TRANSPORTATION AND PLATFORMS PERSPECTIVE

Gary L. Bennett
National Aeronautics and Space Administration
Washington, DC
OFFICE OF AERONAUTICS AND SPACE TECHNOLOGY

ASSOCIATE ADMINISTRATOR
Richard H. Petersen
Deputy Associate Administrator
Robert Rosen
Deputy Associate Administrator (Policy)
TBD
Chief Engineer
Leonard A. Harris

RESOURCES AND MANAGEMENT SYSTEMS
Glenn C. Fuller

HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS
Lee S. Holcomb

AERONAUTICS
Cecil C. Rosen, III
Subsonic Transportation
Robert E. Whitehead
High-Speed Research
Louis J. Williams
High Performance Aircraft and Flight Projects
Vacant
Aeronautics Research
Karl N. Hessenius

INSTITUTIONS
Richard A. Reeves
Information Systems
F. John Sansom
Facilities
L. Wayne McKinney

SPACE TECHNOLOGY
Gregory M. Reck
Space Science and Operations
Wayne R. Hudson
Transportation and Platforms
Earl E. VanLandingham
Space Research
Samuel L. Vennert
Program Experiments Office
Jack Levine

NATIONAL AERO-SPACE PLANE
Vincent L. Rausch
NASP Inter-Agency Office
Ming H. Tang
NASP Joint Program Office
James P. Arlingtton
Plana
TBD

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

SPACE RESEARCH & TECHNOLOGY

CIVIL SPACE TECHNOLOGY INITIATIVE

DISCIPLINE RESEARCH
Aerothermodynamics
Space Energy Conversion
Propulsion
Materials & Structures
Information and Controls
Human Support
Space Communications

UNIVERSITY PROGRAMS

SPACE FLIGHT R&T

SYSTEMS ANALYSIS

SPACE SCIENCE TECHNOLOGY
Science Sensing
Observatory Systems
Science Information
In-Situ Science
Technology Flight Expts.

PLANETARY SURFACE TECHNOLOGY
Surface Systems
Human Support
Technology Flight Expts.

TRANSPORTATION TECHNOLOGY
ETO Transportation
Space Transportation
Technology Flight Expts.

SPACE PLATFORMS TECHNOLOGY
Earth-Observing Platforms
Space Stations
Deep-Space Platforms
Technology Flight Expts.

OPERATIONS TECHNOLOGY
Automation & Robotics
Infrastructure Operations
Info. & Communications
Technology Flight Expts.
SPACE R&T MISSION STATEMENT

OAST SHALL PROVIDE TECHNOLOGY FOR FUTURE CIVIL SPACE MISSIONS AND PROVIDE A BASE OF RESEARCH AND TECHNOLOGY CAPABILITIES TO SERVE ALL NATIONAL SPACE GOALS

- IDENTIFY, DEVELOP, VALIDATE AND TRANSFER TECHNOLOGY TO:
 - INCREASE MISSION SAFETY AND RELIABILITY
 - REDUCE PROGRAM DEVELOPMENT AND OPERATIONS COST
 - ENHANCE MISSION PERFORMANCE
 - ENABLE NEW MISSIONS
- PROVIDE THE CAPABILITY TO:
 - ADVANCE TECHNOLOGY IN CRITICAL DISCIPLINES
 - RESPOND TO UNANTICIPATED MISSION NEEDS
INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

RESEARCH & TECHNOLOGY STRATEGY

• 5-YEAR FORECAST INCLUDES

'93 THRU '97:
- COMPLETION OF INITIAL SSF
- LIMITED SOME SHUTTLE IMPROVEMENTS
- NEW STARTS
- SELECTED SPACE SCIENCE STARTS
- NLS DEVELOPMENT
- INITIAL SEI ARCHITECTURE SELECTION
- EVOLVING GEO COMMERCIAL COMMSATS
- MINOR UPGRADES OF COMMERCIAL ELVS

FLIGHT PROGRAMS FORECAST

• 10-YEAR FORECAST INCLUDES

'98 THRU '03:
- SSF EVOLUTION/INFRASTRUCTURE
- FINAL SHUTTLE ENHANCEMENTS
- NEW STARTS
- MULTIPLE ADVANCED LEO EOS PLATFORMS/FULL EOSDIS
- TO BE LAUNCHED
- MULTIPLE SPACE SCIENCE STARTS
- IN 2003 THRU 2010
- NLS OPERATIONS/EVOLUTION
- EVOLVING LAUNCH/OPERATIONS FACILITIES
- INITIAL SEI/LUNAR OUTPOST START
- DSN EVOLUTION (KA-BAND COMMUNICATIONS)
- NEW GEO COMMERCIAL COMMSATS
- NEW COMMERCIAL ELVS

• 20-YEAR FORECAST INCLUDES

'04 THRU '11:
- OPTIONS FOR NEW
- SSF-MARS EVOLUTION
- MULTIPLE OPTIONS FOR NEW
- BEGINNING OF AMS/SPS DEVELOPMENT
- STARTS TO BE
- MULTIPLE SPACE SCIENCE STARTS
- LAUNCHED IN
- DSN EVOLUTION (OPTICAL COMM)
- 2009 THRU 2020
- INITIAL MARS HLTV DEVELOPMENT
- EVOLVING LUNAR SYSTEMS
- MARS SEI ARCHITECTURE CHOSEN
- LARGE GEO COMMSATS
- NEW COMMERCIAL ELVS

SPACE RESEARCH & TECHNOLOGY PROGRAM

<table>
<thead>
<tr>
<th>Category</th>
<th>1992 Experiments</th>
<th>1993 Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSPORTATION</td>
<td>14%</td>
<td>13%</td>
</tr>
<tr>
<td>SPACE SCIENCE</td>
<td>5%</td>
<td>7%</td>
</tr>
<tr>
<td>SPACE PLATFORMS</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>PLANETARY SURFACE</td>
<td>11%</td>
<td>11%</td>
</tr>
<tr>
<td>R&T BASE</td>
<td>45%</td>
<td>43%</td>
</tr>
<tr>
<td>OPERATIONS</td>
<td>10%</td>
<td>9%</td>
</tr>
</tbody>
</table>

FY 1992: $309.3M
FY 1993: $332.0M
TRANSPORTATION TECHNOLOGY

PROVIDE TECHNOLOGIES THAT SUBSTANTIALLY INCREASE OPERABILITY, IMPROVE RELIABILITY, PROVIDE NEW CAPABILITIES, WHILE REDUCING LIFE CYCLE COSTS

- ENHANCE SAFETY, RELIABILITY, AND SERVICEABILITY OF CURRENT SPACE SHUTTLE
- PROVIDE TECHNOLOGY OPTIONS FOR NEW MANNED SYSTEMS THAT COMPLEMENT THE SHUTTLE AND ENABLE NEXT GENERATION VEHICLES WITH RAPID TURNAROUND AND LOW OPERATIONAL COSTS
- SUPPORT DEVELOPMENT OF ROBUST, LOW-COST HEAVY LIFT LAUNCH VEHICLES
- DEVELOP AND TRANSFER LOW-COST TECHNOLOGY TO SUPPORT COMMERCIAL ELV's AND UPPER STAGES
- IDENTIFY AND DEVELOP HIGH LEVERAGE TECHNOLOGIES FOR IN-SPACE TRANSPORTATION, INCLUDING NUCLEAR PROPULSION, THAT WILL ENABLE NEW CLASSES OF SCIENCE AND EXPLORATION MISSIONS

TRANSPORTATION TECHNOLOGY

SHUTTLE ENHANCEMENT

- SSME Improvements
- Durable Thermal Protection Systems
- Improved Health Monitoring
- Light Structural Alloys
- Lidar-Based Adaptive Guidance & Control

NEXT GENERATION MANNED TRANSPORTS

- Configuration Assessment
- High Frequency, High Voltage Power Management/Distribution Systems
- LOX/LH2 Propellant for OMS/RCS
- Maintenance-free TPS
- Advanced Reusable Propulsion
- GPS-Based Autonomous GN&C
- Composites & Advanced Lightweight Metals
- Vehicle-Level Health Management for Autonomous Operations

HEAVY-LIFT CAPABILITY

- Advanced Fabrication (Forming & Joining)
- STME Improvements
- Systems & Components for Electric Actuators
- On-Vehicle Adaptive Guidance & Control
- Health Monitoring for Safe Operations
- AL-Li Cryo Tanks

LOW-COST COMMERCIAL

- Alternate Booster Concepts
- Advanced Cryogenic Upper Stage Engines
- Low-Cost Fab/Automated Processes/NDE
- Continuous Forging Processes for Cryogenic Tanks
- Fault-Tolerant, Redundant Avionics

IN-SPACE TRANSPORT

- High-Power Nuclear Thermal & Electric Propulsion
- High Performance, Multiple Use Cryogenic Chemical Engine
- Highly Reliable, Autonomous Avionics
- Low Mass, Space Durable Materials
- Long-Term, Low-Loss Management of Cryogenic Hydrogen
- Autonomous Rendezvous, Docking & Landing
- Aeroassist Technologies
TRANSPORTATION TECHNOLOGY MISSION MODEL

TRANSPORTATION MILESTONES

SHUTTLE ENHANCEMENT

SHUTTLE ENHANCEMENT

- OEX Flight Data
 - Analysis Complete

- Vacuum Plasma Spray Treat Chamber Demo in TTS

NEXT GENERATION MANNED TRANSPORTS

- SSTO Assessment Complete
- Identify Preferred Propulsion Concepts
- Complete Aero-Aerodynamic Config Analysis
- Select Candidate Concept

HEAVY LIFT CAPABILITY

- Integrated AIN, CASE, APS Demo
- Cryogenic Fluid Film Bearing Tech.
- Complete CFD Tools for Turbine Design
- Verify System for ProFlight Checkout and FullPower Shutdown

LOW-COST COMMERCIAL TRANSPORT

- Cooperative Industry/Government Program Defined
- Booster Engine Concept Verification
- Advanced VH-M Demonstrated

SPACE TRANSFER VEHICLE/LANDERS

- Broadband Cryo Engine Testbed
- Select Nuclear Thermal & Electric Concepts
- Ultra-Reliable Avionics Architecture Defined
SPACE PLATFORMS TECHNOLOGY

DEVELOP TECHNOLOGIES TO INCREASE ON-ORBIT MISSION EFFICIENCY AND DECREASE LIFE CYCLE COSTS FOR FUTURE MANNED AND UNMANNED SCIENCE, EXPLORATION & COMMERCIAL MISSIONS.

- DEVELOP TECHNOLOGIES THAT WILL DECREASE LAUNCH WEIGHT AND INCREASE THE EFFICIENCY OF SPACE PLATFORM FUNCTIONAL CAPABILITIES
- DEVELOP TECHNOLOGIES THAT WILL INCREASE HUMAN PRODUCTIVITY AND SAFETY OF MANNED MISSIONS
- DEVELOP TECHNOLOGIES THAT WILL INCREASE MAINTAINABILITY AND REDUCE LOGISTICS RESUPPLY OF LONG DURATION MISSIONS
- IDENTIFY AND DEVELOP FLIGHT EXPERIMENTS IN ALL TECHNOLOGY AND THRUST AREAS THAT WILL BENEFIT FROM THE UTILIZATION OF SSF FACILITIES

SPACE PLATFORMS TECHNOLOGY

EARTH ORBITING PLATFORMS
- Structural Dynamics
- On-Orbit Non-Destructive Evaluation Techniques
- Space Environmental Effects
- Power Systems
- Thermal Management
- Advanced Information Systems

SPACE STATIONS
- Regenerative Life Support
- Integrated Propulsion and Fluid Systems Architecture
- Extravehicular Mobility
- Telerobotics
- Artificial Intelligence

SPACE-BASED LABORATORY AND TESTBED
- Exploit Microgravity and Crew Interactive Capability to Advance and Validate Selected Technologies

DEEP SPACE MISSIONS
- Power and Thermal Management
- Propulsion
- Guidance, Navigation and Control
SPACE TECHNOLOGY PLANNING CYCLE

Winter
- Integrated NASA Space Technology Plan - Baseline
- SSTAC Review of Integrated NASA Space Technology Plan
- OMB Budget Action & Submission to Congress
- R&T Base & Focused R&T Program Revisions
- OMB Budget Action & Submission to Congress

Fall
- SSTAC ARTS Detailed Review
- R&T Base & Focused R&T Program Plans
- Technology Opportunities
- OMB Budget Submission
- OMB Budget Submission
- Administrator Budget Decisions
- Final Integrated Annual Plan and Budget To Code A

Spring
- SSTAC Preliminary Review of Planning
- Program Office Tech. Needs Coordination
- Integrated NASA Space Technology Annual Plan - Revised
- Spring Preview Technology Budget To Code A
- Spring Preview Technology Budget To Code A
- Final Integrated Annual Plan and Budget To Code A

Summer
- Integrated NASA Space Technology Plan
- OMB Budget Action & Submission to Congress
- R&T Base & Focused R&T Program Revisions
- OMB Budget Action & Submission to Congress
- OMB Budget Submission
- OMB Budget Submission
- Administrator Budget Decisions
- Final Integrated Annual Plan and Budget To Code A

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

TECHNOLOGY READINESS LEVELS

LEVEL 1
- BASIC PRINCIPLES OBSERVED AND REPORTED

LEVEL 2
- TECHNOLOGY CONCEPT AND/OR APPLICATION FORMULATED

LEVEL 3
- ANALYTICAL & EXPERIMENTAL CRITICAL FUNCTION AND/OR CHARACTERISTIC PROOF-OF-CONCEPT

LEVEL 4
- COMPONENT AND/OR BREADBOARD VALIDATION IN LABORATORY ENVIRONMENT

LEVEL 5
- COMPONENT AND/OR BREADBOARD VALIDATION IN RELEVANT ENVIRONMENT

LEVEL 6
- SYSTEM/SUBSYSTEM MODEL OR PROTOTYPE DEMONSTRATION IN A RELEVANT ENVIRONMENT (Ground or Space)

LEVEL 7
- SYSTEM PROTOTYPE DEMONSTRATION IN A SPACE ENVIRONMENT

LEVEL 8
- ACTUAL SYSTEM COMPLETED AND "FLIGHT QUALIFIED" THROUGH TEST AND DEMONSTRATION (Ground or Flight)

LEVEL 9
- ACTUAL SYSTEM "FLIGHT PROVEN" THROUGH SUCCESSFUL MISSION OPERATIONS

MARCH 17, 1981
JCM-7410