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Fast—Transmittance Algorithm
e Monochromatic Calculations
— GENLN2
— 1992 AFGL line parameters, line mixing, x-function in far-wing, H2O continuum,
etc.
— All major, minor absorbers included

— 100 layers (chosen to reach 0.2K accuracy)
— Validation using laboratory spectra, HIS spectra (ITRA), and ATMOS

e Determination of Fast—Transmittance Parameters

— 18 profiles for fast transmittance parameter regression

— Monochromatic transmittances interpolated from a 3 temperature monchromatic
transmittance database

— LORAL instrument function (long wings)

e Regression Errors

— Vast majority of channel errors are less than 0.1K RMS

— 95% of channels have errors of less than 0.3K RMS
99% of channels have errors of less than 0.5K RMS
— Largest error is 0.9K RMS
— Most large errors due to H2O
— Errors <0.2K in temperature sounding channels
— Comparison to Joel Susskind’s fast—transmittance performance (67 layers)
+ Susskind’s errors are 2X lower for temperature channels, but both algorithms

give errors sufficiently low enough for AIRS
* Susskind’s HoO channel errors are up to 5X lower than ours, we must improve

these channels
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* Qur absolute errors are significantly lower due to more up-to—date spectroscopy

— Why are our results different?

1. The standard deviation of our regression profiles is approximately 15-50% larger
than Susskind’s

2. We used the LORAL (long-wing) instrument function, Susskind used a trape-
zoidal function. Comparisons of regressions for the fast—transmittance parame-
ters in HoO regions using both instrument functions showed that our use of the
LORAL instrument function was the main cause of our larger errors. The LO-
RAL instrument function can increase the fit standard deviation from the 0.2K
level to the 0.6K+ level. With a trapezoid function our RMS errors are only
about 2X higher than Susskind’s

o Future Work

— Improve HyO fast-transmittance algorithm
— Finish generation of 11 temperature monochromatic database
— Include temperature dependence of HoO
Generate slant path fast-transmittance parameters
— Continue GENLN2 and spectroscopy validation using laboratory data, HIS and AT-
MOS spectra
* CO; far-wing under study using recent lab spectra recorded by John Johns at
NRC-Ottawa both at 4.3 and 15 um
* Plan to record HyO continuum between 1200-1400 cm~! at NIST in about 1 year
when their new 2—-meter cell is available
* Participate in ITRA comparisons using HIS spectra
* Possibly look at more ATMOS spectra

— Examine utility of neural-nets for forward problem

¢ Recommendation
Start using our 100 layer fast—transmittance algorithm in AIRS simulations

— We need feedback about problems

— Errors of up to 5+IC possible with present (Susskind’s) 67 layer algorithm parameters,
equivalent to 50+ mbar pressure shifts

— Qur algorithm is much more accurate than the 67 layer algorithm

* We used the AFGL 1992 line parameter tape (some CO, band strengths have
changed by up to 40% for example)
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+ Line mixing is in our codes, which is a 50% effect
*+ Our line-by-line code has undergone extensive validation
*+ We plan to validate our fast—tranmittance codes using HIS spectra (i.e. we plan
to generate fast-transmittance parameters for HIS with the computer codes and
monochromatic database used for AIRS)
— A clear separation of retrieval algorithm developers and development of the fast—
transmittance code may result in more realistic simulation tests

3 September 19, 1992



L. Strow, UNIV. OF MD. AIRS SepT. 92 STM

CO Retrieval Algorithm
e Simulations show that AIRS can:

— Detect natural variability in background CO amount under some conditions in a 50
x 50 km FOV

— Easily detect polluted boundary layer
e Uncertain if CO profiles can be retrieved
e Retrieval technique

— Cross-spectral density (CSD), borrowed from signal processing literature. Form

X, = B(s, T)™ — B(y, T)eiet1% 0 ()
and
Yu — B(l/, T)calc __ B(U, T)measured (2)

where B(v,t) is the brightness temperature, v the frequency, and T the tempera-
ture. The +1% in B(v, T)°%¥<t1%CO jndicates that this calculation of the brightness
temperature should be for an atmosphere with a perturbed amount of CO. This
perturbation can have a relatively arbitrary magnitude, its shape should follow the
expected variations in the CO profile. Cut X and Y into k (possibly overlapping)
sections, xx and yg, of length m. Hanning window xi, yx to produce xﬁ and yz.
Then C'SD is given by

CSD =Y FFT(x})* FFT(y})*. (3)
k

— Enables large reduction of noise since CO signal is sinusoidal

— Noise is reduced close to the level of systematic errors
e Tested sensitivity of retrieval to:

— Uncertainties in temperature, water vapor profile
— Undetected cloud fraction (3%)
— Ground-—air temperature contrast

— Uncertainty in ground—-air temperature contrast
o AIRS requirements for CO measurement

— Channels between 2080 and 2200 em~1, 65 channels or 130 pixels
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— Cloud cleared radiances
— Surface emissivity-“temperature” product near 2100 ecm™!
— Most standard AIRS products (temperature, water, ...)

e Justification
— CO is a key component in tropospheric chemistry. Increasing CO may lead to a
decrease in OH, reducing the atmosphere’s ability to scavenge other trace gases
— An AIRS measurement of CO would provide a backup to MOPPIT should it fail

— A CO measurement based on AIRS would probably be able to produce a much longer
record of changing CO compared to MOPPIT or TES

AIRS measurements of CO may potentially have lower systematic errors since any
measurement of CO is dependent on a good knowledge of the atmospheric state

Incremental cost of CO measurement by AIRS is small
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Histogram of Fast-Transmittance Fit Errors
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Temperature Profiles Used
in Fast Transmittance Regression
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Fast Transmittance Error Spectrum
(Blowup)

270 4

Average B(T)
N N
9) (0))
o o
I 1

N

1N

o
]

—LORAL
—Trapezoid

RMS Error (K)
O O O O O
N W s o
1 L 1 1
\__

o
-
|

Q
o

] ] l { |
1840 1860 1880 1900 1920
Wavenumber (cm")



RMS Brightness Temperature Differences

for LORAL (far-wing) vs Trapezoidal
Instrument Functions
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Fast Transmittance Errors
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Fig. 1. AIRS spectrum in CO spectral region.
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Normalized Weighting Function
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Fig. 5. Effect of temperature contrast on CO signal. Constrast is varied from
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Fig. 6. CSD for low altitude increase in CO. Fig. 7. CSD for 10% increase in CO over
whole profile.
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Fig. 10. Effects of systematic errors on CSD.
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