NASA-TM-108123 R 6/
¢
g (NASA-TM-108123) WORKING NOTES N93-17499
= FROM THE 1992 AAAT WORKSHOP ON --THRU--
" AUTOMATING SGFTWARE DESTGN. THEME: N93-17528
DOMAIN SPECIFIC SOFTWARE DESIGN Unclas

(NASA) 161 p
63/61 0136874

¥

Working Notes from the 1992 AAAT Workshop on

s B Automating Software Design §
Theme: Domain Specific Software Design 2

July 12-16, 1992

San Jose Convention Center
San Jose, CA

RicHARD M. KELLER (EDITOR)
—_—— STERLING SOFTWARE
ARTIFICIAL INTELLIGENCE RESEARCH BRANCH
MS 269-2
NASA AMEes REseaArRCH CENTER
MorreTT FIELD, CA 94035-1000

(I AR R N T T R o I VA B A AN

S= = = IUISN Ames Research Center __
e i iA@rt?liallntelhgence R¢§eaj’fgﬁi§f;héhf f

—— " Technical Report FIA-92-18

~ July, 1992

-

S,

i

Ll

x

e

Workshop Notes
AAAI-92 Workshop on Automating Software Design
Theme: Domain-Specific Software Design

July 12-16, 1992
San Jose Convention Center

San Jose, CA

Workshop Committee

Richard M. Keller
Sterling Software
NASA Ames Research Center

David Barstow

Schlumberger Laboratory For
Computer Science

Michael R. Lowry
RECOM Technologies
NASA Ames Research Center

Christopher H. Tong
Rutgers University

)

=
-

Contents

Prefaceo e e e iii

Schedule iv

Workshop Participantso.iiiiiiiiiiiiiiiiii it iii i v

Papers

Developing Satellite Ground Control Software through Graphical Models 1~/
Sidney Bailin, Scott Henderson, Frank Paterra, and Walt Truszkowski -

Formalization and Visualization of Domain-Specific Software Archltectures 6— 22—
Paul D. Bailor, David R. Luginbuhl, and John S. Robinson

The KASE Approach to Domain-Specific Software Systems 11-3
Sanjay Bhansali and H. Penny Nii

Domain Specific Software Architectures - Command and Control 18 ~7

Christine Braun, William Hatch, Theodore Ruegsegger, Bob Balzer, Martin Feather,
Neil Goldman, Dave Wile
Issues in Knowledge Representation to Support Maintainability: A Case Study

in Scientific Data Preparationcoviiiiuiiiunrinntiiirie e renererereeenrenrrnnes 23-5
Steve Chien, R. Kirk Kandt, Joseph Roden, Scott Burleigh, Todd King, and Steve Joy

GATOR: Requirements Capturing of Telephony Featurescooovvvvinnnn.. 29 -G
Douglas D. Dankell II, Wayne Walker, and Mark Schmalz

Modeling Software Systems by Domainse... et eeneeae s S 35 -
Richard D’Ippolito and Kenneth Lee

Approximation, Abstraction and Decomposition in Search and Optimization 41-§
Thomas Ellman

Meta-Tools for Software Development and Knowledge Acquisition 43~
Henrik Eriksson and Mark A. Musen

Software Design as a Problem in Learning Theorycoiviiiiiiiiinnennnn... 48-/0
Leona F. Fass

Towards Automation of User Interface Designcovvviiiiiiiiiiiiiiininriiiiennan., 50 —//
Rainer Gastner, Gerhard K. Kraetzschmar, and Ernst Lutz

Towards Domain-Specific Design Environmentscovviiiiiiininnennnnnnnnn. 56 — /2
Sol Greenspan and Mark Feblowitz

Interactive Specification Acquisition via Scenarios: A Proposal 60 - /3
Robert Hall

Distributed Intelligent Control and Management (DICAM) Applications and

Support for Semi-Automated Developmentccoovviiiiiiiiniininnnnnnnn.. 66 —/ 7/
Fredrick Hayes-Roth, Lee D. Erman, Allan Terry, and Barbara Hayes-Roth

Model-Based Software Designcooviiiiiiiiiiiiin it i, 12-/5

Neil Iscoe, Zheng- Yang Liu, Guohui Feng, Bmtt Yenne, Larry Van Sickle, and Michael Ballantyne

Description of Research Interests and Current Work Related to Automating

Software Designoviniiiiiiiii it i e 781l
Hermann Kaindl 1

Automating the Design of Scientific Computing Software 80 -!
Elaine Kant

Domain Specific Software Design for Decision Aidingoooviin 86| 7
Kirby Keller and Kevin Stanley

Knowledge-Intensive Software Design Systems: Can too much knowledge be a

BULAEN? i i e i e e e 93 ﬂ
Richard Keller

Automating Software Design System DESTAcoiiiiiiiiiiiiiiiiiiiinnnnana.s 99-1°
Vladimir A. Lovitsky and Patricia D. Pearce

Generic Domain Models in Software Engineeringl 105’:1}
Neil Maiden

Domain-Specific Functional Software Testing: A Progress Report 111’.—2l

Uwe Nonnenmann
A Domain-Specific Design Architecture for Composite Material Design and Aircraft 19

Part Redesigmooiuiiiiiuiniiiinereiaeitsiiieetraratiitirserasrerarrosnnroranrrennnss 11577
W. F. Punch IIl, K.J. Keller, W. Bond, and J. Sticklen U

RT-Syn: A Real-Time Software System Generatorccocviiiiiiniinn.. 121f.2/j
Dorothy Sethiff /

Automating FEA Programimingccovuiievirerernrnrerirnrnrnrirervnsrernsnrnnas 12727
Naveen Sharma v

Knowledge Modeling for Software Designccviviiiviinviiniriivnnirirnrnnn.. 134 /2
Mildred Shaw and Brian Gaines

The Use of Typed Lambda Calculus for Comprehension and Construction of ,37

Simulation Models in the Domain of Ecologycooiiiiiiiiiiinniinnnn, 1397

Michael Uschold

Knowledge-Based Design of Generate-and-Patch Problem Solvers that Solve 8

Global Resource Assignment Problemscooiiiiinnne 1417
Kerstin Voigt

CARDS: A Blueprint and Environment for Domain-Specific Software Reuse 148

Kurt C. Wallnau, Anne Costa Solderitsch, and Catherine Smotherman

il

oy

4

S22 r 72373 3/

PREFACE

In recent years, there has been an increase in research and development effort aimed at the
production of domain-specific software design systems - knowledge-intensive systems that aid in
the design of software for specific classes of problems in science, engineering, telecommunications,
manufacturing, business, education, and other areas. Despite substantive progress in developing
general-purpose software design techniques, the application of these techniques to large, real-world
software design tasks has proven difficult. As a result, there is a growing realization that special-
purpose, domain-specific techniques will play a critical role in moving research into practice. When
restricted to a specific domain, software design systems can avail themselves of additional sources

of knowledge and constraints that simplify the overall design process.

The goal of this workshop is to identify different architectural approaches to building domain-
specific software désign systems and to explore issues unique to domain-specific (vs. general-
purpose) software design. Some general issues that cut across the particular software design domain
include:

¢ Knowledge representation, acquisition, and maintenance: In building a domain-specific
software design system, decisions must- be made about what domain knowledge is necessary
to support the design task and what formalism to use for the representation. In addition,
knowledge-intensive design systems cannot be deployed without seriously addressing the extra

burden that comes along with acquiring and maintaining a significant body of domain knowl-
edge.

‘s Specialized software design techniques: By restricting both the domain and the class of
software design tasks to be addressed by a system, it becomes possible to utilize specialized
design techniques that may simplify and.speed up the overall design process.

=+ 4 User interaction & user interface; The typical end-user of a domain-specific software design

system is an application specialist, not a programmer with special analytic skills. As a result,
domain-specific systems need to pay special attention to the interaction between the user and
the system. ’

£ -]

[R e

We hope that you find the workshop and the papers in this collection both stimulating and
informative.

Richard Keller
Workshop Chair

iii

SCHEDULE

AAI Workshop on Automating Software Design
Theme: Domain Specific Software Design (DSSD)

San Jose, CA Sunday, July 12, 1992

8:30 - 8:45 AM Workshop overview - Richard Keller
8:45 - 9:30 AM Historical perspective and issues - Dave Barstow
9:30 -10:00 AM DARPA DSSA Program Overview - Erik Mettala

10:00-10:30 AM BREAK
10:30-12:15 PM Panel: Approaches to DSSD -- Exploring the
generally/power trade-off

Sanjay Bhansali: Generic architectures approach

Neil Goldman: Application generator approach

Neil Iscoe: Domain modeling approach
Discussants: Tong & Keller

12:15- 1:45PM LUNCH
1:45- 3:30 PM Panel: Practical experience & issues relating to
building and fielding DSSD Systems

Elaine Kant: SINAPSE

Richard Keller: SIGMA

Uwe Nonnenmann: KITSS
Discussant: Barstow

3:30- 4:00 PM BREAK
4:00- 5:00 PM Individual DSSD System Presentations
Dorothy Setliff: RT-Syn
Naveen Sharma: PIER
Discussant: Lowry
5:00 PM Closing discussion & wrap-up

iv

n

PLY]

o)

!

Participants

Ashok Agrawala

University of Maryland
Department of Computer Science
College Park, MD 20742
agrawalsOcs.umd.edu

Guillermo Arango

Schlumberger Laboratory for Computer Science

8311 North FM 620
Austin, TX 78720, USA

Sidney C. Bailin

CTA Incorporated

6116 Executive Boulevard Suite 800
Rockville, MD 20852
sbailinQcta.com

Prof. Paul D. Bailor

Air Force Inst. of Technology
AFIT/ENG

WPAFB, OH 45433-6583
pbailorQgalaxy.sfit.af.mil

David Barstow
Schlumberger Laboratory for
Compuier Science

50, Avenue Jean Jaures,
B.P. 620-05

92542 Montrouge Cedex
FRANCE
barstowQslcse.slb.com

Samnjay Bharsali

Knowledge Systems Laboratory
Dept. of CS

701 Welch Road, Bldg. C
Stanford University

Stanford, CA 94304
bhansaliGsumex-aim.sianford.edu

Christine Braun

GTE Federal Sysiems

15000 Conference Center Dr.
Chantilly, VA 22021

Steve Chein

JPL M/S 525-3660

4800 Oak Grove Drive
Pasadenn, CA 91109-8098
chien@ai-cyclops.jpl.nasa.gov

Douglas Dankel
E301 CSE, CIS
Univeristy of Florida
Gainesville, FL 32611
dddQcis.ufl.edn

Premkumar Devanbu
2B417, AT&T Bell Labs
400 Mountain Ave.
Murray Hill, NJ 07974
premOresearch.att.com

Richard D'Ippolito
Software Eng. Institute
Carnegie Mellon University
Pittsburg, PA 15213-3890
radQsei.cmu.edun

Thomas Ellman

Dept. of Computer Science

Hill Center for Mathematical Science
Rutgers University

New Brunswick, NJ 08903
eliman@cs.rutgers.edn

Hesrik Eriksson

Sectionm on Medical Informatics
Stanford University MC
Stanford, CA 94305-5479
erikssonQ@sumex-aim.stanford.eds

Lee D. Erman

Cimfiex Teknowledge
1810 Embarcadero Road
P.O. Box 10119

Palo Alto, CA 94303
lerman@teknowledge.com

Leona Fass
P.O. Box 2914
Carmel, CA 93921

_Mark Feblowitz

GTE Laborstories Incorporated
40 Sylvan Rosd

Waltham, MA 02254
feblowitz@gte.com

Brian Gaines

The Usniversity of Calgary

Dept. of Computer Science

2500 University Drive, NW

Calgary, Alberta CANADA T2N 1IN+
grinesOcpsc.ucalgary.ca

R. Gastuer

Forwiss

Am Weichselgarten 7,

D-8520 Erlangen

West Germany
gastaerOforwiss. uni-erlangen.de

Neil Goldman University of Southern CA

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292-6995
goldmanOisi.edn

Cordell Green
Kestrel Institute
3260 Hillview

Palo Alto, CA 94304
greeaOkesirel edn

Sol Greemspan

GTE Laboratories Incorporated
40 Sylvan Road

Waltham, MA 02254
greenspanOgte.com

Robert Hall

ATELT Bell Laboratories

800 Mountsin Aven, Rm 3D-458
P.O. Box 638

Murray Hill, NJ 07974-0636
hallQallegra.att.com

Frederick Hayes-Roth
Cimflex Teknowledge

1810 Embarcadero Road
P.O. Box 10119

Palo Alto, CA 94303
thayes-rO@teknowledge.com

Neil Iscoe

EDS Research - Austin Lab.
1601 Rio Gramde Ste. 500
Austin, TX 78701
iscoeQanstin.eds.com

Hermanz Kaindl

Siemens AG Osterreick
Program & System Engineering
Geusanganse 17

Viennas, Austria 1030, Europe
kaihQsiegnd.siemens.co.al

Elsine Kant
Schlumberger Lab. for
Compuier Science
P.O. Box 200015
Austin, TX 78720
kantQsles.slb.com

Richard Keller

AI Research Branch

M/S 289-2

NASA Ames Research Center
Moffett Field, CA 94035
kellerOptolemy.arc.masa.gov

Kirby Keller

McDonnell Aircraft Company
Dept. 313, MC 108-5205
P.O. Box 516

$t. Louis, MO 83166-0518
kellerOaicenter.mdc.com

Kenneth Lee

Sofiware Eng. Institute
Carnegie Melloa Usiversity
Pittsbarg, PA 15213-3890
klQseicmu.edw

Vladimir Lovitsky

Software Engineering Deps.
Institute of Radioelectronics
Kharkov, Ukraine

Mike Lowry

AT Research Branch

NASA Ames Research Center
M/S 269-2

Moffett Field, CA 94035-1000
LowryQpiolemy.arc.nass gov

Neil Maiden

Department of Business College
City University)
Londena ECIV OHB, UK
ce5590city.nc.uk

David McAllester

MIT Artificial Intelligence Laboratory
545 Techaology Square

Cambridge Mass. 02139

LTC Erik G. Mettala, Ph.D
Depauty Direcior

Software & Intelligent Systems
Techaology Office

Defense advanced Research
Projects Agency

3701 N. Fairfax Drive
Arlington, Va 22203 1714
(703) 698-2219
mettala@darpa.mil

Penny Nii

Knowledge Systems Laboratory
Dept. of CS

70t Welck Road, Bldg. C
Stanford University

Stanford, CA 94304
nii@sumex-aim.stanford edu

Uwe Noanenmann
ATLT Bell Labs

600 Mountsin Avenue
Murray Hill, NJ 07974
uaQresearch.att.com

W. F. Punch

Michigan State University
Depart. of Computer Science
A-T14 Wells Hall

East Lansing, MI 48824-1027
panchOcps.msv.edu

Jokn §. Robinson

Air Force Inst. of Technology
AFIT/ENG

WPAFB, OH 45433-6583

M. Schmals

Dept. of Computer and Info. Sci.
Univ. of Florida

Gainesville, FL 32611
mezOmosquito.cis.ufl. edu

LAl

'3

Dorothy Setliff

Electrical Engineering Dept.
University of Pittaburgh
Pittaburgh, PA 15261
dottieQ@jaguar.ee.pitt.edun

Naveea Sharma

ICM

Dept. of Math/CS
Kent State University
Kent, OH 44240
sharmaOmes.kent.edu

Mildred Shaw

The University of Calgary

Dept. of Computer Science

2500 University Drive, NW

Calgary, Alberta CANADA T2N 1N4
shaw@cpsc.ucalgary.ca

Nancy Solderitsch

Paramax Systems Corporation
Unisys

70 E. Swedesford Road

Paoli, PA 19301
nancyOprc.unisys.com

Kevin Stanley

McDonnell Aircraft Company
Dept. 313, MC 106-5205
P.O. Box 516

St. Louis, MO 63168-0516
stanleyQaicenter.mdc.com

Chris Tong

Dept. of Computer Science
Hill Center

Busch Campus

Rutgers University

New Brunswick, NJ 08903
ctongOca.retgers.edu

Mike Uschold

Al Applications Inst.
University of Edinburgh
BD Sounth Bridge
Edinbergh EHI IHN
mfuQaiaiedinburgh.ac.uk

Steve Vestal

Honeywell

S&RC MN65-2100
3880 Technology Drive,
MN 55418
vestalQ@src.hoaDr.

Vladimir Lovitsky

c/o Pat Pearce
Departmeat of Computing
Polytechnic South West
Drake Circus

Plymoxth

Devon

PL4 8AA

United Kingdomeywell.com

Kerstin Voigt

Computer Science Dept.
Rutgers University

New Brunswick, NJ 08903
voigtOcs.rutgers.edn

Wayne Walker

E301 CSE, CIS
University of Florida
Gainesville, FL 32611
ww0Qcis.ufl.edn

Kurt Wallnan

Paramax Systems Corporstion
Unisys

70 E. Swedesford Road

Paoli, PA 19301
walluauOCardse. COM

Richard Waters

Mitsubishi Electric Research Laboratories
201 Broadway

Cambridge MA 02139

dickOmerl.com

vii

PR

Balilin

N93-173500
Developing Satellite Ground Control Software through
Graphical Models

P "é /
“/
Sidney Bailin, Scott Henderson, and Frank Paterra
o /3 &
CTA Incorporated
Rockville, MD

Walt Truszkowski

NASA/Goddard Space Flight Center
Greenbelt, MD

1 Introduction

The old maxim goes, "A picture is worth a thousand
words"—ten thousand, if you believe Larkin and
Simon (1987). Most people, when faced with the
problem of understanding the behavior of a
complicated system, resort to the use of some picture
as an aid in thinking about the system. Barwise and
Eichmendy (1991) make a strong case for the

effectiveness of diagrams, over and above other

representations, in certain problem solving situations.
This paper discusses a program of investigation

" into software development as graphical modeling.

The goal of this work is a more efficient development
and maintenance process for the ground-based software
that controls unmanned scientific satellites launched
by NASA. The main hypothesis of the program is
that modeling of the spacecraft and its subsystems,
and reasoning about such models, can—and should—
form the key activities of software development; and
that by using such models as inputs, the generation
of code to perform various functions (such as
simulation and diagnostics of spacecraft components)
can be automated. Moreover, we contend that
automation can provide significant support for
reasoning about the software system at the diagram
level. . .

The outline of this paper is as follows. We
describe the application domain in the next section,
and the graphical modeling technique in Section 3.
Sections 4 and 5 describe the approach to generating
diagnostic and simulator software from these models.
In Section 6 we describe the work we are doing in
automated reasoning about the diagrams. Finally, in
Section 7, we summarize what we think are the
prospects for this program, the key issues, and major
risks and unknowns.

2 The Domain: the Intelligent
Ground System

Simulation and diagnostics play a key role in a
satellite control center. They support the two
principal activities of the control center—

commanding and monitoring the spacecraft.
Development of command loads prior to spacecraft
launch employs simulation to verify their proper
operation. Monitoring involves fault detection,
isolation, and recovery when telemetry values received
from the spacecraft fall outside of defined limits. In
our work implementing a testbed for an advanced
control center, which we call the Intelligent Ground
System (IGS), we found that simulation and
diagnosis activities tend to derive from the same set
of knowledge, namely models of the spacecraft
components. An integrated approach, in which
diagnosis and simulation are both driven by the same
run-time models, seems feasible to us; at this point,
however, we are aiming at a less ambitious goal,
which is the generation of distinct programs to
support the respective functions from the same
graphical model. We can view this as "design time
integration” rather than "run time integration.”

The importance of such models is a result of an
object-oriented system architecture, which is one of
the defining characteristics of the IGS. The object-
oriented architecture describes the IGS as a model of
its environment. This environment consists
primarily of the spacecraft, its subsystems, and
payload, and the users of the IGS (the Flight
Operations Team, or FOT), who are divided into
several distinct roles within the control center. The
environment may also be viewed as including the
communications systems through which the IGS and
the satellite interact, and various other ground
systems to which a control center is typically
connected. Each of these environmental elements is
represented as a distinct object in the IGS. This
approach enables us to make the IGS "intelligent” by
making each such object a knowledge-based system in
its own right, with its own simulation capability,
diagnostic capability, etc.

There are various consequences of this architecture
for the operation of the IGS, including the need for a
cooperative framework, and for an intelligent user
interface. The object-oriented architecture defines the
IGS as a collection of interacting knowledge-based
systems. This interaction models the interaction

§7%

25

found in the system's environment, but it must also
include means for cooperative problem solving
among the system's components. For example, the
successful diagnosis of telemetry anomalies may
require interaction between the diagnostics of several
subsystems. Thus, a key requirement of the IGS is a
set of problem-solving protocols through which
multiple knowledge-based systems, in conjunction
with the FOT, can converge towards a goal. A
framework for such cooperation is described by Bailin
et al (1989).

The need for an intelligent user interface follows
from the fact that he IGS does not operate
autonomously—the health and safety of the spacecraft
precludes such an approach. The FOT are active
players in the cooperative process just described.
Thus, the IGS must model the FOT roles in a way
that a) facilitates communication between the human
and the machine, and b) enables the system to
interpret human actions within the cooperative
protocols,

2.1 Implications for Software
Development

The IGS architecture makes everything a model. The
software models the states, behaviors, and interactions
of elements in its environment. Given this role for
the software, it seems appropriate to look for a
language in which such information can be made
explicit. Graphical modeling of objects, their
behaviors, and their interactions is an obvious choice
for such a language; there is nothing new in our
advocacy of diagrams to express such information.
Our contention, which may be more questionable, is
that the real complexity of the software lies in the
interactions expressed by the graphical models, not in
the implementation details of the eventual code.

‘We contend that the structure of the implemented
code, for at least certain functions of the IGS—
specifically, simulation and diagnosis—is sufficiently
well understood to permit us to generate it
automatically, and therefore to allow us to redefine
the development process as one of developing and
reasoning about the graphical models. The following
sections describe the progress we have made to date in
demonstrating this idea. Similar ideas have been put
forward in a recent article by Harel (1992).

The more advanced IGS functions—the cooperative
framework and the intelligent user interface—go
beyond our current view of what can be automatically
generated from graphical models. The reason is
simple: we do not yet have an adequate understanding
of these functions. Our work on the IGS is
attempting to make inroads into these areas,
especially the cooperative framework, but this work
is still exploratory. We expect that with the
definition of cooperative protocols, code
implementing such protocols would be provided as

Bailin

reusable library assets. It is conceivable, therefore,
that they could form a part of the automated
development framework towards which we are
working.

3 The Graphical Models

The diagrams consist of objects described by
behavioral annotations and connected to each other by
influence paths. Each object has a set of state
variables, some of which serve as input ports
(receiving influences), some of which serve as output
ports (creating influences), and some of which are
internal to the object. In translating such a diagram
into a simulator, the influence paths are implemented
as data flows. The influences paths may, however,
correspond to the transfer of physical attributes, e.g.,
heat transfer, in the modeled system itself. Thus, the
graphical representation is somewhat different from
the conventional notion of a dataflow diagram.

The object behaviors are described in terms of
states and transitions, but the representation is more
powerful than that of a finite state machine. Each
internal and output state variable has a finite number
of "transitions” associated with it, but each such
transition is a mathematically specified function.
Thus, the domain of each transition is a set of
possible initial state values; the resulting state, and
any corresponding outputs, are a function of the
initial state. This function may be defined in a
piecewise fashion: that is, the set of possible initial
states may be partitioned into a finite number of
subsets, and the transition may then be defined on
each subset by an appropriate expression. This seems
to be similar to the approach recently advocated by
Parnas (1990), in which tables are used to specify the
discontinuities often present in functions that
software is required to compute.

Components are stored in a library, so that they
may be reused in many applications. Components
are typed, and intuitively fall into a class hierarchy,
although the library system does not yet support
inheritance. Components may contain
subcomponents as well as the state variables
discussed above. In such cases, the interconnection of
the subcomponents via influences forms part of the
parent component description. There are no
"systems” per jse in the library: everything is a
component. A system can be stored in the library as
a new component, in which case it is available for
use as a component in a still larger system in the
future.

4 Generating Diagnostic Rules: the
Knowledge from Pictures System

The Knowledge from Pictures (KFP) tool builds a
knowledge base to perform fault detection, isolation,
and recovery from a diagram of the monitored system.

The generated knowledge base takes the the form of
facts and rules in the C Language Integrated
Production System (CLIPS), an expert system shell
developed by NASA/Johnson Space Center. The
diagram is also used as the basis for the user interface
of the diagnostic system.

Assertions derived from the behavioral descriptions
of the diagram’s components are used to determine
when a component is in a state other than those in its
definition (for example, a temperature sensitive object
operating outside of its design temperature range).
When such a situation has been detected, a fault has
occurred. Alarms are defined as collections of
component states. In the generated knowledge base,
each alarm condition is represented by a CLIPS rule.

The rules generated by KFP use the influence paths
shown in the diagram to isolate failed components.
When an alarm is detected, a search begins for the
faulted object causing the alarm. The search is
performed by tracing back through the paths of
influence that are input to the alarming object. The
influence paths form a collection of chains of objects
that either directly or indirectly influence the
components contributing to the alarm. The tracing is
performed via a collection of rules that examine the
objects in each path. When these rules fire, they use
information about the known states of the object
being examined, and the states of the objects that
influence it, to determine whether the examined object
is behaving correctly. If the object being examined is
not in the correct state, then the fault has been
isolated. If it is in the correct state, the objects that
influence it are examined next.

After a fault has been detected and isolated, the
recovery phase begins. At present the recovery phase
is represented by a template for recovery rules—one
for each fault/object pair. The action part these rules
must be filled in by the knowledge engineer.

In KFP, the diagram of the system being
monitored is also intended to serve as the basis for the

diagnostic system'’s user interface. The control center

operator should see a display of the system as a
graphical model, with the status of its components
expressed through color coding or similar

conventions. The current KFP tool does not do this,

but the concept has been demonstrated by another
prototype system, the Generic Spacecraft Analyst
Assistant (GenSAA).l Our plan is to integrate KFP
with the next version of GenSAA by the end of this
year,

1 The GenSAA project is directed by Peter Hughes of
NASA/Goddard's Automation Technology Section
(Code 522.3).

Bailin

5 Generating Simulator Software: the
Multi-Aspect Simulation Tool

Our generic simulation architecture is based on the
connection manager approach described in the
Software Engineering Institute's (SEI)
recommendations for flight simulators (Lee, 1990).
In this approach, the influences between objects are
simulated as data flows, and the data flows are
implemented by connection managers-—objects whose
specific role is to manage the connections between
application objects. The benefit of this approach is
that the application objects themselves remain
ignorant of the context in which they are used, and
thus can be reused in quite different contexts.

In the Mult-Aspect Simulation Tool (MAST) we
have extended SEI approach by independently
formalizing each aspect of a component's behavior,
by integrating work on discrete event simulation done
by Zeigler (1990), and by implementing the design
using the object-oriented techniques of multiple
inheritance and virtual base classes.

Simulations typically represent system behavior
along several dimensions, In MAST these
dimensions are rendered by the interactions of
independent aspect managers. Each manager is
concemed with different component attributes. A
gravitational manager, for example, is concerned with
a component's position and mass, but not with its
shape or color. All components subject to a manager
appear to that manager with the same form, regardless
of their actual structure. The manager can therefore
assess and manipulate the components in terms of
this standard form, oblivious to interactions occurring
within the component with other aspects of its
behavior. For example the gravitational manager
should be able to change a component's position
oblivious to the fact that the change also modified the
component's shape. This homomorphy is available
in C++ through multiple inheritance and virtual
methods. o '

MAST integrates both discrete event simulation
and continuous simulation techniques. For
continuous aspects of the simulation, the associated
aspect manager schedules re-evaluations at regular
intervals of simulated time. These intervals can be
decreased during the simulation to enhance the fidelity
of the behavior rendered for a particular passage, and
then lengthened to speed the simulation through a
passage where little is changing. For discrete aspects
of the simulation, the associated aspect manager
schedules re-evaluation at the time of the most
imminent event known. When that simulated time
is achieved, the aspect manager executes the
associated event, propagates its effects, and then
computes the next imminent event for scheduling. A
central simulation manager decides how to advance
the logical clock by perusing each manager's

schedule. The clock is advanced to the most
imminent re-evaluation time, and the managers who
are scheduled for that time are executed.

Although not yet implemented, we view it as a
straightforward task to generate the connection
management code automatically from the graphical
models, and plan to do so in the near future.
Generating the specific algorithms of each aspect
manager, using the associated behavior specifications
from the graphical model, would be a far more
difficult task, which we do not plan to tackle in the
near future.

6 Reasoning about the D‘iagrains

We have been working for several years on an
automated réasoning system that takes diagrams as
input. The GROVER system attempts to interpret the
diagram as a high-level description of a proof plan,
and it attempts to carry out the plan using an
underlying "conventional” theorem prover (Barker-
Plummer and Bailin, 1992). Recently we have begun
to apply these ideas to the problem of reasoning
about software. The graphical models that we
discussed in the previous sections are interpreted by
this (as yet unnamed) tool as plans for proving
assertions about the software design.

The particular type of assertions processed by this
tool grew out of an actual experience in debugging
part of the IGS testbed. In testing a particular
simulator program it was found that the behavior of
the system was not as expected, but no errors could
be found in any of the simulator components. The
problem turned out to be one of missing connections
between objects in the simulator. Since the
simulator architecture keeps each object
autonomous—completely ignorant of the objects to
which it is connected in a given application—the
absence of these connections did not result in any
anomalous behavior on the part of any object, but the
system itself was not behaving as expected.

Thus we decided to apply the planning concept to
verifying statements of the form, "If event x occurs at
object A then event y will occur at object B." The
planner takes event y at B as a goal, and tries to
construct a plan that starts from event x at A as an
initial condition (typically, various other context
conditions are specified as well). A goal is reduced to
subgoals by traversing the connections specified in
the diagram: if a goal state in an object D follows,
according to D's behavior description and the
connections specified in the diagram, from a certain
state in object C, then this state in object C becomes
a subgoal of the goal state. A failed plan, when
presented to the developer, serves to identify missing
connections that may have been overlooked in
defining the system.

We have noticed a similarity in the logic of this
planner and that of the KFP tool, which similarly

Bailin

traces back through the influence paths in the diagram
in generating fault isolation rules. We have not
studied this similarity in enough detail to decide
whether the two tools can make use of a single
"influence traverser” mechanism, but there seems 1o
be some promise of this.

7 Conclusions

We have made a start at what we hope will become an
integrated graphical modeling and development
system, in which software development becomes
synonymous with defining and reasoning about
graphical models. The prospects for such an
integrated environment are based on a few empirically
perceived similarities:

* Similarity between the information used
to simulate a system and that used to
diagnose faults

» Similarity between the logic used to
reason about system behavior during
development, and that used to diagnose
faults during operation (backward
chaining over influence paths)

» Similarity in the program structure of
specific simulators and specific
diagnostic systems, which has allowed
us to define generic architectures for
each of these applications

We noted in Section 2 that the full IGS concept
includes a lot more than a collection of simulation
and diagnostic programs. We are not yet in a
position to say whether these advanced capabilities
can be accommodated in our application development
framework. Even if they are not, however, the
current framework raises the level of abstraction at
which a significant amount of development for a
control center is performed.

Within the scope of the current framework, there
are perhaps two major open issues: 1) the impact of
scale-up on the performance of the generated code, and
2) the feasibility of automated reasoning about
additional aspects of the models.

The efficiency of the generated fault detection,
isolation, and recovery rules for a large, complex
system is an open issue. The examples we have
worked with to date in KFP have been obtained from
actual systems (either existing or being developed),
but they are very small subsets of these systems.
There is a solid basis of real-time scheduling theory
(e.g., rate-monotonic scheduling) with which we can
address scale-up performance issues for the generated
simulator code, but we lack such a firm basis for a
rule-based diagnostic system, The solution to this
problem may be to evolve to a more thoroughly
model-based approach to diagnosis, in which there is
no production rule interpreter at all. This would, in

Al
1

addition, permit a greater degree of integration
between the diagnostic and the simulator code.

An open issue concerning reasoning about the
models is whether automation can support reasoning
about issues other than the pre-condition/post-
condition behaviors currently addressed. One major
area that we would like to investigate is support for
reducing the state space of a set of interacting
components. This problem arises in "reachability
analysis,” in which one tries to prove (or at least to
convince oneself) that no unexpected states are
entered. In the area of communications protocols,
this has proven to be a difficult but necessary process
that can be supported by a variety of heuristic
techniques, some of which are automated (Holzman,
1992; Lin and Liu, 1992)

References

Bailin, S., Moore, J., Hilberg, R., Murphy, E., and
Baher, S., 1989. A logical model of cooperating
rule-based systems. Telematics and Informatics, Vol.
6 Nos. 3/4, pp. 331-349. ,

Barker-Plummer, D. and Bailin, S. Proofs and
pictures: proving the diamond lemma with the
GROVER theorem proving system. AAA/J
Symposium on Reasoning with Diagrammatic
Representations, March 1992,

Barwise, J. and Etchmendy, J., 1991. Visual
information and valid reasoning. Preprint.

Harel, D., 1992. Biting the silver bullet: Toward a
brighter future for system development. JEEE
Computer, January 1992,

Holzman, G., 1992. Protocol design: redefining the
state of the art. IEEE Software, January 1992.

Larkin, S and Simon, H., 1987. Why a diagram is
(sometimes) worth ten thousand words. Cognitive
Science, 11, pp 65-100.

Lee, K. et. al., 1990. An OOD paradigm for flight
simulators, 2nd edition. Technical Report of the
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh.

Lin, F. and Liu M., 1992. Protocol validation for
large-scale applications. JEEE Software, January
1992.

Parnas, D., Asmis, G., and Madey, J., 1990.
Assessment of safety-critical software. Technical
Report 90-295, ISSN 0836-0227.
Telecommunications Research Institute of Ontario.
Queens University, Kingston, Ontario.

Zeigler, B., 1990. Object-oriented simulation with
hierarchical, modular models. New York: Academic
Press.

Bailin

Sa~-¢/
/36870

(‘\/

Bailor

N93-17501

Formalization and Visualization of Domain-Specific

Software Architectures

Paul D. Bailor, David R. Luginbuhl, and John S. Robinson

Department of Electrical and Computer Engineering
Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433
pbailor@galaxy.afit.af.mil
(513) 255-3708

1 INTRODUCTION

This paper describes a domain-specific software design
system based on the concepts of software architectures
engineering [Lee and others, 1991] and domain-specific
models and languages [Prieto-Diaz and Arango, 1991].
In this system, software architectures are used as high
level abstractions to formulate a domain-specific soft-
ware design. The software architecture serves as a
framework for composing architectural fragments (e.g.,
domain objects, system components, and hardware
interfaces) that make up the knowledge (or model)
base for solving a problem in a particular applica-
tion area [Lee and others, 1991]. A corresponding soft-
ware design is generated by analyzing and describing
a system in the context of the software architecture
[Lee and others, 1991]. While the software architecture
serves as the framework for the design, this concept
is insufficient by itself for supplying the additional de-
tails required for a specific design. Additional domain
knowledge is still needed to instantiate components of

the architecture and develop optimized algorithms for

the problem domain. One possible way to obtain the
additional details is through the use of domain-specific
languages. Thus, the general concept of a software ar-
chitecture and the specific design details provided by
domain-specific languages are combined to create what
can be termed a domain-specific software architecture

(DSSA).

2 DESCRIPTION OF DOMAIN
SPECIFIC SOFTWARE DES-
IGN SYSTEM

The overall goal of our research is to prototype the
technology required to formally specify, design, and de-
velop an Ada application system using the DSSA ap-
proach described above. A key part of this effort is the

creation and use of formal, domain-specific languages
to generate software architectures whose architectural
fragments and associated composition rules are main-
tained in a formal knowledge base of objects. These
languages allow definition of the objects making up the
components of the DSSA in terms of the components’
structural and behavioral properties. Additionally, the
domain-specific languages are used to compose the de-
fined objects into a corresponding software design and
resulting Ada implementation. In fact, the production
rules of the grammar for the domain-specific language
can serve as the basis for system composition. This is
consistent with the approach suggested by Batory for
composing hierarchical software systems with reusable
components [Batory and O’Malley, 1992].

From a user interface perspective, software engi-
neers use the domain-specific languages to define object
classes and object composition rules to be placed into
the knowledge base of objects. Alternately, application
specialists (system end-users) use the languages to in-
troduce new object instances and to compose object
instances that currently exist in the knowledge base.
Within the knowledge base, the objects and composi-
tion rules are maintained as executable, formal specifi-
cations providing the software engineer and application
specialist with the ability to rapidly prototype and val-
idate desired system behaviors without having to build
Ada components first.

In addition to the domain-specific languages, some
type of object base language is required to formalize
the architecture and corresponding design representa-
tion. Such an object base language would also provide
the ability to analyze and manipulate the objects de-
fined and composed by the domain-specific language.
This object base definition and manipulation language
1s used for the continued development of the domain-
specific design and corresponding Ada software compo-
nents. That is, the manipulation language is used to

L]

)

formally manipulate the architectural objects to obtain
a corresponding Ada design representation and Ada im-
plementation of that object. Also, the object base ma-
nipulation language is the key to developing an applica-
tion system that is composed of existing and validated
Ada software components.

Thus, a formal framework for defining software ar-
chitectures and domain specific languages would have
to consist of the components listed below. The rela-
tionship or general configuration of the components is
shown in Figure 1.

1. A formalized object base that serves two functions:

(a) Formal specification of the concept of a soft-
ware architecture consisting of a set of general
abstractions associated with software archi-
tectures and a mathematical model of these
abstractions.

(b) Formal specifications of architectural frag-
ments and instances of these fragments devel-
oped through the use of domain-specific lan-
guages as well as the object base manipulation
language.

2. Formal specifications of domain-specific languages
for describing and manipulating objects in the
DSSA.

3. An Ada developmeni capadility that uses the for-
mal specification of the architectural components
to generate Ada components and allows for the
composition of existing and validated Ada compo-
nents into an application system.

4. A sophisticated user interface for both the appli-
cation specialist and the software engineer. Note
that visualization capabilities for both the domain-
specific language constructs and the object base are
highly desirable components of the user interface.

For this research effort, a prototype implementa-
tion of the technology will be done using the Software
Refinery”™ Environment [Systems, 1990] that consists
of the following components.

1. The Refine wide-spectrum language.

2. The Refine formal object base that is analyzed and
manipulated via the Refine language.

3. The Dialect tool that allows for the definition of
formal languages whose syntactical structures are
directly mapped to objects in the object base. Note
that this mapping is done in such a way that an
abstract syntax tree relationship is maintained be-
tween the language components and corresponding
objects in the object base. This relationship pro-
vides a significant advantage for language transfor-
mation purposes.

7

Bailor

4. The Intervista tool that provides an X-windows
based capability for graphical interaction with the
object base.

Figure 2 graphically depicts the Refine framework. It
provides an ideal platform to prototype the proposed
DSSA technology. The Dialect and Intervista Tools are
used for the User Interface aspect as they provide the
means to define domain-specific languages, map domain
language structures to a formal object base, and visu-
alize both the domain language structures and the soft-
ware architecture. The Refine language provides the
means to manipulate objects in the object base for per-
forming operations such as transforming the formalized
objects into Ada components, analyzing the object’s
behavior for validation/verification purposes, and com-
posing sets of objects into a higher level application
system. An important advantage of the Refine frame-
work is that it reduces tool development time to zero.
Thus, it allows the research to focus on the develop-
ment of the new technology immediately.

3 Research Issues

The domain-specific software design system described
above has several important research issues associated
with it that we are currently attempting to address.

1. What are the abstractions associated with the con-
cept of a software architecture, and how can we
formally model these abstractions?

2. What is the feasibility of developing the required
domain-specific languages? There are a number of
relevant Air Force application domains that have
already been analyzed and at least partially struc-
tured using the concepts of a software architecture;
for example, the electronic combat domain of The
Joint Modeling and Simulation System (J-MASS)
[ASD/RWWW, 1990, ASD/RWWW, 1991], the
C31 domain [Plinta and Lee, 1989], and the radar
tracking domain [Jensen and Ogata, 1991]. Addi-
tionally, the DARPA Domain-Specific Software Ar-
chitecture project is funding research in an attempt
to define software architectures in four application
areas. All of these could serve as candidates for de-
velopment of domain-specific languages; however,
we must first address three important sub-issues:

(a) How difficult is it in general to encode the
domain-specific knowledge required to com-
pose objects in the domain into the produc-
tion rules of a grammar? Alternatively, how
difficult is it to develop and formalize the
domain-specific knowledge required for this
and place it into a knowledge base of com-
position rules?

Bailor

/~ USER INTERFACE \

visualization
of domain
language and :
object base SOFTWARE ENGINEER:
I <+— DEVELOP ARCHITECTURAL COMPONENTS
APPLICATION SPECIALIST:
DOMAIN- +— DEVELOP APPLICATION USING COMPONENTS
SPECIFIC
LANGUAGES
_ ‘ - /~ Ada DEVELOPMENT CAPABILITY ™\
develop Ada
o Ada . component
! components library
FORMALIZED /
OBJECT BASE component
FOR DSSA .| composition
[domain behavior] J \ rules

A

OBJECT BASE APPLICATION
MANIPULATION SYSTEM
LANGUAGE

Figure 1: General Configuration for Formalizing a DSSA

Bailor

GRAPHICAL INTERVISTA
PRESENTATION TOOL
AND \
INTERACTION . DEVELOP ADA
REFINE COMPONENTS
OBJECT
DIALECT BASE DEVELOP APPL.
(COMPOSE
TOOL —
COMPONENTS)
DOMAIN
SPECIFIC REFINE LANGUAGE
LANGUAGE e TRANSFORM OBJECTS
e ANALYZE OBJECTS

Figure 2: Refine System Framework

(b) Can the same domain-specific language be
used by both the software engineer and the
application specialist?

(c) Is there a core of language constructs that are
common to all domain languages?

3. What is the feasibility of using a knowledge-based
transformation system to develop a highly visual
interface to the domain-specific software design
system that is useful to both the software engineer
and the application specialist?

We have focused our short-term research objectives
towards addressing the above issues first. Specifically,
the research objectives for the first two years of this
effort are to:

1. Define the abstractions associated with the concept
of software architectures and develop a mathemati-
cal model of these abstractions. The Refine system
will be used to prototype and analyze formal mod-
els of software architectures.

2. Analyze a part of the electronic combat domain
and develop the required formal domain lan-

guage(s).

3. Use the Software Refinery Environment to build
a working prototype of our DSSA system that in-
cludes the ability to build a formal object base of
architecture fragments and to apply composition
rules to the fragments to construct domain-specific
software designs in the form of a DSSA.

4. Develop visualizations of both the formal domain
language(s) and the object base.

9

In the following years, we expect the major concentra-
tion to be on using the formalized object base as a basis
for developing the corresponding Ada components and
as a basis for composing an application system within
a domain. Additionally, methods and tools for scaling
the technology up for large scale applications will be
investigated.

4 SUMMARY

We feel the proposed research can have a significant
impact on the methodologies for implementing the con-
cepts of software architectures and domain-specific soft-
ware design, especially in the areas of formalizing soft-
ware architectures and formalizing the application of
domain-specific languages to software specification and
design. Additionally, this research should provide much
insight into the process of object-oriented development
of validated and reusable Ada components that can be
quickly and validly composed into an application sys-
tem for a particular domain.

References

[ASD/RWWW, 1990] ASD/RWWW. Joint Modeling
and Simulation System (J-MASS): System Concept
Document. Technical report, CROSSBOW-S Archi-
tecture Technical Working Group, December 1990.

[ASD/RWWW _ 1991] ASD/RWWW. Software Struc-
tural Model Design Methodology. Technical report,
Architecture Technical Working Group, June 1991.

[Batory and O’Malley, 1992] Don Batory and Sean
O’Malley. The Design and Implementation of Hi-
erarchical Software Systems With Reusable Compo-
nents. Technical Report TR-91-22, Department of
Computer Sciences, University of Texas at Austin,
Austin, Texas, January 1992.

[Jensen and Ogata, 1991] Paul S. Jensen and Lori
Ogata. Final Report for Automatic Programming
Technologies for Avionics Software (APTAS). Tech-
nical Report LMSC-P000001, Lockheed Software
Technology Center, Palo Alto, California, July 1991.

[Lee and others, 1991] Kenneth J. Lee et al. Model-
Based Software Development (Draft). Special Report
CMU/SEI-92-SR-00, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, December 30 1991.

[Plinta and Lee, 1989] Charles Plinta and Kenneth
Lee. A Model Solution for the C3I Domain. In
Tri-Ada Conference, pages 56-67. New York: ACM
Press, 1989.

[Prieto-Diaz and Arango, 1991] Prieto-
Diaz and Arango. Domain Analysis and Software
Systems Modeling. IEEE Computer Society Press :
California, 1991.

[Systems, 1990] Reasoning Systems. Refine User’s
Guide. Reasoning Systems, Inc., 1990.

10

Bailor

Bhansali

N93-17502

THE KASE APPROACH TO DOMAIN-SPECIFIC

SOFTWARE SYSTEMS
Sanjay Bhansali and H. Penny Nii

S3-¢/
/26877

Knowledge Systems Laboratory

Stanford University
701 Welch Road, Bldg. C, Palo Alto, CA 94304
bhansali@ sumex-aim.stanford.cdu

%]

nii@ sumex-aim.stanford.edu

1. Introduction

Designing software systems, like all design activities, is a
knowledge-intensive task. Several studies, (e.g. [Adelson &
Soloway, 1985; Guindon, Krasner, & Curtis, 1987]) have
found that the predominant cause of failures among system
designers is lack of knowledge - knowledge about the
application domain, knowledge about design schemas,
knowledge about design processes. The goal of domain-
specific software design systems is to explicitly represent
knowledge relevant 1o a class of applications and use it to
partially or completely automate various aspects of the
design activity for designing systems within that domain.
The hope is that this would reduce the intellcctual burden on
the human designers and lead to more efficient software
development.

In this paper, we present a domain-specific system built
on top of KASE, a knowledge-assisted software engineering
environment being developed at the Stanford Knowledge
Systems Laboratory. We introduce the main ideas underlying
the construction of domain specific systems within KASE,
illustrate the application of the idea in the synthesis of a
system for tracking aircrafts from radar signals, and discuss

some of the issues in constructing domain-specific systems.

2. Domain Specific Software Systems
using KASE

KASE is a knowledge-based software development
environment that is designed to provide acrive assistance in
the design of software systems. Some of the basic
characteristics of the KASE environment are: a domain-
independent representation mechanism for software
architectures, a graphical interface that permits smooth
navigation between different views of a software system
[Guindon, 1992], an integrated editor that permits
modifications to the architecture from any view, and a
constraint checker that can help a user maintain various
syntactic and stylistic constraints between " different
components of the architecture[Nii, Aicllo, Bhansali,
Guindon, & Peyton, 1991].

The construction of domain specific software systems in
KASE involves the identification of a generic problem or
task, a generic architecture suitable for the task, a model of
the application domain in terms of primitive entities (e.g.
object, relations, events), and a set of cusiomization 100ls
that can be used to construct a specific system for a
particular problem.

Generic problem

]
¥
Problem specification

Generic architecture

Application domain model

Cuslomization

Editing commands

Problem-specific
Process architecture

Redesign

Fig. 1 Customizing an architecture

11

As shown in figure 1, the softavare design activily consists
of instantiating the generic architecture with respect to a
given problem statement and the domain model using the
customization tools and results in the creation of a problem-
specific architecture. We call this process cusiomization -
customize a generic architecture to fit an application.

A generic problem represents a class of problems. By
identifying problem classes, one can design knowledge
representation schemes, architectures, and reasoning
processes which are appropriate for the general problem, and
reuse them for several different problem instances. The
specification of a generic problem results in the creation of a
problem schema which specifies the high-level structure of a
problem specification. A schema has certain roles which
represent the parameters of the problem, and constrainis on
the values of the roles. Instantiating these roles with
specific values results in the creation of a specific problem
specification.

Figure 2 shows the schema for an example generic
problem: tracking a set of mobile objects by interpreting
signals that are being continually generated by the objects.
(This generic problem can be instantiated, e.g. to the
problem of tracking aircrafts from radar and voice signals
(Brown, Schoen, & Delagi, 1986) or tracking ships from
sonar data (Nii, Feigenbaum, Anton, & Rockmore, 1982)).
This problem has three parameters: (i) the specification of
the input signal(s); (ii) the main body or functional
description of the problem in the form of an extremely high-
level program; and (iii) certain characteristics of the domain
and the environment. The constraints on the schema roles
are specified by specifying a grammar for instantiating the
roles.

Associated with each generic problem is a sel of
(possibly one) generic architectures, which can be used 10

Bhansali

creale a system for solving instances of the generic problem.
A gencric architccture is a collection of paramererized
modules and intermodular dependencies. A parameterized
module is a logical collection of software cntities like
procedures, types, etc. in which some of the entitics are
abstracted as paramicters. A parameter can be, among other
things, an algorithm, a representation scheme, or a sub-
module. The design process is viewed as an instantiation of
the various paramclers comprising a generic architecture.
However, the parameters can be fairly complex entities and
the design task is non-trivial.

The structure of the generic architecture determines the
basic solution strategy for solving the problem. For
example, the continuous signal interpretation problem given
earlier can be solved using a symbolic, knowledge based
approach, or by statistical analysis of the data and the two
solutions would have radically different architectures. A
module description includes information about the input and
output data flows of the module, the
submodules/superfnodules structural relations, the services it
requires [rom other modules, the services it provides to an
external module, the precondition and postconditions for
cach service provided by the module, and/or a program
template that implements each service. The most interesting
aspect of the module description is that some of its
altributes are viewed as parameters of the module.
Associated with each parameter attribute is a method which
can be uscd to detcrmine the value of the parameter. The
complexity of the method depends on the type of the
parameter. For example, it may be a simple process of
selecting between a pre-determined list of alternatives. or it
may involve sophisticated reasoning using domain
knowledge and heuristic rules.

Continuous-Signal-Interpretation :Generic-problem
Signal-Inputs:)<var> : (SEQ :FROM <int> :TO <int> (<fields>)
<field-description>)]*

Body: WHILE <formula> DO <statements> ENDWHILE
Task Assumptions: <task-assumptions>

where

<fields> ::= <identifier> | <identifier> <fields>

<field-description> ::= EXIST <objects> SUCH-THAT <condition>

<statements> ::= <statement> ; <statements> | <statement>
<statement> ::= (IF <formula> THEN-DO <statement>) |

(FORALL <vars> <fonnula> DO <statement>) |

(PRINT <terms>)
<task-assumptions> ::= (UNRELIABLE-SIGNAL <var>)]

(REDUNDANT-SIGNAL <var>) |
(ASYNCHRONOUS-SIGNAL <var>} |

Fig. 2. Specification of the generic problem of continuous signal interpretation.

12

Bhansali

Signal-interpreter

Tracking-component
Ksource-1
Ksource-2

Situation board
Signal
feeder Blackboard Panel
Report
Acceptor
Control Panel

Controller

Fig. 3. A functional decomposition of the gencric architecture for the continuous-signal interpretation problem. The architecture
shows the main modules comprising the architecture.

Signal-Interpreter isa module

instantiated to an EventDriven-SituationBoard.

(print-report 7r), (read-next-signal) :signal, (start-cxecution)

submodules Situation-board, Tracking-component, Controller
supermodule CSI-system
inputs s : SEQ(signal)
outputs 7r: SEQ(report)
requircs
provides (main)
calls report-acceptor, signal-lceder
called-by nil
parameters
1) Controller
2) SituationBoard
constraints

1) Controller is instantiated to an EventDriven-Controller iff SituationBoard 1s

2) Only the TrackingComponent should have a dataflow into the SituationBoard.
3) Only the Controller module can call the Tracking-Component.

Fig. 4. Representation of the Signal-interpreter module in the generic architecture.

Figure 3 shows the structural decomposition of a generic
architecture for the continuous-signal-interpretation problem
class and figure 4 shows a partial description of the signal-
interpreter module of the generic architecture.

The domain model provides the ontology of terms and
operations used to describe an application domain
independent of a specific task; several different problems can
be specified in a high-level language using this ontology.
The primary components of the domain model are objecis
and relarions between the objects. An object is an
abstraction of some entity in the application domain, ¢.2.,
an aircraft or a signal. Associated with each object is a set of
ariributes which are properties that describe an instance of an

13

object and operations that change the state of an object. The -
description of an operation includes pre- and post-conditions
and optionally, a code template that implements the
operation.

2.1 CUSTOMIZATION PROCESS

The customization process consists of refining a selected
generic architecture into a detailed architectural specification
based on the mode! of the domain and the problem
specification. In KASE, the customization process is
performed in an interactive and mixed-initiative setting. The
role of KASE in the design process is that of an intelligent

design associate that provides suggestions on how to refine
the architecture, carries oul the commands invoked by the
user, informs the designer of constraint violations in the
design, keeps a record of the design steps and the
dependencies between the steps so that incremental
modifications to the design can be done efficiently.

The knowledge used by KASE in providing these kinds
of assistance includes general, domain independent
knowledge aboutl software design, architecture-specific
knowledge for the instantiation of various architectural
paramcters, as well as specific heuristic knowledge about
design related to a particular domain. Most of the domain
independent design knowledge is represented in the form of
constraints (e.g. those relating different levels of a data flow
diagram), and KASE contains mechanisms which
automatically keep track of these constraints as well as
heuristics for resolving constraint violations (Nii er al.
1991). The architecture specific knowledge includes a set of
constraints governing the relationships between different
compouents of the architecture, a library of rensable modules
and schemas which can be used to instantiate the
architectural paramelers, and a collection of design rules and
procedures that can be invoked by a designer t¢ instantiate
certain parameters and optimize the design.

To illustrate the customization process, consider the
generic architecture shown in fig. 2. The parameters in the
generic archilecture include the following: 1) the submodules
of the blackboard panel, 2) the type of information stored in
the control panel, 3) the submodules of the tracking
component, and 4} the scheduling and focusing strategies of
the controller. Different instantiations of these parameters
result in the creation of a widely different systems with
different performances. KASE contains a set of design rules
for instantiating these parameters, and a set of
transformation rules that optimize the design (e.g. merging
certain kinds of control signals into one for increased
efficiency). The customization process for an implemented
example in KASE is described in [Bhansali & Nii, 1992].

2.2 REDESIGN

Software design is characterized by frequent modifications
either due 1o a design error or as a result of a change in the
problem requirements or the computing environment. KASE
uses different mechanisms to support these two kinds of
modifications.

2.21 Redesign due 1o error in original design. KASE
automatically checks for violations of several kinds of
constraints and helps the designer modify the architecture to
resolve the inconsistencies. The constraints in KASE are
currently divided into three categories: 1) General
architectural constraints (e.g.

14

Bhansali

every data link must have a consumer and a producer); 2)
Specilic architectural constraints (¢.g. there must be no data
flow or control flow between submodules of the tracking
component); and 3) Stylistic constraints that are derived
from design principles that are considered 'good’ (e.g a
module must not be decomposed into more than n
submodules at any level of abstraction).

Each constraint in KASE is associated with a rrigger, a
predicaie, and an oplional resolving-action. A trigger is a
set of actions that can potentially cause the constraint to be
violated, a predicate is a Lisp expression that checks to see
whether the constraint is actually violated, and resolving-
aclion is a set ol actions that may be taken to remedy the
constraint violation. KASE monitors the design activity and
flags each constraint that is triggered by a user action.
When a user indicates the completion of a design session,
KASE checks the predicates for cach flagged constraint to
see whether the constraint is actually violated. Quite often, a
constraint that gets violated by a design action is resolved by
a later action, and such constraint viglations should be, and
are, transparent to the designer.

When KASE reports a constraint violation, the designer
can ask KASE for a list of suggestions on how to resolve
the error. Depending on the nature of the constraint, KASE
presents a list of different actions that may be taken to
remove the constraint violation. The user can then choose
either one of the actions suggested by KASE or take some
other action.

2.2.2 Redesign due 10 change in requirements. KASE
provides tools that can help a designer in modifying parts of
a design lo meet new requirements without having to start
from scratch. First, KASE maintains a history of all the
design steps and allows the user to go back to any previous
state of the design. It does this by replaying the design
history from the initial siate to the desired state. :

A second redesign support provided by KASE is in
localizing the effects of a design change. KASE uses
dependencies between design steps to structure a linear
design history into a lattice. When the user wants to undo
the effect of a particular design step, KASE uses the
position of that design step in the derivation history to
determine what other design steps are affected by it
[Bhansali, 1992].

3. Discussion

In this section we briefly discuss some of the issues,
advantages, and limitations in our approach. One of the
major issue in the design of domain-specific systems is
concermed with acquiring and maintaining the extensive body
of knowledge from multiple sources. This task, also known
as domain modeling, is a manifestation of the classic

“knowledge acquisition problem in expert systems. One way

of viewing generic problems/tasks and architectures is 1o
consider them as providing a skeletal knowledge base or
shell which can be instantiated for different applications. Our
long term goal is to provide a library ol gencric problems
and associated architectures, which would provide a base
from which various domain models can be instantiated.

A second issue is concerned with the flexibility of the
resulting system. Domain specific systems utilize
specialized design techniques which are well suited for a_
particular class of applications. However, since it is not
possible to anticipate all subscquent changes in
requirements, the specialised design techniques may not be
adequate for extending the system beyond the original
intended application. A major cffort in the KASE project
has, therefore, been expended in providing a domain--
independent infrastructure which enablcs a user 1o modify an
architecture through an integrated cditor, pictorial and
symbolic visualizations of the design from various
perspectives, and a constraint maintenance subsystem that
supports opportunistic design based on insights drawn from
empirical studies of human designers [Guindon, 1990).

A third issue is concerned with the usefulness of the
approach. Our approach involves a considerable investment
in terms of building the initial knowledge structure, and we
believe that the payoff is in being able to reuse generic
architectures to design solutions for a family of problems.
We need to identify such architectures arld problem classes
and use KASE for designing software systems for problems
belonging to such problem classes.

The KASE system represents our initial attempt in
building a prototype environment that can offer varying
degrees of assistance to a softwarc designer by employing
diverse sources of knowledge. Our current work is focusing
on extending the domain modeling representation 1o capture
the dynamic behavior of a system by modeling states,
transitions, events, and actions. We are also exploring the
issue of design rationale capture and its reuse during
redesign. KASE's current redesign capabilities were
mentioned briefly in this paper. We are interested in
extending these capabilities so that KASE can automatically
incorporate certain changes in problem requirements into the
design by using the design rationale.)

Acknowledgements

The KASE system is a result of several people's work. We
gratefully acknowledge the contributions made by Nelleke
Aiello, Raymonde Guindon, Liam Peyton and Go Nakano
who wrote most of the code for KASE.

References

Adelson, B. & Soloway, E. (1985). The role of domain

Bhansali

Bhansali, S. (1992). Generic software architecture based
redesign. AAAT Spring Symposium on Computational
Considerations in Supporting Incremental Modification
and Reuse, Stanford, CA.

Bhansali, S. & Nii, H. P. (1992). KASE: An integrated
cnvironment for software design. 2nd Tnternational
Conference on Ariificial Inrelligence in Design,
Pittsburgh, PA.

Brown, H. D., Schoen, E., & Delagi, B. A.(1986). An
Experiment in Knowledge-Based Signal Understanding
Using Parallel Architectures. Department of Computer
Science, Stanford University, Technical Report STAN-
CS-86-1136.

Graves, H. (1991). Lockheed Environment for Automatic
Programming. Gth Knowledge-Based Software
Engineering Confercnce, Syracuse, NY: 78-89.

Guindon, R. (1990). Designing the Dcsign Process:
Exploiting Opportunistic Thoughts. Human-Computer
Inreracrion, 5:305-344.

Guindon, R. (1992). Requircments and design of
DesignVision, an object-oriented graphical interface 1o an
intelligent software design assistanl. ACM Proceedings
of CHI'92, Monterrey, CA.

Guindon, R., Krasner, H., & Curtis, B. (Eds.). (1987).
Breakdowns And Processes During The Larly Activities
Of Softvare Design By Professionals. Ablex Publishing
Comp.

Nii, H. P., Aiello, N., Bhansali, S., Guindon, R., &
Peyton, L. (1991). Knowledge Assisted Softwarc
Engineering (KASE): An introduction and status Junc
1991. Knowledge Systems Laboratory, Computer Science
Department, Stanford University, Technical Report KSL-
91-28.

Nii, P.(1989). Blackboard Systems. In A. Barr, P.
Cohen, & E. Feigenbaum (Eds.), Handbook of Ariificial
Intelligence. New York, NY: Addison-Wesley.

UAGNAL PACE 5

G& POUR QUALITY

experience in software design. [EEE Transaction on
Software Engineering, SE-11(11):1351 - 1360.

15

Sy~ /

Braun

DOMAIN SPECIFIC SOFTWARE ARCHITECTURES -- C OMMAND AND CONTROL

Christine Braun
William Hatch
Theodore Ruegsegger
GTE Federal Systems
15000 Conference Center Dr.

N93-17503

Chantilly, VA 22021

Neil Goldman

(\ Bob Balzer
Q/ Martin Feather

Dave Wile
USC/Information Sciences Institute
Marina Del Rey, CA 90292

Abstract

GTE is the Command and Control contractor for the Domain
- Specific Software Architectures program. The objective of
 this program is to develop and demonstrate an architecture-
driven, component-based capability for the automated
~ generation of command and control (C2) applications. Such
a capability will significantly reduce the cost of C2
application development and will lead to improved system
quality and reliability through the use of proven architectures
and components.

A major focus of GTE’s approach is the automated
generation of application components in particular
subdomains. Our initial work in this area has concentrated in
the message handling subdomain; we have defined and
prototyped an approach that can automate one of the most
software-intensive parts of C2 systems development,

This paper provides an overview of the GTE team’s DSSA
approach and then presents our work on automated support
for message processing.

The DSSA Concept.

DSSA is based on the concept of an accepted generic
software architecture for the target domain. As defined by
DSSA, a software architecture describes the topology of
software components, specifies the component interfaces,
and identifies computational models associated with those
components. The architecture must apply to a wide range of
systems in the chosen domain; thus it must be general and
flexible. It must be established with the consensus of
practitioners in the domain,

Once an architecture is established, components that
conform to the architecture—i.e., that implement elements of
its functionality in conformance with its interfaces—will be
acquired. They may be acquired by identifying and
modifying (if required) existing components or by

16

specifically creating them. One of the ways they may be
created is through automated component generation.
DARPA has sponsored work in this area at USC Information
Sciences Institute -- the APS application generator project,
and is interested in incorporating this or related technology.

The existence of a domain-specific architecture and
conformant component base will dictate a significantly
different approach to software application development. The
developer will not wait until detailed design or
implementation to search for reuse opportunities; instead, he/
she will be driven by the architecture throughout. The
architecture and component base will help define
requirements and allow construction of rapid prototypes.
Design will use the architecture as a starting point. Design
and development tools will be automated to “walk through”
the architecture and assist the developer in the selection of
appropriate components. The ultimate goal is to significantly
automate the generation of applications. A major DSSA task
is to define such a software lifecycle model and to prototype
a supporting toolset.

These activities will be accompanied by extensive
interaction with the development community for the target
domain, and by technology transition activities. One aspect
of this is that each domain team is working closely with a
DoD agency that carries out major developments in the
designated area. The GTE team is working with the US Army

Communications and Electronics Command.,

Why Command and Control?

There are many reasons why the command and control
domain is an excellent target for DSSA technology. It is a
high payoff area; command and control systems are needed
even in the current military climate. (This is particularly true
when one recognizes that applications such as drug
interdiction fall within the C2 “umbrella”)) It is a well-
understood area; most of the processing performed in C2

applications is not algorithmically complex. However, C2
applications are very large, and much of this size comes from
repeated similar processing -- for example, parsing hundreds
of types of messages. In addition to this commonality within
applications, there is much commonality across applications.
Multiple C2 systems must handle the same message types,
display the same kinds of world maps, elc.

The kinds of commonality in C2 applications are very well-
suited to DSSA techniques. In somie areas, components can
be reused identically; these can be placed in the DSSA
component base and highly optimized. In other areas,
components will be very similar in nature but differ in the
particulars, e.g., message parsing. These areas are a natural
fit to the DSSA component generation technology, allowing
a table-driven generator to quickly create the needed specific
component instances. :)

GTE's Approach
Figure 1 illustrates GTE's overall approach to the DSSA pro-
gram.

Initially, project work will follow two parallel threads. The
first will define a software process model appropriate to

Braun

architecture-driven software development and will developa
toolset to support that process. The second will establish a
capability that implements the process for the command and
control domain, based on a C2 architecture and a set of
reusable C2 components.

The DSSA process model will address all aspects of the
software life cycle. It will describe activities for establishing
system requirements, developing the software system, and
sustaining the system after delivery. The DSSA toolset will
support all of these activities, automating them as far as
possible. In particular, it will automate system development
activities by using the architecture as a template, guiding the
selection of available reusable components, and automating
the generation of specific required components. The toolset
will be constructed insofar as possible from available tools -
- both commercial products and products of the research
community. In particular, it will make use of USC/ISI's APS
application generator, DARPA/ STARS reuse libraries, and
DARPA/Prototech tools. Open tool interfaces will be
emphasized to minimize specific tool dependencies, thus
making the toolset usable in the widest range of
environments. ‘

Fundamental to the C2 DSSA capability is the development

STARS,
- - ARCADIA,
C* Domain by other ISTO Bsitor!
Knowl ; * efforts
odge Lifecycle and (COTS) Tools
Methodology
APS
Application environment/
5;%20 Generator tool basis
expertise methodological
basis generates
NS *” '
| C? Domain components \ oo
Software [ag—PrSYIe8 SUPEOT for Architecture
Architecture supports
- ation
waibred ~3 gener _—
- architecture -/ includes
“T - i defines/provide: y
C? System components Reusable
Shadow Project Components
provides and Library
uses
Transter

Figure 1. GTE's DSSA Approach

17

of a C2 software architecture. This starts with development
of a multi-viewpoint domain model, created through
interaction with all elements of the DoD C2 community. The
automated Requirements Driven Development (RDD)
methodology will be used in model creation. From this, an
object-oriented software architecture will be developed. The
architecture will tie back to the multi-viewpoint model so
that mappings to different views of the domain functional
decomposition are apparent. George Mason University’s
Center for C31 will play a major part in this modeling and
consensus-building activity. A base of components
conforming to the architecture will then be developed, Many
of these will be existing components, perhaps modified to fit
the architecture, Others will be automatically generated
using APS.

The DSSA capability will be demonstrated by development
of a prototype C2 system, most likely an element of the Army
Tactical Command and Control System (ATCCS). An
independent metrics/validation task will assess the
effectiveness of the approach and gather metrics. The
methodology and toolset will be revised based on findings
and further necessary research will be identified.

Throughout the program, a technology transfer task will
present results in conferences, papers, seminars, and short
courses. The George Mason University Center for C31 will
serve as a focal point for technology transfer.

pplication Generai
The Technology

Application generators are tools that permit software
developers to create software application programs in a much
higher-level language tailored to the application domain.
These programs are automatically translated by the
application generator to a lower-level language, thus
“generating applications.” This greatly reduces the effort
required to create working applications, typically by at least
an order of magnitude. The benefits are analogous to those
achieved by moving from assembly language development
to use of standard procedural languages such as FORTRAN,
C, and Ada.

Fourth Generation Languages (4GLs) are application
generators for DBMS-oriented information system
applications. Because 4GLs focus on a narrow class of
applications, they can include very powerful constructs that
allow software to be developed quickly and easily by those
familiar with the application domain. Management
Information System (MIS) developers using 4GLs achieve
productivity improvements of as much as 50-100 times over
traditional (usually COBOL) language users.

Application generators can be (and have been) developed for
other types of applications as well. They are best suited to

18

Braun

narrow domains, or subdomains of large domains such as C2.
Because they require a domain specific vocabulary for
expressing applications, they are generally unique to the
domain or subdomain and not easily modified to handle other
domains. Creation of an application generator for a particular
domain, furthermore, is a significant undertaking.
Development of an application generator is most appropriate
in domains that are well-understood and in which many
different developments perform primarily the same kinds of
processing.

The APS Approach

USC Information Sciences Institute (ISI) has developed a
capability (called APS) that supports the development of
application generators. APS is based on the concept of
relational abstraction. The application developer identifies
abstract data objects and the logical relationship among
them. Effectively, the developer has access to a “virtual
database” expressed succinctly in terms of the known
structure of the domain’s data model. Application behavior is
then expressed in terms of these data objects, accessing them
associatively via queries and modifying them based on
values of other objects. This allows the user to concentrate on
behavior rather than representation, and provides the power
1o express that behavior at a very high level.

Providing an APS application generator for a particular
subdomain requires the development of a domain-specific
language for that domain. This is a relatively straightforward
task because the language, regardless of domain, involves the
same fairly simple set of relation-oriented constructs for
expressing data relationships, validations, and actions. It is
also a critical task, because the expressive capability of this
language is what provides the application generator’s power.
A translator is then developed to map the language to an
underlying program generator, which produces executable
procedural code. This is also not too complex, as all
languages contain similar constructs. Most of the work is
done by the underlying generator. (Currently the system
generates LISP; an Ada generator is in development.)

A drawback to many existing application generators is poor
efficiency of the generated code. This has, in many cases,
made these generators suitable only for developing
prototypes. AP5 addresses this problem by allowing the user
to specify annotations that provide guidance to the translator
on desired implementations of specific operations, These
annotations can be added incrementally while tuning to
achieve desired performance.

APS can play a key role in the C2 DSSA program. We
anticipate that a number of C2 subdomains will be amenable
to this approach. By developing generators for those
subdomains we can achieve two major advances in
productivity:

. DSSA users can use the generators to create specific
components in the subdomain with far less effort.

« DSSA architects can use the generators to create

reusable subsystems that can then form part of the

component base available to DSSA users.

‘We have already identified the message handling subdomain
as a candidate for APS technology; a tentative choice for the
next area to tackle is fusion processing.

Figure 2 shows the activity flow that will be followed:
identifying classes of components (subdomains) to be
addressed, based on the architecture; defining domain
specific languages and producing generators; devcloping
annotations to permit optimization; and generating reusable
application components.

C2 Message Handling
As indicated in Figure 3, the message handling subsystem is
one of the key interfaces between a C2 system and the
“gutside world”. It provides a means of communicating
information between different C2 systems and to/from other
C2 resources (such as vehicles and weapon installations).
Messages may be text or bit streams; we will deal here with
text messages. Some text messages are free-form, but most
today follow standard prescribed formats; we will deal with
formatted messages.

C2 messages are created by humans (on the transmitting side
of the interface) according to a written description of the
formats, The receiving side parses the message (according to
an encoded understanding of the standard format), validates
it for correctness, and places the received information in the
database for use by other parts of the system (for example,
decision support).

There are several standard families of messages, for example

Braun

NATO and JINTACCS messages. Each of these can include
several hundred message types; for example, there are
approximately 300 NATO message types. (Many types of
messages are shared by several message families.) Message
formats are described in massive documents using ad hoc,
non-standard description methods. Typically the descriptions
involve much prose. For example, Figure 4 shows the
description for a single line in one type of message.
Furthermore, it is not a complete description; many field
descriptions cross-reference to other descriptions.

A message consists of a number of such lines (called
datasets— may be more than one physical line) grouped

“together in an envelope (which contains from/to information,

classification level, etc.). While each type of message can
contain only certain kinds of datasets, many are optional and
their order is generally not prescribed (though there are
exceptions). Validity of datasets can depend on other datasets
in the message. Each dataset contains a prescribed sequence
of fields, separated by slashes, with a required order and a
well- defined format. Field validity can depend on values in
other fields of that dataset as well as in other datasets in the
message. Figure 5 is an example message (excluding the
envelope).

The code involved in writing the software to implement
message handling is extensive and error prone. Working
from the prose specification, programmers write code (o
extract each field from each dataset, validate it according to
the specified rules, translate it to the appropriate internal
representation, build database update transactions, and write
to the database. Typically, a single message type can take
from 5000 - 100,000 lines of HOL code. The Navy
WWMCCS system uses approximately 4 million lines of
code to implement 30 message types. Clearly this is a part of
C2 system development that should be considered for
automation.

specific
tanquages

mm:_mﬂonl

S

systom
v impamented 3 tost
components

Figure 2. DSSA Application Generation Activity Flow

19

Braun

Plan
DECISION |~
CENTER |~ Direct
N Executs
MM
raw data
processed 4 processaed messages
data messages
Fusion M g
=)) [
i
out
SENSORS T data “m
y
DATA BASE

Figure 3. C2 System Operations

; ing C2 M. Handling Using APS
To automate C2 message handling using APS, we have
developed a language specific to the message handling
subdomain that provides constructs for specifying message
formats, for indicating required validations, and for
describing desired databasc updates.

Specifying Message Formats

Message formats are described in a simple set language that

indicates which datasets are allowed and which are optional
for a particular message type. For example,

 type SPOT = (FORCE), (SHIPTK | AIRTK | AIRCRAFT),
SHIP

would indicate that a SPOT message consists of an optional
FORCE dataset, an optional occurrence of one of the
SHIPTK, AIRTK, or AIRCRAFT datasets, and a required
SHIP dataset.

Message format descriptions can be accompanied by
validations that indicate which combinations of datasets are
valid. For example,
type SPOT = (FORCE), (SHIPTK | AIRTK | AIRCRAFT),
SHIP
validations
disallow MSGID.message-serial-number;
require SHIP.location

20

no SHIPTK and no AIRTK requires FORCE;

indicates that the message-serial-number field of the MSGID
dataset must not be present, the location field of the SHIP
dataset must be present, and, if no SHIPTK dataset and no
AIRTK dataset is present, the FORCE dataset must be
présent. ,
Specifying Datasets

Dataset formats are described in terms of the fields that make
up the dataset and the format of each of those fields. Fields
are ordered, so each dataset is characterized by a sequence of
fields. Optional fields are indicated by parenthesizing them.
Mually exclusive fields are indicated by alternative bars.
As for message formats, dataset descriptions can include

validations. For example, a dataset description of a MSGID
dataset might be:

dataset MSGID = message-code-name (originator)
(message-serial-number) (as-of-month)
(as-of-year) (as-of-DTG)
validations
as-of-DTG precludes as-of-month;
as-of-DTG precludes as-of-year;
as-of-year requires as-of-month;
message-code-name /= SPOT requires originator;
message-serial-number and no as-of-DTG
requires as-of-month;
field message-code-name = A*26;

Braun

Data Set ID: MSGID

Fid Element Descriptive Name | Descript. Edit Rule Remarks

1 Message Code Name 25 AN 1. Must be a member of the
approved set of message code
words.

2. Originator 25 AN 1. Must be a plain language a. Plain language addresses are
address or approved short validated against values found
title in the references

3. Message Serial Number 3N 1. Positive integer between a. May be required for specific
the values 001 to 999. messages.

2. Out of sequence may indi- b. Sequence is restarted on 1

cate missing message. See Jan each year. May be rolled

rules for specific msg. code over when upper limit is reached.

word. ¢. For Command authorities serial
may be validated to maintain order
when processing reports.

4. As-of -Month 3 AN 1. Standard abbreviation for |a Required if serial number is
month message sent. used and as-of-DTG not present.

b. Not allowed if as-of-DTG not
present.

5. As-of-Year 4N 1. May not be a future year. a. As-of-Month must be present.

Figure 4. Example Message Line Description
NATOUNCLASSIFIED
SIC: NSR

EXER /OPEN GATE 91//

MSGID /NAVSITREP/CINCIBERLANT/135/DEC/91 /7

PART /I/HOSTILE//

FORCE /OR523/3/37000N0-012000W3/145/17K/H//
SHIP /ORS23A/KARA/-/CG/-/UR//

SHIP /ORS523B/KRESTA//

SHIP /ORS23C/KRESTA//

SUBTK /OR734/33000N6-010000W1/095/9K/M//

SUB /OR734/TANGO//

PART /II/UNKNOWN/NC//

PART /III/FRIENDLY//

FORCE /CTU 405.1.2/5/420015N2-1333440W8/175/20K//
FORCE /CTU 387.3.2/2/36010N0-004380W5/090/5K//
AMPN /MINE SWEEPING GROUP...//

AIRTK /934/33000N6-010000W1//

AMPN /ONE P-3 SEARCHIN BOX...//

Figure 5. Example Formatted Message

21

field originator = A*25;

field message-serial-number = N 3;

field as-of-month - month;

field as-of-year = N 4;

-- as-of-DTG in form: DDHHMMZS MMMYY

field as-of-DGT - day, hour, minute, (Z), SUM1, month,

year;

field SUM1=N1;

field day = N2;

field hour = N 2;

field minute = N 2;

field month = A 3;

field year =N 2;

ifying D T jon
The C2 message description language also includes a means
for describing the transactions to be carried out for each
received message. An example of a segment of such a
specification is:

{insert msg_Orig_Sr (ORIGINATOR = PROSIGN.FN,

MSG_TYPE = MSGID.Code,

MSG_DTG = sortable_date (ENVELOPE.DTG),

CLASSIFY = classification_code(ENVELOPE.Sec));

The database update language also includes tests of field
values, so that updates can be conditional on those values,
and a capability to allow a sequence of updates to be named
and reused in other update instructions. This simple language
provides all the power needed to describe the database
transactions resulting from received messages.

Imolicati
Clearly, automated generation of message handling software
can save greatly on the labor involved in creating such
software. A message handling subsystem that requires 4
million lines of HOL code should require less than 1% of that
in the message description language.

Perhaps more significantly, there will be little reason to write
most of the code more than once. The code required to parse
and validate a message of a particular type is not specific to
the system being implemented. Once the message
specification is developed in the message description
language, it can be reused. Minor changes in the specification
of required database updates can be easily implemented for
individual systems.

An even more far-reaching impact of this work is the
development of a precise, unambiguous way of describing
message formats. Rather than the ad hoc prose descriptions
now used in describing message formats, the message
description language can be used directly. This will eliminate
errors in understanding and correctly implementing message
descriptions.

This precise message description mechanism, along with the

22

Braun

built-in incentive to reuse message description
implementations, will contribute substantially to the
development of more error-free message handling
subsystems. A major aspect of this benefit is improved
interoperability, as systems will no longer be dependent on
the programmers’ understanding of message formats. All
implementations will share a common understanding and be
able to interoperate with the full power and precision
envisioned for formatted messages.

Acknowledgment

The work described in this paper has been supported by the
Defense Advance Research Projects Agency through U.S.
Army Communications-Electronics Command Contract No.
DAABO07-92-C-Q502 and through NASA Ames Research
Center Contract No. NCC 2-520.

References
[1] Balzer, Bob and Martin Feather, Neil Goldman,

Dave Wile, “Proposal for DS Languages for C3
Messages,” USC/ISI working paper, 1992.

{2] Braun, Christine L. and William L. Hatch,
“Software Reuse Through CCIS Architecture
Standardization,” Proceedings of the 11th AFCEA
Europe Symposium and Exposition, October 1990,

[3] Hatch, William, “Example Message Descriptions
and Database Transactions,” GTE working paper,
1992.

[4] Ruegsegger, Theodore, “Domain Specific Software
Architectures -- Command and Control,” briefing
slides, CECOM Real-Time/Reuse Technical
Interchange Meeting, Ft. Monmouth, NJ, February
1992.

[5] Wile, David S., “Adding Relational Abstractions to
Programming Languages,” Proceedings of
workshop on Formal Methods in Software
Engineering, Napa Valley, CA, May 1990.

[6] Balzer, Robert, “A 15 Year Perspective On
Automatic Programming,” IEEE Transactions on
Software Engineering, Nov. 1985

{7} Cohen, Donald, “Compiling Complex Database
Triggers,” Proceedings of 1989 ACM SIGMOD
(1989), ACM

{81 Goldman, Neil and K. Narayanaswamy, “Software
Evolution through Iterative Prototyping,” to appear
in the Proceedings of the 14th ICSE Conference,
[EEE, Melbourne Australia 1992,

Chien

N9S-17504%

Issues in Knowledge Representation to Support Maintainability:

A Case Study in Scientific Data Preparation

Steve Chien, R. Kirk Kandt,
Joseph Roden and Scott Burleigh

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109-8099

20 Abstract

Scientific data preparation is the process of
extracting usable scientific data from raw
instrument data. This task involves noise
detection (and subsequent noise classification and
flagging or removal), extracting data from
compressed forms, and construction of derivative
or aggregate data (e.g. spectral densities or
running averages).

A software system called PIPE provides
intelligent assistance to users developing scientific
data preparation plans using a programming
language called Master Plumber. PIPE provides
this assistance capability by using a process
description to create a dependency model of the
scientific data preparation plan. This dependency
model can then be used to verify syntactic and
semantic constraints on processing steps to
perform limited plan validation. PIPE also

provides capabilities for using this model to assist ___

in debugging faulty data preparation plans. In this
case, the process model is used to focus the
developer's attention upon those processing steps
and data elements that were used in computing the
faulty output values. Finally, the dependency
model of a plan can be used to perform plan
optimization and runtime estimation. These
capabilities allow scientists to spend less time
developing data preparation procedures and more
time on scientific analysis tasks.

Because the scientific data processing modules
(called fittings) evolve to match scientists' needs,
issues regarding maintainability are of prime
importance in PIPE. This paper describes the
PIPE system and describes how issues in
maintainability affected the knowledge
representation used in PIPE to capture knowledge
about the behavior of fittings. ’

23

53‘~é/

26577

Todd King and Steve Joy ‘ v lﬂ

Institute of Geophysics and Planetary Physics
University of California at Los Angeles
Los Angeles, CA 90024-1406

Introduction

Scientific data preparation is defined as the application of
multiple transformations to collected data sets in order o
produce data in an easily usable form. The questions a
scientist asks dictate which data are to be collected as well
as which transformations are to be applied. The need for
simplified scientific data preparation has increased due to
the volume of data now collected and the diverse uses for
any specific type of data. Automated scientific data
processing systems can be used to simplify this process.

While general scientific data processing systems have
existed for some time, the complexity of data types and
transformations required in specific domains renders these
systems of limited utility. As a result, many scientific
teams develop their own software systems to accomplish
the data preparation required in their specific domain.
These systems suffer because they become too specific,
and the effort spent developing such systems are only of
value within the context of a particular domain and task.
Because scientists desire to reuse their work, hybrid
systems are appearing which provide useful analysis tools
and definition of domain-specific data types and
transformations. Plans are developed in these sysiems
which specify which of the transformations to apply to a
collection of data sets. By the nature of the processing
steps required in many domains, these plans can become
quite complex. We are now at a point where the
complexity of these tools requires significant expert
knowledge to use.

Master Plumber [King & Walker 1991] is a software tool
developed by the UCLA Institute of Geophysics and
Planetary Physics to create programs to prepare scientific
data. While its primary area of application has been time-
series magnetometer data, the tool is applicable to the
general task of scientific data preparation.

Master Plumber is a dataflow system. Thus, in Master
Plumber, data elements are represented by columns, which
are streams of data being processed as they move through
the system. Data processing steps are called fittings, and a

plan to process a particular form of a dataset into another
form is called a blueprint.”

Thus, as shown in Figure 1, raw data might be read in
using an intro_flatfile fitting, a running average computed
using a runstat fitting, and the results written into an output
file.

1. intro_flatfile infile=foo
columns=bx

2. runstat length=1287 shift=1
columns=bx

3. write_flatfile outfile=bar
columns=bx, rabx overwrite=YES

Figure 1: A Simple Blueprint

A major difficulty in constructing blueprints is tracking the
many fitting and column interactions. While a typical
blueprint might use 25 columns and 20 fittings, the more
complex blueprints use hundreds of columns and 30 or
more fittings. Because of the number of possible
interactions, constructing and debugging scientific data
preparation blueprints is a time-consuming task requiring
expert knowledge.

Because of the complexity of the data preparation task,
users sometimes make errors in blueprint construction.
One type of construction error occurs when a user forgets
to set up the data needed for a particular step.
Unfortunately, this type of error can go unnoticed until far
into the execution of the blueprint, wasting valuable time.

Another common situation is that the exact method of
processing the data is dependent upon the character of the
data. In this case the user will use some default methods
for processing the data, examine the results, and modify the
options. This tuning cycle continues until the data is in a
satisfactory form, , ,

The final aspect of blueprint development which
complicates the development process is that new fittings
are added to a system as new needs and requirements arise.
In addition, new fittings also evolve with new options and
characteristics being added. Any intelligent tool must be
readily changed to remain useful in such a dynamic
environment. ’

Currently there are approximately 65 fittings which are
part of the standard Master Plumber system. These fittings
perform a variety of transformations on the data flow, such
as: introducing and writing data into several formats;
displaying data on the screen; and actual numerical
transformations. There are support libraries which allow
for fittings to be written in either C or FORTRAN. A
special fitting called PLISP takes programs written in a C-
like language and performs the transformations on the data
flow. This allows for new processing steps to be initially
tested as PLISP programs and later be integrated as full-
fledged fittings into the Master Plumber system.

Some scientists use data preparation systems indirectly
with the help of software support personnel who write and

24

Chien

debug the actual data preparation plans. The goal of PIPE
is to make Master Plumber easy enough to use such that
this type of support is not necessary, The combination of
PIPE and Master Plumber will allow the blueprint
developer to develop blueprints easier and faster, allowing
them to spend more time on data analysis and less time on
data preparation.

Overview

To achieve these goals of assistance in the scientific data
preparation process, PIPE [Chien et al. 1992] provides four
capabilities:

1. constraint checking to detect invalid blueprints
before execution;

2. diagnosis assistance of blueprints through
dependency analysis;

3. optimization of blueprints through dependency
analysis; and ,

4. runtime estimation, using models of fitting
runtime performance.

The architecture of the PIPE system is shown in Figure 2.
PIPE accepts a blueprint file and a set of descriptors for
dauwafiles and uses a fittings knowledge base to construct a
dependency graph representing the computations to be
performed by each of the fittings in the blueprint. This
blueprint parsing phase uses knowledge of fittings and their
options to construct a dependency graph, which indicates
for each fitting which columns are accessed and used to
modify existing columns, create new columns, or remove
existing columns. This dependency graph can then be used
by the constraint checking module which determines if any
of the constraints associated with the fittings have been
violated. - :

In cases where blueprints must be debugged, PIPE can
use the dependency graph to support isolation of the fault
in the blueprint. Because the dependency graph tracks all
of the operations upon the columns, when the user detects
an error in one of the output columns, PIPE can present a
list of fittings which modified the column in question. The
user can then focus his attention upon these fittings, to
determine where the error was introduced into the data,
sometimes by plotting intermediate data. After isolating
the first fitting at which the column is faulty, the user can
query PIPE for information on the fitting to determine
which columns were used to compute the changed column.
This process continues until the fault is isolated to the data,
fitting option settings, or fittng code itself.

PIPE also provides an optimization capability. Because
PIPE constructs a full computation dependency graph,
PIPE can determine the'iast fitting in which each column of
data is used in the blueprint. Thus unneeded data can be
removed from the datzflow, decreasing the execution time
Because many fittings operate on data by default, PIPE
distinguishes between default processing and explicit

Blueprint \

Blueprint

Parser

-—"——A"—

Input Files

Fitting
Knowledge
Base

Figure 2: PIPE System Architecture

processing. Default computation which does not result in a
program output (e.g. plot, output file) can also be removed.

Finally, PIPE provides a runtime estimation capability.
Using the dependency graph to determine which columns
each fitting processes, and models of runtime for each
fitting type, PIPE can provide an estimate of how long the
blueprint will take to run to completion for the specified
datafiles.

Blueprint Parsing
In order to provide assistance in blueprint development,
PIPE constructs a dependency network representation of a
blueprint. When a blueprint is read in by PIPE, it is
processed from the first step onward. For each fitting,
PIPE uses:

« methods stored in the fitting knowledge base,

« default values stored in the fittings knowledge
base,

« fitting options,
» alist of existing columns in the flow, and possibly

» aninput file
to determine:

* any new columns created by the fitting,
» any existing columns modified by the fitting,
« existing columns deleted by the fittings.

25

Chien

Optimizer

Debugging
Tool

Constraint
Checker

Runtime
Estimator

Additionally, for any new or modified columns, PIPE
determines:

+ the set of columns accessed in computing the
value for the column.

Because columns may be processed by default or explicitly
selected, the dependency network also makes note of this
distinction. This facet of the processing is important in
order to take appropriate action when optimizing the
blueprint (see below).

Constraint Checking

Constraint checking occurs while the blueprint file is being
parsed (i.e., prior 10 execution). A description of the
constraint checking algorithm follows.

During Parsing
for each fitting in the blueprint
for each option specified
check option type constraints
check for required options

After Parsing
for each parsed fitting in blueprint
for each option in fitting
check option value constraints
check inter-option constraints
check dependency constraints
check inter-fitting constraints

Diagnosis Assistance

PIPE also provides a blueprint diagnosis facility. This
capability supports two basic types of queries: column-
centered queries and fitting-centered queries. The column-
centered queries are of the form

"What fittings affected <column>
before <fitting>?"

and default to the entire blueprint. This question can be
easily answered using information from the dependency
network. PIPE steps through the fittings in the blueprint
and determines those fittings which create, modify, or
delete <column>. This list of fittings is then displayed to
the user in graphical form. The fitting centered queries are
of the form

"What columns did <fitting>
affect?"™, and

"What columns did <fitting> access
in performing its processing to
affect these columns?"®

These types of queries can be answered by interpreting the
dependency graph information on the designated fitting.
The first query can be answered by determining the set of
columns created, modified or deleted by the fitting. The
second query can be answered by accessing dependency
network information regarding which columns were
accessed by the fitting in performing these operations.

Blueprint Optimization

PIPE also provides a limited blueprint optimization
capability. In this capability, PIPE examines the
dependency graph of each column and determines the last
fiting at which each column is accessed explicitly (i.e., not
by default). PIPE then recommends removing this column
immediately after this fitting. If this column is not
processed in the remainder of the blueprint, this removal
does not significantly alter the runtime of the blueprint.
However, many of the fittings process all of the columns in
the flow by default. Thus, when a column that is processed
in the remainder of the blueprint is removed from the data
flow a significant speedup can result. While commonly
used blueprints are likely to have unused columns
optimized by hand, automating this process relieves the
user of the burden of determining the point at which a
column can be removed. Additionally, by allowing PIPE
to automatically determine the correct places to remove
columns, PIPE reduces the chance that a user will
inadvertently prematurely remove a column from the data
flow, which would cause an error.

26

Chien

Runtime Estimation

The final capability that PIPE provides is runtime
estimation. PIPE estimates the runtime of a blueprint for a
specific data set by applying the following algorithm:

for each fitting in the blueprint
identify fitting runtime model
compute runtime given dataset size
add runtime to total runtime
compute new size of dataset

Tracking the size of a dataset in Master Plumber can be a
difficult task. Original data set sizes are determined from
input files. When data of different temporal granularity are
introduced into an existing flow, or when decimation
operations are performed, data set sizes will need to be
recomputed. Sometimes a fitting can affect the size of the
dataset in a manner that depends on the exact data
processed. In these cases, the exact dataset size cannot be
determined, so PIPE estimates the size of the dataset at the
output of the fitting. These estimations are sufficient for
giving the user reasonably accurate runtime estimates.

An Example

We now illustrate each of the capabilities of PIPE using
example blueprints. For an example of constraint
checking, suppose a user has created a blueprint containing
the following statement:

4. bin columns=bx delta=60.0 min_max

Because the option min_max requires that a value be
specified, PIPE would indicate a constraint error such as:

. Fitﬁlag 4. bin option min_max
required value not found; string
type required.

As another example of the constraint checking, consider
the following blueprint statement:

7. crossavg except=time avgname=xavg

Assuming the user removed the column named time
earlier in the data flow, PIPE would issue a constraint error
indicating:

* Fitting 7. crossavg option except
undefined column time; a column
with that name was deleted at
fitting 4. drano.

An example of the diagnosis capability supported by PIPE
is illustrated in the following scenario. Figure 3 shows a
Master Plumber blueprint file. Suppose that the user

examines the output of the blueprint and determines that
column o2 is producing results that are incorrect. The user
tries to determine what may have affected column o2 by
querying PIPE:

Q: Which fittings created or
modified column 027

A: Fitting 10. drano created coclumn
o2.
Fitting 12. plisp modified column
o2.

The user determines that the o2 column was still incorrect
before fitting 12. plisp, so the user wants to determine
what columns were accessed by and were used in creating
o2.

Q: Which columns were accessed by
fitting 10. drano in order to
create column 02?

A: Column raraby was accessed by
fitting 10. drano in order to
create column o2.

The user then continues backtracking through the blueprint
to isolate the error:

Q: What fittings before fitting 10.
drano modified column raraby?

A: Fitting 9. runstat created and
modified column raraby.

By using PIPE in this way, the user can focus his atiention
directly upon the possibly faulty fittings instead of having
to examine every fitting and column.

PIPE also uses the dependency graph to optimize
blueprints. Because PIPE can determine which fittings
modify which columns in the blueprint, PIPE can
determine the last point at which each column is needed in
the blueprint. In the example blueprint shown in Figure 3,
PIPE makes the following recommendations for removal:

never introduce column rim

remove sens_x, Senx vy,
after fitting 4

sens_z and bz

remove bx, by after fitting 8
remove rabx, raby after fitting 9

remove bxc, byc, and

after fitting 12

bzc, stime

PIPE also provides runtime estimation capabilities. For the
optimization example shown above, PIPE estimates that the

27

Chien

non-optimized blueprint will take 11:32 +/- 1:04 1o run and
the optimized blueprint will take 9:58 +/- 0:58 to run.

Issues in Design for Maintainability

The central concemn in the PIPE knowledge representation
was that the PIPE knowledge base be easy to maintain.
While this is a concern in any knowledge-based system, it
was particularly important in PIPE because fittings
capabilities, options, and defaults, evolve because of
changing scientists’ needs. The majority of the knowledge
represented in PIPE is used for the pre-runtime constraint
checking. Thus, we focussed upon ensuring that these
constraints be in a form that requires minimal change when
fittings are changed.

In order to be easily maintainable, fitting constraints are
implemented in three ways. First, basic option
requirements constraints and argument requirements are
specified in a simple language. This specification is then
combined with a translator to generate C code which
checks the options and option values against type and
option requirement constraints. For example, each option
for a fitting may be optional, or required (e.g., all fitting of
this type must have this option specified) or be allowed to
appear multiple times. Additionally, for each option
arguments have associated constraints (e.g., all occurrences
of this option must have an argument specified with the
option). This structure affects maintainability as follows.
When a change to a fitting is made which affects this
information, the specification must be changed in the
fitting knowledge base file. A translator is then used to
automatically regenerate the associated constraint checking
code so that the future constraint checking corresponds to
the updated fitting.

The second type of constraint are simple, commonly
occuring constraints, such as range constraints and inter-
option range constraints (¢.g., the value of option 1 must be
greater than the value of option 2). These constraints are
represented in a simple constraint language and stored in
the fitling knowledge base file. When the fitting and
option information in the blueprint is extracted, these
constraints are checked by a C code module which uses the
constraint information in the fitting knowledge base file to
check the extracted options and arguments. Thus, when a
change to the fitting is made which affects this constraint
information, the constraint information in the fitting
knowledge base file must be updated. Thereafter, when the
fitting is parsed, the updated constraint information will be
ased.

The third type of constraint information is represented
directly as C code. This flexibility is needed as there are
certain forms of constraints among options which are not
easily represented in general languages or may occur SO
infrequently as to be impractical to support in the general
case. This type of constraint information is contained in an
explicit C function, whose name is specified in the fitting
knowledge base file. ‘When changes to the fitting impact
this information, the coce relevant code must be modified,
compiled, and re-linked.

Another type of knowledge encoded in a flexible fashion
is the runtime models. This information indicates how
much time each processing step will take as a function of
parameters including: the option settings, the number of
data records in the dataflow, and the computer being used.
Fitting models to cover new fittings can be constructed in
two ways. First, existing runtime models can be used as
templates. In this case creating a runtime model for a new
fitting coresponds to filling in the appropriate parameters in
the model. Second, a new fitting model can be created
from scratch (and would serve as a potential template for
future fittings).

Discussion

The current prototype version of PIPE was completed in
July 1991. It is implemented in CommonLISP and
LISPView and runs on Sun workstations. It operates as
described in this paper with the exception that it does not
distinguish between columns accessed for different
computations in a fitting (i.e. it only determines the set of
columns used to compute all of the new or modified
columns). For instance, suppose the runstat fitting uses
column bx to create column rabx and also uses column by
to create column raby. The current implementation will
only be able to state that the the fitting uses columns bx and
by to create columns rabx and raby. In contrast, the new
implementation will be able to isolate bx as the column
used to create column rabx, and by as the column used to
create column raby. Also, the current prototype version
operates on actual blueprint files but is not integrated with
Master Plumber or MPTool, a menu driven interface for
blueprint construction in Master Plumber,

Work is underway on the deliverable version of PIPE.
This version is being implemented in C++, and is expected
1o be completed in May of 1992. The deliverable version
of PIPE will use the more refined dependency
representation described in this paper. This version will be
integrated with Master Plumber and MPTool, and is
intended to be delivered to and used by IGPP personnel at
UCLA. This version of PIPE will also incorporate
feedback upon the "look and feel” of the interface specified
by IGPP personnel.

There are numerous related projects in providing
intelligent assistance in scientific computing. The
Kineticist's workbench project at MIT [Abelson et al. 1989]
targets modelling and analysis of dynamic systems. The
SINAPSE system [Kant et al. 1990] assists in construction
of numerical models for data interpretation but is specific
10 seismic models represented as finite difference
equations. The Reason system [Atwood et al. 1990]
supports analysis of high energy physics data (and is a
dataflow system). Finally, the Scientific Modeling
Assistant project [Keller 1991] addresses support to
facilitate development of scientific models. :

28

Chien

Summary

This paper has described a system to assist in the
development of scientific data preparation programs and
discussed issues in design for maintainability. This issue of
maintainability was particularly important because the
processing modules (fittings) are constantly evolving due
to changing scientists’ needs. In order to maximize
maintainability of the constraint knowledge base,
information for each fitting is encapsulated in a fitting
knowledge base file and as much as is practical, constraint
information is represented in a general declarative fashion.

Acknowledgements

This work was performed by the Jet Propulsion laboratory,
California Institute of Technology, under a contract with
the National Aeronautics and Space Administration,

. References

[Abelson et al. 1989] H. Abelson, M. Eisenberg, M.
Halfant, J. Katzenelson, E. Sacks, G. Sussman, J. Wisdom,
and K. Yip, "Intelligence in Scientific Computing”, Comm.
ACM, 32(5):546-562, May 1989.

[Atwood et al. 1990] W. Atwood, R. Blankenbecler, P. F.
Kunz, B. Mours & A. Weir, "The Reason Project”,
Stanford Linear Accelerator Technical Report #SLAC-
PUB-5242, April 1990.

[Chien et al. 1992] S. Chien, R. K. Kandt, R. Doyle, J.
Roden, T. King, and S. Joy, "PIPE: An Intelligent
Scientific Data Preparation Assistant”, Proceedings of the
International Space Year Conference on Earth and Space
Science Information Systems, Pasadena, CA, February
1992,

[Kant et al. 1990] E. Kant, F. Daube, W. MacGregor, J.
Wald, "Synthesis of Mathematical Modeling Programs”,
Schlumberger Laboratory for Computer Science Technical
Report Number TR-90-6, February 1990.

[Keller 1991] R. Keller, "Building the Scientific Modeling
Assistant: An Interactive Environment for Specialized
Software Design", Technical Report FIA-91-13, NASA
Ames Research Center, Moffeu, Field, CA, May 1991.
[King & Walker 1991] T. King and R. Walker, "The
UCLA Data Flow System,” Technical Report #3522,
Institute of Geophysics and Planetary Physics, University
of California at Los Angeles, CA 1991.

GATOR: Requirements Capturing of Telephony Features

Douglas D. Dankel 11
ddd@cis.ufl.edu

Wayne Walker
ww0@cis.ufl.edu

SG-¢f
Dankel

/%%?63-1750@
¥

Mark Schmalz
msz@mosquito.cis.ufl.edu

E301 CSE, C.I.S.
University of Florida
Gainesville, FL 32611
(904) 392-1387 (Office)
(904) 392-1220 (FAX)

1. Intfroduction

During the past twenty years the
telecommunications industry has become
increasin(%ly dependent upon software-
controlled switching systems. The software of
these systems automates the billing of long
distance calls, supports direct dialing of
overseas calls, and provides features (e.g., call
waiting, call forwarding) that many people
consider essential components of everyday hfe.
While telephony software has become both very
large and complex in function and structure,
the methods of software description have
changed little over the past two decades. All
existing characteristics and features as well as
any modifications or additions to this software
are described through natural language
requirements specification documents.

These documents present a real dilemma
to both the developers and customers. While
these documents are essential to describe of the
functionality of telephony features, the
ambiguity and uncertainty inherent within
natural language often leads to
misinterpretations which can severely impact
the resulting implementation of the
functionality, the user acceptance of these
features, and/or the development cycle.

¥'“"We are developing a natural language-
based, requirements gathering system called
GATOR (for the GATherer Requirements)
that assists in the development of more
accurate and complete specifications of new
" telephony features. GATOR interacts with a
~ feature designer who describes a new feature,
* set of features, or capability to be implemented.
"~ The system aids this individual in the
specification process by asking for clarifications
when potential ambiguities are present, by
identifying potential conflicts with other
existing features, and by presenting its
understanding of the feature to the designer.
Through user interaction with a model of the
existing telephony feature set, GATOR

29

-"to be implemented'

constructs a formal representation of the new,
feature. Ultimately
GATOR will produce a requirements document

‘and will maintain an internal representation of

this feature to aid in future design and

“specification.

- This paper consists of three sections that
describe (1) the structure of GATOR, (2) POND,
GATOR's internal knowledge representation
language, and (3) current research 1ssues.

2. The Structure of GATOR

GATOR consists of three
components, illustrated in Figure 1:

1. The User Interface (consists of the
Parser, Lexical & Grammatical
Knowledge Base, Predicate Generator,
and Response Generator) accepts
natural languase requirements
descriptions an reports its
understanding of these requirements to
the user. Additionally, the User
Interface @ answers user ueries
regarding the system's understanding of
a feature and requests clarification of
input which may be ambiguous or may
contain recognizable errors.

2. The Command Interpreter
(consists of the Interpreter) receives
information and commands from the user
interface, and issues queries and update
jnstructions to the Knowledge Base/Data
Base. This information specifies actions
to be taken by the telephone switching
circuits and software (e.g. "The
Directory Number is always transmitted
to the terminating office as a part of the
Initial Address Message."), provides
structural/organizational knowledge
(e.g., "Calling Number Delivery
Blocking (CNDB) is a CLASS feature."),
or describes actions for displaying
information (e.g., "Display a call with
CNDB and Three-way Calling (3WC)."),

major

locating -information within the
representation (e.g., "What are the parts
of a call?"), creating new knowledge that
must be stored (e.g., "After the access
code is entered, it is checked for
validity."), or modifying existing
knowledge (e.g., "The check for CNDB
validity 1s maﬁe after the access code is
verified as a valid code.").

3. The Knowledge/Data Base is a
repository of information about the
eneral structure of a call, existing
eatures, and the new feature being
defined. It consists the three levels,
described in the next section.

Dankel

3. Knowledge/Data Base

The Knowledge/Data Base contains specific
knowledge of the components of a call and all
existing features. It was built using POND
[DANK92] (the Pantological Organization of
New Delineations), a knowledge representation
structure based on the family of KL-ONE
languages [BRACS85, BRAC89, WOODY0].
While most of the KL-ONE languages divide
knowledge into two partitions, called the
Terminological Box or TBox and the
Assertional Box or ABox, POND consists of

three distinct knowledge levels as shown in
Figure 2:

User
Apgropriatc
utput
Response
Generator
Parse
Trees
Results
& Summaries
Predicate
Generator

Interpreter A"“
A

POND Knowledge
Representation Interface

Data & Data &
Descr. Descr.
Updates &
gxems

Queries

Call & Feature
Knowledge
Base

Lexical &
Grammatical
Knowledge

Figure 1. Internal System View

30

Dankel

C
0O Hierarchy of Basic Knowledge Concepts
N - Pre-constructed) B
I'C: - Built by System using Composition
P
T Provides Structure for Instance Knowledge
S Conce
chrarci(y
1
N Hierarchies of Knowledge Describing:
S - Basic Call
T - Various Feature and
ﬁ Feature Classes
¢ Pre-constructed call
E) R ¢ 1 Feature
- User-Defined Descripti
S Hierarchy = Hierarchy
M
o) Constructed Model of a Call with
D Particular Feature(s) Used to:
E - Reason About Call Structure
L - Simulate Call Actions
S - Develop Requirements Document
Particular
Model

Figure 2. A Conceptual Diagram of the Knowledge Levels within the Call
& Feature Knowledge Base

1. Concepts. High-level conceptual
knowledge used to structure all of the
knowledge within the knowledge base.

2. Instances. Specific descriptions of
the components of a call, existing
features, and the dynamic specification
of the feature under definition.

3. Models. A constructed model of a
articular call containing specific
eatures.

A short description of each of these components

follows.

3.1. Concepts

Knowledge on the Concept Level provides a
structure for the knowledge on the Instance

31

and Model Levels.
includes definitions of:

1. The concepts that represent
telephone call and feature components.
Each concept contains several slots (i.e.,
:features) that define the type and
number of permitted values. Concepts
can additionally include references (i.e.,
:ako) to other concepts on which they
are based and applicable constraints
(i.e., :tannotation).

2. Special slots, or attributes, of the
_concepts, which define a set of restricted
values or define relationships between
concepts. For example, the category
slot defines a restricted set of allowable
slot values, while the children and

Conceptual knowledge

arent slots define relationships

tween slots.

3. Temporal relations [ALLES5]
reguired for specifying temporal
ordering within instances and models.

3.2. Instances

The Concept Level defines knowledge
fundamental to instances on the Instance
Level. A particular concept associates with
each instance providing a structure and certain
internal values for the instance. Instance
knowledge includes descriptions of call and
feature components. For example, a call
initially decomposes into the logical
components (instances) of go-off-hook,
make-call, and disconnect-call. Each of
these components 1is, in turn, further
decomposed on the Instance Level. The
temporal relationships associated with each

Dankel

instance define the instance's location to the
other instances.

Instance Level knowledge also includes
descriptions of the various telephony features.
Each feature, such as Three-Way Calling
(3WC) and Calling Number Delivery Blocking
(CNDB), decomposes into a structure similar to
the decomposition of a call shown in Figure 3.
These decompositions detail the individual
operator actions that enable each feature,
resultant system actions, and temporal
relationships between feature components and
call components.

Besides modeling individual features, the
feature descriptions contain restrictions and
special interactions between features. For
example, since the features of 3WC and CNDB
are compatible but interact, the interaction
must be specified. See Figure 4.

CNDB
Dial Access Set-Flag Reset-Flag
— Part-of Links
————— Temporal Links
Billin Change status of

Dial record F--—-—+ IAM presentation

code created restricted flag
'
;

yes - yes CNDB yes

Valid CNDB continue

code? —_— valid? —-—--—<Available?)---- call
| no | no)y no
I 1 i
i 1 1
1 1 I
L) S L

Special Long term Temporary

g:;cor denial denial

treatment announcement announcement

Figure 3. Decomposition of cNDB

32

Three-way
Calling

Three-way Calling/
CNDB Interaction

Dankel

CNDB

Com -of Links
Syl

CNDB Dial

3WC Initiation
Flash Access Code

CNDB
Set-Flag Flash

CNDB
Reset-Flag

3WC Connect

Figure 4. Feature Interaction with the Feature Hierarchy

————— Part-of Links

Idle }-- Plck-Up- -~

Disconnect-
all

/ N\

Continue-
Call

Figure 5. Model Representation of a Call with CNDB

3.3. Models

The Model Level facilitates the building of
a description of a particular telephone call
exhibiting specific features. ile the
knowledge on the Concept Level changes very
little (due to the operation of Composition
[DANK92]) and the primary goal of GATOR is
for the user to build Instance Level knowledge
of some new feature, the Model Level is
significantly more dynamic.

While operating GATOR, the user can
riiuest a description of a telephone call which
exhibits a particular feature or set of features.
The system examines its Instance Level
knowledge and retrieves the appropriate
instances representing a general call and the
set of features of interest to the user. These
instances combine to develop a model of the
requested call type as shown in Figure 5. The

33

instance ordering depends upon any explicit or
implicit interactions and ependencies that
exist between features and the feature
specification order.

Upon completion, models are presented to
the user. The display of a model allows the
user to verify that knowledge represented on
the Instance Level is correct and complete.
Errors detected generally result from
incomplete or incorrect specifications on the
Instance Level. Each must be identified and
corrected by the user. After locating and
correcting an error, the user can verify that
appropriate corrections were made by creatin
another model and examining its revise
structure.

4. Status and Plans

Our current research in
requirements gathering includes:

automated

1. Improvements and extensions to
POND. POND, as originall

constructed, provides a ric

environment for specifying set/member
and part/sub-part relations. While the
system currently includes the ability to
specify temporal information, it does not
provide a unified temporal reasoning
component or subsumption, each of
which require further definition and
incorporation.

2. Expansion of the knowledge base
to include additional eature
knowledge. Currently, the feature
knowledge base consists of a limited set
of telephony features. This knowledge
base needs to be significantly expanded
to provide an adequate environment for
developing new features, specifyin

feature interactions, testing mode
building, and expanding the natural
language interaction.

3. Development of a Specification
Document Generator. Once feature
knowledge has been captured within
GATOR's knowledge base, it must be
made more accessible to developers,
implementors, and customers. An
output generation system is currently
under design with which the user will be
able to produce a feature requirements
specification document.

4, Extension of the Natural
Language Capabilities. The current
system is limited in the range of input
which is can process. We are expanding
the syntactic and semantic capability of
the system to more closely model the
range of language used by designers
when they describe a feature's
structure.

While our research has concentrated on
telephony, our approach is applicable to a wide
range of domains. An initial examination of
telephony features has shown that GATOR can

capture 80 to 90 percent of the functional

requirements of a feature contained in a typical
s¥eciﬁcation document. We expect that the use
of such an automated tool, in this and other
domains, will significantly reduce ambiguities
and uncertainties within specification
documents, thereby decreasing development
time and expense.

5. References

[ALLES85] Allen, J., Maintaining Knowledge
about Temporal Intervals, in Reading iIn
Knowledge Representation, edited by
R. J. Brachman and H. J.. Levesque,

34

Dankel

Morgan Kaufman, Los Altos, CA, pp. 509 -
521, 1985.

[BRACS85] Brachman, R. J. and J. G. Schmolze,
An Overview of the KL-ONE Knowledge
Representation Systemn, Cognitive
Science, Vol. 9, No. 2, pp. 171 - 216, 1985.

[BRAC89] Brachman, R. J., A. Borgida, D. L.
McGuinness, and L. Alperin Resnick, The
CLASSIC Knowledﬁe Representation
System, or, KL-ONE: The Next Generation,
Workshop on Formal Aspects of
Semantic Networks, Santa Catalina
Island, CA, 1989.

[DANK92] Dankel, D. D., W. Walker, and M.
Schmalz, POND: A Knowledge
Representation Language which Facilitates
Requirements Capturing, Working Paper
submitted to the 12th International
Avignon Conference, 1992.

[WOOD90] Woods, W. and J. Schmolze, The
KL-ONE Family, TR-20-90, Center for
Research in Computing Technology,
Harvard University, Cambridge, MA, 1990.

AAAJ-92

D'Ippolito
April 15, 1992

Modeling Software Systems by Domains

Richard D’Ippolito and Kenneth Lee 9 %7;
Software Engineering Institute
Carnegie Mellon University

The Software Architectures Engineering (SAE)
Project at the Software Engineering Institute (SEI)
has developed engineering modeling techniques that
both reduce the complexity of software for domain-

specific computer systems and result in systems that __
responsible for defining a consistent software

are easier to build and maintain. These techniques
allow maximum freedom for system developers to
apply their domain expertise to software.

We have applied these techniques to several types of
applications, including training simulators
operating in real time, engineering simulators
operating in non-real time, and real-time embedded
computer systems. Our modeling techniques result
in software that mirrors both the complexity of the
application and the domain knowledge
requirements. We submit that the proper measure of
software complexity reflects neither the number of
software component units nor the code count, but
the locus of and amount of domain knowledge. As a
result of using these techniques, domain knowledge
is isolated by fields of engineering expertise and
removed from the concern of the software engineer.
In this paper, we will describe kinds of domain
expertise, describe engineering by domains, and
provide relevant examples of software developed for
simulator applications using the techniques.

[Rt

Separation of Concerns by Domain
Expertise

We classify computer system developers by expertise
and role using three categories: systems analyst,
domain engineer, and software engineer. Systems
analysts are responsible for defining the policy,
strategy, and use of the application to be developed,
e.g., the concept of operations, and the training
requirements. Domain engineers are the modelers
responsible for determining which real-world
entities need to be modeled to satisfy the policy,
strategy, and use defined by the systems analysts.

This work is sponsored by the U.S. Department of Defense.
The SAE project members are Richard D’Ippolito, Kenneth
Lee, Charles Plinta, and Jeffrey Stewart.

35

" design model

_ undefined field

72145

Domain engineers determine if and how the entities
selected to be modeled can be specified within the
constraints imposed by the software engineers.
Finally, they express the models in the language
‘natural to their domain. Software engineers are

structure into which the domain expertise will go,

_ and providing translations from the domain-specific

natural languages into executable software.

It is not generally possible to reduce the amount of
domain knowledge required to either develop or
enhance a software-dependent system. To borrow a
phrase from Albert Einstein, our system models
should be as simple as necessary, but no simpler. If
we can separate the design of the models from the
design of the software, we can separate the tasks of
‘the domain engineer from the tasks of the software

~engineer. This would allow the software engineer to

make simplifications in the software packaging and

" execution structures which would not affect the way

the domain engineer expresses the models. It would
also allow the domain engineer the freedom to
algorithms without requiring
specialized software knowledge. In effect, each
engineer is relieved of the burden of becoming an
expert in other domains of expertise.

We have found that this separation of concerns by
domain expertise is what enables us to simplify the

~ overall design process and gain a more enhanceable

(maintainable) computer system.

Engineering by Domain

In our vocabulary, a domain is a specific field of
engineering expertise. Engineering expertise is
classified by families of models and related sets of
practices for applying the models, not by the
problems to which the expertise is applied. Common
classifications of engineering domains are: electrical,
civil, nuclear, mechanical, chemical, and (the as yet
of) software engineering. An
application area consists of related problems that
can be described using models from a variety of
domains. Examples of application areas are
command and control systems, factory automation

0

¥

6..
b

AAAI-92

sy:stems1 embedded systems, and simulator
systems’. Thus, a flight simulator application
requires domain expertise in aeronautical
engineering, electrical engineering, mechanical

engineering, and so on.

Models are reusable, adaptable, engineering assets
because they are patterns expressed in their most
general form and are scalable, usually through
templates. A good example of a templated model is a
dress pattern, where all of the cut-lines are given by
dress size.

We classify models using two major types, which we
call product models and practice models2. The
product model, when scaled, results in a component
of the delivered product. The dress pattern is an
example of a product model, as is the set of
engineering drawings for an I-beam or a DC motor.
Clearly, the dress pattern is no good without the
practice know-how of fabric and thread selection,
cutting, stitching, hemming, pleating, and all of the
other activities needed to produce the final product.
As a commercial venture, dress-making would
require in addition to the product models the
assembly-line models, materials-handling models,
business and economic models, and so on. All of
these models are what we call the practice models,
because they define the established body of practice
around the product models. Interestingly, the more
mature an engineering discipline, the more the
product and practice models will be public. In a
mature discipline, the business enterprise seeks
value added through system composition (model
application), not model creation or refinement,
which are seen as adjunct activities to be
undertaken only when necessary to complete an
application.

In the construction industry (civil engineering and
architecture), for example, all engineering firms

1. As an example, consgider the domain of a rope where
force is transmitted through tension in a flexible
member (try uging a rope under compression to push
an object). Mechanical engineers have no problem
applying the same rope design models, i.e., the
domain expertise, to suspension bridges, elevators,
cranes, and fishing rods, yet the application areas will
seem quite unrelated to those not proficient in the
domain.

2. We have deliberately avoided the overloaded term
process, preferring to reserve it for its traditional
engineering reference to a controlled activity within a
plant or machine. We use practice to refer to those
engineering activities that support product
development.

36

D'ippolito
April 15, 1992

have access to the same materials, material costs,
implementation practice (labor), and labor costs. In
these cases, the firms compete on system
composition, where success is meeting the
customer’s needs with a timely and economical
design. Electrical engineers do not manufacture
their own wire, integrated circuits, resistors, and
other electrical and mechanical components, but
compete on the basis of using these components
efficiently to satisfy a need. The information on the
components themselves is found in engineering
databooks (usually manufacturer’s publications),
and engineering handbooks which are compendia of
the practice knowledge. Both require an experienced
practitioner with an in-depth education to interpret,
however, as one cannot learn and practice an
engineering discipline solely from the handbooks.
With that education, however, the use of the
handbooks will go a long way toward guaranteeing a
successful routine (precedented) design. The use of
the handbooks are not intended to support
innovative design.

SAE has been very successful in applying models
across various software application areas because
our models have captured patterns of structure and
behavior at the domain level. The Object-
Connection-Update (OCU) model® is a good example
of a building block that allows the domain engineer
to capture the patterns of structure and behavior of
the real-world subsystems being modeled?.
Originally created for flight simulators, the OCU
was immediately applied to the design of the seeker
subsystem of an anti-tank missile and is now being
used in the design of subsystems for engineering
simulators. What made these applications of the
model possible was the capturing of the basic
pattern of subsystem operation into a few
standardized architectural elements® (models), each
responsible for a particular subsystem task.
Complexity is reduced because any subsystem can
(and must) be expressed using only these basic
elements, thus constraining the choice of solution
structures available for consideration. Systems
analysts, domain engineers, and software engineers

3. The seminal report on the OCU is CMU/SEI-88-TR-30,
An OOD Paradigm for Flight Simulators, 2nd
Edition. This report, however, is dated relative to
current SAE experience and is being updated. We are,
also, in the process of writing a series of white papers
that will fully describe the OCU and the engineering
of software-dependent systems.

4. In our terms, the total application is composed of
subsystems so that those who wish may apply the
term system to the whole.

D'Ippolito
AAAI-92 April 15, 1992

are able to make use of the OCU as the basis for
their separation of concerns; the OCU is the
framework that ensures all activities will work
together.

OCU Subsystem Examples

The OCU, produced by the software engineers,
guides the systems analysts and domain engineers
by providing the fundamental pattern of analysis

and the structure for model capture. The systems T TV Y
analysts, with the foreknowledge that the ultimate AN T AN I AV
software implementation will be subsystems ':j:':': RN ’:f:'_:’:
captured by the OCU, will be guided to view the Objects

Figure 1: OCU Subsystem Diagram

5. The basic elements are controllers, objects, import
areas, export areas, surrogates, and device handlers.
Controllers are the loci of subsystem connection and

application as a collection of subsystems. The
operation information; objects provide the subsystem domain engineers, with the same foreknowledge,
services; import areas provide the subsystem with a will be guided to compose models as collections of
view to the external world; export areas provide a subsystems, each composed of objects organized by a
window into the subsystem state for the external controller. We will show in the following examples,
world; surrogates translate information from external taken from a simulator application, how the OCU
formats to internal formats and back; and device provides this guidance.

handlers handle external-world communications. All
instances of each of these elements are of the same Before we describe how the OCU provides this

form (implementation structure). guidance, we will provide more detail about the OCU
Subsystem Form Controller Template
Subsystem Name: package <subsystem_name>_Controller is
Description: -- every subsystem controller has an update procedure
-- called by the executive
procedure Update;
Overview of Requirements: end <subsystem_name>_Controller;
Objects: with SEU; -- global types

with <subsystem_name>_Types; — the ‘local’ types
with <subsystem_name>_lmports;
with <subsystem_name>_Exports;

imports: — all objects that are part of this subsystem
Name Type Source with <Object_1>_Manager;

with <Object_2>_Manager;

o with <Object_3>_Manager;

with <Object_4>_Manager;

with <Object_5>_Manager;

Exports: package body <subsystem_name>_Controlier is
Name Type Destination -- local variables declared here
type <typel>;
type <type2>;

procedure Update is

Update Algorithm: begin .
-- controller update algorithm goes here

end Update;

end <subsystem_name>_Controller;

Figure 2: Subsystem Specification Form and Controller Template

37

AAAI-92

itself. We have found that the general patterns of
operation of subsystems in any domain can be
captured in a universal structure. These patterns
involve separation of mission from operation,
localization of state, activation and control of
subsystems, and transfer of information. Separation
of mission from operation is derived from a principle
that is fundamental to all human and machine
behavior: the mechanism of making decisions should
be separate from the mechanisms used to carry out
the decisions. Localization of state is derived from
the fundamental software engineering principle of
information hiding. In the OCU (Figure 1), the
controller is the locus of decision making, and the
objects provide the service mechanisms and the
localization of state.

We knew that we could reduce the software
complexity by repeated use of a small number of
elements, a standard method of information
transfer, and a standard method of control. We also
knew that a maintainable system required closely
related services be isolated from other, unrelated,
services. In software engineering terms, this means
coupling between unrelated entities is minimized,

Sonar Subsystem Form

D'Ippolito
April 15, 1992

cohesion between related entities is maximized, and
maintainability is enhanced by repeated use of the
same patterns. In the OCU, isolation and
information transfer is provided by the import and
export areas. Cohesion among the objects in a
subsystem is enforced by having the controller be
the sole entity that implements connections to
objects. We have found this set of elements: objects,
controllers, export areas, and import areas, to be
sufficient for describing any real-world subsystem.

We, as software engineers, have implemented the
elements of the OCU in Ada. We have captured the
patterns with a subsystem specification form and a
set of element code templates.

The OCU is applied with the aid of the subsystem
specification form and the element code templates,
subsets of which are shown in Figure 2 (only the
controller template is shown). The subsystem form
provides a standard way for the systems analyst and
domain engineers to record the specifications of
subsystems in terms of the known compositional
elements of subsystems, as shown in Figure 3. The
subsystem templates provide a standard way for the

Sonar Controller Code

Subsystem Name: Sonar

The sonar subsystem is used to locate mineike objects. Its transmit power
level and pulse repetition rate are controlled by the console operator. The
received signals are sent to the console.

Overview of Requirements.
References: SW5TO-EO-MMO-020
pp. 35
pp. 7- all
FO-8
FO-12
Telemetry Data Format
MNV-Engineering Worksheet
Schematic Slide
Oblects:
Sonar Soundhead
Sonar Tiit Potentiometer
Flow Control Servo_Valve

Rotary Actuator
Imports:
MNama Typs Source
Rate_Cmd Volts Electronics Unit
Xmit_Level_Cmd Xmit_Level Electronics Unit
Siew_Rate_Limit_Cmd Slew_Rate_Limit Electranics Unit
Range_Reset Cmd Range_Reset Electronics Unit
Sonar_Received_Signal Sonar_Signal Environment

Electronics Unit

Pulse_Repetition_Rate_Cmd
Hydraulic System

Hydraulic_Pressure_Availabie

Pulse_Repetition_Rate
Hydraulic_Pressure

Exporta:

Nama Tvpa Destination
Sonar_Tilt_Potentiometer_Voltage Volts Electronics Unit
Composite Video Sonar_Video_Signal Electronics Unit
Sonar Transmitted Signa! Sonar_Signal Environment

package Sonar_Controller Is

-~ avery subsystem controfler has an update procedure
- called by the executive
procedure Updats;

end Sonar_Controller;

with SEU; -- global types

with Sonar_Types; - the local’ types
with Sonar_Iimports;

with Sonar_Exports;

-- all objects that are part of this subsystem
with Flow_Control_Servo_Valve_Manager;
with Rotary_Actuator_ Manager;

with Sonar_Soundhead_ Manager;

with Sonar_Tiit_Potentiometer_ Manager;

package body Sonar_Controlier is

procedure Update Is
begin
Flow_Control_Servo_Valve_Manager.Update(
Sonar_Imports.Rate_Command,
Sonar_lmports.Hydraulic_Pressure_Avallable,
Sonar_Exports.Controlled_Pressure);

Rotary_Actuator_Manger.Updats{
Sonar_Exports.Controlied_Pressure,

Sonar_Exports.Controlied_Torque);

Figure 3: Completed Subsystem Specification Form and Controller Template (truncated)

38

AAAJ-92

software engineer to map the design of the models,
captured on the forms, directly into an Ada
implementation of the elements, also shown in
Figure 3.

We can now describe how the OCU provides
guidance to systems analysts and domain engineers.
The systems analyst, in consultation with the
customers and users, analyzes the application to
identify subsystems consistent with the concept of
operation and patterns of use of the application.
Each of the subsystems is assigned a specification
form and passed to the appropriate domain engineer
for completion. In addition to the identification of
subsystems, the systems analyst will provide the
domain engineer with a mapping of the training
requirements expressed in terms of model fidelity,
operational modes, and malfunctions.

Figure 4 shows a sonar subsystem schematic from a
Navy remote-controlled, minehunting, undersea
vehicle. This diagram was constructed by sonar
engineers and represents the real-world sonar
subsystem. The schematic captures the knowledge
needed by the domain engineer to model how the

D'Ippolito
April 15, 1992

sonar subsystem is constructed. For the construction
of a complete simulator, the systems analyst will
gather representative schematics and provide them,
with the specification forms, to domain engineers.

A domain engineer receives a partially completed
form and some subsystem schematics from the
systems analyst. The domain engineer then models
the real-world subsystem to match the fidelity
requirements expressed on the form. Each element
of the model is mapped to an element of the OCU,
the element models are parameterized to realize the
specified operational modes and malfunctions, and
the parameterized models are captured in a
language natural to the domain engineer. The
domain engineer completes the specification form by
recording the mapping and forwarding the form,
containing the natural language description of the
parameterized models, to the software engineer.

Figure 5 shows a representation of the sonar
subsystem as modeled by the domain engineer. The
objects remaining are those sufficient to simulate
the subsystem to match the fidelity requirements,
modes, and malfunctions. Some connections to other

Legend -
1. Segment gear

2. Sonar soundhead assembly

3. Sonar mounting drive gear

4. Sonar mounting bracket

5. Bearing

6. Screw

7. Index holes

8. Potentiometer mounting clamp

9. Sonar position indicating potentiometer

10. Set acrew

11, Adapter

12. Sonar clamp retaining screw
13. Shear plate

14. Actuator mounting screw

15. Actuator mount

16. Alignment spring pin

17. Rotary actuator

Figure 4: Sonar Subsystem Schematic

39

D'Ippolito

AAAI-92 April 15, 1992
(E)
(p) (Env)
. - -
¥ !
Servo pressure Rotary |torque Sonar mm.mn'
U Comparator sonar tiit | Valve Actuator ™ Soundhead ————
M cmd recieve
B ‘ {+/- Volts) :
! I
I'. '
C transmit level position
A pulse rep. rate
L slew rate limit
range reset
C
A
Ble
L composite video
E Y
Sonar Tiit
L sonar tiit Potentiometer
Electronics angle
Subsystem (+/- volts)
(E) = Ensrgy ——t—---
(E(nv) = Environment (E)
Figure 5: Modeled Sonar Subsystem

subsystems on the undersea vehicle are shown as
well. Figure 6 shows an OCU diagram for the
modeledr sonar subsystem.

Conclusions

Using a fixed set of templates means that the
interface mechanism between elements is known
ahead of and independent of model design. All
subsystems look (structurally) alike, and each
subsystem can be made to lie within a single
domain, with communication between subsystems
also being handled by common structures. This
means that the software engineer can proceed with
executive and test harness design. It also means
that the model specifiers can work independently in
their own domains, knowing that their models will
fit into the completed system.

Thus, a completed simulator application will consist
of as many instances of the OCU subsystem model
as required by the use and fidelity requirements.
Space limitations prevent us from describing the
additional elements used to compose the simulator
executives, but the same techniques and the OCU

are used there as well.

40

- complexity. _

We conclude that composition by domain-specific
subsystems allows maximum freedom for the
systems analysts, domain engineers, and software
engineers to apply their expertise, and that having
common software structures results in software
applications that are more easily understood and

enhanced, i.e., systems which have reduced

Sonar
Controller

Sonar Sonar Tilt ow Control Rotary
Soundhead | [Potentiometer| | Servo Valve | | Actuator
Object Object Object Object

Figure 6: Sonar Subsystem Diagram

Ellman

N93S-1750

Approximation, Abstraction and Decomposition in

Search and Optimization

,Thomas Ellman
Department of Computer Science

°8 -6/
) 2582

Rutgers University
ellman@cs.rutgers.edu

1. Synthesis of Search Control
Heuristics

One portion of my research has focused on auto-
matic synthesis of search control heuristics for con-
straint satisfaction problems (CSPs). I have developed
techniques for automatically synthesizing two types of
heuristics for CSPs: Filtering functions are used to re-
move portions of a search space from consideration.
Evaluation functions are used to order the remain-
ing choices. My techniques operate by first construct-
ing exactly correct filters and evaluators. These oper-
ate by exhaustively searching an entire CSP problem
space. Abstracting and decomposing transformations
are then applied in order to make the filters and eval-
uators easier to compute. An abstracting transforma-
tion replaces the original CSP problem space with a
smaller abstraction space. A decomposing transfor-
mation splits a single CSP problem space into two
or more subspaces, ignoring any interactions between
them. Both types of transformation potentially intro-
duce errors into the initially exact filters and evalua-
tors. The transformations thus implement a tradeoff
between the cost of using filters and evaluators, and the
accuracy of the heuristic advice they provide. I have
shown these techniques to be capable of synthesizing
useful heuristics in domains such as floor-planning and
job-scheduling, among others. (See [Ellman, 1992].)

2. Synthesis of Hierarchic Problem
Solving Algorithms

Another portion of my research is focused on automatic
synthesis of hierarchic algorithms for solving constraint
satisfaction problems (CSPs). I have developed a tech-
nique for constructing hierarchic problem solvers based
on numeric interval algebra. My system takes as inputs
a candidate solution space S and a constraint C on
candidate solutions. The solution space S is assumed
to be a cartesian product R® where R is a set of inte-
gers. The constraint C is assumed to be represented in
terms of arithmetic, relational and boolean operations.
From these inputs the system comstructs an abstract
solution space S, as a cartesian product R} where R,

41

is a set of disjoint intervals that covers R. The system
also constructs an abstract constraint C, on abstract
solutions. The abstract constraint C, is obtained from
the original constraint C by replacing ordinary arith-
metic operations with interval algebra operations and
replacing boolean operations with boolean set opera-
tions. The abstract space S, and absiract constraint
C, are then used to build a hierarchic problem solver
that operates in two stages. The first stage finds an
abstract solution in the space S; of intervals. The sec-
ond stage refines the abstract solution into a concrete
solution in the original search space S. I have shown
this approach to be capable of synthesizing efficient
problem solvers in domains such as floor-planning and
job-scheduling, among others. (See [Ellman, 1992].)

3. Decomposition in Design
Optimization

Another portion of my research is focused on auto-
matic decomposition of design optimization problems.
We are using the design of racing yacht hulls as a
testbed domain for this research. Decomposition is
especially important in the design of complex physi-
cal shapes such as yacht hulls, Exhaustive optimiza-
tion is impossible because hull shapes are specified
by a large number of parameters. Decomposition di-
minishes optimization costs by partitioning the shape
parameters into non-interacting or weakly-interacting
gets. We have developed a combination of empiri-
cal and knowledge-based techniques for finding use-
ful decompositions. The knowledge-based method ex-
amines a declarative description of the function to be
optimized in order to identify parameters that poten-
tially interact with each other. The empirical method
runs computational experiments in order to determine
which potential interactions actually do occur in prac-
tice. We expect this approach to find decompositions
that will result in faster optimization, with a minimal
sacrifice in the quality of the resulting design. Imple-
mentation and testing of this approach are currently in
progress. (I am pursuing this research in collaboration
with Mark Schwabacher.) (See [Ellman et ol., 1992].)

7

Q,'b’

4. Model Selection in Design
Optimization

Another portion of my research is focused on intelligent
model selection in design optimization. The model se-
lection problem results from the difficulty of using ex-
act models to analyze the performance of candidate
designs. For example, in the domain of racing yacht
design, an exact analysis of a yacht’s performance
would require a computationally expensive solution of
the Navier-Stokes equations. Approximate models are
therefore needed in order diminish the costs of analyz-
ing and evaluating candidate designs. In many situa-
tions, more than one approximate model is available.
For example, in the yacht design domain, the induced
resistance of a yacht can be predicted by solving La
Place’s equation - an approximation of Navier-Stokes
- or by using a simple algebraic formula. The two ap-
proximations differ widely in both the costs of com-
putation and the accuracy of the results. Intelligent
model selection techniques are therefore needed to de-
termine which approximation is appropriate during a
given phase of the design process.

We have attacked the model selection problem in
the context of hillclimbing optimization. We have de-
veloped a technique which we call ”gradient magnitude
based model selection™. This technique is based on the
observation that a highly approximate model will of-
ten suffice when climbing a steep slope, because the
correct direction of change is easy to determine. On
the other hand, a more accurate model will often be
required when climbing a gradual incline, because the
correct direction of change is harder to determine. Our
technique operates by comparing the estimated error
of an approximation to the magnitude of the local gra-
dient of the function to be optimized. An approxima-
tion is considered acceptable as long as the gradient
is large enough, or the error is small enough, so that
each proposed hillclimbing step is guaranteed to im-
prove the value of the goal function. Implementation
and testing of this approach are currently in progress.
I am pursuing this research in collaboration with John
Keane. (See [Ellman et al., 1992].)

References

T. Ellman, J. Keane, and M. Schwabacher. The rut-
gers cap project design associate. Technical Report
CAP-TR-6, Department of Computer Science, Rut-
gers University, New Brunswick, NJ, 1992,

T. Ellman. Idealization-based methods for con-
straint satisfaction problems. Working Notes of the
AAAI Workshop on Approximation and Abstraction
of Computational Theories (Forthcoming), July 1992.

42

Ellman

Eriksson

N93-dl7508

Meta-Tools for Software Development an

Knowledge Acquisition

Henrik Eriksson®

Medical Computer Science Group
Knowledge Systems Laboratory
Stanford University School of Medicine

S9-G /!
/36583

4

Mark A. Musen

Stanford, CA 94305-5479

“Man is a tool-using animal. ... Without tools he is
nothing, with tools he is all.”
Thomas Carlyle (1795-1881)

Abstract

The effectiveness of tools that provide sup-
port for software development is highly depen-
dent on the match between the tools and their
task. Knowledge-acquisition (KA) tools consti-
tute a class of development tools targeted at
knowledge-based systems. Generally, KA tools
that are custom-tailored for particular applica-
tion domains are more effective than are gen-
eral KA tools that cover a large class of do-
mains. The high cost of custom-tailoring KA
tools manually has encouraged researchers to
develop meta-tools for KA tools. Current re-
search issues in meta-tools for knowledge acqui-
sition are the specification styles, or meta-views,
for target KA tools used, and the relationships
between the specification entered in the meta-
tool and other specifications for the target pro-
gram under development. We examine differ-
ent types of meta-views and meta-tools. Our
current project is to provide meta-tools that
produce KA tools from multiple specification
sources—for instance, from a task analysis of the
target application.

Introduction

Knowledge-acquisition (KA) tools are programs that
help developers to elicit and structure domain know-
ledge for use in application programs (e.g., in expert
systems). Typically, KA tools allow nonprogram-
mers who are specialists in some domain area to en-
ter structures relevant for the application program
without the aid of an intermediary who is proficient
in programming. Thus, KA tools are, in a way, code-
generating software-engineering tools for a restricted
type of software and for a particular group of users.
To increase the usability of KA tools, researchers in
knowledge acquisition have experimented with spe-
cializing the tools in various ways. For instance, KA
tools have been specialized to knowledge-acquisition

*On leave from the Department of Computer and
Information Science, Linkdping University, S-581 83
Linkdping, Sweden

43

methods, problem tasks, domains, and even appli-
cations. In most cases, specialized KA tools are re-
ported to be more effective than general ones, be-
cause the users are nonprogrammers familiar with
the domain terminology. In addition to those that in-
volve the elicitation of knowledge from experts, there
are approaches to KA tool support that rely on know-
ledge acquisition from texts, and there also are meth-
ods that incorporate machine learning from example
solutions.

Custom-tailoring KA tools can be a laborious
task. When the benefit of domain-specific KA
tools is compared to the effort of developing them,
the tool-development cost is often unacceptable for
small projects. Also, development of domain-specific
tools can in itself be a software-engineering problem.
These problems have been addressed with supportive
tools and, to a certain extent, with tool-development
methodologies. Just as code-generator writing sys-
tems can be used to produce code-generating tools,
meta-tools for knowledge acquisition can help devel-
opers to implement domain-specific KA tools. Sev-
eral meta-tools that generate target KA tools auto-
matically from specifications provided by the devel-
opers have been implemented by researchers in know-
ledge acquisition. Although KA tools are generally
intended for nonprogrammers, variants of such tools
can be used by programmers to increase software
quality and programmer productivity. A meta-tool
can be used to create the tool required by program-
mers.

An important aspect of a meta-tool is the speci-
fication strategy, or meta-view, for target tools that
the meta-tool provides to the developers. The meta-
view comprises the conceptual model of the target
tool that the meta-tool supports, as well as the spec-
ification language for target tools. Depending on the
view of target tools, several types of meta-views are
possible. Domain-specific tools for software develop-
ment are desirable in many situations. Meta-tools,
however, preferably should be domain-independent
so that they can produce domain-oriented tools for a
broad area of applications.

Much of the work in meta-tool support for know-
ledge acquisition is relevant for software engineer-
ing, especially approaches to domain-specific devel-
opment tools. If the design and implementation of
such domain-oriented software-engineering tools are

laborious tasks, meta-level tools are certainly re-
quired. In this paper, we discuss alternative meta-
views and describe their implementation in different
meta-tools.

Background

Knowledge engineering and software engineering are
partially overlapping disciplines. Moreover, tools for
knowledge engineering and computer-aided software
engineering (CASE) tools have gone through simi-
lar development stages, in the sense that increas-
ingly specialized tools have been considered. The
first-generation Al development tools were general
and were essentially programming languages with in-
tegrated development environments. Examples of
such tools are EMYCIN, KEE, ART, and S1. Only
skilled programmers and knowledge engineers could
use these tools, so the tools were inaccessible to do-
main specialists who had not had extensive training
in computer and information sciences.

Simultaneously, investigators attempted to devel-
oped tools that acquired expertise directly from do-
main specialist. Initially, these KA tools were also
general. In the mid-1980s, these general KA tools
were followed by a second generation of KA tools
that were specific to particular problem tasks—for in-
stance, to classification, configuration, or scheduling.
Even if the scope of the tool is restricted to one prob-
lem task, however, nonprogrammers may have diffi-
culty using the tool [Marcus, 1988). A third genera-
tion of even more specialized KA tools was therefore
developed. Researchers started to experiment with
domain-specific KA tools. Such tools are designed
such that domain specialists can use well-known do-
main concepts in the tool dialog [Eriksson, 1992;
Musen ef al., 1987].

Domain-oriented KA tools can provide effective
support within their area, because they draw their
power from built-in domain concepts that users can
identify easily. However, the development of such
KA tools is costly, since the amount of programming
required to implement such domain-specific tools is
large in comparison to the scope of the tools’ ser-
vices. There are three fundamental approaches to
this problem: (1) balancing tool generality versus
domain-orientation to achieve a reasonable trade-off
between utility and cost, (2) improving further gen-
eral tools, and (3) reducing the cost of developing
domain-oriented KA tools (e.g., through technologi-
cal means).

We have chosen the third approach. Our goal is,
thus, to make it easier for developers to design and
implement tools tailored for their needs. Meta-tools
can help developers to create new domain-specific
tools as well as to custom-tailor existing tools for
a domain. There are two principal roles for meta-
tools in this approach: (1) to address the software-
engineering problem of developing (and specializing)
target tools, and (2) to support the target-tool design
and specification process. In addition to meta-tools,
development methodologies that incorporate special-
ization of development tools can help the developer
to control the development process and to reduce its

44

Eriksson

cost.

One feature that distinguishes KA tools from other
development tools is the intended tool user. KA tools
are primarily intended for use by domain specialists,
whereas code-generating software-engineering tools
are generally designed to be use by developers with
programming knowledge. So far, we have primarily
worked with KA tools for knowledge-based systems.
Nevertheless, several of our results can be generalized
to other types of software-development tools.

Meta-Views

The most important aspect of a meta-tool is the
specification model of the target tools that it pro-
vides to the developer. The meta-view adopted by
the meta-tool guides the specification process, and
determines the scope of the meta-tool. Meta-tools
can differ substantially, depending on what aspects
the meta-tool developer chooses to emphasize in the
meta-view. Preferably, the meta-view should in some
way reflect the way that developers think about the
target tools, and should provide a natural way of
specifying target tools. Several groups of meta-views
can be identified.

The Method-Oriented View

The method-oriented view provides a framework for
describing the problem-solving method to be used in
the final application in a way that makes the descrip-
tion useful for generation of KA tools. Meta-tools
implementing a method-oriented view produce tar-
get KA tools from a partial instantiation of a generic
problem-solving method (e.g., planning, scheduling,
or troubleshooting methods). Target KA tools are
fully instantiated according to the expertise required
by the problem-solving methods for performing their
tasks. For example, the developer can instantiate
a planning method by providing descriptions of ac-
tions (and their preconditions as well as ramifica-
tions), constraints, and goals. A domain-specific KA
tool that allows specialists to enter and edit skeletal
plans can be produced from such an instantiation of
the planning method by a meta-tool supporting the
planning method. Typically, meta-tools adopting a
method-oriented view incorporate some form of a pri-
ori design of the target tools. One of the advantages
of the method-oriented view is that the instantiation
of a generic method structures the development pro-
cess and guides the developer. Another advantage
is that the target tool can be developed rapidly if a
problem-solving method for the application is known.

There are, however, drawbacks of the method-
ortented view. A significant problem is that the
meta-tool is restricted to one particular problem-
solving method. KA tools that acquire knowledge
for other problem-solving methods, including KA
tools for domains where the problem-solving method
supported. is unsuitable, cannot be specified using
the method-oriented approach. Another problem is
that the type of KA tools produced for a particu-
lar domain is fixed (i.e., it is possible to have only a
one-to-one correspondence between an instance of a
problem-solving method and its KA tool. due to the

a priori KA tool design). Adapting a meta-tool for
another problem-solving method is currently a labo-
rious task that may involve a major redesign of the
meta-tool.

The Abstract-Architecture View

The abstract-architeciure view is based on an archi-
tectural model of the target tool. In this approach,
the developer specifies components of the target KA
tool, such as the user interface, the internal represen-
tation, and the generator for target code. In other
words, to create a target KA tool, the developer has
to instantiate each of the components in the KA tool
architecture and to link together the components.
(Naturally, this task requires a prior analysis of the
domain and of the requirements on the KA tool.)

Meta-tools adopting this meta-view produce KA
tool implementations from abstract specifications of
target KA tool components. In a way, the abstract-
architecture view is similar to specification languages
found in compiler compilers (e.g., Yacc and Bi-
son). The abstract-architecture view differs from
the method-oriented view in that it focuses on the
target tool rather than on the application program
under development. The abstract-architecture view
provides more flexibility for the developer than does
the method-oriented view, because many tools po-
tentially can be specified for one domain.]

The major advantage of the abstract-architecture
view is that target KA tools can be specified inde-
pendently of the problem-solving method adopted.
Hence, the meta-tools do not have to rely on spe-
cific problem-solving methods (or on any other class
of domains). There are, however, other limitations:
The abstract-architecture view imposes restrictions
on the types of target tools that can be specified. For
instance, a meta-tool supporting architectural com-
ponents for graphical editing and browsing cannot
easily be used to produce debugging tools (which
require a completely different set of architectural
components). Another disadvantage of the abstract-
architecture view is that the developer needs to be
aware of the architecture of the target KA tools,
which knowledge is not required for the method-
oriented view (where the developer is required to
know only the problem-solving method).

The Organizational View

The organizational view captures the intended orga-
nizational context for the system under development.
The idea is to derive the target system’s role from
an organizational model (e.g., an enterprise model)
and to identify the task of the system from its role.
When the task of the system has been established, it
can be used together with the organizational model
to specify target KA tools to a meta-tool. To spec-
ify a target KA tool according to the organizational
view, a developer must (1) identify the actual organi-
zational structure from a library of typical organiza-
tions, and (2) indicate the relevant position and role
in the organization for the system. In essence, the
organizational perspective is an approach to create a
job description for the system.

45

Eriksson

The organizational view provides a broader per-
spective on KA tool specification than do the
method-oriented and abstract-architecture views.
The broad perspective is an advantage of the organi-
zational view, since it helps to clarify how the system
is to be used and to make this information available
to the meta-tool. Another advantage of the organiza-
tional view is that organizational information is often
easily available and can be provided by nonprogram-
mers. One of the problems with the organizational
view, however, is that it is not clear whether such a
model is sufficient to specify a KA tool completely.
Additional information, such as identification of ap-
propriate problem-solving methods and other techni-
cal issues, might be needed to produce automatically
or semiautomatically target KA tools that can be
used by people in the organization (i.e., nonprogram-
mers) to develop the system. A pure organizational
model would not provide sufficient information, but
an extended organizational model might be practical
for the tool generation.

The Ontological View

The ontological view is based on the idea that do-
main concepts and relationships can be used for gen-
eration+of domain-specific KA tools that incorporate
such concepts and relationships. Concept definitions
in the ontology can be used as a basis for automated
generation of domain-oriented editors in the KA tool.
Target KA tools can then be used to acquire details
about the domain concepts. For example, instances
of domain-specific classes in the ontology can be en-
tered and edited in the target KA tool by developers
and by domain specialists. To complete a target KA
tool, however, the developer might have to provide
additional information in the ontology (e.g., infor-
mation about how to edit certain concepts). The on-
tological view differs from the previously mentioned
meta-views in that it focuses on declarative struc-
tures required in the application system.

Composed Meta-Views

An important question is whether we can combine
several meta-view such that we avoid some of the
disadvantages of particular meta-views. For in-
stance, a combination of the method-oriented and
the abstract-architecture views can potentially ren-
der a meta-view that provides the guidance of a pre-
determined problem-solving method and the capa-
bility to custom-tailor the target tool (e.g., for in-
dividual users). There are, however, several con-
ceptual and technical obstacles to implementation
of composed meta-views. For example, meta-views
can be partially incompatible, and changes to spec-
ifications made according to one meta-view might
affect—and even invalidate—other specifications ac-
cording to other meta-views.

Meta-Tools

There are several meta-tools that implement the
meta-views described in the previous section. e
shall briefly examine four different meta-tool imple-

mentations, and shall relate them to their meta-
views.

PROTEGE

PROTEGE [Musen, 1989a; Musen, 1989b] is a meta-
tool that adopts a method-oriented view. PROTEGE
supports a particular problem-solving method for
planning (skeletal-plan refinement), which also is the
basis for the meta-view in PROTEGE. Historically,
PROTEGE was abstracted from a domain-specific KA
tool (OPAL) that acquires skeletal plans, or protocols,
for cancer therapy. PROTEGE incorporates an a pri-
ori design of target KA tools that is similar to the
design of oPAL. The meta-view in PROTEGE com-
prises concepts related to skeletal planning—for ex-
ample, planning entities (which are processes that
take place over finite periods of time), task-level ac-
tions {which are operations that control the planning
entities and modify the plan during run time), and
tnpui-data specifications.

To build a KA tool with PROTEGE, the devel-
oper must instantiate the skeletal-planning method
supported by PROTEGE for the domain in question.
This instantiation involves describing planing enti-
ties, task-level actions, and input data in detail.
PROTEGE produces a target KA tool, which can be
used by domain specialists to enter and edit skeletal
" plans, from the instantiated problem-solving method.
In turn, the target KA tool produces the application
system from the skeletal plans entered.

An important achievement of PROTEGE is that it
demonstrated how meta-tools can be used to instan-
tiate KA tools from descriptions of problem-solving
methods (i.e., PROTEGE demonstrated the feasibil-
ity of the method-oriented view). Nevertheless, the
principal drawback of PROTEGE is inherited in its
meta-view——the meta-tool is limited to one problem-
solving method.

DOTS

DoTs [Eriksson, 1991] is a meta-tool that is based on
the abstract-architecture view. Like PROTEGE, DOTS
1s abstracted from a domain-oriented KA tool, but
DOTS focuses on the architecture of the target tool,
rather than on the problem-solving method of the
application system. DOTS generates target KA tools
from architectural specifications. Furthermore, DOTS
assumes that the target tools conform to a particu-
lar architecture scheme (i.e., DOTS cannot be used to
develop any type of software; it is tailored for devel-
opment of graphical KA tools).

The meta-view in DOTS comprises (1) a variety of
editors that can be custom-tailored to edit domain-
specific structures, (2) a specification language for
the internal representation (which represents what
1s entered in the editors internally) and other data
structures for the target KA tool, (3) a set of update
rules that can be configured to ensure consistency
between the internal representations and the editors
in the user interface, and (4) a set of transformation
rules that is used to produce target code from the
representation internal to the KA tool. To develop a
KA tool with DOTS, the developer must analvze the

46

Eriksson

domain and design a KA tool architecture for the
domain, enter specifications for the domain-specific
editors in DOTS, specify the internal representation
for the target KA tool, declare the relationship be-
tween the editors and the internal representation in
the form of update rules, and write transformation
rules for code generation from the internal represen-
tation. DOTs produces a target KA tool from these
architectural descriptions.

DoTs demonstrated how an abstract-architecture
view can be implemented in a meta-tool. Unlike
PROTEGE, DOTS is not restricted to a particular
problem-solving method or to any other domain
class. DoTs, however, is restricted to a particular
type of architecture for target KA tools.

SIS

Another meta-tool that implements an abstract-
architecture view is sis [Kawaguchi et al., 1991]. Sis
differs from DOTS in that it is designed for generating
interview-based KA tools (i.e., KA tools that conduct
a question-and-answer dialog with domain specialists
to elicit domain information and knowledge), rather
than graphical KA tools based on interactive editing
for which DOTS is designed. The components of the
architecture scheme supported by sis, therefore. are
different from those found in DoOTs.

Spark
Researchers at Digital Equipment Corporation (DEC)
have explored the organizational view as a basis for
meta-tools. They have developed Spark, a meta-tool
that implements the organizational view [Klinker et
al., 1991].

To implement a KA tool using Spark, the devel-
oper must identify the organizational type (e.g., man-
ufacturing industry, service organization, or govern-
ment), identify the role of the system in that organi-
zation using a diagram of typical organizations, and
assemble a performance system using reusable pro-
gram mechanisms from a library. Spark configures
an appropriate KA tool from the description of pro-
gram mechanisms and the information requirement
for each of the relevant mechanism. The original
Spark approach has been modified; the group at DEC
1s now considering mechanisms with a finer granular-
ity.

Spark is part of a tool set that contains two other
tools: Burn and FireFighter. Burn is the run-time
system that controls the knowledge-acquisition ses-
sion and invokes appropriate KA tools. FireFighter
1s a debugging tool that helps developers and do-
main specialists to debug and maintain application
systems developed.

Programming Languages as Meta-Tools

General programming languages (e.g., C, Pascal, and
ADA) also can be regarded as meta-views and their
compilers can be seen as meta-tools, since they can
be used to implement target KA tools. Program-
ming languages, however, provide neither much sup-
port for tool implementation, nor any high-level con-
structs for tool specification (especially for interac-

tive tools with graphical user interfaces). The use of
programming languages can certainly provide flex-
ibility in the tool design, but the implementation
cost is often too high. Nevertheless, programming
languages can play a role in implementation of tool
functions that cannot be specified with an available
meta-view.

Summary and Conclusions

Domain-specific development tools, including
domain-oriented KA tools, are often reported to be
more successful than are their general counterparts.
Consequently, specialized development and KA tools
are emerging. Since the development of such custom-
tailored tools is relatively laborious given their re-
stricted scope, researchers have experimented with
meta-tools that support the design and implementa-
tion of domain-specific tools. Although it is prefer-
able that meta-tools be domain-independent, their
generality must be restricted if they are to be prac-
ticable and supportive. One such restriction is the
class of target tools the meta-tool produces.

A meta-view is the specification strategy for tar-
get tools adopted by the meta-tool. The method-
oriented view focuses on a problem-solving method
that is applicable to many domains. The developer
specifies domain-oriented target tools by instantiat-
ing a problem-solving method for the domain in ques-
tion. The abstract-architecture view, on the other
hand, focuses on the architecture of the target tool.
In this approach, domain-oriented tools are specified
through instantiation of architectural components
(e.g., graphical editors, internal structures, and sets
of transformation rules). The organizational view
provides a model of generic organizations in which
the role of the application system can be identified.
Such roles are used as basis for generation of target
tools.

The meta-views examined in this paper represents
complementary approaches to specification of target
tools. Since each meta-view has advantages and dis-
advantages, the choice of meta-view depends largely
on the requirements on the target tool, development
philosophy, and personal preferences. Ideally, meta-
tools should support target-tool specification accord-
ing to multiple paradigms.

With appropriate meta-tools, development of
application-specific tools (rather than domain-
specific) custom-tailored to particular development
situations can be made feasible. Target tools can be
changed during the course of the project to support
different project stages in different ways. For exam-
ple, target tools can serve as specification tools and
then as maintenance tools, as the project evolves.

We are currently developing a meta-
tool (PROTEGE 11) that will support a combination
of meta-views [Puerta et al., 1991]. PROTEGE 11 will
support two different development tasks simultane-
ously. One part of the emerging PROTEGE II system
will allow the developer to create basic performance
systems by configuring tasks and problem-solving
methods from a library of reusable components, the
other of part PROTEGE Il is concerned with gener-

47

Eriksson

ation of domain-oriented KA tools (which are used
for acquiring knowledge from domain specialists for
the basic performance systems). For the KA-tool
generation component, we are currently considering
a combination of the abstract-architecture and onto-
logical views. Since PROTEGE 11 is also intended for
configuration of tasks and problem-solving methods,
the combined meta-view will incorporate ideas from
the method-oriented view also.

Acknowledgments

This work has been supported in part by grants
LMO05157 and LM05208 from the National Library
of Medicine, by a gift from Digital Equipment Cor-
poration, and by scholarships from the Swedish Insti-
tute, from Fulbright Commission, and from Stanford
University. We are grateful to Angel Puerta for com-
ments on drafted versions of this paper and to Lyn
Dupré for editorial assistance.

References

Eriksson, Henrik 1091. Meta-Tool Support for
Knowledge Acquisition. PhD thesis 244, Linkoping
University.

Eriksson, Henrik 1992. Domain-oriented knowledge
acquisition tool for protein purification planning.

Journal of Chemical Information and Computer
Sciences 32(1):90-95.

Kawaguchi, Atsuo; Motoda, Hiroshi; and Mi-
zoguchi, Riichiro 1991. Interview-based knowledge
acquisition using dynamic analysis. JEEE Erpert
6(5):47-60.

Klinker, Georg; Bhola, Carlos; Dallemagne, Ge-
offroy; Marques, David; and McDermott, John
1991. Usable and reusable programming constructs.
Knowledge Acquisition 3(2):117-135.

Marcus, Sandra, editor 1988. Automating Know-
ledge Acquisition for Ezpert Systems. Kluwer Aca-
demic Publishers, Norwell, Massachusetts.

Musen, Mark A.; Fagan, Lawrence M.; Combs,
David M.; and Shortliffe, Edward H. 1987. Use of
a domain model to drive an interactive knowledge-
editing tool. International Journal of Man-Machine
Studies 26(1):105-121.

Musen, Mark A. 1989a. Automated Genera-
tion of Model-Based Nnowledge-Acquisition Tools.
Morgan-Kaufmann, San Mateo. California.

* Musen, Mark A. 1989b. An editor for the con-

ceptual models of interactive knowledge-acquisition
tools. International Journal of Man-achine Stud-
ies 31(6):673-698.

Puerta, Angel R.; Egar, John W.; and Musen,
Mark A. 1991. Automated generation of adaptable
knowledge-acquisition tools with Mecano. Technical
Report KSL-91-62, Knowledge Systems Laboratory,
Stanford University, Stanford. C'A.

- &/

/36 b

Qo

Leona F. Fass

Introduction: Background and Motivation
Our interest in automating software design has come out
of our research in automated reasoning, inductive inference,
- learnability and algebraic machine theory. We have
" investigated these areas extensively, in connection with
~ specific problems of language representation, acquisition,
~ processing and design.
In the case of formal context-free (CF) languages we
established existence of finite learnable models ("behavioral
- realizations™) and procedures for constructing them
effectively. We also determined techniques for automatic
construction of the models, inductively inferring them from
finite examples of how they should "behave". These results
were obtainable due to appropriate representation of domain
knowledge, and constraints on the domain that the
representation defined.

It was when we sought to generalize our results, and

~ adapt or apply them, that we began investigating the
~ possibility
" constructing correct software.

similar procedures for
Discussions with John
Cherniavsky, Dick Hamlet and Elaine Weyuker led us to
examine testing and verification processes, as they are
related to inference, and due to their considerable
importance in correct software design. Motivating papers
by Cherniavsky [1], Hamlet [3], Weyuker [4] and also,
Fetzer [2], led us to examine these processes in some depth.
Here we present our approach to those software design
issues raised in [1-4], within our own theoretical context.
~ We describe our results, relative to those of [1-4] and
conclude that they do not compare unfavorably. i

of determining

Our Approach To Software Design

We approach problems of software design as examples
or applications of a general learning theory. Our
perspective is logical and algebraic: to us, a program or
system fulfilling a specification S is "just like" any other
realization of a specified behavior. The process of
constructing software to perform a particular function or set
of tasks, thus is an instance of synthesizing a behavioral
realization. The testing of given software for incorrectness,
or its verification as correct, are cases of checking a
potential model, or realization, against its behavioral
domain. If it is determined to exhibit all "good behavior™
(positive domain data, as specified by S) and no "bad
behavior” (negative data, i.e., the complementary domain
elements, relative to S) the software is then established as
correct.

Within our theoretical framework, successful software
design requires analysis of desired behavior for
tdentification of its essential components, and a means of
defining--often through constraints--the domain in which the
behavior lies. This knowledge must be represented and

48

SOFTWARE DESIGN AS A PROBLEM IN LEARNING THEORY
(A Research Overview)

N93-17509

conveyed to the design system: an algorithm or technique
for converting the knowledge into an implementation.
Should designed software be given, then the knowledge
might be conveyed to a testing/verification system to
determine correctness of the design. If incorrectness were
detected, errors could be removed and flaws repaired. The
theoretical system need only reiterate these steps until it
conclusively determined the software to be defect-free.

In each of these aspects of software design, our theory
assesses as successful a process that is proven to terminate
effectively (many would also demand efficiency),
determining correct software as its end-product. This
implies that all possible behavior must be conveyed finitely;
that algorithms and techniques for construction, testing or
verification of software operate in finite time and space; and
that each process concludes, producing a resultant finite
behavioral model.

If the above can be achieved it is a small step from
effective determination of correct software to its automated
determination or, design. We need only implement the
algorithm or technique for the software construction, testing
or verification, to create an automated "design system".
Then we need only define an appropriately characterizing
finite selection of behavioral data that the "system” may use
to automatically determine a correct software design. To do
so, we might adapt those techniques we devised to find
correct language models [5-8], so that instead they produce
software that behaves correctly, as specified.

Once a "design system" is implemented, it should be
possible for an application specialist to provide it with
domain-specific behavior examples. The system should then
observe and generalize, to automatically determine software
that realizes, or produces, the correct domain behavior in its
entirety. At first, this appears to work very well, in theory.

However, our theoretical perspective leads us to examine
software design problems somewhat more carefully, relative
to those algebraic, constrained problem domains within
which we obtained our initial learning theory results. We
next describe some of the relationships between our theory
and actual practice.

Results, "Results" and Conclusions

While there are, indeed, many similarities between
theoretical learning problems and those encountered in
practice, what we mainly find is that the constraints that
make problems solvable in theory do not, in practice,

generally apply.

We began this research overview by describing our
theoretician’s perspective, and our interest in adapting or
applying our specific learning theory results to the case of

(automated) software design. Within the framework of
theory, we noted that software design is "just like" any
other modelling process. E.g., if we can infer a grammar
generating' a language from suitable linguistic examples
then, surely, we can infer a program to produce that same
language, and be certain that it is correct.

All of the general results in learning theory that come
out of our specific CF language learning research were
made possible by appropriate knowledge representation, and
domain constraints. These enabled us to determine finite
realizability of the CF languages and, also, the conclusive
effective testability of potential language models. When
sufficiency of testing is established, and tests conclusively
detect no incorrectness, we establish correctness of a model.
We call this "verification by default™ [6-9].

In the case of language learning, we were able to
establish an inference/testing/verification paradigm [6-10]
that could result in automatic design of language models,
obtainable in a number of ways. We showed that if the

language has a model inferable from a finite sample of

positive domain data ("good behavior”) then a potential
model could be conclusively, effectively tested and thus
might be verified, by default, as correct. What we
established was that the domain sample of positive data
sufficient for inference defined a similar sample of positive
and negative data ("good and bad behavior") that was
sufficient for conclusive, effective tests. '

As Hamlet noted in [3] and in our discussions, and as
we have confirmed, these results are dependent on
characterizing all necessary behavioral information in a
finite way. (Our domain constraints gave us finite
realizability and decidable membership queries: we could
determine what was good behavior vs what was not [6-10]).

While in any typical software design environment our
domain constraints and conditions do not apply, we believe
our theoretical results compare, not unfavorably, with those
of other theoreticians. Cherniavsky [1] noted testing can do
more than detect errors in software, and we showed one can
test to show software is correct. Fetzer [2] claimed
verification was "impossible" and we showed inferable
models could be testable, and verified automatically, by
default. Weyuker [4] described inference-based testing to
establish an approximate method of determining equivalence
of a program and its specification. We concur and believe
our logical and algebraic approach, and some domain-
specific imposed constraints, will result in approximately
automated software design. This will improve upon
techniques currently in practice.

REFERENCES
[1] Chemiavsky, J. C., "Computer Systems as Scientific
Theories: A Popperian Approach To Testing",
Proc. of the Fifth Pacific Northwest Software
Quality Conf., Portland (Oct. 1987), pp. 297-308.

[2] Fetzer, J. H., "Program Verification: The Very
Idea", CACM, Vol. 31 (1988), pp. 1048-1063.

49

Fass

[3] Hamlet, R., "Special Section on Software Testing",
CACM, Vol. 31 (1988), pp. 662-667.
[4] Weyuker, E. J., "Assessing Test Data Adequacy

through Program Inference”, ACM Transactions on
Programming Languages and Systems, Vol. 5
(1983), pp. 641-653.

Relevant Publications and Presentations by the Author

[5] Fass, L. F., "Remarks on Inductive Inference and
Testing", presented at the Association for Symbolic
Logic 89-89 Annual Meeting, University of
California, Los Angeles, January 1989,
Abstracted in the J. Symbolic Logic, Vol. 355,
No. 1 (March, 1990), p. 374.

Fass, L. F., "A Common Basis for Inductive
Inference and Testing", Proc. of the Seventh
Pacific Northwest Software Quality Conf.,
Portland, (Sept. 1989), pp. 183-200.

Fass, L. F., "Acquiring Knowledge by Positive or
Negative Means", presented at the Association for
Symbolic Logic 90-91 Annual Meeting, Carnegie
Mellon University, January 1991. Abstracted in
the J. Symbolic Logic, Vol. 57, No. 1 (March
1992) pp. 356-357.

Fass, L. F., "Learning Through Inductive Inference
or Testing”, Proc. Florida Antificial Intelligence
Research Symposium, Conf. on Machine Learning,
Cocoa Beach, (April 1991), pp. 176-180.

Fass, L. F., "Inference, Testing and Verification”,
presented at Ninth International Congress on
Logic, Methodology and Philosophy of Science and
Logic Colloquium 91, Section on Foundations of
Logic, Mathematics and Computer Science,
Uppsala, Sweden, August 1991. Abstracted in
Congress Volume I, p. 193.

[10] Fass, L. F., "Perfect Learning (More or Less)", to be
presented at the 1992 Meeting of The Society For
exact Philosophy, University of Southwestern
Louisiana, Lafayette, May 1992. Extended version
in preparation.

(6]

(7]

(8]

(91

Leona F. Fass received a B.S. in Mathematics and Science
Education from Cornell University and an M.S.E. and Ph.D. in
Computer and Information Science from the University of
Pennsylvania. Prior to obtaining her Ph.D. she held research,
administrative and/or teaching positions at Penn and Temple
University. Since then she has been on the faculties of the
University of California, Georgetown University and the Naval
Postgraduate School. Her research primarily has focused on
language structure and processing; knowledge acquisition; and the
general interactions of logic, language and computation. She has
had particular interest in inductive inference processes, and
applications/adaptations of inference results to the practical
domain. She may be reached at

Mailing address: P.O. Box 2914

Carmel CA 93921

Sp)—6/

/2 (585 -

A

Gastner

NO3-17510 *

Towards Automation of User Interface Design

Rainer Gastner

Gerhard K. Kraetzschmar

Ernst Lutz

Research Group Knowledge Acquisition
Bavarian Research Center for Knowledge Based Systems (FORWISS)

Am Weichselgarten 7, 8500 Erlangen, Germany
e-mail: gastner@forwiss.uni-erlangen.de

Abstract

This paper suggests an approach to automatic soft-
ware design in the domain of graphical user interfaces.

_There are still some drawbacks in exsting UIMSs
_which basicly offer only quantitative layout specifica-
“tions via direct manipulation. Our approach suggests
_aconvenient way to get a default graphical user inter-
_face which may be customized and redesigned easily
_in further prototyping cycles.

1 Introduction

The automation of software design becomes more
powerful if the target systems generated are hmited
to a certain domain. The domain addressed in this
paper is the cdlass of graphical, highly interactive sys-
tems for accessing data of specified data structures
by end users. The focus of this paper i further re-
stricted. 3 1 of
design of a graphical user interface (GUI) for these
systems.

Building GUIs with GUI toolkits or user interface

management systems (UIMSs) is still a laborious,
time—consuming task even if it is supported by di-

rect manipulation facilities [6]. The basic problems

we identified are the following:

e The GUI designer has to decide which graphi-
cal element & appropriate for a desired interac-
tion, Le. given a data structure and data type
descriptions of the elements to be accessed and
a set of GUI elements the designer has to per-
form a mapping between the data structure and
the GUI elements.

o With direct manipulation an initial GUI may be
built but if the data structure or the data types
are changed the manual adaption of the GUI s

50

It concentrates on the automation of the

arduous. According to the changes of a data
structure the extent of the redesign task may
cause pretty much effort.

e Due to the lack of adopted GUI design guide-
lines, for similar data structures in different ap-
plications a different GUI may exist which is con-
tradictious to user interface consistency [10].

The approach introduced in this paper to address
these problems i the automatic generation of GUIs
from a high level specification. This generation i
performed by a knowledge-based meta-tool which s
used by a GUI designer. Questions which have to be
tackled include the following: (1) To what extent can
the designer be supported in the specification task?
(2) What kind of user interface should the meta-tool
have. (3) Which kind of knowledge is domain invari-
ant and which is application specific (and therefore
needs to be entered by the designer)? (4) Which set
of default design decisions are adequate?

Our approach to answer these questions is based
on the following idea: The designer specifies data

‘structures, data types and operations which the user

of the target system has to perform with an user—
friendly GUI. Corresponding GUI elements realizing

‘these operations are associated automatically and the

GUI i generated. The designer in turn refines the
GUI by mteractivly customizing the meta-tools asso-

cation and specifying gualitative layout constraints.

This approach facilitates users who have no lmowl-
edge about interface programming to construct a GUI
easily. Since the GUI of a meta-tool itself is in the
domain our approch i applicable for the design of
meta-tool's GUI as well.

In section 2 the addressed domain is introduced
in more detail. Section 3 discusses the problems of
configuration and generation of the target systems.
In section 4 our approach is described to solve these
problems. Section 5 compares our approach to re-
lated work and section 6 gives some concluding re-

marks and perspectives on future work.

2 Domain

The domain our meta—tool addresses is the class of
GUls that allow the access of specified data struc-
tures whose elements are characterized be specific
data types. The access comprises additon, deletion,
modification, selection and browsing of data struc-
tures and instances.

There exist rather different interpretations of what
the notion GUI should mean [6]). In our meta-tool the
GUI is built with a set of objects which have a de-
scription of a graphical presentation and methods to
handle the display presentation and the communica-
tion with the underlying window system. Examples
are buttons, settings or text fields. No other func-
tionality is added to the GUIL. The GUI objects are
described within an object-oriented class hierarchy
adopting inheritance. This is the common approach
how state—of-the-art GUI toolkits and UIMSs are re-
alized [6].

Our meta-tool produces specializations of classes

in a dass hierarchy provided by the GUI toolkit

LispView [1] and instantiation methods. LispView
provides an interfaces between Sun CommonLisp and
OpenWindows. The same structure is generated by
the GUI devolopment system OpenWindows Devel-
oper’s Guide [3). S

3 Problem Description

The design of a meta—tool for automating the design
of GUIs from specifications of data structures, data
types and operations raises some questions which
mainly influence the meta—tool design decisions:

e Which kind of knowledge has to be represented
to support the generation and which kind of
knowledge representation should be used?

e Which part of the knowledge is domain specific
but application invariant and which part i ap-
plication specific?

e What kind of default configuration decisions
makes sense? Can specific subdomains be identi-
fied for which specific configuration macros may
be used?

Gasther

e Since an iitially generated GUI in most cases

~ does not meet the end user’s whishes rapid proto-
typing facilities for iterative refinement and cus-
tomization i needed.

The specification facility must allow only con-
sistent specifications, ie. the designer’s specifi-
cation has to be syntactically and semantically
correct and the generator will produce a GUI
inside the domain. How can we support specifi-
cation consistency?

Thé following section discusses our approach to-
wards an automation of the GUI design addressing
the questions given above.

4 Approach

State—of-the-art UIMSs mainly deal with a user-
friendly composition of the GUI. From this point of
view only the syntactical aspects in building GUlIs
are addressed. But naturally GUIs are built for user
interactions which have certain semantics. For in-
stance, when the GUI designer using a direct ma-
nipulation UIMS selects a button and arranges it
in the target interface via mouse dragging he knows
the reason why he selects a button and which opera-
tion should be performed by dlicking on the button.
The GUI components are nothing else than graphi-

- cal presentations of abstract interactions. The map-

ping from the semantics of these interactions to cor-
responding GUI elements is the main task of an GUI
designer.

Qur approach for specifying GUls starts from a se-
mantic point of view and focuses on this mapping.
The GUI designer does not specify a composition of
the GUI components itself rather than the interac-
tions the GUI components shall be used for. That
means the focus of the specification is not how to
present interactions on the screen but what kind of
interactions shall be established. The interactions we
consider are the access operations specified in section
2. The mapping from the interaction specification
to the GUI components is done by the meta—tool
automatically. In a further step the designer may
customize the generated GUI either by changing the
mapping or specifying additional qualitative layout
constraints.

4.1 Configuration Process

In this section the configuration process i discussed.

o What is the most efficient way to enter geometric
layout specifications?

51

Figure 1 provides an overview of the configuration
steps. The actions the designer has to perform are

interaction spechlcaﬂon)

mapping speclification

Figurel: iterative GUI configuration process

specification and evaluation represented as round-
cornered boxes. The meta-tool activity (the genera-
tion of the GUI) is represented as a rectangular box.

The designer starts with the specification of the
desired interactions on data structures. Then an ii-
tial GUI is generated by the meta-tool using default
mapping and layout configurations stored in a knowl-
edge base (see section 4.2). The initial generation has
to be evaluated by the designer. Then one of the fol-
lowing four choices may be made:

1. The designer agrees with the generated GUI and
the configuration process is finished.

2. The designer specifies qualitative geometric lay-
out constraints to Tearrange the GUI compo-
nents on the screen.

3. The designer alters the mapping between the
specified interactions and the corresponding GUI
component. -

4. The designer manipulates the interaction speci-
fication, e.g. a new element ® added to a data
structure.

In case of a new or re-specification a new genera-
tion cycle starts. The order given above implies the
extent of the GUI redesign in a cycle after evalua-
tion. Choice 2 affects only the geometric position of
GUI elements, choice 3 affects the presentation of an
interaction, and choice 4 affects the interaction it-
self. Explorative rapid prototyping by iterating the

52

Gastner

configuration cycles is supported conveniently, since
the designer starts with a specification of abstract in-
teractions omitting GUI aspects in the initial phase.
In following cycles he can customize presentation as-
pects very quickly or redesign the interactions.

Since end users are supposed to design the GUls
the meta-tool must provide user-friendly graphical
interfaces itself. Tob support specification consistency,
the specification i3 menu—driven as far as possible.
Menus with appropriate selections may be offered
which is further discussed in section 4.2. An mterest-
ing issue is that the GUI of the meta-tool to enter the
specification is itself in the domain of the meta-tool.
Since the meta-tool allows to use the specification
languages directly without the corresponding GUI!,
the GUI for the meta—tool can be generated by the
meta-tool itself.

4.2 Conﬁgﬁration Knowledge and

Representation

This section deals with the knowledge needed to au-
tomate the GUI configuration. We distinguish two
classes of knowledge. Knowledge is needed to support
an efficient user-friendly specification and to gener-
ate a GUI with an minimal specification. This kind
of knowledge is application-invariant and refered as
domain-specific (in the GUI domain). On the cther
hand application-specific knowledge nmust be enterd
by the designer to build an GUI for a set of certain
interactions. The following two subsection discuss
these two knowledge classes.

4.2.1 Domain-specific knowledge

The following listed knowledge categories are stored
in the meta-tool’s knowledge base in order to sup-
port specification and generation. Note that this
is mainly knowledge about the possible application—
specific knowledge (e.g. possiple types of layout con-
straints) and therefore meta-knowledge.

¢ model of target architecture; the structure
of the code generated by our meta-tool is given
by the code structure the Developer’s Guide for
LispView interfaces [3] generates.

o a Lbrary of interaction types and data
types; interaction types include read and write
access to data and selection of data. Cur-
rently the lbrary of data types includes enu-
meration, character, real, integer, string, sym-
bol, and object-class.

1 Otherwise there would be meta-tool tower never ending.

e a library of GUI elements; this library is
given by the used GUI toolkit LispView 1}

o mapping of interaction specifications to
GUI elements; the mapping is stored as a ma-
trix in which for certain conditions made in a
data type specification a set of possible GUI
components is associated. The GUI component
gelected by default is marked (see also section
44.

e library of layout constraints; currently
we have realized 36 layout constraint types
which are hierarchically organized and offered in
menus. Furthermore, there exits a layout con-
gtraint construction facility for the meta-tool de-
signer to implement additional constraint types
based on a combination of types from a basic set.

¢ standard configurations; see section 4.4.

The domain-specific knowledge i stored in ASCII-
fles in special representation languages. The files
may either be edited directly by a text editor or be
generated from graphical specifications. An inter-
preter reads these files and maps the external rep-
resentation to internal objects.

4.2.2 Application—specific knowledge

As shown in figure 1 there are three specification pos-
abilities providing mput for the generator.

¢ interactions; the specification comprises the
type of operation and the data type to be ac-
cessed. The data type B specified separately.
Thus more than one interaction may access data
of the same data type in different ways. The ex-
ample below shows the declarative specification
generated from the graphical specification envi-
ronment. A manipulation interaction is specified
on data of an integer sot. The value range is re-
gtricted between 100 and 500, the slot is single—
valued, and the value rmst be unique and en-
tered.

(def-interaction
:id ’engine-number-manipulation
soperation ’'manipulation
:data-type ’engine-number-type)
(def-integer
:id ’engine-number-type
sequalorgreater 100
:lessorequal 500
mincerd 1
imaxcard 1
:unique T)

53

Gastner

The declarative specification languages may also
be used directly by the designer. Both mter-
actions and data types are offered in menus to
the designer. The menus are configured dy-
namically according to certain specification con-
straints; e.g. the following constraint may not be
violated in the example above: (lessorequal
mincard maxcard).

¢ association of interactions and GUI com-
ponents; if the designer does not agree with the
meta—tool’s association he may select another
association or more than one associations for a
given interaction from a menu. The menu items
consist of all GUI components which are accept-
able presentations for the interaction asserting
a consistent specification. If the designer asso-
ciates more than one GUI component to an in-
teraction, the interaction is presented in different
fashions in the GUIL For istance, the mterac-
tion in the example above may be presented as
numeric field or a slider. The meta-tool would
select the numeric field by default.

e layout constraints; the qualitative layout con-
straints may be specified using a declarative
specification language or a GUI generating sen-
tences of this language. The following example
demonstrates the power and user-friendlyness of
our layout mechanism:

Let By, By, ..., Bs be boxes which shall be arranged a8
follows: B, and B, shall be at the bottom o the layout

frame; B; shall be in the upper left corner o the layout
frame; and By shall be over B; and Bs . This is expressed

as follows:
(bottom-margin By Bs)
(upper-left-corner By)
(over By (B3 Bs))
Entering the first layout constraint via the specification
GUI B, and then Bs would by selected with the mouse an
the screen and then the constraint bottom-margin would
be sclected from the menu.

4.3 Layout computation

Each GUI element has a rectangular bounding-box
which provides the size for the layout generator. The
36 layout constraints are one-dimensional geometric
relationships between these boxes. N-ary relation-
ships are resolved into hinary ones which are con-
nected with a conjunction. The corners of the boxes
are represented by variables and the constraints are
always inequations of the following form:
o<z —% <B
These unequations can be solved using a longest-path

algorithm suggested in [11]. If there are inconsisten-
des In the specified constraint set our algorithm re-
tracts contradictious constraints. The boxes are ar-
ranged fulfilling the specified constraints and are po-
sitioned in the upper left corner of the layout frame.
In a second cycle overlapping boxes (this may oc-
cur if the constraint set is not restrictive enough)
are solve by adding additional contraints with dis-
junctions: A box B; and a box B; do not over-
lap if (beside By B;) V (beside B, B;) V (over
BiB;) V (over B;B;) holds. Since there may be
a huge number of layout configurations solving the
constraint set without overlapping the layout algo-
rithm gets a certain time for processing (e.g. three
seconds). The algorithm generates a set of solutions
and then selects the best solution when the time i
over. The selection criteria adopted currently i ei-
ther to minimize the area of the layout frame if the
size is not prespecified or to arrange the boxes with
equal distances between them in a fixed layout frame.

4.4 Standard Configurations

In order to give support in the specification of GUI
component associations to interactions and to select
default associations we (partly) represent kmowledge
found in the OPEN LOOK application style guide-
knes [2]. This knowledge is stored in a matrix in this
way that for each GUI component it is marked under
which conditions it is appropriate and if it should be
selected by default. Furthermore, OPEN LOOK pro-
vides a unique look—and-feel for all the target GUIs
and the GUI sepecification environment of our meta-
tool.

It is possible to preconfigure special editor types
which include a number of fixed interactions. For
instance, a login editor consists always of two iter-
actions, one for entering the user’s name and one for
entering the password. These two interactions are
preconfigured as a symbol and string manipulation
interaction. Furthermore, a layout frame with a fixed
size is configured, layout constraints are specified that
both GUI components (the meta-tool will associate
two text fields) should be centered and the text field
for the user’s name should be located over the field
for the password entry. The configuration i stored
as subclass of a preconfigured editor class. Other
specialized editors may be partly preconfigured and
layouted kke object editors or browsers. Preconfig-
ured GUI classes can be dynamically added by the
designer.

Adopting this configurartion library and the repre-
sented OPEN LOOK style guidelines we facilitate the

54

Gastner

generation of GUIs which have a common structure
and supports GUI consistency [10].

4.5 Implementation

Our meta-tool is implemented in Sun CommonLisp,
CLOS and LispView [1]. Object—oriented program-
ming is adopted basically. The target code is gener-
ated using templates which are expanded according
to the designer’s specification or standard configura-
tions. By replacing the templates it is possible to
generate other GUI target code as well.

5 Related Work

In the last decade human-computer interaction and
the user mterfaces have become an important re-
search field. UIMSs try to improve GUI development
and support mechanisms for GUI and dialogue spec-
ffication, representation and management [6] [9]. In
[7] several generations of UIMSs are identified. It
is predicted that future UIMSs will be knowledge—
based and generate a user interface automatically us-
ing the specification of the underlying application.
Our approach is a step in this direction. Currently
the interactions have still to be coded by a GUI de-
signer, but there should be a way to generate the
interaction specification from application programs
automatically as well.

A number of development methodologies have been
suggested for user interfaces. Most of them daim
explorative prototyping as our approach (see figure
1}, e.g. the star life cycle suggested in [7].

User interfaces may be specified language—based
with special user interface description languages,
graphical-based with direct manipulation facilities or
with automatic generation from interaction descrip-
tions [9). Since our meta-tool generates code which
can be manipulated by the Developer’s Guide [3}
our approach combines these three possibilities which
may be alternatively used.

Similar approches for automatic generation of
GUIs are used in the GADGETS system [8] and
the PRED systemn [13], but they lack qualitative
layout specifications. Automatic presentation sys-
tems for information like SAGE [12] also use meta-
information to select an adequate presentation style.
A smilar approach of default configurations of edi-
tors B applied in the meta-tool DOTS [4].

6 Concluding Remarks and
Future Work

We suggested an approach towards automation of
user interface design which starts from a semantic
point of view. The mitial specification only deals
with what the GUI is to be built for and not how. Fur-
ther prototyping cycles allow to customize the gen-
erated GUI qualitatively. Since the generated GUI
code i interpretable by the direct manipulation tool
Developer’s Guide [3], also quantitative layouting i
available and may be adopted alternativly. Since the
meta—tool’s GUI i in the meta-tool’s domain itself a
reflexive application of the meta-tool B possible.

In the project KME (Knowledge Maintenance
Environment)? we designed a meta-tool called KME
workbench [5] for generating maintenance compo-
nents for knowledge bases of expert systems. A main-
tenance component for updating objects of an object
oriented representation needs a GUI of the domain
described m this paper. Thus the GUI design meta-
tool is part of the KME workbench. We experienced
in this project that qualitative layout gpecifications
are very convenient and allow rapid explorative pro-
totyping. The GUI specification environment also al-
lows end users (e.g. lmowledge engineers with only
few programming experience) to build adequate GUls
easily. R

We acquired GUI design knowledge from the
OPEN LOOK GUI application style guidelines 2]
which is represented in a matrix representation and
allows the meta-tool to provide default configura-
tions. Furthermore, the explicit representation can
easily be changed and augmented.

Currently we work an the extension of default con-
figurations and GUI facilities. Special editor types
are identified in more specific application domains
and represented. We will evaluate how the GUI spec-
ification can be acquired automatically from the un-
derlying application. In the knowledge maintenance
context we will try to generated a default dialogue
control supported by a transaction management.

References

[1] Lisp View Programming Manual. Sun Microsys-
tems, Inc., 1989.

[2] OPEN LOOK Grophical User Interface Appli-
cation Style Guidelines. Sun Microsystems, Inc.,
Addison-Wesley, Reading, Massachusetts, 1990.

2KME was started as joint project between FORWISS and
the company BMW, Munich.

55

Gastner

[3] OpenWindows Developer’s Guide 1.1, User’s
Manual Sun Microsystems, Inc., 1990.

4] Henrik Eriksson. Meta—Tool Support for Knowl-
edge Acquisition. PhD thesis, Linkoeping Uni-
versity, Sweden, 1991.

[5] Rainer Gastner, Gerhard K. Kraetzschmar,
and FErnst Lutz. Kme-workbench: a meta-
tool for designing maintenance components for
knowledge based systems. paper submitted to
ECAI92, January 1992.

[6] H. Rex Hartson and Deborah Hix. Human-
computer nterface development: concepts and
systems for its management. ACM Computing
Surveys, 21(1):5-92, March 1989.

[7] H.R. Hartson and D. Hix. Toward empirically
derived methodologies and tools for human-
computer interface development. Iut. Journal of
Man-Machine Studies, 31(4):477-494, October
1989.

(8] Johannes L. Marais. The gadgets user interface
management system. Structured Programming,
12(2):75-89, 1991.

[0) Brad A. Myers. User-interface—tools: mtroduc-
tion and survey. IEEE Software, 15-23, January
1989.

[10] Jakob Nielsen, editor. Coordinating User Inter-
faces for Comsistency. Academic Press, London,
1989.

[11] Thomas Ottmann and Peter Widmayer. Al-
gorithmen und Datenstrukturen. Bl Wis-
senschaftsverlag, Mannheim, 1990.

[12] Steven F. Roth and Joe Mattis. Automat-

ing the presentation of information. In Sev-
enth IEEE Conference on Artificial Intelligence
Applications, pages 90-97, IEEE, IEEE Com-
puter Society Press, Washington, February, 24-
28 1991.

[13] S. Xie and P. H. Winne. Kamit: a knowl-
edge acquisition and maintenance mterface tool.
In M. H. Hamza, editor, Ezpert Systems The-
ory and Applications, pages 115-118, IASTED -
Acta Press, Anaheim, 1988.

=0

N

,&/
VYA 204

. Greenspan

N9S-17511 1

TOWARD DOMAIN-SPECIFIC DESIGN ENVIRONMENTS

Some Representation Ideas from the Telecommunications Domain

Sol Greenspan and Mark Feblowitz

GTE Laboratories Incorporated

Computer and Intelligent Systems Lab
40 Sylvan Road
Waltham, Massachusetts 02254
617-466-2962

greenspan@gte.com

Introduction

ACME! is an experimental environment for investigating
new approaches to modeling and analysis of system
requirements and designs. ACME is built on and extends
object-oriented conceptual modeling techniques and
knowledge representation and reasoning (KRR) tools
[Greenspan, et. al. 1991]. The most immediate intended use
for ACME is to help represent, understand, and
communicate system designs during the early stages of
system planning and requirements engineering.

While our research is ostensibly aimed at software
systems in general, we are particularly motivated to make
an impact in the telecommunications domain, especially in
the area referred to as Intelligent Networks [IEEE Comm.,
Dec. 1988], [IEEE Comm., Feb. 1992]. Intelligent
Network (IN) systems contain the software to provide
services to users of a telecommunications network (e.g.,
call processing services, information services, etc.) as well
as the software that provides the internal infrastructure for
providing the services (e.g., resource management, billing,
etc.). The software includes not only systems developed by
the network proprietors but also by a growing group of
independent service software providers.

The kind of software design problem we are interested in
is at a high level. It involves, among other things, deciding
where, in a distributed heterogeneous system, to locate
program logic, data, and other resources; conceptually
speaking, how to assign responsibilities and capabilities for
carrying out the services [Greenspan 1991). The situation is
often an evolving one: given an existing situation, new
requirements arise, such as the need for a new service or a
new capability, and the design problem is how to (re)design
the system to respond to the change.

1 ACME is an acronym for A Conceptual Modeling
Environment.

56

We are quite sure that IN systems analysts and designers
use a great deal of domain knowledge to make decisions
about how to design an IN system to meet new
requirements, and that their familiarity with the domain is a
dominant factor affecting the ultimate success of the system
design. The question is what that knowledge is and how it
can be represented in a domain-specific environment. In this
paper, we will briefly survey a few of these representation
ideas and how they contribute to the goal of domain-
specific software design. To the extent that these ideas are
cogent applications of general software engineering
principles, their essence should apply to other domains as
well.

Design from domain-specific building
blocks

In the telecommunications domain, there are several
mandates for having a stable set of building blocks from
which service software can be composed and rapidly
implemented. One impetus for building blocks is the need
for the industry to agree on a basic set of services and
capabilities that can be assumed as universal so that
services can interwork over company and national
boundaries. Another impetus is that the US federal
government seeks to promote fair competition by making
sure that a common set of building blocks is available to
all potential service developers/providers (not only to the
telecommunications network proprietors).

Although the forces that motivate the use of building
blocks may be largely nontechnical or quasi-technical, the
emphasis on a building block approach turns out to be a
valuable idea from a design point of view. It narrows the
search space for solution software because all solutions
must be composed from officially sanctioned building
blocks. Moreover, the resultant software can be more
correct, reliable, and so on, since building blocks are
subject to intense scrutiny and analysis. The building block
approach may appear to bring with it a loss of design

freedoms, since software is not allowed to decompose into
arbitrary software components, but the premise here is that
the gain in manageability of the design process is
worthwhile compensation for this

The essential ideas of a building block approach are as
follows. First, building blocks need to be (a) adequate to
compose the desired set of services, and (b) implemented
effectively in components of the systems that provide the
services. Secondly, building blocks need to be reliably,
efficiently, safely (etc.) implemented in the embedded
system base. Thirdly, the introduction of new building
blocks into the system fabric needs to be a controlled
process. Suppose an organization desires to offer a new
class of services that requires building blocks not already
available in the system; the newly required building blocks
need to be carefully identified, implemented, and tested, and
importantly and nontrivially, their interactions with the old
building blocks need to be taken into account.

It is important not to confuse the building block
approach with the general notion of reusable components.
The main idea of reuse, in its most general sense, is an
asset management idea, namely that prior investment in
software artifacts (code, specifications, or whatever) can be
capitalized on by reusing the artifacts. If an enterprise
restricts its software development to a specific domain, then
the existence of domain-specific reusable components may
enable one to achieve a higher degree of reuse. It has been
pointed out that domain analysis is a way to achieve this
(e.g., see [Arango & Prieto-Diaz, 1991]). However, this is
still not the idea of building blocks. Reusable components
refer to a library of assets that happen to be available to
designers, while building blocks refer to the set of software
components that have been designed into the system
infrastructure of the operational system,

We suspect that a building block approach is already
being used in other software domains and is worth making
an explicit principle for building domain-specific
environments. Further insights can be gained by drawing
parallels between software development and other forms of
manufacturing, where a set of building blocks (or "parts™)
are used to assemble products. Software is different in the
respect that an infinite variety of "parts" can be created,
which is both an opportunity and a management problem,

Domain-specific layering based on design
decisions

In the telecommunications domain, standards groups are
discussing a four-level IN conceptual mode! [Duran &
Visser 1992] that organizes Intelligent Network systems in
a useful way that might apply to other domains. While the
model itself is not complete in any sense and is continually
evolving, there are some ideas worth noting. We will not
give a literal description of the four-plane IN conceptual
model but rather give a rough summary and extract some of
the key ideas, using vocabulary convenient for the purposes
of this paper.

57

Greenspan

The layers/planes are roughly the following, from top to
bottom:

1) Services -- The software applications for the end
user.

2) Service Building Blocks -- As discussed above,

' software components that are used to compose
services and which are provided by the underlying
service-providing system/network.

3) Logical System Entities -- A set of standard
system components (called "functional entities"
by the standards groups), each of which offers
methods that implement the building blocks.

4) Physical System Entities -- A set of available
system components that can be developed or
procured and installed in the embedded base. They
are, conceptually, packages of logical system
entities. Vendors build these.

These planes are usefully chosen so that the relationships
between adjacent levels involve key types of design

. decisions. We already discussed the relationship between

Services (level 1) and Service Building Blocks (level 2).

The main rationale for level 3, Logical System Entities,
is that the industry needs to have a way of identifying,
specifying, and integrating systems in a vendor-independent
manner. Besides this motivation, level 3 also seems to be
the focal point for several design concerns. Level 3
identifies the perceived infrastructure of logical, service-
providing systems. Elaboration of this plane would describe
the perceived standard subsystems that comprise the
domain, such as making phone calls, billing, reporting
error messages, and so on. This level will be quite rich
with domain-specific content, representing, in effect, a
model of the service-providing enterprise (discussed further
below).

The relationship between Service Building Blocks and
Logical System Entities (i.e., between levels 2 and 3)
concern how capabilities are distributed among logical
system components. The relationship between Services
(level 1) and Logical System Entities (level 3) concemn
design decisions about what system entities are responsible

 for playing various roles in services.

The design decisions relating Logical and Physical
System Entities (levels 3 and 4) mostly concern designing
a physical system to meet nonfunctional requirements.
Logical systems will have associated nonfunctional
requirements (¢.g., concerning performance, reliability,
security, etc.) that must be met by the physical system
entities. The original sources of nonfunctional requirements
might actually be traceable to any of the levels. In any
particular domain, one must identify and specify the
nonfunctional properties that are most critical to success in
that domain. Arguably, the design knowledge about how
designers design physical systems to successfully meet the
nonfunctional properties seems one of the most difficult
subjects to formalize and automate.

This discussion of the four-plane model is intended to
point out some of the more generic (high-level) design
issues that might transfer across domains. The industry has

developed other, more detailed, layered models (such as the
seven-layer OSI architecture), which is more intensely
domain-specific to communications and less likely to
transfer,

Enterprise domain knowledge

The domain-specific design environment for systems in our
domain should be able to take advantage of the fact that all
of these systems ultimately are part of an enterprise that
provides services (either to end-users or to internal agents
responsible for tasks necessary for providing the service).
Given what is known about the nature of these systems,
there are a lot of assumptions and constraints that can be
built into the design environment.

For example, in the domain of telecommunications
services, there are customers who subscribe to services.
Services are tasks performed by service provider agents for
customers, usually involving sensing and changing the
state of objects in the customer environment and
performing communication acts across a network of
objects. It is further known that when a customer signs-up
for (or subscribes to) a service, some service-related objects
may need to be installed (e.g., a telephone at the customer
premises, a wire to the customer's residence, customer
information in a system database -- this is called
"provisioning™). Another part of the domain is that services
are performed in exchange for payment, which requires data
on the use of services by customers. These and other
aspects of the enterprise can be and should be part of a
domain specific environment for designing systems in that
domain,

One advantage to be gained by ACME from the presence
of enterprise domain knowledge is that model acquisition
can be supported by intelligent assistance, as in
[Reubenstein 1990]. For example, since the assistant
knows that provisioning is done when a new customer
signs up for a service, the system can know something
about what information needs to be specified (and can
partially fill it in).

Designing systems in terms of the enterprise dornain
knowledge is much easier than working at a general
systems level. General-purpose CASE environments,
which offer generic concepts such as objects, properties,
entities, processes, and so on, leave too large a semantic
gap between the subject matter and the representation
scheme. (On the other hand, we are in favor of building on
general-purpose modeling concepts; see [Greenspan, et. al.
1991].) In [Greenspan 1991], we actually propose the use
of an intermediate level of domain-specificity, called
Service-Oriented Systems (SOSs), that takes advantage of
some of the knowledge of service-providing systems in our
domain but still remains relatively generic.

Process domain knowledge

The above argument for using domain knowledge can be
extended to process knowledge, namely the process of
designing and developing the system. This is sometimes

58

Greenspan

called process knowledge or methodology modeling.
Process domain knowledge deals with how the
system/software artifacts are created and how they evolve.
Given that we know that the artifacts we are designing
belong 1o a specific domain (e.g., systems that provide IN
services), we can specialize our view of the process that
creates these artifacts. We are not creating just programs, or
subsystems -- we are creating services, service-providing
systems, and so on. Each of these concepts refers to a type
of artifact that needs to be designed, maintained, and
evolved. This process domain knowledge needs to be
represented in the environment, too.

A service-providing system in our domain is built (or
evolves) by specific actions such as Create Service, Install
Capability, and so on. These process operations can be
considered as services themselves, where the user is the
software designer/developer/maintainer rather than the usual
service customer. The ability to rapidly create new services
and alter the enterprise systems to provide the services is
critical and therefore comprise important (meta-)services in
themselves. :

Thus, we think that work on general models of software
process should be specialized to specific domains.

Summary

By exploring some of the manifestations of domain-
specificity in our domain of IN systems, we have found
some representation concepts that could have parallels in
other domains.

Note how some general SE principles were instantiated
but restricted to impose constraints that help gain control
over the domain.

Domain-specific building blocks are like reusable
components that result from domain analysis of the
services and service-providing systems in the domain.
However, they play a stronger role in constraining
the design. :

Domain-specific levels based on design decisions are
similar to levels of abstraction in software
engineering but there is a fixed number of levels. We
do not do an analysis/design to find out how many
levels a system will have.

We study system's' in the domain and then design a
fixed set of appropriate levels,

Enterprise domain knowledge is similar to knowledge
represented in generic environments, However, this
knowledge is built into the environment (at the meta-
level) o become part of a domain-specific framework.

Process domain knowledge specializes the vocabulary
and tools of the software process, so that domain
experts have a more direct understanding of the
process.

We close by mentioning a couple of issues that could be
discussed at the workshop:

How can we build on general-purpose/vanilla methods
and tools? Some fairly well-understood vanilla notions of
behavior, function, structure, etc. are converging in Al
Similarly, some forms of object models, dataflow
diagrams, state-transition, etc. from the CASE world are

becoming fairly standard. We need to understand now to

systematically construct domain-specific structures on top
of (or next to) these.

Are there some common subdomains whose subject
matter knowledge and design knowledge would be useful
across several different domains? Is anybody working on
representation and reasoning frameworks for important
domains and packaging them to be shared across domains?

What is a "good" high-level design? For example,

suppose high-level design includes assigning
responsibilities to agents and assigning ownership of
resources to agents. Then a "good" design might be one in
which all agents who have responsibility for an action own
the resources needed to carry out the action. However, this
might be too restrictive; a suitable design might be one in
which an agent responsible for an action either owns the
needed resources or has access (0 an agent who does. This
needs to be developed, and a framework for expressing
designs is needed. (If there is already some work on this, we
would like to become aware of it.)

59

Greenspan

References

Greenspan, S., M. Feblowitz, C. Shekaran, and J.
Tremlett, 1991, Addressing Requirements Issues Within a
Conceptual Modeling Environment. In Proceedings of the

~ International Workshop on Software Specification and

Design.

IEEE Communications Magazine, December, 1988. Issue
Featuring Building the Intelligent Network 26(12).

IEEE Communications Magazine, February 1992. Issue
Featuring Intelligent Networks 31(2).

Greenspan, S.1991. Analysis and Design of Composite
Service Systems. In Proceedings of AAAI Symposium on
Composite System Design.

Arango, G.; Prieto-Diaz, R., 1991. Introduction and
Overview: Domain Analysis Concepts and Research
Directions. In Prieto-Diaz, R., and Arango, G. (eds),
Domain Analysis and Software Systems Modeling, IEEE
Computer Society Press, 1991.

Duran, J.; Visser, J., 1992. International Standards for
Intelligent Networks. in [ITEEE Comm., Feb. 1992].

Reubenstein, H., 1990. Automated Acquisition of
Evolving Informal Descriptions. Ph. D. diss., M.L.T.
Technical Report 1205.

Hall

N9S-17512 +

Interactive Specification Acquisition via Scenarios:
A Proposal

24/ Robert J. Hall
AT&T Bell Laboratories

/36 T¥7 600 Mountain Ave.
’ Murray Hill, New Jersey 07974-0636
\R hall@allegra.att.com
&'\ Abstract system tests. There are, however, several major prob-

Some reactive systems are most naturally specified
by giving large collections of behavior scenarios.
These collections not only specify the behavior of
the system, but alsoc provide good test suites for
validating the implemented system. Due to the
complexity of the systems and the number of sce-
narios, however, it appears that automated assis-
tance is necessary to make this software develop-
ment process workable. ISAT is a proposed inter-
active system for supporting the acquisition and
maintenance of a formal system specification from
scenarios, as well as automatic synthesis of control
code and automated test generation. This paper
discusses the background, motivation, proposed
functions, and implementation status of I1SAT.
Note: This work is still in its early stages; com-
ments, criticisms, and literature pointers are not
only welcomed, but actively sought.

Background and Motivation

Some reactive systems, such as telephone switches and
other control systems, seem to be most naturally spec-
ified informally by giving a set of behavior scenarios,
consisting of interleaved sequences of applied stimuli
and verified system responses. Here is such a scenario
from the domain of telephone switches:

Assumptions: X, Y, and Z are idle stations.

Stimulus: Y activates Call Forwarding to Z.
Response: Y receives a confirmation tone.

Stimulus: Place a call from X to Y.
Response: Y receives a redirect notification.
Response: Z rings.

Stimulus: Z answers the call.
Response: X and Z are connected.

A comprehensive collection of these scenarios forms
both an informal system specification and a suite of

60

lems with incorporating this specification and testing
technique into a software development process:

Too many scenarios. For systems as complex as
modern phone switches, for example, there are too
many scenarios’ (typically many thousands) for the
entire suite to be manually executed even once per
software release (of which there may be many per
year). Furthermore, if bugs are found during an ex-
ecution of the scenarios, there is no time to go back
and revalidate each bug fix.

Ambiguity. Informal English descriptions can be am-
biguous. For example, the scenario above does not
specify the technique that Y must use to activate
Call Forwarding, but some such techniques may not
result in a confirmation tone. Thus, the outcome
of the test execution can be dependent on how the
ambiguity is resolved.

Inaccuracy. Informal English descriptions can be in-
correct. For example, the default administration of
stations dictates that they do not receive redirect no-
tifications unless this feature is explicitly activated.
Thus, the scenario above will fail, unless the tester
inserts the missing administration step.

Consistency Mainienance. It is difficult for humans
to maintain the mutual consistency of these scenario
sets as the system evolves over time, and the devel-
opers come and go. For example, an early scenario
may specify that a call to a busy station is denied,
with the caller receiving a busy signal; subsequently,
the system may be changed so that a later scenario
specifies that a call to a busy station is redirected to
an automated answering feature. This change causes
the first scenario to fail in system test.

Testing Pragmatics. In running a batch of system
tests sequentially, it is crucial that one test leave
the stations in a known “default” state, so that sub-
sequent tests’ initial assumptions are satisfied. The
scenario above violates this felicity condition by leav-
ing Call Forwarding activated and leaving X, Y, and
Z offhook. Thus, a batch test run can fail, even

though the software is really correct, simply because
of the ordering of the tests.

A First Try: KITSS

In the KITSs project (Nonnenmann and Eddy, 1992),!
the goal is to ameliorate these problems by translat-
ing from English into a formal test script language
which can be automatically executed on a system test
harness. KITSS operates in the domain of telephone
switch software, using a knowledge-based domain rea-
soner that both assists in the translation and audits the
scripts for consistency with a domain model. KITSS has
the potential to help with all of the problems noted
above: the translation process disambiguates the in-
put, using sophisticated reference resolution and prag-
matic reasoning, as well as a library of domain plans.
Next, the auditing phase maintains consistency with
the domain model and detects inconsistencies result-
ing from inaccurate scenarios. Finally, a planner uses
domain knowledge to repair incomplete plans and to
restore the system state at the ends of scenarios.

While it is beyond the scope of this paper to analyze
all of the successes and failures of the KITSs project,
I believe there are several lessons of the project with
direct impact on this proposal.

The reasoner’s model cannot be static. One basic
assumption of KITSS is that there is a highly com-
plete and virtually static domain model that can be
built once and changed only very slowly. If this were
true, then the effort of building this model could be
amortized over all applications of the system. Unfor-
tunately, change seems to be the rule rather than the
exception. In one case study of only the knowledge re-
quired to support the natural language semantics mod-
ule, I calculated that I had to add (or change) roughly
one knowledge unit? for every five sentences processed
successfully. This was measured in adding the knowl-
edge required to allow the system to correctly translate
all sentences of 38 scenarios (roughly 400 sentences).
Moreover, the frequency of knowledge addition was
not “converging” as the test coverage grew. The sim-
ple reason is that broader coverage means new things
to talk about and new ways of talking about things.
While this is hardly a definitive study, it is neverthe-
less suggestive that the domain model will constantly
undergo evolution, rather than remaining fixed.

Experience with other KITSS system modules, such
as the automated reasoner and the natural language
parser, indicates this phenomenon applies to them as

1KTTSS was reported on in last year’s Workshop (Non-
nenmann and Eddy, 1991) as well.

2A “knowledge unit” is a qualitative unit of effort de-
fined with respect to the knowledge formalisms employed
in the KITSS system. Its key properties are that it must
be added manually to the system by a relative expert in
the domain model, and each knowledge unit is of roughly
the same complexity to add (as measured by the time to
discover and add it).

61

Hall

well. Each time a system release includes a new fea-
ture, the reasoner’s domain model must be extensively
updated to allow for it. Even if no new feature is added
in a release, it is typical that some aspect of the spec-
ified behavior is either changed or simply better de-
fined. Commonly, unanticipated feature interactions
need to be defined or repaired; for example, it may be
necessary to change what happens if a Priority Call is
placed to a station with Call Forwarding active, since
such calls are not treated as normal calls. Of all KITss
modules, only the natural language parser (Jones and
Eisner, 1992) has addressed the issue of automating

the acquisition process.

The nalural language semantics problem is too hard.
At the start of the KITSS project, it was believed that
the natural language used in writing the scripts was
constrained enough to make possible automatic under-
standing. While this seems to be true for the syniactic
aspects of the English used (Jones and Eisner, 1992),
it appears that the semantic aspects are wildly uncon-
strained, with sentence styles varying from simple and
action-centered to elliptic, imprecise, inaccurate, sub-
junctive, and even metaphorical. An example is

Station B2 wants to talk privately with Station
B1, so presses the Consult button.

This is elliptic, in that the second half of the com-
pound sentence leaves out who is pressing the button.
It is metaphorical in that stations cannot really have
desires, and cannot really talk. To fully handle phe-
nomena such as metaphor and ellipsis, a system must
have a great deal of pragmatic, common sense knowl-
edge. It is well known that the problem of common
sense knowledge is extremely difficult. A result of this
observation is that we cannot depend on perfection in
the natural language component, so an interactive in-
terface is required that makes it possible for the user
to examine each translation and repair it as necessary.

The benefits of imperfect natural language processing
may not justify the knowledge and processing costs. In
another informal study, I used KITSS to translate 14
test cases. I did this in two ways: first, by having the
natural language component try to translate the sen-
tence and only repairing those sentences inaccurately
or not translated; and second, by simply manually typ-
ing the translation essentially directly into the logical
language used by the domain reasoner. The session
which used the natural language component required
47 minutes, while the session without only required 49
minutes. The key reasons for this, I believe, are that
(1) the translation is usually extremely easy to find
for someone familiar with the logical language, and (2)
the processing time in the domain reasoner was large
enough that there was plenty of time for the human
reasoner to think about the paraphrase in parallel with
this processing.

A New Approach: ISAT

The subject of this proposal is a new tool called 15AT,
for Interactive Specification Acquisition Tool. The
first point of departure with KITSS is to acknowledge
the model acquisition and maintenance problem as the
overriding problem. This has impact throughout the
tool’s design, starting with a different role for the user.
Whereas in KITss the user’s task is knowledge-assisted
translation of scenarios, given a static system and do-
main model, the ISAT user’s task is to synthesize a sys-
tem model (specification) which is consistent with the
scenarios. Translation of the scenarios into automated
test scripts is a by-product of this process, rather than
the primary goal. Thus, whereas the users of KITSs are
system testers, the users of ISAT are the developers and
designers of the system. Of course, the testers still ben-
efit from fully automated and maintainable test scripts.

Note that there is a subtle difference between KITss’s
domain model and 1SAT’s system model. The domain
model in KITSS has evolved into a collection of con-
straints, plans, and inference rules. It is not, however,
a predictive model of the switch, as this would require
completeness. Such completeness is impossible to at-
tain in a system with a fixed domain model. Thus,
KITSS is capable only of checking certain aspects of
scenario consistency, and uses plan recognition to fill
in missing scenario steps.

By contrast, ISAT’s system model is assumed to be
predictive. It must be complete enough to predict all
observations in all scenarios. Whenever there is an
unpredicted observation or an inconsistency, the user
must fix either the scenario or the model. By design-
ing I1SAT for maintainability, however, this is accept-
able. Note that I will use the terms “specification” and
“system model” interchangeably throughout to denote
a predictive model of the stimulus/response behavior
of the target software.

One might wonder why it should be possible to ac-
quire such a specification from the user, since tradi-
tionally software specifications have been extremely
difficult to produce. There are two answers to this
question. First, the goal is to acquire a behavioral, in-
put/output specification of the system similar to what
one might find in a user’s manual for the target sys-
tem. Since, for example, there are those who claim to
understand how to use their phones, we might expect
this level of specification to be much simpler than a
full specification of the switch software itself. A full
specification would include far more detail than is nor-
mally seen by a user, such as constraints imposed by
hardware resources. Second, in the ISAT project I am
not requiring a complete and accurate specification up
front. Instead, the specification is fundamentally an
evolving entity which undergoes continuous, but con-
trolled, change. By designing for maintainability, and
supporting automatic code synthesis (see below), ISAT
sidesteps the difficulties of full specification.

In view of the observations above about natural lan-

62

Hall

guage processing, ISAT will not accept English input;
rather, it will accept formal input only. Thus, each
scenario must be manually transcribed into a formal
stimulus/response language. Furthermore, the system
model itself will be expressed in a formal rule language
with a clear semantics.

[believe that this problem redefinition, even though
it places a larger burden on the user, allows much
more leverage on the testing and maintenance prob-
lems. The next section will discuss in detail the ben-
efits which I believe should accrue from this change.
Broadly speaking, 1SAT (like KITSS) is an apprentice
system, i.e. one which assists engineers in doing a task
by automating the routine subtasks and tracking as
many details as possible. Examples of this paradigm in
the literature abound: the LEAP system (Mitchell, et
al, 1985) was an apprentice VLSI design assistant, and
the MIT Programmer’s Apprentice Project (Rich and
Waters, 1990) supported research on many different
apprentice systems, such as KBEmacs, the Design Ap-
prentice, and the Requirements Apprentice (Reuben-
stein, 1990).

Proposed Tool Functions

Through an extended interactive dialog, augmented by
batch-mode processing of various subtasks, the system
supports the user in constructing a predictive model
of target system behavior that is complete enough to
predict every response in every test scenario. With
such a model, several important software development
tasks can be carried out. The primary functions of the
proposed ISAT apprentice system are given here and
discussed in more detail below.

o Scenario checking. Verify that each response in a
given scenario is predicted by the model, given the
assumptions and stimuli in the scenario.

o Model Mainienance. Control and analyze a user’s
changes to the system model, performing impact
analysis and regression testing to ensure that such
changes are consistent with all known scenarios.
Provide diagnostics and explanations when conflicts
arise.

e Automatic Programming. At any time when the sys-
tem model is known to be consistent with the scenar-
ios, compile the model into an efficiently executable
control module for the target system. .

o Generation of Automated Test Scripts. Put out
scripts in the low-level executable form necessary for
execution on a test harness. This includes filling in
missing steps necessary to leaving the system in the
default state, error recovery, etc. (This is essentially
the KITSs task.)

o Test Suite Enhancement. Fill in individual scenarios
with additional response verifications that were left
out of the input scripts, based on the predictions
of the model. Possibly suggest additional scenarios

for testing known gaps in scenario coverage, such as
model rules that are never fired or state variables
that never change.

Scenario Checking

The fundamental mode of interaction in acquiring the
model is for the user to present a scenario to the sys-
tem, which the system then “simulates” using its cur-
rent system model (represented in a simple pattern-
action rule form based on a simple notion of state).
The system then informs the user whether the behav-
jor specified by the scenario is successfully predicted by
the system’s model. Exceptional conditions are raised
when any of the following conditions arise:

e a response specified by the user contradicts some de-
duced consequence of the system’s model,

e a response specified by the user, though not contra-
dictory, fails to be predicted by the system’s model
(indicating possible incompleteness of the model),

e astimulus applied by the user is deduced to be illegal
in the system’s current state

e the system model reaches an inconsistent internal
state (which may not be observable as a system re-
sponse in the scenario).

Whenever such an exception arises, it could be due
either to an incomplete or inaccurate system model
held by the system, or to an incomplete or inaccurate
scenario presented by the user. Thus, the first impor-
tant automated facility of the ISAT system is the ability
to fully ezplain any deduced state condition. This ex-
planation is presented in terms of the pattern-action
rules constituting the system’s model and the scenario
stimuli and configurational information given by the
user. The user can then use this explanation to isolate
the difficulty, resulting in either changing the scenario
definition or fixing the model.)

Note that this explanation facility hinges on a key
property of reactive system control software: each
event results in a relatively small number of internal
state changes. This allows us to construct a fully ex-
plained and complete execution trace of the system
model on a given scenario input. This property does
not hold true of other types of software, such as data
processing software, compilers, etc. They typically
have enormous traces, involving millions of internal
states. It is practically impossible to build and query
a complete trace of such a system.

Another function potentially performed by the
checker is to compare the final state of a scenario with
the assumed default initial state of all scenarios. ISAT
can then point out when the state is left in a non-
default state, and even assist in planning some steps
for correcting it.

Model Maintenance

If the difficulty lies in the system’s model, the user
must decide how to repair the model. Usually, for any

63

Hall

given model repair, the biggest difficulty lies in un-
derstanding how the proposed change will effect the
correctness of the system on other scenarios. That is,
does this fix break anything that worked before?

In ISAT, this is not a problem because of our insis-
tence on complete explainability. In principle, each sce-
nario can be re-checked; any that no longer complete
successfully provide full explanations of why they fail,
allowing the user to quickly locate the unintended in-
teractions. In practice, we can speed up this process by
orders of magnitude for small model changes by exam-
ining the justification structures built up in originally
checking them; a small model change will not effect
many scenarios, so this checking can quickly determine
that the original structure still applies (this is analo-
gous to the difference between deriving a proof and
checking an existing proof). In my experiments with
the current prototype of ISAT, this simplified impact
analysis is roughly 40 times faster (for localized model
changes) than a full recheck of all scenarios would be.

The above technique applies to changes in model
rules; I anticipate there will be analogous protocols
for dealing with other types of model changes, such
as changing the types of model functions, adding and
deleting state variables, etc.

Automatic Programming

Since the system model is predictive, it can serve as
a controller for the target system, assuming the hard-
ware and low-level primitives support the stimulus and
response primitives directly. Specifically, I assume that
the system substrate can be coded to supply typed
interrupts when sensors indicate the presence of real
stimuli (such as when a button is pressed, or a phone
goes offhook). I also assume that the substrate sup-
ports actuators for each of the observable signals de-
duced by the system model (such as a status lamp
lighting or a tone being emitted). Given this substrate,
which may or may not exist in current day designs, we
can synthesize a controller by essentially treating the
sensor interrupts as stimulus statements in a scenario.
Then, when the system model computes the next ob-
servable system state, the changed observables are sent
as updates to the actuators.

The only difficulty with this direct approach is the
efficiency of the controller: even if there are no hard
real time constraints (which there may be), large sys-
tems like phone switches must handle many interrupts
per second to be usable. Fortunately, I believe it should
be quite possible to compile the system’s model into an
extremely efficient program. The run-time system need
not track rule justifications, and rule chains can be pre-
computed at compile time. Thus, the event handlers
for the system at run-time needn’t do term matching,
justification construction, or consistency computation.

Note that there are several benefits to this automatic
programming approach.

e Initial Coding is fast. This is because the control

part is generated from the system model automati-
cally. Because of the extremely simple model of com-
putation in the system and the limited domain, I hy-
pothesize that this automatic programming problem
can be fully automated.

o Subsequent releases are relatively painless. In many
domains, new system releases tend to involve mostly
changes to the high-level control, rather than the
sensor-actuator substrate. Thus, future releases can
be produced by first getting them correctly reflected
in the 1SAT system model and then automatically
regenerating the controller, leaving the system sub-
strate the same.

e Bug fizing lurnaround is fast. Another benefit lies in
debugging the actual system. If a user calls up with
a bug report, it can be simulated in 1SAT’s model, to
see if it is replicated there. If it is not, then the bug
is localized to the sensor-actuator substrate. More
likely, however, is that the bug is manifested in the
model, where the full explanation facilities of ISAT al-
low quick localization, fixing, and regression check-
ing. This can potentially lead to extremely rapid
turnaround for bug fixing. Note that quick bug lo-
calization based on querying scenario traces depends
on the special properties assumed of this class of re-
active control systems.

Even though I believe the automatic programming
task in this domain is tractable, challenges remain. For
example, compiling arbitrary rule patterns into effi-
cient code is still challenging. For example, when a
rule’s condition contains the pattern (connected X ?yJ,
the naive compilation performs a linear search among
all stations to see which are connected to B1l. It would
be desirable to compile this into a hash-table based
representation of the set of connected stations to X.
There is much existing research on this and related
compilation problems, however.

Generation of Automated Scripts

The challenge here is to translate from the high-level
stimulus and response statements appearing in the sce-
narios into the particular low-level language used by
the test harness. This will involve two steps. First,
each high-level step, such as “Activate Call Forwarding
from Station X to Station Y” must have one or more
compound action methods defined telling the system
how to translate it into a sequence of primitive stim-
uli understood by the system. I believe this is prop-
erly part of the system model acquired from the user.
The final step is to do a more-or-less standard compi-
lation step from the event primitives in the model into
the language of the test harness. The event primitives
should be designed to make this relatively easy.

Note that the checking phase of 1SAT is presumed to
have already made sure that each scenario leaves the
system in a known default state.

64

Hall

Test Suite Enhancement

There are two different types of enhancement that 1SAT
can easily perform: first, each single scenario can be
“filled out” with missing observations, to increase con-
fidence in the proper working of the switch. It can do
this based on the predictions of its model. For example,
it might insert checks for dial tone after each off-hook
operation. Of course, we must be careful not to bog
down the scenarios in endless checking of details, since
there are so many to execute on the test harness.

The second type of enhancement is to the coverage
of the suite as a whole. If a model rule is never fired in
any scenario, this probably indicates that one or more
scenarios should be created to exercise it. (Otherwise,
why would the user put it in?) Similarly, if a certain
type of state variable either always has the same value
or is never determined in all scenarios, scenarios should
be created to see if it is possible to cause a change. At
the very least, these types of conditions can be brought
to the user’s attention. More ambitiously, the system
can do goal-based planning to try to bring about the
conditions necessary to firing the rule or changing the
variable’s value.

Implementation Strategies

To date, I have implemented an initial prototype
demonstrating some of ISAT’s capabilities. In particu-
lar, the system can check scenarios and perform impact
analysis for individual rule changes. It can also emit
low-level streams of stimulus/response statements as
the first step in producing automated scripts. I have
used ISAT to build several different models of different
combinations of telephone switch features. The most
complex is a model that layers Priority Calling and
Call Forwarding on top of Plain Old Telephone Ser-
vice for multiple call-appearance phone stations. Since
this model acquisition was done in parallel with ISAT
implementation, it is premature to attempt to gauge
how well I was supported in this by ISAT. I have used
the model to successfully check 17 scenarios taken from
actual pre-existing AT&T system test documents.

The formalism I've adopted is based on simple
pattern-action rules used to form partial descriptions
of state transitions.

if (CALL-STATE (CA ?X 7N)) = :IDLE, and
(SELECTED-CA 7X) = (CA ?X ?N), and
(HODK! 7X :0FF) = :TRUE,
then (CALL-STATE (CA ?X ?N)) = :PRE-DIALING

This rule says that if call appearance number 7N at
station ?X is idle and is the selected appearance of
?X and ?X goes offhook, then in the next system
state the CALL-STATE of that appearance is “:PRE-
DIALING”. There are two types of model rules: state
change rules, like the above, are used in a “forward”
manner; that is, they are executed to quiescence after
each stimulus event is applied. Demand rules, like

if (CALL-STATE (CA 7X ?N)) = :DENIED, and
(SELECTED-CA 7X) = (CA 7X 7N), and
(ONHOOK? ?X) = :FALSE

then (RECEIVED-TOKE 7X) = :BUSY-TONE
are only used when a response event asks about one or
more of the predicates in the rule’s conclusion. Thus,
the above rule will only be used when the scenario
executes an observation_of the received-tone of some
station. Demand rules 3re pecessary so that the sys-
tem need not forward chain to deduce a large number
of observations that won’t be used in a given state.
For example, there are quadratically many potential
connections between stations, but by making the ob-
servable connected predicate only deduced on demand,
the model can execute in linear time.

Note that, unlike state rules, the demand rules do
not chain arbitrarily. They are used only one level
deep. This makes the system’s efficiency much more
predictable, and I have found it no significant restric-
tion in expressive power.

ISAT deals with the classical Al frame problem (how
to consistently carry forward unchanged facts when a
small aspect of the state changes) by distinguishing
different declared ontological statuses of terms. Any
term consisting of an application of a function declared
:PERSISTENT by the user has its old value brought for-
ward, unless an explicit contradiction is deduced by
a rule firing. Any non-persistent terms must be red-
educed in each state. Most such terms are deduced
by demand rules, though, so they do not incur a large
unnecessary cost.

Because of the extremely simple formalism and se-
mantics, the current prototype is able to support sev-
eral useful explanation functions. Of course, it can
answer (WHY? <fact> <state>) by simply giving the ex-
plicitly maintained justification in terms of rule appli-
cations, external inputs, etc. Another extremely use-
ful capability is the ability to answer (WHY-NOT? <fact>
<state>). Obviously, in its most general form, this
is too open-ended to be meaningful; but in the con-
text of ISAT this is interpreted to mean the following.
First, tell me any contradictory facts (optionally ex-
plaining them); then, tell me all the rules that could
have deduced the fact and tell me why they didn’t
fire (by telling me which of their conditions are not
satisfied). This has been very useful in building the
models I have already built. An analogous facility is
(METHODS? <action statement> <state>), which givesa
description of which compound action methods apply
in the state for the given compound action application,
and which fail to apply and why.

Summary

The proposed tool, ISAT, is a software development tool
environment for reactive control systems, such as tele-
phone switch software. It is motivated by, and builds
on lessons learned from, the KI1TSs project. By redefin-
ing the problem and meeting the model acquisition

65

Hall

problem head-on, I believe many major benefits are
achievable, such as specification acquisition and main-
tenance, automatic synthesis of control systems, test
enhancement, and automated script compilation. An
initial prototype of ISAT is currently under construc-

~ tion, with several of the main functions implemented.

It has been tested on several scenarios from a “real
world” application.

Acknowledgements

This proposal has grown out of work on the KITSS
project at AT&T Bell Labs. I have learned a great deal
from this project and the people involved with it: Van
Kelly, Mark Jones, John Eddy, and Uwe Nonnenmann.
Some of the ideas and opinions expressed in this paper
are clearly derived from the conceptual foundation of
KITSS. However, I make no claim as to whether the
individual project members (except me) agree with the
specific opinions expressed here.

References

Jones, M.A.; and Eisner, J.M. 1992. A probabilistic
parser applied to software testing documents. In Pro-
ceedings of the Tenth National Conference on Artificial
Intelligence. Cambridge, MA: MIT Press.

Mitchell, T.; Mahadevan, S.; and Steinberg, L. 1985.
LEAP: A learning apprentice for VLSI Design, In Pro-
ceedings of the Ninth International Joint Conference
on Artificial Intelligence, vol 1, pp 573-580. Los Altos,
CA: Morgan Kaufmann.

Nonnenmann, U.; and Eddy, J.K. 1992. KITSS - A
functional software testing system using a hybrid do-
main model. In Proceedings of the Eighth IEEE Con-
ference on Artificial Intelligence Applications. Mon-
tery, CA: IEEE.

Nonnenmann, U.; and Eddy, J.K. 1991. KITSS - To-
ward software design and testing integration. In Pro-
ceedings of the AAAI-91 workshop: Automating Soft-
ware Design: Interactive Design. AAAIL

Reubenstein, H. 1990. Automated Acquisilion of
Evolving Informal Descriptions, Technical Report, Al-
TR-1205. M.L.T. Artificial Intelligence Laboratory.

Rich, C.; and Waters, R. 1990. The Programmer’s
Apprentice, New York, NY: ACM Press.

Hayes-Roth

DISTRIBUTED INTELLIGENT CONTROL AND MANAGEMENT
(DICAM) APPLICATIONS
AND SUPPORT FOR SEMI-AUTOMATED DEVELOPMENT!

Syy-/
/265%T

Frederick Hayes-Roth, Lee D. Erman, Allan Terry,_

Teknowledge Federal Systems, N 9 3 - 1 7 5 1 3 a4

Cimflex Teknowledge Corp.

& Barbara Hayes-Roth
Knowledge Systems Laboratory

(le i Stanford University

Introduction

We have recently begun a 4-year effort to develop a new
“technology foundation and associated methodology for the
‘rapid development of high-performance intelligent
“ controllers. Our objective in this work is to enable system

developers to create effective real-time systems for control
of multipie, coordinated entities in much less time than is
currently required. Our technical strategy for achieving this
objective is like that in other domain-specific software
efforts: analyze the domain and task underlying effective
performance, construct parametric or model-based generic
components and overall solutions to the task, and provide
excellent means for specifying, selecting, tailoring or
automatically generating the solution elements particularly
appropriate for the problem at hand.

For intelligent control tasks, we believe that the domain-
- specific software approach holds the promise of providing

great leverage on the software development task whether
software generation is manual, automated, or semi-
automated. In our view, complex and mission critical
systems generally must have a human analyst in the loop
both to specify desired behavior and to validate tested
designs. Until this process is made extremely regular and
routine, the human will necessarily be involved in nearly
every step of the software development process as well.
Given the lack of regularity and proven automatic
generation means, the human's ability to validate overall
designs requires insight into and hands-on experience with
the details of the software design and generation.
Nevertheless, we believe that significant progress on the
"time to market" for such systems requires much of the
same supporting infrastructure, regardless of the extent to
which productivity enhancements are achieved through
automation or merely improved methodology. This
position is similar to that held by experts in many fields
who state that one should not automate poorly characterized,
highly variable processes. First, we must attempt to
regularize the process, support it with an effective and
efficient methodology, and then automate those portions of
the process which give the greatest return on investment.

= In this paper, we first present our specific domain focus,
‘briefly describe the methodology and environment we are

1 This work reported here has been supported in part by
DARPA and the US Army ARDEC through contract
number DAAA21-92-C-0028. The opinions expressed here
are those of the authors, not the sponsors.

66

" developing to provide a more regular approach to software

development, and then later describe the issues this raises

_ for the research community and this specific workshop.

Project Objectives and General Approach

Our project aims to develop a new technology
foundation and associated methodology for the rapid
development of high-performance intelligent controllers.
These controllers will be employed in distributed intelligent
control and management (DICAM) applications. Examples
of such applications include intelligent highway systems,
military command and control systems, and factory floor
control systems. Our near-term domain of application is
vehicle management systems, where one or more controllers
may be employed to control a single vehicle, and these
composite controller/vehicles are further aggregated and
organized into higher-levels of control and capability. In a
military context, for example, a single controller may be
used for each subsystem within a tank, each tank system
may be controlled by collectively organizing its
subsystems, the overall tank may be controlied by another
controller that coordinates the tank system controllers,
several tanks may combine to form a platoon with its own
control level, one or more platoons may form a battalion,
and so on.

Our research project is one of several sponsored by
DARPA (the Defense Advanced Research Projects Agency
of the US Defense Department) and the US Army to
advance the technology for domain-specific software
architecture (DSSA). Our project for the Army address the
specific vehicle management task of a howitzer, a tank-like
vehicle that aims at more distant targets. The project has
four principal focus elements. First, we are formulating a
reference architecture for intelligent control. Second, we are
supporting the construction of applications in a
development workspace in which system requirements are
ultimately satisfied by choosing design components that
specialize and particularize components of the generic
reference architecture. Many of the specialized modules and
particular data used to instantiate a design are taken from a
a rich array of development tools, which incorporate
numerous techniques from both software engineering (e.g.,
control law specifiers, code generators, protocols,
compilers, debuggers) and knowledge engineering (e.g.,
domain modeler, requirements manager, and various
knowledge-based design assistants).

The DICAM Framework and
Supporting Technology

We are developing DICAM simultaneously as a "model”
or framework for understanding control problems and as an
architecture and related environment for building controllers.
There are many reasons why we seek to formulate such a
unifying framework. Foremost among these is our belief
that the difficult, time-consuming and often unsatisfactory

process of controller development would benefit from a

more "standard" but flexible approach. Our DICAM

framework provides a generic but customizable model of _

controllers that seems to unify a variety of views and
experiences in the control, software and knowledge
engineering disciplines.

DICAM is closely related to the NASA/NBS reference
model for telerobot control systems (NASREM) [Albus,
McCain, & Lumia, 1989]. The reference architecture
includes two principal components in any distributed

intelligent control and management application. First, an

information base and world model (IB/fWM) is a
"conceptually centralized” database/knowledge base that
represents the state of the world. The second principal
component of the DICAM reference architecture is a
collection of semi-autonomous interconnected controllers.
These controllers are differentiated in terms of the scope of
behavior they address, the resources they control, and the
time frame spanned by their decisions.

Each controller is actually divided into two separate but
interrelated components called the domain controller (DC)
and the meta-controller (MC). The DC contains several
modular functions and prescribes how they interact using
dataflow conventions. The functions include sensing, input
filtering, situation assessment, planning, plan assumption
analysis, execution and effector activation. Each controller
has its own local world module which is a cached view of
the global state represented by the IB/WM. Several
messages flow into and out of the DC. The inputs include
messages received from a superior controller specifying
goals for the controller, messages from sibling controllers
at the same level (such as another vehicle in the same
group), and messages from subordinates, typically reporting
on the outcomes of their efforts. Outputs include subgoals
assigned to subordinates for delegated execution as well as
messages to siblings, for example, to report on current plan
execution objectives or status or to request operating
resources.

Although this general DC structure has proved effective
in applications such as the Pilots Associate [Smith &
Broadwell, 1989; Lark et al., 1990] and robotics [Becker,
1989], dataflow programs in general exploit only weak
knowledge about when to execute functions. The general
rule is to compute any function when all of its inputs are
available. However, there are often too many possible
instantiations to execute all simultaneously, or even with a
small delay. Thus, in situations where more knowledge is
required to achieve excellent results with scarce resources, a
metal-level of control is required [Garvey & Hayes-Roth,
1989; Hayes-Roth, 1985; Hayes-Roth, 1990]. Our meta-
controller is based on the knowledge-based scheduler of the
BB1 blackboard system. This controller utilizes three basic

67

Hayes-Roth

functions to determine on a cyclical basis which pending
action is best to execute next: an agenda manager 1o store
and evaluate pending actions; a scheduler to determine the
next action based on the degree of fit between goals of a
control plan and actions pending on the agenda; and, finally,
an executor gives control to the selected actions.

Our basic methodology for development of DICAM
applications consists of a blackboard-like environment
where the "blackboard" is a development workspace and the
"knowledge sources" are system developers augmented by a
wide variety of computer-based tools, including some expert
systems that are capable of autonomous development

“activity. We are assembling an Application Development

Support Environment (ADSE) for DICAM applications (see
Figure 1) to provide these capabilities.

The development workspace contains a representation of
the emerging system being developed incrementally over
time. Its elements represent decisions or specifications
linked into a "web" of mutually supporting decisions that
both specify the system design and justify it. We have
combined three lines of research in formulating this
development workspace. First, we have drawn on the

lack n ni ing [Erman et al.,
1980; Hayes-Roth & Hayes-Roth, 1979; B. Hayes-Roth ef
al., 1986] as an organizing methodology for incremental
design and development processes. Second, we have adopted
the emphasis of the domain analysis and domain-specific
architecture approach to software specification, reuse and
rapid development [Prieto-Diaz & Arango, 1991]. Lastly,
we have adopted and generalized the approach of module-
oriented programming from our previous research on ABE
[Erman, Lark & Hayes-Roth, 1988; F. Hayes-Roth et al.,
1989; F. Hayes-Roth et al., 1991). This includes the ideas
of recursive modular composition, distributed control
through message passing using ADTs, system construction
through module composition, and system realization by
deferred binding of processors to modules.

Specifically, the workspace provides a multi-faceted,
multi-level representation of DICAM software applications.
It provides means for describing the domain model, i.e., the
general characteristics of the task and environment in which
the vehicle or machinery will operate. The general domain
model is then augmented with specialized information about
the specific application being built, such as how many
vehicles, the distances to be traveled, the specific threats and
so forth that the application will address. ,

At a lower (more concrete) level, the workspace provides
means for representing the functional components and the
physical resources that make up the controlled system, and
it describes how the functional components are composed
and how they are implemented using specific processors,
communication capabilities or other machinery.

In addition, the workspace provides means for
representing the status of the software development process,
including the history of activities and characteristics of the
current overall development.

As is typical of blackboard systems, the workspace
provides means of representing decisions and using state
change to trigger the invocation of appropriate tools.
Decisions in this workspace range from abstract
characterizations of components such as requirements or

Hayes-Roth

Development Workspace

Domain
Model:
Applicatio
Process Plan Model:
Dy x TDx -> Pz
Compogition:

Repository
cooooo

pooooo
onooogoQ

=

ooooon
oooBon
— Tool Activators
oaQ
554
ok
:./

suaNalE|e

Services,
Resources: |~ E}

(Tool Registry

oDooono

Tools (compilers,
expert system shells,
simulators, etc.)

(Knowledige-based
Design Assistants

!

L

Figure 1. The Application Development Support Environment.

goals to particular specifications, including detailed
functional characterization or specific software or hardware
packages that realize the required capability. We have not
yet settled upon final or formal representation sublanguages
for each level, but are considering various alternatives that
are being suggested in other groups' efforts to conceive
potentially standardizable descriptions of modules and
module interfaces (e.g., the DARPA module interconnect
formalism, the DoD STARS repositories, etc.). Regardless
of which specific formalism is used, the description of
modules must include input/output datatypes, function
characterization, implementation requirements, domain
assumptions, and performance metrics. When making a
design decision, the developer specifies some or all of these
attributes along with his or her name and some rationale.
As in all blackboard systems, decisions are changeable, and
multiple competing decisions may coexist. Ultimately,
those decisions that form the best coherent "web" win:
these decisions constitute the overall system specification,
from requirements to implementation, which particularizes
the domain and application models.

Other features of the ADSE that we are developing and
assembling include: A To-Do List keeps an agenda of
pending tasks for the software developers. As with
blackboard systems, actions are triggered when the state of
the Workspace matches a pattern of interest. A Process Plan

68

is supported that effectively maps patterns of interest found
in the Development Workspace and the current To-Do List
into proposed actions. The proposed actions (shown as Pz)
in the figure might include any of the following: make a
specific design decision; apply a particular tool to a
particular design component with certain parameters; raise
the priority on doing one pending task over others, etc. Qur
plan is to support a wide variety of SE methodologies by
providing a general mechanism for representing and
implementing cormresponding process plans. A Repository of
reusable components is provided that stores, classifies, and
searches for previously used Development Workspace
structures. Typically these include reusable domain models,
application characteristics, generic function modules,
specific implementation modules, and data to customize or
particularize generic functions for specific application
domains. A Tool Registry provides mechanisms for
enrolling software development tools, describing their
required inputs and associated outputs in terms of patterns
that match characteristics found in the Workspace or Process
Plan and, finally, providing Teol Activators that can
automate or semi-automate invocation and application of
tools. The tools consist of compilers, generators,
simulators, expert system shells, etc. Lastly, the ADSE
incorporates specialized tools called KBDAs that provide
knowledge-based assistance in to the software development
process. These tools can include, for example: requirements

Table 1. Aspects of the Development Methodology

Aspect

Hayes-Roth

Elements

Opportunistic Design

Multiple levels and representations
Abstract to particular characterizations
Incremental decisions

Linked decisions form design web
Prescriptive process models permitted
Humans and computer tools cooperate

Controller Architecture

Distribution

Generic modules

Flexible, tailorable controllers

Schema of ADTs for IB/WM

Message processing using ADTs and intermodule protocols

Fracta! control model

information Base/
World Model

Shared data managed by IB/WM

Conceptually centralized, single-copy, but allows physical
partitioning

Typically distributed

Time response must satisfy requirements ranging from sub-
millisecond to a few seconds

Different levels of aggregation

Different meta-types: data, propositions, rules, plans

Temporally organized and continually renewing

KB Design Assistants
events

Mini-expert systems watch process state and advise user at key

Tool-use expert systems help humans apply development tools

Repository
level

Stores and uses partial matches to retrieve "components” at any

Components classified in taxonomy from generic to particular
Domain-specific customizations available to particularize generics

Engineering Foci

Domain modeling

Requirements engineering

Knowledge engineering, about DICAM and DICAM development
tools and methods

Performance objectives, measurement and attainment

Component Characterization

Interfaces:

Datatypes

Module partners

Conversation types

Protocols

Messages to other devices
Resource/environment prerequisites

Goals & Constraints
Models: Behavior, timing, functionality

analyzers that suggest appropriate reusable components;
redesign advisors that suggest ways to modify an existing
design in light of a change in requirements or capabilities;
and intelligent interfaces that set up and run complex tools
to assist a developer in generating or analyzing some code.
To implement the ADSE we are using a number of "off-
the-shelf* technologies. Chief among these are: ABE [F.
Hayes-Roth et al., 19911, as an integration environment for
tools, a composition framework for modular, real-time
applications, and a catalog and classification system for the
reuse repository; BB1 [B. Hayes-Roth, 1985], as an
incremental workspace, process model interpreter, and
agenda manager; M.4, a commercial expert system shell, for
building the KBDAs; and the Requirements Manager (RM),
a DARPA-sponsored software product for collecting,
managing, and evaluating application requirements and

69

validating application designs against requirements [Fiksel
& Hayes-Roth, 1990]. We are also evaluating many other
commercial and research SE tools for use in the ADSE [cf.
NIST ISEE Working Group, 1991].

Development Methodology

The overall approach we are taking to development is
summarized in Table 1. The seven principal facets fall into
three basic categories of methods. The controller
architecture and information base/world model constitute the
reference architecture for the domain of intelligent control.
The repository, engineering foci, and component
characterization concemns define our approach to domain-
specific software engineering. The opportunistic design and

KB design assistants define our approach to defining a
process of software development that can, at least, be semi-
automated.

We are currently applying the methodology to
demonstration problems chosen from defense applications.
As an example, consider the task of achieving intelligent
control of field artillery systems, such as mobile howitzers.
Howitzers, like other military vehicles, are self-propelled,
mobile vehicles with offensive guns. Their primary
mission is ground-based artillery shelling of over-the-
horizon targets. They are very similar to tanks, armored
personal carriers, and helicopters in general information
processing terms. Thus, all military vehicles of this sort
share elements of the domain model, but differ increasingly
as these models and the corresponding application model
become detailed.

The general DICAM architecture is specialized for Army
Vehicle Management Systems by the selection of levels:
battalion, battery, platoon, vehicle (section), system,
subsystem. Then it is further specialized for a particular
howitzer, e.g. the "ABC Howitzer,” by the selection of
functional controllers and their relationships. Each group of
ABC howitzers is headed by a Platoon Leader who reports
to higher headquarters. The Chief of Section of each vehicle
reports to the Platoon Leader and is responsible for the Gun
Control, Loading, and Driving functions.

Following the domain-specific approach, after
developing the generic domain model, the next task for
system developers is to elaborate the application model. The
task application model enumerates desired functionalities
associated with each level of control. Several generic
functions appear repeatedly across different control levels,
such as tasking subordinates with subgoals or performing
external and system status analyses as part of situation
assessment. These functionalities are also common across
the analogous components in other vehicles: tanks, missile
launchers, infantry fighting vehicles, etc. Thus, there are
two levels of functional similarity:

» across different components within a vehicle, and

* across the similar components in different vehicles.

To convert the informal task analysis into a more
formal, explicit application model, the system developer
selects from among generic functionalities in the reference
architecture, specializing and customizing them for the
particular needs of the target application. Then to construct
an application system, the developer uses these refined
specifications either to select components from the
repository that can perform these functions or to drive
automatic, semi-automated, or manual code generation.

Issues Raised

Our research raises many issues, some of which are
highlighted here:

* Is our methodology (as described in Table 1) effective?

* Does our reference architecture provide enough structure
to make specification practical and component software
reusable?

* How can a critical mass of reusable components be
created?

* How can modules be characterized?

70

Hayes-Roth

* How can the languages used for characterizing modules
be standardized?

* How can modules be designed so that they can be
specialized or customized to new applications?

* Which tasks in the development process are most
worthy of automated support?

* How can the space generated by a diversity of vehicles,
environments and control objectives be structured to
maximize the potential for reusability of specifications and
solution components?

References

Albus, J. S., McCain, H. G., and Lumia, R.
“NASA/NBS standard reference model for telerobot
control system architecture (NASREM),” National
Bureau of Standards, Tech. Note 1235. 1989.

Becker, J. M. “The generic control level: a unifying
view,” Proc. ROBEXS ‘89, Palo Alto, CA, 1989,

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and
Reddy, R. “The Hearsay-II speech-understanding
system: Integrating knowledge to resolve uncertainty,”
Computing Surveys 12(2), June, 1980, pp. 213-253.

Erman, L. D., Lark, J. S., and Hayes-Roth, F. “ABE:
An environment for engineering intelligent systems,”
{EEE Transactions on Software Engineering, 14(12),
December, 1988. i

Fiksel, J. and Hayes-Roth, F. “A requirements
manager for concurrent engineering in printed circuit
board design and production,” Proc. of the Second
National Symposium on Concurrent Engineering,
Morgantown, WV, February, 1990,

Garvey, A. and Hayes-Roth, B. “An empirical analysis
of explicit vs. implicit control architectures,” in
Jagannathan, V. and Dodhiawala, R. T. (eds.), Current
Trends in Blackboard Systems, Academic Press, 1989.

Hayes-Roth, B. “Blackboard architecture for control,”
Artificial Intelligence, vol. 26, pp. 251-321, 1985.
Reprinted in: Bond, A. and Gasser, L. (eds.), Readings
in Distributed Artificial Intelligence, Morgan
Kaufmann Publishers, Inc., 1988.

Hayes-Roth, B, “Architectural foundations for real-
time performance in intelligent agents,” Real-Time
Systems: The International Journal of Time-Critical
Computing, 2(1/2), 1990, pp. 99-125.

Hayes-Roth, B. and Hayes-Roth, F. “A cognitive
mode! of planning,” Cognitive Science, 1979, 3, 275-
310. Reprinted in A. Collins and E, E. Smith (eds.),
Readings in Cognitive Science: A Psychological and
Artificial Intelligence Perspective. Morgan Kaufmann,
1988; and in J. Allen, and J. Hendler, and A. Tate
(edsd), Readings in Planning, Morgan Kaufmarnn,
990. ' o

(1]

(2]
B3]

“]

(5]

61

(8]

9

[10] Hayes-Roth, B., Johnson, M.V., Garvey, A., and
Hewett, M. “Applications of BB1 to arrangement-
assembly tasks,” Journal of Artificial Intelligence in

Engineering, 1986.

Hayes-Roth, F., Davidson, J.E., Erman, L.D. and
Lark, J.5. "Frameworks for developing intelligent
systems: The ABE systems engineering
environment,” I[EEE Expert, June, 1991.

Hayes-Roth, F., Erman, L. D., Fouse, S., Lark, J. S.,
and Davidson, J. “ABE: A cooperative operating

(11

(12]

Iscoe
FILMED

u e

LIV]

PRECEDIHNG #2458 A ¢

Model-Based Software Design™ __

N93-17514

Neil Iscoe, Zheng-Yang Liu, Guohui 'eng, Britt Yenne, Larry Van Sickle, Michael Ballantyne
EDS Research, Austin Laboratory

1601 Rio Grande, Ste. 500

55-C/

Austin, Texas 78701

iscoe@austin.eds.com

Abstract

Domain-specific knowledge is required to create
specifications, generate code, and understand existing
. systems. OQur approach to automating software design is
- based on instantiating an application domain model with
: industry-specific knowledge and then using that model 10
“achieve the operational goals of specification elicitation
“and verification, reverse engineering, and code generation.
-Although many different specification models can be
created from any particular domain model, cach
specification model is consistent and correct with respect to
the domain model.

Introduction

Although empirical field studies (Curtis, et al., 1988)
have shown that application domain knowledge is critical
to the success of large projects, this knowledge is rarely
stored in a form which facilitates its use in creating,
maintaining and evolving software systems. Capturing and
managing this knowledge is a prerequisite to automating
software design. .

Unfortunately, domain knowledge is implicitly
embodied in application code rather than explicitly
recorded and maintained in separate documents. Even
when documents are maintained separately from the code,
the knowledge is stored in voluminous natural language
documents in an informal rather than a formal manner.
Although problem-specific languages are designed to
remedy this situation, domain-specific knowledge is still
captured in an ad hoc instead of a systematic manner.
Furthermore, these languages are generally not designed in
such a way that the results can be generalized or even
replicated.

We are attempling to capture the domain-specific
knowledge about different industry areas as a sel of
application domain models. Application domain maodels
are representations of relevant aspects of application
domains that can be used to achieve specific soltware
engineering operational goals. Operational goals are
always implicit in the construction of a domain model and

* An earlier version of this paper was presented at the
Asilomar Workshop on Change of Representation and
Problem Reformulation, April 1992,

72

are essential to understanding the form and content of that
model. Unlike generalized knowledge representation
projects such as Cyc (Lenat, 1990) that attempt to provide a
basis for modeling encyclopedic knowledge, domain
modeling explicitly acknowledges the commonly held view
(Amarel, 1968) that representations are designed for
particular purposes. These purposes-the operational goals—
inherently bias any particular solution and dictate the final
form of the model.

Many different operational goals and modeling projects
are being pursued within the field of domain modeling
(Iscoe, et al., 1991). This paper begins with an overview of
the domain modeling research at EDS and our
corresponding operational goals. We explain our approach
to automating software design as a paradigm which
facililates the creation of multiple-specification models
from a domain model. Finally, we discuss a set of issues
that we have encountered in achieving our goals.

Programming-in-the-Large

EDS produces large software systems for a variety of
industries such as utilities, finance, health insurance, and so
on. Associated with each industry area is a rich body of
knowledge which is critical to specifying and
implementing the proper software system. This knowledge
includes legal, financial, technical, and other expertise
which is acquired by personnel over a period of years.
EDS is organized into strategic business units (SBUs) so
that the organization’s knowledge about a particular
industry can be leveraged through reuse.

At the EDS Austin research laboratory, we are building a
domain modeling system which is designed to achieve the
following operational goals:

- Requirements & Specifications—Eliciting, verifying,
and formalizing software requirements and specifications,

« Program Transformation/Generation—Transforming a
specification into efficient executable code,

+ Reverse Engineering—Identifying the semantics of
existing code in terms of a partial specification.

The realization of these operational goals is consistent
with our long-term plan for creating knowledge-based tools
to support programming-in-the-large (Barstow, 1988). The
domain modeling approach provides ample opportunities
for creating an automated software development paradigm.

/26 857 p

All Programs/Sysiems
Scoped by SBU

industry knowledge for each SBU is instantiated mlo a
domain model, which then serves as a source of knowledge
for programs (the ovals) to achieve operational goals, such
as reverse engineering source code or eliciting system
specifications. The figure actually illustrates two different
processes. The left side of figure 1 shows the process of
domain model instantiation while the right side illustrates
the domain model being used to produce a single
specification. The System Specification (rectangle)
illustrates a specification for a single specific system within
an application domain. However, a multitude of sysiem
specifications can be created from a domain model.

Modeling
Language

D m _n‘ Model

. SBU Specmc Imormalion

Domain Knowledge
SBU

Figure 2 — Instantiating Specification Models

73

Iscoe

Requirements &
Specifications

) |

Figure 2 illustrates the two separate modeling tasks
required by our approach. Domain experts interact with a
system to represent their knowledge in terms of domain
modeling constructs. Specification designers then use the
system 10 build specification models which satisfy
constraints in the domain model. In order to create a
system specification, the application designer selects a set
of relevant policies and constraints from the domain model
that must be included and enforced in the specification
model. The constraints include intra-attribute as well as
inter-attribute relationships within and across classes
relevant to the task at hand.

Because one of our goals is to generate executable code,
we require that a particular specification model be
consistent. A very large but finite number of specification
models can be created which are consistent and correct
with respect to a particular domain model.

Reverse Engineering = - -

We arc using reverse engineering to help instantiate both
domain and specification models. Figure 1 illustrates how
application domain knowledge and programming
knowledge are used (o extract partial specifications from
source code. The box labeled “programming knowledge”
currently represents knowledge of COBOL syntax, coding
conventions, and program plans and structures (Van Sickle,
1992). This knowledge crosses all of the targeted
application domains and is the basis of a separate code
browser that oper'ues mdependemly of Lhe oper'mon shown
in Figure 1.

We are also attempting to mechanically pre-instantiate
domain models by using the data gathered from the
applications of an EDS entity-relationship-based CASE
tool that is used by SBUs for data modeling and code
generation. By analyzing data models, we have access to
tens of thousands of specific entities, relationships, and

constraints which have been used to specify programs and
are useful for partially instantiating domain modcls.

Modeling Considerations

Models are inevitably abstractions of reality that capturce
information to achieve specific goals. A domain model
determines the items of interest that exist in the world and
sanctions the types of inferences allowed [Liu and Farley,
1990; Davis, 1991]. A model is the result of conscious
decisions about what to describe and what to ignore. No
model is complete or correct in the sense that it is
applicable to all tasks.

Domain models in our system are structured (o represent
the type of information that is used within EDS SBUs to
achieve our operational goals. Although EDS serves a
wide range of industries, we are not attempting to model
real-time or other application areas which diverge from
standard business transaction processing. A general issue
of interest in this research is the extent to which any
particular representation/model can be mutated to hold
different types of information for different tasks while still
effectively achieving the original operational goals.

One requirement for our models is that they be
consistent. Domain and specification model consistency is
maintained by a specialized theorem prover. The theorem
prover, STR+VE, is an upgraded version of the prover
presented in (Bledsoe, 1980) for proofs of theorems in
general inequalities. A TMS is being constructed to
interface between the modeling system and the theorem
prover.

Dynamic Knowledge Structure

The remainder of this paper presents one aspect of
domain model representation and gives a glimpse of the
relationship between specification and domain models and
the organization of domain maodels.

While most would agree that hierarchical organizational
strategies provide a reasonable way to structure knowledge
within complex domains, the creation of a hierarchical
structure, like any type of representational scheme, imposes
a particular view of the world. Unfortunately, there is no
particular view that is optimal for every application.
Although the programs within a particular application share
the same legal, physical, and economic constraints, the
construction of any particular specification model depends
upon a set of policy decisions that determine how cases are
handled. Furthermore, software in the large systems are
continually changing in such a manner that the concept of a
static hierarchy is insufficient to capture the process of
system evolution.

Consider software systems that manage the payment of
health insurance claims. Although conceptually simple,
these systems handle hundreds of thousands of different
cases. One way o represent these cases is to enumerate the
leaf nodes of the hierarchies crealed by the appropriate
partitioning of attributes such as gender, age, family_status,
previous_condition, employment, deductibles, copayments,

Iscoe

prognosis, and so on. Unfortunately, the tree structure
created by case expansion not only obscures relevant and
interesting cases, but is also a monolithic structure. A
paradox of object-oriented approaches is that well-adapted
structures are not adaptable to new situations.

Because of the combinatorial explosion of the leaf
nodes, it makes sense to handle the cases at as high a level
as possible. Term subsumption systems such as CLASSIC
(Borgida, et al., 1989) automate this process by
determining the place in a hierarchy in which terms are
subsumed. But subsumption systems assume a single
structure in which all sub-models can belong. In the case
of applications such as health insurance, individual
modules may have different hierarchical structures and stll
maintain the integrity and constraint rules of the domain
model.

Attribute Definitions

Attributes are normally considered as data values or slot
fillers within a class or frame. However, the standard

“treatment of attributes as lists of data values with some

underlying machine representation fails both to capture
sufficient semantic information from the application
domain and to state definitions with sufficient formality 10
allow semantics-related consistency checks.

Attributes are functions which define how a set of
objects is mapped within a class. One type of aturibute has
a value set represented by a nominal scale which consists
of a set of values, HA) = (Cq, ... Cp).

One of the ways that the modeling process maps the
world into a domain model is by creating categories in
such a way that ilems to be categorized with respect 10 a
particular atiribute are as homogeneous as possible within a
category and as heterogeneous as possible between
categories. Examples of nominal scales abound and map
cleanly to the notion of enumerated type as shown below:

(Colors
:type nominal_scale
walues (Red Yellow Green Blue)

The next type of attribute is an ordinal scale—a nominal
scale in which a total ordering exists among the categories.
Interval and ratio scales are the more quantitative scales
and add definitions of dimensions, units, and granularity.

This brief description of attribute type was included to
allow the reader to understand the examples in this paper.
Attributes have additional types and a number of other
properties which are explained in (Iscoe, etal., 1992).

Hierarchical Decomposition

Hierarchies are a natural way to view and organize
information and, at some level of abstraction, are a part of
most object-oriented and knowledge representation
languages. Unfortunately, the simplicity of these concepts
can sometimes obscure the semantics that a model is
attempting to capture. That one's needs dictate one's

-

ontological choice is a fundamental premise of knowledge
engineering. The ability to systematically define a new set
of attributes by partitioning the value sets of old attributes
and then using these new attributes (o reclassify the domain
in accordance with the new requirements is an important
aspect of our attribute characterization. By preserving the
"ontological map" as a component of the attribute, the
domain modeler can shift between the differing paradigms
modeled by various classes of objects.

Attribute characlerization provides a representation and
systematic methodology for the partitioning of attributes
that facilitates the way they are organized, subdivided, and
built into hierarchies. An attribute restriction is a new
attribute whose value set and set of applicable relations arc
subsets of the original altribute.

Creating a new attribute serves the dual purpose of
creating a set of views on the old attribute as well as
creating a new attribute. Often, new aitribules are defined
in terms of old attributes by partitioning the original value
set and then equating cach new aturibute value with an
element of the partition. As an example, an accounts
receivable (AR) sysiem may use the atiribute
days_to_payment whose value is the average number of
days it takes for the client o pay a bill.

(days_to_payment:

:type ratio_scale
:dimension time
unit days

From the standpoint of AR applications, a more useful
attribute might be :

(type_of_payer:

type Ordinal_scale
:Ordered_by lateness_of_payment
:values (pays_on_time slow_pay dead_beat))

days_to_payment:
Ratio_scale Time in Days (Min 0) (Max 360)

type_of_payer:
Deadbeat

type_of_payer:
Slow_pay

type_of_payer:
Pay_on_time

Figure 3 — Partitioning days_to_payment

This new attribute will be defined by partitioning the
value set of days_to_payment by subdividing the range of
values, then equating each value with one of the elements
of the partition as illustrated in figure 3 and described as
follows:

(type_of_payer
‘mapped_from days_to_payment

(pays_on_time (<=30)
(slow_pay

(AND (> 30) (< 90))
(dead_beal =90

75

Iscoe

Note that the days_to_payment attribute is based on a
quantitative attribute while the type_of_payer attribute is
based on a qualitative attribute. In general, an attribute
mapping represents a loss of information (in this example,
the number of days overdue) in return for a more useful
and inherently less detailed category.

Using Population Parameters

Population parameters are used to help automate the
process of creating new attributes from old ones. For
example, some graduate admissions committees use GRE
scores 10 separale applicants into acceptance categories.
Population parameters allow application designers to create
new attributes based on restrictions to the original attribute
as shown below:

GRE_Score: Interval_scale Score in GRE units
(min 400) (max 1600)
(dist normal) {mean 1100) (stddev 125)

UKE_SUOKE
Regect

(min 400) (max 1000}

UGRE_SCORE: GHE_SCORE,

Consider
(uin 1001} (max 1449)

Acoept
(min [450) (mux [600)

Figure 4 — Using Population Parameters to
Restrict an Attribute

Figure 4 shows the GRE score as an attribute which could
be attached to a student. Understanding the distribution of
values within the value set of GRE scores allows
application designers to create partitions in any one of a
variety of ways. For example, assume that an application
designer wanted 1o create an initial partiion based on the
requirement “accept all students who score in the top x%
on the GRE, consider those who score between x% and y%,
and reject those who score in the bottom y%." Given this
type of requirement, the domain model contains the
appropriate information 10 use and an algorithin (o produce
the correct raw score numbers 10 achieve such a partition.

- Another way that these requirements are sometimes
stated is to build a partition based on an absolute raw score.
For example, a requirement like "accept all students who
score above 1450 on the GRE" is easily displayed and
modeled. Furthermore, this type of specification can be
used interactively so that the designer can juggle between
raw scores and percentiles until the partitions appropriate
for the application domain are produced.

Domain and Specification Models

In this section we focus on relations between attributes
within a single domain model class. For the purposes of
this discussion we define the following attributes:

{Name ‘type identifier)
(Gender lype nominal_scale
:values (male female))

(Eye_color :type nominal_scale
:values (brown, blue, green))
(Benefits :lype nominal_scale
:values (Soc_sec, RR, none)
(Age :type ratio_scale
:dimension (time)
:unit (year)
:granularity (1)
-derived (diff_date cur_date birth_date)
(Medicare_payment :type ratio_scale
:dimension (money)
‘unit (dollar)
:granularity (.01))
:popparms ((min 1)(max 10000)(mean 225)))

(Age_m type: ordinal_scale
:values (under65 65_and_over)
:mapped_from age

(under65 (< 65))
(65_and_over (>= 65)))

Although many other constraints exist, domain model
classes can be regarded as consisting of sets of atributes
which are either required or might be included within a
particular domain model. These constraints are expressed
as follows:

must_have(c, a,) — attribute @ must be used in
class ¢ in a model.

applicable(c, a) — atuibute ¢ can be used in
class ¢ in a model depending on the choice of
specification designer.

cond_must_have(c, a, cond) — aitribute ¢ must
be used in class ¢ in a model if condition cond
evaluates to true.

cond_applicable(c, a, cond) — attribute a can be
used in class ¢ a model if condition cond
evaluates o true.

Within any particular specification model, an attribute is
simply classified as used within a class.

used(m, ¢, a) — within model m, attribute ¢ is
used in class ¢ in model m.

The most straightforward relationship between a domain
model and a specification model is that must_have
attributes are used in all specification models and
applicable attributes are selected by the specification
designer. The following rules formalize the semantics of
the four constraints on the use of attributes within classes
listed above.

(1) must_have(c,a) — Vi used(m, ¢, a)
(2) applicable(c, a) — 3m used(m, ¢, a)

(3) (cond_applicable ¢ a ((p1 a1 v1)...(Pn an vn)))
— Vm, object
[(usedmca) —
(usedmcaj) A ...a{used mc ag) A

76

Iscoe

[(instance m ¢ object) A (in (a object) 14a))
— (p1 (a1 object) VD) A ... A

(pn (ap object) vp)l]

(4) (cond_must_have ¢ a((py a; vy)...(Pn an Va)

— Vm,object
[(used m ¢ aj)A...A(used m ¢ ap)

— (usedmc a) A

[(p1 (a1 object) v1) A

e A
(pn (ap object) vp) A (instance m ¢ object)
— (in (a object) Ha))l]

For example, in a domain model, name might be
required for all specification models, while eye_color could
be selected only if it were appropriate for the particular
specification model.

(person
:must_have ((Name ())
:applicable ((eye_color ()
)

The application of these constraints when cond is
vacuously true is a fairly standard feature in most modeling
languages of this type. However, name and eye_color are
attributes which are total functions and are not as
interesting as the cases that occur when the attributes are
partial functions.

Conditions for Function Evaluation

Recalling that an attribute is a function which maps
objects to a particular property, cond can be interpreted as
the condition which must be satisfied for the attribute to be
a total instead of a partial function. In other words, cond
defines the subset which is the domain of applicability of
the partial function. For example for a person class
medicare_payment is only applicable if age is 65 or over
and benefits is none.

(cond_applicable person Medicare_payment
((= Age_m 65_and_over) (= Benefits none)))

The domain modeling system is designed so that the
conditions required to establish the proper domain for an
attribute are automatically maintained. These conditions
are constrained in such a way that tractability is maintained
and are of the form ((p; a; vy)-.. (pn n vp)) , where p;is
the name of a predicate, ; is the name of an attribute, and
v; is a value of the attribute.

A user can create a specification model with any
particular class hierarchy as long as the domain policies
and constraints are satisfied.

We are currently experimenting with ways to capture
and verify domain modeling constraints by presenting
redundant information in a variety of ways. We believe
that many of the specification problems in large systems
are crealed when value set changes cause a single case to
be changed but fail to correct cases that were identified
from a previous inference.

For example, if we assume that Medicare_payment is
only applicable if age is 65 or over and benefits is none, the
system can infer that Medicare_payment cannot apply (o a
person who is younger than 65.

In fact, assume
(cond_applicable person Medicare_payment
((= Age_m 65_and_over) (= Benefits none))),
then
Vm, object
((used m person Medicare_payment) —
(used m person Age_m)a(used m person Benefits) A
((instance m person object) A
(in (Medicare_payment object) [1 10000])
= (= (Age_m object) 65_and_over) A
(= (Benelits object) none))) 5
After Medicare_payment is used in a model, if user is
trying to assign a Medicare_payment to a person who is
younger than 65, using rule (5) will lead to a contradiction.
A key point is that when people are presented with value
sets they automatically and unconsciously perform
substitutions such as the ones listed above. This is a
reasonable way to build a model until a value set changes.
In large systems, value sels are frequently changed.
Consequently, conclusions that were drawn by using
negation to infer values become invalid. We use the
applicability of conditions and the system’s knowledge of
value sets 10 attempt to provide the proper cases for the
domain modeler to check when conditions change.

Discussion

In this paper, we have presented the concept of modeling
application domains in order o achieve the operational
goals of program specification, code generation, and
reverse engineering. The main concept is that multiple
specification models can be created that are consistent and
“correct” with respect to a domain model, Domain models
represent information about a particular industry area.
Specification models represent information about a
particular system.

The middle oval on the right side of figure 1 represents
the process of code generation through program
transformation. Given a specification model, executable
code can be generaled by performing a series of
correctness-preserving transformations on the specification.
The goal of this part of the project, which is not yet active,
is to produce efficient code that satisfies the original
specification.

Domain and specification models are constructed by
using a graphical interface to interactively create a set of
rules based on altribute value set partitions and the
preceding axioms. The system is being implemented using
Motif GUI on SPARC workstations. Although it is
currently operating in a single user mode, it is being
designed to be accessed simultaneously by multiple domain

77

Iscoe

modelers. We are also trying (o accelerate the knowledge
capturc process by reverse engineering data models that
have been captured by an existing EDS case tool and
instantiating them into the appropriate domain models.

Acknowledgments

We wish to thank Betty Milstead and Raman
Rajagopalan for their comments on earlier drafts of this

paper.

References

Amarel, §. 1968. “On Representations of Problems of
Reasoning About Actions,” in Machine Intelligence 3, D.
Michie, Ed., American Elsevier, New York, pp. 131-171.

Barstow, D. 1985. “Domain-Specific Automatic
Programming,” [IEEE Transactions on Software
Engineering, vol. SE-11, no. 11, pp. 1321-1336.

Barstow, D. 1988. “Artificial Intelligence and Software
Engineering,” in Shrobe, H., Ed., Exploring Artificial
Intelligence. AAAT. Morgan Kaufmann, San Mateo, CA.

Bledsoe, W. W, and Hines, .. M. 1980. "Variable
Elimination and Chaining in a Resolution-Base Prover for
Inequalities," Proceedings of the 5th Conference on
Automated Deduction, Les Arcs, France, Springer-Verlag,
pp. 70-87.

Borgida, A., Brachman, R.J., McGuinness, D.L., and
Resnick, L.A. 1989, "CLASSIC: A structural data model
for objects,” in Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Duata, pp. 59-
67.

Curtis, B,, Krasner, H. and Iscoe, N. 1988. “A Field
Study of the Software Design Process for Large Systems,”
Comununications of the ACM, vol. 31, no. 11, pp. 1268-
1287.

Davis, R. 1991. “Knowledge Representation:
Broadening the Perspective,” AAAI-91 Panel, Anaheim,
CA.

Iscoe, N., Browne, 1.C., Werth, J,, and Liu, Z.Y. 1992,
“Attributes - Building Blocks for Modeling Application
Domains,” Submitted to [EEE TSE.

Iscoe, N., Williams, G. and Arango, G., Eds. 1991,
Domain Modeling for Sofiware Engineering, Proceedings
of Domain-Modeling Workshop, Austin, Texas.

Lenat, D.B. , Guha, R.V., Pittman, K., Pratt, D., and
Shepherd, M. 1990. “Cyc: Toward Programs with
Common Sense,” CACM, vol. 33, no. §, pp. 3049.

Liu, Z.Y. and Farley, A. 1991, “Tasks, Models,
Perspectives, Dimensions,” The 5th International
Workshop on Qualitative Reasoning Austin, Texas, pp. 1-
12.

Van Sickle, L. 1992. “Reconstructing Data Integrity
Constraints from Source Code,” Proceedings of Workshop
on Artificial Intelligence and Automated Program
Understanding, Tenth National Conference on Artificial
Intelligence, San Jose, CA.

Kaindl

N9S-17515

Description of Research Interests and Current Work Related to
AUTOMATING SOFTWARE DESIGN

S -/

Hermann Kaindl

SIEMENS AG Osterreich, PSE
Geusaugasse 17, A-1030 Vienna, Austria

Research Abstract

While I am working in industry in a department
dedicated to software engineering, major part of my
research dealt with various aspects of artificial
intelligence. As can be seen from the enclosed list of
selected and recent publications, my research
interests include heuristic search, machine
learning, knowledge acquisition and knowledge-
based systems. Moreover, [performed applied
research in the areas software engineering and
human-computer interaction.

Recently, | became more and more interested in
combining methods from these areas, for instance
we used hypertext for improving the process of
knowledge acquisition. Moreover, I emphasize the
relationship between the fields, for instance the
relations between Al frames and objects in object-
oriented approaches. I think that there are many
issues in common in knowledge acquisition and
object-oriented analysis. Generally, the task of
building knowledge-based systems appears to me to
include many aspects of software engineering.

Partly, we develop conventional as well as
knowledge-based software for telecommunications,
and partly we work for the European Space
Agency. While we did not really get to the point of
building domain-specific software design systems
yet, I completely agree that domain-specific
knowledge plays a major role in developing
software. For instance, the functionality of the
software for one satellite is typically not so much
different from that of the software for the next
satellite. I feel that improvements in the general
software develoyment process (e.g., object-oriented
a}) roaches) will have to be combined with the use
of large domain-specific knowledge bases.

Selected Bibliography

+ Koll, A, and Kaindl, H., "A New Approach to
Dynamic Weighting”, to appear in Proc. Tenth
European Conference on Xrtiﬁcial Intelligence
(ECAI-92), Vienna, August 1992, Chichester,
England: Wiley.

« Kaindl, H., and Scheucher, A., "Reasons for the
Effects of Bounded Look-Ahead Search”, to
appear in IEEE Transactions on Systems, Man,
and Cybernetics (SMC), 1992.

e Snaprud, M., and Kaindl, H.,, “Knowledge
Acquisition Using Hypertext”, to appear in
Expert Systems with Applications. Earlier
versions are available in Proc. World Congress
on Expert Systems, Orlando, Florida, December

78

1991, 781-788, New York: Pergamon Press, in
Proc. AAAI-91 Workshop on Knowledge
Acquisition, Anaheim, CA., July 1991, and in
Proc. Artificial Intelligence and Knowledge-
Based Systems for Space, ESTEC, Noordwijk,
May 1991.

Kaindl, H., and Ziegeler, H.G., "Object-oriented
Approaches, Frames, and Access-Oriented
Programming”, to appear in Object-Oriented

Programming in Al (Scott Woyak und
Zhongmin Li, Eds.), AAAI Press.
Lercher, L., and Kaindl, H., “Problems,

Communication, and Common Sense”, to appear
in ACM SIGART Bulletin.

Kaindl, H., and Ziegeler, H.G., "Reasoning
Types and Al Programming Paradigms”, to
appear in Software Engineering and Knowledge
Engineering (’IJSEKE§. An earlier version is
available in Proc. Third International
Conference on Software Engineering and
Knowledge Engineering (SEKE'91), June 1991,

96-101.

Kaindl, H., and Ziegeler, H.G., "HIS—An
Information System about Hypertext on
Hypertext”, to appear in AC SIGLINK
Newsletter 1.

Kaindl, H., Shams, R., and Horacek, H.,
“Minimax Search Algorithms with and without
Aspiration Windows”, IEEE Transactions on
Pattern Analysis and Machine Intelligence
PAMI-13(12), 1991, 1225-1235.

Kaind], H., and Snaprud, M., "Hypertext and
Structured Object Representation: A Unifying
View”, in Proc. Third ACM Conference on
Hypertext (Hypertext ‘91), San Antonio, Texas,
December 1991, 345-358. An earlier version is
available in Proc. Fourth International GI
Congress on Knowledge-Based Systems,
Munich, Germany, Octoier 1991, 231-242,
Berlin: Springer-Verlag.

Kaindl, H. (Ed.) "Proc. Seventh Austrian
Conference on Artificial Intelligence”, Vienna,
Austria, September 1991. Berlin: Springer-
Verlag.

Mehlsam, G., Kaindl, H., and Barth, W,
“Feature Construction during Tree Learning”,
in Proc. Fifteenth German Workshop on
Artificial Intelligence (GWAI-91), gonn
Germany, September 1991, 50-61, Berlin:
Springer-Verlag.

Sgams, R., Kaindl, H., and Horacek, H., "Using
Aspiration Windows for Minimax Algorithms”,
in Proc. Twelfth International Joint Conference
on Artificial Intelligence (IJCAI-91), Sydney,

/368570 ?

4%

Australia, August 1991, 192-197, Los Altos,
Calif.: Kaufmann.

» Kaindl, H., and Ziegeler, H.G.,, “Comparing
object-oriented programming, frames, and
access-oriented programming”, in Proc. AAAI-
91 Workshop on Object-Oriented Programming
in Al, Anaheim, CA, July 1991,

+ Kaindl, H., and Ziegeler, H.G., "Knowledge-
Based Systems: Their User Interface and
Dependability”, in Proc. IFIP Workshop on
Dependability of Artificial Intelligence Systems

* (DAISY__91), Vienna, Austria, May 1991, 53-
62, Amsterdam: North-Holland.

« Kaindl, H., and Ziegeler, H.G.,
“"HyperAuthor—An Authoring Tool Based on
Hypertext”, in Proc. Hypertext/Hvpermedia '91,
Graz, Austria, May 1991, 156-163, Berlin:
Springer-Verlag.

+ Ziegeler, H.G., and Kaindl, H, "A Cyeclic
Pattern Resulting from a Constraint
Satisfaction Search”, in Proc. CAIA-91: Seventh
IEEE Conference on Artificial Intelligence
Applications, Miami Beach, Florida, February
1991, 337-344. An earlier version has been
presented at the AAAI-90 Workshop on
Constraint Directed Reasoning, Boston, Mass.,
July 1990.

» "Tree Searching Algorithms”, in "Computers,
Chess, and Cognition” (T. A. Marsland and J.
Schaeffer, Eds.), 133-158, New York: Springer-
Verlag, 1990.

'+ Kaindl, H,, and Ziegeler, H.G.,, “Knowledge
Acquisition for a Configuration Task”, in Proc.
AAAI-90 Workshop on Knowledge Acquisition,
Boston, Mass., July 1990.

« Kaind], H,, and Ziegeler, H.G., “Some Aspects of
Knowledge-Based Configuration”, in Proc.
AVIGNON '90 - Expert Systems & their
Ap/)lications——Artificial Intelligence,
Telecommunications & Computer Systems,
Avignon, May/June 1990, 41-54.

s Scheucher, A., and Kaindl, H., "The Reason for
the Benefits of Minimax Search”, in Proc.
Eleventh International Joint Conference on
Artificial Intelligence (IJCAI-89), Detroit,
August 1989. 322-327, Los Altos, Calif.:
Kaufmann.

+ “Portability of Software”, SIGPLAN Notices
23(6), 1988, 59-68.

o “Minimaxing: Theory and Practice”, Al
Magazine 9(3), 1988, 69-76.

Appendix: Technical Biography

Hermann Kaindl received the Dipl.-Ing. degree in

computer science in 1979 and the Doctoral degree
in technical science in 1981, both from the
Technical University of Vienna in Austria.

Since 1984, he has been a lecturer on artificial
intelligence at the Technical University of Vienna,
and in 1989, he received the venia docendi for
“"Praktische Informatik”, which is comparable to
tenure. He is currently with the department of
Program and System Engineering, Siemens AG
Osterreich, where he leads software projects and is
in charge of a group of software engineers. His
research interests include planning and search,
machine learning, knowledge acquisition,
knowledge-based systems, as well as certain

Kaindl

aspects of software engineering and human-
computer interaction.

Dr. Kaindl is a member of the Austrian Society
for Artificial Intelligence, the American
Association for Artificial Intelligence, and the
International Computer Chess Association.

79

Elaine Kant
Schlumberger Laboratory for Computer Science
P.O. Box 200015
Austin, Texas 78720-0015 USA

Kant

N938-17516 .

Automating the Design of Scientific Computing Software

S)7-¢/

kant@slcs.slb.com

Abstract

" SINAPSE is a domain-specific software design sys-
“tem that generates code from specifications of
" equations and algorithm methods. This paper de-
* scribes the system’s design techniques (planning in
- a space of knowledge-based refinement and opti-
mization rules), user interaction style (user has op-
_tion to control decision making), and representa-
tion of knowledge (rules and objects). It also sum-
‘marizes how the system knowledge has evolved
over time and suggests some issues in building
software design systems to facilitate reuse. '

Introduction

SINAPSE is a domain-specific software design system
that generates code from specifications of equations
and algorithm methods. Our goal is for SINAPSE to be

a practical program-synthesis system that solves a re-.

_ stricted class of problems. In particular, we aim to re-
duce mathematical modelers’ programming chores by

enabling modelers to specify programs at the level at -

which they are described in technical papers.

A trend toward three-dimensional modeling (previ-
ously too expensive to attempt for many applications)
is both making programs more complex and requiring
implementation on parallel architectures (for accept-
able performance). Both consequences of this trend
argue strongly for automatic code generation - to avoid
errors in programs and to save modelers from having
to learn about rapidly changing architectures. Because
efficiency of code and interfacing with other codes are
factors for many of our users, the code generation sys-
tem must be understandable and modifiable. _

The current SINAPSE implementation focuses on one
class of algorithms — finite difference methods for solv-
ing partial differential equations. We have used the
system to generate about a dozen families of programs
for solving acoustic wave propagation problems of in-
terest to Schlumberger modelers. With these pro-
grams (for which no comparable hand-coded versions
existed), the modelers have achieved new results in
the application areas. However, all the programs were
specified by knowledgeable users, and we manually
optimized critical code sections after experimenting
with the automatically generated program. Current

80

research involves generating more efficient code and
making the system more easily accessible to modelers.
Although we primarily apply the system to finite dif-
ference problems, we have also generated several rather
different types of codes and have used subsets of the
system in other applications. Approximately half of
the system (consisting of the synthesis framework and
an array-level language to target code translation) is
independent of the domain, although focused on scien-
tific computing. We have used this part of the system
to generate some geometric modeling codes, starting
from an array-level specification language.)
The lessons from SINAPSE are similar to those of
other knowledge-intensive systems: it is important to
design representations that are close to the users’ men-
tal models; abstraction of concepts is important; and
rules and objects provide useful representation tech-
niques. An emerging concern is how to encourage more
sharing among software design systems. The last sec-
tion of this paper suggests that reuse of components

and reasoning algorithms may be possible among dif-

ferent software design systems themselves.

Specializing Design Techniques

The driving force in the implementation of SINAPSE
has been the collection of design techniques appropri-
ate for our applications. The classes of design tech-
niques as well as the problem itself then determine the
types of user interaction that are required. Finally, the
knowledge representation is strongly suggested by the
reasoning techniques and user interface requirements.

Given our fairly narrow application domain and goal
of practical program synthesis, the most appropriate
design technique is knowledge-based refinement, in-
cluding the application of optimizing transformations.
Refinement choices are made by heuristics or mod-
eler specification. Although our approach includes
knowledge-based optimization, as the performance de-
mands on synthesized code have scaled up, we have
seen more need for traditional types of optimization
such as code motion supported by data-flow analysis.

We have explicitly chosen not to use some types
of reasoning techniques. For example, learning about
choices in context and learning about run-time code
performance might eventually be appropriate, but we
chose not to address learning, discovery, or complex

VEXA & 24

QU

search issues in the current system. We also do not at-
tempt inference by theorem proving; this would require
very detailed domain models before any progress could
be made, and these formalisms would make it difficult
to allow the kinds of not-strictly-correctness-preserving
approximations that modelers frequently make. How-
ever, we are attempting to develop a clean character-
ization of the semantics of the synthesis constructs.
This is a good guideline for domain analysis and helps
make the meaning of the constructs independent of the
implementation. A clean semantics makes a construct
easier to explain to users and easier for developers to
modify.

The states in the problem space in which SINAPSE
operates include descriptions of (partially imple-
mented) programs and facts about the specifications
and implementations. The space is navigated by car-
rying out sequences of synthesis tasks. Originally we
tried to streamline the problem-solving mechanism by
letting the actions in program synthesis carry out the
navigation, with design choices being presented to the
user as needed, but this proved confusing to the users
and difficult to modify. Therefore we are moving to-
wards an explicit plan representation. We expect to
conclude by declaratively encoding the set of goals
about program function and performance, plans for
achieving those goals, and control knowledge about
which plans to use for different circumstances. The
plans consist of partially-ordered (sub)goals, bottom-
ing out at actions that include asking the user for in-
formation, applying program refinement rules, and ap-
plying program optimizations.

A specification in SINAPSE is a collection of design
decisions, most of which can be thought of as con-
trol information about which program refinements to
make, or which facts to declare. In addition, sometimes
a specification actually defines a new refinement and
then asserts that the new alternative is the refinement
that should be made.

SINAPSE is implemented in Mathematica[Wol88].
Mathematica is both an algebraic manipulation sys-
tem, useful for scientific programming, and a program-
ming language with modern features such as a pattern
language and rules. Other implementation languages
would also be reasonable choices, but Mathematica al-
lows us to have everything in one language in which
our target users are comfortable.

Phases of Design

In order to make the system comprehensible to devel-
opers and end users, and to encourage collaboration
with others, we have divided the software design pro-
cess into a series of phases:

« problem set up

s algorithm synthesis

s program optimization
¢ target code generation

How common these stages are in other design systems
for scientific computation is an open question, but
evidence for them can be found in [PC91; AEH*89;

81

Kant

Co0090]. A more detailed, though somewhat dated, de-
scription of these phases is given in [KDMW91].

The first phase, problem set up, involves help-
ing the user define the problem. The result should
be a set of equations such as would be described in
a modeling article. In our application, problem set
up is accomplished by working through a network of
choices (goals and tasks) that set up the equations
to be solved. For applications about which SINAPSE
1s knowledgeable, it presents parameterized equation
generators; otherwise the user must define the equa-
tions mathematically.! Mathematical formalization,
when the equations are not given directly by the user,
involves a relatively straightforward knowledge-based
expansion. Next, SINAPSE may reformulate the equa-
tions via simplification, normalization, and redundant
equation elimination. Other reformulations, such as
averaging of material values, depend on user specifi-
cation. Mathematica’s algebraic manipulation is espe-
cially useful at this stage.

The problem set up phase should probably be viewed
as three distinct phases. Two, which are independent,
are describing the physical model in general terms,
reusable for a number of specific problems, and describ-
ing the target properties of the computing environ-
ment in which a specific problem must be solved. Prop-
erties of the target environment might include machine
architecture (such as type of parallelism available) and
limitations on run time and storage space. A specific
problem description would then be the next phase,
that would customize a physical model to a specific set
of knowns and unknowns (and any desired interpre-
tation or analysis of the computed results) and might
modify the equations to be used based on the specifi-
cation of target environment properties.

SINAPSE’s algorithm synthesis begins with select-
ing an algorithm schema corresponding to the mod-
eler’s design decision(s) and then filling in the details.
This level includes all the domain-specific computing
knowledge that an applications expert would have, typ-
ically the numerical approximation methods to be ap-
plied to the equations. The types of implementation
decisions are those that would be reported in a de-
tailed technical article. At the end of this phase, pro-
grams will be expressed in Psiam, an array-level lan-
guage that we are developing. The search for effective
combinations of design decisions is currently left to the
user if the default choices are not acceptable. Program
details are filled in by refinement rules. Elaboration
of the design decisions often involves the use of alge-
braic manipulation for computing approximations. If
desired, the modeler can specify fragments of code di-
rectly in Psiam. The schema instantiation may involve
elaborating parts of code such as initializations or out-
puts that eventually need to migrate to other sections

'In other applications, such as mechanics and circuits
problems, systems often have more detailed descriptions
of the physics of the systems and tools to instantiate the
physical laws in a specific problem. The instantiation often
involves much unguided object slot filling rather than the
guided, dependent, goal satisfaction used in SINAPSE.

#

T T

of code. The migration is done too explicitly now; we
will evolve to a more general mechanism with partial
orderings and data flow analysis.

Performance choices are made at the next stage,
program optimization. This level includes all the
types of knowledge that any good scientific program-
mer should know regardless of the application domain.
Some examples of design decisions made at this stage
are store vs. recompute decisions, data structure se-
lection (array representation, primarily space compres-
sion techniques), and the corresponding operator im-
plementations. Data and control parallelism from the
domain have been explicitly represented and main-
tained through the program transformations until, at
this level, parallelism is either exploited or, for tar-
get languages not supporting it, expanded into loop-
ing constructs or sequentialized. A number of optimiz-
ing transformations are applied. To support the data
structure selection and optimizations, there is some in-
ferencing to determine data types of dimensions, prop-
erties of arrays, and simplifications of conditionals (for
example, to transform conditionals on array indices
into loops with specific bounds). Currently SINAPSE
uses special case reasoning for such inferences; it would
benefit from an interface with an inequality prover and
probably other provers or decision procedures.

The result of expansions of the previous step is ex-
pressed in MathCode, another language that we have
developed. MathCode is a procedural language that
abstracts away from Fortran and C constructs but has
almost no remaining implementation freedoms. The fi-
nal phase of target code generation from MathCode
is accomplished by a recursive-descent parser with ac-
tion rules for each different target language.

Interacting with Users

Our initial concern in user interaction was simply
to ensure that modelers could specify their problems
and override SINAPSE’s default design decisions. A
SINAPSE specification, which contains a set of design
decisions, might “ideally” contain just decisions at the
level of specifying the problem. In reality, of course,
the system does not have enough information to make
all the algorithm and implementation choices. Even
when the system thinks it has enough knowledge, not
all modelers will agree with the choices. The evolution
of these aspects of the interface will be discussed here.
Some other issues concerning the modeler’s interface to
scientific codes are outside the scope of this discussion.
For example, while our total environment will involve
an interface for specifying the geometry of the world
being modeled and an interface for visualization of the
results, these are largely separate research efforts.

The philosophy of partitioning the problem-solving
load between the user and SINAPSE was discussed in
[Kan90]. The conclusions, to which we still subscribe,
can be summarized by:

¢ SINAPSE should structure the problem-solving ses-
sions because people are smarter than software de-
sign systems and can adapt; however, SINAPSE
should present the user with significant decision

82

Kant

points and alternative implementation choices that
match problem-solving models.

e SINAPSE should cooperate by making suggestions
(heuristics about appropriate choices, help in finding
similar specifications or concepts); however, people
should have ultimate veto power over system choices.

e SINAPSE should be able to explain, at least mini-
mally, specification choices and decisions that have
been made.

o SINAPSE should have a system for helping users and
developers add new knowledge.

e SINAPSE should share knowledge bases so progress
for any purpose (synthesis, explanation, knowledge
acquisition, or system integration) is tested by and
contributes to progress for all purposes.

Current Interface

Currently, the user must be reasonably knowledgeable
to set up a SINAPSE specification. Specifications are
usually made in a text file that is loaded at the begin-
ning of a session, but most choices can also be spec-
ified interactively with simple menus (for enumerable
choices) or fill-in-the-blank interfaces. Also, although
program fragments can be specified-at the array level
(effectively defining new refinement rules at specifica-
tion time), there is no interactive support for this. In
the interactive mode, the user can request text string
explanations of the decision issues, alternatives, and
system heuristics. Answers provided by the user are
checked against legitimate patterns. In addition, the
user can confirm or modify interactively the choices
suggested by system heuristics or a previously loaded
text-file specification. SINAPSE can write out a text
file of the decisions made interactively, or made by a
mix of previously specified text and interactions.

We have begun to make SINAPSE more accessible
to modelers. We are adding pointers to examples
of specific choices and their realization in target pro-
grams based on our demo suite. A graphical interface
with modern menus, multiple status and help windows,
and hypertext navigating is being implemented, and a
minimalist-style user manual is being written. Because
of the large number of design decisions and the different
classes of anticipated users (some modelers cate more
about approximation method choices, some about ef-
ficiency of implementation), we also will need a mech-
anism to control which design decisions are visible to
the user. One possibility is to make visibility depen-
dent on the phase in which the decisions are made and
on whether the decisions are based on hard constraints
(forced choices) or heuristics or simple defaults.

Declarative Decision Structures

A good interface is critically dependent on the cor-
rectness and understandability of the underlying do-
main models. Indeed, users cannot even write text-file
specifications if they do not have a good understand-
ing of what needs to be specified. Although we have
had some difficulty in explaining how the system works
to different domain experts, the specification language

seems to be converging as we gain better understand-
ing of the domain. Earlier versions of SINAPSE did not
have all decisions explicitly represented, but we are
adding a definition mechanism that ensures that all
design decisions are properly inserted in a global task
network. Correctly representing the domain means not
only having the right set of design decisions, but order-
ing the decisions sensibly and representing dependen-
cies between decisions. Although SINAPSE was able to
generate the same set of programs with a more un-
structured representation, having a good, declarative
representation of the decision structure turns out to be
critical for acquiring a specification, for storing out a
specification in text format for later use, and for ex-
plaining specifications and system decisions to users.

Dependencies between Decisions

An explicit representation of all dependencies between
design decisions would be useful for helping the user
understand what must go into a specification, for
recording specifications made interactively, and for re-
playing revised specifications. For example, the depen-
dency network helps the user understand that a par-
ticular decision may not even be relevant unless some
other set of choices has been made. SINAPSE distin-
guishes between user-specified decisions and decisions
inferred by the system based on those decisions. Only
decisions in the first class need be recorded in the text-
file specification. Decisions in the second class can be
made again automatically if the specification is resub-
mitted. This argument assumes a static synthesis sys-
tem. If more alternatives for a decision are added at a
later date, the existing heuristics may no longer force
a choice. Hence, it might also be useful to record the
full history of inferences to help the user augment the
specification in the face of an evolving system.

Currently, synthesis times are all under 20 minutes,
and the decision making portions are usually on the
order of minutes, so simply recording the primary de-
cisions and recomputing the rest has been acceptable
and it has not seemed necessary to build a full-fledged
truth maintenance system. We do have a simple de-
pendency network that records definitions and uses of
synthesis facts. Because we wish to record decision de-
pendencies for purposes of explanation, at some point
the expense of building an incremental change system
may be justified.

Because the user can help make implementation de-
cisions, we also foresee a need for representing de-
pendencies between user specifications. This general
phenomenon of specifications accommodating to im-
plementations is discussed in [Swa82]. One example
that we have seen in SINAPSE is that a modeler may
combine periodic and taper boundary declarations to
implement an absorbing boundary condition when the
target language is SIMD Connection Machine Fortran
(to enable the use of an efficient circular shift oper-
ation). Even if a boundary isn’t really periodic, the
tapering operation makes the effective boundary value
nearly zero on both edges, which means declaring the
boundary to be periodic is not harmful. These depen-

83

Kant

dencies should be recorded because if the target archi-
tecture is changed, we want to reconsider the choices of
periodic and taper boundaries (even though both were
user-specified) in the light of the new architecture.

Ordering Decisions

Users are sensitive to the order in which specifica-
tion decisions are made; this order must make sense
to them. Ordering is constrained by dependencies be-
tween decisions. In general, of course, the ordering
of the decisions will follow the ordering of the phases
described in the previous section, with implementa-
tion decisions such as data structure representations
following problem set up specifications such as bound-
ary conditions. However, some details can vary with
the application. For example, in some cases all depen-
dent variables may depend on the same independent
variables so it might make sense to define independent
variables first and then list dependent variables. In
other cases, it might make more sense to define each
dependent variable in terms of its specific independent
variables. To support this, SINAPSE can present a dif-
ferent set of design decisions with alternative orderings
for different applications.

Currently, when used in the interactive mode, the
SINAPSE system presents the design choices in a lin-
ear sequence, and modelers do not always understand
why a particular ordering is used. It would help con-
siderably if we represented the partial ordering on the
design choices, with a user interface that allows specifi-
cation according to the partial ordering rather than an
arbitrary linearization of that ordering. We do believe
however that the system should explicitly present the
decisions in the partial ordering rather than expecting
the user to write the decision in arbitrary order in a
text file or to navigate around a large collection of ob-
Jects and to know what properties must be filled in or
what commands must be issued. We plan to experi-
ment with a graphical depiction of the decision network
that is actively modified as choices are made.

Explanation

Representing information about decisions could help
generate good explanations for how to set up specifi-
cations or why the system made the specific choices
[WMK92; Swa83]. It both cases, a likely priority is:
most heavily weight the choices involving problem de-
scription decisions (user choices before system choices),
then the state of the implementation design so far, then
the user’s generic preferences, then the system’s heuris-
tic rules, and finally the system defaults.

Representing the Knowledge
The representation of knowledge in Sinapse has been
discussed elsewhere [KDMW91] and so will not be re-
peated in detail here. We simply note that our goals
for code generation and user interaction suggest that
our knowledge representations be declarative, object-
oriented descriptions of design choices and algorithm
schemas. The object-oriented representation for de-
sign constructs includes the use of multiple inheritance,

with a small number of fairly flat hierarchies for algo-
rithm type, application type, and so on. As discussed
earlier, since the initial system design, the importance
of more explicit goals and plans for the user interface
has become clear. In addition to the declarative repre-
sentations, there are procedural languages that can be
used in describing programs: Psiam at the array level,
and MathCode at the imperative level. The seman-
tics of Psiam are still evolving; MathCode is the most
mature and stable of all the representations. Mathe-
matica’s pattern matching and symbolic simplifications
are useful in defining transformation rules for both re-
finement (elaboration) and optimization. Recently we
have also added a mechanism to record some of the ma-
jor transformation steps (by transformation name and
by before and after states). While we do not expect to
record every single transformation step, we expect to
eventually have more control over transformation ap-
plications; currently most are just anonymous Math-
ematica rules that fire whenever they match rather
than being explicitly applied. Most likely there will
be named sets of transformation rules that are applied
at specific phases.

Evolving the Knowledge

To measure the evolution of knowledge in SINAPSE, for
the past 16 months we have kept records about changes
to the system. A regression test suite is maintained so
that changes can be tested for compatibility and com-
pared for performance. Although the records are only
as good as the effort people put into keeping them and
more careful analysis is need, some rough generaliza-
tions can be made.

Overall, the total system has grown steadily. The
initial effort, before detailed records were kept, was
mostly in adding domain knowledge and very primi-
tive code generation knowledge. Since that time, we
have focused on generating efficient code for multiple
target languages and architectures, on adding domain
knowledge that fills gaps in our application domain,
and on making the system more understandable via ad-
ditional explicit knowledge about design decisions and
explicit representation of dependencies between deci-
sions. There have been no huge waves of expansion
and compression of the entire system representation,
although individual components do grow and shrink
as knowledge is added or more concisely represented.

Some basic information about size may give a gen-
eral picture of the evolution of knowledge. The current
system is now more than 20,000 lines of Mathematica
code, a 38% increase over the system of 16 months
ago. The declarative representations of the domain
knowledge and problem-solving structure have grown
the most — from 13% to 19% of the system, a 111% in-
crease. There are currently about 100 types of design
facts of the fill-in-the-blank form and 33 menu-choice
decisions with an average of 3 alternatives. There are
currently about 60 program-synthesis tasks; as well as
adding new tasks, the ordering among the tasks has
been refined over time. Procedural knowledge about
how to refine domain descriptions to algorithms and

84

Kant

coding constructs has grown only 15% and slipped from
41% to 35% of the system. (No count on the number
of rules or functions is available. This is a place where
the content of the knowledge has increased, but the
representation has gotten more concise, so the overall
growth looks low.) Knowledge about code generation
has increased 35%, but as a percentage of the entire
system held almost even, moving from 30% to 29%.
(Much of the work that has gone into code optimiza-
tion is not complete and is not reflected in the version
of the system described here. The code-optimization
techniques will add approximately 5,000 more lines of
code.) The program-synthesis framework, while grow-
ing 54%, has only gone from 16% to 17% of the total
system. The growth has been in the areas of mech-
anisms for the expanded knowledge about synthesis
tasks and the recording of major transformation steps.

Of the 360 recorded changes to the system (in terms
of number of entries, not number of lines of code or
numbers of facts involved), 30% have involved changes
to the internal representation or knowledge about the
program-synthesis process, 15% have been changes vis-
ible in the human interface, 15% have been changes
to domain knowledge, 35% changes to programming
knowledge (reflected in the generated code), and 5% to
the operating system interface. Overall, 20% of these
changes were described as new capabilities, 24% as gen-
eralizations of existing capabilities, 20% as bug fixes,
5% as efficiency improvements, 28% as improvements
in the clarity of the system or the code it generates,
and 5% as other.

The frequent occurrence of changes to improve repre-
sentation clarity reflects both improved understanding
of the domain and deficiencies in the original represen-
tations of design goals and actions. Improvement is
still needed in expressing dependencies between deci-
sions, both the order required by the decisions, in terms
of definition-use chains, and task-ordering preferences.
We also expect it would be useful to be able to express
a difference between hard constraints (forced choices),
heuristics based on available information, and default
choices (based on no information).

Analyzing the types of changes that are made should
help us determine what sort of knowledge acquisition
tools we should build. At present only a minimal
number of rudimentary knowledge-building aids exist
in SINAPSE. They help inspect the structure of syn-
thesis tasks and dependencies and check for complete-
ness of information about design decisions. Based on
analysis of the changes and conversations with model-
ers, we have identified a small number of knowledge-
acquisition activities that we would like to support
more automatically for end users as well as for devel-
opers. These activities include the addition of new ap-
proximation operators, of variations on input/output
handling, of new algorithm schemas, and the packaging
of existing algorithms inside user-defined outer loops.

Sharing among Design Systems

The amount of knowledge required for automating soft-
ware design is very large, even for quite restricted

classes of problems. The automated software design
community would be likely to make faster progress if
it explored the possibilities of reuse among design sys-
tems as well as reuse within a single domain-specific
system. How do we design our systems to facilitate
this sharing? Possibilities include reuse of system com-
ponents (some domain-independent), reuse of reason-
ing algorithms, and reuse of interface languages (such
as a Psiam-like array-level language). Similar propos-
als have been made before of course, such as generic
tasks for expert system building blocks [ChaSGf, com-
positional modeling for engineering modeling (FF91],
standardization work in the knowledge-representation
community, and the suggestion of working out theories
for program synthesis [Smi91].

Reuse of system components might be possible if
we could divide systems into components with well-
defined interfaces. This means we first need to agree
on the meaning or content of any specification lan-
guages or intermediate representations. We also need
to formalize the form of the interfaces. Ironically, the
methodology for figuring out how to implement a spec-
ified need in terms of existing components, or how to
adapt components to a function, will probably itself
exploit autornated software design techniques. Some
components may be large, some may be clusters of
knowledge about well-defined concepts.

In SINAPSE we are attempting to identify some ma-
jor phases in the design of scientific computing soft-
ware and to provide different languages for some of
the levels. The languages may vary to exploit math-
ematical formulations, array-manipulation, and con-
ventional applicative languages so that specifications
can be entered in the most convenient style. Next, we
need to determine whether these stages make sense for
other applications. Within these levels, there might
be formalizations of abstractions such as coordinate
transforms, pointers, I/O, and parallelization. Ideally,
SINAPSE would then be able to interface to other sys-
tems, for example to generate a different target lan-
guage, or call subroutines rather than generate code
for specific tasks.

The reasoning-technique (shell) approach is another
cut at providing tools. We might ask what sorts of
tools for different reasoning strategies would be useful
for automating software design. For example, SINAPSE
could use someone else’s inequality prover, or an out-
side tool for analyzing data flow, or an expression opti-
mizer to minimize operator costs according to a declar-
ative cost model or to order for optimal numerical sta-
bility. It would be useful to have language-independent
compiler optimization tools.

If we could find a useful set of common tools or com-
ponents, major barriers (besides the not-invented-here
syndrome) might be standardizing the interfaces and
achieving portability of tools. Even though it is now
possible to interface many different languages, in a sys-
tem with multiple implementation languages, the over-
head in both execution and modifiability can be quite
high. Neverless, even if it requires reimplementation, a
clearly specified set of tools and algorithms for accom-

85

Kant

plishing the goals of the tools should facilitate reuse.

Acknowledgements

Current and past members of the SINAPSE project who
should be recognized for their work on the concepts
and implementation of the system include Ira Baxter,
Hung-Wen Chang, Francois Daube, Bill MacGregor,
and Joe Wald. Many thanks to Ira Baxter and Ursula
Wolz for comments on drafts of this paper.

References

H. Abelson, M. Eisenberg, M. Halfant, J. Katzenel-
son, E. Sacks, G. J. Sussman, J. Wisdom, and K. Yip.
Intelligence in Scientific Computing. Commaunications
of the ACM, 32(5):546-562, May 1989.

B. Chandrasekaran. Generic Tasks in Knowledge-
Based Reasoning: High-Level Building Blocks for Ex-
pert System Design. IEEE FEzpert, 1(3):23-30, Fall
1986.

G. O. Cook. ALPAL, a Program to Generate Physics
Simulation Codes from Natural Descriptions. Inter-
national Journal of Modern Physics, 1(1):1-55, 1990.

B. Falkenhainer and K. D. Forbus. Compositional
modeling: finding the right model for the job. Artifi-
cial Intelligence, 51:95-143, 1991.

E. Kant. Human and Computer Responsibilities in
Program Synthesis. In Workshop Notes-Knowledge-
Based Human-Compuler Commaunication, pages 65—

67, Stanford, CA, March 1990.

E. Kant, F. Daube, W. MacGregor, and J. Wald.
Scientific Programming by Automated Synthesis. In
M. R. Lowry and R. D. McCartney, editors, Automai-
ing Software Design, chapter 8, pages 169-205. AAAI
Press/The MIT Press, Menlo Park, CA, 1991.

R. S. Palmer and J. F. Cremer. SIMLAB: Automat-
ically Creating Physical Systems Simulators. Techni-
cal Report TR 91-1246, Department of Computer Sci-
ence, Cornell University, Ithaca, New York, Novem-
ber 1991.

D. Smith. Theory-Based Support for Software De-
velopment. In Workshop Notes-Aulomating Software
Design: Interactive Design, pages 162-165, Los An-
geles, CA, July 1991.

W. Swartout. On the Inevitable Intertwining of Spec-

ification and Implementation. Communications of the
ACM, 25(7):438—440, July 1982,
W. Swartout. XPLAIN: A System for Creating and

Explaining Expert Consulting Systems. Artificial In-
telligence, 21(3):285-325, September 1983,

U. Wolz, K.R. McKeown, and G.E Kaiser. Auto-
mated Tutoring in Interactive Environments: A Task-
Centered Approach. In M.J. Farr and J. Psotka, edi-
tors, Intelligen? Instruction by Computer, theory and
practice. Taylor and Francis, Washington DC, 1992.

S. Wolfram. Mathematica: a System for doing Math-
ematics by Computer. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1988.

Keller, K.

N93-17517

Domain Specific Software Design for Decision Aiding

Kirby Keller and Kevin Stanley
McDonnell Aircraft Company
McDonnell Douglas Corporation

McDonnell Aircraft Company (MCAIR)
is involved in many large multi-discipline
design and development efforts in the
production of tactical aircraft. These
involve a number of design disciplines
that must be coordinated to produce a
integrated design and successful product.
Our interpretation of a domain specific
software design (DSSD) is that of a
representation or framework that is
specialized to support a limited problem
domain. Figure 1 contrasts domain
specific vs. domain independent
approaches. A DSSD is an abstract
software design that is shaped by the
problem characteristics. This parallels the
theme of objected-oriented analysis and
design! of letting the problem model
directly drive the design. The DSSD
concept extends the notion of software
reusability to include representations or
frameworks. It supports the entire
software life cycle and specifically leads
to improved prototyping capability,
supports system integration, and
promotes reuse of software designs and
supporting frameworks.

Initial prototyping is improved if one can
start development with a framework that
is suited to the characteristics of the
problem. This framework can be
specialized as the development evolves to
provide a more efficient means for the
domain expert to prototype The effect is
to shorten the distance between the
domain expert and the working prototype
by providing a domain language to state
requirements and supporting automated
code generation. This concept of a

1 Rumbaugh, et al, Object-Oriented Modeling and
Design, Prentice Hall, 1991.

86

S5i8-6/

supporting framework can be extended to
the systems level. Multi-discipline design
efforts may require the integration of
individual DSSDs which are critical to
concurrent engineering efforts. Domain
specific designs that capture problem
solving representations can be leveraged
in future work. These designs offer
flexibility by addressing a problem
domain and hence are a better starting
point for reuse than particular application
modules. It may also be possible to
create libraries of such designs that can be
matched to problem characteristics.

The example presented in this paper is the
task network architecture or design
which was developed for the MCAIR
Pilot's Associate program. The task.
network concept supported both module
development and system integration
within the domain of operator decision
aiding. It is presented as an instance

" where a software design exhibited many

of the attributes associated with DSSD
concept. The Pilot's Associate program
(contract #F33615-86-C-3802) was
sponsored by the Defense Advanced
Research Projects Agency and
administered by the United States Air
Force. More recent work in this area has
been performed in conjunction with
McDonnell Douglas Research
Laboratories_and Michigan State
University.

Pilot Decision Aiding Example:

“As part of the Pilot's Associate (PA)

program, McDonnell Aircraft (MCAIR)
Company developed and demonstrated an
"associate” system for tactical aircraft
performing an air-to-ground battlefield
interdiction mission. The demonstrated
mission functionality included threat
assessment, system capabilities
assessment, threat reaction planning,

/2/

/36872

d

Support for
System
Development

Keller, K.

Domain Specific

Domain Independent

/

Problem Domain

Figure 1. Domain Specific Software Design Provides Improved Support for
Specific Problem Domains.

target attack planning, pilot monitoring,
and information management.
Appropriate controls and displays were
developed to support the demonstration in
a manned aircraft dome simulator. The
system development approach and
software architecture is based upon a task
network system model. The activities of
the pilot, PA and external agents such as
a wingman are modelled by objects called
tasks. Tasks may be decomposed into a

complex sequence, or network, of more
detailed subcomponents. This model of
the task sequences and their functionality
define a hierarchical network of tasks
which allow the representation of
complex system and pilot activity for both
steady state behavior and reaction to
changes in the environment. It captures

~dependencies and interactions between

activities and provides a means for overall
control of the PA problem solving
process. The structure derived from the
task network system model provides: 1) a
domain specific requirements language or
representation that is shared by the
domain expert and software developer, 2)
data structures and frameworks for the
software design, and 3) visibility into the
system behavior that helps create a more
mtumve mterface and system operauon

The top-level architecture of the task
network framework is shown in Figure
2, The main components of the

87

framework are: input packet post-
processing, the context model, the task
network mission model, exception
handling and task execution. Data flow
in this architecture consists of
communication from external processes
through packet post processing which
appropriately manipulates the data to
update objects in the context model.
Events are signalled to the task network
mission model, resulting in changes in
task status or the execution of an
exception handler. When tasks are
activated they are placed on a task agenda
and executed in order of priority. The
execution of tasks may result in the
modification of internal models (intemal
actions) or the communication of data to
othcr processes (cxtcrnal actxons)

The task nctwork is modelled after the
procedural network structure, first
proposed in the NOAH system2. The
partially ordered sequence of tasks in the
network identifies control flow and
context information for the state of the
mission. Through an explicit
representation of system and pllot tasks,
the system may reason about it's own

2 Sacerdoti, Earl D., A Structure for Plans and
Behavior (Elsevier: Computer Science Library,
1977).

Exceptions

CONTEXT
MODEL Events
Senscr Data PACKET
—~————>-1 POST-PROCESSING
Dependencies

Keller, K.

EXCEPTION
HANDLER

New Tasks

TASK

(MISSION MODEL) acive Tasks EXECUTION External

v Actions

: e

Internal Actions

Figure 2. Task Network Top-Level Architecture

activities. Typically, this reasoning
involves predicting system timeliness,
interactions between tasks, errors of
omission by an external agent (e.g. a
pilot), the information requirements of the
pilot, or responses to failure conditions of
the task. Each task is represented as a
specialist responsible for performing a
function when activated.

Tasks are defined in a hierarchical manner
such that they may be decomposed into
subtasks which refine the activities that
they represent. This is useful for
reasoning about tasks at different levels
of abstraction in monitoring, planning,
and execution. The task network
provides mechanisms for:
1) system coordination,
2) maintaining assumptions
about the environment,
3) handling exceptions, and
4) representation of
interaction with the pilot.

The task network allows dependencies to
be placed on states of the environment,
the pilot, and the PA system through a
subset of the task network framework
referred to as the Context Model. The
Context Model is developed as an
hierarchical, distributed, object-oriented
database. It is used to represent
information about the external
environment, the pilot, the aircraft, and
the PA system itself. This representation
was designed to allow the detection of
events from state data. Since PA has

88

relatively little control over actions in the
external environment (e.g. hostile threats,
weather, etc.), it must make many
assumptions’ during plan generation and
execution. PA must be able to adapt
quickly and correctly when the external
environment changes in a way that
invalidates the planned system behavior.
Dependencies allow the tasks to represent
complex relationships between the tasks
and the state of the environment (i.e. the
context of the current situation). These
dependencies are checked when changes
are made to the Context Model
parameters. When dependencies are
violated, this is signalled to the task.
This signal is referred to as an exception.

Exceptions represent violated
dependencies which require a response
by the system. This response is referred
to as an exception handler. These
exception handlers are defined for tasks
to aid in the recovery of violations in the
assumptions of the plan. Exception
handlers may be either local or system
exception handlers. Local handlers are
implemented using methods on the task
which result in minor, local changes to
the plan or states of various systems.
System handlers involve the creation of
System Response Plans which use the
task network framework as a control
mechanism for replanning portions of the
currently executing task network.

The task network architecture is a domain
specific design in that it is a framework

that provides support for requirements
specification, design, and development at
the module and system level. The
benefits of the task network architecture
are realized from a set of features which
aid in the development of an application
which lies in the real-time decision
support domain. The components of the
architecture support system integration by
providing a uniform representation of the
elements of the domain. These
components and their inter-relationships
were developed to address the
requirements of the PA domain but it has
been implemented as a explicit framework
that is readily applicable, in part or in
whole, to problems with similar
characteristics. These features are
described in the following sections.

lici resentati Pl

The requirements of the PA system are
often described in terms of the aircraft
mission. This mission description
includes the objectives of the pilot and his
weapon system in a hostile and uncertain
environment. Mission decomposition is
usually performed using a number of
representative scenarios. This mission
decomposition is a key characteristic of
the domain. Mission decomposition is a
top-down approach for dissecting a
combat mission into its functional
segments. These functional segments are
then divided into the tasks which are
required to complete each segment. As
functions and tasks become more
specific, they can be analyzed in terms of
information flow and functional
partitioning. The task network supports
this specification through it's explicit
representation of the sequence of tasks in
the mission.

The explicit representation of functions as
tasks in the system provides advantages
in software design by supporting graceful
adaptation through reasoning about task
timeliness, the explicit representation of
parallelism in task execution, by
promoting modular coding techniques,
explicit control synchronization between
tasks, and visibility into system operation

89

Keller, K.

through the use of mnemonic names for
tasks.

Enables Control Reasoning

Completing tasks by their assigned
deadlines is the very definition of a hard
real-time system. However, the character
of the Pilot's Associate prompted us to
expand the definition to include the
concepts of both hard and soft deadlines.
While meeting hard deadlines is a
requirement for correctness, meeting soft
deadlines is not strictly required, but is
certainly desirable. Control reasoning is
useful for a decision support system
which is attempting to optimize its
performance outside of hard scheduling
constraints. ' The system may predict
missed deadlines, delete unnecessary
steps to meet imminent deadlines, and
perform reasoning about solution
quality/timeliness trade-offs. Control
reasoning is also supported by the
management of system priorities on
tasks.

rdin n I
Knowledge partitioning is a natural and
inevitable approach to the design and
development of large systems. The PA
system was partitioned into modules,
each of which is a knowledge based
system with the possibility of concurrent
execution. While concurrency may not
be utilized physically, the components of
the PA are intended to operate in a
functionally distributed fashion.
Functional distribution, in this context,
merely means that the components are
designed to allow the possibility of
concurrent operation. Each component is
a real-time system. That is, each
component receives events and data
asynchronously and carries out steps of
assessment, planning and execution, all
constrained by timing requirements. For
such a collection of real-time knowledge
based systems to form an integrated
system, they need to behave in a
coordinated manner that is also timely,
responsive, and adaptive to a changing
environment. Coordination refers to a
system-wide coherence among tasks and

plans, to a resource management scheme
based on a global perspective, and to
dynamic adjustment of tasks and plans to
accommodate changes in overall system
performance goals.

nistic Ex ion of Task

Quite often in system design, the correct
sequence of execution of system tasks is
unknown. The task network
representation allows the specification of
incomplete temporal constraints on
control flow. The non-linear plan
representation allows ambiguity of task
ordering. The execution of parallel tasks
may be performed opportunistically and
behavior is situationally dependent. This
allows the system to improve and tune
it's performance based on the context of
the current situation.

Ex ion_Handlers Modif havior

h nges in licit Plan

The PA problem domain is dynamic and
hostile. Subsequently, plans may be
expected to be invalidated quite often.
This adds complexity to the system
requirements and design. The Task

Network Architecture handles this

through an explicit link between
environmental data and tasks referred to
as dependencies. Exception handlers are
procedures which are implemented to
respond appropriately to events. Each
task is responsible for handling these
events by one of several classes of
reactions such as: abandoning the task,
retrying to achieve the results of a task,
choosing an alternate method for
accomplishing the task results, or
repairing the cause of the error. The
complexity of exception handlers may be
quite simple, or may require extensive
replanning of the mission.

Replanning and Execution Are

_development.

~ oriented programming.
efficient means of designing and

Keller, K.

However, a real-time system cannot
afford to halt execution while replanning
is underway. Due to this, the system
must be capable of replanning portions of
the mission, while completing unaffected
portions. The current design of the task
network allows the system to inhibit the
execution of tasks which are in an
exception state, while continuing to
execute other tasks which are unaffected
by the exception.

Contro] Flow Manipulated Graphically
One of the tools available to software
developers for managing complexity is
that of graphical interfaces. The partially
ordered sequence of tasks lends itself
very well to a graphical depiction of the
sequence of tasks performed during the
mission. The implementation of tools for
the graphical manipulation of tasks
provides an efficient and intuitive
interface for system control specification.
At the same time, these tools will also
provide aid in debugging the performance
and functionality of the system since the-’
current state of the system is represented
pictorially through the state of the tasks in
the network.

One of the key features of the task
network approach is the ability to
describe tasks from the perspective of a
mission, and then use that same
description as a foundation for code
This philosophy is
supported by the encapsulation of
functionality as provided by object-
The most

modifying a task network data structure is
through the use of a graphical interface
which allowed for direct manipulation? of
the task network. The task network

A

It is not possible to predict the time that
events impacting the mission will be
encountered. Deliberation on new plans
often involves extensive processing
resources devoted to solving problems
encountered in the execution of plans.

90

3 Hutchins, EL, Hollan, J.D., and Norman, D.A
(1986). Direct Manipulation Interfaces in D.A.
Norman, W.S. Draper (Eds.): User Centered
System Design: New Perspectives in Human-
Machine Interaction, Hillsdale London:
Lawrence Erlbaum, 1986).

implementation offers a mechanism by
which application code could be
seamlessly integrated with code generated
via these graphic descriptions.

Juiremen ification
The task network framework is a
programming paradigm for the
development of intelligent systems. The
task network architecture provides
support through the entire software
development process, from requirements
generation (specification) through
maintenance as shown in Figure 3. Each
module function is developed using the
task network framework for planning,
assessment, and human interface
functions. The goal of the framework is

Requirements Definition/Desigr

Keller, K.

to provide a common language between
the requirements specifier, system
designer, and system user. This will lead
to systems which have traceable
requirements in the program design and
whose operation may be easily
understood by the user. The program
structure serves as a model of the user in
performance of the mission. The
network of tasks describe the sequence of
tasks to be performed by the system and
user. Unplanned events must also be
accounted for in the system design. The
design for the detection of unplanned
events, the dependency mechanism,
makes the conditions for plan failure
explicit.

Software 0
Implementatior pae;zﬂon
and Maintenance
Test A

=y

Human Factors S/W and HW
Pliots :) Knowledge Engineers ——> a o2 Pilots
Domain Experts Engineering Pilots Engineering

Figure 3 - Software Model Supports the System Life Cycle

The analysis of the mission results in
identification of pilot and system activities
as they relate to various phases of the
mission. This analysis includes the
identification of mission objectives, tasks
that need to be performed, information
required to perform the mission
successfully, candidate approaches for
automation and decision aiding support,
and the identification of constraints
imposed by combinations of the above.

Sequencing tasks in the mission identifies
the context within which tasks are to be
performed and the temporal constraints
for efficient and effective mission
performance. Through the process of
mission decomposition, functional

91

requirements are identified along with the
context in which they are to be executed.
This is a result of the representation of the
mission sequence--mixing pilot and
system activities together in a coordinated
fashion.

User Activity Model
Interactive decision support systems must
provide more aid than they require in user
attention to the system. The primary goal
for modeling the user in the task network
architecture is to minimize interactions
between the system and the user and
thereby develop a non-intrusive,
cooperative decision support framework.
Through modeling the user, the system is
supplied with necessary context

sensitivity to work efficiently with the
user.

The pilot monitoring approach which was
adopted, focussed on the state of the
world represented in the Context Model,
rather than on explicit pilot interaction.
The approach isolates the monitor from
the need to identify all methods of
performing a task, all actions that may
undo a given task, and explicit legal time
intervals for tasks. The result is concise,
robust, task-monitoring rules that can be
incrementally enhanced as the Context
Model grows richer. The task network
represents the activities of the user by
activating tasks when evidence indicates
that they are being performed or have
been completed. Active tasks identify
activities which are being performed by
the user which may be used to identify
the information which is required by the
user of the system. This provides a
mechanism for providing both timely,
and relevant information to the user.

Issues:

The major benefit of DSSD promises to
be the creation of a library of reusable
designs which can be classified by
problem characteristics or domain to
which they are applicable. An application
developer could then quickly piece
together a development framework from
these designs. What is needed is an
enumeration of the fundamental designs
and a description of the range of domains
that they cover.

The DSSD concept supports the notion
that the initial prototyping effort should
be directed at establishing or assembling a
design for the particular application. This
will allow leveraging the
representations/frameworks associated
with component DSSDs. The
development of a application design
based on existing DSSDs should be a
goal in order to achieve system
modularity, reuse, and development
efficiency (eg. automated code
generation).

92

Keller, K.

Traditionally the press for real-time
performance tends to drive designs
toward system representations that are flat
and efficient at the expense of rich
representations which support the
management of design complexity and
effective interface design. It becomes a
matter of development costs vs. the need
for a real-time design.

The integration of DSSDs to support and
integrate different design disciplines is a
key to the application of the DSSD idea to
large systems. In the PA example, the
task network is used as a means to
analyze the human factors elements of
information management and automation,
threat assessment, mission and tactical
replanning, and as a means to determine
the effect of system failures on mission
activities. A focus on the concepts of
DSSD should result in frameworks for
integrating lower level module designs
into a more coherent system design.

$,9-¢/
/26523

./\/\Q

Keller, R.

Knowledge-Intensive Software Design Systems:
Can too much knowledge be a burden?

Richard M. Keller

N93-17518

Sterling Software
NASA Ames Rescarch Center - Artificial Intelligence Research Branch

Mail Stop 269-2, Moffett Field, CA 94035-1000

(415) 604-3388 (Phone); 604-3594 (FAX); Keller@ptolemy.arc.nasa.gov

Abstract

" While acknowledging the considerable benefits of domain-specific, knowledge-intensive
approaches to automated software engineering, it is prudent to carefully examine the costs
of such approaches, as well. In adding domain knowledge to a system, a developer makes
a commitment to understanding, representing, maintaining, and communicating that

knowledge.

This substantial overhead is not generally associated with domain-

independent approaches. In this paper, I examine the downside of incorporating additional
knowledge, and illustrate with examples based on our experience building the SIGMA
system. [also offer some guidelines for developers building domain-specific systems.

1. Introduction

One of the long-prevailing tenets of artificial intelligence
research is that “knowledge is power” -- the more
knowledge made available to a system, the better. The
knowledge-based software engineering (KBSE)
community, as evidenced by its self-designation, embraces
this philosophy no less than other disciplines within Al
Traditionally, the knowledge represented and used by
practitioners of KBSE has been knowledge about the
programming discipline, itself. Increasingly, however,
researchers are recognizing the utility of representing and
using knowledge about the target programming domain
(e.g., business, manufacturing, science,
telecommunications, engineering, etc.) to facilitate
automation of various facets of the software engineering
process [1,2,3). In fact, the seductive “knowledge is
power” maxim has even found a receptive audience in the
mainstream software enginecring community, where
several workshops on the topic of “Domain Modeling”
have been held over the past few years [4].

The migration toward domain-specific systems comes as
no great surprise. Despite progress in developing general-
purpose methods for automated software engineering [S],
the practical application of these techniques has met with
limited success. In some cases, these methods have failed
1o scale up appropriately; in other cases, the methods

93

have proven too mathematically-sophisticated to appeal
widely to the practicing community of software engineers.
However, by incorporating additional domain knowledge
and constraints, it becomes possible to specialize and
simplify these methods to a point where they are more
tractable and less daunting to apply. While
acknowledging the considerable benefits of domain-
specific, knowledge-intensive approaches to automated
software engineering, it is prudent to carefully examinc
the costs of such approaches, as well. In adding domain
knowledge to a system, a developer makes a commitment
to understanding, representing, maintaining, and
communicating that knowledge. This substantial
overhead is not generally associated with domain-
independent approaches. In this paper, I examine the
downside of incorporating additional knowledge, and
question whether adding knowledge introduces as many
new problems as it solves.

Over the past several years, I have been involved in the
development of a domain-specific software design system
for scientific modeling. To ground my remarks, I will

“briefly describe this system and its” knowledge

requirements, Then I will describe some of the additional
burden placed on the developers as a result of the

knowledge-intensive nature of this systcm Finally, I will
attempt to generalize from our experience and present
some guidelines and caveats for others developing domain-
specific KBSE systems.

2. SIGMA : A knowledge-based
scientific software environment

The goal of the SIGMA project [6] is to provide
computational support for scientists engaged in computer
modeling and simulation of physical systems. Examples
of such systems include planetary atmospheres, forest
ecosystems, and biochemical systems. Generally, these
systems can be modeled as a set of algebraic and ordinary
differential equations, where the terms in the equations
interrelate the physical quantities of interest. Although
computer models play a crucial role in the conduct of
science today, scientists lack adequate software engineering
tools to facilitate the construction, maintenance, and reuse
of modeling software. Usually, scientific models are
implemented using a general-purpose computer
programming language, such as FORTRAN. Because
this type of general-purpose language is not specifically
customized for scientific modeling problems, the scientist
is forced to translate scientific constructs into general-
purpose programming constructs. This manual
translation process can be very complicated, labor-
intensive, and error-prone. Furthermore, the translation
process obfuscates the original scientific intent behind the
model, and buries important assumptions in the program
code that should remain explicit. The resulting software
is typically complex, idiosyncratic, and difficult for
anyone but the primary scientific author to understand.

We are building a knowledge-based software environment
that makes it easier for scientists to construct, modify, and
share scientific models. The SIGMA (Scientists’
Intelligent Graphical Modeling Assistant) system

Keller, R.

functions as an intelligent assistant to the scientist.
Rather than construct models using a conventional
programming language, scientists will be able to use
SIGMA's graphical interface to “program” visually using
a more natural high-level graphical data flow modeling
language. The terms in this modeling language denote
scientific concepts (e.g., physical quantities, scientific
equations, and datasets) rather than general programming
concepts (€.g., arrays, loops, counters). The scientist-user
interacts with the system to construct a syntactically and
semantically valid data flow graph, such as the one
illustrated in Figure 1. In this graph, the lettered nodes
represent scientific quantities, such as temperature,
pressure, and density. These quantities are input 10
scientific equations (depicted by numbered nodes in Figure
1) which calculate output quantities.

The data flow graph in Figure 1 represents part of a
planetary atmospheric model developed at NASA Ames
Research Center [7]. The model computes the temperature
(T) at some altitude point above a planetary surface based
on input data (r) measuring the extent to which a radio
signal refracts upon penetrating the atmospheric gases at
that altitude.

Although visually simple, the graph masks a number of
non-trivial technical problems that must be addressed to
actually execute the corresponding program. For example,
the input refractivity value is a vector quantity, not a
scalar, so there is an implicit iteration being performed.
Note also that Equation # 4 is a differential equation that
must be numerically integrated to solve for P. In
addition, the scientific units specified for the various
inputs to an equation may not be compatible and must be

(rofractlvity
data set

number
density

o/
Loschmidt's #: L / tocular /
sh

mixing ratio:) 4 weight:

gas composition:

\ gas refractivity: Xy

mass
density

r—>=0O>n—> @—vp—b @->p— @®-»T

gravitational force: {Ja

planet Tadius: ‘mn ravity:
sititude: Z oraviy: @

\

pressure temperature

@ n= o
Zq fq'i’-

= B
@ p—n&fxm

@ e=s(Z)

@ L= -pg

©n&

Figure 1: Data flow graph representing a portion of a planetary atmospheric model. Letters represent physical quantities.
Numbered circles correspond to equation application nodes.

94

converted to a common unit system before that equation
can be applied. SIGMA’s interpreter handles these details
automatically for the user.

On the surface, SIGMA appears similar to a large class of
data flow based visual programming environments that
have been developed recently. These systems help users
graphically construct software in a variety of application
areas, including image processing and scientific
visualization (Khoros/Cantata [8], Iconicode/IDF [9],
AVS [10], apE [11]), scientific instrument design
(LabVIEW [12]), and simulation (STELLA/IThink [13],
Extend [14]). In all of these cases, however, the software
tool has fairly limited knowledge of the application
domain. Although the tools enforce simple syntactic
checks on the data flow graphs and perform some type-
checking, none of these tools has a deep semantic
understanding of what the data flow program is doing and
whether the operations on the data make sense. As a
result, it is possible with these tools to create a
syntactically valid flow graph that is semantically
meaningless to a domain specialist. In contrast, SIGMA
assists the scientist during the model-building process and
checks the model for consistency and coherency as it is
being constructed. In particular, SIGMA’s domain
knowledge assists the system in interpreting the user’s
intentions and in constructing a semantically meaningful

program,

SIGMA is closer in spirit to ¢g [15]. ¢¢ is a domain-
specific automatic programming sysiem constructed to
assist in generating oil well log interpretation software.
The system was designed for direct use by petroleum
scientists, who would use it to construct geological
models expressed as a set of quantitative equations relating
geological parameters of interest. Like SIGMA, ¢¢g

Keller, R.

makes extensive use of scientific domain knowledge to aid
in the program synthesis process. The next section
describes SIGMA’s domain knowledge.

3. SIGMA’s Domain Knowledge

SIGMA'’s domain knowledge is represented and stored in a
hierarchically-structured, frame-based knowledge base of
over 500 concepts which contain information about
scientific equations, physical quantities, scientific units,
numerical programming methods, scientific domain
concepts, and bibliographic citations. A partial overview
of the knowledge base is depicted in Figure 2.

SIGMA’s knowledge can be partitioned into four
categories:

1. Cross-disciplinary scientific knowledge:
General knowledge available to persons with a
scientific background, including knowledge about
various physical quantities, scientific domain
objects, scientific measure units, foundational
equations, and scientific handbook data.

2. Area-specific scientific knowledge:
Quantities, domain objects, equations, and data
pertaining to a specific scientific discipline (e.g.,
biology, ecology, physics).

3. Problem-specific knowledge: Domain
objects and relations pertaining to the specific
physical system being modeled by the scientist.

/[SIGMA Knowledge Base]\nmnow
Datiset / \ \
L Atmospheric Data

Object

Citation

graph

Transform

Lin Chemical subroutine ~ equation
dataset Object Physical
planetary Quailtity ideal-gas
physical hydrostatic-law
enjity molfcule gravity-eqn
planet mdon Clausius-Clapeyron
physical L arion water £
sysigm object cthane
argon
tholin
atmospheric substance methane
parcel hydrogen
parcel lete |

m
cldud

slug atmosphers
elc elc

Figure 2: Overview of SIGMA’s knowledge base

95

4. Programming knowledge: Knowledge about
numerical programming methods, data structures,
control, etc. (In the current version of SIGMA,
much of this knowledge is implicit in the data flow
interpreter.)

Although a detailed discussion of SIGMA’s knowledge
base and representational structures is outside the scope of
this paper, I will briefly describe one of the key elements:
SIGMA'’s equation representation.

Each SIGMA equation consists of a syntactic equation
formula plus a semantic interpretation for each of the
symbols in the formula. Each symbol is identified with
an attribute of some class of domain objects in SIGMA’s
knowledge base. The domain objects associated with the
various equation symbols are constrained to obey specified
relationships among each other. Consider Figure 3,
which illustrates how Equation 1 of Figure 1 is
represented internally within SIGMA. Equation 1 states
that the number density (n) of a gas mixture (i.e., the
number of particles per volume of mixture) is equal to the
refractivity index (r) of the entire mixture divided by a
weighted sum of the refractivity indices (rg) of the
individual gases within the mixture.

As shown in Figure 3, the semantics of this equation are
represented in terms of the domain objects that the
equation interelates, namely the gas mixture (called an
atmospheric-parcel), the homogeneous pure-gas
subcomponents of the mixture (called constituents), and
the individual gases that are included in the mixture. The
symbols “r” and “n” in the equation are linked to the
refractivity and number-density attributes of the same
atmospheric-parcel. The subscript “g” is identified with

Keller, R.

the constituents attribute of that same atmospheric-parcel.
The constituents attribute stores a pointer to each
constituent within the atmospheric-parcel. The symbol
“fg” is linked to the mixing-fraction of a constituent, and
stores the percentage of this constituent as a fraction of
the total quantity of gas within the atmospheric-parcel.
The symbol “rg” represents the refractivity attribute of a
gas that is contained by the constituent. Finally “L”
refers to a physical-constant called Loschmidt’s Number.

In essence, this representation provides a set of domain
constraints that must be satisfied for the equation to apply
legitimately in a given domain situation. As a scientist
builds up a data flow graph such as the one in Figure 1,
he or she is unknowingly constructing an invisible
constraint network of domain objects and relations similar
to the one illustrated in Figure 3. This constraint network
provides a sound semantic interpretation for the graph.

4. SIGMA’s Knowledge Burden

The rationale behind our decision to invest considerable
time and energy into representing domain knowledge for
SIGMA is simple and, we believe, compelling: How can
a machine interact intelligently and synergistically with a
scientist to create modeling software if the machine has no
understanding of the scientific problem under study?
Without this shared understanding, SIGMA would have to
rely on user guidance for many of the functions it now
performs automatically. Our users have expressed an
impatience with systems that need to be “spoon-fed”;
given an option, they would rather drop down into
FORTRAN and code the model themselves! Our only
alternative, it seems, is the knowledge-intensive route.

PLANET PHYSICAL-CONSTANT
ATMOSPHERIC SurfaceGravity: Name: Loschmidt No.
PARCEL Radius: *=—1 | Onits: 1/cm3

N . Value: 2.86e+l9
Planet: ame:
Altitude: ‘
NumberDensity: -
MassDensity:
Refractivity: <
Pressure: 39
Tamperature:
Gravity: /
Constituents: g <) /\

GAs\ ?jl

g Refractivit
MolecWeight: |
LatentHeat:

CONSTITUENT \6
MixingFraction:L_
NumberDensity: ___
MassDensity:

Pressure:
Gas:

AtomicSymbol:

Figure 3: Representation for Equation 1 in Figure 1.

96

The Catch-22 in this situation is that the addition of
domain knowledge imposes burdens on the developer,
maintainer, and users of the interactive software design
system:

* The Comprehension Burden: System developers
must analyze and understand the application domain
and the class of problems to be solved.

Our experience with SIGMA is that a significant
amount of time (several person-months of effort) is
required to sufficiently understand the scientific
modeling problems presented by our collaborators
in planetary and ecosystem sciences. Of course the
difficulty is a function of many variables, including
the developer’s prior background knowledge and
experience in the application domain, the caliber of
expert advice and guidance, the complexity of the
scientific modeling problem, etc.

» The Representation Burden: Developers must
design suitable representations to capture the
knowledge.

In our experience, the problem of representing
domain knowledge is a significant modeling
problem in itself. Within SIGMA, we have
identified a need for representing quantities,
quantitative and qualitative relationships, part-
whole and subsumption relationships, temporal and
spatial relationships, modeling assumptions, and
other difficult representational constructs. A
comprehensive treatment of all of these issues is
beyond the scope of any single project. (However,
see [16] for an ambitious effort in this vein.)

* The Maintenance Burden: System maintainers
or users must add new knowledge, update old
knowledge as it becomes outdated, and generally
maintain the integrity of the knowledge base.

For example, novice and intermediate SIGMA users

will want to enter new equations and new physical -

quantities into the system. Sophisticated SIGMA
users may wish to modify the original domain
theory that was captured and encoded as a by-
product of discussions with our expert
collaborators. In fact, the domain theory (i.c., the
domain objects, attributes, and relations) is as
much a part of the scientist’s model as the
equations. Because the equations are intimately
linked to the underlying domain theory (as
discussed in Section 3), entering a new equation is
complicated, and modifying the domain theory has
wide-ranging implications. As a result, the current
version of SIGMA does not permit users to modify
the domain theory.

* The Communication Burden: Developers must
implement tools and techniques that adequately

97

Keller, R.

convey the system’s knowledge to the user, and
vice versa.

Consider once again SIGMA's equation
representation. It is non-trivial to convey this type
of a representation scheme to a naive user without
exposure to knowledge-based or object-oriented
techniques. Building an adequate user-friendly
editor for SIGMA will be a challenging (and no
doubt time consuming) task. Navigating and
editing the concepts in the knowledge base pose
similar difficulties.

Although these problems are significant, most of them are
pose no greater or lesser challenge than those faced by
developers, maintainers, and users of any sophisticated
knowledge-based system. Software engineering, after all,
is just another application area for knowledge-based
techniques.

5. Easing the Burden

Despite the extra effort involved, and the new problems
introduced, I still believe it is worth the effort to
incorporate domain knowledge as an integral part of an
automated software engineering environment. I believe
the newly-introduced problems are challenging, but
tractable. And without incorporating additional
knowledge, I see no way to provide more intelligent and
domain-sensitive tools to practitioning software engineers.
In this spirit of pragmatism, I offer the following
recommendations to those building knowledge-intensive,
domain-specific tools:

* Generality: Keep the knowledge base and the
representations general, without going overboard.
This will facilitate entry of new information into
the knowledge base, and encourage reuse of existing
knowledge and representational constructs in new,
similar domains. '

* Stability: Choose an application for which the
domain knowledge is relatively stable. This will
minimize the maintenance burden.

* Scope: Choose an application for which knowledge
is well-circumscribed, yet broad enough to make
the endeavor worth your effort. If the knowledge
can be reused in other applications, the
development costs can be amortized over a shorter
period of time,

» Content: Choose an application for which the
domain theory is well-understood and commonly
accepted. This will simplify the process of
building an acceptable domain theory and reduce
maintenance and communication costs.

- Terminology: Use vocabulary that is as familiar as
possible to users.” This will ease the
communication burden.

« Grainsize: Avoid modeling phenomena in more
detail than necessary for the task -- unless
warranted due to generality and subsequent
reusability.

Of course the developers of software systems do not
always have control over the selection of an application
domain. In this case, the above recommendations can be
used to evaluate the suitability of domain-specific
approaches with respect to a particular domain.

6. Conclusion

Yes, I still believe in the “knowledge is power” axiom.
But more than ever, I feel it is important to heed its most-
overlooked corollary: “There is no such thing as a free
lunch”. Caveat emptor!

Acknowledgments

Thanks to the SIGMA group, and especially to Michal
Rimon, who implemented the current version of our
system. Thanks also to Pandu Nayak who provided us
with his RML representation language.

References

[1] D.Barstow, “Domain-Specific Automatic
Programming”, IEEE Transactions on Software
Engineering, Vol. SE-11, No. 11, pp. 1321-1336,
Nov. 1985.

(2] E.Kant, F.Daube, W.MacGregor, and J.Wald,
“Scientific Programming by Automated
Synthesis”, in Automating Software Design, pp.
169-206, M.R.Lowry and R.D.McCartney (eds.),
AAALI Press, Menlo Park, CA, 1991.

31 D.Setliff, “On the Automatic Selection of Data
Structure and Algorithms”,in Automating Software
Design, pp. 207-226, M.R.Lowry and
R.D.McCartney (eds.), AAAI Press, Menlo Park,
CA, 1991,

[4] N.scoe, “Domain Modeling -- Evolving
Research™ Proc. Sixth Annual Knowledge-Based
Software Engineering Conference, pp. 234-236,
IEEE Computer Society Press, Los Alamitos, CA,
1991.

98

(3]

(61

(7

(8]

9

(10]
(1]
[12]
(13}
[14]

(15]

[16]

Kelier, R.

M.R.Lowry and R.Duran, “Knowledge-Based
Software Engineering”, chapter in Handbook of
Artificial Intelligence, Vol. IV, A.Barr and
P.Cohen (eds.), Addison-Wesley, New York, 1989.

R.M.Keller and M.Rimon, “A Knowledge-based
Software Development Environment for Scientific
Model-building”, AI Research Branch technical
report #FIA-92-12, NASA Ames Research Center,
Moffett Field, CA, forthcoming July 1992.

C.P.McKay, J.B.Pollack, and R.Courtin, “The
Thermal Structure of Titan’s Atmosphere”, Icarus,
vol. 80, pp. 23-53, 1989.

Khoros/Cantata software product, Khoros
Consortium, EECE Department, University of
New Mexico, Albuquerque, NM.

Iconicode and IDF software products, Iconicon,
Palo Alto, CA.

AVS software product, Stardent Computer, Inc.,
Sunnyvale, CA.

apE 2.0 software product, Ohio Supercomputer
Center, Columbus, OH.

LabVIEW software product, National Instruments,
Austin, TX.

STELLA and IThink software products, High
Performance Systems, Lyme, NH.

Extend software product, Imagine That, Inc., San
Jose, CA.

D. Barstow, R. Duffey, S. Smoliar, and S. Vestal,
"An Overview of ®nix", in Proc. National
Conference on Artificial Intelligence (AAAI-82),
pp.367-369, Pittsburgh, PA, August 1982.

R.V.Guha and D.B.Lenat, “Cyc: A Mid-Term
Report”, Al Magazine, 11(3), 1990.

} Lovitsky
N93-17519

Automating Software Design System
DESTA
Foo-6/

/360 7/ Viedimir A. Lovitsky
Associate Professor
’ Software Engineering Department
\ _ Institute of Radioelectronics
\Y Kharkov, Ukraine
(0572) 409 113 (Fax)

Fatricre 0 Pesrce
Professor, Head of Computing Department
University of Plymouth
Drake Circus, Plymouth
Devon, PL4 8AA, UK
pat@uk.ac.psw.cd
(0752) 232 541 (Office)
(0752) 232 540 (Fax)

Abstract

DESTA™ " is the acronym for the falogue Avolutionary Synthesizer of
Zurnkey Algorithms by means of a natural language (Russian or English) functional,
specification of algorithms or software being developed, o

DESTA represents the computer-aided and/or automatic “artifictal
intelligence "forgiving” system which provides users with software tools support
for algorithm and /or structured program development.

The DESTA system is intended to provide support for the higher levels and
earlier stages of engineering design of software in contrast to conventional CAD
systems which provide low level tools for use at a stage when the major planning
and structuring decisions have already been taken.

DESTA is a knowledge-intensive system. The main features of the
Knowledge are proceaures, runctions, moavies, aperating system commands, batch
riles, their natural janguage specifications and their interlinks. .

The specific domain for the OFS7A system is a high level programming
languages likes Turbo Pascal 6.0.

The DESTA system is operational and runs on a 1BM PC computer

99

Lovitsky

1. Introduction

At present software development is the biggest obstacle to major new
breakthroughs in computing. The biggest limitation in software development is the
failure of imagination that people tend to project: "A user only really knows what
pe wants when he sees a rinished attempt”.

How we develop software at present. We tend to develop software in the
same way we did it in the 1960s i.e. it's one instruction after the other. We really
haven't yet got to the point where CAD system or CASE-type tools help out very
much. In order to move toward what we call higher levels of software automation
in the future, we are going to be using more standardized systematic-type modules
for developing software systems. ,

The end aim of automatic programming is a complete system without the
need to write any code. At present you don't see automatic programming, where
you simply say to the computer: ‘0K / need a program to do this, and /o and beholq,
out it comes”.

This paper describes aspects of applied research related to the development
of an intelligent system DFSTA The idea is very simple: we must get lots of
different software from lots of different places that must work together and must
talk to each other and the output of one can be used as input of the other.
Obviously we need to have vast knowledge base for it. The software should be
developed from reusable software components: “software chips'. To do it we
need to consider some general {ssue:

e Knowledge content, structure, representation, acquisition, and main-
tenance.

® [nference engine. ,

e Human-computer interaction, natural language interface, integrated
program development environment,

2. Knowledge Base

Software development is an intensely knowledgebased activity. The
functioning or activity of any intelligent system (natural or artificial) can be
reduced to solving a set of suitable problems, 93% of which belong to so-called
"ill-defined” problems whose solution cannot be expressed by formulae or by
means of using classical or modern mathematics. In this case it is more
convenient for the end user to specify their requirement to the computer by means
of natural language (NL).

By an mntelligent system we shall understand a system which enables us to

solve Jnlelligent prob/ems

100

Lovitsky

21 Inteélligent Problem

Intuitively under the problem T they will understand the four <X,Q,F,Y>, in
which X stands for the finite set of input data and their specification; Q
represents the goal descriptions, and F is the finite sequence (or sef) of rules
transforming X into Y. Thus Y is the finite set of output data.

Proceeding from a given definition it is easy to single out at least three
classes of problems, which are characterized by the following relations:

X&Q&F|--Y, (1)

X&Q&YI--F, (2)

X&Ql--F=Y, (3)
where symbols "&", "|--" and "=>" stand for "and", "give" and "implication”
respectively.

/ntelligent proplems are characterized by relations (2) and (3). In this
case the problem to define software chips can be represented by:

T = <5p(x),Dt(x),Nm(F),As(F),Sp(F),Cnd(F),Dc(F),Pr(F),Sp(y),Dt(y)>,

where Dt(x) and Dt(y) are the "nput” and ‘output™ data, respectively;

Sp(x) and Sp(y) are their “specification”

Nm(F) is the ‘a/gorithm name” coinciding with the problem name Nm(T);

Dc(F) represents the ‘declarative gescription” of the finite sequence (or
set) of rules called the "algorithm". Having available Dc(F) the system Knows
How to solve the problem T, but it Cannot (is not able to) solve this problem:;

Pr(F) is the rogram representation” of F called “program" (or

“module”). Having available only Pr(F) the system Does Not Know How to solve
the problem T, i.e. it cannot describe declaratively the course of its solution, but
because the description of Pr(F) is /nte///gm/e to the system 1t Can Execute
F (i.e. Can Solve the problem);

The description of “functionality” - As(F), the ‘condition”of its execution -
Cnd(F) and its “specirication”- Sp(F) including the language for the description
of F, the method of solving, the required computational resources for its
implementation etc are brought to conformity with every F.

22 Content and Structure of KB

The activity of any natural (or artificial) intelligent system is just
connected with solving different problems. Hence, knowledge of these systems
must be predisposed to realize such activity. In our opinion the KB should
consist of three components:

(1) Knows WHAT,
(2) Knows HOW,

101

Lovitsky

(3) CAN DO Something.

According to the traditional approach to knowliedge representation, the
knowledge is divided into "Dec/arative” and "Procedural” that does not permit one
to realize the main capability of the human mind: “hootstrapping principle”

one can distribute among the three part of KB the elements of problem
notion:

(1) Knows WHAT: Sp, Dt, Nm, As, Cnd.

Here all the declarative components connected with the specification of the

problem being solved are interlinked.
(2) Knows HOW: Dc(F),
(3) CAN DO Something: Ar(F).

At present there can be no doubt that the possibilities of the artificial
intelligence system (AIS) are defined to a large degree by the organization of the
knowledge store. In the general case, under the memory organization one should
understand the regularity of data distribution in memory assuring the storage of
various links between separate elements of information and representing the main
principle of gestaltpsychology, i.e. "the whole is greater than the sum of the
parts~. In other words, the structure obtained as a resuit of integration should
contain more information than had been used for its creation. Apparently this
defines the striking ability of a human being for generating and understanding an
endless number of sentences based on the limited experience with a limited
number of sentences.

Moreover, at every moment of time both a man and AIS deals only with
relatively small fragments of the external world. The corresponding structures are
needed to integrate these fragments separated in time into the integral picture.

All kinds of binary relations can be divided into just four classes: “one-
to-one”, ‘one-to-many-, ‘many-to-onme" and ‘many-to-many- For im-
plementation of these classes of binary relations the four types of elements
corresponding to them are suggested: 1-elements, A-elements, Y-elements

and X-elements. Different combination of these elements determine the
different attributes of the structures. The KB of DFSTA-system are provided by
the interaction of the different structures as follows:

- L-tree-structure (combination of 1- and A—elements). This is an

initial structure which provides the recognition of new words, the normalization
of well-known words and the determination of direct links with the corresponding
nodes of Sm-structure, Md-structure and Set-structure.

- TB-structure (combination of I-, Y- and A—elements). Provides the
understanding of new words. ,

- Sm-structure (combination of I-, Y-, A— and X-elements). Provides
the handling of new or well-known sentences or sequences of words.

102

Lovitsky

- Md-structure (combination of I-, Y- and X—elements). Provides the

mapping of the In-, Out-parameters and Cnd(F) interaction for different
modules and algorithms.

- Set-structure (combination of I-, A= and Y—elements). Usually each

module is associated with several other modules logically including it or included
by it. This structure permits the system to map such links.

- PrRl-structure (combination of I- and A-elements). Provides the
storing of production rules and direct access to them.

3. Inference Engine

In the past AIS development was based on the Logica/ Paradigm, the main
idea of which was to extract the problem solving from some theorem proof using,
for example, first order predicate calculus (or Horn clause logic which is the
restriction form of first order predicate calculus).

At present It is understandable that the KB of the real AIS is /ncomplete,
Inconsistent and should be open. In such a case it would be natural to devote
more attention to the Auman inference process which is based on ‘plausible
reasoning” using maximum "argumentation” about problem solving within the
framework of KB.

One can single out at least three relatively independent mechanisms serving
the “natura/ inference” source:

- integration of information;

- addition of information;

- cognitive transformations.

The idea of the structured approach for natural inference is considered.

4. Natural Language Interface

The natural language (NL) was chosen as:

® an externa/ language for knowledge descriptions;

® an /nterna/ 1anguage for knowledge representation;

® a specification language of the problem being solved and non-procedural
or procedural algorithm;

® a communicationlanguage between the end users and DES7A system.

Any NL-text handling is performed as follows: R

e Any NL-sentence is divided into so-called “nuclear” (the simplest)
sentences. By nuc/ear sentence (NS) is meant:

- asimple or a simple extended sentence with the direct order of words,
where the subject group can be expressed only by a noun.

103

Lovitsky

- asimple or a simple extended sentence with the direct order of words,

where the subject group is expressed by a verb in the form of the imperative mood.
e Any NS is transformed into a form of the NL-statement. The verb of

any NS is just a name of active or state statement. Act/ve NS looks like a
module description (e.q. Remove(what,from,to)) and state NS - as a specifier
(e.g. Betwhat, where)). Every NL-statement consists of the operation name plus
respective parameters determined by the valence of this operation or its
management model or {ts role frames.

NL-statements represents A-statements, S-statements or R-
statements. A-statement 1is the statement of action or the active NL-
statement. S-statement is a state NL-statement or a statement of relations
with a subject of inactive state. R-statement represents some relations like
syno-nym, antonym, apart of and so on (e.g. Delete a cursor 1s @ synohym to eraseé
a cursor’ ‘Ascending sort algorithm as opposed to agescending sort algorithm:,
"TB-structure s a part of DESTA know/eage base”))

There is a semantic equality between the initial sentence and the finite set
of NL-statements. _

e The finite set of NL-statements for initial NL-sentence is represented as
a concepl”.

5. Conclusion

At present DESTA is software implemented to proof the correctness of a
paradigm being suggested. In short the keystone of this paradigm is as follows:

e For the end user it is more convenient to specify their requirement to the
computer by means of natural language.

e The system has to automatically yield a readily comprehensible good
structured rapid prototype which i a// stages of structured growth should be
executable.

e Software development is an iIntensely knowledgebased activity.
Using NL-specification we can include in the KB functional descriptions of
"software chips™ (SC): moaules, proceaures, functions, batch riles, operating
system commands and a/gorithms. The SC can be implemented on any program-
ming languages: moaule-orienteq, object-oriented and/or active geclarative
languages. The NL-specifications allow us to join them in whole software systems
(we are not discussing here about compatibility SC for different programming
Janguages).

e Using NL-specification DESTA either extracts from the KB the suitable
SC in accordance with the NL-specification or asks the user for a more detailed
aescription of the problem being solved.

104

Maiden

N93-17520

Generic Domain Models in Software Engineering

S/
/36578

Neil Maiden

Department of Business Computing
City University

London EC1V OHB, UK.
Tel: +44-71-253-4399 x3422
\Q E-mail: cc559@city.ac.uk

N

Abstract
_This paper outlines three research directions related to
. domain-specific software development: (i) reuse of generic
. models for domain-specific software development; (ii)
~ empirical evidence to determine these generic models,
namely elicitation of mental knowledge schema possessed
by expert software developers, and; (iii) exploitation of
- generic domain models to assist modelling of specific
applications. It focuses on knowledge acquisition for
domain-specific software development, with emphasis on
~ tool support for the most important phases of software
development.

Introduction
Domain-specific software design has aroused considerable
interest over the last decade. Most of the research effort
has focused on supporting the latter stages of software
development, typified by program transformational
techniques and systems (e.g. Feather 1987). However, it is
now agreed that most costly problems occur during the
carly stages of sysem development, when systems’
requirements arc ill-defined and poorly understood.
Therefore, domain-specific software development (as
opposed to design) must provide effective guidance during
requirements engineering and high-level software design
as well as during system implementation. Unforunately
requirements engineering differs from system design in its
focus on the identification and embedding of systems in
their environment rather than prescribing systems’
functionality. This broad view can often preclude the
complete capture of all domain knowledge, implying only
partial automation of domain-specific software
development. This paper proposes, as a first research
direction, that it is more beneficial to model generic
domain models rather than specific application domains,
and to exploit these generic models for guiding rather than

automating requirements engineering and high-level
software design.

Domain modelling is needed for domam-specxﬁc software
development. However, case histories of successful
domain modelling and effective methods for modelling
complex applications have been lacking in the literature.
Innovative work by Neighbors (1980) indicated that
domain analysis was both difficult and time-consuming,
even for experienced analysts. Recent findings have
supported this view, for instance Prieto-Diaz (1991)
reports difficulties in maintaining a domain model
represented as a faceted classification scheme supporting
reuse within a single application. Furthermore, models of

specific applications can only support development within

that application, while many organisations develop
software for many applications, thus reducing the potential
payoff from such application modelling. Generic domain
models provide an alternative domain knowledge source
which can provide greater payoff to software developers
because of their applicability to many applications. Reuse
of such models has been proposed elsewhere (e.g.
Reubenstein & Waters 1991), although litle is known
about the nature, contents and applicability of generic
domain models for effective requirements engineering. As
a result, a second research direction proposed in this paper
is to determine the knowledge structures of generic domain
models which suppont effective requirements engineering.

Generic domain models have been proposed 0 support
requirements engineering activities, however they may also
provide effective guidance for longer-term domain
modelling activities. The problem is akin to knowledge
acquisition during knowledge-based system (KBS)
development. Recent advances in knowledge acquisition
techniques promote reuse of generic, partial domain
models as templaies supporting top-down knowledge
acquisition and modelling (e.g. Wielinga et al. 1991,

105

Chandrasekaran 1986). A third research direction proposed
in this paper is to exploit generic domain models to assist
application modelling within a comprehensive domain
modelling framework.

The remainder of the paper investigates these three
research directions, namely reusing generic models for
domain-specific software development, determining the
nature of these generic models from empirical studies, and
exploiting generic domain models to assist subsequent
modelling of specific applications.

Evidence for Generic Domain Models
Evidence for the likelihood of generic domain models to
assist requirements engineering comes for current software
engineering research, recent advances in knowledge
acquisition and empirical evidence of software engineering
expertise. Each is examined in turn.

Maiden

Generic Knowledge Structures in Knowledge
Acquisition

Knowledge acquisition techniques and methods (reviewed
in Neale 1988) have implications for domain analysis for at
least three reasons. First the task of requirements analysis
is similar to knowledge acquisition. Aspects of KBS
development such as information analysis, application
selection, project management, user requirement capture,
modular design and reusability are similar to those
encountered in software development. Indeed the KADS
project (Wielinga et al. 1991) proposes a sequential
development method based on modelling activity and an
operational model that exhibits some desired behaviour in
terms of real-world phenomena, similar to many existing
software development methodologies including SSADM
(Cutts 1987) and JSD (Jackson 1983). A second reason is

" “that knowledge acquisition techniques like KADS are

Generic Domain Models in Software Engineering

Generic domain modelling in software engineering
research has arisen as an issue in both automated software
development and domain analysis. Reusable generic
domain models have been proposed in several research
projects (e.g. Reubensiein & Waters 1991). The well-
known Requirements Apprentice (Reubenstein & Waters
1991) exploits cliches representing general software
engineering concepts, including domains, however few
clues are provided about the nature and boundaries of these
cliches. Furthermore object-oriented paradigms have been
limited to design and implementation phases of software
development while object-oriented analysis has focused on
object definition rather than object structure within
domains. This would suggest that abstraction in software
engineering is poorly understood, and requires further
investigation.

Iscoe (1991) reviewed evolving research in domain
modelling, with emphasise on meta-models instantiated
into application domains. His research issues ‘include
domain classification and analysis, implying the need for a
theory of software engineering abstraction, however he
gives few clues about the nature of this abstraction. Several
domain meta-models have been reported in the literature
(e.g. Lubars 1988, Dardenne et al. 1991, Chung et al.
1990), however this work has not been sufficiently
developed as application examples and in practice to
determine generic domains. Prieto-Diaz (1990) also
reviewed domain analysis and emphasised the importance
of abstraction in domain modelling. However, he could
offer no guidance for this abstraction process beyond
current structured analytic techniques such as SSA (De
Marco 1978) and domain analyst expertise. Furthermore
abstraction was limited to identification of important
domain features rather than generification from application
instances.

106

relevant to requirements engineering because they focus
support on the earlier, analytic stages of KBS development
while domain-specific software design paradigms support
later stages such as program specification, transformation
and maintenance (¢.g. Feather 1987). Finally knowledge
acquisition approaches introduce techniques not found in
otherwise equivalent software development methodologies,
5o a review of knowledge acquisition techniques in respect
10 requirements engineering is warranted. The following
knowledge acquisition projects were identified as having
implications for generic domain models.

Generic Tasks: Chandrasekaran and his colleagues at Ohio
State University propose generic tasks to provide an
outline or framework for expert system design. This
framework claims that complex knowledge-based
reasoning tasks can often be decomposed into generic
tasks, each with associated types of knowledge and family
of control regimes (Chandrasekaran 1986). Six generic
expert system tasks are identified in terms of knowledge
types and control regimes: classification, state abstraction,

~ knowledge-directed retrieval, object synthesis: by plan

selection and refinement, hypothesis matching, and
assembly of compound hypotheses for abduction. These
tasks encompass both declarative and procedural
knowledge in reoccurring patterns. They emphasise the
impontance of domain knowledge and the reuse of large
knowledge structures akin to complex objects.

The KADS Project: KADS is an ESPRIT project (ESPRIT-
1 P1098), providing the knowledge engineer with reusable
partial knowledge models as templates 0 support lop-
down knowledge acquisition and modelling, based on
recognition that parts of the model are not specific to
certain applications. The success of this approach has been
documented in many domains, including diagnosis of

movement disorders, paint selection, commercial wine
making and statistical consultancy (Wielinga et al. 1991),
suggesting the potential effectiveness of the retrieval and
exploitation of generic knowledge structures in complex,
ill-structured modelling activity. Generic models are
categorised by system structure, solution type and the
discrepancy between observed and expected behaviour,
based on a modified and extended version of Clancey’s
(1985) description of problem types.

KADS’s domain meta-model is based on a tentative
topology of primitive problem solving actions, or
knowledge sources, consisting of concepts, their attributes,
the values of these attributes, the structure of concepts, sets
and set instances. It is derived from the type of operation
that is carried out by the knowledge source, demonstrating
the importance of contextuality linked to functionality of
knowledge needs. KADSs' generic models demonstrate the
importance of a topology of primitive problem solving
actions based on a taxonomy of problem solving types.
This approach has lead to considerable modelling success
in a number of complex applications. Unfortunately the
meta-model is weak due to the varied nature of domains
tackled by the KADS approach.

Generic Mechanisms: Klinker et al.’s generic mechanisms
(1991) result from comprehensive rescarch to develop
constructs which are both usable and reusable during
knowledge acquisition and modelling. These mechanisms
represent generic tasks reoccurring in many domains, for
example sizing and scheduling tasks occur in both the
computer and aerospace industries. Klinker’s current
knowledge acquisition tool is populated with at least 14
such mechanisms which are also aggregated into larger
applications in which they often occur. A theory of
mechanisms is currently being developed from experiences
with the knowledge acquisition tool in new applications,
leading to a more refined and complete mechanism library.
The approach of Klinker and his colleagues differs from
those of Chandrasekaran and KADS in terms of the
research methods used, which employ empirical evidence
to determine generic task mechanisms and their
aggregation. This most comprehensive generic domain
analysis demonstrates the importance of multi-level
abstraction and granularity for generic domain models,
with a need to aggregate domain models in several
dimensions such as common application groupings.

Summary. Recent knowledge acquisition approaches
demonstrate the feasibility of guidance based on generic
domain and task models during complex modelling
activities like requirements engineering. However, a model
of generic tasks and domains, implying an underlying
theory of abstraction, is not readily available for software
engineering researchers. Such a theory must identify

107

Maiden

several determinants of generic domain models, such as
their appropriate level of abstraction, granularity and
effective knowledge structures, to decide how big or small
these generic domain models should be. Intermediate
findings point to potential research directions, namely the
contextual nature of these models and the need to validate
them through empirical evidence in software engineering,
for instance software engineering domains are very
different to those of commercial winemaking or diagnosis
of movement disorders (Wielinga et al. 1991).

Software Engineers’ Expertise

Software engineers’ expertise offers one form of empirical
evidence for validating generic domain models. Expert
software developers possess preformed abstract mental
schema of domains which allow them to classify, structure
and scope each problem (Guindon 1990) and develop
multiple mental domain models (Pennington 1987).
Experts’ mental schemata can be assumed to be effective
generic representations due to successive refinement
during requirements engineering experiences in many
applications, which may suggest why experienced software
engineers are much sought-after individuals. Intelligent
software development mimicking experts’ knowledge
structures may be one direction for research to proceed.
Again however, current empirical evidence of software
engineers’ mental schema is limited due 10 a lack of
relevant and comprehensive studies, so more effective,
empirical research is needed to determine generic domain
models in software engineering.

An Initial Model of Software Engineering
Abstraction

Swdies of generic models in software engineering,
knowledge acquisition and expert analytic behaviour
suggest the validity of a generic domain modelling
approach to domain-specific software development.
However, the nature of these generic models is less clear,
so a three-phase research strategy was adopted at City
University to determine their contents and structure:
-investigation of analogical specification reuse as one
means of determining generic domains underlying this
reuse, to be followed by validation and extension of these
generic domain models using:
sempirical studies of software engineers’ mental
knowledge structures via knowledge acquisition
techniques, and
edomain analyses of large, real-world applications to
verify generic domains in terms of recognisable
instantiations and instantiation aggregations.
The first phase is partially complete while the second and
Action. The first phase has led to0 a tentative model of
software engineering domains which provide the basis for

a retrieval mechanisms supporting analogical specification
reuse, and described in Maiden & Sutcliffe (1991).

Generic Domain Models Supporting
Specification Reuse

Maiden (1991) identified an initial model of generic
domain models through studies of analogical specification
reuse, such that two specified domains are analogous if
they are both instances of the same generic domain class,
as demonstrated in Figure 1. As such the scope, granularity
and level of abstraction of these generic knowledge
structures is constrained to most effectively support reuse
of functional specifications.

Maiden’s model (1991) proposes that generic domain
classes are differentiated by key state transitions, hence a
generic resource hiring domain, of which library loans is
an example, can be distinguished from a generic resource
containment domain (e.g. stock control) by the key
transition of return (see Figure 2). Similarly two classes of
object allocation domain can be differentiated by the
transitions send to and remove from waiting lists, for
example the reservation system of a local cinema may not
include waiting lists once all seats for a performarce are
sold. Additional determinants of distinct domain classes
were identified in terms of these critical transitions
between domain states. The following meta-schema for
describing critical generic domains and their instantiations
was developed, with each knowledge type describing one
or more critical dimensions:

. actions leading 1o state transitions with respect to a

knowledge structure. These actions represent system
intervention in the domain to maintain or change the
domain from a possible to a required state. Actions and
state transitions are central to the model, for example the
allocation action in the theatre reservation example
causes the object (theatregoer booking) 10 change state
from an in-requirement state to an occupying-resource
state (from required-booking w0 reserved-booking),

- object structural knowledge describing both problem and
required domain states in the form of conceptual
relations between objects. For example, theatre contains
many seats, each containing one or no theatregoer
booking. Furthermore, required knowledge structures
such as maximise seat occupation, can be imposed on
these domain states;

« pre/post-conditions on state transitions identified from
values describing the current state of objects, for
example a state transition moving the theatre reservation
1o the seat only occurs if the reservation and the seat
have similar constraints such as non-smoking, price
<£20, seat is unreserved, eic.;

« object types describe object roles in the context of state
transitions, for example customer bookings is a type of
requirement while theatre seats are resources available

108

Maiden

to satisfy those requirements,

« functional transformations which may be causally-
related 1o state transitions in the domain model, for
example the functional transformation allocate from
waiting list results in a state transition moving the
theatre booking from the waiting list to theatre scats
while functional transformations in library systems are
typically lend and return;)

. state transitions can also be distinguished by their
rriggering events. Domain events which cause state
transitions are either initiated by the information system
or by events external to it, for example the theatre
reservation domain may in pan be distinguished by the
scope of triggering domain events because allocating
customer bookings to the seats available is initiated by
the information system while removing customers from
allocated seats results from external events.

requirement resources

<.’) allocate ’

cancellations

\u:mi lm. od: lmJ‘ fﬂ}“

<world,reqt_set,has_one>

<world, resource_set ,has_one>
<world,list,has_one>
<reqt_set,reqt,contains_one>
<resource_set,resource. has_many>
<resource,reqt,contains_one>
<allocate,reqt.reqt_set,resource,o ne>
<reqt.reqt_type>

<resource resource_type>
<allocate,matching_properties>

theatregoer theatre with seats
a allocate N iigigi cancellations

N ey ¥
et om

theatre wailing list

Figure 1: simple theatre reservati on domain
and its generic domain class, incl uding partial
definition of that class

To sum, this model of generic software engineering
domains was developed from example-based studies of
such domains in the context of reuse. Its development was
driven by domain-based studies of important knowledge
structures in software engineering, a constraint which

distinguishes it from existing meta-models of software
engineering domains such as TELOS, (Chung et al. 1990).
The extent and nature of this example-driven analysis is
described briefly in the following section.

Example Generic Domain Models

Current research has identified 35 generic domain models
through the relatively weak proof of trial by example, see
Figure 2 and Maiden (1992). These models were
hierarchically-structured to identify classification and
specialisation of basic domain types, for instance library
and stock control domains are both specialisations of a
more generic object containment domain. Furthermore
generic domains were aggregated to identify siandard
applications incorporating many domain classes in unique
patterns, for example a comprehensive library system can
involve lending, stock updating, allocating and reserving
activities which are all instantiations of different domain
classes. The validity of this current approach is suggested
by a prototype specification reuse tool incorporating 10
such generic domain models in a specialisation hierarchy
to support successful retrieval and explanation (Maiden
1992). However, further work is needed 10 extend and
validate the current model.

Domain Modelling From Generic Domain
Models

This paper reports studies which reveal domain analysis to
be a problematic task akin to knowledge acquisition.
Parallel experiences in knowledge acquisition suggest that
generic domain models may assist in this task. A domain
modelling framework incorporating reuse, similar to the
KADS method, is needed to make effective use of generic

domain models. In particular such models provide pieces

of the generic skeleton to be instantiated and fleshed out
with additional knowledge types until the domain model is
complete.

@=s{sg=26

Figure 2: examples of generic doma in models:
(i) renewable resource, e.g. libra ry,
(ii) non-renewable resource, e.g. stock control.

109

Maiden

Summary

This paper proposes that greater benefits can be achieved

from modelling generic domains rather than specific

applications, so overcoming domain modelling bottlenecks
by mimicking expert software engineering practice.

Intelligent tool support founded on generic domain

knowledge can assist during requirements engineering in

the following tasks:)

* identification and validation of application models to
assist effective requirements capture, providing
intelligent feedback on system requirements and models;

+ procedural guidance for requirements engineering tasks,
using generic domain hierarchies to focus on critical
domain features and incrementally specialise them;

» support for reuse through categorisation of problems
based on generic domain classes (Maiden & Sutcliffe
1991).

We would also intuitively expect generic domain models
to provide the basic building blocks for complex
application modelling then domain-specific software
design. Acquiring these knowledge structures therefore
takes on considerable importance for intelligent support
during requirements engineering and software design. To
this end we suggest that much research effort should be
focused on practical and empirical research to determining
the most effective knowiedge structures for supporting
domain-specific software development.

References

Chandrasekaran B., 1986, Generic Tasks in Knowledge-
Based Reasoning: High-Level Building Blocks for Expert
System Design, IEEE Expert 1(3), 23-30.

Chung L.,