined in Figure 1 which describes the inputs, the design process, and

the desired outputs.
To automate these tasks, the overall system architecture shown in Figure 2 is anticipated.

2.2 Testbed Design Architecture

The system will provide support to the design engineer in a number of different ways:

• Interactive design advice: will check input design parameters and part data for errors and design rule
violations. If the feature violates a design rule, the system informs the designer.

• Process and material selection: provide the user with predictions of the cost and probability to success-

fully produce a given part and/or engineering feature. These predictions can be based on knowledge-

based results or on analytical process simulation models.

• Analysis support: provides a method to obtain strength information based on closed form solutions.

This would permit a designer to perform quick strength predictions before carrying out complete finite

element analysis.

116

Punch

Systems
Requirements

Configuration

Requirements

Layout

Initial
CAD/CAM

Models

Preferred
Manufacturing

Process

System
Re,quiremcnts

• Tooling capabilities
• Material selection
• Part geometry
• Cost/time restrictions
• Facilities

Completed
CAD/CAM

Models

Models

• Weight
• Material
• Loads
• Strain levels
• Structural interaction

• Experience

• Structure impact
Ply drop offs

PI_ layup
Stiffening attachment

• Fastening capability

Figure 1: The composite design process

In ts
• _PUe_remcnts

• Manufacturing data
• Cost restrictions

Site capability
Current material

• I3_ir_ material

• D_ign loads
• Design teml_ratum

Intcgratin_
Software

Knowledge
• Design
• Manufacturing
• Supportability

Database
• Material

• Tooling
• Facilities

Simulation
° _oceasing
• Forming
Functional Analysis
• Closed-form

Specialized
Solvers

Outputs
• Part design

--[P,.-. Part characteristics
• Cost (fixed and variable)
• Risk

Figure 2: The expected system architecture

117

Punch

• Process plan support: produce process documentation by completing standard templates based on

design and manufacturing rules(a good example isa ply orientationtable based on standard design

rulesfor given material and strengthrequirements)

3 Role of AI in the Composite Materials Redesign Domain

In the composite materials redesignarea,the heterogeneous problem solvingtechniqueswhich we elaborated

above are allrequired to produce robust problem solvingresults. In addition,we are investigatingthe

integrationof other,more well explored problem solvingmethods which include:

• design problem solving: _ Design problem solving will play an important role in our application domain.

We intend to utilize Routine Design (Brown & Chandrasekaran, 1986) as a starting point - similar to

the applications of Sticklen et. al. (Sticklen,Kamel,Hawley, & Delong, 1991). In addition, we may
utilize a case base of known designs which must be altered in minor ways to meet requirements -

much in the spirit of the work of Goel on redesign using a functionally indexed case base (Goel &

Chandrasekaran, 1989).

• capturing design rationale: _ As pointed out above, current practice for the problem of redesign of

metal parts from composite materials is hampered by concentrating on small scale replace, rather

than entire component redesign. A major reason for this is that the purposes of the component to
be redesigned are not available. We will meet this problem by first capturing the component purpose

utilizing a Functional Reasoning (FR) Approach - following the work of Bond and Sticklen in the
aerospace domain (Bond,Sticklen, & Pegnh, 1991; Pegah,Bond, & Sticklen, 1991; Sticklen,Bond, & St.

Clair, 1988).

• simulation in the service of design verification:_ Once a composite materials-based redesign for a com-

ponent is proposed, there is a need to "test" it. This will be undertaken using s combination of

FR+bond graph simulation. A functional representation augmented with primitives in bond graph

will form the basis for s simulation of the process of composite material curing. This simulation will

yield the characteristics of the cured composite produced by following the proposed design.

4 Integration Architecture

A pivotal part of our research lies in the integration architecture which will allow the smooth interaction

of both disparate problem solving agents, and wilI allow the access and use of heterogeneous knowledge
and data bases. For our initial exportation, we will apply the Task Integrated Problem Solver (TIPS)

approach [3, 4, 2]. Characteristics of TIPS which we are important for domain-specific design are:

1. TIPS provides dynamic integration. That is, the which problem-solver is invoked is determined by the

problem state, previous problem-solving history, knowledge available and other factors. The "chunk"

size of the methods that TIPS supports is higher than than of SOAR and this is helpful for applications

where much knowledge is compiled with nevertheless need for runtime integration.

2. TIPS exploits the task structure, ie. the goal-subgoal structure of the overall problem, to identify

methods that might be relevant.

3. TIPS can mix different types of problems solvers. The problem-solvers need some minimum of com-

munication capabilities, however, but this can be added to the kernel problem solver.

4. TIPS is capable of supporting task-level explanation of why a particular problem-solver was invoked.

The basis for the representation of control used in TIPS is the Sponsor-Selector system first used in

DSPL (Design Specialists and Plans Language) [1]. It consists of a hierarchy of three parts: at the top

a selector, under the selector some number of sponsors, and under each sponsor a method invocation. In

short, the available problem-solving methods are grouped under the selector as sponsor-method pairs, where

118

Punch

each sponsor provides appropriateness measures for its associated method invocation. At any control choice
point (i.e., some point in the flow of problem-solving at which another method could be invoked) the overall

control process is to run all the sponsors to rate their associated methods, then have the selector choose the

next method to be executed based on the sponsor values and other data.

The sponsors are therefore used as "local" measures of how appropriate a problem-solver is for achieving

the current goal, while the selector takes a more "global" view of selecting which of the available methods

is the "best" under the present circumstances. Both the sponsors and selectors encode their knowledge

in a patter-match table that indicates what features are important for making the decision and how those

combinations of features contribute to the final answer (selection or appropriateness measure).
The TIPS architecture has been used to implement a large-grained medical diagnosis system in the domain

of liver and blood disorders [4] integrating Compiled/Association-Based Diagnosis, Causal Reasoning, Data

Gathering, Data Validation, Therapy Planning and User Interaction.

4.1 Integrated Reasoning in the Composite Domain

Consider the problem as presented by a portion of Figure 1. Con_ibrazation and Preliminary Sizing
are two methods whose results can be used by the method l_relimimaxy Requirements to set up "rough

design" parameters in the early stage of the design. In fact, the representation as listed could be more compli-

cated, Preliminary ltsqnirements might require an number of invocations of both the Configuration and

Preliminazy Sizing methods to reach a stable configuration where each invocation requests small modifi-
cations to the initial answers. Each new invocation would contain information about the new problem that

Preliminary Requirsments has perceived, perhaps even some suggestions about how to repair the prob-

lem, and asks for further refinement. Repeated invocations continues until the Pz'eliminaxy Requirements
method has achieved its goal, and problem-solving then continues to more detailed designing. Thedynamic

interaction between multiple methods as shown in this example is the kind of problem-solving that an inte-

grated reasoner has to capture to be effective in this domain. That is, determining when a method is done
depends on the state of the present problem and the perception by the system of which goals are "active"

and if they have been achieved.

5 Future Directions, Extending the Integration Architecture

The first problem is one of representation. Figure 1 is a direct representation of the methods used to achieve

goals in the composite design problem, but not the goals implicit in guiding the problem-solving. In the

current TIPS implementation, the methods are directly represented, but the goals are only represented

implicitly in the sponsor-selector system.
The second problem is one of standardizing the means by which sponsors can monitor goal status and

by which methods can indicate their success, partial success or failure. Likewise, a common means by which

problem state information is gathered must be made available. At present, Lisp code specific to the goals

and methods in the diagnostic system have been used but this needs to be supported by an architectural
feature.

Both are important additionsto aTiPS architecture. Direct representations of the goals of a domain make

the job of mapping an analysis directly to code much simpler. It also enhances other aspects of a system,

such as explaining why certain steps were taken in a case run (because the goal situation at that stage

was X and Y was the best choice etc.). Standardized interactions between methods is also quite important
will enable cooperation and negotiation among problem-solving methods to solver larger problems. These

problems and others will form the basis for research on domain-specific design in the years to come.

ReferenCes

[1] D. Brown and B. Chandrasekaran. Design Problem Solving: Knowledge Structures and Control Strategies.
Pitman, London, UK, 1989.

119

Punch

[2] W. F. Punch III. A Diagnosis System Using a Task Intefrated Problem Solving Architecture (TIPS),
Including Causal Reasoning. PhD thesis, The Ohio State University, 1989.

[3] W. F. Punch III. TIPS (task-integrated problem solver), a task-specific integration architecture for
heterogeneous agents. In Proceedings of the AAAI-9I Workshop on Cooperation Among Heterogeneous

Intelligent Systems, pages 1-10, Anahiem, CA, July 1991.

[4] W. F. Punch and B. Chandrasekaran. An investigation of the roles of problem-solving methods in

diagnosis. In Proceedings of Second Generation Ezpert System's Conference, pages 25-36, May 1990.

[5] V. Venkatasubramani_m, Y. Lee, and C. Gryte. Design of polymer composites: A knowledge-based
framework. In AIGhE87, 1987.

120

Setiiff

N93-17523

RT-Syn: A Real-Time Software System Generator

Dorothy E. Setliff

Electrical Engineering Department
University of Pittsburgh

Pittsburgh, PA 15261

Abstract

This paper presents research into providing highly
reusable and maintainable components by using au-
tomatic software synthesis techniques. This pro-
posal uses domain knowledge combined with auto-
matic software synthesis techniques to engineer large-
scale mission-critical real-time software. The hy-

pothesis centers on a software synthesis architecture
that specifically incorporates application-specific (in
this case real-time) knowledge. This architecture syn-
thesizes complex system software lo meet a behav-
ioral specification and external interaction design con-
straints. Some examples of these external constraints
are communication protocols, precisions, timing and
space limitations. The incorporation of application-
specific knowledge facilitates the generation of math-
ematical software metrics which are used to narrow
the design space, thereby making software synthesis
tractable. Success has the potential to dramatically re-
duce mission-critical system life-cycle costs not only
by reducing development time, but more importantly
facilitating maintenance, modifications and extensions
of complex mission-critical software systems which are
currently dominating life-cycle costs.

1 Introduction
The software development process is time consum-

ing, expensive, and fraught with errors. These char-
acteristics hinder the reuse of software. This paper
presents an approach that seeks to reduce software de-
velopment time while simultaneously increasing soft-
ware reuse. This approach, called RT-Syn, uses char-
acteristics of the software domain to synthesize soft-
ware. Although there is a wealth of structural and syn-
tactic knowledge that can be brought to bear for soft-
ware synthesis, the. lack of success in generalized soft-
ware synthesis [15] argues that this knowledge is in-
sufficient, and that domain-specific knowledge is nec-
essary for successful software synthesis.

The chosen domain is real-time software. Software
for real-time applications can be characterized as a
set of time-constrained tasks. Real-time system fail-
ure is defined as when any task misses its hard dead-
line. Software development and subsequent redevelop-
ment is one of the major bottlenecks of real-time sys-
tem design and maintenance. One method to remove
this bottleneck is to automatically synthesize real-time
software to meet all system platform and task timing
requirements. We argue that the presence of strict

operation requirements, such as task-level timing con-
straints and compiler and target platform constraints,
can be used to guide synthesis.

RT-Syn builds off of previous work by Setliff [11,
12], Barstow [1], and Kant [9] among others. Gen-
erality is supported by the use of a visual language
as an algorithm specification. Only that ap.plication-
specific knowledge relevant to programming-in-the-
small synthesis is currently incorporated within the
RT-Syn synthesis architecture. Within the vernacu-
lar of this particular application domain, this current
project focuses on task-level synthesis issues. Future
work encompasses system-level (programming-in-the-
large) synthesis issues.

Section 2 reviews the current KT-Syn 1.0 architec-
ture and presents a brief overview of each component
within RT-Syn 1.0, including an enumeration of what
knowledge is required to perform task-level synthe-
sis and how that knowledge is represented. Section
3 describes RT-Syn 2.0, an approach to system-level
software synthesis. This section describes the various
components envisioned within RT-Syn 2.0 and their
interactions. Finally, Section 4 presents an overview
of our progress and a plan for future work.

2 RT-Syn 1.0 Architecture
This section describes the architecture of our ini-

tial version of RT-Syn called RT-Syn 1.0. This ver-
sion incorporates knowledge of the effects of a specific
platform, the DLX processor [4], on task-level synthe-
sis, as well as an algorithm that uses this knowledge to
formulate timing and space requirements estimates for
different implementation possibilities for a task. We
chose the simulated DLX processor for this initial ver-
sion because it is completely modelled and DLXsim
(a program which models the operation Of the DLX
processor) keeps statistics useful for checking our de-
sign decisions. Current work in predictable platforms
[18] seeks to design and develop real-world platforms
which exhibit the similar predictable characteristics
exhibited by the DLX processor.

RT-Syn 1.0 integrates platform characteristics to
synthesize a real-time software task to meet hard dead-
line requirements. The RT-Syn 1.0 automatic syn-
thesis system has five key features. First, a visual
graphical user interface, called Intuition, captures ap-
plication algorithms without implementation specifi-
cations. Second, RT-Syn 1.0 analyzes the task-level
data and control flows to produce worst-case timing

121

Setllff

and space predictions. Third, R.T-Syn 1.0 uses these
predictions to select abstract representations of data
structures and algorithm implementations to meet re-
quired timing and space constraints. Fourth, R.T-Syn
1.0 synthesizes C code from the selected implementa-
tions. Fifth, RT-Syn 1.0 validates the execution of the
code to meet the predicted timing and space utiliza-
tion values.

rimitives_-_

atabase_

User

]Intuition r" V_.atabase_
+

CodeM aker _4_(Platforrn_'_

,,.Database

!°-ii 1-

_sr_a_CJtlla_t_Ba _

T

Figure 1: RT-Syn 1.0SynthesisArchitecture

RT-Syn 1.0 (See Figure I) iscomposed of several
databases and two tools:Intuition,a graphicalpro-
gramming language, and CodeMaker, a real-timesoft-
ware directedprogram synthesissystem.

A visualprogramming language isa way toprogram
a system using a visualparadigm. Visual program-
ming languages vary in the levelofrepresenteddetail

[5].Intuition provides a semantic-level,user-friendly,
hierarchicalvisualprogramming environment. This
environment offersseveraladvantages over text-based
environments. It allowsfor the user-friendlyinput of

RT-Syn specificationswith minimum effort.Its hier-
archicalnature allows the user to easilymodify the

description.There isalsolesslearningtime involved.

The concepts behind theseadvantages are presentina
varietyofexistingvisualprogramming researchefforts

[2,3, I0, 13, 14].
Intuitionacts as a user input system as wellas a

high levelvisualalgorithm description.Intuitionde-
scriptionscapture both data flow and controlflow in-
formation. Intuitionissimilarin form and function

to the popular object-orienteddrawing program that
existson personal computers, such as MacDraw. The
user has a paletteof tools,and a window in which to
draw a schematic representationof algorithms. Fig-
ure 2 is an example of a Intuitionscreen represen-
tation of a FFT signalprocessingalgorithm. Each
rectangularcellon the screenrepresentsa basicbuild-
ing block of the algorithm. The building block may
be directcomputation or a hierarchicalreferenceto
another Intuitionfilerepresentingquantitiesof com-

putations. Data and controlflow iscaptured by the
connecting linesbetween the cells.There isno data

Figure 2: Representative Intuition Algorithm Repre-
sentation

typing or language representation implied within Intu-
ition. Groups of Intuitionalgorithmicrepresentation
formulate the Algorithm Database. This database or-
ganizesthe algorithmsby functionand by hierarchical
components.

The cornerstoneofthe RT-Syn 1.0schema isapro-
gram synthesis system which is capable of produc-
ing extremely well-modelled executable code. Code-
Maker, a program synthesis system targeting real-time
signal processing software, guarantees the validity of
the generated code using the following methodology.
First, CodeMaker analyzes all algorithmic represen-
tations availablewithin Intuitionthat can resultin

the required behavior and produces an internalrep-
resentationof the algorithmicdata and controlflow.
Second, CodeMaker uses knowledge of the platform
toproduce implementation rangesfor each specifiable

resource(currently,speed and space).All implemen-
tationpossibilitiesfora particulartaskareguaranteed
to be within the implementation range.Third, Code-
Maker analyzes the implementation ranges to select

the algorithmicapproach most likelyto satisfyallof
the required specffiableresourcequantitiesfora par-
ticulartask. Fourth, CodeMaker then synthesizesan
implementation of the algorithmthat isguaranteed to
meet the requiredspecifications.

The following example illustratesthe operations
within CodeMaker, what knowledge isapplied,and
how knowledge is applied. In thisexample, Code-
Maker isdirected(viaIntuition)to synthesizea FFT
algorithm that executesinX cyclesand may consume
no more than Y bytes of data memory. There exist
numerous algorithmsthat exemplify the FFT behav-

122

Setliff

ior [6]. Each algorithm, regardless of the implemen-
tation, places a differing strain on computation and
memory resources. CodeMaker must select a particu-
lar algorithm and then synthesize an implementation
of the algorithm to specifically meet the requirements
for that task.

CodeMaker first analyzes all algorithmic possibili-
ties and produces a control and data flow graph for
each. The implementation ranges are formed by not-
ing a fairly simple fact. Timing limitations generally
adversely affect space utilization (less time requires
greater space requirements). To discover the mini-
mum speed characteristic for any algorithm, synthe-
size the algorithm while attempting to reach a 'time
= 0' constraint. Of course, this is impossible so syn-
thesis will fail, but the resultant implementation spec-
ification will be the closest to zero and thus the min-
imum time and maximum data memory. Setting a
'space = 0' constraint and synthesizing to meet that
constraint find the implementation that uses the least
data memory and maximum time. Program memory
requirements are not considered currently in Code-
Maker. Each algorithm that satisfied the required be-
havior is synthesized twice to produced implementa-
tion ranges for that algorithm. The synthesis process
incorporates knowledge of the platform and maintains
any dependencies within an algorithm. This approach
is used to prune out those possibilities that will fail
early on in the process. The algorithm with a design
space closest to the resource requirements is selected.
It is important to note that the design space is not
convex. There exist points in the design space that
are not reachable. The synthesis process is capable of
backtracking back to this point if the requirements are
not attainable during the final synthesis process.

Synthesis of an implementation requires access
to specific platform-dependent data. The Platform
Database contains modelling information needed to
generate accurate predictions about the timing and
space utilization characteristics of tasks for a given
platform. The bulk of the information in this database
consists of data about primitives. Primitives are the
lowest-level building blocks used by RT-Syn when syn-
thesizing C code. Typically, primitives represent sin-

le C operations, such as addition, multiplication, and
ranching operations. Information stored in the plat-

form database includes: the timing and space charac-
teristics of all primitives on this platform, formula to
account of eccentricities in the behavior of the model
of the platform, characterization of any operating sys-
tem calls that will be used, and a characterization
of the C compiler to be used when generating exe-
cutable code. The behavior of platforms and compil-
ers vary widely. As a basic example, some comput-
ers utilize a separate floating-point math unit, which
makes floating-point math a faster alternative to in-
teger math. At a compiler level, different compilers
perform different optimization techniques, so that the
same piece of C code compiled on two different compil-
ers and then run on the same platform will have differ-
ent characteristics. An important feature of the RT-
Syn system that is a result of the Platform Database
is that a given set of tasks can be completely re-

synthesized for different platforms by changing only
the platform selection:

CodeMaker uses the data and control flow graphs,
in tandem with knowledge of the tradeoffs requisite in
a particular target platform (e.g., operating system,
hardware) and target language primitives, to select
implementations. The selection process is performed
bottom-up (or correspondingly output-back-to-input)
on the data flow graph. This graph walking approach
specifically acknowledges the impact of external re-
quirements (the required outputs) on the implementa-
tion selections. In this way, the external requirements
are applied as early as possible and are used to re-
ject portions of the design space that are unworkable.
Only that knowledge pertinent to the task-level pre-
diction and selection is required. Analysis, prediction,
then Selection continues until the task implementation
is fully specified. At this point, the implementation
code is constructed.

Experimentation using Intuition and CodeMaker
[16] demonstrate both the efficient synthesis (100's
of lines of code is less than 30 seconds on a MAC

II) possible when application-specific knowledge is in-
corporated within synthesis. Numerous experimenta-
tion [16, 17] also shows the range of implementations
attainable merely by modifying the task-level con-
straints. These experiments show the power of using
application-specific knowledge to synthesize software
to meet a set of specifications and thereby provide for
software reusability. Only knowledge of platforms and
primitives particular to data structure and algorithm
selection is incorporated and used within CodeMaker.
This knowledge prunes the design space, while pro-
viding solutions for time and space constrained signal
processing tasks.

RT-Syn 1.0, a real-time task set synthesis archi-
tecture, synthesizes viable C code solutions based on
a user's high-level task set specification. RT-Syn 1.0
takes as input a high-level description of the real-time
tasks to be generated, along with information about
the equipment on which the system will be run and
generates code to implement each task. The code
is guaranteed to meet any resource use requirements.
The next section describes work in progress towards
system-level synthesis using the successes of the RT-
Syn 1.0 system as a foundation.

3 Towards System-Level Synthesis
RT-Syn 2.0 focuses on system-level synthesis. RT-

Syn 2.0 performs all of the synthesis provided by RT-
Syn 1.0 and also generates a scheduler to coordinate
the execution of the individual tasks. The entire sys-
tem will be guaranteed to produce the desired outputs
within the given deadlines and without exceeding the
host equipment's resources.

The RT-S-yn 2.0 rea]--t_rae Software synthesis archi-
tecture is shown in Figure 3. Each block in the dia-
gram represents a component in the synthesis archi-
tecture. There are two types of components in the
synthesis architecture: design and database compo-
nents. We first introduce each component, then de-
scribe the advantages of this architecture. We then
describe in detail the functionality of each component

123

Setliff

User

I System :_
Specification Intuition]

System orithm
Strategist Database

;Maker_Platform_ll

Figure 3: RT-Syn 2.0 Synthesis System

in the order that synthesis follows: from user specifi-
cation of a set of tasks to the successful synthesis of
code for each task. The software synthesis process is
not monolithic; rather, the synthesis process is com-
posed of a successionof abstractionlevels.Breaking
the softwaresynthesisarchitectureintothe variousab-
stractionlevelsillustratesthe designhierarchy.Each

design abstractionleveliscomposed of a design com-
ponent with database components as required. The
highest abstractionlevelisthe user interactionwith
the synthesisarchitecture.The System Specification
component interactswith the user to form a system-
levelbehavior description.The userinteractswith the
synthesisarchitecturevia Intuition.

The second abstractionleveldecomposes the sys-
tem behavior descriptionsinto task levelspecifica,
tions.The System Strategistcomponent analyzesthe
system-levelbehavior description,determines what
tasks are required,how the tasks are to be scheduled,
and how resourcesare tobe allocatedtoeach task.All

of these operations require knowledge. This knowl-

edge iscaptured within three database components:
the Resource Management Database, the Algorithm
Database, and the Platform Database. The Resource
Management Database containsknowledge ofcurrent
system resourceallocationsand resultsfrom priorsoft-
ware synthesisoperations. This informationisused
within the System Strategistto aid the design and
synthesisprocess. The Algorithm Database contains
knowledge about a varietyofusefulalgorithmsand the

methods in which they are implemented. Each algo-
rithm in this database is represented using Intuition.
The Platform Database contains modelling informa-
tion for various computer/compiler platforms. This
information is used in the analysis tools within the
System Strategist component and CodcMaker tool.

The third abstraction level decomposes the task
level specifications into code implementations. This
abstraction level has already been developed and dis-
cussed in a prior section of this proposal.

There are several advantages to this architecture.
The decomposition via abstraction level provides a de-
sign focus and limits the amount of design search. The
decomposition also closely mirrors the current devel-
opment process of a system analyst and programmer.
By mirroring this development process, it is possible
to allow both system analysts and programmers to in-
teract with the synthesis architecture. The distinction
between design and database components provides a
growth mechanism.

Isolating the information into three distinct
databases facilitates the expansion of RT-Syn 2.0 to
work with a variety of systems. Extending the knowl-
edge of the Algorithm Database enables the system to
synthesize a wider array of tasks:Adding information
about more systems to the Platform Database allows
RT-Syn 2.0 to model new hardware/compiler plat-
forms. Finally, by updating the Primitives Database,
RT-Syn 2.0 gains the ability to synthesize code in dif-
ferent languages.

:The System Specification component serves three
functions. The first function is to enable the user to
specify the set of tasks to be synthesized. The user
specifies a type of task set (out of a list of tasks of
which the system has knowledge), provides informa-
tion about the number of and type of inputs and out-
puts to the set of tasks, and chooses a target plat-
form (from a list of machines for which there exist
timing models). From this information RT-Syn 2.0
constructs a suite of tasks which will perform the de-
sired function and run within the confines of the tar-
get platform's constraints. The output is informa-
tion to the System Strategist about what tasks are
required and what platform is being used. This task

specification information can be ver_" coarse-grained
(e.g., system-level input) or extremely detailed (e.g.,
implementation-level input), depending on the level of
user interaction. The second function of the System
Specification component is to interact with the user
during the design and synthesis process. Interaction
takes the form of behavior simulation. In this way,
the user can validate that the set of tasks given in
the input do indeed satisfy the required mathematical
functionality before synthesizing to meet the needs of
the application.

The Resource Management Database provides in-
formation about system resource allocation results to
the System Strategist. As individual tasks are synthe-
sized, the amount of resources required will solidify
from coarse estimates to accurate predictions. Dur-
ing the synthesis process, the Resource Management
Database is updated to reflect the current state of a
task's resource allocation needs. These needs are rel>-

124

Setliff

resented as the set of task descriptors Ci, Ti and Ui
(which represent worst-case execution time, execution
period, and utilization, respectively) [8, 7].

The System Strategist acts as the systems analyst
for the synthesis of the set of tasks. Its initial func-
tion is to determine what task implementations will be
used in the desired system and to choose and develop a
real-time scheduler to manage these tasks. To choose a
scheduler the System Strategist must have knowledge
of a variety of scheduling schemas and have heuris-
tics for deciding which one is most applicable to the
current situation. These heuristics consist of rules de-
rived from real-time scheduling theory. The following
describes the algorithm database and provides a de-
tailed discussion of the operations the System Strate-
gist performs once the synthesis process is underway.

There are two main characteristics of the Algorithm
Database: organization and database entry contents.
The algorithms are organized hierarchically by behav-
ior. Figure 4 illustrates the organization of the Algo-
rithm Database:

Figure 4: Design Organization of the Algorithm
Database

The advantage ofthisorganizationisthe reduction
ofsearchrequired tofindallalgorithmswith a certain
behavior. Organization by behavior placeseach algo-
rithm ina specificbehavior class.Each entryina par-
ticularclasspossessesthe identicalbehavior but differs
in the corresponding functionality.A behavior hierar-
chy corresponds tothe desiredsystem-leveluser inter-
action.A typicalsystem levelspecificationconsistsof
a setofbehavior descriptions.These behavior descrip-

tionsmatch particularclassand subclassbehaviorsin

the algorithm hierarchy.Allalgorithmscorrespondin_
tothespecifiedbehavior may be immediately retrievea
for analysis.Each entry inthe database isa 3-tuple:

algorithm representation,resource constraintranges,
synthesishistory.Each algorithmisrepresentedinIn-
tuition.Each entry contains coarse-grainedresource
characteristics. These coarse-grained characteristics
define the implementation design space for that algo-
rithm entry. Currently the Algorithm Database con-
tains time and space resource characteristics.

The System Strategist analyzes the system-level be-
havior description as a set of tasks, schedules each

task, and allocates resources to each task in the sys-
tem. The input to the System Strategist is a system-
level behavior description. The output is a system
scheduler algorithm selection, and a set of task-level
descriptions. A task-level description details the be-
havior algorithm and desired time and space char-
acteristics for each task. Analysis is required to
synthesize the scheduler algorithm and task-level de-
scriptions. The System Strategist first accesses the
implementation range information in the Algorithm
Database for each task in the system. The set of
implementation ranges defines the design space that
the scheduling algorithm must guarantee. There is an
enumerable set of scheduling algorithms. The System
Strategist attempts to synthesize all known scheduling
algorithms. The System Strategist applies the under-
lying mathematics of each scheduling algorithm to the
set of implementation ranges. A task specification is
chosen within each range that will result in guaranteed
schedulability. The set of task specifications may not
overutilize system memory constraints. A potential
scheduling algorithm is removed from consideration
(pruned) when it fails to guarantee the task specifica-
tmn set.

Scheduling algorithm analysis iterates with the syn-
thesis of each task in the system. Task synthesis re-
sults in more exact information than the implemen-
tation range information in the Algorithm Database.
More exact information prunes the design space and
allows the reallocation of resources.

4 Conclusions
The real-time software development process is time

consuming. This paper presents work in progress to-
wards alleviating the costs of real-time software sys-
tem design, development, and maintenance. This
work incorporates state-of-the-art scheduling theory
within a software synthesis architecture. This archi-
tecture leverages off of past research into the successful
synthesis of software. Results illustrating the ability
to accurately predict the time and space characteris-
tics of a task and then synthesize an implementation
to meet the prediction can be found in [16, 17]. This
synthesis system successfully generates functional C
code from high-level algorithmic descriptions. The
generated code can be modeled for speed and space
requirements, and these predictions prove to be rea-
sonably accurate for a variety of platforms. The abil-
ity to generate predictable code is the cornerstone of
the RT-SYN system. By demonstrating the validity
of the synthesis system, we validate the premise of
automated real-time task set synthesis.

The scope of this paper presents work in the initial
phase of the design and develo-pment 0fa real-time
software synthesis architecture. We target the syn-
thesis of uni-task systems with a focus on the use of

prediction to aid synthesis. Future work in this phase
encompasses expanding the repertoire of algorithms
within the Algorithm Database and verifying efficient
synthesis of these algorithms. The second phase of this
work targets on multi-task synthesis. Specifically, we
will incorporate the RT Mach operating system into
the Platform Database. We see this second phase as

125

Setliff

proving the predictability of RT Mach by accurately
predicting synthesis results. The third and final phase
of this work targets system-level synthesis. At this
point, we will introduce real-time network character-
istics into the System Synthesis schedulability anal-
ysis. These characteristics encompass adding a real-
time database and system-level application scenarios.

References

[1] D. Barstow. Automatic Program Construction
Techniques, chapter The roles of knowledge and
deduction in algorithm design, pages 201-222:
McMillan, 1984.

[2] S.K. Chang. Principles of Visual Programming
Systems. Prentice Hall, Englewood Cliffs New
Jersey, 1990.

[3] S.K. Chang. A visual language compiler for infor-
mation retrieval by visual reasoning. 1EEE Trans-
actions on Software Engineering, 16:1136-1149,
October 1990.

[4] J. L. Hennessy and D. A. Patterson. Computer
Architecture A Quantitative Approach. Morgan
Kaufmann, San Motto California, 1990.

[5] S.K. Chang T. Ichikawa and P.A. Ligomenides,
editors. Visual Languages. Plenum Press, New
York, 1986.

[6] S.M. Kay. Model Spectral Estimation Theory and
Application. Prentice Hall Signal Processing Se-
ries, 1988.

[7] L. Sha J.P. Lehoczky and R. Rajkumar. Schedul-
ing algorithms for real-time operating sys-
tems. Technical report, Department of Computer
Science, Carnegie-Mellon University, December
1986.

[8] C.L. Liu and J.W. Layland. Scheduling algo-
rithms for multiprogramming in a hard real-time
environment. JACM, 20 (1):46 - 61, 1973.

[9] E. Kant F. Daube W. MacGregor and J. Wold.
Automating Software Design, chapter 8: Sci-
entific Programming by Automated Synthesis.
AAAI Press, 1991.

[10] M. Eisenstadt J. Domingue T. Rajah and
E. Motta. Visual knowledge engineering. IEEE
Transactions on Software Engineering, 16:1164-
1177, October 1990.

[11] D. Setliff and R. Rutenbar. On the feasibility
of synthesizing cad software from specific_ions:
Generating maze router tools in elf. 1EEE Trans-
actions on Computer-Aided Design of Integrated
Circuits and Systems, 10(6):783-801, June 1991.

[12] D. Setliff and R. Rutenbar. Knowledge represen-
tation and reasoning in a software synthesis ar-
chitecture. IEEE Transactions on Software En-
gineering, Accepted for publication in special is-
sue on Knowledge Representation to appear in
September 1992.

[13] B. Shneiderman. Direct manipulation: A step
beyond programming languages. IEEE Transac-
tions on Computers, 16:57-69, August 1983.

[14] D. Hotel H. Lachover A. Naamad A. Pnueli
M. Politi R. Sherman A. Shtull-Trauring and
M. Trakhtenbrot. Statemate: A working envi-
ronment for the development of complex reactive
systems. IEEE Transactions on Software Engi-
neering, 16:403-414, April 1990.

[15] H.A. Simon. Whether software engineering needs
to be artificially intelligent. IEEE Transactions
on Software Engineering, SE-12(7):726-732, July
1986.

[16] T.E. Smith and D.E. Setliff. Towards an auto-
matic synthesis system for real-time software. In
Proceedings of the 1_th IEEE Real-Time Systems
Symposium: IEEE, December 1991.

[17] Tobiah E. Smith. Constraint-driven synthesis

of signal processing algorithms. Master's the-
sis, Elec. Eng. Department, Univ. Of Pittsburgh,
Pittsburgh, PA, November 1991.

[18] H. Tokuda and M. Kotera. A red-time tools
set for the arts kernel. In Proceedings of 9th
Real-Time Systems Symposium. IEEE, December
1988.

126

Sharma

N93-17524
Automating FEA Programming

Naveen Sharma

Institute for Computational Mathematics

Department of Mathematics and Computer Science

Kent State University

Kent, OH 44240-0001

Email: sharma@mcs.kent.edu

Abstract

In this paper we briefly describe a combined sym-
bolic and numeric approach for solving mathemat-
ical models on parallel computers. An experimen-
tal software system, PIER, is being developed in
Common Lisp to synthesize computationally in-
tensive and domain formulation dependent phases
of FEA solution method. Quantities for domain
formulation like shape functions, element stiffness

matrices etc. are automatically derived using sym-
bolic mathematical computations. The problem
specific information and derived formulae are then

used to generate (parallel) numerical code for FEA
solution steps. A constructive approach to spec-
ify a numerical program design is taken. The
code generator compiles application oriented in-
put specifications into (parallel) if7 routines with
the help of built-in knowledge of the particular
problem, numerical solution methods and the tar-
get computer.

Introduction

Engineers and scientists frequently encounter mathe-
matical models based upon partial differential equa-

tions (PDEs) in a wide variety of applications. Finite
element analysis (FEA) (Zienkiewicz 1980) is a ma-
jor computational tool for the numerical solution of
boundary and initial value problems that arise in stress
analysis, heat transfer and continuum mechanics of all
kinds. The problem domain is first discretized into a
suitable mesh of elements. Then well-selected analyt-
ical approximations are used for solution within each

element. The global solution for all discrete points (el-
ement nodes) of the mesh is computed by numerical it-
erations taking into account inter-element interactions
and boundary conditions.

Simple FEA applications can be performed with
canned packages such as NFAP (Chang 1980) and
NASTRAN. Situations involving complicated bound-
ary conditions or element properties, non-linear ma-

°Work reported herein has been supported in part by the
Army ResearchOfficeunder Grant DAAL03-91-G-0149

terial properties, require customizing many aspects of
FEA. In such cases, the finite element solution pro-
cess consists of a symbolic computation phase followed
by a numerical computation phase. Depending on the
problem at hand, the symbolic computation phase may
involve construction and analysis of solution approxi-
mations, simplification of large analytical expressions,
changing variables and/or coordinates to simplify the
problem, operating on matrices and tensors with sym-
bolic entries, as well as integration and differentiation
of_alytical expressions. Results of the symbolic com-
putation phase are then used to construct numerical

programs.

Frequently the mathematical models and related

computer programs are revised during research, engi-
neering and production. Numerical convergence prob-
lems may also require that a different numerical proce-
dure be used for FEA solution steps. When the models
are three-dimensional, or use large data sets, the pro-
gram execution speed is critical. Writing programs for
parallel computers to speed-up execution is indeed not

a trivial task for modelers. Also, parallel programs
written for a parallel machines can not be ported to
other machines without significant re-programming ef-
fort. State of the art parallelizing compilers (Kuck

1978), (Allen & Kennedy 1985) take an existing (se-
quential) code as input and can produce programs for
the target parallel machine. However, these compil-
ers parallelize scientific and engineering applications on

the model of linear algebra and either completely ig-
nore the domain specific parallelism naturally present
in the problem or query the user during compilation.

In recent years, there has been an increase in re-
search and development efforts to alleviate these prob-
lems. Existing approaches combine symbolic and nu-

merical computing in various ways. These (coupled)
symbolic-numeric systems generally take the user input
in a very high-level form and automatically generate
numerical code in a procedural programming language
like :f77 or C for the target computer. Some notable re-

cent projects are Ellpack (Rice, Boisvert, and Ronald
1985), Sinapse (Kant et al. 1990), Alpal (Cook 1990),
PDEQSOL (ttirayama, Ikeda, and Sagawa, 1991), (Pe-

127

Sharma

skin 1987), and (Steinberg and Roache 1990). Many
of these projects have adopted finite difference solution
method for PDEs.

Our Approach

We have been working for a number of years (Wang
1986), (Sharma and Wang 1988a), (Sharma 1988b),

(Sharma and Wang 1990), (Sharma 1991a) in this re-
search direction and our primary PDE solution method
is FEA. We identify key solution steps of FEA which
are compute-intensive and are reprogrammed ev-
ery time new element formulations or boundary con-
ditions are used. Our approach is to employ symbolic

computation to generate sequential and parallel nu-
merical codes for the key FEA solution steps. The

code is generated in (the parallel version of) 177 on the
target parallel Computers (currently include Sequent
Balance shared memory and distributed-memory In-

tel iPSC/860). Based on the user input, quanti-
ties such as element shape functions and strain-
displacement matrices can be derived using symbolic
mathematical computations. The derived formulas are
used to generate numerical code for computing element
stiffness matrix, solution of system of equations and
other solution steps. The generated code can be read-
ily combined with existing FEA codes. The overall
scheme is pictorially depicted in Fig. 1. We are de-

Use_ Input

PIER I

I
Generated Code

\
I Execute

FEA Code

/
I

Figure 1: Overview of Approach

veloping a new FEA code generator named PIER to
build upon our previous work in this area and to break

new grounds. PIER is Common Lisp (CL)-based and
can work directly with the eL-based MAXIMA. It can
be easily ported to other CL-based symbolic computing
systems. PIER generates sequential and parallel codes
for the key solution steps. In next two sections we
briefly discuss our design objectives and PIER's pro-
gramming knowledge. PIER input specifications and

the code generation scheme are overviewed in subse-
quent sections. We conclude the paper by outlining
some relevant issues.

Design Goals

Previous FEA code generators, such as FINGER, P-
FINGER and PDEQSOL, are equipped with a fixed
number of numerical algorithms for FEA solution steps

and the algorithms are parallelized and implemented
for one specific parallel computer. Porting the code
generator to other machines, thus requires work from
scratch. This is a major drawback which should be
overcome. Our first design requirement addresses this
issue.

The code generator provides a set of architecture-
independent input specifications to design and ex-
press numerical algorithms used in FEA solution

steps.

In generating parallel programs from the user in-
put specifications, it is possible to take advan-
tage of domain independent parallelism which exists
among concurrently schedulable code modules and do-
main specific parallelism such as carrying out FEA
(sub)computations in the element-by-element (Winget
and Hughes 1985) formulation as opposed to the as-
sembled formulation, or substructuring the FE mesh
etc. This leads to our second design requirement.

Automatically generates good implementation
mappings (for input specifications) to modern
high-performance computers with the help of
built-in knowledge of the application domain,
FEA solution method, and the target program-

ming environment.

These design requirements allow engineers and sci-
entists to customize the FEA solution process for the

desired application area and the problem instances.
Only input specifications needs to be altered without
worrying about implementation details or the target
architecture.

System Overview

PIER provides a knowledge-based programming envi-
ronment to the modelers. The architecture of the en-

vironment comprises following components.

1. A Programming Knowledge-Base.

2. A set of User Input Specifications.

3. Code Generator.

The programming knowledge-base provides generic
Operations (a set of basic linear algebra computations
including matrix-vector product, vector inner prod-
uct, solving triangular system of equations etc.) and
domain specific Operations (a set of basic finite ele-
ment analysis computations including assembling ele-
ment stiffness matrices, deriving shape functions, vec-

tor preconditioning etc.). A PIER Operation has four

128

Sharma

parts: prologue/epilogue, a set of algorithm schemas,
control dependence graph (CDG) and the associated
cost-modal. The schemas are stated as templates writ-
ten in Common Lisp, which include assignments, con-
ventional control constructs, and array/scalar compu-
tations. The CDG represents the execution depen-
dence among several sub-computations in the Opera-
tion and the cost-model determines the execution cost

(computation and communication costs) of the Oper-
ation. PIER Operations implement the intended com-

putations in one of the following execution styles:

(S1) Assembled: Execute for assembled data.

($2) FullyParallel: Execute for individual element
data concurrently.

($3) BlockParallel : Execute for a block 1 of element
data.

(S4) Scalar: Execute for one element data at a time.

The user input specifications provide methods to
specify problem parameters, desired symbolic deriva-
tion and combine Operations to construct an FEA al-

gorithm. The code generator generates f77 programs
from the user input specifications for the target archi-
tecture. The generated code is compiled and linked on
the target machine and executed. The programming
knowledge-base also provides completed specifications
for frequently used FEA algorithms. The user can,
however, specify a new algorithm and add the same to
the knowledge-base. The knowledge about program-
ming the target parallel architecture is represented as
a set of transformations. These transformations con-

vert CDGs into equivalent f77 templates. Porting to
other computers, thus, require developing the set of
relevant transformations.

PIER Input Specifications
One of the major research objectives in PIER is to de-
sign a set of very high level input specifications which
are used by scientists/engineers as well as system de-

velopers to describe FEA computations and problem
instances. We advocate a bilingual programming style
in which application oriented specifications (i.e. termi-
nology and notations as used in standard FEA texts)
can be mixed with regular f77 syntax to express an
FEA algorithm. In designing the PIER input specifica-
tions we seek that the specifications should be easy to
understand and easy to produce by scientists/engineers
and the user specifies only the functionality desired and

leaves the implementation details to PIER.
The overall approach is to add statements (which

represent domain-specific computations) to f77. The
set of powerful statements are primarily intended for
FEA algorithms. Although this scheme could easily
work in other areas of scientific computing. The in-

put specifications support the definition of the element

1A block is a set of elements in which no two elements
share a node

mesh, nodal properties, various data arrays, symbolic
derivation and specification of numerical algorithms
for the solution procedures. Statements defining stor-
age strategies for FEA data arrays, high-level sym-
bolic/numerical computations (PIER Operations), and
straight-line s sequences of Operations (PIER Modules)
can be intermixed with regular f77 constructs to spec-
ify a desired numerical algorithm. We now describe
the underlying programming model.

The Programming Model

In general the systematic software development process
begins with informal requirement specifications. This
is followed by one or more than one design phases,
which define a system structure meeting requirement
specifications. The design phase identifies software
modules and their organization. The text book style
description of numerical algorithms can be expressed
at this level of abstraction with relative ease and PIER

automates rest of the software development phases i.e.
detail design and implementation for the algorithm.
While generating parallel code, the user also specifies
the resource constraints (i.e. number of maximum pro-
cess/processors etc.). The input specifications are hier-
archical and the user expresses numerical algorithms in

a bottom-up fashion by creating abstractions of higher
level in terms of lower ones. This is depicted in the

Fig. 2. Let us describe each level briefly.

FEA

t
FEA SolutionSteps

t
Algorithms

S
F77 Modules

7
Operations

Figure 2: Hierarchy of Computations

• Operation: An Operation is the smallest unit of
computation (provided in PIER knowledge-base).
An operation usually represents a single textbook
equation with one variable on the left hand side and
an expression involving one or more variables on the

right hand side. For example, the equations

Tempi = r • z

2No sequence control is involved

129

Sharma

u=a.p

Temp2 = p • u

involved in the PCG (Preconditioned Conjugate
Gradient) algorithm (Hughes, Ferencz, and Hallquy-
ist 1987) can each be specified by an Operation. An
Operation can specify either a symbolic derivation
or a numeric computation. For an operation, the
variable on the left-hand side is its output data ob-
ject, while those on the right-hand side are its input
data object. A PIER Dataobject specifies numerical
values associated with elements/nodes organized in
a structured fashion (e.g. matrix, vector).

Module: A Module consists of a sequence of Opera-
tions with no entry or exit points except at the begin-
ning and at the end of the module. In other words,
control flow enters at the beginning and leaves at
the end of a Module. Fig. 3 illustrates Module
specifications. In the example, Module, In, Out,
Begin, End are keywords whereas VecInnerVec and
MatTimesVec represent Operations (for numerical
computations).

Each step can be solved by more than one (sym-
bolic/numerical) procedure and expects a fixed set
of input quantities and computes a fixed set of re-
sults. Depending on the problem formulation, the
algorithm used for a solution step may be different.
Some standard algorithms such as Gauss quadra-
ture, Gaussian elimination and preconditioned con-
jugate gradient are built into PIER. Others can be
supplied by the user through PIER input specifica-
tions.

To derive/generate desired FEA computations (sym-
bolic formulae/f77 code) the user must first specify the
element mesh, the element properties, the data arrays
for material matrix and nodal coordinates. This is fol-

lowed by the specifications to derive desired element
formulae. We now give an example (Fig. 5) where

the problem domain is divided into 256 linear trian-
gular elements. Total number of nodes in the mesh is
153. The local degrees of freedom at each node is 1.
For complete syntax and detailed examples for PIER
input specifications the reader is referred to (Sharma

and Wang 1991b).

Module CSSA, (In: (a,r,z,p) ,Out : (Templ ,Temp2)

Begin
Templ= VecInnerVec(r,z)

U = MatTimesVec(a,p)

Temp2 = VecInnerVec(p,u)
End

Figure 3: PIER Module Specification Example

Algorithm: An Algorithm is specified by combin-
ing Modules with f77 constructs. PIER also sup-
plies, from its knowledge-base, certain standard al-
gorithms that can be used directly. Fig. 4 illustrates
an example of Algorithm specifications.

IPIER Algorithm Specification Example

Algorithm:Foo, (In:(a,b),0ut:(x))
Begin

• f77 code .

Nodule Call.

<<(Templ,Temp2)=Module(CSSA,a,r,z,p)>>

• f77 code .

Figure 4: PIER Algorithm Specification Example

• FEA Solution Step: The breakup of the FEA

solution process recognizes eight solution steps.

C Defining Triangular Element Mesh.
m = Nesh(Dim:2,Nodes:IS3,Elements:256)

• = Element(Ldim:1,Nodes:3,Shape:Triangle)

Dataobject I,Name:XNodalCoordinate

Dataobject y,Name:YNodalCoordinate

Dataobject enm,Name:ElementNodalMatrix

Dataobject m_Name:MatMax

C Deriving element approximations.

h=DeriveShape(Algorithm:Polynomial,e)
b=DeriveBMatrix(Algorithm:Displacement,d,h)

C Generating Numerical Code for a FEA Step.

(x)=SolveSystem(Algorithm:Pcg,k,r,File:foo)

Figure 5: PIER Input Specification Example

Synthesis Process

In PIER the FEA programs are synthesized by the
method of composition of program components. The
Operations (in PIER knowledge-base), Modules (User-
defined) and Algorithms (User-defined) represent pro-
gram components in the increasing order of hierarchy.
The PIER code generator incrementally refines input-
specifications into FEA programs. The code genera-
tion is overviewed in Fig. 7 and consists of following
phases

1. Parsing Input Specifications

2. Problem Definition

3. Code Generation

130

Sharma

In the first phase various input specification con-
structs are identified and translated into PIER in-

ternal Common Lisp function calls. The Algorithm
template is recognized and preserved. The func-

tions related to the problem definition (parameters of
FEA mesh/element and symbolic derivation of element
properties) are executed first. This assigns appropri-
ate values to control variables in the environment. The

first phase also identifies and analyses PIER Modules,
Module Calls and input/output data object specifi-
cations. The user-specified element approximations

are derived using symbolic mathematical computations
(using AKCL-MAXIMA) and the MAXIMA internal
representations are translated into equivalent Common
Lisp expressions.

The code generation phase generates code for each
Module and constituting Operations. Each Module
CMl in the Algorithm specification generates code for
a Module. Symbolic expressions, if any, appearing in
the Module body are translated into equivalent Op-
eration specifications. The code for a Module is gen-
erated as a set of f77 subroutine calls and the corre-

sponding subroutines. After generating code for all of
the Modules referred to by Module Calls, the Gencray
(Weerawarana and Wang 1989) translator is called to
translate the generated Common Lisp forms into equiv-
alent f77 statements and the holes in the Algorithm
template are filled appropriately. In the following sub-
sections we describe code generation from Module and
Operation followed by an overview of problem solving
with PIER.

Module Code Generation

The code generation from PIER Modules is modeled
by flowgraphs. A flowgraph is a collection offlownodes,
which represent task instances and directed edges,
which represent data dependencies among flownodes.
The code generator derives the flowgraph representa-
tion from the sequence of Operations specified in the
Module body and schedules the flowgraph onto the tar-
get architecture. Operations and data objects form

flownodes and edges of the flowgraph respectively. The
flownodes, thus, represent coarse grained tasks which
have unique cost-models and may be assigned different
execution styles.

The schedular of the code generator takes as input a
flowgraph, a processor count, and Module execution
style (optional). The schedular assigns appropriate
number of processors and an execution style to each
Operation. The execution style must be consistent
with the input and output data objects of the Opera-
tion. The schedule should conform to the cost-models

of Operations and respect the partial order represented
by the flow_aph. The overall objective is to produce
a schedule with the lowest total cost.

Details of the parallel code generation can be found
in (Sharma and Wang 1990) and (Sharma 1992).

Operation Code Generation

Many of PIER Operations involve regular computa-
tions and are internally parallelized in the data par-
allel fashion. Execution styles (BlockParallel, Assem-
b]ed etc.) refers to methods of partitioning the in-
put/output data objects. The user-specified quanti-
ties and output of the schedular are used to refine
the algorithm schemas, which implements the Oper-
ations. PIER accepts input data objects organized in
various specialized storage strategies (e.g. Symmetric
Matrix, Banded Matrix etc.). The appropriate data
reference mapping are automatically generated in the
output code.

Problem Solving with PIER

To use PIER in practice, the first step is to prepare a
mathematical model describing the physical situation.
The modeler, then, prepares the weak statement fol-
lowed by dividing the problem domain in a series of
elements. Here, we are not concerned with the dis-

cretization process and assume that one of the sev-
eral available domain decomposition software tools is
used. However, domain discretization data (i.e. ele-
ment type, nodal coordinates, list of nodes associated
with each element) are to be organized in an appropri-
ate fashion for PIER consumption. To derive compu-
tations for any FEA solution steps, the modeler must
first define the element mesh. This is followed by input
specifications for FEA solution steps which include de-
sired quantities/methods for symbolic derivation and
numerical computation. If the desired numerical algo-

rithm is not part of the PIER's knowledge-base, the
complete algorithm has to be expressed in input speci-
fications. The modelers can use PIER to generate !77
code for FEA solution steps. The generated code, if
desired, can be executed in conjunction with an ex-
isting FEA package. The process is outlined in Fig.
6.

Issues

As indicated earlier, in the present work we are focus-
ing on two issues, that we consider critical, in FEA
code generation: programmable code generator and
code generation for multiple parallel architectures.

Progammable Code Generator

FEA solution method involves symbolic mathemat-
ical manipulation and numerical computation with

large data sets. To solve a FEA solution step the mod-
elers make choices for the domain mesh, element ap-

proximations, and numerical solution algorithm. The
choices made are based on: the characteristics of the

posed model, target (parallel) computer, and numer-
ical convergence properties. Therefore the FEA solu-
tion programs are highly specialized. Code generation
systems which would cover all possible cases are bound

131

Input Specifications

L
PIER

AKCL-MAXIMA

L
Generate

(Parallel) F77

Compile Link

Existing FEA Code

Execution On

(Parallel) Computer

Figure 6: Problem Solving with PIER

to be large, difficult to maintain, and slow. Our ap-
proach is to identify and create library of Operations
(and possibly Modules), which can generate program
components for specific situations. These components
are reusable among FEA solution procedures. A so-
lution algorithm can be fabricated using library com-
ponents and non-FEA specifications in standard f77.
The users can customize the generators to their spe-
cific needs.

Parallel Code Generation

A major open issue in parallel code generation is
the modeling of architecture and the representation
of machine specific parallel programming knowledge.
In PIER, the computations are represented in an ar-
chitecture independent formulation (flowgraphs). The

Sharma

Operations generate instances of flowgraphs and attach
appropriate code segments to the flownodes. The flow-
graph schedular is machine-specific and is the back-end
of PIER. Parallel programming rules are transforma-
tions from flowgraphs representations to equivalent f77
templates.

Parsing

Definition

4

Call To Module

Generate Operation

Specifications

From Formulae

L
Derive Flowgraph

Flowgraph Mappin I

Generate Code

From

PIER Operations

l Merge withTemplate
Generated

Code

Figure 7: Code Generation Scheme

References

Chang, T. Y. 1986, NFAP - A Nonlinear Finite Ele-
ment Program, Vol. 2 - Technical Report, College of
Engineering, University of Akron, Akron, OH.

132

Fritzson, Peter and Fritzson Dug, 1991, The Need for
High-Level Programming Support in Scientific Com-
puting Applied to Mechanical Analysis, Research Re-
port LiTH-IDA-R-91-04, Department of Computer
and Information Science, Linkoping University, S-158
83, Linkoping, Sweden.

Sharma, N. 1988b, Generating Finite Element Pro-
grams for Warp Machine, Proceedings of ASME Win-
ter Annual Meeting, Chicago, IL., Nov. 25-28.

Sharma, N., and Wang, Paul S., 1990, Generating
Parallel Finite Element Programs for Shared-Memory
Multiprocessors, Symbolic Computation and Their
Impact on Mechanics, PCP-Vol. 205, A. K. Noor, L
Elishakoffand G. Hulbert, Editors, The American So-
ciety of MechanicM Engineers, New York.

Sharma, N. and Wang Paul S., 1988a, Symbolic
Derivation and Automatic Generation of Parallel

Routines for Finite Element Analysis, Lecture Notes
in Computer Science, Gianni, P. (Ed.), Proceedings
International Symposium on Symbolic and Algebraic
Computations 33-56, Rome, Italy.

Sharma N. 1991a, Generating Finite Element Pro-
grams for Multiprocessors, Fifth SIAM Conference on

Parallel Processing for Scientific Computing, Hous-
ton, TX.

Sharma, N. and Wang, P. S. , 1991b, High-level User
Input Specifications for Finite Element Code Gener-
ation, Conference on Design and Implementation of
Symbolic Computation Systems (DISCO), April 13-
15, 1992, University of Bath, Bath, UK.

Sharma, N. 1992, The PIER Parallel FEA Program

Generator, In Preparation.

Weerawarana, Sanjiva and Wang, Paul S., 1989, Gen-
cray: User's Manual, Department of Mathematics
and Computer Science, Kent State University, Kent.

Wang, P. S. 1986, FINGER: A Symbolic System for
Automatic Generation of Numerical Programs for Fi-
nite Element Analysis, Journal of Symbolic Compu-
tation, Vol. 2, pp. 305-316.

Steinberg, S. and Roache, P. J., 1990, Using MAC,-
SYMA to write finite-volume based PDE Solvers,

Symbolic Computation and Their Impact on Mechan-
ics, PCP-Vol. 205, A. K. Noor, L Elishakoff and G.
Hulbert, Editors, The American Society of Mechani-
cal Engineers, New York.

Allen, J. R. and Kennedy, K., 1985, PFC: a program
to convert Fortran to parallel form, Supercomputers:
Design and Applications, K. Hwang, editor, IEEE
Computer Society Press, pp 186-205.

ParaScope Editor.

Kuck, D. J. 1978, The Structure of Computers and
Computations, Volume 1, John Wiley and Sons, New
York.

Russo, Mark F., Peskin, Richard L. and Kowalaski,

A. Daniel, 1987, Using Symbolic Computation for Au-

Sharma

tomatic Development of Numerical Programs. Cou-
pling Symbolic and Numerical Computing in Expert
Systems, II.

Rice, John R., and Boisvert, Ronald F., 1985, Solving
Elliptical Problems Using ELLPA CK, Springer Series

in Computational Mathematics 2, Springer-Verlag,
New York.

Kant, E., Daube, F., MacGregor, W., and Wald, J.,
1990, Synthesis of Mathematical Modeling Programs.
Technical Report, TR-90-6, Schlumberger Labora-
tory for Computer Science, Austin, TX 78720.

Cook, Grant O. 1990, ALPAL, a Program to Generate
Simulation Codes from Natural Descriptions. Techni-
cal Report UCRL-102076, Lawrence Livermore Na-
tional Laboratory, L-35, Livermore, CA 94551.

Hirayama, H., Ikeda, M., and Sagawa, N., 1991, So-
lution Functions of PDEQSOL (Partial Differential
EQuation SOlver Language) for Fluid Problems, In
Proceedings of Supercomputing, pages 218-227. ACM
Press, November 1991.

Zienkiewicz, O. C. 1980, The Finite Element Method

in Engineering Science, Mc-Graw Hill, London, pp.
129-153.

Hughes, T. J. R., Ferencz, R. M." and Hallquyist,
J.O., 1987, Large-scale Vectorized Implicit Calcula-
tions in Solid Mechanics on Cray X-MP/48 Utilizing
EBE Preconditioned Conjugate Gradients, Computer
Methods in Applied Mechanics and Engineering, Vol.
61, No. 2, 1987, pp. 215-248.

Winger, J. M. and Hughes, T. J. R., 1985, Solu-
tion Algorithms for Nonlinear Transient Heat Con-
duction Analysis Employing Element-by-Element It-
erative Strategies, Computer Methods in Applied Me-
chanics and Engineering, Vol. 52, pp. 711-815.

133

Shaw

KNOWLEDGE MODELING FOR SOFTWARE DESIGN

MildredL G Shaw & BrianR Gaines 9 _7__.._/_ _ _

Knowledge Science Institute _T

University of Calgary
Calgary, Alberta, Canada T2N 1N4 /

mildred@cpsc.ucalgary.ca, gaines@ cpsc.ucalgary.ca

Abstract: This paper develops a modeling framework for
systems engineering that encompasses systems modeling,
task modeling, and knowledge modeling, and allows
knowledge engineering and software engineering to be seen
as part of a unified developmental process. This framework
is used to evaluate what novel conlributions the 'knowledge
engineering' paradigm has made, and how these impact
software engineering.

INTRODUCTION

In the knowledge acquisition community the development of
tools for eliciting knowledge from experts has come to be
seen as a 'knowledge modeling' exercise in which human
practical knowledge is modeled within the computer
(Gaines, Shaw and Woodward, 1992). It has been suggested
that a common factor underlying all knowledge-based
systems, including software design systems, is that they
contain qualitative world models, and that we can gain
insights into the structure of knowledge bases and
knowledge engineering by classifying the types of models
involved (Claneey, 1989). These considerations Suggest that
a classification of the sources and types of models developed
in system engineering may be used to provide a framework
within which knowledge engineering and software
engineering methodologies and tools can be analyzed and
compared.

One might view the replication of human expertise in a
knowledge-based system as involving the elicitation of the
mental models of the human experts involved (Gentner and
Stevens, 1983). However, we do not have direct access to
these models, and must create conceptual models of them
through communication with the expert (Norman, 1983).
The representations made by the knowledge engineer are not
isomorphic to structures in the mind of the expert (Compton
and Jansen, 1990). Within this framework, one can view
knowledge engineers, or automated knowledge acquisition
systems interacting with the expert, as accessing and
developing the expert's conceptual models. Some parts of
these models may be pre-existent, particularly if the expert
has a teaching role, but other parts will come into being as a
result of the knowledge acquisition process.

The distinction that Norman introduces between mental
models and conceptual models, and the dubious status of
mental models in themselves, suggests that a useful
framework for the analysis of knowledge engineering may
be developed through the analysis of the sources and types
of conceptual model available to the knowledge engineer
rather than focusing only on the mental processes underlying
expertise. The situation of the introspective expert who can
communicate his or her 'knowledge" well, may be treated as

one where the 'knowledge engineering' and 'expert' roles
are operating effectively together within the same person.
The situation of the expert from whom knowledge is being
'elicited' actually building a new model on the basis of his
or her skills through the process of elicitation may be treated
as one where the conceptual model is developed as part of
the process of knowledge engineering. In adopting the
conceptual modeling perspective we do not exclude previous
viewpoints, but rather supplement them with complementary
perspectives.

A MODELING FRAMEWORK FOR INFORMATION
SYSTEM DEVELOPMENT

It is customary in expert system development, to assume that
the expert has already constructed such models or may be in
a privileged position to do so through self-observation and
introspection, and these may be elicited by direct
communication between knowledge engineer and expert.
Additionally, the knowledge engineer may derive models
from other experts, from the literature, and from the
application of principles allowing performance skills to be
derived from deep knowledge. The final knowledge-based
system development involves the synthesis of these many
models and the encoding of them to become an operational
knowledge-based systems emulating the desired expertise.

Thus, the knowledge engineer, or knowledge engineering
team and tools, has access to multiple sources of data
through various channels and uses these to develop a variety
of conceptual models. Figure 1 shows the major conceptual
models that may be developed in knowledge engineering,
distinguished by their sources, and indicating some of the
knowledge engineering processes and skills involved. This
figure attempts to be comprehensive, showing knowledge
sources not only in association with the expert and his or her
behavior, but also knowledge derived from others, the
literature and through the application of laws and principles.

Figure 1 is an accurate representation of what is typically
involved in knowledge engineering for a knowledge based
system development nowadays. It uses any source of
knowledge that is available for system development, not just
the practical reasoning of the expert, and hence exemplifies
the "second type" of knowledge engineering cited above
(Feigenbaum, McCorduck and Nii, 1988). However, it still
has a major, and irreducible component of the first type
representing the central expert systems paradigm. What is
significant is the way in which the two approaches are
synthesized, and also the way in which many components of
the "second type" of activity are already part of modern
systems and software engineering. This is the basis of a
much wider synthesis than that between two forms of
knowledge engineering.

134

Shaw

Expert

Models" & l
Knowledge" I

Performance
Skills

Expertise

Problem
Environment

Models
from

Others

Modeling
Skills

Skills

Models
from

Expert

Synthesis
Skills

Knowledge
Engineer

Models
from

Literature

Derivation
Skills

Observed Observed Models
System Skill from
M ode Is M odeis P rinciples

Observation Encoding
Skills Skills

Expertise Based
System

Fig.1 Modeling processes in knowledge engineering

A MODELING FRAMEWORK FOR INFORMATION
SYSTEM DEVELOPMENT

The discussion of the preceding sections and the range of
modeling processes shown in Figure 1 provide an overall
framework for systems engineering in terms of the sources
and types of models involved. Within such a framework it
should become only a matter of internal classification and
terminology that a method is part of a 'knowledge
engineering' or a 'software engineering' approach, rather
than a resultant system classification.

Figure 2 presents a modeling framework for knowledge
acquisition methodologies, techniques and tools based on the
distinctions already discussed and the incorporation of
system analysis and software engineering procedures. In the
leftmost column are the knowledge sources in terms of
systems and modeling schema already discussed with the
addition, at the top, of 'objective models' as a term for the
formally specified operational models. In the column to the
right of this are the processes giving access to these models.
These processes are shown as mediating between the
systems and models involved, deriving from and generating,
the hierarchical relation between the systems and models in
the leftmost column.

In the next column on the right are shown the knowledge
acquisition procedures appropriate to each of the access
processes. These generate data and knowledge bases as
shown to their right, which are in one-to-one correspondence
with the original systems and models in the leftmost column.
In the rightmost column are shown analysis and synthesis
techniques that draw on these databases to generate the
computational knowledge base, and also mediate between
them generating one form of data or knowledge from
another. These combine with synthesis techniques that
integrate the results of analysis and of derivations from
various knowledge sources to synthesize a computational
knowledge base.

Thus the overall schema consists of five types of
component:

1. Systems and modeling schema: the problem environment,
performance skill to be emulated, expert's mental models,
knowledge engineer's conceptual models, and, possibly,
objective models.

2. Access processes: instrumentation of the target system,
the expert's interaction with it, his or her introspection
about the skill, communication about it, and its expression
in formal terms as objective knowledge.

135

Shaw

3. Knowledge acquisition procedures: observation of the

target system, observation of the expert's behavior,

elicitation procedures, discourse procedures, formalization

procedures, and implementation procedures.

4. Data and knowledge bases: database of system data;

database of behavioral data; informal knowledge base;

formal knowledge base; computational knowledge base;

objective models.

5. Analysis and synthesis procedures:, classical system

identification can be used to build system models from

observation data; empirical induction and case-based

clustering can be used to build skill models from

behavioral data; conceptual organization and linguistic

analysis techniques can be used to build a formal, or

structured, knowledge base from an informal, or

intermediate, one; knowledge modeling techniques can be

used to represent the formal knowledge base in

computational form; and logical deduction from laws and

principles may be used to provide some knowledge about

a system and this, together with the results of data

SYSTEMS AND ACCESS ACQUISITION
MODELING SCHEMA PROCESSES PROCEDURES

Oblactive
Models

Conceptual
Models

Mental
Models

Performance
Skill

Problem
Environment

Explication

Preclslflcatlon

Communication

analyses from various sources needs to be integrated to

form a computational knowledge base.

All the earlier stages of analysis are shown as normally

creating data at the next level but also as potentially creating

computational systems in their own right.

Figure 2 illustrates the way in which knowledge engineering

as a system design methodology is sandwiched between two

classical approaches to system engineering. At the bottom is

the path to system design through instrumentation, data

collection and system identification. At the top is the path to

system design through existing objective knowledge of the

physical world allowing explication of particular

requirements to lead direcdy to implementation. The middle

layers represent the enrichment of the design process when

we draw on human skills as exemplars of the system to be

designed. Such a process has been common informally in

engineering design, and knowledge engineering may be seen

as formalizing it now that computer technology makes it

feasible to develop knowledge-based systems

operationalizing human expertise.

DATA AND ANALYSIS AND
KNOWLEDGE SYNTHESIS

BASES TECHNIQUES

_ Implementation
Procedures

H Formalization
Procedures

Discourse
Procedures

introspection H Elicitation
Procedures

H Behavior
Interaction Observation

Procedures

System

Observation
Procedures

Instrumentation

Knowledge
Integration

Knowledge
Base

Formal
Knowledge

Base

Informal
Knowledge

Base

Behavior
Data
Base

S[stem
Data
Base

Knowledge
Modeling

Techniques

Conceptual
Organization,

Linguistic
Analysis

Conceptual
Induction,

Case-Based
Clustering

System
Identification

Fig.2 A hierarchical framework for knowledge acquisition

136

Shaw

KNOWLEDGE ACQUIS_ON ISSUES IN TERMS OF
THE FRAMEWORK

It is clear that a catchall term such as 'interviewing' does not
designate a monolithic technique in terms of the framework
of Figure 2. When we interview an expert we may be
operating at any level of the hierarchy and may be
supporting any one of the many processes shown. All that
we can say about interviewing in general is that a flow of
linguistic information is involved--it is the content of that
flow that determines the type of knowledge engineering
involved. The expert may provide observations of the
system, observations of his or her own problem solving
behavior, introspection about aspects of his or her mental
models, statements about his or her conceptual models of
any aspect of the situation, and statements of formal or even
computational models relating to the situation.

Specific knowledge acquisition techniques are characterized
by their vertical and horizontal locations within the
framework. For example, protocol analysis involves data
collection for the behavior data base through observation of
interaction at one level or elicitation of introspection at the
next. The behavior database is then subject to statistical
system identification or to conceptual induction and
clustering. The data collection methodology in protocol
analysis may easily slip into the elicitafion of not just a
protocol but also an explanatory commentary which belongs
in the informal knowledge base and is subject to linguistic
analysis. Thus, applications of protocol analysis may
involve multiple levels and activities that are confusing
unless seen as organized within the framework.

Analytical tools such as induction and clustering algorithms
have a well-defined location in the framework as analysis
techniques providing a model creation technology. Their
differentiation comes from what level, or levels, they can
accept data, and at what level, or levels, they create data. A
major focus in machine learning research for several years
has been to create models at the knowledge level, conceptual
structures rather than rules. To the extent that all the

analytic techniques involved do this, the problem becomes
one of integration of conceptual structures. However, it is
more usual to find that the analytic tools create data or
knowledge at different levels and further processing is
required before integration is possible.

Methodologies such as KADS (Akkermans, Harmelen,
Shreiber and Wi¢linga, 1992) that provide a structured
software engineering approach to knowledge engineering are
focused at the penultimate level of applying formalization
procedures to derive a formal knowledge base through
making conceptual models precise. KADS focuses on the
detailed structure of a formal problem solving architecture
within which to operationalize the results of knowledge
acquisition rather than on the processes of knowledge
acquisition themselves. It may be seen as providing a
formally specified 'virtual machine' well-suited to the range
of system developments that have come to be classified
under the heading of 'knowledge-based systems.' Less

137

formally, one can say that it provides a 'high-level language'
in contrast to the 'machine languages' provided by expert
system shells.

Knowledge acquisition methodologies such as those
stemming from personal construct psychology (Shaw, 1980)
that are based on a cognitive model of intelligent agents are
focused on the middle levels in Figure 2, modeling the way
in which mental models mediate between conceptual models
and performance skills. Clearly any well-founded cognitive
psychology has a potential role to play in knowledge
acquisition that is strictly within the 'expert systems'
paradigm of modeling the expert rather than the system.
However, to be useful the psychology must result in
operational models on the one hand and support
methodologies giving access to its hidden variables on the
other. Personal construct psychology has been particularly
attractive in these respects because, even though it is a
constructivist model, it takes a positivist, axiomatic
approach based on a few well-defined primitives that
correspond to a formal intensional logic (Gaines and Shaw,
1992), and is well-supported by practical tools (Boose and
Bradshaw, 1987; Shaw and Gaines, 1987; Shaw and Gaines,
1989).

The interface between cognition and formalization for
people is mediated through language and knowledge
acquisition support is required for the communication and
discourse procedures and analysis level in Figure 2. Current
knowledge acquisition tools addressing this level range from
those focusing on the inter-translation of restricted natural
language and knowiedge representau_on frames such as
SNOWY (Gomez and Segami, 1990), to those providing
support for human classification of natural language
components in terms of knowledge level primitives such as
Cognosys (Woodward, 1990). Improved natural language
processing must have a very high priority in the support of
the complete range of knowledge acquisition processes in
the framework of Figure 2.

Classical system analysis focuses on the collection and
analysis of system and behavior data at the lower levels of
Figure 2. In complex system development the other levels
play their part, but the basic assumption has been that the
final system design is grounded in accurate models of the
environment in which the system is to operate and in precise
'requirements specifications' corresponding to the top level
goals of the human agents involved. The implementation is
quite separate from the system analysis and design because
conventional programming languages do not provide
knowledge-level constructs supporting human understanding
of their operation.

In this respect, the framework of Figure 2 may be seen as an
extension to classical system analysis appropriate to
knowledge-based systems where very high level languages
at the 'knowledge level" are being used for the
implementation to provide this support of human
understanding.

Shaw

CONCLUSIONS

A complete account of system engineering acquisition for
modern advanced information systems requires the
integration of classical system analysis, cognitive modeling
of intelligent agents, linguistic analysis of text and discourse,
and a rich formal language-at the knowledge level. This
integration would provide us with a system development
methodology adequate to cope with the increased
expectations of those specifying requirements for
knowledge-based systems.

However, note that the knowledge level language alone is
only a target for specification. On the one hand it needs to
be made operational as computational knowledge. On the
other it needs to maintain an effective ongoing reladon with
the knowledgeprocesses that drive it, many of which are
those of active human agents forming an essential

component of the ongoing system operation. Knowledge
acquisition should not be seen as part of the system design
process only. Knowledge is dynamic and changing, and
acquisition, maintenance and upgrading must merge into one
process that is fully supported as an ongoing system
operation. In particular, the cognitive aspects of much of the
knowledge must continue to be recognized and supported in
the ongoing system operation. Formalization cannot be at
the expense of human understanding. On the contrary,
effective formalization should lead to enhanced human

understanding. This is the greatest challenge in the
development of an effective knowledge-based systems
technology. The objective is not just emulation of isolated
human peak performance, but rather the emulation of the
total human ability to develop, adapt and maintain that

performance in a dynamic and uncertain environment.

ACKNOWLEDG EMENTS

This work was funded in part by the Natural Sciences and
Engineering Research Council of Canada. We are grateful
to our colleague Brian Woodward for discussions that have
influenced this paper.

REFERENCES

Akkermans, H., Harmelen, F. van, Shreiber, G. and

Wielinga, B. (1992). A formalisation of knowledge-level

models for knowledge acquisition. International

Journal of Intelligent Systems to appear.

Boose, J.H. and Bradshaw, J.M. (1987). Expertise transfer

and complex problems: using AQUINAS as a knowledge

acquisition workbench for knowledge-based systems.
International Journal of Man-Machine Studies 26 3-
28.

Clancey, W.J. (1989). Viewing knowledge bases as

qualitative models. IEEE Expert 4(2) 9-23.

Compton, P. and Jansen, R. (1990). A philosophical basis
for knowledge acquisition. Knowledge Acquisition 2(3)
241-258.

Feigenbaum, E., McCorduck, P. and Nii, H.P. (1988). The
Rise of the Expert Company. _tew York, Times Books.

Gaines, B.R. and Shaw, M.L.G. (1992). Basing knowledge

acquisition tools in personal construct psychology.

Knowledge Engineering Review to appear.
Gaines, B.R., Shaw, M.L.G. and Woodward, J.B. (1992).

Modeling as a framework for knowledge acquisition

methodologies and tools. International Journal of

Intelligent Systems to appear.
Genmer, D. and Stevens, A., Ed. (1983). Mental Models.

Hillsdale, New Jersey, Erlbaum.

Gomez, F. and Segami, C. (1990). Knowledge acquisition
from natural language for expert systems based on

classification problem-solving methods. Knowledge

Acquisition 2(2) 107-128.
Norman, D.A. (1983). Some observations on mental models.

Mental Models. Hillsdale, New Jersey, Erlbaum.

Shaw, M.L.G. (1980). On Becoming A Personal Scientist:

Interactive Computer Elicitation of Personal Models
Of The World. London, Academic Press.

Shaw, M.L.G. and Gaines, B.R. (1987). KITTEN:

Knowledge initiation & transfer tools for experts and
novices. International Journal of Man-Machine

Studies 27(3) 251-280.

Shaw, M.L.G. and Gaines, B.R. (1989). A methodology for

recognizing conflict, correspondence, consensus and
contrast in a knowledge acquisition system. Knowledge

Acquisition 1(4) 341-363.

Woodward, B. (1990). Knowledge engineering at the front-

end: defining the domain. Knowledge Acquisition 2(1)
73-94.

138

Uschold

The Use of Typed Lambda Calculus for

Comprehension and Construction of

Simulation Models in the Domain of Ecology

Michael Uschold, Ph.D.

University of Edinburgh

1990

N98-17526

Abstract

We are concerned with two important issues in simulation modelling: model

comprehension and model construction. Model comprehension is limited because

many important choices taken during the modelling process are not documented.

This makes it difficult for models to be modified or used by others. A key factor

hindering model construction is the vast modelling search space which must be

navigated. This is exacerbated by the fact that many modellers are unfamiliar

with the terms and concepts catered for by current tools.

The root of both problems is the lack of facilities for representing or reasoning

about domain concepts in current simulation technology. The basis for our achieve-

meats in both of these areas is the development of a language with two distinct

levels; one for representing domain information, and the other for representing

the simulation model. Equally importantly, we make formal connections between

these two levels. The domain we are concerned with is ecological modelling.

This language, called ElkIogic, is based on the typed lambda calculus. Im-

portant features include a rich type structure, the use of various higher order

functions, and semantics. This enables complex expressions to be constructed

from relatively few primitives. The meaning of each expression can be determined

in terms of the domain, the simulation model, or the relationship between the

two. We describe a novel representation for sets and substructure, and a variety

of other general concepts that are especially useful in the ecological domain. We

use the type structure in a novel way: for controlling the modelling search space,
rather than a proof search space.

We facilitate model comprehension by representing modelling decisions that are

embodied in the simulation model. We represent the simulation model separately
from, but in terms of a domain model. The explicit links between the two models

constitute the modelling decisions. The semantics of Elklogic enables English text

to be generated to explain the simulation model in domain terms.

Inherent in this is a new approach to model construction which we have imple-

mented in a computer program called ELK. Users build up a sequence of models,

each being used to identify and constrain the important modelling decisions for the

next one. The first model consists of general domain information (e.g. forestry).

The second is a description of the particular situation of interest (e.g. some for-

est). Finally a simulation model of that situation is constructed. This approach

enables users to communicate in familiar terms as well as significantly reducing

the number of decisions that have to be made at any point. Constructing simula-

tion models this way enables them to be self-documenting; this facilitates model
comprehension.

139

USChold _

Relevant Publications

Mike Uschold

March 17, 1992

[3] gives full details of motivation, theory and implementation of ELK.

[1] describes an early version of Elklogic.

[4] describes the overall methodology used, but skims over the details of the logic lan-

guage.

[5] is a revised and extended version of [4]. The former is described using more domain

independent terminology, and is tailored for the model management community in

the field of decision support systems.

[6] gives a broad overview of the overall project (ECO) in which this work took place.

[2] gives full details of the ECO project (excluding ELK).

References

[1] A. Bundy and M. Uschold. The use of typed lambda calculus for requirements cap-

ture in the domain of ecological modelling, llesearch Paper 446, Dept. of Artificial

Intelligence, Edinburgh, 1989. Submitted to Logic and Computation.

[2] D. Robertson, A. Bundy, lt. Muetzelfeldt, M. Uschold, and M. Haggith. Eco-Logic:

Logic-based approaches to Ecological Modelling. MIT Press, 1991.

[3] M. Uschold. The Use of Typed Lambda Calculus for Comprehension and Construc-

tion of Simulation Models in the Domain o/Ecology. PhD thesis, Dept. of Artificial

Intelligence, Edinburgh, 1990.

[4] M. Uschold. The use of domain information for comprehension and construction of

simulation models, tlesearch Paper 534, Dept. of Artificial Intelligence, Edinburgh,

1991.

[6]

M. Uschold. The use of domain information and higher order logic for model manage-

ment. In Holsapple and Wlfinston, editors, Recent Developments in Decision Support

Systems, page ?? Springer-Verlag, 1992. forthcoming.

M. Uschold, D. Robertson, A. Bundy, and R. Muetzelfeldt. Helping inexperienced

users to construct simulation programs: An overview of the ECO project. In S. Vadera,

editor, Ezpert System Applications, pages 117-132. Sigma Press, 1089. This is a
revised and extended version of a paper published in 'Research and Development in

Expert Systems 4', BCSES 1987; Also available as D.A.I. Research paper 338.

140

Voigt

N93-17527

Knowledge-Based Design of Generate-and-Patch

Problem Solvers that Solve Global Resource Assignment
Problems

Kerstin Voigt*

Computer Science Department, Rutgers University

New Brunswick, NJ 08903

voigt _cs.rutgers. edu

Abstract

We present MENDER, a knowledge based system
that implements software design techniques that
are specialized to automatically compile generate-
and-patch problem solvers that satisfy global re-
source assignments problems. We provide em-
pirical evidence of the superior performance of
generate-and patch over generate-and-test, even
with constrained generation, for a global con-
straint in the domain of "2D-floorplanning'. For
a second constraint in "2D-floorplanning" we
show that even when it is possible to incorpo-
rate the constraint into a constrained generator, a
generate-and-patch problem solver may satisfy the
constraint more rapidly. We also briefly summa-
rize how an extended version of our system applies
to a constraint in the domain of "multiprocessor
scheduling = .

Introduction.

The MENDER project presented here is aimed at de-
veloping techniques to automatically compile generate-
and-patch problem solvers; these problem solvers effi-
ciently construct solutions that satisfy a conjunction
of interacting constraints. MENDER is a part of the
larger KBSDE effort towards automating knowledge-
based design of algorithms [Tong, 1991]. MENDER
builds on recent successes in automatically compiling
conjunctions of constraints on composite structures
into %onstrained" generate-and-test problem solvers

"The research reported here was supported in part by
the National Science Foundation (NSF) under Grant Num-
ber IRL9017121, in part by the Defense Advanced Research
Projects Agency (DARPA) under DARPA-funded NASA
Grant NAG2-645, in part by DARPA under Contract Num-
ber N00014-85-K-0116, in part by NSF under Grant Num-
ber DMC-8610507, and in part by the Center for Computer
Aids to Industrial Productivity (CAIP), Rutgers Univer-
sity, with funds provided by the New Jersey Commission
on Science and Technology and by CAIP's industrial mem-
bers. The opinions expressed in this paper are those of the
author and do not reflect any policies, either expressed or
implied, of any granting agencies.

[Braudaway, 1991]. The constrained generator is the
result of incorporating into the generator constraints
that constrain local parts of the composite structure

("local constraints"). The conjunction of constraints
may feature other constraints which restrict all or
most parts of the artifact simultaneously ("global con-
straints"), a property that prevents their successful in-
corporation. These constraints could be satisfied by

placing testers after the constrained generator. How-
ever, the resulting generate-and-test problem solver
may still perform grossly inefficient.

The MENDER research capitalizes on the observa-
tion that once a complete composite artifact has been
generated, frequently a small number of local, well-
directed modifications ("patches") to the artifact suf-
fice to produce a solution to a constraint. We have

developed and implemented the MENDER compiler
which automatically builds such genera$e-and-pa$ch
problem solvers from an inefficient generate-and-test
problem solver. MENDER automatically compiles a
hillclimbing search component, called a epatcher', and
interfemes it with the generator. Hillclimbing patch-
ers are defined by the set of patching operafors (i.e.
parameter value changes) and an evaluation function
that measures progress towards constraint satisfaction.
We show that cost-effective generate-and-patch prob-
lem solvers are possible with patchers that have the
following two properties. (1) Patching operators do
not result in violations of constraints that have been

satisfied through generation. (2) Patching se0zches
the space of parameter value changes in a constraint-
oriented fashion; i.e. when choosing the next move,
changes that promise higher degrees of constraint sat-
isfaction are prefered over those that yield no improve-
ment, or worsen the state.

The MENDER research has focused on the auto-

matic compilation of hillclimbing patchers that are spe-
cialized to satify global constraints that in some ab-
stract sense involve the assignment of =resources" to

"consumers". Resource aJsignment problems (RAPs)
are constraints that constrain the nature of assignment
between components of a composite "consumer struc-

ture" and a composite "resourcestructure". Our con-

141

vention is that the consumer structure corresponds to
the output of generate-and-test or generate-and-patch
problem solvers. The resource structure is typically
some other coas_an_ structure that is given as a part
of the specification of a RAP. RAPs are of interest
to us because they can successfully model significant
portions of important and well-known classes of prob-
lems (floorplanning, scheduling, n-queens,...). Sec-
ondly, they share features that make them conducive
to the automatic compilation of efficient generate-and-
patch problem solvers.

In this paper, we report on MENDER_s success in
automatically compiling, and interfacing with a con-
strained generator, a patcher that satisfies two global
constraints in the domain of "2D-floorplanning". The
first global constraint which we will refer to as 211
house" constraint is informally defined as

_orLstraint "fill house": The rooms in the
fioorplan must cover the house area com-
pletely.

For this constraint we will briefly sketch the steps of
MENDER's compilation of a generate-and-patch algo-
rithm, and present the results of a preliminary perfor-
mance study on the resulting problem solver.

The second constraint - refered to as "no overlap" -
is defined as

Constraint "no overlap": Rooms in the floor-
plan do not overlap.

We will not sketch the compilation of a generate-and-
patch problem solver for "no overlap", but towards
the end of this paper we will present performance
data on the algorithm that MENDER constructed.
The "no overlap" constraint is interesting to us be-
cause it lies on the boundary between local and global
constraints. The RICK compiler [Braudaway, 1991]
has been able to partially incorporate "no overlap"

into a generator of floorplans by compiling filters that
forward propagate necessary conditions derived from
generated rooms to rooms that are to be generated
next. We compared the performances of the RICK-
compiled constrained generator with the MENDER-
compiled generate-and-patch algorithm:for "no over-:
lap". We will see that generate-and-patch consistently
performed better than constrained generation.

To show generality of MENDER's methods we will
also briefly describe how MENDER can automatical|y _:
compile a generate-and-patch problem solver for a con-
straint in the domain of =multiprocessor scheduling".

Classification-based compilation of

hillclimbing patchers.

In the past, we have already presented a classification-
based technique to construct hillclimbing patchers
[Voigt and Tong, 1989]. The here presented 5-step
technique is an improvement over the previous one in
that a lattice-like taxomomy of abstract RAP schemas

Voigt

can be exploited in ways that eliminate costly match-
ing and theorem proving. The lattice formed by the
16 abstract RAPs is illustrated in Fig. 1. The least

i o----- " i //_ ! ; ----. 1
I 0 II L /" / % _ i 0 _ j

, _ !
t x

Figure 1: Taxonomy of abstract RAP schemas.

constrained RAP schema, RAP1 (unconstrained, or
"True"), is found at the top of the lattice, the most
constrained RAP schema, RAP16 (bijection from con-
sumers to resources, and bijection from resources to
consumers) forms the bottom of the lattice. RAP2,
RAP3, RAP4, and RAP5 are the basic RAPs. All
RAPs on the remaining layers of the lattice are con-
structed from the basic ones by conjunction, as in-
dicated by downwards arrows (e.g. RAP6 -- RAP2
ARAP3). Thus, RAP16 is the conjunction of all four
basic RAPs. We will see later how explicit knowledge
of these relationships between the RAPs can be ex-
ploited in constructing efficient algorithms.

Step 1 - Classifying the constraint. In its first
step, MENDER asks the user to define the global con-
straint, e.g. "fill house", in a guided sequence of ques-
tions. The answers to these questions are rephrased
as a first-order logic representation of the concrete
constraint. In parallel to formulating the concrete
constraint MENDER parses a tazomorny of abstract
RAPs; when all questions have been answered the ab-
stract RAP class for the constraint has also been de-
termined. For example, the _ill house" constraint may
be formulated as

Vp {point-of-rect(p,Hs) =ez
3rm [member(rm,Fp) Apoint-of-rect(p,rm)]}

"Each point p in the rectangularhouse (I/s)

isassignedto at leastone room (rm) point in
the floorplan (Fp)."

and is automatically classified as an instance of the
abstract resource assignment problem RAP5, which is

represented by the abstract first-order logic sentence

142

below:

Vr {subsV'uct(r, aesources)
3c [substruct(c, Consumers) Aassign(r,c)]-}

'_Each resource r in the resource structure

(Resources) is assigned to at least one con-
sumer c in She consumer s_ructure (Con-
Burners)."

MENDER pairs up the terms of the abstract RAP lan-
guage (e.g. substruct, assign) with the concrete terms
of "fill house" as follows:

p ,o**,,,o,,*l***,**,,,*,.m,.o..l.,..,,..,, r

rm o.,,.oo,,o,,,,oo...o....o...o.o,.,oo,., e

Hs Resources

Fp Consumers
point-of-rect(p,Hs).., substruct(r, Resources)
member(rm,FP) ... substruet(e, Consumers)
point-of-rect(p,r) assign(r,c)

Step 2 - Deriving an evaluation function. As-
sociated with each abstract RAP is a generic e_alu-
aries funclion which indicates in abstract terms how
to measure degrees of constraint satisfaction by quan-
tifying assignments between consumers and resources.
From RAP5 we retrieve the generic evaluation function
shown in Fig.2. It computes the number of resources
assigned to at least one consumer. MENDER special-
izes this abstract evaluation function into a concrete

evaluation function for "fill house" by instantiating the
abstract terms with the corresponding concrete terms.
The evaluation function for "fill house" then computes
the number of points p in house Hs that are also points
in some room rm in fioorplan Fp (Fig.2).

Typically MENDER faces a scenario in which a
constrained generator exists which already guarantees
the satisfaction of several constraints. MENDER's

task consists in constructing and interfacing with this
generator a patcher which will satisfy an additional
global constraint. When some or all of the constraints
that have been incorporated into the generator match
several of the basic RAP schemas (or conjunctions
thereof), then properties of the RAP lattice can be
exploited to derive an evaluation function that is more

ef[icient than the one in Fig. 2. For example, imag-
ine that a constrained generator exists that guarantees
that all rooms in the floorplan are located inside the
house (RAP2) and do not o_erlap (RAP4), and and
the house is flat (RAP3) (i.e. one room point cannot
coincide with more than one house point). Then sat-
isfying "fin house" (RAP5) actually implies satisfying
the conjunction of these constraints. The conjunction
in turn is equivalent to RAP16. We know that RAP16,
that is, the conjunction of RAP2, RAP3, tLAP4, and
RAP5, implies that the number of consumer substruc-
tures must be equal to the number of resource sub-
structures. I.e.

RAP2 A RAP3 A RAP4 A RAP5

SIZE(C) = SIZE(R),

Voigt

Evaluation f_action for RAPS:

variables: r c out temp;
¢onsta_ats: Consl_ters Resources

begJ_n-pro¢
out <- 0

forall SUBSTRUCTS r in Resources

tenp <- 0

forall SUBSTRUCTS c in Consumers

if ASSIGN(e,r) - true

then temp <- I

exit-forall end-if

ond-forall

out <- out + romp

end-forall

return out

end-proc

INSTANTIA TE

Evaluation function for ''fill house'':

variables: p rm out trap;
constants: Fp Hs
begLu-proc

out <- 0

forall POINT-OF-RECTp in Hs

romp <- 0

forall HEHBERra in Fp

if POINT-OF-RECT(p,rl) - tx-ue

then romp <- 1

oxit-forall end-if

end-forall

out <- out + temp

ond-forall

return ou_

ond-proc

Figure 2: Generic evaluation function for RAP5; in-
stantiated for "fill house".

where C and R stand for Consumers and Resources

respectively. We also know that the following impli-
cations and equivalences hold for the basic RAPs (we
write Ca and Ra for "assigned consumers" and "as-
signed resources" respectively):

ILAP2 ¢_ SIZE(C) _>SIZE(R.) ASIZE(C) = SIZE(C,)

ILAP3 _SIZE(C,) _>SIZE(R,)

RAP4 =_SIZE(C,) < SIZE(R*)

RAP5 _ SIZE(C) < SIZE(R.) ASIZE(R) = SIZE(R.)

It follows that

ILAP2 A RAP3 A RAP4 A

SIZE(C) = SIZE(R) _RAP5

Therefore, knowing that all rooms axe inside the house
and do not overlap, and the house is fiat,

SIZE(Fp)°_nt =SIZE(H s)Po_"t =_"fill-house"

143

Volgt

More EFFICIENT evaluation func¢ion

for ''fill house":

variables: out,r

oonstancs: Fp

begin-proc

out <- 0

feral1 r in Fp

out <- ou¢ + rect-length(r) * rec¢-width(r)

snd-forall

return ou_

end-proc

Figure 3: More efficient evaluation function for "fill
house".

That is, the objective of "fill house" coincides with
the number o/house poin_ being equal _o _he number
o/all room points in _he floor?Inn. Progress towards
satisfying "fill house" can be measured by the total
number of room points in the fioorplan. MENDER
searches its knowledge base of data types and finds
that the number of points of an object of type rectangle
can be efficiently computed as the product of rectangle
length and rectangle width. By adopting this measure
as the revised evaluation function for _fill house" (see
Fig. 3) MENDER constructs an evaluation function
that computes significantly faster the original one (Pig.
2).

Step 3 - Characterizing "improving opera-

tors". Next MENDER continues by working with
the lessefficientevaluationfunction in Fig. 2. Two

additionalpiecesof information are associatedwith a

genericevaluationfunction:the directionofchange to-

wards greater satisfaction of the constraint("increase"
or "decrease"), and a characterization of events that
can cause the desired change. For RAP5 the direc-
tion of positive change is "increase" (i.e. higher value
of the evaluation function indicates greater constraint
satisfaction), and the event to cause such change is "in-
crease _he frequency o/ 'ASSIGN(c,r) = _rue' ". For
"fill house" this translates into the information that the

value of the evaluation function can be increased (im-
proved) if the floorplan is modified such that more fre-
quently 'point-of-rectangle(p,rm) = true'. MENDER
regresses this event through the definitions of relevant

datatypes and predicates in its knowledge base, and
thereby determines that only increases of the "length"
and "width" parameters of the rooms in the floorplan
can - in one application - lead to greater _filling" of
the house. These parameter changes are termed "im-
proving operators" to distinguish them from parameter
value changes (e.g. changes in room location, "shrink-
ing" of rooms) that are guaranteed nor to contribute
towards greater constraint satisfaction.

Step 4 - Instantiating the "patcher shell".
The patcher shell is a piece of code that realizes a
basic hillclimbing strategy (with backtracking). It is
rendered operational for a given global constraint by
instantiating it with the concrete evaluation function
and "improving operator" information. The patcher
shell provides the choice of two types of "greedy" con-
trol strategies: "greedy", and "greedy and strictly as-
cending". These controls differ in how and to what
extent the evaluation function and "improving oper-
ator" information are employed. Both controls use
the evaluation function to order the applicable patch-
ing operators at each choice point in decreasing or-
der of progress towards satisfying the constraint. The
"greedy and strictly ascending" control restricts the set

of patching operators to only those that are "improv-
ing". For example, to patch for _fill house" possible
parameter value changes are limited to increased values
in the "length" and "width" parameters of rooms. In
"greedy" patching, which operates with the full set of
applicable operators (e.g. all changes of room "length"
,"width", and changes of the "x-coordinate" and "y-
coordinate" of room location points) knowledge of "im-
proving operators" can help to significantly reduce the
costofevaluatingthe promise oflegal"next"operators

at each decisionpoint. Among the set of optionsonly

"improving" operators are evaluated in detail,while

the closerexamination of the remaining operators (a
prioriknown to make no or negative progress)issus-

pended untilafterallpreferedoperatorshave failedto
provide a solution.We found empiricallythat for up

to80% ofallapplicableoperationsthe evaluationfunc-

tionvaluewas never computed, reducing the cost/node
considerably.

Step 5 - Building "generate-and-patch'.
MENDER interfaces a constrained generator with a
patcher such that constraints satisfied by generation
will not be violated during patching. This is accom-
plished by making the patcher adhere to the same
restrictions that are forced upon generation when in-
corporating the local constraints. While these restric-
tions limit the set of patching operators, chances are
that sufficient options remain to produce solutions. It
is also exactly because of these restrictions that the
patcher search space is typically smaller than the orig-
inal generation space, allowing faster problem solving
by patching than backtracking and regenerating.

Experimental results.

We present the results of our preliminary empirical
studies of the performances of the generate-and-patch
problem solvers that MENDER constructed for the
"fill house" and "no overlap" constraints.

"Fill house". In the generate-and-patch prob-
lem solver for _fill house" the (RICK-compiled) con-
strained generator guarantees that all generator out-
puts are floorplans with nonoverlapping rectangu-
lar rooms no smaller than 5x 5 units, and are lo-

144

cared inside a given house area and adjacent to at
least one house wall. We compare performances
of constrained generate-and-test (gg:t), generate-and-
patch with "greedy" control of patching (g&p:greedy),
generate-and-patch with ``greedy and strictly ascend-
ing" (g&p:gr-asc) control. As added control condition,
we also test generate-and-patch without any informed
control strategy (g&p:default). Our performance mea-
sure is the "repair effort" expended by each problem
solver after the first candidate has been generated. 1
"Repair effort" for generation is measured in number
of nodes (alternative selections of parameter values)
expanded through backtracking and regeneration. Re-
pair by patching is measured in number of nodes (mod-
ifications of parameter values) expanded within the
patcher space.

We ran each problem solver 20 times for floorplans
with 1, 2, 3, and 4 rooms. The constrained generator
produced fioorplans in random order. The house di-
mensions were chosen relative to the number of rooms,
such that the smallest legal floorplan would cover ,-,
30% of the house area. Our results, averaged over
the 20 runs, are plotted in Fig.4. Overall we find

8'_'_p umnbet _ _ n_Jm

$

/
2--//

Y,
i"

s •
/

a

t e

J
J J

s"t

J� /
.ee _ ._

/ /" ..w

e"/ /
j y"

wee.S

e

Im_Ol r'

t I :mmber ort'_

1.00 2.0O 3_0 4.0O

Figure 4: "Repair effort" of generate-and-test and
generate-and-patch for "fill house" (y-axis scaled loga-
rithmically).

that all typee of generate-and-patch were consistently

1Generating the first candidate has a fixed cost shared
by all problem solvers, and is therefore ignored in our study
of comparative cost.

Volgt

better than constrained generate-and-Lest which con-
firms our intuitions and observations. The plots show
that generate-and-patch with "greedy" control very
significantly outperformed constrained generate-and-
test. E.g., for 4-room floorplan 10,000 generations 2 did
not suffice to satisfy "fill house". In contrast, patch-
ing achieved repair in only 16 patcher nodes. Not
surprising is the inefficient performance of generate-
and-patch without control (g&p:def). Generate-and-
patch with "greedy and strictly ascending" control was
second best but notably less efficient than "greedy".
In the past, we had shown that this type of problem
solver can perform much better, when patching is in-
terleaved with "block-preventing" moves that circum-
navigate dead-ends [Voigt and Tong, 1989]. Naturally,
this facility involves some additional cost which judg-
ing from the good performance of "greedy" was not
warranted by our examples. At this point, we with-
hold judgment on the relative merits of "greedy" ver-
sus "greedy and strictly ascending patching". Which
problem solver is likely to be more cost-effective seems
to depend on the domain and the constraint. We
need to study MENDER-compiled generate-and-patch
problem solvers for larger numbers of more diverse con-
straints to obtain more conclusive results.

"No overlap". In a further study, we compare
the performance of the MENDEP_-compiled greedy
generate-and-patch problem solver (g&p:greedy) to
satisfy "no overlap" with the PriCK-compiled con-
strained generator (constr-g) which outputs nonover-
lapping fioorplans. We measure and compare the per-
formances of both types of problem solvers in num-
ber of nodes expanded in the respective generation
and patching spaces. We ran generate-and-patch and
constrained generation 20 times for 2 to 5 rooms and
a 15x15 house. Note that constraint incorporation
by RICK does not prescribe a particular (constraint-
dependent) generation order. Therefore, performance
data were collected with a randomized generation or-
der in the constrained generator. The results, aver-
aged over 20 runs, are plotted in Fig. 5. We find that
generate-and-patch finds solutions considerably faster
than the constrained ge_nerator, Thee data show_t_hat
the utility of generate-and-patch algor_th_ is not re,
stricted to constraints whose extremely high degree of
globality renders the compilation of a constrained gen-
erator infeasible or undesirable. Even when it is pos-
sible to compile a constrained generator, a generate-
and-patch algorithm may be a viable, and potentially
preferable alternative.

Applying MENDER to other domains.

At the present time all problem solvers that MENDER
has automatically constructed solve problems in the
domain of 2D-floorplanning. However, we have worked

2Although the plot shows data point 10,000, patching
was cut off at 10,000 nodes without solutions.

145

number o_'mxtb m

|e÷(

2

_ /
/
/

/
/ JJ

/
/

/
J

_ ofrooaJ

ZOO 3.OO 4.00 $.00

Figure 5: Satisfying _no overlap" by constrained gen-
eration vs. generate-and-greedy-patch (15x15 house)
(y-axis scaled logarithmically).

out paper traces on how an extended version of our
system will be able to compile generate-and-patch
problem solvers for constraints in a variety of other

domains (e.g. n-queens, graph-coloring, scheduling,
VLSI-design) [Voigt, 1991]. Here we will briefly sum-
marize how MENDER could be applied to a multi-
processor scheduling problem taken from the listing of
NP-complete problems in [Garey and Johnston, 1979]:

Multiprocessor Scheduling:

"INSTANCE: Set T of tasks, number m 6 Z + of
processors, length l(t) E Z + for each t E T, and a
deadline D E Z + •

QUESTION: Is there a m-processor schedule for
T that meets the overall deadline D, i.e., a func-
tion _ : T --+ Z0+ such that, for all _ >_ 0, the

number of tasks t E T for which a(t) _< u <
a(t) + l(t) is no more than m and such that, for
allt E T,a(t) + l(t) < D?"

Suppose that this problem is presented to MENDER
in terms of a consumer structure Schedule which is a

set of tasks with known lengths and a resource struc-
ture TimeTable which is a list of consecutive time _lots.
The latest time slot corresponds to the deadline D. As-

sume that a generator produces schedules by assigning
starting times to each task. To satisfy scl_eduling con-
stralnt a schedule must satisfy the following conjunc-

Volgt

tion of subconstraints: (1) a task in Schedule must be
assigned a starting time that corresponds to a time slot
in TimeTable, and (2) a time slot in TimeTable must
not be assigned to more than m tasks. (Note that we
model the m processors as a capacity limitation on each
time slot.)

MENDER. would recognize this constraint as an in-
stance of R.AP7 which is a conjunction of R.AP2 and
RAP4 + where RAP4 + is a generalization of the orig-
inal RAP4. RAP4 requires that each resource is as-
signed to at most 1 consumer. RAP4 + requires that
each resource be assigned to at most m consumers
for m > 2. Based on this classification of the con-

straint, MENDER. would derive as an evaluation func-
tion a measure that combines the number of all tasks in

Schedule assigned to time slots within TimeTable with
the sum of how many times exceeding m each time
slot has been assigned to some task. Given this eval-
uation function, MENDER determines that assigning
earlier starting times is most likely to improve a sched-
ule with respect to the evaluation function. Therefore,
generate-and-patch with greedy patching would prefer
scheduling tasks earlier over rescheduling tasks to later
starting times.

Related research.

KIDS [Smith, 1991] and STRATA [Lowry, 1991] are
two algorithm design systems that are closely related
to MENDER.. Both systems design search algorithms
but differ from MENDER. in the assumptions made
about the initial problem specification, and in the way
domain knowledge and algorithm knowledge are used
to construct search operators and control facilities.

KIDS automatically constructs search algorithms,
e.g. a global search algorithm, by retrieving from
a library of abstract global search theories a theory
that applies to the datatypes mentioned by the con-
straint. The abstract theory is then specialized into a
global search algorithm through a series of program-
transformations. Selection of global search theories
and transformation steps is done in interaction with
the user. KIDS enables the search algorithm to make
use of problem-specific information by deriving neces-
sary filters that prune those parts of the search space
that are void of solutions. The derivation of necessary
filters is accomplished by a deductive inference compo-
nent.

KIDS is a much larger and more general algorithm
design system than MENDER.. KIDS works with a
larger and more varied library of abstract search the-
ories, enabling it to not only construct global search
algorithms, but local search and divlde-and-conquer
problem solvers as well. MENDER. is restricted to
compiling local search algorithms, and does so only
for constraints that fall into one of 16 abstract RAP

categories. However, precisely because of its restric-
tions, MENDER. has several advantages over KIDS.
MENDER is fully automatic whereas KIDS requires

146

that the user make important design decisions. Be-
cause MENDER's constraint knowledge is restricted
to RAPs for which generic evaluation functions are
known, the cost of compiling search control facilities,
i.e. the cost of retrieving and instantiating an evalua-
tion function schema, is relatively cheap in MENDER.
The derivation of necessary filters by KIDS's deduc-
tive inference component can be very costly. For
constraints that are as global as 211 house", we ex-
pect KIDS to have great difficulty in deriving a filter.
MENDER, however, can easily and cheaply provide an
evaluation function to guide the search.

The STRATA system by Lowry has been integrated
into KIDS as the component which derives local search
problem solvers. STRATA and MENDER are sim-
ilar in that they derive search operators ("patching
operators" in MENDER; "neighbourhood structures"
in STP_TA) from datatypes mentioned in the con-
straint formulation and a cost function whose value
local search strives to optimize. A major difference
between both systems lies in the nature of the ini-
tial problem formulation. STRATA accepts optimiza-
tion problems that list output conditions and a cost

function as two separate and independent components
of the problem formulation. In principle, any set of
output conditions could be paired with any cost func-
tion. MENDER's style of problem formulation offers
less flexibility, in that the the output conditions and

cost function ("evaluation function") are interdepen-
dent. In MENDER, a constraint is presented only in
the form of output conditions. A suitable cost function
is then derired from the output conditions. As in com-
parison with KIDS, MENDER trades flexibility and
variety of problem classes for a more direct and low cost
algorithm design process. Since MENDER's cost func-
tions are instances of generic cost functions, the type
of cost function is known to the system. Knowing the
nature of the cost function a priori allows us to equip
MENDER with a regression mechanism that is special-
ized - and therefore cost-effective- in tracing desirable
cost function changes back to local modifications in
the solution structure. For the similar task, STRATA
needs to use the much more general and costly deduc-
tive inference component of KIDS.

MENDER-compiled patchers adopt a repair strategy
that is similar to the one recently examined by Minton
[Minton et aL, 1990]. Minton demonstrates how a lo-
cal search problem solver controlled by a simple "min-
imize conflicts" heuristic can solve large-scale schedul-
ing and very large n-queens problems in approximately
linear time with respect to problem size. Socic and
Gu [Sosic and Gu, 1990] reported comparable perfor-
mances for similar local search problem solvers fo_very
large n-queens problems. However, to automate the
construction of efficient problem solvers that can take
advantage of the "minimize conflicts" heuristic, a con-
straint has to lend itself to an easy quantification in
terms of number of %onflicts". The notion of "con-

Voigt

fiict" associated with a given constraint may or may
not be obvious from the formulation of the constraint.

MENDER solves both these problems for constraints
of type RAP. MENDER reexpresses RAP constraints
in terms that allow the conceptualization of a notion of
"conflict" that captures the specifics of the constraint
and is amenable to easy quantification.

Future research.

In the near future, we plan to extend MENDER to
handle global constraints in a variety of other do-
mains, e.g. scheduling, VLSI-design, n-queens, graph-
coloring, satisfiability. We also intend to explore pos-
sibilities of applying MENDER's classification-based
approach to automatically compiling "look-ahead" fa-
cilities which detect and circumnavigate unpatchable
states early on.

Acknowledgements.

I am grateful to Chris Tong for his insights and guid-
ance. For valuable comments and suggestions I also
thank Lou Steinberg, Don Smith and Tom Ellman.
Further thanks to Wes Braudaway for the constrained
generators constructed with his RICK compiler.

References

Braudaway, W.K. 1991. Knowledge Compilation for
Incorporating Constraints. Ph.D. Dissertation, Rut-
gers University.

Garey, M.R. and Johnston, D.S. 1979. Computers
and Intractability. A Guide to the Theory of NP-
Completeness. Freeman.

Lowry, M.R. 1991. Automating the Design of Lo-
cal Search Algorithms. In Lowry, M.R. and McCart-
ney, R.D., editors 1991, Automating Software Design.
Menlo Park: AAAI Press.

Minton, S.; Johnston, M.D.; Philips, A.B.; and Laird,
P. 1990. Solving Large-Scale Constraint Satisfaction
and Scheduling Problems Using a Heuristic Repair
Method. In Proceedings of AAAI-90.

Smith, D.R. 1991. KIDS - A Knowledge-Based Soft-
ware Development System. In Lowry, M.R. and Mc-

Cartney, R.D., editors 1991, Automating So_ware
Design. Menlo Park: AAAI Press:

Sosic, R. and Gu, J. 1990. A Polynomial-Time Algo-
rithm for the N-Queens Problem. SIGART Bulletin
1(3).

Tong, C. 1991. A Divide-and-Conquer Approach to
Knowledge Compilation. In Lowry, M.R. and Mc-
Cartney, 71_.D:, edito_/_-- i-99i, Automating Soft'are
Design. Menlo Park: AAAI Press. _

Voigt, K. and Tong, C. 1989. Automating the Con-
struction of P£tchers that Satisfy Global Constraints.
in Proceedings of IJCAI-89, Detroit.

Voigt, K. 1991. Working Notes. Computer Science
Department, Rutgers University.

147

- - - Walinau

'q9 '.']7528
CARDS: A Blueprint and Environment for Domain-Specific Software Reuse

Kurt C. Wallnau, Anne Costa Solderitsch and Catherine Smotherman

earam xSystemsCorporation
(A Unisys Company)

Farimont, West Virginia and Paoli, Pennsylvania

i CARDS (Central Archive for Reusable Defense Software) exploits advances in domain analysis and domain modeling to

identify, specify, develop, archive, retrieve, understand and reuse domain-specific software components. An important ele-
: mere of CARDS is to provide visibility into the domain model artifacts produced by. and services provided by, commercial

computer-aided software engineering (CASE) technology. The use of commercial CASE technology is important to provide

rich, robust support for the varied roles involved in a reuse process. We refer to this kind of use of knowledge representation

"systems as supporting "knowledge-based integration. " _-

1. Introduction

The problem of achieving satisfactory levels of reuse in

the development of defense software has been challenged

in recent years, but with limited success. A development

which will surprise no one in the AI community is a recent

focus by the US DoD on attacking the reuse problem on a

per-domain basis. A notable example is the CAMP project

[1]. CARDS (Central Archive for Reusable Defense Soft-

ware) attempts to exploit advances in domain analysis and

domain knowledge representation to identify, specify,

develop, archive, retrieve, understand and reuse domain-

specific software components* -- and to do so in a way that

is independent of the underlying application domain.
We view the domain analysis and domain knowledge

representation as the key to achieving the CARDS objec-

fives -- with special emphasis on understanth'ng the rela-

tionships between software components and the domain

model. However, the stipulation that CARDS should be

applicable across a variety of application domains has

interesting consequences on the construction of a blueprint

and environment for domain-specific reuse.

2. Divergent Roles and Environments

The defense department develops systems spanning

many domains B exactly how many is a matter of conten-

tion and will only be resolved when a concise definition of

domain is available and is applied to defense department

procurements. Software continues to be a critical compo-

nent of systems developed in most of these domains.

Attaining high-leverage reuse within narrowly focused

application domains is well-justified by research, experi-
ence and economics. However, to institutionalize domain-

specific reuse, a blueprint detailing how to undertake the

development of a domain-specific reuse library, and a com-

puter-aided support environment for putting the blueprint

in action, is necessary.

The problem confronted by CARDS is the multiplicity

and divergence of dimensions, or elements, of any CARDS
architecture ?. For example, CARDS must support a variety

of roles, where roles ate task-related personifications of

activities necessary to achieve reuse. Examples include:

performing domain analysis; using the results of a domain

analysis (i.e., the domain model) to identify abstract inter-

faces; specifying the concrete interfaces; implementing the

components; designing a user-friendly library classifica-

tion scheme; archiving components within the classifica-

tion scheme; and, ultimately, the end-user role of locating

and retrieving components. Figure 2-1 illustrates a straw-
man architecture for a CARDS environment.

component
engineer

I

domain I library

analyst _ administrator

application

developer

Figure 2-1 Central, Shared Domain Model

Of course, Figure 2-1 is overly simplistic. Since each of

these roles represents a different perspective (and several

roles are missing), different processes, methods and sup-

port technology will need to be brought to bear to support

*. Software components include assets such as requirements and de-

sign models, parts generators, programs, etc. See [2] for mote details.

t. We use the term "architecture" to refer to the blueprint and support

technology.

148

Wallnau

different kinds of tasks. For example, the kinds of informa-
tion produced and consumed by a domain analyst will be
different from that produced and consumed by a compo-
nent engineer. One way to address divergent roles is to pro-
vide alternative views into a shared knowledge base, as

illustrated in Figure 2-2. This is the approach that is taken

,:.: :,:,:

domain !i_

application
developer

Figure 2-2 Uniform Domain Model & Views

m classical software development environment architec-
tures [3] as well as hypertext-oriented knowledge represen-
tation frameworks [I6].

Of course Figure 2-2 is also overly simplistic. First,
there is no consensus regarding domain analysis process,
method or representation. It appears that the choice of
domain analysis technique depends to some extent upon
the desired end-result of the analysis -- e.g., supporting
reuse, understanding a system, comparing different sys-
tems, etc. For example, Diaz's analysis technique [4] for
reuse differs substantially from Brown's informal [5] tech-
nique for comparing software environment architectures,
while LASSIE makes use of a uniform, formal knowledge
representation scheme for managing the complexity of a

layered system [6].
Second, domain analysis techniques will vary across

application domains. For example, information manage-
ment application domains may be suitably modeled using
classical structured analysis and structured design tech-
niques; real-time systems may require the addition of
behavioral models and temporal logics; complex, interac-

tive systems may be best modeled using object-oriented
techniques. While, in theory, each of these techniques has
an analogue in a more generic knowledge representation
formalism, such a mapping would not be practical.

Third, even within isolated application domains it may
be useful to employ a variety of domain analysis and repre-

sentation techniques. For example, the SEI feature-oriented
domain analysis method (FODA) [7] employs an eclectic
assortment of representations. Besides FODA, the notion
of refinement, crucial in various formal design methods,

implies a mapping among various representations, for
example Z [17] specifications to program source. Thus,
focusing on support for the domain analyst role, a more

realistic CARDS architecture is illustrated in Figure 2-3.

d_7__ c°mp_°nent
engineer

Figure 2-3 Eclecticism and Tool Coalitions

There is an underlying pragmatic basis for Figure 2-3 as
well -- while domain analysis and knowledge representa-
tion are better understood today than just a few years ago,
the technology is still unstable. Further, there is an existing
body of commercial CASE tools available which can sup-

port practical application of domain analysis techniques.
There are severe problems underlying Figure 2-3. The

collection of analysis tools employed by the domain ana-
lyst -- in essence the domain analysis environment -- are
not likely to be well integrated with respect to the domain
analysis process, the logical services provided by the tools,
nor the underlying tool mechanisms [8]. The tools them-
selves are at worst completely egocentric and at best wired
together in some loose form of tool coalition [9]. This
makes it difficult to verify the completeness and consis-
tency of domain models.

Just as serious is the lack of integration of the domain
analysis environment with the environment required by the
component engineer. Not only will it be difficult for the
component engineer to locate and understand the portions
of the domain model relevant to the construction of soft-

ware components, but the component engineer will also
have specialized tools to support development tasks, e.g.,
coding, performance, annotation, testing and configuration
management tools. The conceptual distance between the
analysis tools and development tools makes even tool coa-
litions an unlikely prospect. A similar impedance mismatch
exists between other roles in the CARDS architecture.

3. Knowledge-Based Integration

Figures 2-2 and 2-3 illustrated the dichotomy between
an idealized view of a domain-specific reuse environment,
and the view most likely to emerge from the combination

149

Wallnau

of state-of-the-practice tool support and the requirement

for domain-independence of the CARDS architecture.

These views need to be merged. That is, we must provide a

semantically meaningful view, for each role, into a domain

model, while not sacrificing the tool support necessary to

support the processes associated with a particular role.

Our approach is to merge these views, initially using the
STARS* Reusability Library Framework (RLF) [10] as a

meta-model for relating, and integrating, services provided

by and artifacts produced by different tools. The hybrid

knowledge-representation system in RLF combines a

semantic network system based upon KL-ONE, with an

extensible, typed rule-base system. A high-level view of

this architecture is depicted in Figure 3-1.

Figure 3-1 Meta-Model Integration in RLF

The architecture highlighted in Figure 3-1 has several

interesting properties. First, the RLF knowledge base pro-

vides a single recta-model which a) uses the semantic net-

work to relate the artifacts produced by various tools, and

b) uses action rule types to tie tool services to tool arti-
facts t. The first property increases the visibility to relation-

ships among elements of the domain model that are created

by one role but semantically meaningful to other roles in
the CARDS environment. The second property leverages

the substantial investment in existing CASE technology

and preserves a convenient, comfortable and functional

environment already tailored to role-specific processes.
Second, the browser allows various users in the CARDS

environment to view only those portions of the knowledge

base that are appropriate for their role. Two forms of view

filters are possible: through the graphical browser, and

through the use of advisor librarians (also avatqable

through the browser). The former is a relatively straight/or-

*. STARS -- Software Technology for Adaptable, Reliable Systems.

1".A sirm'lar integration approach is provided in Frame Technology's

Live Links and in several ether systems.

ward user-interface problem. The latter is supported

through the use of various rule types which are used by a

special advisor inference engine -- TAU.
Third, the use of RLF provides the basis for the devel-

opment of other specialized types of inferencers to support

the reuse process. One inferencer -- Gadfly [11], has

already been prototyped to support component specifica-

tion and qualification. Other inferencers have been devel-

oped using a similar hybrid knowledge representation
system for systems diagnostic maintenance [12] and (more

closely related to software component reuse) hardware

configuration [13].

4. CARDS and the Reuse Process

The architecture in Figure 3-1 is sketchy and only

briefly discussed bfcause the real problem is not the mech-

anisms of the CARDS environment, but the use of it within

the context of an overall reuse process. A number of ques-

tions will need to be answered, perhaps some of them on a

per-domain basis:
• How much of the domain model should

be captured in the knowledge base, versus
its use as an index into tool artifacts and tool
services?

• What are the appropriate views into the

knowledge base? For example, should an
application developer's view be based upon
models of architectures [14] or require-
merits [15]?

• When is a domain ripe for reuse [2]?

While these discussions have focused on the integration

of different user roles with a reuse repository¢, another

dimension of integration can be found when viewing a

domain-specific reuse library as a bridge between supply-

side and demand-side reuse processes. As illustrated in

Figure 4-1, the scope of a repository can vary according to

the nature of the domain analysis processes, e.g., how close

is the "fit" between the domain analysis process and the

domain modeling services provided by the repository, and

the nature of the demand-side processes, e.g., who on the

demand side will be using the repository?

In Figure 4-1, two parallel life-cycle processes are

depicted: domain engineering and software engineering
represent the supply-side and demand-side reuse processes,

respectively. The repository can be scoped to capture the

by-products of different domain engineering subprocesses;
such decisions about scoping can result from, or can result

¢. The use of a domain model as a kind of repository has been implicit

throughout the discussion. The terms "archite," "h'brary" and "repository"

are also used synonymously.

150

Wallnau

domain evo/ution
repository

...................
Domain Analysis i Requirements

_ Analysis
Architecture / _ i System

Specification _'_i Specification

Architecture _ System
Implementation LImplementation

DOMAIN SoI_rWARE
ENGINEERING ENGINEERING

Figure 4-1 Repository Scopes and Process

in, different demand-side processes. For example, scoping

the repository to include only the implementation compo-
nents produced by domain engineering processes will

result in a "conventional" parts library. Such a design deci-

sion can be motivated by various factors, including the pos-

sibility that the demand-side processes are still too chaotic

to support more systematic reuse. Thus, in Figure 4-1 the

"parts" library could support, at worst, ad hoc opportunistic

reuse during system implementation, and, at best, could

support a system specification that takes some advantage of

existing reuseable components.

There are clearly potential advantages to extending the
scope of the repository to address the entire spectrum of

domain-engineering by-products, including domain analy-

sis. In Figure 4-1 the primary benefit illustrated is the

potential for closing the loop between domain engineering

and software engineering through a feedback and domain-

evolution path. Such a feedback loop can probabIy only be

supported if the domain model is captured and represented

in a reasonably formal manner.

5. Summary

We have described the problem of constructing an envi-

ronment to support the consuuction of domain-specific

reuse libraries in terms of integration. The integration prob-

lem involves integration of:

• roles in the reuse process

• domain analysis tools with each other

• domain analysis tools with a reuse pro-
cess

We briefly outlined the use of a hybrid knowledge rep-

resentation system, RLF, to act as an integrating agent to

provide role-specific views into the domain model, and to

support the use of an eclectic assortment of modeling tech-

niques by tapping into a large, robust CASE market.

The CARDS program will focus, in the next year, on

creating a blueprint for achieving reuse in the DoD. This

blueprint will address technical as well as non-technical

issues, and will provide guidelines for the use of a hybrid

knowledge-representation/CASE tool architecture for

developing domain-specific reuse libraries and using

domain-specific software architectures and assets to create

application systems.

The CARDS program will also be experimenting with

domain-specific reuse environment and system composi-

tion techniques tailored to the command center subdomain
of C 2 applications. The conceptual model for this composi-

tion is similar to that of hardware configuration [13] -- a

user configures a system of software components based

upon a inferencer-directed dialogue designed to elicit sys-

tem requirements.

References

[1] Anderson, C.M., McNlchoil, D.G., "Common Ada Missile
Packages (CAMP); Preliminary Technical Report, Vol.
1," In STARS Workshop Proceedings, April 1985, FO
8635-84-C-0280.

[2] Simos, M.A., "The Growing of an Organon: A Hybrid
Knowledge-Based Technology and Methodology for
Software Reuse," Domain Analysis and Software Sys-
tems Modeling, Prieto-Dlaz, Arango, Eds., IEEE Com-
puter Society Press, ISBN 0-8186-8996-X.

[3] Integrated Project Support Environments: The Aspect
Project, A.W. Brown (Editor), Academic Press, 1990.

[4] Prieto-Diaz, R., "Domain Analysis for Reusability"
Domain Analysis and Software Systems Modeling, Pri-
eto-Dlaz, Arango, Eds., IEEE Computer Society Press,
ISBN 0-8186-8996-X.

[5] Brown, A.W., Feller, P.H., An Analysis Technique far
Examining Integration in a Project Support Environ.
ment, Technical Report CMU/SEI-92-TR-3, Software
Engineering Institute, Carnegie Mellon University,
_P[i_l_urgla,PA, Jannary 1992................

[6] Devanbn, E, Brachman, RJ., Selfrldge, E, Ballard, B.,
"LASSIE: A Knowledge-Based Software Information
System" Domain Analysis and Software Systems Model-
inS, Prieto-Diaz, Arango, Eds., IEEE Computer Society
Press, ISBN 0-8186-8996-X.

151

Wallnau

[7] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A., Fea-

ture-Oriented Domain Analysis (F ODA) Feasibility

Study, Technical Report CIVIU/SEI-90-TR-21, Software

Engineering Institute, Carnegie Mellon University,

Pittsburgh, PA, November 1990.
[8] Brown, A.W., FeUer, P.H., Wallnau, K.C., "Understanding

Integration in a Software Development Environment,"
accepted for Second IEEE International Conference on

Systems Integration, Irvine, CA, for May, 1992.
[9] Brown, A.W., Feller, P.H., Wallnau, K.C., "Past and

Future Models of CASE Integration," submitted to

Fifth International Workshop on Computer.Aided Soft-

ware Engineering, for July 1992.
[10] Solderitsch, J., Wallnau, K., Thalhamer, J., "Construct-

lng Domain-Specific Ada Reuse Libraries," in Proceed-

ings of the 7th Annual National Conference on Ada

Technology, Atlantic City, NJ, 1989.
[11] Wallnau, K., SoldeHtsch, J., Thalhamer, J., et. al., "Con-

struction of Knowledge-Based Components and Appli-
cations in Ada," Special Issue of the IEEE Intelligent

Systems Review, Spring 1989.
[12] Matuszek, P., Clark, J., Sable, J., Corpron, D., Searls, D.,

"KSTAMP: A Knowledge-Based System for the Main-
tenance of Postal Equipment," United States Postal

Service Advanced Technology Conference, May 1988.

[13] Searls, D., Norton, L., "Logic-Based Configuration with a

Semantic Network," in The Journal of Logic Program-

ruing, Volume 8, 1990, pages 53-73.

[14] D'Ippolito, "The Context of Model-Based Software Engi-

neering" in Proceedings of the Workshop on Domain-

Specific Software Architectures, Hidden Valley, PA,

DSSA Program Manager, DARPA/ISTO, 1400 Wllson

Blvd., Arlington, VA 22209, July 1990.

[15] A Domain Analysis Process, Interim Report, Domain_An-

alysis-90001 -N, Version 01.00.03, Software Productivity

Consortium, 2214 Rock Hill Road, Herndon, VA,

22070, January 1990.

[16] Mayfield, J., Nicholas, C., Using Semantic Networks to

Enrich Hypertext Links, Technical Report, Computer

Science Dept., University of Maryland Baltimore

County, January, 1992.
[17] Z _ An Introduction to Formal Methods, Diller, A., John

Wiley and Sons, ISBN 0-471-92489-X.

152

