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Objectives

The objective of this research is to develop optimization procedures to provide design trends in

high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed

loop optimization process. The procedures involve the consideration of blade aeroelastic,

aerodynamic performance, structural and dynamic design requirements. Further, since the design

involves consideration of several different objectives, multiobjective function formulation

techniques are developed.

Accomplishments

Multiobjective Formulation

This goal of the first part of this study is to develop multiobjective optimization formulation

procedures for application in multidisciplinary design problems. Due to the fact that some of the

optimization problems involve more than one design objective, the objective function formulation

is more complicated. In most of the existing work, the individual objective functions are combined

using weight factors in a linear fashion. Such methods are judgmental as the answer depends upon

the weight factors which are often hard to justify. Two multiobjective function formulation

techniques have been investigated and implemented. They are the Minimum Sum 13(Min ZI3) [1]

and the Kreisselmeier-Steinhauser (K-S) function [2] approaches.
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Optimization Implementation

A nonlinear programming method, as implemented in the numerical code CONMIN [3], is

used for the optimization. CONMIN uses the method of feasible directions. In the optimization

process, many evaluations of the obiective function and constraints are reauired before
f
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convergence to an optimum design is obtained. Therefore, the process can become

computationally expensive if exact analyses are performed for every function evaluation.

Therefore the use of an approximate analysis is implemented in the calculations of both the

objective functions and the constraints. The approximate analysis used for this study is the two

point exponential procedure developed by Fadel et al. [4]

Optimization Problems

Several multidisciplinary optimization problems involving the coupling of necessary disciplines

that are crucial for tilting prop-rotor design have been developed. For example, the propulsive

efficiency in high speed cruise (400 knots) and the hover figure of merit have been simultaneously

maximized using both the Min 213 and K-S function approaches. Constraints are imposed on the

first natural frequency in hover and on the total blade weight. Both aerodynamic and structural

design variables are used [5,6]. Next, an integrated structural and aeroelastic optimization

procedure using a composite box beam model as the structural load carrying member has also been

accomplished [7]. Other work that has been completed includes a minimum rotor drive system

weight optimization and a minimum blade weight optimization.
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Introduction

Over the last few years, there has been a revival of interest in VTOL aircraft capable

of operating in fixed wing as well as rotary wing mode. High speed rotorcraft designs,

such as the tilting rotor configuration, pose an entirely new problem in the rotary wing

field. The design goals for this class of aircraft include low downwash velocity in hover,

good low speed maneuverability and cruise speeds of 350 - 500 knots I. Several new

concepts 2-5 have recently been proposed to meet these design goals. Extensive research

performed in this field have led to the XV-I5 research aircraft and ultimately to the

production of the V-22 Osprey tilting rotor for the US Navy.

The combined requirements of efficient high speed performance of a fixed wing

aircraft and good helicopter-like hover characteristics complicates the design process of

tilting high speed proprotor aircraft. It is necessary to maintain good aerodynamic

efficiency in high speed axial flight without degrading hover efficiency. This often leads

to conflicting design requirements. For example, improved efficiency in high speed
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cruise demands high drag divergence Mach numbers which are normally associated with

thin airfoils. This however, reduces the hover figure of merit by reducing CT/a.

Therefore, to maintain the required thrust ceiling in hover, the rotor solidity has to

increase. Also as the forward speed increases, helical tip Mach number limitations

caused by whirl flutter, require a reduction in the rotor rotational velocity. Introducing

blade sweep can alleviate this problem by reducing the effective chordwise Mach

number, which allows for higher speeds, without reducing the rotor RPM. Therefore the

proper design of proprotor blades capable of achieving the design objectives must

consider the fight combination of airfoil thickness and blade sweep in addition to other

aerodynamic variables such as planform and twist.

Several studies have been performed 6-9 to study design trade offs between the two

flight modes. For example, Johnson et al. 6 performed a detailed study on the

performance, maneuverability and stability of high speed tilting proprotor aircraft,

including the XV-15 and V-22. Liu and McVeigh 7 recently studied the use of highly

swept rotor blades for high speed tilt rotor use. However, formal optimization techniques

were not used in these studies. Recently an effort was initiated by Chattopadhyay and

Narayan 8,9 to develop formal multidisciplinary optimization procedures for the design of

civil high speed tilting proprotor blades. The propulsive efficiency in axial flight was

maximized with constraints on the figure of merit in hover, aeroelastic stability in cruise

and other aerodynamic and structural design criteria. The purpose of the present paper is

to formulate the optimum design problem of high speed proprotors using multiobjective

optimization techniques with the integration of the necessary disciplines.

Probleffa Definition

,, !J
A integrated, multiobjective optimization procedure is developed for the design of

_high speed proprotors with the coupling of aerodynamic, dynamic, aeroelastic and
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structuralcriteria. The objectives are to maximize propulsive efficiency in high speed

cruise and rotor figure of merit in hover. Constraints are imposed on rotor blade

aeroelastic stability in cruise and on total blade weight. Two different multiobjective

formulation procedures, the Min El3 and the K-S function approaches are used to

formulate the two-objective optimization problem .... _

Aerodynamic Model

The rotor studied is a wind tunnel model an existing advanced technology proprotor,

which is a three bladed rotor with a rigid hub. Cubic variations are assumed for the chord

(c) and twist (0) distributions to model the blade aerodynamics,

c@) = Co + Cl@- 0.75) + c20- 0.75) 2 + c30- 0.75) 3 (I)

00) = 0o + 01(5' - 0.75) + 02@ - 0.75) 2 + 03@ - 0.75) 3 (2)

where 5' denotes the nondimensional blade radius. Note that Co represents the chord and

0o the twist at the 75 percent blade radius, respectively. A quadratic lifting line is used

and is defined as follows.

x = f(y) =ely + g2y 2 (3)

where El, E2 are constants that determine the curvature, and are defined such that

I ei[ < _i (4)

where _i (i = 1, 2) are prescribed bound for the curvature parameters. These bounds

allow for either forward or backward in-plane curvature. When el and E2 are equal to

zero the lifting line will be a straight line. The blade sweep, based upon this lifting line

distribution, assumes the following form
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180tan-l(dx ]
A(S,): 7

180
= _tan-l(el + 2e2Y ) (5)

where A($,) is the sweep distribution, in degrees, defined to be positive aft of the straight

lifting line.

Structural Model

The structural model used for the problem consists of a simple two-celled box beam

as shown in Fig. I. The beam is considered to be the principal load carrying member of

the proprotor and the stiffness contributions from the honeycomb and the nonstructural or

tuning weights are placed at the blade tip and are distributed along the planform. The

total blade weight comprises the weight of the box beam, the skin, the honeycomb and

the nonsmactural weights. The wall thicknesses of the box beam are assumed to vary in

proportion to the chord distribution.

t 5 z

_/x nonstructural weight

honeycomb
"1 t.._ t2 t._ t4 _ t3

c(y)

Figure 1 Double-celled box beam configuration



Optimization

Objective Functions: The multiobjective optimization procedure is used to

simultaneously maximize the rotor propulsive efficiency in high speed cruise and the

hover figure of merit.

Design Variables: Both aerodynamic and structural design variables are used. The

aerodynamic design variables include chord, twist and sweep distribution coefficients

(Eqns. 1, 2 and 5). The structural design variables comprise roots values of the wall

thicknesses of the two-cell box beam and the magnitudes of the nonstructural weights, at

the tip, distributed spanwise.

Constraints: To avoid the possible occurrences of air and/or ground resonance associated

with a soft inplane rotor, it is important to maintain the value of the lowest natural

frequency in hover, fb above 1/rev. Therefore the following constraint is imposed.

(i) fl > 1/rev (6)

It is important to impose aeroelastic stability constraints to prevent any degradation of the

rotor stability in high speed cruise. This is all the more important when the blade mass

and stiffness are altered during optimization. The stability constraints are expressed as

follows.

(ii) C_k < -'Ok k = 1, 2 ..... K (7)

Where K represents the total number of modes considered, and O_kis the real part of the

stability root. The quantity "Ok denotes the minimum aIlowable blade damping and is

defined to be a small positive number. To avoid incorporation of weight penalties, after

optimization, the total blade weight is constrained as follows.

(iv) w_<wu (8)



Multiobjective Optimization

A typical optimization problem involving multiple objective functions can be

mathematically posed as follows.

Minimize Fk(_n)

Subject to

constraints)

k = 1, 2 ..... NOBJ

n= 1,2 ..... NDV

(objective functions)

gj(_bn) < 0 j = 1, 2 ..... NCON (inequality

_nL < dpn < dPnu (side constraints)

where NOBJ denotes the number of objective functions, NDV is the number of design

variables and NCON is the total number of constraints. The subscripts L and U denote

lower and upper bounds, respectively, on the design variable dpn. A description of the

multicriteria design objective formulation follows.

This study examines three multiobjective function formulation techniques that are

less judgmental than the Pareto based weighting factors and are therefore more suited to

large scale, highly nonlinear optimization problems that are associated with rotary wing

design. The two multiobjective function techniques used are the Minimum Sum Beta

(Min 213) and the Kreisselmeier-Steinhauser (K-S) function approaches. A description of

these methods follows.

Minimum Sum. Beta (Min 2_): This method was first used by Weller at al. 10 to

formulate a two objective function rotor vibration problem. Using these technique,

pseudo-design variables that represent tolerances of the individual objective functions

from prescribed tolerances are introduced. The objective function, FI (_), is then defined
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asa linearcombinationof thesetolerancesof eachobjective function to their specified

targetvaluesasfollows

NOBJ

l(tI:') = Z 13g (9)

k=l

where 13k are pseudo design variables with properties such that the original objective

functions Fk remain within a 13ktolerance of some prescribed values. This requirement

introduces new constraints of the following form.

Fk - _:k
< 13k k = 1, 2, .... NOBJ (10)

i:k

The quantities _'k are the prescribed target values of the individual objective functions Fk.

Using the above formulation, as the objective function, and correspondingly the values of

13k, are reduced to zero, the values of the individual objective functions Fk are driven to

their prescribed values, Fk. The design variables for the Min E_3 formulation comprise

the original set of design variables and the pseudo design variables, 13k.

Kreisselmeier-Steinhauser (K-S) function: This technique was first utilized by Sobieski

et al. 11 at the NASA Langley Research Center. The first step in formulating the objective

function in this approach involves transformation of the original objective functions into

reduced objective functions 12. These reduced objective functions take the form

* Fk(_)

Fk(Cb) - Fk ° - 1.0-gmax < 0 k=l ..... NOBJ (ll)

where Fko represents the value of Fk calculated at the beginning of each iteration. The

quantity gmax is the value of the largest constraint corresponding to the design variable

vector • and is held to be constant for each iteration. These reduced objective functions



areanalogousto thepreviousconstraints, and therefore a new constraint vector g2m(¢_)

(m = 1, 2, .... M) is introduced, where again M = NCON + NOB3. The new objective

function to be minimized is then defined, using the K-S function as follows:

M

_ 1 .y__,F2(_) = fmax + _ In eP(grn (_)-frnax)
m=l

(12)

where fmax is the largest constraint corresponding to the new constraint vector, g2m(_),

and in general is not equal to gmax. The multiplier p can be considered analogous to a

draw-down factor where P controls the distance from the surface of the K-S objective

function to the surface of the maximum constraint function. When P is large the K-S

function will closely follow the surface of the largest constraint function. When p is

small, the K-S function will include contributions from all violated constraints. The

design variable vector q_ is identical to that used in the Min 213 approach.

Analysis

Dynamic. Aerodynamic and Aeroelastic An_ly_es The aerodynamic, dynamic and

aeroelastic analysis of the high speed proprotor is performed using the code

CAMRAD/JA 13. The code has the capability of analyzing both helicopter and tilting

rotor aircraft. Wind tunnel trim options are used as the reference blade is a wind tunnel

blade model. In cruise, the blade is trimmed to specific rotor lift and drag coefficients

using the rotor collective and cyclic pitch angles. A prescribed wake model, as

implemented in CAMRAD/JA, is used to model the aerodynamics in hover and the rotor

is trimmed to a specific value of the coefficient of power. In axial flight, the components

of the induced velocity are negligible compared to the high forward speed of the rotor.

Therefore, uniform inflow conditions are used to model the aerodynamics in this case.
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The aeroelasticstability analysis in cruise is analyzedwith a constant coefficient

approximation.

Structural Analysis: The detailed structural analysis of the rotor blade is performed

based upon the two-celled trapezoidal box beam using an inhouse code that was recently

developed specifically for this application.

Optimization Implementation

The optimization is performed by using the program CONMIN 14. The program uses

the method of feasible directions to solve nonlinear constrained optimization problems.

To reduce the computational effort, an approximate analysis technique is used to compute

the objective function and constraint values during iterations within the optimizer. For

this problem the two-point exponential hybrid approximation technique 15 is used. This

technique takes its name from the fact that the exponent used in the expansion is based

upon gradient information from the previous design point. The technique is formulated

as follows.

NDV

+V[fd_n 1 pn ]_On OF(q)O)

rl=l
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lo°Jl 0*n )[

[.t )J

Pn = (O,ln .) + 1.0 (14)
log

The quantity q_l refers to the design variable vector from the previous iteration and the

quantity q_0 denotes the current design vector. The exponent Pn can be considered as a

"goodness of fit" parameter, which explicitly determines the trade-offs between

traditional and reciprocal Taylor series based expansions (also known as a hybrid

approximation technique). Details of this method can be found in Ref. 15.

Results and Discussions

A wind tunnel model of an existing high speed proprotor is used as a baseline design.

The optimization for this problem is performed with a cruise velocity of 400 knots and a

rotational velocity of _ = 375 RPM (tip speed of ,191 ft/s) in axial flight. The operating

condition is 20,000 feet above sea level. In hover, a rotational velocity of fl = 570 RPM

(tip speed of 746 ft/s) is used at sea-level conditions. The high forward flight speed of

400 knots represents the target cruise value for high-speed rotorcraft. The tip speed is

reduced in the airplane mode so that the helical tip Mach number stays below Mdd (the

drag divergence Mach number). The rotor RPM in cruise (375) is selected after

performing a parametric study on the effect of forward speed and rotor RPM on

propulsive efficiency. A value of CT/(I = 0.08 is used to trim the blade in forward flight,

and a value of Cp/c_ = 0.0131 is used to trim the blade in hover. The blade radius is 12.5
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feet, and the blade is discretized into 10 segments (NSEG = 10). For the Min El3

approach 24 design variables are used (including the pseudo-design variables), and in the

K-S function approach 22 design variables are used.

Some results, obtained to date, are summarized in Table 1 and Figs 2 and 3. Table 1

presents a summary of preliminary optimization results. From Table 1 and Fig. 2 it can

be seen that it is possible to obtain substantial increases in both the hover figure of merit,

(21.7 - 28.8 percent), and the axial propulsive efficiency, flax (24.6 - 41.3 percent) using

both muhiobjective formulation techniques. It is of interest to note that the mean chord

(and correspondingly the blade solidity) is increased by 71 percent and 40 percent in the

K-S function and Min ZI3 approaches, respectively from the baseline value. Two possible

explanations exist for this large increases in the rotor solidity. First, in order to satisfy the

frequency constraint, the root chord is significantly increased to make the stiffnesses

larger, which in turn increases the solidity (see Fig. 3). Secondly, since the hover figure

of merit is being maximized, c is being increased to increase the thrust margin of the

rotor in hover.

Based on the previous experience, the above problem will be formulated with

constraints on rotor solidity. The final paper will present results of the integrated

aerodynamic/dynamic/aeroelastic optimization problem of high speed proprotors with

additional design constraints. Design trade-off studies will also be performed by varying

the flight conditions and the results of corresponding optimum blade designs will be

presented.



Table 1 Summaryof PreliminaryOptimizationResults

Reference Bounds Optimum
blade lower upper Min El3 K-S

12

Objective
Functions

FOM 0.662 0.853 0.936
0.647 0.787 0.805flax

Constraints

W (lb) 194 194 167 173
fl (perrev) 0.812 1.00 1.01 1.34

0.096 -0.001 -0.040 -1.529o;1
0.096 - -0.001 -0.040 -1.529o_2
-0.697 -0.001 -0.732 -0.169o_3
-0.697 - -0.001 -0.732 -0.169ct4
-2.431 - -0.001 -2.443 -2.502c_5
-0.170 - -0.001 -0.265 -0.073a6

131 0.150 0.001 0.200 0.006
_2 0.150 0.001 0.200 0.010

Mean chord

ce (ft) 1.48 2.07 2.52

Solidity

c_ 0.113 0.158 0.193

Trim

CT/C 0.110 0.117 0.116
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Introduction

The primary design objectives of the 450 knot high speed civil prop-rotor are improved cruise

propulsive efficiency and acceptable hover performance [I-5]. The rotor system should also be

reasonably low weight and easy to operate. The vehicle design process is multidisciplinary in

nature and involves a merging of several technical disciplines, such as aerodynamics, aeroelastic

stability analysis, dynamics, structures and acoustics. For example, as speed increases, with the

increase in rotor aerodynamic forces, the coupled motion of the prop-rotor and the wing elastic

modes become unstable causing whirl flutter instability. Individual rotor blade stability is also

important. Rotor aerodynamic performance requires ideal combination of planform, twist, airfoils

and sweep to achieve maximum cruise propulsive efficiency while maintaining sufficient lifting

capability and control properties in hover and in low-speeds. The complex rotor flow field

associated with high tip velocities further complicates the aerodynamic analysis. In the helicopter

mode, vibration can be a major source of problem and its alleviation will play an important role in

the rotor blade design process. In the area of structures, the objective is to achieve maximum

structural performance with minimum weight and cost requirements. Composite structures,

combining the stiffness flexibility and bending-torsion coupling, are ideal for providing superior

light-weight structure and Advanced Technology composite Blades (ATB) are currently being used

in the XV-15 tiltrotor aircraft. Acoustics also plays an important role, as both external and internal

noise generated by the vehicle are important design issues.

There also exists several conflicting design requirements. For example, cruise condition

demands thin blade airfoils for high drag divergence Mach number (Mdd), but thin airfoils have

1 Asst. Professor. Member, AHS, AIAA, ASME

2 Graduate Research Assistant. Student member AHS.

3 Aerospace Engineer. Member AHS

AIAA



lower valuesof Clmax(CI is the lift coefficient). Thisreducestherotor figureof merit (FOM)by

reducingCT/C(CT is thethrustcoefficientando is thethrust-weightedsolidity). Therefore,to

satisfyhoverrequirements,therotorsolidity hasto increase.This canbeeliminatedby selecting
airfoilswith highClmaxandhighL/D ratiosatrelativelylow Machnumbersandlow dragbuthigh

Mdd at high Machnumbersandlow lift. Similarly,althoughairframedragcanbealleiviatedby

sweepingtheoutboardsections,thatoperateat high Machnumbers,a sweptrotor blademustbe

aeroelasticallytailoredto minimize thebladetorsionalandbendingloads. The tradeoffbetween
airfoil thicknessand blade sweepangle thereforerequiresan indepth-studysince they both

influenceaerodynamicandaeroelasticperformancein hoverandcruise.
The application of formal optimization proceduresto tiltrotor design, therefore, seems

appropriateasit canprovidedesigntrendswhile reducingthe"man-in-the-loop"typeof iterations.

However, it is essentialto integratethenecessarydisciplinarycouplingswithin theoptimization

process.Someinitial investigationsaredueto ChattopadhayayandNarayan[7]. Thepurposeof

theproposedpaperis to enhancethestateof theart bydevelopingamultidisciplinaryoptimization

procedurefor highspeedcivil prop-rotors,including thecouplingsof aerodynamicperformance,

aeroelasticstabilityandstructuresin bothhighspeedcruiseandhoverflight conditions.

Problem Statement

L=

An optimization procedure is developed for the design of high speed prop-rotors to be used in

civil tiltrotor applications. The goal is to couple aerodynamic performance, aeroelastic stability and

structural design requirements inside a closed-loop optimization procedure. The objective is to

minimize the gross weight and maximize the propulsive efficiency in high speed cruise.

Constraints are imposed on the rotor aeroelastic stability in both hover and cruise and rotor figure
A

of merit in hover. Both structural and aerodynamic design variables are used. .

Multiobjective Optimization Formulation

Due to the fact that the optimization problem involves more than one design objective, the

objective function formulation is complicated. In most of the existing work, the individual

objective functions are combined using weight factors in a linear fashion [8]. Such methods are

judgmental as the answer depends upon the weight factors which are often hard to justify. Also, in

a rotary wing design environment, where complex nonlinear functions are involved, such methods

are not well posed. Therefore an investigation is cuurently under way to evaluate the best

formulation procedure appropriate for such applications. A Kreisselmeier-Steinhauser (K-S)

function approach is used in this paper and a brief description of the approach follows.



Kreisselmeier-Steinhauser (K-S) function avproach: The optimization problem can be

stated as follows.

Minimize Fk(q)n) k = 1, 2 .... , NOBJ

n = 1,2 ..... NDV

subject to

gj(q0n)-< 0 j = 1, 2 ..... NCON

q0nL -<q_n -< q_nu

(objective functions)

(inequality constraints)

(side constraints)

where NOBJ denotes the number of objective functions, NDV is the number of design variables

and NCON is the total number of constraints. The subscripts L and U represent lower and upper

bounds, respectively, on the design variable q0. Using the K-S function approach, the first step in

formulating the objective function in this approach involves transformation of the original objective

functions into reduced objective functions [9]. These reduced objective functions are of the form

* Fk(_)
- - 1 - gmax -- 0 k = 1, 2 ..... NOBJ (1)Fk(q_) Fko

where Fko are the values of Fk calculated at the beginning of each iteration. The quantity gmax is

the value of the largest constraint corresponding to the design variable vector ¢p and assumed to be

constant for this iteration. Because these reduced objective functions are analogous to the previous

constraints, a new constraint vector gj(q0), j = 1, 2 .... , M, is introduced, where M = NCON +

NOBJ. The new objective function to be minimized is then defined, using the K-S function as

follows.

F(q_) = gmax + 1 loge _e 9(gm(q_) - gmax)

9 m=l
(2)

where the multiplier 9 is analogous to a draw-down factor controlling the distance from the surface

of the K-S objective function to the surface of the maximum function value. The design variable

vector q0is identical to that used in the Global Criteria approach. The method was found to provide

faster convergence by Chattopadhyay and McCarthy [10] in a rotor blade optimization problem.
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Optimization Implementation

The basic algorithm used is the method of feasible directions as implemented in the

optimization program CONMIN [1 I]. The optimization is to be coupled with a comprehensive

analysis code. The blade is to be trimmed at each step of design optimization such that each

feasible design (i.e., a design that satisfies all constraints) produced by the optimizer represents a

trimmed configuration. Since the optimization process requires many evaluations of the objective

function and constraints before an optimum design is obtained, the process can be very expensive

if full analyses are made for each function evaluation. The objective function and constraints are

therefore approximated by an approximation technique which is described below.

Approximation Technique

A two-point exponential approximation [12] is proposed for approximation of the objective

functions and the constraints. This technique takes its name from the fact that the exponent used in

the expansion is based upon gradient information from the previous design point. This technique

is formulated as follows.

NDV ,-

'_]f On 1 pn lOOn aF(_ O)= F(,I,o)+Z_,Lk,oo) Pn DOn (3)

11=1

where

 ooJ -,;t

[k )j
Pn= (a_ln,] + 1.0 (4)

log

The quantity O] refers to the design variable vector from the previous iteration and the quantity q:'O

denotes the current design vector. A similar expression is obtained for the constraint vector. The

exponent Pn can be considered as a "goodness of fit" parameter, which explicitly determines the

trade-offs between traditional and reciprocal Taylor series based expansions (also known as a



hybrid approximationtechnique).It canbeseenfromEqn.4 thatin the limiting caseof Pn-" 1, the

expansion is identical to the traditional first order Taylor series, and when Pn = -1, the two-point

exponential approximation equates to the reciprocal expansion form. The exponent is then defined

to lie within this interval, such that if Pn > 1, it is set identically equal to one, and if Pn < - I, it is set

equal to-1.

Analysis

The aerodynamic, dynamic and aeroelastic analysis is performed using the comprehensive analysis

code CAMRAD/JA [13]. The structural analysis is performed using a code developed in-house.

Blade Modeling

The formulation and modeling assumptions used in the integrated optimization problem are

described in this section.

Aerodynamic Model

The aerodynamic lifting line offset, from reference axis, is based on a cubic model (Figure i)

with in-plane curvature as follows.

Xac@) = e0+el,_ + e2_, 2 + e3.v 3 (5)

where e0, el, e2 and e3 are constants that determine the curvature and ;¢ is the nondimensional

radial location. These curvature parameters, ei (i = 0 - 3), are defined such that

l eil _<_i (6)

where _i are prescribed bounds for the curvature parameters. These bounds allow for either

forward or backward in-plane curvature. When these parameters are equal to zero, the lifting line

will be a straight line. Based upon this quadratic lifting line, the sweep variation, in degrees, is

calculated as follows.

A@) = 180 (el + 2e2_ + 3e3._' 2)/re (7)



- - ___T F _ Y

lifting line

Figure 1 Blade model

The twist angle of attack, 0@), is defined to have the following spanwise variation.

0@) = Oiaeal+ Operturbation (8)

where

0ideal = tan-l(-_y )

0perturbation@) = 01 (2_ - 0.75) + 02 (5' - 0.75) 2 + 03 (_ - 0.75) 3

(9)

(10)

and Voo represent the free stream velocity. It is important to note that twist plays an important role

in both cruise and hover flight conditions and at high Mach numbers the twist has a significant

effect on the cruise efficiency. Therefore, the above cubic distribution is chosen to provide the

optimizer with more flexibility by using the coefficients 01 - 03 as design variables.

Structural Model

The load carrying structural member is a single cell composite box beam (Figure 2).



h = 10%c(y)

_ _b=40%c(y)

z,w _ t 2 / h

_'_x,u I._ b __1
I I

Figure 2 Single cell composite box beam

The beam is modeled with unequal vertical and horizontal wall thicknesses and the beam cross

section is described by stretching, bending, twisting, shearing and torsion related warping. The

box beam wails are made of layers of laminated orthotropic composite plies. A symmetric ply

arrangement of (90°/45°/0°/-45°)s is used for the horizontal walls and a symmetric arrangement of

(0°/+45°/0°)sis used for the vertical walls. The spanwise thickness distribution, t(y), for each ply is

based on the following spanwise distribution.

1 1
t(y) = t o + t]y + t 2 _--+ t3 (11)

y _"

where to - t3 are coefficients that determine the thickness distribution. The total thickness of an

individual ply with orientation _g is calculated as follows

tv@) = nvt@) (12)

where t_ is the total thickness and n_ is the total number of plies with orientation _'. The

stiffnesses, as required by CAMRAD/JA, are calculated based on the formulation developed by

Smith and Chopra [14].

Non structural tuning weights,w @), are placed at the leading edge and the following cubic

spanwise distribution is assumed.

w @) = w 0 + wly + w2)/2 + w3 _, 3 (13)



where w0 - w3 are the coefficients describing the weight distribution. The total blade weight

comprises the weight of the box beam, the tuning weights, the skin and the honeycomb weight

(used in the trailing edge section).

Objective function, design variables and constraints: The objective function to be

minimized is the total weight which comprises the drive system weight and the total weight of the

three blades as shown below.

W = Wdriv e + Wblad e (14)

where

Wdriv e = Wengine + Wtran s + Wfuel (15)

and the individual weights are based upon the following empirical formulae.

Wengin e = rlef2(SHP)(0.12) + 175 (16)

Wtran s = 300(1.1 SHP ]0.8
RPMJ

Wfuel = 1.5(SFC)(SHP)

(17)

(18)

In the above equations, SFC is the specific fuel consumption, tie _ is an empirical efficiency

parameter, RPM is the rotational velocity of the rotor and SHP is the shaft horse power. The blade

weight, Wblad e, includes the box beam, the skin, the honeycomb and the non structural or tuning

weights, placed at the leading edge. Both structural and aerodynamic design variables are used

during the optimization. Following is a summary of the design variables.

(i) thickness distribution coefficients, tl - t3.

(ii) number of plies with orientation ¢, n¢i (i = 1-5)

(iii) non structural weight distribution coefficients, w0 - w3

(iv) coefficients of sweep distribution, e 0- _3

(iv) coefficients of twist distribution, t91- 193

9



To ensureaeroelasiticstabilityin bothhoverandhighspeedcruise,constraintsareimposedon the
realpartof thestabilityroot asfollows.

OCki < 0 k = 1, 2 ..... NMOD (19)

i = 1, 2 (I - hover, 2 - axial)

where NMOD represents the total number of modes constrained. Also a lower bound constraint is

imposed on the hover figure of merit FM as follows.

FM > FMallow (20)

where FMallow is the required figure of merit in hover.

Results

Some preliminary results obtained are presented in this section. The objective function

used is minimizing the blade weight increment from reference to the composite model. Cons_'aints

are imposed on the rotor aeroelastic stability in hover and cruise. The rotor used, as a reference, is

the XV-15 Advanced Technology Blade which is three bladed rotor with a rigid hub and zero

sweep. The blade radius is 12.5 feet. The rotor was designed for a cruise velocity of 300 knots.

The optimization is performed with both multi and single objective function formulation

techniques. The program CAMRAD/JA is used for the aerodynamic, dynamic and aeroelastic

analysis. The blade is discretized into 51 segments structural stations and 21 aerodynamic stations.

Using a wind tunnel trim option, in each case, the optimum rotor is trimmed to the same CT as the

baseline or the reference rotor such that the same lifting capability is maintained after optimization.

The optimization is performed at a cruise velocity of 400 knots at an altitude of 25,000 feet above

sea level. In hover, a rotational velocity of _2 = 570 RPM (tip speed of 746 ft/s) is used at sea-

level conditions. An uniform inflow model is used for both hover and axial analysis. In hover the

rotor is trimmed to a design CT/cY = 0.13 and an L/D value of 5.3 is used in cruise. The material

used for the composite box beam is T300/5208 Graphite Epoxy with a volume fraction of 70

percent. The aeroelastic stability of the reference blade is significantly improved as indicated in

Figs. 4 and 5 for hover and and cruise, respectively.

The final paper will contain results of the comprehensive optimization problem using total

vehicle weight and high speed cruise propulsive efficiency as objective functions. The results of

10



the optimization, performed at a cruise velocity of 400 knots, will be compared against the baseline

XV-15 ATB blade which has never been tested at such speeds.
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Objectives

The objective of this research is to develop optimization procedures to provide design trends in

high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed

loop optimization process. The procedures involve the consideration of blade aeroelastic,

aerodynamic performance, structural and dynamic design requirements. Further, since the design

involves consideration of several different objectives, multiobjective function formulation

techniques are developed.

Accomplishments

Multiobjective Formulation

This goal of the first part of this study is to develop multiobjective optimization formulation

procedures for application in multidisciplinary design problems. Due to the fact that some of the

optimization problems involve more than one design objective, the objective function formulation

is more complicated. In most of the existing work, the individual objective functions are combined

using weight factors in a linear fashion. Such methods are judgmentaI as the answer depends upon

the weight factors which are often hard to justify. Two multiobjective function formulation

techniques have been investigated and implemented. They are the Minimum Sum [3 (Min El3) [1]

and the Kreisselmeier-Steinhauser (K-S) function [2] approaches.

Optimization Implementation

A nonlinear programming method, as implemented in the numerical code CONMIN [3], is

used for the optimization. CONMIN uses the method of feasible directions. In the optimization

process, many evaluations of the objective function and constraints are required before



convergence to an optimum design is obtained. Therefore, the process can become

computationally expensive if exact analysesare performed for every function evaluation.

Thereforethe useof an approximateanalysisis implementedin the calculations of both the
objectivefunctionsandtheconstraints.The approximateanalysisusedfor this study is thetwo

pointexponentialproceduredevelopedbyFadelet al. [4]

Optimization Problems

Severalmultidisciplinaryoptimizationproblemsinvolvingthecouplingof necessarydisciplines

thatarecrucial for tilting prop-rotordesignhavebeendeveloped.For example,the propulsive
efficiencyin highspeedcruise(400knots)andthehoverfigureof merithavebeensimultaneously
maximizedusingboththeMin 213andK-S function approaches. Constraints are imposed on the

first natural frequency in hover and on the total blade weight. Both aerodynamic and structural

design variables are used [5,6]. Next, an integrated structural and aeroelastic optimization

procedure using a composite box beam model as the structural load carrying member has also been

accomplished [7]. Other work that has been completed includes a minimum rotor drive system

weight optimization and a minimum blade weight optimization.
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