NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Lunar scout: A Project Artemis proposalThe results of a student project to design a lunar lander in the context of a specifically defined mission are presented. The Lunar Scout will be launched from Cape Canaveral, Florida onboard a Delta II launch vehicle. The Delta II will carry the lander and its payload to a 1367 km orbit. Once it reaches that altitude, a STAR 48A solid rocket motor will kick the spacecraft into a lunar trajectory. After burnout of the lunar insertion motor, it will be jettisoned from the spacecraft. The flight from the earth to the moon will take approximately 106.4 hours. During this time the battery, which was fully charged prior to launch, will provide all power to the spacecraft. Every hour, the spacecraft will use its sun sensors and star trackers to update its position, maintain some stabilization and relay it back to earth using the dipole antennas. At the start of its lunar trajectory, the spacecraft will fire one of its 1.5 N thrusters to spin in at a very small rate. The main reason for this is to prevent one side of the spacecraft from overheating in the sun. When the spacecraft nears the moon, it will orient itself for the main retro burn. At an altitude of 200 km, a 4400 N bipropellant liquid thruster will ignite to slow the spacecraft. During the burn, the radar altimeter will be turned on to guide the spacecraft. The main retro rocket will slow the lander to 10 m/s at an approximate altitude of 40 km above the moon. From there, the space craft will use four 4.5 N hydrazine vertical thrusters and 1.5 N horizontal thrusters to guide the spacecraft to a soft landing. Once on the ground, the lander will shutoff the radar and attitude control systems. After the debris from the impact has settled, the six solar panels will be deployed to begin recharging the batteries and to power up the payload. The feedhorn antenna will then rotate to fix itself on the earth. Once it moves, it will stay in that position for the spacecraft's lifetime. The payload will then be activated to begin the lunar mission.
Document ID
19930008978
Document Type
Contractor Report (CR)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Subject Category
SPACECRAFT DESIGN, TESTING AND PERFORMANCE
Report/Patent Number
NAS 1.26:192076
NASA-CR-192076
Funding Number(s)
CONTRACT_GRANT: NASW-4435
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 19930008978.pdf STI