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Fast-Transmittance Algorithm

• Monochromatic Calculations

- GENLN2

- 1992 AFGL line parameters, line mixing, x-function in far-wing, II20 continuum,

etc.

- All major, minor absorbers included

- 100 layers (chosen to reach 0.2K accuracy)

- Validation using laboratory spectra, HIS spectra (ITRA), and ATMOS

• Determination of Fast-Transmittance Parameters

- 18 profiles for fast transmittance parameter regression

- Monochromatic transmittances interpolated from a 3 temperature monchromatic

transmittance database

- LORAL instrument function (long wings)

• Regression Errors

- Vast majority of channel errors are less than 0.1K RMS

- 95% of channels have errors of less than 0.3K RMS

99% of channels have errors of less than 0.5K RMS

- Largest error is 0.9K RMS

- Most large errors due to H20

- Errors <0.2K in temperature sounding channels

- Comparison to Joel Susskind's fast-transmittance performance (67 layers)

• Susskind's errors are 2X lower for temperature channels, but both algorithms

give errors sufficiently low enough for AIRS

• Susskind's H20 channel errors are up to 5X lower than ours, we must improve

these channels
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* Our absolute errors are significantly lower due to more up-to-date spectroscopy

- Why are our results different?

1. The standard deviation of our regression profiles is approximately 15-50% larger
than Susskind's

2. We used the LORAL (long-wing) instrument function, Susskind used a trape-

zoidal function. Comparisons of regressions for the fast-transmittance parame-

ters in H20 regions using both instrument functions showed that our use of the

LORAL instrument function was the main cause of our larger errors. The LO-
RAL instrument function can increase the fit standard deviation from the 0.2K

level to the 0.6K+ level. With a trapezoid function our RMS errors are only

about 2X higher than Susskind's

• Future Work

- Improve H20 fast-transmittance algorithm

- Finish generation of ll temperature monochromatic database

- Include temperature dependence of H20

- Generate slant path fast-transmittance parameters

- Continue GENLN2 and spectroscopy validation using laboratory data, HIS and AT-

MOS spectra

* CO2 far-wing under study using recent lab spectra recorded by John Johns at

NRC-Ottawa both at 4.3 and 15 #m

, Plan to record tI20 continuum between 1200-1400 cm -1 at NIST in about 1 year
when their new 2-meter cell is available

. Participate in ITRA comparisons using HIS spectra

* Possibly look at more ATMOS spectra

- Examine utility of neural-nets for forward problem

• Recommendation

Start using our 100 layer fast-transmittance algorithm in AIRS simulations

- We need feedback about problems

- Errors of up to 5+K possible with present (Susskind's) 67 layer algorithm parameters,

equivalent to 50+ mbar pressure shifts

- Our algorithm is much more accurate than the 67 layer algorithm

• We used the AFGL 1992 line parameter tape (some CO2 band strengths have

changed by up to 40% for example)
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, Line mixing is in our codes, which is a 50% effect

• Our line-by-line code has undergone extensive validation

• We plan to validate our fast-tranmittance codes using HIS spectra (i.e. we plan

to generate fast-transmittance parameters for HIS with the computer codes and

monochromatic database used for AIRS)

A clear separation of retrieval algorithm developers and development of the fast-

transmittance code may result in more realistic simulation tests
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CO Retrieval Algorithm

• Simulations show that AIRS can:

- Detect natural variability in background CO amount under some conditions in a 50
x 50 km FOV

- Easily detect polluted boundary layer

• Uncertain if CO profiles can be retrieved

• Retrieval technique

- Cross-spectral density (CSD), borrowed from signal processing literature. Form

X, = B(u, T) catc- B(u, T) c'ac+'_%oo (1)

and

Y_, = B(u, T) calc - B(u, T) measu'ed (2)

where B(u, t) is the brightness temperature, u the frequency, and T the tempera-

ture. The +'_% in B(u, T) c'_c+'_%c° indicates that this calculation of the brightness

temperature should be for an atmosphere with a perturbed amount of CO. This

perturbation can have a relatively arbitrary magnitude, its shape should follow the

expected variations in the CO profile. Cut X and V into k (possibly overlapping)

sections, xk and Yk, of length m. Hanning window xk, Yk to produce x h and yh.

Then CSD is given by

CSD = _ FFT(x h) * FFT(yh) ". (3)
k

- Enables large reduction of noise since CO signal is sinusoidal

- Noise is reduced close to the level of systematic errors

• Tested sensitivity of retrieval to:

- Uncertainties in temperature, water vapor profile

- Undetected cloud fraction (3%)

- Ground-air temperature contrast

- Uncertainty in ground-air temperature contrast

• AIRS requirements for CO measurement

- Channels between 2080 and 2200 cm -I, 65 channels or 130 pixels

4 September 19, 1992



L. STROW, UNIV. OF MD. AIRS SEPT. 92 STM

- Cloud cleared radiances

- Surface emissivity-"temperature" product near 2100 cm -1

- Most standard AIRS products (temperature, water, ...)

• Justification

- CO is a key component in tropospheric chemistry. Increasing CO may lead to a

decrease in OH, reducing the atmosphere's ability to scavenge other trace gases

- An AIRS measurement of CO would provide a backup to MOPPIT should it fail

- A CO measurement based on AIRS would probably be able to produce a much longer

record of changing CO compared to MOPPIT or TES

- AIRS measurements of CO may potentially have lower systematic errors since any

measurement of CO is dependent on a good knowledge of the atmospheric state

- Incremental cost of CO measurement by AIRS is small
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Fast Transmittance Error Spectrum
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Histogram of Fast-Transmittance Fit Errors
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Temperature Profiles Used
in Fast Transmittance Regression
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Water Vapor Profiles Used
in Fast Transmittance Regression
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Fast Transmittance Error Spectrum
(Blowup)

280 -

270 -

260-
133

g 250

>_ 240
<

230

220
I I I I I I I

L

o

U.I

03

n"

0,4--

0.3--

0.2--

0.1-

0,0-

I

62O
I I I I I

640 660 680 700 720

Wavenumber (cm -1)

I

740 760



250 -

245 -

_- 240-

&
235

< 230

225

Fast Transmittance Error Spectrum
(Blowup)

L /tr"_

/
I I I I I

/V

0,8--

,,,i

0.6-

0.4

rr 0.2

--LORAL

I I I I

1640 1660 1680 1700

Wavenumber (cm )

I

1720



Fast Transmittance Error Spectrum
(Blowup)
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RMS Brightness Temperature Differences
for LORAL (far-wing) vs Trapezoidal

Instrument Functions
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Fast Transmittance Errors
Using 3 Versus 11 Monochromatic

Temperature Interpolations
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