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GEOMETRICALLY NONLINEAR ANALYSIS OF LAMINATED ELASTIC STRUCTURES

J.N. Reddy, K. Chandrashekhara, and W.C. thao
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT

This final technical report contains three parts: Part 1
deals with the 2-D shell theory and its element formulation and
applications. part 2 deals with the 3-D degenerated element.
These two parts constitute the two major tasks that were
completed under the grant. Another related topic that was
initiated during the present investigation is the development of
a nonlinear material model. This topic is briefly discussed in
part 3. To make each part self-contained, conclusions and
references are included in each part. In the interest of
brevity, the discussions presented here are relatively brief.
The details and additional topics are described in the references

cited.



PART 1
GEOMETRICALLY NONLINEAR ANALYSIS OF LAMINATED SHELLS
INCLUDING TRANSVERSE SHEAR STRAINS

J. N. Reddy and K, Chandrashekhara™

(A condensed version of this papen L4 to appear in ATAA Journal, 1964)

SUMMARY

The paper contains a description of a doubly curved shell finite element
for geometrically nonlinear (in the von Karman sense) analysis of laminated
(doubly-curved) composite shells., The element is based on an extension of the
Sanders shell theory and accounts for the von Karman strains and transverse
shear strains. The numerical accuracy and convergence characteristics of the
element are further evaluated by comparing the present results for the bending
of isotropic and orthotropic plates and shells with those available in the
literature. The many numerical results presented here for the geomerticaily
nonlinear analysis of laminated composite shells should serve as reference for
future investigations.

INTRODUCTION

Laminated shells are finding increased application in aerospace, automo-
bile and petrochemical industries. This is primarily due to the high stiff-
ness to weight ratio, high strength to weight ratio, and less machining and
maintenance costs associated with composite ;tructures. However, the analysis
of composite structures is more complicated when compared to metallic struc-
tures, because laminated composite structures are anisotropic and character-

ized by bending-stretching coupling. Further, the classical shell theories,

which are based on the Kirchhoff-Love kinematic hypothesis (see Naghdi [1] and

de
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gert [2]) are known to yield deflections and stresses in laminated shells that
are as much as 30% in error. This error js due to the neglect of transverse
shear strains in the classical shell theories.

Refinements of the classical shell theories (€.9., Love's first approxi-
mation theory (31) for shells to include transverse shear deformation have
been presented by Reissner [4-6]. Sanders [7] presented modified first- and
second-approximation theories that removed an inconsistency (nonvanishing of a
small rigid-body rotations of the shell) existed in Love's first-approximation
theory.

The first thin shell theory of laminated orthotropic composite shells is
due to Ambartsumyan [8,9]. [In these works Ambartsumyan assumed that the indi-
vidual orthotropic layers were oriented such that the principal axes of mate-
rial symmetry coincided with the principal coordinates of the shell reference
surface. Dong, Pister, and Taylor [10] presented an extension of ponnell's
shallow shell theory [11] to thin laminated shells. Using the asymptotic in-
tegration of the elasticity equations, Widera and Chung [12] derived a first-
approximation theory for the unsymmetric deformation of nonhomogeneous, aniso-
tropic, cyiindrica\ shells, This theory, when specialized to jsotropic mate-
rials, reduces tO Donnell's shell theory.

The effects of transverse shear deformation and thermal expansion through
the shell thickness were considered by Zukas and Vinson [13]. Dong and Tso
[14] constructed a laminated orthotropic shell theory that includes transverse
shear deformation. This theory can be regarded as an extension of Love's
first-approximation theory (3] for homogeneous jsotropic shells. Other re-
fined theories, specialized to anisotropic cylindrical shells, were presented

by Whitney and Sun [15], and Widera and Logan [16,17].



The finite-element analysis of layered anisotropic shells, all of which
are concerned with bending, stability, or vibration of shells, can be found in
the works of Schmit and Monforton [18], Panda and Natarajan [19], Shivakumar
and Krishna Murty [20], Rao [21], Siede and Chang [22], Hsu, Reddy, and Bert
(23], Reddy [24], and Venkatesh and Rao [25,26]. Recently, Reddy [27] extend-
ed the Sanders theory to account for the transverse shear strains, and pre-
sented exact solutions for simply supported cross-ply laminated shells. All
of these studies are limited small displacement theories and static analyses.

In the present paper, an extension of the Sanders shell theory that ac-
counts for the shear deformation and the von Karman strains in laminated an-
isotropic shells is used to develop a displacement finite element model for
the bending analysis of laminated composite shells, The accuracy of the ele-
ment is evaluated by comparing the results obtained in the present study for
isotropic and orthotropic plate and shell problems with those available in the
literature. Numerical results for bending analysis of cylindrical and doubly-
curved shells are presented, showing the effect of radius-to-thickness ratio,
loading, and boundary conditions on the deflections and stresses.

]

A REVIEW OF THE GOVERNING EQUATIONS

Consider a laminated shell constructed of a finite number of uniform-
tnickness orthotropic layers, oriented arbitrarily with respect to the shel)
coordinates (gl,gz,c). The orthogonal curvilinear coordinate system
(gl,gz,c) is chosen such that the £- and E,- curves are lines of curvature on
the midsurface ¢=0, and g-curves are straight lines perpendicular to the sur-
face ¢=0 (see Fig. 1). A line element of the shell is given by (see Reddy
[27]

(45)2 = [(1 + ¢/RJayde ]2 + [(1 + £/R))a,de, ]2 + (dg)? (1)
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where a, and R; (i = 1,2) are the surface metrics and radii of curvature,
respectively. In general, @ and R; are functions of Z; only. For the doubly
curved shells considered in the present theory, @ and Ry are constant,

The strain-displacement equations of the shear deformable theory of

doubly-curved shells are given by
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Here u; denotes the displacements of the reference surface along 51(53 =z)

axes, and ¢; are the rotations of the transverse normals to the reference

surface. In Love's first-approximation theories the parameter ¢ is taken to

be zero, and it is introduced only in the Sanders theory.



The stress-strain relations, transformed to the shell coordinates, are of

the form

{o} = [Ql{e} (4)

gg) are the material properties of k-th layer.
The principle of virtual work for the present problem is given by

where Q

L o
- k (k) (k) (k) (k) (k)
k=l L
- qéu3}a1a2dgldgzdc (5)
_ 0 0 0 0
= fQ [Nléal + Nzéez + N6€6 + Mlézl + M26<2 + M66K6 + Q1555
0 -

where gq is the distributed transverse load, Nj and M; are the stress and

moment resultants, and Qi js the shear force resultant:
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R AR R AL
k=1 ¢
k-1
L Sk
I N B (7)
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where K (i = 1,2) are the shear correction factors (taken to be K% = K% =

5/6), and (ck_l,;k) are the g-coordinates of the k-th layer, and L is the
total number of layers in the laminated shell.
It is informative 1O note that the equations of equilibrium can be

derived from tq. (6) by integrating the displacement gradients in e? by parts



and setting the coefficients of &u, (i = 1,2,3) and 89, (i=1,2) to zero

i
in [wi =L L -
separately. We obtain [with c =3 (R2 Rl) and dx; = q.dg.]
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N(uy) =%(N15—x-f-+ Ne gi) *a_i;“‘sﬁ* N, ﬁ) (9)

The resultants (N;, My, Qi) are related to (e?, zi) (i,j = 1,2,6) by

+
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= A, e° .
N; i3%5 7 S56g
0
M. = B..e:. + D..
i T Byt Digey (10)
_ 0 0
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Here Aij’ Bij and DiJ (i,j = 1,2,6) denote the extensional, flexural-

extensional coupling, and flexural stiffnesses of the laminate:

(A, .,B.

= L " (k) 2 D=
ij 1J,D) = Z f Q (]'QC’C )dC (1).] = 192,6)

1]
c
k-1 (12)
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The boundary conditions, derived from the virtual work statement, involve
specifying either the essential boundary conditions (EBC) or the natural

boundary conditions (NBC):

EBC NBC
U1 or Nyt (% - <6 )™
Uy or Non, * (N6 + coMe)n2
ou du
3 3
(N, 30 (Ny 35)
1 3%y 1 2 3%, 2
6U3 au3
U3 or + (N S;EJnl + (Ng axl)n2
+ QN
0, or Mln1 + M6n2
P or Mon, * Meny (13)

where (nl,nz) denote the direction cosines of the unit normal on the boundary
of the midsurface of the shell.

The exact form of the spatial variation of the solution of tgs. (8)-(13),
for the small-displacement theory, can be obtained under the following condi-
tions (see Reddy [271):

{i) Symmetric Of antisymmetric cross-ply laminates: i.e., laminates
with
Ars = Ao = Bis = B2s = D16 T D26 Agg = 0 (14)

(i) Freely supported boundary conditions:

|
Lo

U (00t) = glaxg) = M(0xp) = Hlexg) -

u3(0,x2) u3(a,x2) uz(D,xz)

1]
|}
"

uz(a,xz) =0
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N2(x1,0) = NZ(XI’D) = Mz(xl,O) = Mz(xl,b) = 0
u3(x1,0) = u3(x1,b) = ul(xl,O) = ul(xl,b) =0
02(0:x5) = 0p(2,%)) = 0,(x1,0) = ¢;(x),b) = 0 (15)

where a and b are the dimensions of the shell middle surface along
the X, and x, axes, respectively. The time variation of the load

does not influence the spatial form of the solution.
Note that the exact solution can be obtained only for cross-ply laminated

shells with simply supported boundary conditions. For general lamination

schemes, exact solutions are not available to date.

FINITE-ELEMENT MODEL

A typical finite element is a doubly-curved shell element in the Xy Xo=

§urface. Over the typical shell element Q(e)’ the displacements

(ul,uz,u3,¢1,¢2) are interpolated by expressions of the form,

N
u; = .Z uiwj(xl,xz) , 1=1,2,3
Jj=1
N ; .
;= I oye(xpnxy) 1= 1,2 (16)
J=1
where ¢j are the interpolation functions, and ug and @% are the nodal values

of u; and o5 respectively. For a linear isoparametric element (N = 4) this

interpolation results in a stiffness matrix of order 20 by 20. For a nine-

node quadratic element the element stiffness matrix is of order 45 by 45.
Substitution of Eq. (21) into the virtual work principle, Eq. (9) yields

an element equation of the form

10



(k(a)] {48} = {F} ‘ (17)

where {a} = {{u;}> {us}s {us}s {01}, {¢2}}T, [K] the element stiffness matrix,
and {F} is the force vector. In the interest of brevity, the coefficients of
the stiffness matrices are included in Appendix I.

The element equations (17) can be assembled, boundary conditions can be
imposed, and the resulting equations can be solved at each load step. Note
that the stiffness matrix (K] is a function of the unknown solution vector
{a}; therefore, an jterative solution procedure 1s required for each load
step. In the present study, we used the direct iteration technigue, which can

be expressed as

r((al") el = 1) (18)

where {A}r denotes the solution vector obtained in the r-th jteration (at any
given load step). At the beginning of the first load step, we assume that
{a} = {0} and obtain the linear solution at the end of the first iteration.
The solution obtained at the end of the r-th jteration is used to compute the
stiffness matrix for the (r+l)-th jteration. At the end of each iteration
(for any load step), the solutions obtained in two consecutive iterations are
compared to see if they are close enough to terminate the iteration and to
move on to the next load step. The following convergence criterion is used in

the present study:
N N

SRR b 1251212 < 0,01 (19)
= 1.—-

where N is the total number of unknown generalized displacements in the finite

element mesh.

11



To accelerate the convergence, a weighted average of the solution from

last two iterations are used to compute the stiffness matrix:
- +
[K(v{a} ™™+ (1 - e e} = (7) (20)

where y is the acceleration parameter, 0 < y < 1. In the present study a val-

ue of 0.25 - 0.35 was used.

NUMERICAL RESULTS

Here we present numerical results for some sample problems. To illus-
trate the accuracy of the present element, first few examples are taken from
the literature on isotropic and orthotropic shells, Then results (i.., de-
flections and strsses) for several laminated shell problems are presented.

The results for laminated shells should serve as references for future inves-
tigations.,

A1l of the results reported here were obtained using the double-precision
arithmatic on an IBM 3081 processor. Most of the sample problems were an-
alyzed using a 2 x 2 uniform mesh of the nine-node (quadratic) isoparametric

rectangular element.

1. Bending of a simply supported plate strip (or, equivalently, a beam) under

uniformly distributed load.

The problem is mathematically one-dimensional and an analytical solution
of the problem, based on the classical theory, can be found in Timoshenko and
Womowsky-Krieger [28]. The plate length along the y-coordinate is assumed to

be large compared to the width, and it is simply supported on edges paraliel

12



to the y-axis. The following simply supported boundary conditions are
assumed:

w=9,=0 along edges x = t 127mm (21)

A1l inplane displacement degrees of freedom are restrained. A5 x 1 mesh of
four-node rectangular elements in the half plate is used to analyze the prob-
lem. The data and results are presented in Fig. 2. The present result is in

good agreement with the analytical solution.

2., Clamped square plate under uniform load.

Due to the piaxial symmetry, only one quadrant of the plate is modelled
with the 2 x 2 mesh of nine-node elements (4 x 4 mesh of linear elements give
almost the same result). Pertinent data and results are presented in Fig. 3
for side to thickness ratios a/n-= 10 and 500. Tne result for a/h = 500 is in
agreement with the results of Way [291. The difference is attributed to the
fact that the present model includes the inplane displacement degrees of free-
dom and transverse shear deformation.

Figure & contains transverse deflection versus load for clamped ortho-

tropic, cross-ply, and angle-ply plates. The lamina properties are
= L 2 = b 2 = = 104 2
E1 25 x 10% N/mm<, E2 2 x 10% N/mm<, G12 613 104 N/mm
G.. = 0.4 x 104 N/mm2, vip = 0.25.

23

For the same total thickness the clamped orthotropic square plate is stiffer

than both two-layer angle-ply and cross-ply plates.

13
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Figure 2. Bending of an isotropic simply supported
plate strip under uniform load.
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Figure 3. Bending of clamped isotropic square plate under

uniform load.
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Figure 4. Bending of clamped orthotropic and laminated
square plates under uniform load.
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3. Simply supported, isotropic spherical shell under point load.

The pertinent data of the shell is shown jn Fig. 5. A uniform mesh of 2
by 2 quadratic elements is used in 2 quadrant. The effect of three types of
simply supported conditions on the center deflection and center normal stress

js investigated:

§S-1: u =WwW= ¢;7 0 at y = b; VvV =W= 6,7 0 at x = a
§5-2: u =V =WwW= 6.7 0 aty=0Db; u=VvV=W*= $,= 0 cat x = a (22)
§S-3: VvV =W = ¢, F 0 at y = b; U =WF= $,= 0 at x = a

Table 1 contains the results for the three boundary conditions. It is clear
from the results that all three boundary conditions give virtually the same
results for a/n = 160, and differ significantly (especially 55-1 differs from
both $S-2 and $s-3) for a/n = 16. Thus, the effect is more in thick shells
than in thin shells. The stress oy shown in Fig. 5 is evaluated at point x =

y = 1.691" in the top layer

4, Simply supported jsotropic cylindrical shell under point 1oad.

The geometry and finite-element mesh of the shell are shown in Fig. 6.
Once again, the effect of various simply supported boundary conditions (22) on
the deflections and stresses for the problem is investigated using 3 uniform
mesh of 2 x 2 quadratic elements. The results are presented in Table 2. For
the geometry and loading used here (R = 2540, a = 254, n = 12.7), the boundary
conditions have very significant effect on the solution. Boundary conditions
§5-2 and SS-3 give almost the same results whereas §5-1 gives about 2-1/2

times the deflection given Dy §5-2 or SS-3 boundary conditions.

17



Table 1. Effect of various simply supported boundary conditions on the center
deflections and normal stress in spherical shells under point load
(E = 107 psi, v = 0.3).
Load Solution SS-1 $S-2
P/h? a/n=160 a/h=16 a/h=160 a/h=16 a/h=160 a/h=16
4,000 -w* 0.0155 - 0.0152 - 0.0152 -
'°x* 893 - 984 - 894 -
8,000 -w 0.0329 0.0349 0.0324 0.0255 0.0324 0.0258
-0, 1,880 6,535 1,882 6,015 1,882 6,031
12,000 -w 0.0529 - 0.0522 - 0.0521 -
-0, 2,980 - 2,985 - 2,986 -
16,000 -w 0.0760 0.0793 0.0752 0.0520 0.0751 0.0525
-0, 4,220 13,230 4,228 12,200 4,229 12,240
20,000 -w 0.1038 - 0.1028 - 0.1027 -
-c 5,657 - 5,671 - 5,672 -
24,000 -w 0.1364 0.1083 0.1354 0.0792 0.1353 0.0800
-0, 7,268 20,110 7,289 18,500 7,291 18,550
28,000 -w 0.1761 - 0.1752 - 0.1751 -
g, 9,128 - 9,160 - 9,162 -
32,000 -w 0.2234 0.1472 0.2227 0.1072 0.2227 0.1083
-0, 11,180 27,170 11,220 24,930 11,230 25,000
* w(0,0), ox(A,A); A= 1.691
Table 2. Effect of various types of simply supported boundary conditions on
the deflections and stresses of anisotropic cylindrical shell under
point load.
Load,P SS5-1 - S5-2 $5-3
(N) w{mm) cy(N/mm ) =W o, W oy
250 2.5804(2) 2.868 0.6544(4) 1.706 0.6698(4) 1.706
500 5.1626(2) 5.713 1.3533(4) 3.478  1.3843(4) 3.477
750 7.7343(2) 8.506 2.1057(4) 5.327 2.1522(4) 5.321
1,000 10.278(2) 11.210 2.9234(4) 7.265 2.9855(4) 7.242
1,250 12.733(2) 13.80 3.8241(4) 9.312 3.9017(4) 9.288
1,500 15.204(2) 16.25 4.8349(4) 11.50 4.9279(4) 11.46
1,750 17.560(2) 18.560 6.0331(5) 13.91 6.1423(5) 13.85
2,000 19.843(2) 20.730 7.5316(6) ° 16.66 7.6610(6) 16 .57

18
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Figure 5. Bending of a simply supported (ss-3),
isotropic, spherical shell under point
load.
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Figure 6. Geometry of a cylindrical shell.
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5. Clamped isotropic cylindrical shell under uniform loading.

Figure 7 contains the pertinent data and results for a clamped cylindri-
cal shell (isotropic) subjected to uniform load. The results are compared

with those obtained by phatt [30]. The agreement is very good.

6. Clamped orthotropic cylindrical shell subjected to internal pressure.

Figure 8 contains the geometry and plots of center deflection and center
stress versus the internal pressure for the problem, The orthotropic material

properties used in the present study are:

= 6 i = 6 i = = = 6 i
E1 7.5 x 10° psi, E2 2 x 10° psi, G12 613 623 1.25 x 10° psa

vip © 0.25 (23)

The present result, obtained using the 2 x 2 mesh of quadratic elements, is in

excellent agreement with that obtained by Chang and Sawamiphakdi [31].

7. Nine-layer [O°/9D°/O°.../O°] cross-ply spherical shell subjected to

uniformly distributed load.

The following geometrical data is used in the analysis (with SS-3 boundary
conditions):

R. = R, = R =1,000 in., @ = b = 100 in., h =1 in. (24)

Individual layers are assumed to be of equal thickness (hy = n/9), with the
zero-degree layers being the inner and outer layers. The following two sets
of orthotropic-material constants, typical high modulus graphite epoxy materi-

al (the ratios are more pertinent nere), for individual layers are used:

21
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Bending of a clamped, isotropic, cylindrical shell under
uniform load.
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Figure 8. Bending of a clamped orthotropic cylindrical shell
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Mat.-1: E; = 25 x 106 psi, E, = 106 psi, G, =657 05x 106 psi
Gyy = 0.2 x 106 psi, vip © 0.25 (25)

Mat.-2: E; = 40 x 106 psi, E, = 106 psi, Gjp = Gy3 = 0.6 x 106 psi
G23 = 0.5 x 106 psi, Vip = 0.25 (26)

Figure 9 contains plots of center deflecton (w/h) versus the load parameter
(; = quz/E2h2) for the two materials. Shell constructed of Material 1
deflects more, for a given load, than the shell laminated of Material 2
(because Material 2 is stiffer), and consequently experiences greater degree
of nonlinearity. Note that the difference between the nonlinear deflections
of the two shells increase nonlinearly, indicating that the shell made of

Material 2 can take much more {ultimate) load than apparent from the ratio of

(1)

moduli of the two materials, E&Z)/E1 .

8. Effect of various simply-supported boundary conditions on the deflections

of two-layer cross-ply spherical shells under uniform load.

As pointed out in Problems 3 and 4, the transverse deflection is sensi-
tive to the boundary conditions on the inplane displacements of simply sup-
ported shells, To further illustrate this effect for laminated shells, a set
of four types of boundary conditions.are used, and the results are presented

in Table 3. Here SS-4 has the following meaning:

x
1]
"
it

[«

¢, = 0 on x
SsS-4 (27)
0 ony

"
o

=

"

©
()

It
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Material 2

1 in.

x
"

1000 in. .
a=>b= 50 in. 4

0.0

Figure 9.

0.2 0.4 0.6 0.8

peflection, (-w/h)

Bending of nine-layer cross-ply
[0°/90°/0°/...] spherical shell
subjected to uniformly distributed
Toad.
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Table 3. Effect of various simply-supported boundary conditions on the trans-
verse deflections of cross-ply [0°/90°] spherical shells under

uniform load (Material 1; shell dimensions are the same as those in Fig.

% -w (in.)

(psi) S$S-1 5$5-2 SS-3 5S-4
0.50 0.3344 0.04246 0.04257 0.4592
0.75 0.5757 0.06599 0.06617 0.8255
1.00 0.9485 0.09144 0.09171 1.3845
1.25 1.6529 0.11926 0.11966 1.9589
1.50 2.2826 0.15008 0.15063 2.3597
1.75 2.6421 0.18478 0.18556 2.5951
2.00 2.8499 0.22473 0.22584 2.8074
2.25 3.0764 0.27425 0.27593 3.0284
2.50 3.2432 0.33534 0.33795 3.1948
2.75 3.4214 0.42970 0.43487 3.3719
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Once again we note that g5-2 and SS-3 give almost the same deflections.
Boundary conditions $5-1 and $S-4 give deflections an order of magnitude high-
er than those given by §5-2 and SS-3. Thus, boundary conditions §5-2 and SS-3

make the shell quite stiffer.

g, Two-layer cross-ply [0°/90°] and angle-ply [-45°/45°]), simply-supported

(55-3) spherical shells,

Figure 10 contains the pertinent data and results (with different scales)
for the cross-ply and angle-ply shells (of Material 2). It is interesting to
note that the type of nonlinearity exhibited Dy the two shells is quite dif-
ferent; the cross-ply shell gets softer whereas the angle-ply shell gets
stiffer with an increasé in the applied load. while both shells have bending-
stretching coupling due to the lamination scheme (822 = - 811 nonzero for the
cross-ply shell and B1g and 826 are nonzero for the angle-ply shell), tne
angle-ply experiences shear coupling that stiffens the spherical shell rela-
tively more than the normal coupling (note that, in general, shells get softer
under externally applied jnward load).

Figure 11 contains plots of center deflection, normal stress [-cy] and
shear stress (cyz) at x = y = 5.283" versus load for two-layer cross-ply
(0°/90°) spherical shell (Material 1) under point load at the center of the
shell. The nonlinearity exhibited by the stresses (especially °yz) is less

compared to that exhibited by the transverse deflection.

10. Two-layer clamped cylindrical shells under uniform 1oads.

Figures 12 and 13 contain results (1.0, W, Sy L versus load) for
cross-ply [0°/90°] and angle-ply [-45°/45°] clamped cylindrical shells under

uniform load. The load-deflection curve for the cros-ply shell resembles that
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Deflection, -w (lo'zin) <— angle-ply

0.0 0.1 0.2 0.3 0.4 0.5
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2.5¢ ~[0°/90°] 4 0.5
Load, 2.0L 402
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1.5 4 0.3
= h = -
[ -45%/45°7
1.0+ 40.2
Material 2 7
0.5 40.1
0.0 N \ . . 0.0
0.0 0.1 0.2 0.3 0.4 0.5 «—cross-ply

Deflection, w (in in.)

Figure 10. Bending of two-layer cross-ply and angle-ply,
simply supported (SS-3) spherical shells under
uniform load.
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Figure 11. Bending of a cross-ply [0°/90°] spherical shell
(5S-3, Material 1), under point load. (see Fig. 10

for the shell dimensions)
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Figure 12. Bending of a clamped angl [-45°/45°) cylindrical

shell under uniform 1oad
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Figure 13. Bending of a clamped cross-ply [0°/90°] cylindrical
shell under uniform load (Material 1)
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of the isotropic shell in Fig. 7, but exhibits greater degree of nonlinearity
(being stiffer). The angle-ply shell exhibits different type of nonlinearity

(softening type) for all loads.

11. Quasi-isotropic, clamped, cylindrical shell under uniform load.

Two types of quasi-isotropic clamped cylindrical shells are analyzed:

Type 1: [O°/45°/90°/-45°]s
ym-
(28)

. ] Q
Type 2: [0°/+45 /90]sym.
Material 1 properties are assumed for each lamina (8 layers). The geometric
data and results are presented in Fig, 14, Compared to the results presented
in Figs. 12 and 13, the quasi-isotropic shells have the 'near-inflection'
point at higher loads; the load-deflection curve has essentially the same form

as that of the cross-ply shell (see Fig. 12).

CONCLUSIONS

A shear-flexible finite element based on the shear deformation version of
the Sanders' theory and the von Karman strains is developed, and its applica-
tion to isotropic, orthotropic, and laminated (cross-ply and angle-ply) shells
is illustrated via numerous sample problems. Many of the results, especially
those of laminated shells, are not ayai]able in the literature and therefore
should serve as references for future invest;gations. From the numerical com-
putations it is observed that boundary conditions on the inplane displacements

have significant effect on the shell deflections and stresses. Also, it is

noted that the form of nonlinearities exhibited by different lamination Schemes.
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Figure 14. Bending of clamped quasi-isotropic cylindrical shells
under uniform load.
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APPENDIX I

Stiffness Coefficients:
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are shown factored outside the

and fz
ure f1 and

It should be noted that althouyh f,
tion of the coefficients by the Gauss quadrat

matrices, in the evalua
117 4
For example flAll[S ] is

f, are considered as parts of the jntegrals.
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Wi and HJ are the Gauss weights, ZI and

where N is the number of Gauss points
is the Jacobian of the transformation.

Z\J are the Gauss points, and JO
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PART 2

ANALYSIS OF LAMINATED COMPOSITE SHELLS
USING A DEGENERATED 3-D ELEMENT

W. C. Chao™ and J. N. Reddy
Department of Engineering Science and Mechanics

(This paper 4s to appear in Int. Jowwnal of Numerical Methods in Engng.)

SUMMARY

A special three-dimensional element based on the total Lagrangian
description of the motion of a layered anisotropic composite medium is
developed, validated, and employed to analyze laminated anisotropic
composite shells. The element contains the following features:
geometric nonlinearity, dynamic (transient) behavior, and arbitrary
lamination scheme and lamina properties. Numerical results of nonlinear
bending, natural vibration, and transient response are presented to

i1lustrate the capabilities of the element.

INTRODUCTION

Composite materials and reinforced plastics are increasingly used
in automobiles, space vehicles, and pressure vessels. With the increased
use of fiber-reinforced composites as structural elements, studies
involving the thermomechanical behavior of shell components made of
composites are receiving considerable attention. Functional
requirements and economic considerations of design have forced designers
to use accurate but economica1.methods‘of determining stresses, natural

frequencies, buckling loads etc.

Graduate Research Assistant; presently at the University of Dayton
Research Institute
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Majority of the research papers in the open 1iterature on shells
is concerned with bending, vibration, and buckling of isotropic
shells. As composites materials are making their way into many
engineering structures, analyses of shells made of such materials
becomes important. The application of advanced fiber composites in jet
engine fan or compressor blades and high performance aircraft require
studies involving transient response of composite shell structures to
assess the capability of these materials under dynamic loads.

Finite-element analysis of shell structures in the past have used
one of the three types of elements: 1. a 2-D element based on a two-
dimensional shell theory; 2. a 3-D element based on three-dimensional
elasticity theory of shelis; and 3. a 3-D degenerated element derived
from the 3-D elasticity theory of shells. The 2-D shell theory is
derived form the three dimensional continuum field equations via
simplifying assumptions. The simplifications require the introduction
of the static and kinematic resultants, which are used to describe the
equations of motion. The unavailability of a convenient general
nonlinear 2-D shell theory makes the 2.0 shell element restrictive in
its use. The degree of geometric nonlinearity included in the 2-D shell
element is that of the von Karman plate theory. In contrast to the 2-D
shell theory, no specific shell theory is employed in the 3-D
degenerated element; instead, the geometry and the displacement fields
are directly discretized and interpolated as in the analysis of
continuum problems.

Finite-element analyses of the large-displacement theory of solids
are based on the principle of virtual work or the associated principle

of stationary potential energy. Horrigmoe and Bergan [1] presented
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classical variational principles for nonlienar problems by considering
incremental deformations of a continum. A survey of various principles
in incremental form is presented by Wunderlich [2]. Stricklin et al.
[3] presented a survey of various formulations and solution procedures
for nonlinear static and dynamic structural analysis. The formulations
include the pseudo force method, the total Lagrangian method, the
updated Lagrangian method, and the convected coordinate method.

The only large-deflection analyses of laminated composite shells
that can be found in the literature are the static analysis of Noor and
Hartley [4] and Chang and Sawamiphakdi [5]. Noor and Hartley employed
the shallow shell theory with transverse shear strains and geometric
nonlinearities to develop triangular and quadrilateral finite
elements. Chang and Sawamiphakdi presented a formulation of the 3-D
degenerated element for geometrically nonlinear bending analysis of
laminated composite shells. The formulation is based on the updated
Lagrangian description and it does not include any numerical results for
laminated shells.

From the review of the literature it is clear that first, there
does not exist any finite-element analysis of geometrically nonlinear
transient response of laminated anisotropic shells, and second, the 3-D
degenerated element is not exploited for geometrically nonlinear
analysis of laminated anisotropic shells. In view of these
observations, the present study was undertaken to develop a finite-
element analysis capability for the static and dynamic analysis of
geometrically nonlinear theory of laminated anisotropic shells. A 3-D
degenerated element with total Lagrangian description is developed and

used to analyze various shell problems.
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INCREMENTAL, TOTAL-LAGRANGIAN FORMULATION OF A CONTINUOUS MEDIUM
The primary objective of this section is to review the formulation
of equations governing geometrically nonlinear motion of a continuous
"medium. In the interest of brevity only necessary equations are
presented. For additional details the reader is referred to References
(6-10].
we describe the motion of a continuous body in a cartesian
coordinate system. The simultaneous position of all material points
(i.e., the configuration) of the body at time t is denoted by Cy,
and C0 and Ct+At denote the configurations at reference time t = 0 and
time t + at, respectively (see Fig. 1). In the updated Lagrangian
description all kinetic and kinematic variables are referred to the
current configuration at each time and load step. In the total )
Lagrangian description all dependent variables are referred to the
reference configuration. The updated Lagrangian is more suitable for
motions that involve very large distortions of the body (e.g., high-
velocity impact). The total Lagrangian is more convenient for motions
that involve only moderately large deformations. In the present study
the total Lagrangian formulation is adopted.
Here we present a derivation of the equilibrium equations at
different time steps using the total Lagrangian approach The
coordinates of a typical point in Ct is denoted by x = ( xl, 2 3)

The displacement of a particle at time t is given by

ty = Ly~ % or ty, = te, % (M)
- - ~ i i i
The increment of displacement during time t to t + ¢t is defined by
_ t+at t
i 5 Y5 Y (2)

45



34

t+ét

Volume
Area

=
]

Y
*

Figure 1 Motion of a continuous body in Cartesian coordinates
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The principle of virtual displacements can be ‘employed to write the
equilibrium equations at any fixed time t. The principle, applied to
the large-displacements case, can be expressed mathematically as

t+at” t+at t+at
[ o uy suy AV + IV Si 8( :1J)dV°

0
VO 0

-1 BtTy sug dAy + T s Tt suy av (3)
o ]

where summation on repeated indices is implied; V,, Ags and P denote,
respectively, a volume element, area element, and density in the initial
configuration, Sij are the components of second Piola-Kirchhoff stress
tensor, €43 the components of Green-Lagrangian straintensor, T; the
components of boundary stresses, and Fi are the components of the body
force vector; the superposed dots on ujy denotes differentiation with
respect to time, and § denotes the variational symbol. In writing Eq.
(3) it 1s assumed that €43 is related to the displacement components by

the kinematic relations

t+at .1 t+at t+at t+at t+at
i3 =2 0 Yigt T YT U Un, ) 8
= t+at .
where Uj,j = aui/axj. The strain components €43 can be expressed in

terms of current strain and incremental strain components as

teat 1t t t t
¢33 =2 CYq,5% Y3,10 % Unmyi Un, 3)
1 t 1
*2 (ui,j YU Um,i Um,j ¥ Um,i um,j) * 72 Un,i Ym,j
S CT TN (5)
= i) iJ iJ



where eij and ”1j denote the linear and'nonlinear incremental strains.

t+AtS

The stress components i can be decomposed into two parts:

t+at t
S1j Sij + Sij (6)
where Sij is the incremental stress tensor. The incremental stress
components Sij are related to the incremental Green-lLagrange strain
components, €y * e1j + g by the generalized Hooke's law:
$45 % Cigketis (7
where cijkz are the components of the elasticity tensor. Using Eq. (4)-

(7), Eq. (3) can be expressed in the alternate form

t+at -
[ e, ujsu, v + fv C yin (Bpgdnyy + Mea 885509V,

0 0
+f s se.dv_=eW-J ts
v

ij °%ij o v ij %Myj
0 0

dv, (8)

where sW is the virtual work due to external loads.

FINITE-ELEMENT MODEL

Geometry of the Element

Consider the solid three-dimensional element shown in Fig. 2.

The coordinates of a typical point in the element can be written as

g 3 n -z ]
¥5(8785) 5 () gop * 5 vlere) 7 (*{pottom
| - (9)

where n is the number of nodes, wi(al.gz) are the finite-element

Xi=

W
pr—

J

interpolation (or shape) functions, which take in the element, the value
of unity at node i and zero at all other nodes, 51 and 52 are the
normalized curvilinear coordinates in the middle plane of the shell,

and ¢ is a linear coordinate in the thickness direction and x:, x;, and x%
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> X1

Figure ¢ Geometry of the degenerated three-dimensional element
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are the global coordinates at node i. Here gl,gé, and ¢ are assumed

to vary between -1 and +1. Now let (see Fig. 2)

i _ i i
Vg T (xk)top - (xk)bottom (10)
e = vy/ly3|

where v;k is the k-th component of the vector !;. Then Eq. (9) becomes

A i 2]
SIS (o5 )pig + v5 3 hy e34] (m

where hj is the thickness of the element at node j. For small

deformation, the displacement of every point in the element can be

written as
n IR RS B IR
s bilug + o 7 (€748 - ep48y)] (12)
where e; and e; are the rotations about (local) unit vectors é} and é;,

respectively, Uy, Uo, and uy are the displacement components
corresponding to the global coordinates xy, xj, x3 directions
respectively, and u:, u; and u; are the values of the displacements
(referred to x) at node i. In yriting Eq. (12), we assumed that a line
that is straight and normal to the middﬁe surface before deformation is
still straight but not necessarily 'normal’ to the middle surface after
deformation. The strain energy corresponding to stress perpendicular to

the middle surface is ignored to improve numerical conditioning when the

three dimensional element is employed. This constraint corresponds only
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to a part of the usual assumptions of a two-dimensiéna] shell theory.
The relaxation of the requirement that straight lines perpendicular to
the middle surface remain normal to the deformed middle surface permits
the shell to experience shear deformation - an important feature in

thick shell situations.

Displacement Field in the Element

In the present study the current coordinates tx1 are interpolated

by the expression

n .
t, . t3 .1, tad
X jil wj( x{ + 7 thy e3;) (13)
and the displacement by
t 0 t,d, 1 t.J _ 0g
u, = ji] wj [ uy + 3 ;hj ( e3y - e31)] (14)
o= 1ol e lon, (PrAte) - ted (15)
i Y 7 3i 34

Here tu% and u% denote, respectively, the displacement and incremental
displacement components in the xi-direction at the j-th node. The unit

vectors é; and é; can be obtained from the relations

= (E X e3)/|E X e3l

“1 _ ol tod
e, = e3X e, (16)

A

where EZ is the unit vector along the (global) xz-axis. If we assume
i

that the angles e} and 5, are very small, then we can write
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SR ARIERR
377 2%t Y (17)

Substituting Eq. (17) into Eq. (15), we obtain

Ui-

t~M3

wj[u? + % chj(- tég1e{ + 91193)] (18a)

=1

or
{u} = [T]{a} (18b)

where {u} is the column of three displacements at a point, {4} is the

column of 5n (five per node) displacements: ug, 9{, ej, J=1,2,...,n; i

= 1,2,3, and [T] is the transformation matrix defined by Eq. (18a).

Thus for each time step one can find the normal vectors from Eq. (16)

and (17), and the incremental displacements at each point from Eq. (18)

once the five generalized displacements at each node are known.

Element Stiffness Matrix

The strain-displacement equations (4) can be expressed in the

operator form

(e} = (Al{u} (19)
where {e} = {e11 @y, €33 28/, 2¢;4 2e23}T, [A] is a function
of tuoi I and {uo} is the vector of the components of the displacement
gradient
T
(Uh = {uy g Uy a4y 35,7 U 5 Up 343,743 43 30 (20)

The vectors {uo} and {e} are related to the displacement increments by
{Uo} = [N]{u} = [N](T]{s} (21)
{e} = [ATIN][TI{a} = [B]{a} (22)

where [N] is the operator of differentials.
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Substitution of Eq. (22) into Eq. (8) yields

P oo Tibatavy + (Cik )+ Py Dls} = trotip} - BORFL (23)

Yo

where t[KLl, t[KNL], {R}, and {F} are the linear and nonlinear stiffness

matrices, force vector, and unbalanced force vectors:

fkd = L teiicl telev, o () = T ti8)Tis) tislav,
o 0

RN OROLA (24)
Vo
Here [S] and {§} denote the matrix and vector, respectively, of the
second Piola-Kirchhoff stress.

Since we are dealing with laminated composite structures, the
jmportant thing is how to perform the integration through the
thickness. One way is to pick Gaussian points through the thickness
direction. This increases the computational time as the number of
layers 15 increased, because the integration should be performed
separately for each layer. An alternative way is to perform explicit
integration through the thickness and reduce the problem to a two
dimensional one. The Jacobian matrix, in general, is a function
of §1s Gp» and ¢. The terms in ¢ to the first power may be neglected,
provided the thickness to curvature ratios are small. This
approximation jmplies that derivative of xj with respect
to £y Py and ¢ are substantially the same at either end of a mid-
surface-normal line. Thus the Jacobian [J] becomes independent of g and

explicit integration can be employed. If ¢ terms are retained in [J],
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Gaussian points through the thickness should be added. In the present

study, it is assumed that the Jacobian is independent of z.

Time Integration

The Newmark integration scheme is used to convert the ordinary
differential equations in time, Eq. (23), to algebraic equations. In

the Newmark scheme, displacements and accelerations are approximated by

B 0a) = o) + at?(a} + (G - ) (s} + 8" e {a}1(at)?

Bty = YA+ 10 - e+ P E at (25)

where {a} is the generalized displacement vector of any point

and 8 and y are the dimensionless parameters of the approximation. For

the constant average acceleration case, we have g8 = % and vy = %, and for

the linear acceleration method 8 = % and y = % (see [11]).

Substituting Eq. (25) into Eq. (23), and some algebraic

manipulation leads to

(a b tM] + tikpy (a(K)) = trotgpy _ tretip(kel)y 4 e
+ )t {py} - 35(tpy Hpgh) (26)

where

a = 1 ’

0 " g(at)?

1 L
-m, 33-28-] , and

3

~ t Tt
[M] = jv o, [TIW “IT] av,

0
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(P} = 1 oo (A} [TIdYg

0
(o = 1 trst(py (k-DiTlav,
(o]
(P} = [ % t{a}(Tlav,
o
(P} = I g t(a) (Tlev, (27)
]

This completes the finite-element formulation of the 3-D degenerated

element.

DISCUSSION OF THE NUMERICAL RESULTS

The results to be discussed are grouped into three major
categories: (1) static bending, (2) natural vibration, and (3)
transient response. All results, except for the vibrations, are
presented in a graphical form. A1l of the results presented here were

obtained on an IBM 370/3081 computer with double precision arithmatic.

Static Analysis

Here we present a discussion of four example problems, all
involving shell structures.

1. Cylindrical Shell Subjected to Radial Pressure Consider a

circular cylindrical parel of the type shown in Fig. 3. The shell is
clamped along all four edges and subjected to uniform radial inward
pressure. The loading is nonconservative, that js, the direction of the
applied load is normal to the cylindrical surface at any time during the

deformation. The geometric and material properties are
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free edge

supported
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diaphram: u = w= 0

Figure 3  Geometry of the cylindrical shell used in Problem 1
of the static analysis.
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R = 2540 mm, & = b = 254 mm, h = 3.175 mm,
o - 0.1 rad, E = 3.10275 kN/m’, v = 0.3
Due to the symmetry of the geometry and deformation, only one quarter of
the panel is analyzed. A load step of 0.5 KN/mz was used in order to
get a close representation of the deformation path. Fig. 4 contains the
plot of central deflection versus the pressure. The solution agrees
very closely with that obtained by Dhatt [13].

2. Orthotropic Cylinder Subjected to Internal Pressure Consider a

clamped orthotropic (Ep = 20 x 106 psi, Ey/Ep = 3.75, G12/E2 =

0.625, v = 0.25) cylinder of radius R = 20" and length 20", and
subjected to jnternal pressure, Py = 6.41/n psi. A mesh of 2x2 nine-
node elements is used to analyze the probiem. The linear center
deflections obtained by the 2-0 and 3-D elements are 0.0003764 in., and
0.0003739 in., respectively. These values compare favorably with
0.000366 in. of Rao [14] and 0.000367 in. of Timoshenko's analytical
solution [15]. The latter two solutions are based on the classical
shell theory.

In the large-deflection analysis the present results are compared
with those of Reference 5. A value of 2.5 ksi is used for the load
step. Figure 5 contains a comparison of the présent deflection with
that of Reference 5, which used a 3-D degenerated element based on the
updated Lagrangian approach. The agreement is very good.

3. Nine-Layer Cross-Ply (0°/90°/0°/...) Spherical Shell Subjected

to Uniform Loading Consider a spherical shell laminated of nine layers

of graphite-epoxy material (E1/E2 = 40, GIZ/EZ = 0.6, Gy3 = Gyp =
Gp3s V19 =.25), subjected to uniformly distributed loading, and simply

supported on all its edges (i.e., transverse deflection and tangential
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Figure 4 Load-deflection curve for the clamped cylindrical shell
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Vertical center deflection (in.)

Center transverse deflection versus
internal pressure
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rotations are zero). A comparison of the load-deflection curves
obtained by the present elements with those obtained by Noor (4] is
presented- (for the parameters h/a = 0.01 and R/a = 10) in Fig. 6. The
results agree very well with each other, the present 2-D results being
closer to Noor's solution. This is expected because Noor's element is
based on a shell theory.

4. Two-lLayer Cross-Ply and Angle-Ply (45°/-45°) Shells Under

Uniform Loading The geometry of the cylindrical shell used here is the

same as that shown in Fig. 3. The shell is assumed to be simply
supported on all edges. The material properties of individual lamina
are the same as those used in Problem 3. A mesh of 2x2 nine-node
elements in a quarter shell is used to model the problem. The results
of the analysis are presented in the form of load-deflection curves in
. Fig. 7. From the results, one can conclude that the angle-ply shell is
more stiffer than the cross-ply shell.

The geometry and boundary conditions used for the spherical shells
are the same as those used in Problem 3. The geometric parameters used
are: R/a =10, a/h = 100. The load-deflection curves for the cross-ply
and angle-ply shells are shown in Fig. 8. From the plot it is apparent
that, for the load range considered, the angle-ply shell, being stiffer,
does not exhibit much geometric nonlinearity. The load-deflection curve
of the cross-ply shell exhibits varying degree of nonlinearity with the
load. For load values between 100 and‘150, the shell becomes relatively

more flexible.

Natural Vibration of Cantilevered Twisted Plates

Here we discuss the results obtained for natural frequencies of

various twisted plates. This analysis was motivated by their relevance
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Figure 6 Deflection versus load parameter for a nine-
layere cross-ply (0°/90°/0°/...) spherical
shell
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Nondimensionalized center deflection, w/h
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o 3-D Element
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Figure
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Deflection versus the load parameter for two-layer
composite cylindrical shell
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Nondimensionalized center deflection, w/h
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Figure 8 Nondimensionalized deflection versus the load
for laminated shells
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to natural vibrations of turbine blades. Consider an isotropic
cylindrical panel with a twist angle e at the free end. Table 1
contains the natural frequencies of a square plate for various values of
the twist angle 8 and ratios of side to thickness. A 2x2 mesh and 4x4
mesh of 9-node elements are employed to study the convergence trend.

The results of the refined mesh are included in the parentheses. The
results obtained by using the 4x4 mesh are lower than those predicted by
the 2x2 mesh, showing the convergence. The results agree with many
others pubiished in a recent NASA report. Table 2 contains natural

frequencies of twisted plates for the aspect ratio of 3.

Transient Analysis

1. Spherical Cap Under Axisymmetric Pressure Loading Consider a

spherical cap, clamped on the boundary and subjected to axisymmetric
pressure loading, Po- The geometric and material properties are

R = 22.27 in., h = 0.41 in., E = 10.5 x 106 psi, v = 0.3,

o = 0.095 1b/in3, o = 26.67°, p, = 100 psi, e = 105 sec.
This problem has been analyzed by Stricklin, et al. [16] using an
axisymmetric shell element. In the present study the spherical cap is
discretized into five nine-node 2-D and 3-D elements. Figure 9 contains
the plot of center deflection versus time. The present solutions
obtained using the 3-D and 2-D elements are in excellent agreement in
most places with that of Stricklin et al [16]. The difference between
the solutions is mostly in the regions of local minimum and maximum.

2. Two-Layer Cross-Ply Plate Under Uniform Load A cylindrical

shell witha=b = 5", R = 10", h = 0.1" is simply-supported on the four

edges, is analyzed. The shell is laminated by 2 layers (0°/90°) and

R 4
exerted by a uniform step load P = E—EZ = 50. Figure 10 contains a plot
E,h
2
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Tanle 1 Natural Frequencies of Twisted Square Plates
- 2 £h
w = wad /o-ﬁ70 R D = ____._-2—- AV 0.3
12(1-v7)
a  Twist Mode
h Angle ] 2 3 4 5 6

0° * 3.4556 8.4110 22.0999 28.2089 31.9740 55.1625
T (3.4583) (8.3353) (21.0238) (26.7465) (30.1454) (52.0784)
15° 3.4359 10.2920 21.5199 27.2054 32.7430 44,5375
20 30° 3.3790 13.7014 19.9840 25.0943 34,3341 45.8987
(3.3694) (14.2222) (18.9795) (26.8104) (34.4591) (45.7547)
45° 3.2908 18.1009 15.9097 23.5680 35.5332 45,7013
60° 6.1800  17.8319 15.5635 24,1842 36.1466 44,9152
0° * 3.,33916  7.3948 10.8083 18.4930 23.7907 26 .0552
**(3,3390) (7.3559) (10.883) (17.757) (22.769) (24.125)
15° 3.31713 7.4816 10.8053 18.4043 23.6767 24,9474
(3.3170) (7.4504 (10.774) (17.71) (22.694) (24.083)
5 30° 3.2538 7.7593 10.52483 18.4091 23.3734 24,6116
(3.2538) (7.7089)  (10.478)  (17.795) (22.471) (23.943)
45° 3.1570 8.1435 10.1270 18.3843 22.9126 24,0566
(3.1569) (8.0728) (10.062) (17.79) (22.117) (23.651)
60° 3.0370 8.5855 9.67198 18.3089 22.3670 23.3533
(3.0366) (8.4814)  (8.5911) (17.730) (21.684) (23.160)

* 2x2, 9-node mesh

**3x3, 9-node mesh

t 4x4, 9-node mesh
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Table 2  Natural Frequencies of Twisted Rectanéu]ar Plates

(b/a = 3. 3x3 mesh of nine-node elements)

T = Wi/, o=]2iz , v=0.3
(1-v)
4 Twist Mode
h Angle 1 2 3 4 5 5 7
T 0° 3.4150 20.8772 21.6190 65.9706 66.2590 127.256
15° 3.4009 20.8798 22.1118 21.5032 68.0938 69.3253 130.284
20 30° 3.3598  19.4048 25.3743 60.2183 73.5180 77.4493 138.176
45° 3.2956 17.5289  29.8404 58.2600 80.9488 88.5245 148.8975
60° 3.2136 15,7431 34,8827 55,8921 89.2028 100.7760 155.070
0° 3.3908 15.551 19.124 21.065 59.924 61.949
15° 3.3161 15.192 19.231 21,572 60.088 60.830
5 30° 3.3336 14,379 19,549 22.811 60.576 58.472
45° 3.2674 13.449 20.060 24.404 51.360 55.874
60° 3.1833 12.548 20.741 26.139 62.415 53.381
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Center displacement, wx]O3 (in inch)
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Figure 9 Center transverse displacement versus time

for a spherical cap under axisymmetric dynamic
loading ( load = 100 psi.)
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Center deflection, wxl10
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0.14

0.0

Time, tx10°

Figure 10 Center deflection ;ersus time for two-layer
cross-ply cylindrical shell subjected to
uniform step load
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of the center deflection versus time for 2-D and 3-0 elements. The time
step used is at = 0.1 x 10'4 sec. The solutions obtained using the two
elements are in good agreement.

3. Two-Layer Angle-Ply (45°/-45°) Spherical Shell Under Uniform

Loading Consider a spherical shell witha =b = 10", R = 20" and h =
0.1, simply supported at four edges and is exerted by a uniform step
load. The shell consists of two layers, (45°/-45°). Figure 11 contains
the plot of center deflection versus time for 5 = 50 and § = 500 with
time step 0.2 X 10‘5 sec. For the small load the curve is relatively
smooth compared to that of the larger load. This is due to the fact
that the geometric nonlinearity exhibited at 5 = 50 is smaller compared

to that at P = 500.
CONCLUSIONS

The present 3-D degenerated element has computational simplicity
over a fully three-dimensional element, such as those developed in (171,
and the element accounts for full geometric nonlinearities in contrast
to 2-D elements based on shell theories. As demonstrated via numerical
examples, the deflections obtained by the 2-D shell element deviate from
those obtained by the 3-D element for deep shells. Further, the 3-D
element can be used to model general shells that are not necessarily
doubly-curved. For example, the vibration of twisted plates cannot be
studied using the 2-D shell element discussed in [12]. Of course, the
3-D degenerated element is computationally more demanding than the 2-D
shell theory element for a given problem. In summary, the present 3-D
element is an efficient element for the analysis of Jaminated composite
plates and shells undergoing large displacements and transient motion.

The 3-D element presented herein can be modified to include thermal

stress analysis capability and material nonlinearities. While the
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0.7 - R - wxw3 for load parameter, P = S0
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Figure 11 Center deflection versus time for two-layer
angle-ply [45°/-45°] spherical shell under

uniformly distributed step loading.
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inclusion of thermal stresses is a simple exercise,:the inclusion of
nonlinear material effects is a difficult task (see [18-20]). An
acceptable material model should be a generalization of Ramberg-0sgood
relation to an anisotropic medium. Another area that requires further
study is the inclusion of damping effects, which are more significant

than the shear deformation effects.
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PART 3

NONLINEAR MATERIAL MODELS FOR COMPOSITE PLATES AND SHELLS

K. Chandrashekhara and J. N. Reddy
Department of Engineering Science and Mechanics

SUMMARY
Nonlinear material models for laminated structures are described
and their incorporation in the finite-element formulation of laminated
plates and shells is presented. Numerical results for several sample
problems of plates and shells are presented and validated by comparison

with those available in the literature.

INTRODUCTION

Composite materials are known to exhibit significant non-
linearities in stress-strain behaviour even at low strains. Most of the
currently used matrix materials in composites have high strain
capabilities and the investigation of the bending of composite shells
undergoing large deformation, yielding is apt to occur and its effect
must be accounted for in the analysis. The nonlinearity is not
isotropic but varies with direction, as do the elastic properties.
Models for such elastic-plastic behavior of orthotropic and anisotropic
materials are not well developed.

The total stress-strain laws are mathematically more convenient
than incremental laws but are physically not sound. The criterion
approximately describing the yielding of isotropic material is that of
von-Mises. The simplest yield criterion for anisotropic material is
therefore one which reduces to von-Mises law when the anisotropy is
vanishingly small. Hill's yield criteria assumes relatively simple ease

of orthotropic anisotropy, that is, there are three mutually orthogonal
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planes of symmetry at every point and the 1ntersect%on of these planes
are considered as the principal axes of anisotropy. Fiber reinforced
composite structures almost invariably possess this kind of symmetry.
In the present study a nonlinear material model is developed for
composite plates and shells, and numerical results for bending are
presented using the finite element method as exact solutions are not

tractable for elastic-plastic problems involving complex geometries.

MATERIAL MODEL

In the present model, Hill's anisotropic yield criteria for
elsatic-perfectly plastic material is used. Hill's [1] yield function

is,
f(a‘]j) = F(o2 - 03)2 + G(c3 - 01)2 + H(ol - 02)2
+ 2La§3 + Molq + 2NoS, = 1 (1)
where F, G, H, L, M, N are parameters characteristic of the current

state of anisotropy given by,

1 1 1 1
F =nt+tn--—5 3 2L==5
22 X R?
1 1 1 1
H=-s+-5--73 3 M=
72 X2 ¥2 52
1 1 1 1
MH=5+-5-—5 3 N=7
X2 ye 72 12

and X, Y, Z are the tensile yield stresses in the principal direction of
anisotropy and R, S, T, are the yield stresses jn shear with respect to
the principal axes of anisotropy.

It should be noted that Hi1l's criteria is based on the assumption
that the superposition of a hydrostatic stress does not influence

yielding and there js no Bauschinger effect. Also, the yield criterion
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has this form when the principal axes of anisotropy are the axes of
references.

For a plane stress state in the 1-2 plane with transverse shear,
equation (1) reduces to:

f = (6 +H)ol + (F + H)ob - 2Haya,
2 2 2
+ 2L023 + 2M013 + ZNc12 1 (2)
For an isotropic material;
X=Y=7= 9gs

the yield stress in uniaxial tension and according to the von-Mises

yield criteria (2]

=
n
|~
[+
3
[« %
~n
—
[}
[aY]
=
[}

Therefore, F = G =

Zoo o
becomes,

_ 2 2 2 2 =
f=0] + 05 - 0y0p + 3(op3 + 03+ 915) = o
which is the familiar von-Mises yield criteria.

If the principal axes of anisotropy 1,2 do not coincide withthe
reference axes x, y, but are rotated by an angle e, then the stresses in

equation (2) are obtained using the transformation as:

2 2
= + +
oy = o, cos™8 oy sin®e °xy sine cose
2 2
= + -
oy Oy sin“e o Cos @ °xy sine cose
B -
023 °xz sine + °yz coso

= +
913 = 9%, cose °yz sine

2

= 2
910 = -20, sine cose + zay sine cose + axy(cos 8 - sin®e)

Elastic-Plastic Constitutive Equations

In the incremental theory of plasticity, the total strain increment
is the sum of the elastic and plastic components
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de = de® + deP ’ (3)
The elastic strain increment is related to the stress increment by
Hooke's law as,
de® = (081" do (4)
where [D€] is the elastic modulus matrix which for orthotropic material

takes the form,

= -
£ V128, 0 . 0
T-vqaV T=vqqv
12V21 12v21
v12E2 E, 0 0 0
T-vgav T=vqqav
12V21 12v21
(D8] = (5)
0 0 Gp3 0 0
0 0 0 613 0
| o 0 0 0 6y

The normality rule for an associated plastic flow is,

dep = da af

30

where dx is the positive proportionality constant, evaluated using the
condition that during the plastic deformation, the stresses remain on

the yield surface so that,

The stress-strain relation in the plastic range is given by [3],

do = [Dep]de
where
¢ 25} 253108
[DEp] = [De] - 7 iao}{aal (6)
T 0% 2
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Hence the modification called for in the e1ast}c-p1ast1c analysis
would be solely the replacement of the elasticity matrix [D®] by the
elastic-plastic matrix [DEP] for the yielded elements at the successive
stages of calculation. It should be noted that the [DP] matrix is
populated and accordingly the transformation of the stress-strain
relation from the material axes, ({o} = [Depllz{c}), to the shell
coordinate axes, ({o} = [DeP]xy{s}). will be modified as shown in

Appendix I.

FINITE ELEMENT FORMULATION

Consider a laminated shell constructed of a finite number of
uniform thickness orthotropic layers, oriented arbitrarily with respect
to the shell coordinates (51,52,c). The orthogonal curvilinear
coordinate system (51.52.5) is chosen such that §y- and §o" curves are
1ines of curvature on the midsurface ¢=0, and z-curves are straight
1ines perpendicular to the surface z=0.

For the small displacement Sanders shell theory which accounts for

transverse shear deformation, the strain displacement relations are

given by [5],
€y T gy F Ly
where
u u 3¢
fem R ST
1 1 1
o M2 Y %
2 axl R2 2 ax2
6 X,y axq ’ 6 23 2 ax1 0 “3xy X
u u
0 3 2
€r = 0f + — -
4 2 ax2 R2



au u
= ¢ +_é__.1_
1 axq R1

L

(o]
5
1
€ =2 (R1 R

€
Ly gk =agdey (1=1,2)
2 ’ i 1774 '
Here Ry (1 = 1,2) are the principal radii of curvature, uj are the
displacements of the reference surface along ;1(53 = g) axes, ¢; and ¢,

are the rotations of the transverse normals about the &y and zl-axes

respectively.
The stress-strain relations, transformed to the shell coordinates,
are of the form
{o} = [Ql{e}
where Q:j are the material properties of kth-1ayer (see Appendix 1).

The principle of virtual work for the present problem is given by

o
]
ne~

) (f o%k)éel + cgk) Sey + ogk) Seg + ogk) 8ey
i Q

+ cgk) Seg - q6u3}a1a2d51d52]dc (7a)

0 0 0
IQ[NISEI + Nysep + Neseg + Mysky + Mpsc, + Mgéxg

o] (o]
+ N4ée4 + Nsées - q&u3}a102d£1d§2 (7b)

where q is the distributed transverse load, Nj and My are the stresses
and moment resultants.
L %k
(N, M) = & o (1,8)de (1 =1,2,6,4,5)
v - i
k=1 ¢
k-1

Here (:k_l,;k) are the g-coordinates of the kth Jayer, and L is the

total number of layers in the laminated shell.
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I3

It should be noted that the equations of equilibrium can be derived
from Eq. (7b) by integrating the displacement gradients in e? by parts

and setting the coefficients of su to zero separately. We obtain

1 3 5
— +—— (N, +cM)+5=0
Xy Xy 6 06 R1
aN N
3 2 4
—— (N cCM)+—+7—=0
axy 6 06 ax2 R2
aN aN N N
T RO
1 2 1
- s
Xy Xy
3M6 aM2

The resultants (N;, My) are related to (e?,ci) by,

(o]
N; = A, ;e; + B _«
i 1373 pp i,j = 1,2,6,4,5 (8)
- 0 - = =
Ml = Bljsj + sz‘p L,p 1,2,6 (with 2=1 for i 1,2,6)

Here A1j, 81J and Dij denote the extensional, flexural-extensional
coupling, and flexural stiffnesses of the laminate:
L %k

(AygBygoyg) = 2 ]

Qgg) (1.c.c2)dc (9)
k-1

In the unabridged notation equation (8) takes the form:
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(%) A1 Az A A1a Ais B Brz B | {1 )
N2 Ap Agp Ae A2a P25 Biz B2z Bae €2
Ng Ag A Pes Pae Ase Bl B2 Bes 6
1 Ng | | Bra Bea Age Paa Pas Bia Baa Bae e L (10)
Ns A5 Ags Asg Aas Ass Bis Bas Bse I
My By, B1p By B14 Bis P11 D12 Die 31
M2 Bi, Bps Bps Baa B2s D11 D22 Dze K9
[Ms] | Bis B2 Bes Bas Bse P16 D26 Des | |6

The underscored coefficients are due to material nonlinear stress strain
relationship. It should be noted that the coefficients Agg, Ass and Agg
defined in equation (9) has to be corrected for the parabolic variation

of the transverse shear stress, as

L %k
2~(k k 2 k
(Agqohagehss) = I (kafK), kpk088) K30 o ha: (M)
k=1 Ty-1

where k are the shear correction factor.

A typical finite element is a doubly-curved shell element whose
projection is an jsoparametric rectangular element. Over the typical
shell n(e), the displacements (ul,uz,u3,¢1,¢2) are interpolated by

expressions of the form,

N
uy = jil uiwj(xl,xz) , 1=1,2,3
(12)

Y
L ¢1¢j(X1,X2) , 1=1,2

Q =
i j=1

where wj are the interpolation functions, and ug and ¢g are the nodal
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values of uj and Y respectively. For a nine node‘quadratic element
the element stiffness matrix is of order 45x45.

Subséitution of equation (12) into the virtual work principle, Eq.
(7b) yields an element equation of the form

[K1{a} = {F} (1)
where {a} = {{u;}, {u,}, {us}s {e;}, {¢2}}T. [K] is the element
stiffness and {F} is the force vector. In the interest of brevity, the
coefficients of stiffness matrices are included in Appendix II.

It should be noted that the underscored coefficients in Eq. (10)
are also redefined 1ike the shear coefficients in Eq. (11) and reduced
integration is performed for the terms arising in the element stiffness
matrices due to the presence of these coefficients to avoid the so-

called locking effect.

NUMERICAL RESULTS

The Parameters of Anisotropy

When considering the modeling of a material system, one must always
survey the availability of material property data. In the present
theory, to describe fully the state of anisotropy, the six independent
yield stresses in Hill's criteria are needed to be known from uniaxial
tests. For numerical results, two typical composite materials namely,
boron/epoxy and graphite/epoxy are considered with the following

material constants:

Boron/Epoxy
E, = 30.0 x 10%psi E, = 3.2 x 10° psi
- 6 _.; - - _
6y, = 1.05 x 10° psi , v, = 0.21 , Gy =6y = 6y,
X =195 x 103psi ; Y =2 =12.5 x 10° psi

R=S=T=18.0 x 10 psi
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Graphite/Epoxy
E

6 psi 3 E,=1.376 10° psi

psi vip = 0.343 ; 623 = G13 = G12

= 18.88 x 10
6

1

G,, = 0.688 x 10

12
Y = 222.7 x 103 psi 3 Y =Z=6.35x 10° psi

R=S=T=9.92 x 10° psi

Solution Procedure

The solution of the elastic plastic problem is reached by an
incremental and iterative procedure. The direct iteration technique is
followed in the present analysis.

For each load increment, the system of equations are established by
assemblying the element matrices and the displacement {a} is obtained
from Eq.(13). Conseguently, the state of stress and the value
of f(°1j) are calculated for each element. If f <0, then the process
is elastic and the material matrix is obtained from equation (5). If f
> 0, then the total stresses are readjusted so as to make f = 0 and the
elastic-plastic matrix is calculated from Eq. (6). Once the convergence
is achieved, the next load increment is applied and the iteration
procedure is repeated.

If the application of a small load jncrement causes very large
deflection, the calculation is stopped and the 1imit load is considered

to be found.

Sample Problems

The present elastic-perfectly plastic formulation is applied to a
variety of bending problems using 2x2 mesh of a nine noded quadratic

element. The shear correction factors ki = kg were taken to be 5/6.
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A1l computations were made using an IBM 3081 proces%or with double
precision arithmetic.

The results of the sample problems are presented and compared, if
possible, with the existing solutions to evaluate the present
formulation.

1. Cylindrical Shell Roof A cylindrical shell subjected to

uniform vertical loading is considered. Due to symmetry, only a
quadrant of the shell was analyzed. The geometry and modeling of the
shell roof are shown in Fig. 1. The material behaviour is studied with
the properties:

= E.=2.1 x 100 M/mé 5 v =0.0;

1 2

=1.05 x 10Y MN/m® ; 6., =6,, =G

12 23 13 12
X=Y=1272=4.,] Mn/m2 s R=S=T=2.367 MN/m2
The results obtained for the vertical displacement at the central
point of the free edge A versus loading was shown in Fig. 1. The
solution obtained compares well with those reported in Ref. [6]. The
apparent discrepancy can possibly be due to a different boundary

condition on the curved edges and the type of material model used.

2. Simply-Supported Square Plate A uniformly loaded simply

supported square plate was studied in the second example. The geometry
of the plate is shown in Fig. 2. The following material properties were

considered:

-

=10 x100 psi ; v=0.3
6

E, =

G,, = 3.846 x 10

12 pst 5 Gp3=Gy3 =Gy,

X=Y=7=144,000 psi ;3 R=S =T = 83,138.4 psi
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Free edge
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Figure 1.

.01 .02 .03 .04 .05

Vertical deflection at point A (in meters)

Load-deflection curves for 2 cylindrical panel
under uniform transverse load
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0.7 A --- Reference [7]

— Present solution

% = 14,400 psi

X
0.2 7
f— 22—~

0.1 - = 2 in.

= 0.0521n

o (0 _h4/4
0.0 T T T I 1

0.0 .02 .03 .04 .05 .06

Center deflection, wD/(AMoa

Figure 2. Load-deflection curves for a simply-supported
square plate under uniform transverse load
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A non-dimensionalized plot of the centre displacement of the plate
versus the load are shown in Fig. 2. The results are compared with
those presented in Ref. [7].

3. Two Layer Cross-Ply [0/90] and Angle-Ply [-45/45] Simply

Supported Spherical Shells Figure 3 contains the results for the cross-

ply shell made of two typical materials, namely, boron/epoxy and
graphite/epoxy under uniform load. For a given load, the shell made of
graphite/epoxy deflects more than the shell made'of boron/epoxy which is
stiffer, but experiences small degree of nonlinearity.

Figure 4 shows nonlinearity exhibited by the graphite/epoxy cross-
ply and angle-ply shells under uniform load. Clearly, the angle-ply
shows greater displacement and also nonlinearity than the cross-ply for
the same load.

Figure 5 shows the material behaviour for the boron/epoxy cross-ply
shell under concentrated load.

4. Clamped Cylindrical Cross-P1ly (0/90) Shell Under Uniform Load

The geometry of the shell is shown in Fig. 6. The shell is made of
grpahite/epoxy and the plot of displacement versus load are shown in

Fig. 6.

CONCLUSIONS
A finite element model based on Sander's shell theory, accounting
for the transverse shear strains is used for the elastic-plastic
analysis of lamianted composite shells. The parameters of anisotropy
reflect the plastic material response by correcting the stress
components in the Hill's yield function. Numerical results are
presented for isotropic and laminated shell of cylindrical and spherical

geometry to demonstrate the validity and efficiency of the present
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Figure 3. Load-deflection curves for a simply supported
spherical shell under uniform transverse load
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100 '1
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--- Graphite-epoxy (-45°/45°)
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Fiqure 4. Load-deflection curves for a simply supported
spherical shell (see Figure 3 for the geometry)
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3.2-

i Linear
2.4 Boron-epoxy (0°/90°)
1.6 4

pox1o‘61b-
0.8 -
0.0
T LB 1 | 1
0 2.5 5.0 7.5 106.0 12.5
Center deflection, w (in,)
Figure 5. Load-deflection curves for a simply supported spherical shell

under point load at the center (see Fiqure 3 for the gecmetry)
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approach. Ffor the isotropic case, the present resuits are in good

agreement with those available in the literature.
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APPENDIX 1

Transformation of the stress-strain matrix in Equation (6)

Let the elastic matrix in the material axes (1,2) be [D®P]y, and in

the body axes be [D®P1,,

1 G2 Y3 GYa °1;
~N
G2 G3 Caq Cos

e . N
~N
S “aa Cas
N
L Cs5

Q) Q2 Q3 Qe Q5]

O % % %

(%1, = (a1 033 % %35
sym Qs Qs
L Qs |

then the transformation [4] is given as, (with m = cose, n = sine)

_ 4 2.2 2 2 4
Q11 =m C11 + 2m™n (C12 + 2C33) - 4mn(m C13 +n C23) +n C22
0, - m2n2(Cpq + Cpp - 4C33) * amn(u? - n2)(Cy3 - Cp3) *+ (m* + n%ey,
Q5 = mz(m2 - 3n2)C13 + mn[mzc11 - nZC22 - (m2 - nz)(c12 + 2C66)]
2,2 2
+n°(m" -n )C26
Q. = m3C,, - m((2C,, - Cye)m - (Cpq - 23g)n] + € n3
14 14 34 15 24 35 25

R 3
le =m C15 - mn[(C14 + 2C35)m - (C25 + 2C34)n] - CZA"

n4C

4
1t 2m2n2(C12 + 2C33) + 4mn(m2C23 + n2C13) +m sz
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Q23 = mz(m2 - 3n2)C23 + mn[n2C11 - mZC22 +v(m2 - nz)(C12 + 2C33)]

+ n?(3m2 - nz)C13

024 = m3C24 + mn[(C25 + 2C34)m + (C14 + 2C35)n] + C15"3
3 3
Qg5 = M Cp5 - ml(Cyy - 2C3g)m - (C)g - 205 )n] - Cpyn
Qg3 = M2n2(Cyq + Cyy - 2C;,) - 2mn(n? - nz)(sz - Cgp) + (n - nd)Zc,,

Qgq = (MCyq + nC35)(m2 AN mzn(cl4 - Cy) + mn2(c15 - Cyp)

035 = (mC35 - nC34)(m2 - n2) + mzn(c15 - CZS) + mnz(c24 - C14)
044 = m2C44 + ZmnC45 + nZC55

Qs = (0° - n2)Cy5 - mn(Cyy - Cgp)

055 = m2C55 - 2mnC45 + n2C44

The underscored terms are due to material nonlinearity for an
orthotropic material. Also note that the constitutive matrix is no

longer orthotropic.
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APPENDIX I1

Stiffness Coefficients

(1) = 05t + Apg(Ist2] + 1520) + Agg(s™]

>

+ C (8gls120 + 1211) # 28, [522] + C,Dggls71) + Egi [s°°]
1

. (Als((s1°1+[s°11)+A56([sz°1+[s°21)-coess([s2°1+[s°21)
[K12] = a,,(512] + AgIS LT + ApglSP2) + Aggls?]
s C (326[5221 - Byl - gl + Al [5°°]
(A14[sl°1 + Aggls?0 + CBagls™N)
- i] (Aygls%2] + AgglsOl] - ¢ Bsgls™ )

K13 = & (8 1115101+ AP0 + %E (Ag,lSt01 + Apgls21) +

021 + A 01])

553

B
( 16 [520] + 26 [SZO] 1 (A45[S

00
12) 4 a (151 - 1550y + aq0s%)
*

A14[5 ag!

SOO

21 ] + C (B 6[522] + B 6[5 1]) - A25 R1R2

AgglS

(K14 = 8, (5] + By(15121 + 15211) + Bggls®) +

21 22 1 00

510] + A

20, _ 1 01 02
g6(501 - 7 (Byg(ST 1 + BglS 1)

Ayl

+ C B 6[520]



(K1%) = B,,1512) + B, [s11) + B, (522 + B [52!]

12! 16! 26! 66!

. 22 21 1 00
+ CO(DZG[S ] + D66[s ]) - ﬁ; A45[S ]

+ A1l810] + A, 1520 - %I (8,522 + BggIs011)

20
+ C°B46[S ]

(K?2] = Apy[SP2] + Ape(IST2] + [521]) + Agglsthy - 2c g [sM)

A
- Cy(Byg (15121 + [521]) - ¢ pgelstily - Egﬂ (5°]
2

- 7 (1201 + (s%21) + agg(1s] + 1%+ ¢ 150

ag!!

10
- CBaglS])

(k23]

1 20 10 1 20 10
N (Ajp1S] + AL[ST]) + % (Aya[ST7] + AyelS])

B B
ol D 1870 - - (a

01
i D)
(o} R1

502] + A

aa! 45!

+ Aoy (1572 - iE [5%°1) + Ayls?h] + a,cls12)
2

A
11 14 00 12 11
+ A56[S ] - ﬁiﬁg (S ]‘- C°B46[5 ] - COBSGIS ]

(k2% = 8,,15%1] + B, [5%2] + B, (5] + B (512

12! 26! 16! 66!

11 12 1 00

20 10 1 01 02
+ Azs[S ] + A56[S ] - ﬁ; (814[3 ] + 846[3 ])
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10
- C0856[5 |

(K25] = 8,,(5%2] + Byg(Is711 + [S1D) + BglS ]
- € (0yg!S 01 # DgglST 1) - %E Agq[%)

20 10, _ 1 02 o1
¢ Rygls201 + AgglST] - o (BpalST) ¥ ByglS™ )

10
- C0846[5 ]

[K31] - [K13]T

(32] = (k237
(K33 = Ayl + Agglstl + Aaqls221 + Aggls?]
A A A A
00,,1 11 12 1 12 22
+ [S l(ﬁ; (ﬁz- + ﬁ;‘) + ﬁ; (ﬁ;‘ + §E’))
A A
+ R—? (1592 + (s2%)) + -R—lli (1s9 + (s
A A
+ gi—“— ((s92] + (s%0)) + -{;—5 (1s917 + (10
A A
+ iﬁ (1s92] + (%)) + {2—5 (st + (st
(34) = Agls0) + gl

B B B B8
11 12,01 16 26, 102
@ gt e qf R0 1

A A
15 25, <00 21 22
- (e RS 2 Byl | + Bygls]

11 12
+ 815[5 ] + 856[5 ]
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(K9] = A1510) + A, 1s%0)
B,. B B,, B /
16 26,01 12 22, (02
+ (g2 + 2250+ 2+ 22y(s9
L LI »
A A
gt R (51 + Byg[s] + Bygls7)
+ 825[512] + 856[511]
[K41] - [K14]T
[K42] - [K24]T
[K43] = [K34]T
[KH1 = 05 (5M) + 0,6 015M2) + (5211 + DgISP2) + A [5%°]

+ 315([510] + [501]) +B 520] + [502])

(k%] = 01,15"2) + 0, ([SM] + 0,60522] + Dggls2) + A,c[5%]

10 20 02 01
+ 814[5 ] + 846[5 ] + 825[5 ] + 856[5 ]

[K51] - [K15]T
[K52] - [K25]T

(K%)= D) [572] + Dy (S22 + (5211 + Dgglsth) + A, (5%°)

+ By (5201 + 15%21) + B, (1510 + (%))
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where
Y, I,
aB _ i 00 _
S i ———-—;i dxydxy 5 Sy J . wiwjdxldx2

ij ax_ 3
e a Q

and the underscored terms are due to material nonlinearity.
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