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Submillimeter Sources for Radiometry

1.0 INTRODUCTION

1.1 Overview

This final report presents the work performed in a research and development program for
milllmeter-wave and submillimeter-wave local oscillator sources for radiometry in the

frequency range of 60-1000 GHz. This second phase effort was focused on Indium
Phosphide Gunn diode oscillators and Schottley-barr/er varactor multipl/ers. The scope of

the investigation is outlined in Sect/on 1.2, together with its key objectives. The design
criteria and relevant requirements for the local oscillators are summarized in Chapter 2.
Theoretical considerations for the design and mode-of-operation are also included. Various
options for reali_ng the source performance for this development are discussed on a
comparative basis.

Chapter 3 deals with the construction details and fabrication aspects of various source
components examined in this study. Mechanical and electrical parameters of critical
importance are described in the context of physical realization of these oscillators and
frequency multipliers.

The results of measurements and experimental characterization of the sources implemented

in this program are elaborated upon in Chapter 4. An extensive evaluation and measure-

ment program that addressed various elements or aspects of millimeter and submilllmeter
wave power generation was conducted as an essential part of this study. The results of this
effort are also presented in this chapter. The performance of the complete source
subsystem is discussed in Chapter 5, which also deals with the experimental characterization
of other peripheral components associated with high-frequency millimeter wave sources.

Finally, the prime conclusions of this investigation are summarized in Chapter 6. Future
trends in the realm of solid-state sources for radiometry receivers are projected together

with some estimations of expected performance. Recommendations for additional work to
further this development in this effort are also made here.

1.2 Score of the Research Pro m'am

The research program was multifaceted, and addressed many different aspects of high
frequency local oscillator power generation. The primary objectives of the investigation are
outlined below:

(i) The design, fabrication and performance optimization of exceptionally high

power, high frequency Gunn diode oscillators using Indium Phosphide Gunn
devices. These are used as pumps or drivers for a new class of multipliers,

which are capable of handling a high fundamental input power.

(ii) Development of a new generation of frequency multipliers, which can provide
high output power at relatively high harmonic conversion efficiencies. These
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multipliers (doublers and triplers) will produce useful levels of output power
in the 500-700 GHz range when pumped by the Gunn device sources
mentioned above.

(iii) Development of higher-order harmonic extraction oscillators to provide usable
local oscillator power at frequencies up to 183 GHz and beyond, where
unmultiplied primary solid-state sources are generally not available.

(iv) Qualification of these newly-developed Indium Phosphide sources and

multipliers for spaceborne applications. This includes both device character-
ization (qualification), as well as an examination of mechanical considerations
for reliable operation of spaceborne active componentry.

(v) Extending the general capabilities of Gunn diode oscillators and other sources

in terms of tunability and power output. In particular, multi-device power
combining, injection locking, and broadband mechanical tuning were
experimentally investigated quite extensively.

In addition to these goals, this program was also aimed at realizing several additional
objectives: Some of these are:

(a) Characterization of semiconductor devices for millimeter wave power
generation applications,

(b) Establishing design information and database for the implementation of
sources in the 60-1000 GHz range. A handbook of sources for radiometric
receivers was expected to be a natural offshoot of this research program.

(c) Examination of various aspects of commercial production of high frequency

millimeter wave sources for spaceborne applications was a necessary objective
of this endeavor.

1.3

Some of the specific activities of the program are described next. Submilllmeter wave
receivers employing the newly-developed SIS mixer devices require a moderately low local

oscillator power at frequencies in the range of 300 to 1000 GHz. The typical pump
requirements are in the range of 1 to 10 _W. Hence, solid-state semiconductor devices

were targeted for the L.O. generation at these frequencies.

The chief purpose of this development endeavor was to devise schemes to generate
reasonable power anywhere in the 300 - 1000 GHz range through the use of high-power

Gunn diode sources and a chain of frequency multipliers. Experimental demonstration of
this technique was focussed for 500 GHz. When used in conjunction with either a quasi-
optical frequency doubler, or with a subharmonically-pumped mixer, this source can provide
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local oscillator power for a receiver at 1000 GI-Iz, the typical highest frequency of interest
for Explorer Spectrometer or similar instruments. The baseline approach was to use a 83.3
GHz Indium Phosphide Gunn diode oscillator to drive a balanced doubler cascaded with
a tripler to produce X6 multiplication to 500 GHz.

Indium Phosphide Gunn diode oscillators are of considerable significance in radiometry
applications, as they provide the necessary pump power for frequency multipliers, as well
as subharmonically-pumped mixers. A fairly extensive examination of these oscillators

utilizing various modes of operations, and every commercially available device-type was
carried out. The main objectives were:

(i) to characterize various devices for oscillator and amplifier applications,

(ii) develop a design guideline and databank for producing a source at practically
any frequency of interest,

(iii) to extend the capability of present oscillators well beyond the established

performance levels in terms of their frequency and power.

New configurations and novel circuit structures were developed to achieve the above
objectives. Commerdally-available devices have standard packages and rather rigid
electrical parameters selected by the manufacturer, which impose a severe limitation on
their ultimate performance. This study was aimed at extracting the maximum performance

potential using standard devices for the targeted applications. Device modifications and

their influence on the eventual performance was studied theoretically, since the time and

cost considerations prohibited any major effort in the area of new device or package
development. The commerdally-available devices and their characteristics will be described
in Chapter 4.
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Submillimeter Sources for Radiometry

2.0 SOURCE DESIGN CONSIDERATIONS

2.1 Introduction

The design of high performance submillimeter source subsystems involves a multitude of

technical considerations and factors. Several options or alternate implementation
architectures are available for a particular local oscillator requirement. Generally, a

tradeoff study is required to determine the optimal scheme for the realization of a source

at a specific frequency of operation.

The critical considerations for the overall scheme of configuring a source are as follows:

(1) Cascaded multipliers versus higher-order harmonic generator,

(2) Multiplier factor selection,

(3) Efficiency, power output, bandwidth tradeoffs,

(4) Individual multiplier capabilities and limitations,

(5) Pump power availability,

(6) Versatility of operation.

Once a particular scheme has been selected, the individual source components must be

specified with ranges of acceptable performance for meeting the overall source subsystem

requirements. In the following section, the design deliberations for the 500 GHz source are
presented in detail.

2.2 Source Scheme for 500 GHz O neration

The objective of this development was to implement a 500 GHz local osc/llator with the

following performance characteristics:

Center Frequency of Operation

Power Output
Bandwidth

Efficiency (pump to output)

50O GI-Iz
0.5 mW min.

4 GI-Iz
1% min.

In the submlnlmeter-wave range, typically only higher-order multipliers (X4, X6) or

harmonic generators have been available. These are relatively simple to implement, easy

to operate, and offer low to moderate power levels. However, in order to produce higher
power at these high frequencies, it is advantageous to use cascaded multipliers for the

following reason. In two (or more) stages of multiplication, it is possible to optimize each

multiplier for its specific operating conditions, and hence obtain an overall superior
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performance in comparison to a higher-order multiplier. For a two-stage case, the first
multiplier uses relatively higher capacitance diodes, optimized for higher power handling
capability. The second stage, which operates at a lower power level, can utilize a lower

capacitance varactor diode to achieve highest cutoff frequency, and an optimal efficiency of

multiplication. It should be noted that the overall harmonic conversion efficiency of the

cascaded multipliers and higher-order multipliers is comparable, while cascaded versions
offer significantly higher power handling capacity, and hence a greater output power at these

submillimeter wave frequencies.

The lower-order multipliers used in cascaded multiplication scheme require fewer or no
idler circuits at intermediate harmonic frequencies in order to obtain optimal results.
Consequently, their design and construction (and overall operation) is simpler than that of
higher-order multipliers with many idlers.

Newly-developed multiplying varactors now offer a very wide range of capacitances and

breakdown voltages, making it possible to achieve truly optimal operation in conjunction
with the multiplier designs developed in this research effort. High input power handling
capacity of these newly developed varactors is the key factor in attaining the objectives of
this source development program.

The baseLine design for the 500 GHz source subsystem is shown in Figure 2.1. The power
levels and frequencies associated with this scheme are also indicated. The prime pump

power is supplied by an Indium Phosphide high power Gunn diode oscillator, which is

described in Section 2.3 in considerable detail. The basic operating features of this
osciUator are:

Frequency Range of operation:
Power output
Bias tunability

Technical approach

79-84 GI-Iz
80-140 mW
100 MHz
Dual diode combiner

The first doubler, which operates under high power pump conditions was developed with
the following design goals:

Frequency range of operation
Input power handling capacity

Efficiency of second-harmonic conversion

Output power level
Instantaneous bandwidth

158-168 GHz
100 mW min.
33%
20 mW min.
2 GI-Iz

The output tripler was developed with a view to achieve highest possible efficiency at
moderately high input power levels. The design objectives for this frequency tripler in this
cascaded source are:

Output frequency range
Output power

500 GHz
0.5mW
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Efficiency of harmonic generation
Instantaneous bandwidth

2-5%

5 GHz

The details of design and construction of individual source components are given in the
followingsections.

2.3 Hip_h Power lnP Oscillator Desilm

The high power source to drive the first stage doubler posed many technical challenges.
The performance requirements, as listed above in Section 2.2, mandate a new source design,
since existing sources using available devices were unable to achieve the required power
levels. Typical commercial devices are rated in the 80-90 mW power output region.
Development of a superior device was considered, but determined to be non-viable, both
from technical and economic standpoints. The most appropriate option was to employ some
power-combining scheme which could meet all the desired characteristics. A wide variety
of Gunn diode power-combining techniques are applicable to the present situation. The

most significant and practical options for this requirement are as follows:

(i) In-line or series combining using multiple Gunn diodes with independent
resonators and bias circuits.

(ii) Multi-device chip level combining to produce a single diode package for use

in a "standard"design oscillator.

(iii) Radial combiners, which ut_e several diodes located along radially
distributed resonators, and power combined at the central junction.

(iv) Vertically stacked diodes using a single resonator.

These schemes are depicted in Figure 2.2, and have been described in reference [1] in

considerable detail. From the power output requirement standpoint, only two Indium

Phosphide Gunn devices were determined to be adequate. Hence, a radial combiner was
unnecessary. While multi-chip combining was a very attractive technical option, there were
practical difficulties in securing devices which were specially fabricated for this requirement.
Multi-device combining on a single package necessitated additional development, and long
deliveries from qualified vendors. Therefore, this approach was not pursued beyond the

theoretical design stage.

A vertically-stacked device combiner has the advantage of potentially offering a very wide

mechanically adjustable operating bandwidth, and a relatively trouble-free operation. These

advantages stem from the fact that the two devices are in the same phase plane, and share

a common resonator. Hence, the "mutual locking" is virtually assured and broadband.
However, their construction is somewhat complex and difficult to implement.
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In-line or series combining technique was selected as the primary method of achieving
power combining for the pump oscillators, even though many experimental sources using
other techniques were evaluated. For the present application, the in-line combiners can be
designed using either a fundamental mode or second-harmonic extraction mode of
operation. In this program, both types of power combiners were examined in a comparative

study. The detailed electrical design of this type of oscillator (power combiners) is shown
in Figure 2.3. Some of the theoretical considerations and design guidelines are presented
next.

In this combiner scheme, the individual "oscillators" (Gunn device and resonator pairs) must
be located an integral multiple of half-wavelength apart. However, from bandwidth
considerations, they should be as close to each other as mechanically possible, one-half
wavelength being the ideal situation. Additionally, the devices must have relatively similar
electrical characteristics. It is highly desirable to have identical dc bias characteristics as
well, to allow common biasing of the oscillator using a single power supply. To accomplish
this, a test cavity which contains a single resonator at the desired center frequency can be
employed to characterize a batch of diodes, under identical operating conditions. Devices

exhibiting relatively similar rf characteristics can be paired for the combiner.

For the present source realization, the operating frequency range of the combiner is 78-86
GHz at a power level of 120-180 mW. The fundamental oscillator version of the combiner

uses a post-coupled design, in which the frequency of operation is established by the Gunn
diode parameters, post dimensions, and the distance to the backwall, or short-_zircuit. In this
combiner configuration, the devices are one full wavelength apart. The frequency of the

oscillator in the front is determined by this distance, while the backshort establishes the

operating frequency of the oscillator in the rear.

To obtain power combining by mutual injection-locking, the two sources must operate
relatively close in frequency, and with proper phase relationship. Theoretically, a 100%
efficiency of power combining can be achieved when fully optimized. Phase shifters are

generally necessary between the two oscillators to obtain the desired center frequency,

synergistic power combining and mechanical tunability.

The second-harmonic version of this in-line combiner uses disc resonator-type oscillator
design, where the operating frequency is largely dictated by the diameter of the disc and the

post length. In this scheme, the two sources can run at independent frequencies, since the

mutual interaction between them is negligible due to their second-harmonic operation.
Consequently, the combiner instantaneous bandwidth is relatively narrow. However, each
oscillator unit can be independently tuned, and hence a large mechanically adjustable
operating bandwidth may be obtained. Since a single backshort is employed, eventual
performance limit is reached when the power output from the front unit, which has an

essentially fixed backshort, drops down significantly.

The fabrication details of the various combiners built in this program are described in

Chapter 3. The performance summary is presented in Chapter 4, together with a discussion

of their operating features.

- 10-
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2.4 First Sta_ Doubler l_j__n

The most critical consideration in the design of this first stage doubler was input power
handling capability of the varactor, and the associated circuit. Hence, a systematic
examination of available multiplier varactors was made. The three key electrical parameters
of interest are: zero bias capacitance, series resistance, and the breakdown voltage. For the

frequency range of interest, i.e., 80 GI-Iz input, the circuit model was analyzed with various
varactor parameters as variables. The results of this analysis indicated that the most suitable
varactor for 160 GI-Iz output frequency had the following specifications:

Zero bias capacitance, Cjo
Series resistance, R s
Breakdown Voltage, V e

Theoretical optimal input pump power
Designation (Univ. of Virginia)

21ff
10 ohms
20 V
30 mW
6P4

Experimental work indicated that these devices could actually withstand 60 mW of input

power without damage at a somewhat diminished efficiency of harmonic conversion. The
performance objective for this first stage doubler, however, require much greater input
power handling capability. This basic design has previously exhibited a very high efficiency
at a somewhat lower frequency of operation (94 GHz, 48% efficiency). It demonstrated a
significant potential for use at higher frequencies as well. Hence, it was decided to select
a dual-diode balanced construction, which utilizes two varactors, doubling the power

handling capacity. The advantageous features of this novel approach are:

(a) A single varactor chip is utilized by making contact with two of the multiply-
ing diodes on the chip.

(b) Input power handling capacity is virtually doubled in this configuration.

(c) Balanced configuration does not require any filter structures to separate the
input and output circuits.

(d) Relatively simple design, which avoids using power splitters and combiners
with two independent sources as in a conventional power combiner scheme.

In this design, the two diodes are electrically in series across the input waveguide, and are

parallel-coupled via a probe into the output waveguide. A cross section of this doubler is
shown in Figure 2.4. Both varactor diodes are actually on the same 0.25 mm square chip,
which is contacted on two anodes.

The input circuit is a simple shunt of the two back-to-back series diodes across the reduced

height waveguide, which ends in a shorted wall. The bias pin has little effect at the input

frequency except to lower the guide impedance and the cutoff frequency. The output circuit,
driven by the two diodes in parallel, is a "strip" transmission line up to the end of the input

guide, where it becomes coaxial as it passes through the back wall of the waveguide, and

- 12-
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Figure 2A Balanced doubler design.
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then couples across the output waveguide. The OUtput wavegnide circuit may be tuned with
a backshort, but the input tuning is fixed.

The several mode transitions and discontinuities involved in the input and output circuits
make designing this circuit tedious, and require some scale modeling for best results. In
addition, the circuit design suffers from a number of constraints. The input circuit is

complicated by the need to suppress the TMlx mode at the output frequency, which has the
symmetry to be strongly excited in the input waveguide ff the height is too great. Thus, the

reduced height section where the diode is mounted must continue toward the input for a
sufficient length to cut off this mode. The output matching is affected by the transmission

line length up to the end of the input guide, which must be short enough to allow a
reasonable bandwidth at the output. Adjusting the input waveguide width provides one
variable which has little effect on the output circuit, and in addition a step in height or an
impedance transformer may be used ahead of the mode suppression section to produce a
good match. In lower frequency models, a nearly optimal match has been achieved over a
bandwidth of -15% although that was not the goal of this work.

2.5 Submillimeter Wave Trioler Design

The tripler for 500 GHz uses a single diode design, similar to that used in a 230 GHz tripler
[2]. Unfortunately, no two diode tripler designs seem practical at this frequency, so the
diode should be quite overdriven. This type of design has been refined considerable using

theory and modeling to improve the wideband input impedance match to the diode. In

addition, there are a number of innovations in the electrical/mechanical design to simplify
the fabrication and allow the use of split block construction, even at this frequency. One

objective of this work was to design a circuit which could be entirely machined, primarily
on a CNC mill, without the use of electroformed parts. A cross section of the tripler is

shown in Figure 2.5. Both waveguides are machined as channels, with one broadwall of
each waveguide formed by a third wafer. This wafer contains the coaxial filter joining the

two wavegnides.

Modeling was used tO help produce an equivalent circuit of the varactor as mounted in the

output waveguide and driven by the coaxial filter, based on physically expected circuit
elements, together with some empirically determined discontinuity capacitances. Next, the

transition from the input wavegnide to the coaxial filter was modeled to drive the input

impedance. A five section filter was then computer optimized to allow an input match from

160 to 173 GHz with no backshort tuning, while simultaneously presenting a short circuit
at the second and third harmonics. The coaxial impedances in this filter were allowed to
range only from 16 to 54 a in order to avoid extreme machining tolerances. Only the final

two sections of this filter are small enough to suppress higher modes at the output
frequency. The wafer containing this filter is too thin to machine accurately, if a choke of
minimum length is used. To add thickness, an extra half wave long section with 40 a

impedance was added to the input end of the filter, and the design then reoptimized. This

addition has very little effect on theoretical performance.

- 14-
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Figure 2.5 High frequency tripler design.
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The input match is aided as in a previous design with a coaxial resonator, k/6 long at the

input frequency, in series with the diode [2]. This resonator adds input inductance without

affecting the output match. At the second harmonic idler, the effect is capacitive, which
partially cancels the effective inductance of the whisker. Poor contact at the end of this
resonator is a potential source of loss, and is reduced in this design by having the shorted

end of this pin meet the outer wall at a shoulder where contact can be assured. This makes
pressing the whisker pin into the diode less practical as a means of contacting an anode, as

is commonly done in such devices. To avoid this problem, the position of filter choke was
made adjustable by allowing" it to slide in a tight fitting anodized aluminum collet, which
replaces the previous ceramic support at this location.

To mlnlmiT¢ the output waveguide losses, a conical horn was machined directly into the

block. This requires a novel transition, based on shapes that are easily machined. The

circular to rectangular transition consists of an abrupt step from round to square guide of
the same cutoff frequency, in this case 0.53 mm square to 0.62 mm diameter. This
introduces no impedance discontinuity, except for the step susceptance which is small. This

step is followed by an asymmetric linear taper to reduced height rectangular guide. The
final reduced height dimensions are 0.076 mm X 0.42 ram. Making this taper at least 5 _.

long keeps the higher mode excitation to a low level causing little perturbation in the feed
horn beam patterns. This transition is fabricated by milling the rectangular waveguide taper
into one piece of the split block, while the conical horn is bored into the block after the

pieces are assembled. The conical horn diameter at the aperture is 1.45 ram.

- 16-
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3.0 CONSTRUCTION OF SOURCE COMPONENTS

3.1 Introduction

The electrical design of the individual source components used in the 500 GI-Iz local
oscillator assembly has been described in Chapter 2 in considerable detail. The physical
realization of these components requires significant mechanical design, and careful assembly
procedures. Due to the high frequency of operation, the machining tolerances, surface finish

requirements, etc., are rather stringent. Mechanical design of these components takes into

consideration the requirements for dimensional accuracy, physical alignment, assembly
constraints, and small size of devices. The structural integrity of the unit is also very
important, since the reliability of operation largely depends upon the unit's ruggedness and
thermal stability of the whisker-contact to the device.

The construction technique must also provide for mechanical tuning or adjustability of
critical dimensions or geometrical parameters. Moveable backshorts, phase trimmers,
impedance matching transformers, etc., must be incorporated in the design to allow
performance optimization without requiring major rework or refabrication of the unit.
Hence, appropriate mechanisms and mechanical features were devised into each of the

source components. Moveable backshorts present a particularly difficult problem at these

high frequencies. Both contacting and non-contacting backshort designs were examined for
various frequency ranges. Typically, a contacting backshort was employed for these high
frequencies.

The device biasing arrangement presents a serious challenge in all these source components,
regardless of whether it is a multiplier or an oscillator. Thermal considerations and device
ruggedness are both factors in designing a suitable bias/contacting arrangement. For
whisker-contacted devices, the application of optimal pressure and contact integrity

represent difficult challenges in the assembly process. Considerable amount of experimenta-
tion and practice were necessary to achieve reliable, repeatable contacts. Similarly, for InP
Gunn devices, the biasing scheme was standardized and carefully executed to avoid device
failures.

All the components for this development program were fabricated at Millitech in their

entirety. The machining of all the parts was carried out on ChIC machines, or specialized
machine tools consistent with the accuracy and tolerance requirements. Gold plating and

other chemical processes also demand precise control, and hence were generally carried out
at Millitech. Significant experience has been accumulated by the assembly and fabrication
personnel in handling this class of components in the past. New assembly techniques were

devised wherever needed, to achieve the desired results. Special fixtures were employed to
facilitate the final assembly of the source components.

The technical details of the construction and physical implementation are provided in the
remainder of this chapter.

- 17-
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3.2 Doubler Fabrication Details

The mechanical structure of the balanced doubler is shown in Figure 3.1. Basic split-block

wavegnide construction is used in implementing this multiplier. For convenience, the input
tuning was fixed, while the output circuit is tunable by means of a movable backshort.

The doubler is fabricated in three pieces. The input waveguide is milled into the first as a
pocket, and the output waveguide is milled as a channel into the next, which also holds the

bias pin in a ceramic insulator. The third part simply adds length to the input guide to
make the block larger. All parts are gold plated after machining. The 0.25 mm square
varactor diode is soldered to the end of the bias pin. Contacting an anode in this geometry
has proven to be simple since it is possible to view the diode face-on with a high power
microscope while contacting. The whisker is made so that rotating the whisker pin will bring
it into contact with the diode. Input impedance matching is aided by sliding a quarter wave
transformer made of a su/table dielectric in the input waveguide to a point where an
optimum match is achieved.

3.3 Trioler Fabrication Details

The electrical design of the submillimeter wave tripler has been described in considerable
detail in Section 2.5, which includes some of the mechanical fabrication considerations. For

example, the wafer containing the filter was determined to be too thin to machine

accurately. Hence, an extra one-half wavelength was added to the input side of the filter
to reach reasonable wafer thickness.

Figure 3.2 shows the construction details of this tripler. The wavegnide channels are
machined in wafers, with one broadwall of each wavegnide formed by a third wafer. This
wafer incorporates the coaxial filter which interconnects the input and the output waveguide.
The filter choke positioning arrangement used in this tripler to contact the varactor anode

has been modified with respect to a standard tripler design. An anodized aluminum collet
with sliding fit was employed in the place of a ceramic support which fits very tightly around
the choke. Hence, the choke could be adjustable by sliding it in the anodized coUet.

All parts were machined from brass, and the wafers then lapped to assure perfectly fiat
surfaces for good mating. Parts where then gold plated. The varactor forms the center
conductor of the final low impedance section of the filter choke, and was cut down to the
exact diameter needed for the correct impedance. This requires that the diode be soldered

to a post smaller than the diode itself. The diode is contacted by an electrosharpened NiAu
wire 3.5 _m. Contacting backshorts are used for tuning.

A conical output horn was directly machined in the block containing the output waveguide.
A novel transition from the rectangular guide to the circular horn input cross section was
incorporated. To avoid complex fabrication steps, a three-step cross-section transformation
is carried out.
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3.4 Gunn Oscillator Construction Details

All the Gunn oscillators used for power combining in the 78-84 GHz range utilized a
standard Millitech Gunn oscillator body. This consists of three individual blocks: the diode

block, the bias choke block, and the cover. The waveguide (WR-12) channel is directly
machined in the diode block, which also contains the hole to accommodate a packaged
Gunn diode mounted in a diode holder. The diode can be raised up or lowered by altering

the diode holders, and can be rotated by simply rotating the entire diode holder.

The choke block contains cylindrical holes (0.116 inch diameter) to insert the bias chokes
directly in line with the Gunn diodes. A simple leaf spring is used to provide adequate
choke contact pressure to the diode. Figure 3.3 depicts a typical Gunn diode oscillator
which has been modified to accept two Gunn devices in the same body. Bias filter and

suppression network is incorporated in a circuit located within the choked block (top side).
A cover, which incorporated the bias connector, etc., is used to enclose the bias circuit and

choke pressure adjustment mechanism. Rectangular non-contacting backshorts were
produced to permit manual adjustment and optimization of combiner performance.
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4.0 MEASUREMENTS AND RESULTS

4.1 Source Evaluation

The individual source components developed under this program were rigorously
characterized and optimized to extract the best operating performance for the present
application. The test and evaluation program generally utilized standard test equipment and

procedures established at Millitech Corporation. Wherever possible, cross-cah_oration and
indirect verification of measured results were carried out to enhance the confidence level

in the results. A standard test arrangement for oscillators and multipliers is shown in Figure
4.1.

In this chapter, the results of measurement of performance characteristics of the prototype
units of the individual source elements are presented first. This is followed by a detailed
description of an investigation of Indium Phosphide Gunn diode-based sources for general
local oscillator applications to radiometry. A significant effort was directed toward the

examination of the InP devices for high-reliability applications. Hence, a systematic
characterization of these devices in terms of their thermal properties and failure modes was

carried out. The results of this endeavor are also included in this chapter.

4.2 Power Combining Resolts

A number of prototypes were built to demonstrate power comb/ning in the frequency range
of 34 to 95 GHz. Most of the experimental work has concentrated on power combining

using an in-line combining geometry. Both fundamental and second-harmonic power
combining schemes were studied. A summary of the final results is presented in Table 4-1.

TABLE 4-1

POWER COMBINING RESULTS (DUAL DIODE SOURCES)

Number

mA565N

iadivid_ _ Ommcte_ C.mab/aer Onalaete6s*_

FIt De,_ Secmd Devim

Gilx mW _ saW Gik saW Bl_kaey

79.2 68 79A 70 81.1 152 110%

00A565E 80.2 70 79.4 70 70A 190 136%

00A182N 94 62 93.8 63 94__ 121 97%

00A$76E 35 418 35 425 70.6 86 10.3

35.3 720 86%

Cemmeam
..a

OIm:mntimm

Combiner at higher

freq. tlum devices

Combiner st k3wer freq.
eJacellent bias tuning

bias tuning

Seceed han_ type
combiner

Fundamental combining
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Figure 4.1 Source evaluation test set-up.
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4.2.1 Fundamental Power Combiniw,
v

Prototype units were evaluated at selected operating frequencies over a wide frequency
range (34-95 GHz). In most cases, the individual oscillators within the combiner were

constructed in a manner very similar to their single-diode versions for that particular
frequency region. The results of some of the most significant prototype units are provided
in Table 4-1. The following observations and conclusions were made during the course of
this phase of combiner evaluation.

1) Individual "sources" within the combiner must operate in a fairly similar
manner to achieve optimal results. Broadest mechanically tunable combiner operation was
obtained when devices, as well as mechanical structures were virtually identical.

2) The distance between the sources was critical to obtaining made-free and
efficient combining. The power output could be peaked by introducing a dielectric tuning

rod between the two "oscillators," thereby adjusting their electrical separation.

3) The backshort location played a crucial role in the optimization of the
combiner performance.

4) Greater than 100% combiner efficiencies could be achieved in many cases.

This is a consequence of improved matching obtained for each individual oscillator in a
combiner configuration.

4.2.2 Second-Harmonic Combinin_

Several prototype units which utilize a second-harmonic power extraction mode were
characterized over the 70-95 GHz range. In this effect, individual tuners were incorporated

to allow independent frequency adjustment of each oscillator, as well as a path length
adjustment for inter-diode distance. Some of the notable observations for this combiner
scheme are discussed below.

1) Due to second-harmonic operation of individual oscillators within the

combiner, there was only a weak coupling between them, and hence a limited mutual
locking (power combining) range. Typical instantaneous combiner bandwidths were less
than 0.1% (approximately 100-200 MHz).

2) An advantage of this scheme was the fact that each oscillator could be

frequency tuned virtually independently. Hence, prototype units could be readily operated
and evaluated over a fairly wide frequency range.

3) The separation between the diodes plays a crucial role in maximizing output
power, but has practically no influence on frequency of operation. Thus, an independent
optimization of output power was achievable by mechanically adjusting this distance and the
backshort location.
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In one set of experiments, the individual resonators associated with the two Gunn diodes

were independently-tuned mechanically to obtain frequency tuning while still maintaining
mutual locking and efficient power combining. By careful adjustment of individual tuners,
a minimum of 100 mW output power has achieved over 2 GHz bandwidth at the center
frequency of 95 GHz. However, the mechanical adjustment had to be made with
considerable care and precision, thereby limiting the usefulness of this source. The difficulty
arises due to limited mutual locking bandwidth of a second-harmonic operation ia a WR-10
cavity.

4.2.3 General Observations

The following remarks summarize the conclusions drawn from the test and evaluation of
various combiner prototypes.

a) Greater than 100% power combining efficiencies have been realized as

predicted. This implies that the output power from the combiner is typically greater than
the sum of the power available from individual devices.

b) Power combining demands reasonably tight control on operating parameters
and geometrical features of the oscillator. In particular, inter-device spacing and resonant

dimensions must be accurately controlled to achieve optimal results.

c) Mode stability and mechanical bandwidths are issues requiring further
investigation. Techniques to enhance both were theoretically studied.

d) Reasonable bias tuning was obtained from these combiners without losing the
lock. This makes them attractive for applications requiring a frequency-locked operation.

e) The sensitivity, stability, and frequency characteristics of power combining are

a strong function of the InP Gunn device employed in the oscillator. Higher Q devices (or
modes) offer greater stability and superior frequency control in comparison to the low Q
device (or structures).

4.3 Doubler Performance Evaluation

The balanced doubler for 166 GHz output frequency was evaluated using the dual-diode InP
Gunn combiner oscillators described above. A variable attenuator was employed between
the Gunn pump and the doubler to vary the amount of input power, and thus study the

conversion efficiency of the doubler as a function of pump power.

This doubler reaches a peak efficiency of 35% with 35 mW input at 79 GHz. Despite the

theoretical predictions, the efficiency drops to 32% at the expected optimum drive of 60
roW. This rolloff in efficiency is attributed to heating of the diode junction, which is
expected to run at -50 C above ambient at 30 mW per junction. DC measurements have
shown an increase in the diode series resistance as the temperature increases, and thus, a
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reduction in the cutoff frequency. It is difficult to quantify the expected increase in R s with
power, since the thermal resistance of the junction is not well known. Despite this effect,
reasonable efficiency is maintained at 120 mW input and an output power of 26 mW is
produced with the 79 GHz oscillator. An output of 22 mW is obtained with the 83 GHz
pump, i.e., output frequency of 166 GHz. The measured output power as a function of input

power is shown in Figure 4.2 for the 79 GI-Iz input. The measured efficiency vs. input

power is shown in Figure 4.3, as well as the theoretical curve of efficiency. The theoretical

curve is generated from a computer program by Siegel and Kerr [3] which was also used to
calculate theoretical embedding impedances in this work. Note that the disagreement can
not be resolved by any circuit losses, since this would only lower the efficiency at all values
and also increase the optimum pump power (for input losses).

The very high efficiency is attributed to a very low loss input structure due to the absence
of a filter choke, and to the balancing which suppresses the conversion of power to the third
harmonic. Measurements of the output through a high pass filter showed no detectable
third harmonic to a level of-35 dBc.

The temperature coefficient may be used to advantage by operating the multiplier at low
temperature. By cooling the doubler to 77"K, the peak efficiency increases to 40%, while

the maximum output power is 32 mW. This is the highest efficiency and output power
reported at this frequency. This mode of operation is practical in some applications where
a cooled receiver is involved.

4.4 Trinler Performance Evaluation

The submillimeter wave frequency tripler was characterized using the balanced-doubler
source configured as a pump over 158-167 GI-Iz range. This power was directly pumped into
the tripler input, while the tripled frequency output was extracted using an integral horn
build into this multiplier. The output power was measured using a dry calorimeter, which
has a WR-12 waveguide input. The frequency of operation was monitored by sampling a
fraction of the pump power of the InP Gunn combiner via a cross-guide coupler into a EIP
Millimeter-wave Frequency Counter. Each source component was tuned to achieve optimal
performance at the multiplied (Xt) frequency.

The maximum output power is 0.7 mW at 474 GHz when driven with the full output of the
doubler, while 0.55 mW is obtained at 498 GHz. This is certainly the highest solid state
power output generated at this frequency. Powers are probably underestimated, since no
mode transition was available from the circular output horn to the WR-12 wavegnide of the
calorimeter, so these waveguides were simply butted together. An efficiency of -2% at
lower input power is measured at 525 GHz, verifying that operation is over the design band.
While designed for fixed tuning, backshorts were optimized at each frequency in these tests.
Correcting for connecting guide losses, the best efficiency is 3.0%. Due to the overdriven
condition, it is likely that this efficiency would increase at lower input power. The typical
tripler bias in these tests was 5-6 V (reverse) with a forward current flow of 0.1 mA,
demonstrating that the diode is operating in a true varactor mode. This bias level also
implies large reverse breakdown currents since Vb is only 8.5 V.

-27-



Submillimeter Sources for Radiometry

0
r_

2

O

0

I I I i I i I I ! i I i i i I i i I I I I I i i I i

l J I I t l I , I i I i i , I i , _ I J

20 40 60 80 100

INPUT POWER (mW)

I I I

w

i

i

i

i

u

i

i

! !

120

Figure 4.2 Balanced doubler power output as a function of input power.
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4.5 Gunn Diode O_¢illator Development Pro mram

An extensive program aimed at examining the operating characteristics and various modes
of operation of Gunn diode osciLiators was carried out. In particular, some new phenomena
were studied with a view to derive novel source structures for local oscillator applications.
Among these are:

.

2.

3.

Higher-order harmonic generation,

power combining architectures,

subharmonic injection-locking.

In addition, some specific aspects of sources were experimentally studied. The purpose of
this was to design and characterize special purpose oscillators such as the ones listed below:

1

2.

3.

4.

Cavity-stabiLized oscillators,

Multi-frequency sources,

Wide-band, mechanically-tuned sources,

High-reliabiLity sources.

Some fundamental studies were also carried out in this program to provide a user-oriented

database for Gunn devices. The results of these studies can also be used as design
guidelines for a variety of local oscillators in the millimeter-wave range. Some of these

investigations were directed toward the following topics:

.

2.

3.

4.

Device thermal characterization,

Device operating characteristics and harmonic generation,

Cavity design,

Packaging considerations for diodes.

The details of these substudies are presented in the balance of this chapter. Additional
results and discussions are included in various Appendices.

4.5.1 Operation Mode of Hi_ Power ImP Device

One of the key workhorse device for this study is the W-band InP diode which has the
following specifications according to the vendor (Varian Associates).

Device Number: VSB9122S13

Operating Frequency: 94 GHz +2 GI-Iz
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Power Output:

Operating Voltage:

Operating Current:

60 mW rain.

10 V typical

160-220 mA typical

This device is generally used in a standard coaxial resonator-waveguide cavity with a disk
as an essential part of the resonator. A study was directed to unambiguously and

conclusively determine the mode of operation (fundamental or harmonic extraction) of this
device in the conventional cavity.

Three independent experiments were designed and carried OUt rigorously using the same
Gunn diode in special test oscillators. These experiments, which were aimed at determining
the mode of operation of the diode are described next.

1. Observation of other harmonics: A conventional oscillator was examined for

the presence of the "third harmonic" on the assumption that the W-band operation (e.g., 92
GHz) was achieved by second harmonic power extraction of a fundamental frequency of 46
GHz. Using a spectrum analyzer, and a frequency wavemeter independently, the existence
of power at 138 GHz (3 X 46 GHz) was verified. This implied that the basic oscillation was
indeed at a fundamental frequency of 46 GHz, which is well below cutoff frequency of 59.1

GHz in a W-band waveguide. If the device were operating fundamentally at 92 GHz, no
power output at 138 GHz would be observed. Instead, the second harmonic would be at
184 GHz.

2. Observation of fundamental oscillation: A coaxial probe was inserted into the

conventional cavity oscillator similar to the one described above. This probe was located
in the immediate vicinity of the device and the resonator. _A strong output signal at 47 GI-Iz
was extracted via the coaxial probe for the W-band source producing 60 mW output at 94
GHz. This once again confirmed that the 94 GHz operation was a second harmonic type.

3. Device characterization at half frequency: This InP device was inserted in a
standard oscillator cavity for 40-50 GI-Iz range of operation. A very significant power output
(> 200 mW) in the 40-50 GI-Iz interval was observed. If the device were truly fundamental
at 94 GHz, no appreciable output power would have been obtained at the half frequency
in the WR-22 cavity.

4. Injection locking expcrimepts: The locking bandwidth of injection-locking the

W-band (94 GHz) source using this device (VSB 9122S13) was measured by injecting a
signal at 94 GHz through a circulator into the cavity. A very narrow (virtuaUy non-existent)

locking BW was observed at rather low power gains. This narrow locking bandwidth of 15-

20 MHz is contrasted with 500-1200 MHz of locking bandwidth measured for a truly
fundamental oscillator using a fundamental device VSB 9122S10 and a similar injection
scheme.
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These experiments conclusively established that the most significant Indium Phosphide
device (VSB 9122S13) is not a fundamental device in the W-band, as maintained by the

vendor. This knowledge has a major impact on the design and evaluation of all the Gunn
oscillators based on this particular diode.

4.5.2 Second Harmonic I-li_ Power Freouency Sources

The relative advantages of second harmonic extraction type sources have previously been
identified in the Phase I research. During this phase, a concentrated effort was directed
toward the development and rigorous characterization of this mode of operation of InP

Gunn devices. Some of the experimental work was conducted at lower frequencies (55 to
75 GHz) to model the higher frequency versions. The results of this subtask are
summarized in Table 4.2. The construction of these sources is similar to the conventional

second harmonic oscillators. Minor modifications to the choke structure, however, were
included as part of this study.

TABLE 4.2
HIGH POWER SECOND HARMONIC OPERATION

l_m(l_amml Dvdm Ommcledmim

l)om_
mW

l)omffi
mW

m_
i)om:x Rmio

0A827 34.5 275 70 9O 3L0$5

0AS_ 35.0 303 67 I10 2.755

0A828 34.8 285 63 88 3.238

0A495 35.1 255 61 78 3.269

QA441 35.5 285 58 84 3.393

0A441 7525O 6543.5 3.846

Some of the preliminary conclusions from the study are discussed here:

a) Fairly high output power has been obtained at the second harmonic frequency.
Figure 4.4 shows the typical output power available from these devices at their fundamental
frequencies and in second-harmonic extraction type cavities. The ratio of second harmonic
to fundamental power output ranges between 5 and 6 dB.

b) Fairly high DC to millimeter wave (second-harmonic) power conversion

effidencies have been achieved. Table 4.3 lists some of these figures together with some
representative conversion efficiendes for InP fundamental sources at similar frequenter,.
Even though the fundamental power extraction is somewhat more efficient, there are other
significant advantages of the harmonic extraction mode that make them attractive for local
oscillator applications. Some of these will be evident from the following discussion.
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Figure 4.4 (a) Power output potential of various InP Gunn devices for fundamental and
second-harmonic operation. Different device types were used in the fundamental and

second-harmonic mode at a particular frequency.
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TABLE 4.3

COMPARISON OF FUNDAMENTAL AND SECOND HARMONIC OPERATION
POTENTIAL OF VARIOUS INP GUNN DEVICES

sam_l_z_ o1=_ l_acnmeffi_Oper_m Ommeam

and

Otm:nmiem

90 3% 250 I1A% I.Ianmmi¢ opcmtioa noc-optim_ due
to IKk of devic_ below 30 GHz

63-68 110 3.8% 225 to 155 9.3 to 6.4 Fundamental power drv_ with ia-
c_v._e ia frequeacy

69-78 85 ZT_ 140 to 100 5.9 to 55 Same m for 63-68 GHz range

"Millimeter wave power to DC power ratio

c) The bias tuning characteristics of these sources were well-behaved, monotonic,
and fairly predictable. There was a considerable amount of voltage tuning obtainable from
these to permit compensation for thermal drift in a frequency stabilized source system, such
as a phase-locked oscillator. However, the power versus bias voltage characteristic are
noticeably different from unit to unit.

d) These units had low thermal frequency drift coefficients in general The

coefficient is always negative and lies in the range of -0.7 MI-Iz/°C to -4.5 MHz/°C. A fair
degree of control has been demonstrated in achieving low drift operation. Further work in
reducing drift will be carried out in the near future.

e) The external Q factors of these oscillators are significantly higher than the

fundamental units. Typical external Q measurements by the load pull method range from

600 to 1500. Consequently, a fairly load independent operation can be realized. Typically,
this eliminates the need for an isolator, thus maximizing the power available to the load.

Further work was conducted in the area of high-performance second-harmonic Gunn diode
oscillator. The following results are considered to be very significant, and indicative of the

optimal extraction in this mode of operation.

Frequency of
Overation

DC to RF

InP, 35-44 GI-h 69.6 GHz 114 mW 5%

InP, 44 GHz 75.0 GI-h 110 mW 5%

InP, 47 GI-h 94.0 GHz 97 mW 5.7%
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Considerable amount of developmental work has been performed on the design of a
resonator/transformer disc for optimal second-harmonic extraction. A very extensive
device/cavity characterization program was also conducted to obtain design curves for
sources with any arbitrary frequency-tuning characteristics. Four different devices, listed
below, were tested in a WR-10 standard cavity using a wide variety of chokes and resonator
structures. The frequency of operation for these oscillators is plotted in Figure 45 as a
function of geometrical parameters and device types. These curves are useful in

understanding the devices' equivalent parameters for the purposes of circuit design.

Varian Device Desi_ation _ Power

VSA 9110S2 35 GHz 250 mW

VSQ 9119S1 44 GI-Iz 250 mW

VSE 9120S1 56 GHz 150 mW

VSB 9122S13 94 GI-lz 60 mW

VSB 9122AJ 110 GHz 25 mW

4.5.2 High Freouency Indium Phosohide Oscillators

The object of this aspect of source development was to produce a sequence of Indium
Phosphide fundamental and second-harmonic sources in the frequency range of 105 to 180
GI-Iz with the maximum available power output and modest mechanical tuning. In addition,
the characteristics of such sources were studied with a view to examining their appropriate-
ness for phase-locked operation and subharmonic pump for mixers.

There are several Indium Phosphide devices which can be used to obtain oscillation in the

105 to 180 GHz range, either in the fundamental mode or as harmonic extraction operation.
The following devices have been selected and studied here:

Device Part Number Center Freouencv. GHz Power Oumut. mW

Varian VSE-9120S3 56 250

Varian VSB-9122S4 80 80

Varian VSB-9122S10 94 30

Varian VSB-9122S13 94 60

Varian VSB-9122A 110 25
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Figure 4.5 (a) Resonance characteristics of various Gunn diodes in cavities with varying
parameters.
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Figure 4.5 (b) Resonance characteristics of various Gunn diodes in cavities with varying

geometrical parameters.
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These devices have drastically different operating characteristics, such as operating voltages,

domain capacitances, etc., stemming primarily from the differences in diode active layer

lengths. The majority of the oscillators involved the use of a VSB-9122SI3, either in its

fundamental mode or as a second harmonic extraction type.

The basic oscillator design is shown in Figure 4.6, and can be described as a resonator

coupled, full height oscillator with variable back short location. Minor variations of this

general configuration were also studied. The results of several oscillators are summarized

in Table 4.4 and Table 4-5 to indicate the status of high frequency source activity. These

results are fairly representative in nature and do not indicate limitation of the technique or
the devices.

TABLE 4.4

HIGH FREQUENCY OPERATION

GIk

Pore=

mW GIk MIk

Cemmcaw

EP_,-66940 WR-8 123 23 +/-0.5 400 Rotation sensitive

EE-725-1 WR-8 129 21 +/-0.5 400 Rotation sensitive

EE.669-62 WR-6 140 10 +/-0.2 500 Power drops beyond 135 OHz

25EE-726-10 +/-0.5119 40OWR-8 Similar to W-bad units

TABLE 4.5

HIGH FREQUENCY SECOND HARMONIC OPERATION

Ceater

Gih mW

Meellmlkal

Gik

Bias

Mlk

275a-43 WR-8 119 12 +/-0.5 300 Higher power pox'ore

EP_,-725-25 WR-6 148 1 +/-0.3 500 Power de.aear_ with frequea-

cy

EE.725-13 WR.6 160 1 +/-0.75 600 Mechaakally semiti_ to Mrtte-
turn dim.

Design curves for sources in the range of 105 to 140 GI-Iz have been derived from this

segment of the study. Two fundamental limitations of these sources have been identified

as far as the high frequency operation of InP Gunn devices is concerned. First, the device

package (ceramic ring and metal disk) impose severe performance limitations due to

parasitics and resonances. Appendix C deals with the subject of diode packaging. Second,

the mechanical dimensions and physical tolerances are highly critical to achieving an optimal

performance. In particular, a very significant rotational sensitivity is observed with respect

to the Gunn diode and the resonator. The power output is seen to vary by as much as 6 to

7 dB with diode rotation. This can be attributed to imperfections in the diode package and

choke, as well as the asymmetry in the chip bonding straps, etc.
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Figure 4.6 Typical high frequency InP Gunn oscillator configuration.
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4.5.4 Wideband Mechanical Tuning

One of the critical objectives of this study was to devise mechanisms and circuit techniques
to achieve wideband mechanical tuning characteristics from InP high power Gunn oscillators
in the 60 to 110 GHz range. This involved obtaining reliable and reproducible tuning
characteristics while maintaining a reasonable constant high power output. Three distinctly
different types of tuning mechanisms have been studied thus far:

a) Movable backshorts,

b) Dielectric tuners, and

c) Variable co-axial resonator elements.

Preliminary results of this study are summarized in Table 4.6 to show the relative
characteristics and principle features of these three mechanisms.

TABLE 4.6

WIDEBAND MECHANICALLY TUNABLE OSCILLATORS

"l_pe of _ Tmq
Anaqmunt und Mode

t_=l-mey n_se d _
Glh

reRr o.qm n_lF _

Backghort, Fundamental mode 41.$-61.0 25-90 roW, typ. 80 mW

BKkrdmrt, Fundamental mode 65.0-81.0 15-69 mW, typ. 50 mW

Dielectric tuner under the r_o_tor, with _lu_ort 81.0-95.0 45-65 mW, typ. 60 mW

for power nuudm_tion

Movable _ resonator element 5-17 mW, typ. 10 mW69.9-117.0

A W-band source covering the entire waveguide band was developed on the basis of a
design by Carlstrom, et. al., [4]. This oscillator is essentially a coaxial resonator-type, with
a mechanically adjustable resonator length. Figure 4.7 shows the construction details of the

source. The resonator is formed by the radial disk and the post above it, the length of
which is adjustable by means of a mechanical tuner. The tuning mechanism is somewhat
complex, and requires considerable care and precision in its implementation, since a
positive, stationary contact with the diode must be maintained during tuning.

This oscillator was evaluated using several different Gunn diodes, both GaAs and Indium
Phosphide. Very encouraging results were obtained in each case. Figure 4.8 shows the

frequency-power characteristics of the oscillator. A power "suck-out" is observed in the

vicinity of 78 GHz due to structural resonances. However, as the plot shows, it is possible
to extract considerable high power (_ 45 roW) over a fairly broad frequency range, while
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3. Choke hole

. Choke' (outer)
S. Choke (inner)
6. Insulation

7. B_ts pin
• .. C£rcu$c card

9. Diode
10. Diode holder

11. Locking nuC

12. Hicromecer coupling
13. l_Lcromecer head

14. Choke retainer sprin$
17. Recsiner
18. Screw

19 Dowel pin
22. 3sckehort

26. Bias ring

Figure 4.7 Sectional view of widcband mechanicaUy-tunablc Gunn oscillator.
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Figure 4.8 Power output vs. frequency for wideband mechnicaUy-tunable Gunn oscillator

shown in Figure 4.7.
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achieving a nominal 2-10 mW power output from 68-117 GHz. Further work is needed to
optimize the performance of the unit over the entire tuning band, and achieve more reliable
operation.

4.6 Gunn Diode Characterization for High Reliabili _tyApplications

4.6.1 J,_

Properly designed, assembled and used Gunn Diodes are very rugged and highly reliable.

However, it is up to the device manufacturer to ensure that the devices are designed
properly for the given application, and manufactured according to established procedures.
In common with other semiconductor devices, the devices are prone to early failures due
to incorrect assembly and testing. Also, Gunn diodes are power generation devices with
relatively low efficiencies. Hence, the maximum temperature of GaAs diode junction under
all operating conditions for that application should not exceed 260_C--a number established
after an exhaustive reliability study under a U.S. Army Contract No. DAAB07-72-C-0101.

How can a diode user ensure that the diodes have been designed and assembled properly?
Are there any independent tests that may be conducted to evaluate the "quality" of the

diodes? These and other important questions were examined in this portion of the study.

The active layer temperature of a Gunn diode may be obtained by a measurement of the

thermal resistance of the diode using a temperature dependent parameter of the diode as

a thermometer. The property of the diode that is semitive to any mechanical damage that

would be encountered during the diode manufacture including epitaxial growth is the diode

breakdown voltage. During operation of the diode, Gunn domains form and travel through
the material. These domains have very high electric fields exceeding 70 kV/cm. As the

operating voltage is increased, the electric mechanical damage of the active layer during
diode manufacture will serve to decrease the breakdown electric field. These damages may
be caused by excessive ultrasonic power of excessive pressure during die bonding or during
wire or strapping operation. The damages may also be caused by excessive handling or the

devices or during lapping operation.

The breakdown voltage of the device increases with increasing temperature-a characteristic
of avalanche breakdown. The slope of the V e - T curve depends on several factors,
including doping density, doping uniformity, and in some cases, buffer layer characteristics.

A technique for measuring the thermal resistance and the breakdown voltage is described
below for Gunn devices.

4.6.2 Thermal Resistance

A convenient way to measure the operating diode temperature is to find a diode parameter
which is temperature-dependent and which also could be theoretically related to the
operating temperature.

-44-



Submillimaer SourceJ for Radiometry

One of the temperature-dependent parameters of the Gunn diode is the current through the
diode. The diode current under operating conditions is dependent not only on the device
temperature, but also on the operating bias voltage and the load conditions. Hence, it is

not easy to relate it theoretically to the operating temperature. The current through the
diode below threshold voltage, on the other hand, is not only temperature-dependent, but
also is capable of being described theoretically.

In other words, the diode current, Id, below threshold voltage may be described mathemati-
cally as:

where

q =

.(T)=

To
T =

q*.(T) * E* Nd

1.6 E -19 coulombs = electronic charge

Carrier mobility which depends on diode temperature in T (°K)

.o, (To/_"

reference temperature

diode temperature in °K

material dependent parameter with a value between -1.5 and + 1.5.

The limits of +1.5 is set by the nature of the atomic binding and hence,
depends in detail on the carrier concentration, and the method of
growth, etc. a may be measured independent of the thermal resis-
tance.

N d = carrier density of the diode epi layer in No./cc.

The equation may be rewritten for convenience as:

where
d "*

C =

C/T"

a constant whose value is experimentally determinable.

The equation may be manipulated to arrive at:

I,H : "(TJTH)"

Rewriting the equation, we have:

where
TH T C " (Idc/IdH)(1/a)

diode current at a diode temperature of T H OK

Idc = diode current at a diode temperature of T c OK
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Or,

Tc " (RH/RC)v/°)

where R H and Rc are the low-field resistance values of the diode at T H and T c respectively.

Figure 4.9 shows the typical I-V characteristics of a Gunn diode as a function of tempera-
ture. As would be expected, the diode current decreases as the diode temperature increases
at a set bias voltage. It is clear from the figure that the operating temperature may be
measured by pulsing the diode voltage from the set value to a value below the threshold and

measuring the diode low field resistance R H. R c may be measured at a diode case

temperature of T c °K.

4.6.3 Breakdown Voltage

The breakdown voltage, V s, of the diode is conveniently measured by using a pulse of width
< 1/_s and a duty cycle of 1% or less. The use of a small pulse width minimizes any hearing
effect. The applied voltage across the diode is increased until the current saturation is
observed. The voltage is increased further until the current starts increasing beyond the

saturated value. Nominally, the breakdown voltage is specified at 1.1% of the saturated
current value. Typically, a good diode will have a breakdown voltage greater than 8 times

the threshold voltage. Typically, at 35 GI-h the breakdown voltage of the diode will be 15
V.

4.6.4 Device Characterization and Failure Analysis of InP Devices

The primary objective of this task group is to study the reliability and operational
characteristics of the Indium Phosphide devices for use in ground and space-based
radiometers. A number of critical evaluation subtasks and tests have been carried out with

support from the vendors of Indium Phosphide Gunn devices.

The first subtask was to devise and implement a measurement system for the junction
temperature of Gun- diodes. This set-up is shown in Figure 4.10. The test results from the

measurements on a few devices (GaAs and InP) are documented in Figure 4.11. In

addition, the thermal and I-V characteristics of devices undergoing burn-in or suspected of
having degraded were measured for analysis. Typical maximum junction temperature of
160°C has been determined to be acceptable for 106 hours of operation with less than 2%
probability of failure. The thermal impedance of the device is approximately 45°C/W, with

a typical of 2 Watts of input dc power. Hence, the maximum allowable baseplate
temperature of 70°C is prescribed for these InP diodes. These results are based upon the
following failure criterion. The dc bias current of an InP Gunn device is measured at a

standard baseplate temperature. When the dc bias current exceeds the nominal value by
10%, a permanent damage (device failure) is assumed to have taken place.

The second subtask was to determine any failure modes of performance anomalies of
significance. These tests have been made on a broad scale, utilizing all different types of
InP devices over a considerably wide range of operating conditions and environmental
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• %

Figure 4.10 Exper_ental measurement system for thermal characterization of Gunn
devices.
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Figure 4.11 ExperimentaUy measured I-V characteristics of 31 GHz GaAs Gunn diode for
various baseplate temperatures.
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Figure 4.12 Experimentally measured I-V curves for 44 GHz InP diode for different
baseplate temperatures.
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factors in various applications. An extensive data base has been generated as a result.
Some of the preliminary conclusions of this scrutiny are summarized below:

1. The devices' physical dimensions are somewhat incompatible with the standard
microwave diode package. The InP Gunn chip is extremely thin and small in area. The
bond wires used in a standard package (Varian N34) are very long, and form a catinary that
is located fairly close to the base (ground). Excessive mechanical stress on the diode
package lid or thermal effects are potentially capable to elongating the bond leads
sufficiently to cause a short circuit, and hence a device failure. In essence, the package is

much too large physically for the InP high frequency devices. It adversely impacts both the
integrity and electrical performance of the devices. The need for a new, "millimeter-wave
appropriate" package is critical to further progress in the oscillator area.

2. The InP device contains a current-limiting contact in its construction. This
contact is central to the performance of the device. However, it poses some problems in

practice, mostly in regard to biasing. The device cannot tolerate a rapid negative-polarity
transient, or a negative bias. For example, a short circuit across a fully-biased device can
result in a catastrophic failure.

3. Concerns have been raised with respect to long-term drifts in InP diode-based
oscillators. These are based on a very limited observations and not from any systematic

study. To date, there is no conclusive data or information base to either support or negate
these observations. Millitech has produced a very large number of InP device oscillators,
which were mechanically tunable. Therefore, it has not been possible to gather information

on any fine grain frequency or power drift in these units. An accelerated test is currently
being configured to examine these characteristics of Inl' device-based sources.

4. Acceleration Test: Several W-band (nominally 94 GI-Iz) Indium Phosphide
diode-based Gun- Oscillators were tested for shock and high acceleration survivability. In

a pyrotechnic shock test, these units were subjected to accelerations in excess of 24000 g (10
kHz). All the oscillators successfully survived this shock level.

Several InP devices which had failed during this development program were analyzed in a
very systematic fashion following the standard industry procedures. These detailed results
of these analyses are included in Appendix B, together with actual test reports.
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5.0 SOURCE SUBSYSTEM PERFORMANCE AND NOVEL DEVELOPMENT_;

5.1 Source Sub.stem Performance Summary

The 500 GI-Iz Submilllmeter-wave local-oscillator source was configured and tested as a
completed subsystem. The pump (driven) oscillators at 79 and 83 GHz were individually
optimized to extract the best stable operation achievable using fixed power supplies. The

balanced doubler was also tuned for the output frequency range of interest. Under the

conditions of maximum input pump power, the tripler operation was optimized.

The results of the entire subsystem performance are summarized below:

Parameters and Units Casel Case2

Input Frequency, fo GI-Iz 79 83

Input DC Power, W_. Watts 3.6 3.6

Input Power, pm mW 120 110

Output Frequency, 6fo GHz 474 498

Output Power, Pout mW

Multiplier Chain Efficiency

DC to submillimeter-wave

output efficiency 0.020 0.16

This output power produced by the source subsystem at 500 GI-Iz is well in excess of

reported performance of submlnimeter-wave multiplier chains to date. Also, this power
level (- 1 mW) is expected to be sufficient to drive either a quasi-optical frequency doubler
or a SIS-device to provide sufficient local oscillator pump power in the 1000 GHz frequency

regime.

The complete source assembly is relatively easy to operate and produces highly repeatable
performance on subsequent operation. No critical adjustments or alignments are necessary

to achieve proper operation. The source is environmentally stable, and reasonably rugged
for radiometry applications.
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5.2 Novel Develoements in Related Areas

In conjunction with this present 500 GHz source development program, a number of other
peripheral components were developed to enhance the usefulness of the source development
effort. The noteworthy among these innovative components are:

a) Carity-stabilized local oscillator sources

b) Injection Locked Millimeter-Wave Sources

c) Quasi-optical Ferrite Isolators.

In addition, theoretical work was conducted on a new multiplier device for high-power
generation in the minimeter-wave range of 40 to 140 GHz. A summary of these

development studies follows.

5.3 Cavity-Stabilized Local Oscillator Sources

Our goal was to design and build a cavity stabilized Gunn diode oscillator at 91 GI-Iz. A

cavity stabilized oscillator is desirable, since its frequency stability is essentially that of the

resonant cavity. Thus, if the cavity is made of some low thermal expansion material, such
as INVAIL the frequency of the oscillator will be very stable over wide temperature ranges.

In Figure 5.1 is shown a diagram of a cavity stabilized Gram diode oscillator. The oscillator
is designed to run at a fundamental frequency (i.e., 45.5 GHz) and to extract the second-

harmonic power (i.e., 91.0 GHz). The fundamental frequency is set approximately with the

post resonator and the distance between the post and the output wavegnide. The oscillator
cavity is made wide enough to allow propagation of the fundamental frequency. The WR-10
output wavegnide acts as a high pass filter, due to its cuttoff frequency (59 GHz) and only
allows the second-harmonic to pass.

The mode chart for the cavity is shown in Figure 5.2, including the actual data for the

oscillator shown in Figure 5.1. The data has a frequency dependence of-14.7 MHz for each

0.001" of back short motion at fo --46 Gl-Iz. The theoretical slope for the TE-al mode is -
15.0 MI-lz/.001" leading to the conclusion that the cavity is operating in this mode for the

data shown. The displacement of the data and theoretical curve is probably due to the

loading effect that is probably due to the loading effect that the oscillator has on the cavity.

The theoretical unloaded Q of the cavity in the TE_I mode is calculated to be 19,600 at 46
GHz.

In this mode the oscillator has a measured loaded Q of greater than 12,500 and the voltage
pushing is reduced to less than 2 MHz/volt, compared to 20-30 MHz/volt without a
stabilizing cavity.
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Figure 5.1 (a) Cavity-stabiliTed Gunn diode oscillator sectional view.
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Figure 5.1 Co) C.avity-stab;liTed Gunn oscillator sectional view for second harmonic

operation (Ref. Barth, in 1986 MTF Symposium Digest)
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Figure 5.2 Mode chart for resonances of a cylindrical resonator cavity.
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With an all brass cavity the temperature dependance of the frequency was measured to be -

2 MHz/°C at 91 GI-h. The theoretical value is given by:.

A !+°/ ,w D
dT 8L" L " dT 81)" D dT

for the TF__I mode:

-_l " 15MHz
460I_

.t_1 u
46GHZ

and for brass

aL ao 19x10-'rc
/.dT _

For the present case at 45.5 GI-h with L = .370" and D = .585"

dT
-0.88MHz/°C

The second harmonic frequency will then change as fast as the fundamental frequency giving

a predicted value of -1.8 MHz/°C, which agrees well with the observed value of-2
MI-Iz/°C. This implies that the cavity is indeed controlling the drift of the oscillator.

Noting that INVAR has a temperature stability of 1.6 X 10_/°C, a cavity of this material
would lead to a drift of -0.74 MHzrC at 91.0 GI-h. If greater stability is required, an

INVAR cavity with a brass backshort may be used. This allows the dissimilar expansion
rates of the two metals to compensate each other: the brass for aL/aT and the INVAR for
 /aT.

5.4 Hexagonal Ferrite Ouasiontical Isolators

Quasioptical isolators are gaining acceptance for use in millimeter wave systems. The
purpose of this research effort was to develop a quasioptical isolator using a ferrite with

internal magnetization, and thus, requiring no external magnets. This could pave the way
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for very large aperture isolators to be used in radiometer systems. The material used in this

work was Ba-type hexagonal ferrite.

The magnetized bar was cut into 2 small rectangular samples and the magnetic field of each
piece was measured. The thick sample "A" had a field of 1150 Gauss perpendicular to its
2.1 X 1.5 cm face and 86 Gauss perpendicular to the 2.1 X 1.0 cm face.

The return loss of the unmatched samples were measured to determine the dielectric

constant by treating the sample like a Fabry-Perot resonator. The dielectric constant was
in the range of 20-25. Fused silica disks of thickness of 0.015 _ were used for antireflection.

The Rotation Measure (RM) of both samples was measured. The thin sample apparently
didn't have any. It is difficult to determine the RM of the thick sample because the maxima
were broad.

A 94 GHz halfwave plate was mounted in series with the hexagonal ferrite sample. The

combination behaved like an isolator, giving an isolation of -20 dB and an insertion loss
of -3-5 dB. There is large uncertainty in the insertion loss because much of the

contribution stems from the fixtures. The geometry of the fixtures does not conform well
to the geometry of the sample. When isolating, the device rotates the input polarization

90 °, like Millitech's other quasi-optical isolators. RM and isolation were tested with 200
Gauss of external bias from 2 ring magnets. The isolation and insertion loss results did not
change much. The minima broadend during the RM tests.

A promising technique for realizing a practical quasi-optical isolator has been demonstrated.

Further work is necessary to improve the performance of these components to acceptable
levels. Also, additional development effort in the area of hexagonal ferrite materials is

needed to facilitate components at any specific center frequency.
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6.0 CONCLUSIONS

6.1

This development program addressed many diverse aspects of millimeter wave and
submilllmeter wave local oscillator sources. The studies conducted under this technical

effort examined several different techniques of realizing sources in the 60-100 GHz range,
and rigorously characterized the basic Gunn diode oscillators that are the prime drivers for
the submillimeter wave local oscillators. Figure 6.1 is a composite which shows the power
generation capability of sources developed in this program from 75 to 600 GI-Iz. The
following are the highlights of the main developments in this Phase 1I program.

6.1.1 Submillimeter-wave 500 GHz Source Assembly

A 500 GHz sourceassemblywas developedusinghigh-powerInP Gunn oscillator-combiner

drivinga cascaded timessixmultiplierchain. The salientcharacteristicsof thisprototype
Unit are:

Center Frequency 500 GHz 474 GHz

Power Output 0.55 mW 0.7 mW

Multiplying (X6) Efficiency 0.5% 10.6%

The performance of this assembly met the objectives of the program. The design of this
unit can be modified for other center frequencies in the submlnimeter-wave region.
Reasonable tunable operating bandwidth was obtained.

6.1.2 High Performance Multiplier Development

A balanced-doubler design capable of handling significantly high input powers was
developed for virtually any center frequency of operation. Very high conversion efficiencies

were achieved even at high output frequencies (166 GHz and higher). This doubler

performance makes cascading multipliers attractive for submlnlmeter wave power
generation. The design is relatively easy to implement, and broadband enough for most

radiometry applications. Typical efficiencies expected from this type of multipliers range
from 30 to 45%.

A high frequency tripler with reasonably good conversion efficiency was also developed

during the course of this research progrmn. This triplet design is an extension of standard
tripler configuration with some necessary fabrication-related modifications. It is usable to

frequencies well beyond 600 GHz by appropriate scaling and device selection. Figure 6.1
depicts the performance characteristics of this class of multiplier.
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6.1.3 Gunn Diode Oscillator Develooment

Virtually all poss_le capabilities and features of Gunn diode oscillators were extended to
their limit in this research effort. Also, a very systematic characterization of the operating
parameters of InP Gunn devices was carried out. Cavity designs were analyzed and

experimentally evaluated. Higher power, broadband tuning and higher operating
frequencies were achieved than previously available as a direct consequence of this program.
Design databases were established to aid the production of virtually any type of oscillator
in the 60-150 GHz range. Stability and other related features of local oscillators were
investigated in great detail.

6.1.4 Source Reliability_ Study_

Indium Phosphide devices were analyzed for their reliability and thermal characteristics with
a view to provide confidence in their use for spaceborne and other critical applications. The
recently developed Indium Phosphide Gunn devices were determined to be highly reliable
for reasonable baseplate temperatures. The diode package was analyzed in view of the

performance degradation caused by it at upper millimeter-wave frequencies. Device failures
were examined using an industrial procedure.

6.7,

The chief conclusions and technical observations resulting from this research and

development program are summarized next:

1. Usable local oscillator power can be obtained from cascaded multiplier chains
for frequencies somewhat beyond 600 GHz. The architecture os using a doubler followed

by a high-frequency tripler appears to be optimal.

2. Sufficiently high input pump power can be obtained from Indium Phosphide
Gunn diode combiners. Such combiners can be configured at virtually any millimeter wave
frequency to generate practically any desired output power, the only limitations being cost
and size. The operating bandwidth of most combiners are somewhat limited.

3. Indium Phosphide Gunn devices can be employed to generate fairly high

output power over 30 - 160 GHz range in various modes of operation. A wide variety of
devices are currently available for use in many different types of oscillator types to achieve

practically any combination of operating characteristics.

4. Indium Phosphide devices offer a highly-reliable operation comparable to their

Gallium Arsenide counterparts in terms of failure rates and hours of operation. The

performance of InP devices is generally superior to the GaAs diodes, in the dc to rf
conversion efficiency and output power.

5. Alternate devices and circuit techniques are currently emerging in the

millimeter wave region for generating pump power. Gallium Arsenide FET and other new
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devices, combined with epitaxiaUy-stacked varactors could conceivably become the prime
drivers for future submillimeter wave sources.

6.3 Recommendations for Future Work

Several areas of research and development in this Phase II effort are worthy of additional
work. Significant potential has been demonstrated in this study for generating submillimeter

wave power using the scheme adopted here. However, further development efforts are

needed to perfect the techniques and ideas produced here. In particular, considerable work

in area of device package design is needed to meet the future challenges. Appendix C
describes the possible solutions for this performance limiting factor. Also, continuation of
the work in cavity stabilization of Gunn oscillators is recommended for future applications
of this technology.

In the area of varactor multipliers, the bandwidth enhancement of high frequency multipliers
is considered to be worthwhile. The epitaxially stacked varactor multipliers for lower
millimeter wave frequencies require intensive development to achieve the necessary pump
power levels. However, these devices have already demonstrated the potential for meeting
the needs of high power balanced double pump requirements. Appendix A descn%es these

devices and their performance projections for millimeter wave sources.
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APPENDIX A

.°

EPITAXIAIk,Y GROWN STACKED VARACTOR MULTIPL/ER DEVICES

Frequency multipliers have been used for p.ower generation since 1958. These multipliers
depend on the non-linear reactance or resmance characteristics of semiconductor diodes.
In general, there are three types of multiplier diodes:

• Step Recovery Diodes

• Variable resistance multiplier diodes

• Variable capadtauce multiplier diodes

Step recovery diodes (SRD) depend on the charge stored in the diode during the forward
excursion of the applied rf (please see Fig. l(a)). During the forward swing, charges are
injected into the active layer. When the rf swing takes the diode into the reverse bias
region, the injected charge begins to decay. If the carrier ilfe time is larger than the rf
period, and if the voltage swing is large enough, the reverse current suddenly drops to zero.
This rapid drop in the current results in effident harmonic generation. Silicon SRD diodes
are prime examples of this mode of operation. Applications include higher order
multipliers and comb generators. In GaAs, however, the carder life time is very short - of
the order of a few nanoseconds. Hence, effident SRDs cannot be fabricated using GaAs.

The second type of multipliers depends on the rectification property of the diode with the
applied bias voltage (please see Fig. 1('o)). Under forward bias condition, there is a current
flow. When the diode is reverse biased, there is no current flow. By Fourier analysis of
the current wave form, it is apparent that higher order harmonics may be generated. This
class of multipliers has a low efficiency because of the dc resistive losses (there can be no

multiplication with the resistive multiplier unless there is a dc loss).

The third type of multipliers depends on the non linear capadtance of a semiconductor
diode with the applied bias. With this class of multipliers, there can also be sub-harmonic
generation (also called frequency dividers). This class is generally used for low order
multiplication- typically _< 4.
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The fundamental power,_Ptn, into the diode is given by:

P,. = r3* P. *(fJfc)

where PM

V b =

0 =

I_ =

fo =

fo =

=

C. =

F 3 =

This equation is valid for:

fJfo <

Normalized power = (Vb+o)'/R T

Breakdown voltage of the diode

Built-in potential of the diode

12 Volts for GaAs P" N diode

Series resistance of the diode

Input frequency to the multiplier

Cut-Off frequency of the diode

11(2 * r * C. * RT)

Minlm.m capacitance of the diode

A constant which depends on the order of multiplication

.0277 for a doubler

.0241 for a tripler

.0201 for a quadrupler

0.5% for doublers and triplers

< 0.1% for quadruplers

The efficiency of the multiplier is given by:.

: e-a *(fop/re)

Again, a is a constant which depends on the order of multiplication.

a = 9.95 for a doubler

= 11.7 for a tripler

f_ mm

16.55 for a quadrupler

output frequency of the multiplier
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It is useful to observe that the efficiency increases as the cut=off frequency increases for a

given input frequency.

The output power, Po, is then : Po = Pin * )7

Thus, the output power is proportional to the square of the breakdown voltage.

The output power may be increased for a given order of multiplication by increasing the
breakdown voltage. However, the loss associated with the diode also increases with

increasing V b. Consequently, there is a limit to obtaining increased power by increasing V b.

The cut-off frequency, fc=, at a voltage corresponding to C, of the diode is given by:

f=

RT

R 8

RB1

= I/(2*)z*C=*R,)

= Total resistance of the diode

= R, +R=+ 1_I + R d + 0.I

= Substrate resistance including skin effect

= _/(4"I-* _)) *{ 1+ (4*T/D))

= Skin resistance of the Plated Heat sink

= 9J(4*_'*8,)))*{I+2*In(DJD) + (4*h/D1))

where

17,= = Resistance due to contact layers and ohmic metallization

= (g',% + S % )+ )IA

R d = Diode resistance due to time averaged undepleted epi
layer thickness - usually the resistance of half the total epitaxial layer.

= L A/(2"q*_*N D *A)

0.1 = Resistance of connecting gold straps

The power input, Pr., may be written as:

PIn = r3*(Vb + O) z * (f/fc=) /RT

As may be seen, the power input decreases when the diode resistance increases.

One way Out of this dilemma is tO stack the diodes physically as shown in Fig. 2. By such
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stacking, the breakdown voltage may be increased without significantly compromising the
total resistance. For an N diode stacked device, the breakdown voltage, V_, is given by:

Yr. = N*V 

Consequently the power input and the power output increase by N 2 for a fixed C,.
area of the individual diodes of the stacked device also increases by N.

The

Physical stacking,however, also increases the electrical resistance due to bonds between
diodes. More importantly, though, the thermal resistance of the stacked device is
substantiaUy higher than that of a single diode. This is mainly because of the substrate
thickness of the individual diodes and the bonds between the diodes. The increased

electrical and thermal resistances may be circumvented by stacking the diodes epitaxially
as shown in Fig. 3.

The stacking by epitaxial growth has been named "Integrated Series Impart Structure" or
ISIS for short. Originally, the structure was used with Impatt profiles to develop a high

power device. Hence the name.

ISIS DIODE

DC Characteristics

a. Forward Characteristics

Fig. 4 shows the I-V characteristics of a 2 stacked ISIS diode. The forward conduction does
not begin till almost 7 volts. The reason for this high a forward drop may be understood
by examining
Fig. 3. A 2 stacked forwsrd biased ISIS diode consists of 2 forward biased I'* N junctions
and a reverse biased N-' P÷ junction. When a small voltage is applied, the diode cannot
conduct because the reverse biased junction will not permit conduction. Hence, for the
diode to start conducting, the reverse biased junction has to breakdown. Since both the N"
and the P" regions are very heavily doped, the breakdown voltage is about 5 to 6 volts.
Once the junction breaksdown, additional voltage has to be applied to overcome the
potential barrier of the forward biased P* N junctions. Thus, the forward drop for
reasonable conduction to take place, the applied voltage has to exceed about 7 to 8 volts.
In general, then, the forward drop of a N- stacked ISIS diode win be (assuming that the
diodes of the stack are identical):

V_ = N x 1.2 + (N-l) x V n

Where:

VsR = Breakdown voltage of the reverse biased N" - P÷ junctions

The forward conduction current is basically controlled by the space charge resistance of the

reverse biased junctions.
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b. Reverse Characteristics

Under reverse biased conditions, a 2 stacked ISIS diode has two reverse biased P÷ N
junctions and one forward biased N'* - I)* junction. If there is no current flow, the applied
voltage across the forward biased junction is zero. Hence, the applied reverse voltage splits
evenly between the 2 junctions. Thus, in general the applied voltage across a reverse biased
N- stacked ISIS diode will split evenly among the N reverse biased junctions.

If the diodes of the stack have a capacitance of C I pF at 0 bias, the capacitance, Cj,v_ of
the N stakced ISIS diode at a reverse voltage V i will be given by:

Cam = (C, x Cz)/[C, + C.a {1 +(V R r]

where:

¢ = built-in voltage of the P" N junction

= 1.2 volts for GaAs

= zero bias capacitance of the forward biased N ÷
junctions

V R = applied reverse bias voltage across the ISIS diode

The tuning ratio, T_, is given by:

% =

= [C I + C 2 {1 +(V s + %)

The tuning ratio of an N - stacked ISIS diode is lower than the tuning ratio of N diodes

connected in series due to the presence of the parasitic junctions. Incidentally, the tuning
ratio of N diodes connected in series is the same as that of a single diode.

From a multiplier view point, the minim.m elastance S,t" = 1/C,m is obtained when the
forward voltage is large enough to cause avalanche breakdown of the parasitic junctions.
The maximum elastance S., x = 1/C=i . is, of course, obtained at reverse breakdown.

Electrical consideratiQns

The theory behind the operation of an N stacked ISIS diode is identical to that of a single
diode multiplier except the breakdown voltage is N times that of a single diode. The cut-
off frequency of the diode, fcsv, at a reverse bias voltage V is given by:

fcMv= (2*_r* Cj_ " RT,V )-1

This equation is identical to the earlier one. The subscript N identifies the N stacked ISIS
diode.

A-5



L

Cjv/ and

Resistance of the N stacked ISIS diode

R, + R.I + N * (R= + R d ) + 0.1m
t

The optimum output resistance of a multipfier for maximum power output is given by •

R ° -- I'I/0Y I *2*z*f o *CjM )
Where

fo = input frequency and assumed to be < < f_v8

I' I N I

Doubler .271 2

Tripler .168 3
Quadrupler .136 4

The calculated cut-off frequency of 2 and 3 stacked varactors as a function of the
breakdown voltage of the stacked device is shown in Fig. 5 at output fl'equendes of 44 and
94 GHz with the output resistance of the ISIS diode as a parameter. The calculations were
made under the following assumptions:

1. The active layers of the individual diodes are identical and have a fiat doping profile.

2. The active layer thickness equals the depletion layer thickness at breakdown.

3. The N* buffer layer of each diode is 1/_m thick and has a resistivity of 0.002 ohm-

4. The P* layer of each diode is 0.75 _tm thick and has a resistivity of 0.008 ohm-era.

5. The substrate has a resistivity of 0.002 ohm-cm and a thickness of 15 _m.

6. The specific contact resistivity of the top ohmic contact is 5 * 10 .6 ohm-era 2 and
other metal connections have a resistance of 0.1 ohm.

These assumptions are very realistic and in particular these parameters match those of the
ISIS diodes that are fabricated by MDT.

The figures show that the cutoff frequencies have a broad maximum as a function of the

breakdown voltage of the ISIS diode. At low breakdown voltages, the carrier concentration
of the individual diode of the stack is high. Consequently, the capacitance per Sq. an of
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the diode is large. Hence, the diode area is very small for a fixed capacitance. The
reduced diameter results in increased parasitic spreading resistance. The cutoff frequency,
thus, decreases with decreasing breakdown voltage.

At the other end, when the breakdown voltage is large, the carrier concentration is small.
For a fixed capacitance, the diode area is larger. The substrate resistance increases with
increasing diameter. Hence, the cutoff frequncy decreases with increasing breakdown
voltage.

To get an idea of the magnitude of the quantifies, let us consider a 2- stacked ISIS diode
to be used as a doubler at 94 GHz with an output resistance of 10 ohms. From Fig.4c we

see that the maximum cutoff frequency of 1580 GI-Iz occurs at a breakdown voltage of
about 80 volts. The output resistance of 10 ohms is equivalent to a capacitance at
breakdown of 0.046 pF. The diode diameter is about 42 _m. For this capadtance and the
breakdown voltage of 80 volts, the series resistance is about 2.2 ohms.

Thermal considerations

The difference between the input power at the fundamental f_equency and the output
power at the harmonic is essentially dissipated in the stacked device. Assuming that the
power dissipation is evenly divided among the N diodes, we may calculate the temperature
rise of the N stacked device as a function of the breakdown voltage.The temperature of the

diode obviously depends on the thermal conductivity of GaAs. The thermal conductivity
of GaAs is dependent on temperature as given by :

K= C/T

C = 150 Watt/an for N type OaAs

= 120 Watt/cm for N' GaAs

T = Temperature of GaAs in °K

Using these relations, it may be shown that the temperature of the N th diode of the N-

stacked ISIS device is given by :

Where

r,-

((Pd'N'00+T.) • exp((PJ(2*C'A))'N,* L_)

Power dissipation in the individual diode of

the stack and assumed to be = P_/N

01 = ((4*hl(x*I_ "D)) + (21(f'ILz)))/dI
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K 1 =

A=

h =

d 1 ffi

I.,d=

TN=

thermal conductivity of plated heat sink material

thermal conductivity of heat sink material

diode area = r*D 2/4

plated heat sink thickness

D + (2"h)

thickness of each diode of the stack

heat sink temperature in °C

Figure 6 shows the calculated thermal resistance of 2 and 3 stacked devices as a function
of breakdown voltage Vt_ under the same conditions enumerated above with the plated
heat sink gold thickness of 50 #m (at output frequencies of 44 and 94 Ghz)

The thermal conductivity of GaAs depends on temperature. Hence, the thermal resistance
is a derived function from the temperature calculations. Caution is to be exercised in
interpreting the temperature raise obtained by multiplying the thermal resistance by the

power dissipation. In general, the power dissipation per diode was assumed to be about
0.75 watts per diode of the stack for these calculations. Conservative temperatures will be
obtained when the actual power dissipation is lower than the number used in the
calculation.

Again, to get an idea of the magnitude of the quantities, let us calculate the temperature
rise of a 2- stacked ISIS multiplier diode to be used as a doubler at an output frequency
of 94 GHZ with an output resistance of 10 ohms. The optimum breakdown voltage for
this diode (from Fig.5c) is 80 volts. The thermal resistance of such a diode (from Fig. 6c)
is 72 ° C/W. Hence, the temperature rise above the heat sink temperature is: 2 times 0.75
W times 720 C/W. Or,

T= I120C

Freouencv Considerations

For a fixed load impedance, it is dear that the diode capacitance will decrease as the
frequency is increased. This means that for a fixed number of stacks, the diode diameter
will have to decrease. Figure 7 shows the cutoff frequency dependence on the diode

diameter for a fixed capacitance. It is clear that there is an optimum diameter to obtain
the highest cutoff frequency.

With ISIS diodes, there is another degree of freedom available, we can increase the
number of stacks to increase the diameter of the diode. However, the electrical resistance
due to additional P* and N* layers will also increase. Hence, the cutoff frequency will be

a slowly increasing function of the number of stacks. Figure 8 shows the cutoff frequency
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dependence on the number of stacks, N for a fixed breakdown voltage of individual diode
of the stack. In other words, the breakdown voltage of the ISIS varactor, VsN, is N times
the fixed breakdown voltage of the individual diode. In this case, the fixed breakdown is
40 Volts.

Increasing the number of stacks, however, increases the thermal resistance of the diode.

Hence, there may not be any advantage to increasing the number of stacks.

Power output Consideration

The output power of the ISIS diode, Po, is given by:

Po = 17"N z'(VI+o) z'2"_r*fo *CjM*r3

It is dear that the output power will increase as the square of the number of stacks even
for a fixed capadtance value. The power dissipation ,P_ also increases. The power
dissipation is given by

= P,n.(1- n)

It is evident that the output power is limited by the maximum temperature of the N th
diode of the stack.

Figure 9 shows the power output at 44 and 94 Ghz as a function of the number of stacks
with output resistance and the type of multiplier as parameters under the assumption that
the junction temperature is 200°C.

The optimum number of stacks to get the highest power of about 9 watts at a doubler
output frequency of 44 GI-Iz is 4 when the diode output resistance is 5 ohms. When the
diode output resistance is 10 ohms, the optimum number of stacks is 5 for an output power
of about 8.2 watts.

The reason for change in the optimum number of stacks when the output resistance changes
is because of the imposed condition limiting the maximum temperature to 200 +/- 3 °C.
When the output resistance is lower, the diode diameter will be larger resulting in higher

power handling capability of the diode. The temperature rise will be lower. Thus, the
number of stacks to realize a fixed maximum temperature will decrease as the output
resistance decreases. On the other hand, when the output resistance is large the diode
diameter will be small. The power handling capability of the individual diode will decrease
resulting in higher temperature rise. Thus, the number of stacks increases for a fixed
temperature rise.

At 94 GI-Iz, the maximum power of about 1.9 watts is obtained for a 2- stacked ISIS diode
with an output resistance of 5 ohms. For an output resistance of 10 ohms, the maximum
power is about 1.45 watts.
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Equivalent Circuit

a. Packa2ed ISIS Diode
v

Figure 10 shows the equivalent circuit of an ISIS multiplier diode in MDT package style
M 23 (Fig. 11). The equivalent circuit consists of the diode capacitance in series with the
diode resistance. The bond wire inductance of about 02 nH is in series with the diode

impedence. The package capacitance of about 0.13 pF is in shunt with the rest of the
circuit elements.

b. ISIS Diode with Ouartz Stand-Off (MDT ease Style M29)

The packaged diode may be used at lower mm wave frequencies without significant
performance degradation. However, at higher frequencies the junction capacitance will be

comparable or even less than the package parasitic capacitance. In this case, an
unpackaged ISIS diode is preferable. Fig. 12 shows an ISIS chip connected to a quartz
stand-off (MDT case style M29). The nominal dimensions of the quartz stand-off are 0.008"
x 0.008" x 0.005" resulting in a parasitic capacitance of less than 10 IF. Fig. 1] shows the

equivalent circuit of the quartz stand-off. The maximum distance between the quartz
stand-off and the chip is 0.005". A nominal 0.0005_x 0.003" gold ribbon is used to connect
the chip to the stand-off. The maximum length of the gold ribbon is about 0.016" resulting
in a maximum lead inductance of about 0.3 nil. Many diodes in this package style have
been made with a zero bias capacitance in the range 250 to 300 fF. At breakdown, the
capacitance is about 80 to 100 fF.

SUMMARY

The ISIS multiplier diodes are very useful in generating high powers at mm wave
frequencies reliably. The epitaxial technology is known and has been used for growth of
a variety of devices. The processing technology is also known quite well and has been in
use for a number of years. The operating junction temperature can be well below 200°C
even at a case temperature of 75°C.

The attractiveness of ISIS multiplier diodes stems from the high conversion efficiencies and

the relatively low voltages needed for their operation. Also, the circuit technology is a
proven one. Hence, the risks are minimaL

OF POOR QL ........t,,
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Figure l(a). Prinlciple of Operation of a SRD Diode

Figure l(b). Principle of Overation of a Rectification Diode
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Package/ Heatsink for Stacked Diodes

Figure A-2 Physical Stacking of Single Multiplier Diode Chips.
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Figure A-9a:

of number of devices in a stack.

|O

Power output of ISIS doublers at 44 and 94 GHz as a function

A-25



5 to

Figure A-9b: Output power at 94GHz and 44 GHz as a function of number
of devices in stack as a triplet.
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Figure A-10 Eq_ent circuit of ISIS Multiplier Diode in M 23 Package
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APPENDIX B

FAILURE ANALYSIS OF INDIUM PHOSPHIDE GUNN DIODES

FAILURE ANALYSIS REPORT

hA) Diode 1 InP Gunn Varian

Model Number VSB-9122510
S/N EE 558-601

4.8V, .167A, 34 mW@ 94.4 GI-Iz

a) External Examination:

Mechanical inspection revealed that the diode flange is bent indicating exces-
sive torque was used while the diode was threaded into the cavity. When
excessive torque is used, heatsinking to the cavity is reduced, thus increasing the
active layer temperature. This sometimes can lead to the device failure.

Electrical examination indicated that the diode was

b) Internal Examination:

After the cap was removed, the diode was examined under the high power
(xl000) optical microscope. Most of the InP diode was burned out, only leaving
fragments of InP material on the chip. The diode was processed into a gold
plated heatsink structure. The thickness of the gold plated heatsink is approxi-
mately 12-14/_ms. The chip is of hexogonal shape with an InP circular mesa in
the center.

There was no evidence of the diode being bonded to gold plated copper
heatsink using Au/Su solder. Hence we can conclude that the diode was

thermo-compression bonded to the package, thus achieving lowest poss_le
thermal resistance.

B) Diode 2 GaAs Gunn

VSA 921053

Lot 5450, S/N 28 N34 Pkg.
5.0V, 578 mA, 114 mW @ 35 GHz

Varian



All the GaAs material is splattered around on the heatsink. The diode is complete-
ly burned out. There is evidence that the chip is square and the side is approxi-
mately 80 _m.

External examination before can is removed:

The diode is open electrically.
The threads are completely damaged.

C) Diode3 InP Gunn Varian

VSB 9122513

EE  ,0-04 
198A, 63 mW@ 92.6 GHz

External Examination

The diode was open electrically.

The threads and the heatsink and the package were mechanically intact.

Internal Examination:

The diode is a circular chip. There is no evidence of solder and therefore, the

diode is thermo-compression bonded for lowering thermal resistance. A circular
tool was used for TCB bonding and this is evidenced by a small ring on An PHS
chip at the edges. The diode has a circular An PHS structure. The total height of
the chip is _ 20/_m. Since these diodes were completely burned out, cross-sectional
examination would not yield any additional information.
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Appendix C

GUNN DIODE PACKAGING CONSIDERATION FOR
PERFORMANCE ENHANCEMENT

Performance of a Gunn diode depends on many factors including the circuit topography,
doping profile, active layer thickness in relation to the transit time thickness, the nature of
the cathode contact, the efficiency, and in the case of a packaged device, the thermal

resistance and the package parasitics. When the circuit topology is known and chip diodes
are to be used, then the Gunn diode design may be optimized to obtain the required
performance. However, when chip diodes cannot be used, then the package design must
be considered as a part of the Gunn diode design.

Ideally, the package must have zero parasitics and _te thermal conductivity. In practice,
packages tend to have finite thermal conductivity and non-trivial parasitics - especially at
mm wave frequencies.

One of the most important design considerations for a Gunn diode is the thermal

resistance. The thermal resistance of a packaged diode consists of two components:

Intrinsic Thermal Resistance due to the chip and
Extrinsic Thermal Resistance due to the package

The thermal resistance, 0T, of a chip shown in Figure c-I is given by:.

_)T =ON + 0C +0S

where 0 N, 0C, and 0S are the thermal resistances of the active layer, the contact layer and

the spreading therm_ resistance into the _te heat sink of the package respectively.
It may be shown that ON, 0C, and 0S are given by:.

8 N =

OC =

Os =

where

(T2/PD) *{exp(a2)-1}

(T1/PD)" {exP(al)-1}

(2/(_r*K1.dl)

al

a2

11,13

A

m

m

m

(PD*I2/A*C)

(PD*II/2.A°c)

activeand contactlayerthicknessrespectively

area of the diode = 1""_'/4
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d I = diameter of the chip

C a constant = 150 W/cm for GaAs

T 1 = temperature of contact layer -Pkg interface in °K

T 2 = temperature of contact layer -active layer interface

Of these terms, the thermal resistance of the chip due to the contact and the active layers
are area dependent while the spreading thermal resistance is diameter dependent. Because
of the diameter dependence, there is a poss_ility to reduce the thermal resistance by
spreading the area over many mesas or even by an annular ring.

Figures c-2 and c-3 show the reduction in thermal resistance due to multi mesas and due
to the annular ring geometry respectively. To achieve a 40% reduction in thermal

resistance with 4 mesas, the mesas have to be spread apart by about 6-8 time the radius of
the diode. As an example, a realistic number for a single chip mesa diameter is 100 _m.
To get an equivalent area with 4 mesas, the individual mesa diameter has to be 50 _m.
Then, the separation between the mesas has to be about 175 _xn. Thus, the chip size will
be about 350 _m x 350 _m. Strapping the chips to fabricate a diode will result in rather
a large lead inductance. In addition, the mesas have to be linked together which will also
add to the inductance.

Similarly, to achieve a 40% reduction in thermal resistance using an annular geometry we
need to have an aspect ratio of 2.5. With this aspect ratio, the width of the annual ring is
about 24/_m when we consider the 100/_m diameter diode as example as in the earlier
section. The diameter of the annular ring is 103 _m.

Thermal resistance reduction for the total diode may be realized by using high thermal
conductivity heat sinks rather than by using multi-mesas or using annular ring geometries.

Figure c-4 shows the thermal conductivity of natural diamond Ha and synthetic diamond
Ib as a function of.temperature. As may be readily seen, the thermal conductivity is about
3 times larger than that of copper. Naturally, this will lead to a large reduction in the

thermal resistance but more importantly to a reduction of the diode junction temperature.

The thermal resistance due to spreading, 0S, into the heat sink is:

0 S = 2/(l"*Kl*d1)

where

K 1 =
d I =

thermal conductivity of the heat sink
diode diameter
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Now, the total thermal resistance, _T, for a diode diameter of 100 _m, active layer
thickness of 2.50/_m, a contact layerthickness" of 0.5 _m with a power dissipation of 5
Watts is :

T i 22.9 "C/W for copper as heat sink

= 11.5 °C/W for diamond Ha or Ib as the heat sink

RF Eouivalent Circuit of the Package

Figure c-51shows the equivalent circuit of the package. Essentially, it consists of a
capacitance of about 0.14 pf due to the alumina ceramic of outer diameter of .032", a wall
thickness of 0.008" and a height of .010". The inductance is due to the strap and is of the
order of 0.1 nil.

If the ceramic of the package is replaced by quartz with a dielectric constant of 3, the

parasitic capacitance will be reduced to about 0.05 pF. The replacement of alumina with
quartz will allow the diode to operate at a higher frequency.
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Figure c-i Hermetically Sealable Diamond Heat Sink Package
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