Abstract

Domain-specific knowledge is required to create specifications, generate code, and understand existing systems. Our approach to automating software design is based on instantiating an application domain model with industry-specific knowledge and then using that model to achieve the operational goals of specification elicitation and verification, reverse engineering, and code generation. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model.

Introduction

Although empirical field studies (Curtis, et al., 1988) have shown that application domain knowledge is critical to the success of large projects, this knowledge is rarely stored in a form which facilitates its use in creating, maintaining and evolving software systems. Capturing and managing this knowledge is a prerequisite to automating software design.

Unfortunately, domain knowledge is implicitly embodied in application code rather than explicitly recorded and maintained in separate documents. Even when documents are maintained separately from the code, the knowledge is stored in voluminous natural language documents in an informal rather than a formal manner. Although problem-specific languages are designed to remedy this situation, domain-specific knowledge is still captured in an ad hoc instead of a systematic manner. Furthermore, these languages are generally not designed in such a way that the results can be generalized or even replicated.

We are attempting to capture the domain-specific knowledge about different industry areas as a set of application domain models. Application domain models are representations of relevant aspects of application domains that can be used to achieve specific software engineering operational goals. Operational goals are always implicit in the construction of a domain model and are essential to understanding the form and content of that model. Unlike generalized knowledge representation projects such as Cyc (Lenat, 1990) that attempt to provide a basis for modeling encyclopedic knowledge, domain modeling explicitly acknowledges the commonly held view (Amaral, 1968) that representations are designed for particular purposes. These purposes—the operational goals—inhertently bias any particular solution and dictate the final form of the model.

Many different operational goals and modeling projects are being pursued within the field of domain modeling (Iscoe, et al., 1991). This paper begins with an overview of the domain modeling research at EDS and our corresponding operational goals. We explain our approach to automating software design as a paradigm which facilitates the creation of multiple-specification models from a domain model. Finally, we discuss a set of issues that we have encountered in achieving our goals.

Programming-in-the-Large

EDS produces large software systems for a variety of industries such as utilities, finance, health insurance, and so on. Associated with each industry area is a rich body of knowledge which is critical to specifying and implementing the proper software system. This knowledge includes legal, financial, technical, and other expertise which is acquired by personnel over a period of years. EDS is organized into strategic business units (SBUs) so that the organization's knowledge about a particular industry can be leveraged through reuse.

At the EDS Austin research laboratory, we are building a domain modeling system which is designed to achieve the following operational goals:

• Requirements & Specifications—Eliciting, verifying, and formalizing software requirements and specifications,
• Program Transformation/Generation—Transforming a specification into efficient executable code,
• Reverse Engineering—Identifying the semantics of existing code in terms of a partial specification.

The realization of these operational goals is consistent with our long-term plan for creating knowledge-based tools to support programming-in-the-large (Barstow, 1988). The domain modeling approach provides ample opportunities for creating an automated software development paradigm.
Figure 1 illustrates the context in which we operate. The industry knowledge for each SBU is instantiated into a domain model, which then serves as a source of knowledge for programs (the ovals) to achieve operational goals, such as reverse engineering source code or eliciting system specifications. The figure actually illustrates two different processes. The left side of figure 1 shows the process of domain model instantiation while the right side illustrates the domain model being used to produce a single specification. The System Specification (rectangle) illustrates a specification for a single specific system within an application domain. However, a multitude of system specifications can be created from a domain model.

Figure 2 illustrates the two separate modeling tasks required by our approach. Domain experts interact with a system to represent their knowledge in terms of domain modeling constructs. Specification designers then use the system to build specification models which satisfy constraints in the domain model. In order to create a system specification, the application designer selects a set of relevant policies and constraints from the domain model that must be included and enforced in the specification model. The constraints include intra-attribute as well as inter-attribute relationships within and across classes relevant to the task at hand.

Because one of our goals is to generate executable code, we require that a particular specification model be consistent. A very large but finite number of specification models can be created which are consistent and correct with respect to a particular domain model.

Reverse Engineering

We are using reverse engineering to help instantiate both domain and specification models. Figure 1 illustrates how application domain knowledge and programming knowledge are used to extract partial specifications from source code. The box labeled “programming knowledge” currently represents knowledge of COBOL syntax, coding conventions, and program plans and structures (Van Sickle, 1992). This knowledge crosses all of the targeted application domains and is the basis of a separate code browser that operates independently of the operation shown in Figure 1.

We are also attempting to mechanically pre-instantiate domain models by using the data gathered from the applications of an EDS entity-relationship-based CASE tool that is used by SBUs for data modeling and code generation. By analyzing data models, we have access to tens of thousands of specific entities, relationships, and
constraints which have been used to specify programs and
are useful for partially instantiating domain models.

Modeling Considerations

Models are inevitably abstractions of reality that capture
information to achieve specific goals. A domain model
determines the items of interest that exist in the world and
sanctions the types of inferences allowed [Liu and Farley,
1990; Davis, 1991]. A model is the result of conscious
decisions about what to describe and what to ignore. No
model is complete or correct in the sense that it is
applicable to all tasks.

Domain models in our system are structured to represent
the type of information that is used within EDS SBUs to
achieve our operational goals. Although EDS serves a
wide range of industries, we are not attempting to model
real-time or other application areas which diverge from
standard business transaction processing. A general issue
of interest in this research is the extent to which any
particular representation/model can be mutated to hold
different types of information for different tasks while still
effectively achieving the original operational goals.

One requirement for our models is that they be
consistent. Domain and specification model consistency is
maintained by a specialized theorem prover. The theorem
prover, STR+VE, is an upgraded version of the prover
presented in (Bledsoe, 1980) for proofs of theorems in
general inequalities. A TMS is being constructed to
interface between the modeling system and the theorem
prover.

Dynamic Knowledge Structure

The remainder of this paper presents one aspect of
domain model representation and gives a glimpse of the
relationship between specification and domain models and
the organization of domain models.

While most would agree that hierarchical organizational
strategies provide a reasonable way to structure knowledge
within complex domains, the creation of a hierarchical
structure, like any type of representational scheme, imposes
a particular view of the world. Unfortunately, there is no
particular view that is optimal for every application.
Although the programs within a particular application share
the same legal, physical, and economic constraints, the
construction of any particular specification model depends
upon a set of policy decisions that determine how cases are
handled. Furthermore, software in the large systems are
continually changing in such a manner that the concept of a
static hierarchy is insufficient to capture the process of
system evolution.

Consider software systems that manage the payment of
health insurance claims. Although conceptually simple,
these systems handle hundreds of thousands of different
cases. One way to represent these cases is to enumerate the
leaf nodes of the hierarchies created by the appropriate
partitioning of attributes such as gender, age, family_status,
previous_condition, employment, deductibles, copayments,
prognosis, and so on. Unfortunately, the tree structure
created by case expansion not only obscures relevant and
interesting cases, but is also a monolithic structure. A
paradox of object-oriented approaches is that well-adapted
structures are not adaptable to new situations.

Because of the combinatorial explosion of the leaf
nodes, it makes sense to handle the cases at as high a level
as possible. Term subsumption systems such as CLASSIC
(Borgida, et al., 1989) automate this process by
determining the place in a hierarchy in which terms are
subsumed. But subsumption systems assume a single
structure in which all sub-models can belong. In the case
of applications such as health insurance, individual
modules may have different hierarchical structures and still
maintain the integrity and constraint rules of the domain
model.

Attribute Definitions

Attributes are normally considered as data values or slot
fillers within a class or frame. However, the standard
treatment of attributes as lists of data values with some
underlying machine representation fails both to capture
sufficient semantic information from the application
domain and to state definitions with sufficient formality to
allow semantics-related consistency checks.

Attributes are functions which define how a set of
objects is mapped within a class. One type of attribute has
a value set represented by a nominal scale which consists
of a set of values, \(s(A) = \{C_1, \ldots, C_n\} \).

One of the ways that the modeling process maps the
world into a domain model is by creating categories in
such a way that items to be categorized with respect to a
particular attribute are as homogeneous as possible within a
category and as heterogeneous as possible between
categories. Examples of nominal scales abound and map
cleanly to the notion of enumerated type as shown below:

(Colours
:type nominal_scale
:values (Red Yellow Green Blue)

The next type of attribute is an ordinal scale—a nominal
scale in which a total ordering exists among the categories.
Interval and ratio scales are the more quantitative scales
and add definitions of dimensions, units, and granularity.

This brief description of attribute type was included to
allow the reader to understand the examples in this paper.
Attributes have additional types and a number of other
properties which are explained in (Iscoe, et al., 1992).

Hierarchical Decomposition

Hierarchies are a natural way to view and organize
information and, at some level of abstraction, are a part of
most object-oriented and knowledge representation
languages. Unfortunately, the simplicity of these concepts
can sometimes obscure the semantics that a model is
attempting to capture. That one's needs dictate one's
ontological choice is a fundamental premise of knowledge engineering. The ability to systematically define a new set of attributes by partitioning the value sets of old attributes and then using these new attributes to reclassify the domain in accordance with the new requirements is an important aspect of our attribute characterization. By preserving the "ontological map" as a component of the attribute, the domain modeler can shift between the differing paradigms modeled by various classes of objects.

Attribute characterization provides a representation and systematic methodology for the partitioning of attributes that facilitates the way they are organized, subdivided, and built into hierarchies. An attribute restriction is a new attribute whose value set and set of applicable relations are subsets of the original attribute.

Creating a new attribute serves the dual purpose of creating a set of views on the old attribute as well as creating a new attribute. Often, new attributes are defined in terms of old attributes by partitioning the original value set and then equating each new attribute value with an element of the partition. As an example, an accounts receivable (AR) system may use the attribute days_to_payment whose value is the average number of days it takes for the client to pay a bill.

\[
\text{days_to_payment:} \\
\quad \text{:type} \quad \text{ratio_scale} \\
\quad \text{:dimension} \quad \text{time} \\
\quad \text{:unit} \quad \text{days}
\]

From the standpoint of AR applications, a more useful attribute might be:

\[
\text{type_of_payer:} \\
\quad \text{:type} \quad \text{Ordinal_scale} \\
\quad \text{:Ordered_by} \quad \text{lateness_of_payment} \\
\quad \text{:values} \quad \text{(pays_on_time slow_pay dead_beat)}
\]

This new attribute will be defined by partitioning the value set of days_to_payment by subdividing the range of values, then equating each value with one of the elements of the partition as illustrated in figure 3 and described as follows:

\[
\text{type_of_payer:} \\
\quad \text{mapped_from} \quad \text{days_to_payment} \\
\quad \text{(pays_on_time} \quad (<=30) \\
\quad \quad \quad \text{(AND} \quad (> 30) \quad (< 90))) \\
\quad \quad \quad \text{(dead_beat} \quad (>= 90)))
\]

Note that the days_to_payment attribute is based on a quantitative attribute while the type_of_payer attribute is based on a qualitative attribute. In general, an attribute mapping represents a loss of information (in this example, the number of days overdue) in return for a more useful and inherently less detailed category.

Using Population Parameters

Population parameters are used to help automate the process of creating new attributes from old ones. For example, some graduate admissions committees use GRE scores to separate applicants into acceptance categories. Population parameters allow application designers to create new attributes based on restrictions to the original attribute as shown below:

\[
\text{GRE_Score: Interval_scale Score in GRE units} \\
\quad \text{(min 400) (max 1600)} \\
\quad \text{(dist normal) (mean 1100) (stddev 125)}
\]

From the standpoint of AR applications, a more useful attribute might be:

\[
\text{days_to_payment:} \\
\quad \text{:type} \quad \text{ratio_scale} \\
\quad \text{:dimension} \quad \text{time} \\
\quad \text{:unit} \quad \text{days}
\]

From the standpoint of AR applications, a more useful attribute might be:

\[
\text{type_of_payer:} \\
\quad \text{:type} \quad \text{Ordinal_scale} \\
\quad \text{:Ordered_by} \quad \text{lateness_of_payment} \\
\quad \text{:values} \quad \text{(pays_on_time slow_pay dead_beat)}
\]

This new attribute will be defined by partitioning the value set of days_to_payment by subdividing the range of values, then equating each value with one of the elements of the partition as illustrated in figure 3 and described as follows:

\[
\text{type_of_payer:} \\
\quad \text{mapped_from} \quad \text{days_to_payment} \\
\quad \text{(pays_on_time} \quad (<=30) \\
\quad \quad \quad \text{(AND} \quad (> 30) \quad (< 90))) \\
\quad \quad \quad \text{(dead_beat} \quad (>= 90)))
\]

Another way that these requirements are sometimes stated is to build a partition based on an absolute raw score. For example, a requirement like "accept all students who score above 1450 on the GRE" is easily displayed and modeled. Furthermore, this type of specification can be used interactively so that the designer can juggle between raw scores and percentiles until the partitions appropriate for the application domain are produced.

Domain and Specification Models

In this section we focus on relations between attributes within a single domain model class. For the purposes of this discussion we define the following attributes:

\[
\text{Name:} \quad \text{:type} \quad \text{identifier} \\
\text{Gender:} \quad \text{:type} \quad \text{nominal_scale} \\
\quad \text{:values} \quad \text{(male female)}
\]

Figure 4 shows the GRE score as an attribute which could be attached to a student. Understanding the distribution of values within the value set of GRE scores allows application designers to create partitions in any one of a variety of ways. For example, assume that an application designer wanted to create an initial partition based on the requirement "accept all students who score in the top x% on the GRE, consider those who score between x% and y%, and reject those who score in the bottom y%." Given this type of requirement, the domain model contains the appropriate information to use and an algorithm to produce the correct raw score numbers to achieve such a partition.

Another way that these requirements are sometimes stated is to build a partition based on an absolute raw score. For example, a requirement like "accept all students who score above 1450 on the GRE" is easily displayed and modeled. Furthermore, this type of specification can be used interactively so that the designer can juggle between raw scores and percentiles until the partitions appropriate for the application domain are produced.
Although many other constraints exist, domain model classes can be regarded as consisting of sets of attributes which are either required or might be included within a particular domain model. These constraints are expressed as follows:

- **must_have(c, a)** — attribute a must be used in class c in a model.
- **applicable(c, a)** — attribute a can be used in class c in a model depending on the choice of specification designer.
- **cond_must_have(c, a, cond)** — attribute a must be used in class c in a model if condition cond evaluates to true.
- **cond_applicable(c, a, cond)** — attribute a can be used in class c in a model if condition cond evaluates to true.

Within any particular specification model, an attribute is simply classified as used within a class.

used(m, c, a) — within model m, attribute a is used in class c in model m.

The most straightforward relationship between a domain model and a specification model is that must_have attributes are used in all specification models and applicable attributes are selected by the specification designer. The following rules formalize the semantics of the four constraints on the use of attributes within classes listed above.

1. **must_have(c, a)** → ∀m used(m, c, a)
2. **applicable(c, a)** → ∃m used(m, c, a)
3. **cond_must_have(c, a, cond)** → ∀m, object [(used m c a) ∧ ...
 used m c a_n] ∧ ((p_1 a_1 v_1) ∧ ... ∧ (p_n a_n v_n))
For example, if we assume that Medicare_payment is only applicable if age is 65 or over and benefits is none, the system can infer that Medicare_payment cannot apply to a person who is younger than 65.

In fact, assume

\(\text{cond_applicable person Medicare_payment} \)
\(\text{((Age}_m \text{ 65_and_over) (Benefits none)))} \)

then

\(\forall m, \text{object} \)
\(\text{(used in person Medicare_payment)} \rightarrow \)
\(\text{(used in person Age}_m) \land \text{(used in person Benefits)} \land \)
\(\text{(instance in person object)} \land \)
\(\text{(in (Medicare_payment object) [1 10000])} \)
\(\rightarrow \text{((Age}_m \text{ object) 65_and_over) } \land \)
\(\text{((Benefits object) none)}) \)

(5)

After Medicare_payment is used in a model, if user is trying to assign a Medicare_payment to a person who is younger than 65, using rule (5) will lead to a contradiction.

A key point is that when people are presented with value sets they automatically and unconsciously perform substitutions such as the ones listed above. This is a reasonable way to build a model until a value set changes. In large systems, value sets are frequently changed. Consequently, conclusions that were drawn by using negation to infer values become invalid. We use the applicability of conditions and the system's knowledge of value sets to attempt to provide the proper cases for the domain modeler to check when conditions change.

Discussion

In this paper, we have presented the concept of modeling application domains in order to achieve the operational goals of program specification, code generation, and reverse engineering. The main concept is that multiple specification models can be created that are consistent and "correct" with respect to a domain model. Domain models represent information about a particular industry area. Specification models represent information about a particular system.

The middle oval on the right side of figure 1 represents the process of code generation through program transformation. Given a specification model, executable code can be generated by performing a series of correctness-preserving transformations on the specification. The goal of this part of the project, which is not yet active, is to produce efficient code that satisfies the original specification.

Domain and specification models are constructed by using a graphical interface to interactively create a set of rules based on attribute value set partitions and the preceding axioms. The system is being implemented using Motif GUI on SPARC workstations. Although it is currently operating in a single user mode, it is being designed to be accessed simultaneously by multiple domain modelers. We are also trying to accelerate the knowledge capture process by reverse engineering data models that have been captured by an existing EDS case tool and instantiating them into the appropriate domain models.

Acknowledgments

We wish to thank Betty Milstead and Raman Rajagopalan for their comments on earlier drafts of this paper.

References

