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Abstract

Domain-specific knowledge is required to create
specifications, generate code, and understand existing
systems. Our approach to automating software design is
based on instantiating an application domain model with

_ industry-specific knowledge and then using that model to
achieve the operational goals of specification elicitation
:and verification, reverse engineering, and code generation.

-Although many different specification models can be
created from any particular domain model, each

specification model is consistent and correct with respect to
the domain model.

Introduction

Although empirical field studies (Curds, et al., 1988)
have shown that application domain knowledge is cridcal
to the success of large projects, this knowledge is rarely
stored in a form which facilitates its use in creating,

maintaining and evolving software systems. Capturing and
managing this knowledge is a prerequisite to automating
software design.

Unfortunately, domain knowledge is implicitly
embodied in application code rather than explicitly
recorded and maintained in separate documents. Even
when documents are maintained separately from the code,
the knowledge is stored in voluminous natural language
documents in an informal rather than a formal manner.

Although problem-specific languages are designed to
remedy this situation, domain-specific knowledge is still
captured in an ad hoc instead of a systematic manner.
Furthermore, these languages are generally not designed in
such a way that the results can be generalized or even
replicated.

We are attempting to capture the domain-specific
knowledge about different industry areas as a set of
application domain models. Application domain models
are representations of relevant aspects of application
domains that can be used to achieve specific software

engineering operational goals. Operational goals are
always implicit in the construction of a domain model and

* An earlier version of this paper was presented at the
Asilomar Workshop on Change of Representation and
Problem Reformulation, April 1992.

are essential to understanding the form and content of that
model. Unlike generalized knowledge representation
projects such as Cyc (Lenat, 1990) that attempt to provide a
basis for modeling encyclopedic knowledge, domain
modeling explicitly acknowledges the commonly held view
(Amarel, 1968) that representations are designed for

particular purposes. These purposes-the operational goals-
inherently bias any particul_ solution and dictate the final
form of the model.

Many different ot_erational goals and modeling projects

,are being pursued within tile field of domain modeling
(Iscoe, et at., 1991). This paper begins with an overview of

the domain modeling research at EDS and our
corresponding operational goals. We explain our approach
to automating software design as a paradigm which
facilitates the creation of multiple-specification models
from a domain model. Finally, we discuss a set of issues
that we lmve encountered in achieving our goals.

Programming-in -the-Large

EDS produces large software systems for a variety of
industries such as utilities, finance, health insurance, and so
on. Associated with each industry area is a rich body of

knowledge which is critical to specifying and
implementing the proper software system. This knowledge
includes legal, financial, technical, and other expertise
which is acquired by personnel over a period of years.
EDS is organized into strategic business units (SBUs) so
that the organization's knowledge about a particular

industry call be levemged through reuse.
At the EDS Austin research laboratory, we are building a

domain modeling system which is designed to achieve the

following operational goals:
• Requirements & Specifications--Elicidng, verifying,

and formalizing software requirements and specifications,
• Program Transformation/Generation--Transforming a

specification into efficient executable code,
• Reverse Engineering--Identifying the semantics of

existing code in terms of a partial specification.
The realization of these operational goals is consistent

with our long-term plan for creating knowledge-b,'tsed tt×)ls
to support progrmnming-in-the-large (Barstow, 1988). The
domain modeling approach provides ample opportunities
for creating an automated software development paradigm.
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Figure 1 -- Domain Modding with Operational Goals
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Figure 1 illustrates the context in which we operate. The
industry knowledge for each SBU is instantiated into a
domain model, which then serves as a source of knowledge

for programs (the ovals) to achieve operational goals, such
as reverse efigiheefing source code or eliciting system
specifications. The figure actually illustrates two different
processes. The left side of figure i shows the process of
domain model instantiation while the right side illustrates
the domain model being used to produce a single
specification. The System Specification (rectangle)
illustrates a specification for a single specific system within
an application domain. However, a multitude of system
specifications can be created from a domain model.

_ Modeling

Language

:::-Domain Poiicles, ::.:,=:: ........ I
::: • DomainiS_n:/f_ C_strailtk$ .......

Flgure 2 _ Insta,_liAtlng Specification Models

Figure 2 illustrates the two separate modeling tasks
required by our approach. Domain experts interact with a
system to represent their knowledge in terms of domain
modeling constructs. Specification designers then use the
system to build specification models which satisfy
constraints in the domain model. In order to create a

system specification, the application designer selects a set
of relevant policies ,and constraints from the domain model
that must be included and enforced in the specification
model. The constraints include intra-attribute as well as

inter-attribute relationships within and across classes
relevant to the task at hand.

Because one of our goals is to generate executable code,

we require that a particular specification model be
consistent. A very large but finite number of specification
models can be created which are consistent and correct

with respect to a particular domain model.

Reverse Engineering

We arc using reverse engineering to help ins_tiate both
domain and specification models. Figure 1 illustrates how

application domain knowledge and programming
knowledge are used to extract partial specifications from
source code. The box labeled "programming knowledge"

currently represents knowledge of COBOL syntax, coding
conventions, and program plans and structures (Van Sickle,
1992). This knowledge crosses all of the targeted
application domains and is the basis of a separate code
browser that operates independently of the operation shown
i,_ Figure 1.

We are also attempting to mechanically pre-instantiate
domain models by using the data gathered from the

applications of a,a EDS entity-relationship-based CASE
tool that is used by SBUs for data modeling and code

generation. By analyzing data models, we have access to
tens of thousands of specific entities, relationships, and
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constraintswhichhavebeenusedtospecifyprogramsand
areusefulforpartiallyinstantiatingdomainmodels.

Modeling Considerations

Models are inevitably abstractions of reality that capture
information to achieve specific goals. A domain model
determines the items of interest that exist in the world and

sanctions the types of inferences allowed [Liu and Ftuley,
1990; Davis, 1991]. A model is the result of conscious

decisions about what to describe and what to ignore. No
model is complete or correct in the sense that it is
applicable to all tasks.

Domain models in our system are structured to represent
the type of information that is used within EDS SBUs to
achieve our operational goals. Although EDS serves a

wide range of industries, we are not attempting to model
real-time or other application areas which diverge from

standard business transaction processing. A general issue
of interest in this research is the extent to which any

particular representation/model can be mutated to hold
different types of information for different tasks while still
effectively achieving the original ope_,ational goals.

One requirement for our models is that they be
consistent. Domain and specification model consistency is
maintained by a specialized theorem prover. The theorem
prover, STR+VE, is an upgraded version of the prover
presented in (Bledsoe, 1980) for proofs of theorems in
general inequalities. A TMS is being constructed In
interface between the modeling system and the theorem

prover.

Dynamic Knowledge Structure

The remainder of this paper presents one aspect of
domain model representation and gives a glimpse of the
relationship between specification and domain models and
the organization of domain models.

While most would agree that hierarchical org,'mization_
strategies provide a reasonable way to structure knowledge
within complex domains, the creation of a hierarchical
structure, like any type of representational scheme, imposes
a particular view of the world. Unfortunately, there is no
particular view that is optimal for every application.
Although the programs within a particular application share
the same legal, physical, and economic constraints, the
construction of ,any particular specification model depends
upon a set of policy decisions timt determine how cases are
handled. Furthermore, software in the large systems ,are
continually changing in such a m,'mner that the concept of a
static hierarchy is insufficient to capture the process of

system evolution.
Consider software systems that manage the payment of

health insurance claims. Although conceptually simple,
these systems handle hundreds of thousands of different
cases. One way to represent these cases is to enumerate the
leaf nodes of the hierarchies created by the appropriate
partitioning of attributes such ,as gender, age, f_unily_stalus,

previous_condition, employment, deductibles, copayments,
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prognosis, and so on. Unfortunately, the tree structure
created by case expansion not only obscures relevant and

interesting cases, but is also a monolidfic structure. A
p,'uadox of object-oriented approaches is that well-adapted
structures are not adaptable to new situations.

Because of the combinatorial explosion of the leaf
nodes, it makes sense to handle the cases at as high a level

as possible. Term subsumption systems such as CLASSIC
(Borgida, et al., 1989) automate this process by
determining the place in a hierarchy in which terms are
subsumed. But subsumption systems assume a single
structure in which all sub-models can belong. In the case
of applications such as health insurance, individual
modules may have different hierarchical structures and still
maintain the integrity and constraint rules of the domain
model.

Attribute Definitions

Attributes are normally considered as data values or slot

fillers within a class or frame. However, the standard
treatment of attributes as lists of data values with some

underlying machine representation fails both It capture
sufficient semantic information from the application
domain and to state definitions with sufficient formality to
allow semantics-related consistency checks.

Attributes are functions which define how a set of

objects is mapped within a class. One type of attribute has
a value set represented by a nominal scale which consists

of a set of values, q-_A) = {C1, ... Cn}.
One of the ways that d_e modeling process maps the

world into a domain model is by creating categories in
such a way that items to be categorized with respect to a

p,'uticul;tr attribute are as homogeneous as possible within a
category and as heterogeneous as possible between
categories. Examples of nominal scales abound and map
cleanly to the notion of enumerated type as shown below:

(Colors
:type nominal_scale
:values (Red Yellow Green Blue)

The next type of attribute is an ordinal scale--a nominal
scale in which a total ordering exists among the categories.
Interval and ratio scales are the more quantitative scales
and add definitions of dimensions, units, and granularity.

This brief description of attribute type was included to
allow the reader to understand the examples in this paper.
Altributes have additional types and a number of other

properties which are explained in (Iscoe, et al., 1992).

Hierarchical Decomposition

Hierarchies are a natural way to view and organize
information and, at some level of abstraction, are a part of
most object-oriented and knowledge representation
languages. Unfortunately, the simplicity of these concepts
can sometimes obscure the semantics that a model is

attempting to capture. That one's needs dictate one's
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ontologicalchoice is a fundamental premise of knowledge
engineering. The ability to systematically define a new set
of attributes by partitioning the value sets of old attributes
and then using these new attributes to reclassify the domain
in accordance with the new requirements is an important
aspect of our attribute characterization. By preserving the
"ontological map" as a component of the attribute, the

domain modeler can shift between the differing paradigms
modeled by various classes of objects.

Attribute characterization provides a representation and
systematic methodology for the partitioning of attributes
that facilitates the way they are organized, subdivided, ,'rod
built into hierarchies. An attribute restriction is a new

attribute whose value set and set of applicable relations are
subsets of the original attribute.

Creating a new attribute serves the dual purpose of
creating a set of views on the old attribute as well as
creating a new attribute. Often, new attributes are defined

in terms of old attributes by partitioning the original value
set and then equating each new attribute value with an
element of the partition. As an example, an accounts
receivable (AR) system may use the attribute
days_to_payment whose value is the average number of
days it takes for the client to pay a bill.

(daysto_payment:
:type ratio_scale
:dimension time

:unit days

From the standpoint of AR applications, a more useful
attribute might be •

(type_of_payer:
:type Ordinal_scale
:Ordered_by lateness_of_payment
:values (pays_on_time slow_pay dead_beat))

days to_payme_t:
- Ratk_scale Time in Days (Mi. 0) {Max 36(0

Pay_on_lime S low_pay Deadbeat

Figure 3 _ Partitioning days to_payment :

This new attribute will be defined by partitioning the
value set of days_to_payment by subdividing the range of
values, then equating each value with one of the elements
of the partition as illustrated in figure 3 and described as
follows:

(type_of_payer

:mapped_from thtys_to_payment
(pays on_time (<=30)

(slow_pay
(AND (> 30) (< 90)))

(dead_beat (>= 90))))
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Note that the days_to_payment attribute is based on a
quantitative attribute while the type_of_payer attribute is

based on a qualitative attribute. In general, an attribute
mapping represents a loss of information (in this example,
the number of days overdue) in return for a more useful
and inherently less detailed category.

Using Population Parameters

Population parameters are used to help automate the
process of creating new attributes from old ones. For
ex,'unple, some graduate admissions committees use GRE
scores to separate applicants into acceptance categories.
Population parameters allow application designers to create
new attributes based on restrictions to the origin_d attribute
as shown below:

GRE_Score: h_terval ._.-al¢ Scorc in GRE unit._

(rain 400) (max 160(I)
(dist normal) (mean 1100) (stddev 125)

Figure 4 -- Using Population Parameters to
Restrict an Attribute

Figure 4 shows the GRE score as an attribute which could

be attached to a student. Understanding the distribution of
values within the value set of GRE scores allows

application designers to create partitions in any one of a
variety of ways. For example, assume that an application
designer wanted to create an initial partition based on the
requirement "accept all students who score in the top x%
on the GRE, consider those who score between x% and y%,
and reject those who score in the bottom y%." Given this
type of requirement, the domain model contains the
appropriate information to use and an algorithm to produce
the correct raw score numbers to achieve such a partition.

Another way that these requirements are sometimes
stated is to build a partition based on an absolute raw score.
For example, a requirement like "accept all students who
score above 1450 on ttue GRE" is easily displayed and
modeled. Furtlie_0re, this type of specifica!i0n can be
used interactively so that:the designer can juggle between
raw scores and percentiles until the partitions appropriate
h_r the application domain are produced.

Domain and Specification Models

In this section we focus on relations between attributes

within a single domain model class. For the purposes of
this discussion we define the following attributes:

(N_une :type identifier)
(Gender :type nominal_scale

:values (male female))
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(Eye_color :type nominal_scale
:values (brown, blue, green))

(Benefits :type nominal_scale
:values (Soc_sec, RR, none)

(Age :type ratio_scale
:dimension (time)

:unit (year)
:granularity (1)
:derived (diff_date cur_date birth__date)

(Medicare_payment :type ratio_scale
:dimension (money)
:unit (dollar)

:granularity (.01))
:popparms ((rain 1)(max 10000)(mean 225)))

(Age_m type: ordinal_scale
:values (undel65 65_aald over)

:mapped_from age
(under65 (< 65))
(65_and_over (>= 65)))

Although many other constraints exist, domain model
classes can be regarded as consisting of sets of attributes
which are either required or might be included within a
particular domain model. These constraints are expressed
as follows:

must_have(c, a,) -- attribute a must be used in
class c in a model.

applicable(c, a) -- attribute a can be used in
class c in a model depending on the choice of
specification designer.

cond_must_have(c, a, cond) -- attribute a must
be used in class c in a model if condition cond
evaluates to true.

cond_applicable(c, a, cond) -- attribute a c,'m be
used in cl_tss c a model if condition cond
evaluates to true.

Within any particular specification model, an attribute is
simply classified as used within a class.

used(m, c, a) -- within model m, attribute a is
used in class c in model m.

The most straightforward relationship between a domain
model and a specification model is that must_have
attributes are used in all specification models and
applicable attributes are selected by the specification

designer. The following rules formalize the semantics of
the four constraints on the use of attributes within classes
listed above.

(1) must_have(c, a) _ Vm used(m, c, a)

(2) applicable(c, a) --4 3m used(m, c, a)

(3) (cond_applicable e a ((Pl al v 1).-.(Pn an Vn)))
Vm, object

[(used m c a)
(used m c al) ^ ...^(used m c au) ^
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[(instance m c object) ^ (in (a object) q,(a))
--4 (Pl (al object) Vl) ^ ... ^

(Pn (an object) Vn)]]

(4) (cond_must_have c a ((Pl a| Vl)...(pn an Vn ))
"v'm,object

[(used m c al)^...^(used m c an)
--9 (used m c a) ^

[(Pl (al object) Vl) ^
...^

(Pn Can object) Vn) ^ (instmlce m c object)
(in (a object) 'l(a))]]

For example, in a domain model, name might be
required for all specification models, while eye_color could
be selected only if it were appropriate for the particular

specification model.
(person

:must_have ((Name 0)

:applicable ((eye_color 0)
...)

The application of these constraints when cond is
vacuously true is a fairly standard feature in most modeling
languages of this type. However, name and eye_color are
attributes which are total functions and are not as

interesting as the cases that occur when the attributes ,are

p,'u'tial functions.

Conditions for Function Evaluation

Recalling that an attribute is a function which maps
objects to a particular property, cond can be interpreted a.s
the condition which must be satisfied for fl_e attribute to be

a total instead of a partial function. In other words, cond
defines the subset which is the domain of applicability of

the partial function. For example for a person class
medicare_payment is only applicable if age is 65 or over
and benefits is none.

(cond_applicable person Medicare_payment
((= Age_m 65_and_over) (= Benefits none)))

The domain modeling system is designed so that the
conditions required to establish the proper domain for an
attribute are automatically maintained. These conditions
are consu'ained in such a way that tractability is maintained

and are of the form ((Pl al Vl)... (Pn an Vn)) , wherepiis
the name of a predicate, ai is the name of an attribute, and
v_is a value of the attribute.

A user can create a specification model with any
particular class hierarchy as long as the domain policies
and constraints are satisfied.

We are currently experimenting with ways to capture
and verify domain modeling constraints by presenting
redundant information in a variety of ways. We believe
that many of the specification problems in large systems
are created when value set changes cause a single ca_ to
be changed but fail to correct cases that were identified

from a previous inference.
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Forexample,if weassumethatMcdicare_paymcqtis
onlyapplicableif ageis65oroverandbenefitsisnone,the
systemcaninferthatMedicare_paymentc,'mnolapplytoa
personwhoisyoungerthan65.

Infact,assume
(cond_applicablepersonMedicarepayment

((=Age_m 65_,'rod_over) (= Benefits none))),
then

Vm, object
((used m person Medicare_payment) --o

(used m person Age_m)A(used m person Benefits)^
((instance m person object) ^
(in (Medicare_payment object) [1 10000])

--->(= (Age_m object) 65_and_over) ^
(= (Benefits object) none))) (5)

After Medicare_payment is used ill a model, if user is
trying to assign a Medicare_payment to a person who is
younger than 65, using rule (5) will lead to a contradictiou.

A key point is that when people are presented with value
sets they automatically and unconsciously perform
substitutions such as the ones listed above. This is a

reasonable way to build a model until a v_due set changes.
In large systems, value sets are frequently changed.
Consequently, conclusions that were drawn by using
negation to infer values become inwdid. We use Ihe
applicability of conditions and tile system's knowledge of
value sets to attempt to provide the proper cases for tile
domain modeler to check when conditions ch_mge.

Discussion

In this paper, we have presented the concept of modeling
application domains in order to achieve the operational
goals of program specification, code generation, and
reverse engineering. The main concept is that multiple
specification models can be created that are consistent and
"correct" with respect to a domain model. Domain models
represent information about a particular industry area.
Specification models represent information about a

particular system.
The middle oval on the right side of figure 1 represcqts

the process of code generation through program
transformation. Given a specification model, executable
code can be generated by performing a series of

correctness-preserving tr,'msformations on file specification.
The goal of this part of the project, which is not yet active,
is to produce efficient code thai satisfies the original
specification,

Domain and specification models are constructed by

using a graphical interface to interactively create a set of
rules based on attribute value set partitions and tile
preceding axioms. The system is being implemented using
Motif GUI on SPARC workstalions. Although it is

currently operating in a single user mode, it is being
designed to be accessed simultaneously by multiple domain

ISCOe

modelers. We ,are also trying to accelerate the knowledge
capture process by reverse engineering data models that
have been captured by an existing EDS case tool and
instantiating them into file appropriate domain models.
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