Chien

N9S-17504

Issues in Knowledge Representation to Support Maintainability:

A Case Study in Scientific Data Preparation

Steve Chien, R. Kirk Kandt,
Joseph Roden and Scott Burleigh

Jet Propulsion Laboratory
Califomia Institute of Technology
Pasadena, CA 91109-8099

[Abstract

Scientific data preparation is the process of
extracting usable scientific data from raw
instrument data. This task involves noise
detection (and subsequent noise classification and
flagging or removal), extracting data from
compressed forms, and construction of derivative
or aggregate data (e.g. spectral densities or
running averages).

A software system called PIPE provides
intelligent assistance to users developing scientific
data preparation plans using a programming
language called Master Plumber. PIPE provides
this assistance capability by using a process
description to create a dependency model of the
scientific data preparation plan. This dependency
model can then be used to verify syntactic and
semantic constraints on processing steps to
perform limited plan validation. PIPE also
provides capabilities for using this model to assist
in debugging faulty data preparation plans. In this
case, the process model is used to focus the
developer's attention upon those processing steps
and data elements that were used in computing the
faulty output values. Finally, the dependency
model of a plan can be used to perform plan
optimization and runtime estimation. These
capabilities allow scientists to spend less time
developing data preparation procedures and more

time on scientific analysis tasks.

Because the scientific data processing modules o

(called fittings) evolve to match scientists’ needs,
issues regarding maintainability are of prime
importance in PIPE. This paper describes the
PIPE system and describes how issues in
maintainability affected the knowledge
representation used in PIPE to capture knowledge
about the behavior of fittings.

23

Sy & /

26377

Todd King and Steve Joy /VJ (0

Institute of Geophysics and Planetary Physics
University of California at Los Angeles
Los Angeles, CA 90024-1406

Introduction

Scientific data preparation is defined as the application of
multiple transformations to collected data sets in order to
produce data in an easily usable form. The questions a
scientist asks dictate which data are to be collected as well
as which transformations are to be applied. The need for
simplified scientific data preparation has increased due to
the volume of data now collected and the diverse uses for
any specific type of data. Automated scientific data
processing systems can be used to simplify this process.

While general scientific data processing systems have
existed for some time, the complexity of data types and
transformations required in specific domains renders these
systems of limited utility. As a result, many scientific
teams develop their own software systems to accomplish
the data preparation required in their specific domain.
These systems suffer because they become too specific,
and the effort spent developing such systems are only of
value within the context of a particular domain and task.
Because scientists desire to reuse their work, hybrid
Systems are appearing which provide useful analysis tools
and definition of domain-specific data types and
transformations. Plans are developed in these systems
which specify which of the transformations to apply to a
collection of data sets. By the nature of the processing
steps required in many domains, these plans can become
quite complex. We are now at a point where the
complexity of these tools requires significant expert
knowledge to use.

Master Plumber [King & Walker 1991] is a software tool
developed by the UCLA Institute of Geophysics and
Planetary Physics to create programs to prepare scientific
data. While its primary area of application has been time-
series magnetometer data, the tool is applicable to the
general task of scientific data preparation.

Master Plumber is a dataflow system. Thus, in Master
Plumber, data elements are represented by columns, which
are streams of data being processed as they move through
the system. Data processing steps are called fittings, and a

plan to process a parucular form of a dataset into another
form is called’a blueprmt

Thus, as shown in Figure 1, raw data might be read in
using an intro_flatfile fitting, a running average computed
using a runstat fitting, and the results written into an output
file.

1. intro_flatfile infile=foo
columns=bx

2. runstat length=1287 shift=1
columns=bx

3. write flatfile ocutfile=bar
columns=bx, rabx overwrite=YES

Figure 1: A Simple Blueprint

A major difficulty in constructing blueprints is tracking the
many fitting and column interactions. While a typical
blueprint might use 25 columns and 20 fittings, the more
complex blueprints use hundreds of columns and 30 or
more fittings. Because of the number of possible
interactions, constructing and debugging scientific data
preparation blueprints is a time-consuming task requiring
expert knowledge.

Because of the complexity of the data preparation task,
users sometimes make errors in blueprint construction.
One type of construction error occurs when a user forgets
to set up the data needed for a particular step.
Unfortunately, this type of error can go unnoticed until far
into the execution of the blueprint, wasting valuable time.

Another common situation is that the exact method of
processing the data is dependent upon the character of the
data. In this case the user will use some default methods
for processing the data, examine the results, and modify the
options. This tuning cycle continues until the data is in a
satisfactory form.

The final aspect of blueprint developmem which
complicates the development process is that new ﬁmngs
are added to a system as new needs and requirements arise.
In addition, new fittings also evolve with new options and
characteristics being added. Any mwlhgem tool must be
readnly y changed to remain useful in such a dynamic
environment.

Currently there are approximately 65 fitings which are
part of the standard Master Plumber system. These fittings
perform a variety of transformations on the data flow, such
as: introducing and writing data into several formats;
displaying data on the screen; and actual numerical
transformations. There are support libraries which allow
for fittings to be written in either C or FORTRAN. A
special fitting called PLISP takes programs written in a C-
like language and performs the transformations on the data
flow. This allows for new processing steps to be initially
tested as PLISP programs and later be integrated as full-
fledged fittings into the Master Plumber system.,

Some scientists use data preparation systems indirectly
with the help of software support personnel who write and

24

Chien

debug the actual data preparation plans. The goal of PIPE
is to make Master Plumber easy enough to use such that
this type of support is not necessary. The combination of
PIPE and Master Plumber will allow the blueprint
developer to develop blueprints easier and faster, allowing
them to spend more time on data analysis and less time on
data preparation.

Overview

To achieve these goals of assistance in the scientific data
preparation process, PIPE [Chien et al. 1992] provides four
capabilities:

1. constraint checking to detect invalid blueprints
before execution;

2, diagnosis assistance of blueprints through
dependency analysis;

3. optimization of blueprints through dependency
analysis; and .

4. runtime esumauon usmg models of fimng
runtime performance.

The architecture of the PIPE system is-shown in Figure 2.
PIPE accepts a blueprint file and a set of descriptors for
datafiles and uses a fittings knowledge base to construct a
dependency graph representing the computations 10 be
performed by each of the fittings in the blueprint. This
blueprint parsing phase uses knowledge of fittings and their
options to construct a dependency graph, which indicates
for each fitting which columns are accessed and used to
modify existing columns, create new columns, or remove
existing columns. This dependency graph can then be used
by the constraint checking module which determines if any
of the constraints associated with the fittings have been
violated.

In cases where blueprints must be debugged, PIPE can
use the dependency graph to support isolation of the fault
in the blueprint. Because the dependency graph tracks all
of the operations upon the columns, when the user detects
an error in one of the output columns, PIPE can present a
list of fiings which modified the column in question. The
user can then focus his attention upon these fittings, to
determine where the error was introduced into the data,
sometimes by plotting intermediate data. After isolating
the first fitting at which the column is faulty, the user can
query PIPE for information on the fitting to determine
which columns were used to compute the changed column.
This process continues until the fault is isolated to the data,
fitting option settings, or fitting code itself.

PIPE also provides an optimization capability. Because
PIPE constructs a full computation dependency graph,
PIPE can determine the'iast fitting in which each column of
data is used in the blueprint. Thus unneeded data can be
removed from the datzflow, decreasing the execution time
Because many fittings operate on data by default, PIPE
distinguishes between default processing and explicit

Bluepﬂnt \
——"—"'

Input Files

Blueprint
Parser

Fitting
Knowledge
Base

Figure 2: PIPE System Architecture

processing. Default computation which does not result in a
program output (e.g. plot, output file) can also be removed.

Finally, PIPE provides a runtime estimation capability.
Using the dependency graph to determine which columns
each fitting processes, and models of runtime for each
fitting type, PIPE can provide an estimate of how long the
blueprint will take to run to completion for the specified
datafiles.

Blueprint Parsing
In order to provide assistance in blueprint development,
PIPE constructs a dependency network representation of a
blueprint. When a blueprint is read in by PIPE, it is
processed from the first step onward. For each fitting,
PIPE uses:

« methods stored in the fitting knowledge base,

» default values stored in the fittings knowledge
base,

« fitting options,
« alist of existing columns in the flow, and possibly
« aninput file

to determine:

« any new columns created by the fitting,
» any existing columns modified by the fitting,
» existing columns deleted by the fittings.

25

Chien

Optimizer
Dependency Debugging
Graph Tool
Constraint
Checker

Runtime
Estimator

Additionally, for any new or modified columns, PIPE
determines:

» the set of columns accessed in computing the
value for the column.

Because columns may be processed by default or explicitly
selected, the dependency network also makes note of this
distinction. This facet of the processing is important in
order to take appropriate action when optimizing the
blueprint (see below).

Constraint Checking

Constraint checking occurs while the blueprint file is being
parsed (i.e., prior to execution). A description of the
constraint checking algorithm follows.

Duri p .
for each fitting in the blueprint
for each option specified
check option type constraints
check for required options

After Parsing
for each parsed fitting in blueprint
for each option in fitting
check option value constraints
check inter-option constraints
check dependency constraints
check inter-fitting constraints

Diagnosis Assistance

PIPE also provides a blueprint diagnosis facility. This
capability supports two basic types of queries: column-
centered queries and fitting-centered queries, The column-
centered queries are of the form

"What fittings affected <column>
before <fitting>?"

and default to the entire blueprint. This question can be
easily answered using information from the dependency
network. PIPE steps through the fittings in the blueprint
and determines those fittings which create, modify, or
delete <column>. This list of fittings is then displayed to
the user in graphical form. The fitting centered queries are
of the form

"What columns did <fitting>
affect?", and

"What columns did <fitting> access
in performing its processing to
affect these columns?"

These types of queries can be answered by interpreting the
dependency graph information on the designated fitting.
The first query can be answered by determining the set of
columns created, modified or deleted by the fitting. The
second query can be answered by accessing dependency
network information regarding which columns were
accessed by the fitting in performing these operations.

Blueprint Optimization

PIPE also provides a limited blueprint optimization
capability. In this capability, PIPE examines the
dependency graph of each column and determines the last
fitting at which each column is accessed explicitly (i.e., not
by default). PIPE then recommends removing this column
immediately after this fitting. If this column is not
processed in the remainder of the blueprint, this removal
does not significantly alter the runtime of the blueprint.
However, many of the fittings process all of the columns in
the flow by default. Thus, when a column that is processed
in the remainder of the blueprint is removed from the data
flow a significant speedup can result. While commonly
used blueprints are likely to have unused columns
optimized by hand, automating this process relieves the
user of the burden of determining the point at which a
column can be removed. Additionally, by allowing PIPE
to automatically determine the correct places to remove
columns, PIPE reduces the chance that a user will
inadvertently prematurely remove a column from the data
flow, which would cause an error. '

26

Chien

Runtime Estimation

The final capability that PIPE provides is runtime
estimation. PIPE estimates the runtime of a blueprint for a
specific data set by applying the following algorithm:

for each fitting in the blueprint
identify fitting runtime model
compute runtime given dataset size
add runtime to total runtime
compute new size of dataset

Tracking the size of a dataset in Master Plumber can be a
difficult task. Original data set sizes are determined from
input files. When data of different temporal granularity are
introduced into an existing flow, or when decimation
operations are performed, data set sizes will need to be
recomputed. Sometimes a fitting can affect the size of the
dataset in a manner that depends on the exact data
processed. In these cases, the exact dataset size cannot be
determined, so PIPE estimates the size of the dataset at the
output of the fitting. These estimations are sufficient for
giving the user reasonably accurate runtime estimates.

An Example 7

We now illustrate each of the capabilities of PIPE using
example blueprints. For an example of constraint
checking, suppose a user has created a blueprint containing
the following statement:

4. bin columns=bx delta=60.0 min_max

Because the option min_max requires that a value be
specified, PIPE would indicate a constraint error such as:

* Fitting 4. bin option min_max
required value not found; string
type regquired.

As another example of the constraint checking, consider
the following blueprint statement:

7. crossavg except=time avgname=xavg

Assuming the user removed the column named time
earlier in the data flow, PIPE would issue a constraint error
indicating:

* Fitting 7. crossavg option except
undefined column time; a column
with that name was deleted at
fitting 4. drano.

An example of the diagnosis capability supported by PIPE
is illustrated in the foliowing scenario. Figure 3 shows a
Master Plumber blueprint file. Suppose that the user

examines the output of the blueprint and determines that
column o2 is producing results that are incorrect. The user
tries to determine what may have affected column o2 by
querying PIPE:

Q: Which fittings created or
modified column 02?

A: Fitting 10. drano created column
o2.
Fitting 12. plisp modified column
o2.

The user determines that the 02 column was still incorrect
before fitting 12. plisp, so the user wants to determine
what columns were accessed by and were used in creating
oZ2.

Q: Which columns were accessed by
fitting 10. drano in order to
create column o02?

A: Column raraby was accessed by
fitting 10. drano in order to
create column o2.

The user then continues backtracking through the blueprint
to isolate the error

Q: What fittings before fitting 10.
drano modified column raraby?

A: Fitting 9. runstat created and
modified column raraby.

By using PIPE in this way, the user can focus his atiention
directly upon the possibly faulty fittings instead of having
to examine every fitting and column.

PIPE also uses the dependency graph to optimize
blueprints. Because PIPE can determine which fittings
modify which columns in the blueprint, PIPE can
determine the last point at which each column is needed in
the blueprint. In the example blueprint shown in Figure 3,
PIPE makes the following recommendations for removal:

never introduce column rim

remove sens_x, senx_ v,
after fitting 4

sens_z and bz

remove bx, by after fitting 8
remove rabx, raby after fitting 9

remove bxc, byc, and stime

after fitting 12

bzc,

PIPE also provides runtime estimation capabilities. For the
optimization example shown above, PIPE estimates that the

27

Chien

non-optimized blueprint will take 11:32 +/- 1:04 o run and
the optimized blueprint will take 9:58 +/- 0:58 to run.

Issues in Design for Maintainability

The central concern in the PIPE knowledge representation
was that the PIPE knowledge base be easy to maintain.
While this is a concern in any knowledge-based system, it
was particularly important in PIPE because fittings
capabilities, options, and defaults, evolve because of
changing scientists' needs. The majority of the knowledge
represented in PIPE is used for the pre-runtime constraint
checking. Thus, we focussed upon ensuring that these
constraints be in a form that requires minimal change when
fittings are changed.

In order to be easily maintainable, fitting constraints are
implemented in three ways. First, basic option
requirements constraints and argument requirements are
specified in a simple language. This specification is then
combined with a translator to generate C code which
checks the options and option values against type and
option requirement constraints. For example, each option
for a fitting may be optional, or required (e.g., all fitting of
this type must have this option specified) or be allowed to
appear multiple times. Additionally, for each option
arguments have associated constraints (e.g., all occurrences
of this option must have an argument specified with the
option). This structure affects maintainability as follows.
When a change to a fitting is made which affects this
information, the specification must be changed in the
fining knowledge base file. A translator is then used to
automatically regenerate the associated constraint checking
code so that the future constraint checking corresponds to
the updated fitting.

The second type of constraint are simple, commonly
occuring constraints, such as range constraints and inter-
option range constraints (.g., the value of option 1 must be
greater than the value of option 2). These constraints are
represented in a simple constraint language and stored in
the fitting knowledge base file. When the fitting and
option information in the blueprint is extracied, these
constraints are checked by a C code module which uses the
constraint information in the fitting knowledge base file to
check the extracted options and arguments. Thus, when a
change to the fitting is made which affects this constraint
information, the constraint information in the fitting
knowledge base file must be updated. Thereafter, when the
fitting is parsed, the updated constraint information will be
used.

The third type of constraint information is represented
directly as C code. This flexibility is needed as there are
certain forms of constraints among options which are not
easily represented in general languages or may occur so
infrequently as to be impractical to support in the general
case. This type of constraint information is contained in an
explicit C function, whose name is specified in the fitting
knowledge base file. When changes to the fiting impact
this information, the coce relevant code must be modified,
compiled, and re-linked.

Another type of knowledge encoded in a flexible fashion
is the runtime models. This information indicates how
much time each processing step will take as a function of
parameters including: the option settings, the number of
data records in the dataflow, and the computer being used.
Fitting models to cover new fittings can be constructed in
two ways. First, existing runtime models can be used as
templates. In this case creating a runtime model for a new
fitting coresponds to filling in the appropriate parameters in
the model. Second, a new fitting model can be created
from scratch (and would serve as a potential template for
future fittings).

Discussion

The current prototype version of PIPE was completed in
July 1991. It is implemented in CommonLISP and
LISPView and runs on Sun workstations. It operates as
described in this paper with the exception that it does not
distinguish between columns accessed for different
computations in a fitting (i.e. it only determines the set of
columns used to compute all of the new or modified
columns). For instance, suppose the runstat fitting uses
column bx to create column rabx and also uses column by
to create column raby. The current implementation will
only be able to state that the the fitting uses columns bx and
by to create columns rabx and raby. In contrast, the new
implementation will be able to isolate bx as the column
used to create column rabx, and by as the column used to
create column raby. Also, the current prototype version
operates on actual blueprint files but is not integrated with
Master Plumber or MPTool, a menu driven interface for
blueprint construction in Master Plumber.

Work is underway on the deliverable version of PIPE.
This version is being implemented in C++, and is expected
1o be completed in May of 1992. The deliverable version
of PIPE will use the more refined dependency
representation described in this paper. This version will be
integrated with Master Plumber and MPTool, and is
intended to be delivered to and used by IGPP personnel at
UCLA. This version of PIPE will also incorporate
feedback upon the "look and feel” of the interface specified
by IGPP personnel.

There are numerous related projects in providing
intelligent assistance in scientific computing. The
Kineticist's workbench project at MIT [Abelson et al. 1989]
targets modelling and analysis of dynamic systems. The
SINAPSE system [Kant et al. 1990] assists in construction
of numerical models for data interpretation but is specific
to seismic models represented as finite difference
equations. The Reason system [Atwood et al. 1990]
supports analysis of high energy physics data (and is a
dataflow system). Finally, the Scientific Modeling
Assistant project [Keller 1991] addresses support to
facilitate development of scientific models.

28

Chien

Summary

This paper has described a system to assist in the
development of scientific data preparation programs and
discussed issues in design for maintainability. This issue of
maintainability was particularly important because the
processing modules (fittings) are constantly evolving due
to changing scientists' needs. In order to maximize
maintainability of the constraint knowledge base,
information for each fitting is encapsulated in a fitting
knowledge base file and as much as is practical, constraint
information is represented in a general declarative fashion.

Acknowledgements

This work was performed by the Jet Propulsion laboratory,
California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.

. References

[Abelson et al. 1989] H. Abelson, M. Eisenberg, M,
Halfant, J. Katzenelson, E. Sacks, G. Sussman, J. Wisdom,
and K. Yip, "Intelligence in Scientific Computing”, Comm.
ACM, 32(5):546-562, May 1989.

[Atwood et al. 1990] W. Atwood, R. Blankenbecler, P. F.
Kunz, B. Mours & A. Weir, "The Reason Project”,
Stanford Linear Accelerator Technical Report #SLAC-
PUB-5242, April 1990.

[Chien et al. 1992] S. Chien, R. K. Kandt, R. Doyle, J.
Roden, T. King, and S. Joy, "PIPE: An Intelligent
Scientific Data Preparation Assistant”, Proceedings of the
International Space Year Conference on Earth and Space
Science Information Systems, Pasadena, CA, February
1992.

[Kant et al. 1990] E. Kant, F. Daube, W. MacGregor, J.
Wald, "Synthesis of Mathematical Modeling Programs”,
Schlumberger Laboratory for Computer Science Technical
Report Number TR-90-6, February 1990.

[Keller 1991] R. Keller, "Building the Scientific Modeling
Assistant: An Interactive Environment for Specialized
Ames Research Center, Moffeu, Field, CA, May 1991,
[King & Walker 1991] T. King and R, Walker, "The
UCLA Data Flow System," Technical Report #3522,
Institute of Geophysics and Planetary Physics, University
of California at Los Angeles, CA 1991.

