TRANSPORTATION AND PLATFORMS PERSPECTIVE

Gary L. Bennett
National Aeronautics and Space Administration
Washington, DC
OFFICE OF AERONAUTICS AND SPACE TECHNOLOGY

Associate Administrator
Richard H. Petersen
Deputy Associate Administrator
Robert Rosen
Deputy Associate Administrator (Policy)
TBD
Chief Engineer
Leonard A. Harris

Resources and Management Systems
Glenn C. Fuller

High Performance Computing and Communications
Lee S. Halcomb

Aeronautics
Cecil C. Rosen, III
Subsonic Transportation
Robert E. Whitehead
High-Speed Research
Louis J. Williams
High Performance Aircraft and Flight Projects
Vacant
Aeronautics Research
Kristin A. Hessertius

Institutions
Richard A. Reeves
Information Systems
F. John Sansom
Facilities
L. Wayne McKinney

Space Technology
Gregory M. Reck
Space Science and Operations
Wayne R. Hudson
Transportation and Platforms
Earl E. VanLandingham
Space Research
Samuel L. Vernier
Program Experiments Office
Jack Levine

National Aero-Space Plane
Vincent L. Rausch
NASP Inter-Agency Office
Ming H. Tang
NASP Joint Program Office
James P. Arlingtion
Plana
TBD

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

CIVIL SPACE TECHNOLOGY INITIATIVE

SPACE RESEARCH & TECHNOLOGY

DISCIPLINE RESEARCH
Aerothermodynamics
Space Energy Conversion
Propulsion
Materials & Structures
Information and Controls
Human Support
Space Communications

UNIVERSITY PROGRAMS

SPACE FLIGHT R&T

SYSTEMS ANALYSIS

SPACE TECHNOLOGY
Science Sensing
Observatory Systems
Science Information
In Situ Science
Technology Flight Expts.

PLANETARY SURFACE TECHNOLOGY
Surface Systems
Human Support
Technology Flight Expts.

SPACE PLATFORMS TECHNOLOGY
Earth-Observing Platforms
Space Stations
Deep-Space Platforms
Technology Flight Expts.

OPERATIONS TECHNOLOGY
Automation & Robotics
Infrastructure Operations
Info, & Communications
Technology Flight Expts.

TRANSPORTATION TECHNOLOGY
ETO Transportation
Space Transportation
Technology Flight Expts.
SPACE R&T MISSION STATEMENT

OAST SHALL PROVIDE TECHNOLOGY FOR FUTURE CIVIL SPACE MISSIONS AND PROVIDE A BASE OF RESEARCH AND TECHNOLOGY CAPABILITIES TO SERVE ALL NATIONAL SPACE GOALS

- IDENTIFY, DEVELOP, VALIDATE AND TRANSFER TECHNOLOGY TO:
 - INCREASE MISSION SAFETY AND RELIABILITY
 - REDUCE PROGRAM DEVELOPMENT AND OPERATIONS COST
 - ENHANCE MISSION PERFORMANCE
 - ENABLE NEW MISSIONS

- PROVIDE THE CAPABILITY TO:
 - ADVANCE TECHNOLOGY IN CRITICAL DISCIPLINES
 - RESPOND TO UNANTICIPATED MISSION NEEDS

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM
SPACE R&T PROGRAM DEVELOPMENT

20-YEAR VISION OF FUTURE FLIGHT PROGRAM STARTS

SPACE R&T PROGRAM STRATEGIES AND DECISION RULES

INTEGRATED TECHNOLOGY PLAN BASE R&T, FOCUSED R&T, FACILITIES, R&PM
INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM
RESEARCH & TECHNOLOGY STRATEGY

• 5-YEAR FORECAST INCLUDES

'93 THRU '97:
- COMPLETION OF INITIAL SSF
- LIMITED SOME SHUTTLE IMPROVEMENTS
- NEW STARTS INITIAL EOS & EOSDIS
- SELECTED SPACE SCIENCE STARTS
- NLS DEVELOPMENT
- INITIAL SEI ARCHITECTURE SELECTION
- EVOLVING GEO COMMERCIAL COMMSATS
- MINOR UPGRADES OF COMMERCIAL ELVS

• 10-YEAR FORECAST INCLUDES

'98 THRU '03:
- MULTIPLE SSF EVOLUTION/INFRASTRUCTURE
- FINAL SHUTTLE ENHANCEMENTS
- ADVANCED LEO EOS PLATFORMS/FULL EOSDIS
- MULTIPLE SPACE SCIENCE STARTS
- NLS OPERATIONS/EVOLUTION
- EVOLVING LAUNCH/OPERATIONS FACILITIES
- INITIAL SEI/LUNAR OUTPOST START
- DSN EVOLUTION (KA-BAND COMMUNICATIONS)
- NEW GEO COMMERCIAL COMMSATS
- NEW COMMERCIAL ELVS

• 20-YEAR FORECAST INCLUDES

'04 THRU '11
- OPTIONS FOR NEW MULTIPLE
- SSF-MARS EVOLUTION OPTIONS FOR NEW MULTIPLE SPACE SCIENCE STARTS
- BEGINNING OF AMIS/PILLS DEVELOPMENT DSN EVOLUTION (OPTICAL COMM)
- MULTIPLE SPACE SCIENCE STARTS INITIAL MARS HLLV DEVELOPMENT
- EVOLVING LUNAR SYSTEMS DSN EVOLUTION (OPTICAL COMM)
- MARS SEI ARCHITECTURE CHosen EVOLVING LUNAR SYSTEMS
- LARGE GEO COMMSATS MARS SEI ARCHITECTURE CHosen
- NEW COMMERCIAL ELVS LARGE GEO COMMSATS
- NEW COMMERCIAL ELVS

SPACE RESEARCH & TECHNOLOGY PROGRAM

<table>
<thead>
<tr>
<th>Year</th>
<th>Experiments</th>
<th>Transportation</th>
<th>Space Science</th>
<th>Space Platforms</th>
<th>Planetary Surface</th>
<th>R&T Base</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 1992</td>
<td>11%</td>
<td>14%</td>
<td>5%</td>
<td>45%</td>
<td>11%</td>
<td>4%</td>
<td>10%</td>
</tr>
<tr>
<td>FY 1993</td>
<td>10%</td>
<td>13%</td>
<td>11%</td>
<td>7%</td>
<td>7%</td>
<td>7%</td>
<td>9%</td>
</tr>
<tr>
<td>Spending</td>
<td>$309.3M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY 1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spending</td>
<td>$332.0M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nuclear Electric Performance Characteristics

Mission Performance Factors
- Specific Impulse (Isp): Determines propellant mass
- Power Level (Pe): Affects trip time
- System Specific Mass (α): Determines trip time limits

Mission Impact
- High (>50%)
- Low (<10 kg/kW)

Desired Range
- High (>5000s)
- Low initial mass, reduced trip time

Mission Technology Needs
- Portable Advanced 3-D packaging
- Rapid Subject
- Thermal Spectral

Controlled Environment
- High Volume, High Dill
- Subtle

Analysis and Development
- Methane
- Air

Grouped According to Urgency & Commonality

<table>
<thead>
<tr>
<th>Near Term</th>
<th>Far Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Time</td>
<td>High Time</td>
</tr>
<tr>
<td>Medium Time</td>
<td>Medium Time</td>
</tr>
<tr>
<td>Low Time</td>
<td>Low Time</td>
</tr>
</tbody>
</table>

Technology Needs
- Solar Electric Propulsion
- Electric Propulsion
- Nuclear Electric Propulsion

Technology Development
- Power Systems
- Electrical Systems
- Propulsion Systems

Technology Maturation
- Transportation
- Propulsion
- Power Systems

Technology Readiness
- Low
- Medium
- High

Technology Transition
- Rocket Propulsion
- Electrical Power Systems
- Nuclear Electric Propulsion

Technology Enabling
- Advanced Materials
- Advanced Controls
- Advanced Propulsion Systems

Technology Readiness Level
- R&D
- Development
- Application

Technology Readiness Stage
- Initial
- Development
- Demonstration

Technology Readiness Phase
- Conceptual
- Technology Development
- Technology Validation

Technology Readiness Objectives
- Reduced Mass
- Reduced Trip Time
- Improved Mass

Technology Readiness Milestones
- Initial Mass
- Reduced Trip Time
- Improved Mass

Technology Readiness Challenges
- Advanced Power Systems
- Advanced Controls
- Advanced Propulsion Systems

Technology Readiness Opportunities
- Solar Electric Propulsion
- Electric Propulsion
- Nuclear Electric Propulsion

Technology Readiness Solutions
- Power Systems
- Electrical Systems
- Propulsion Systems
TRANSPORTATION TECHNOLOGY

PROVIDE TECHNOLOGIES THAT SUBSTANTIALLY INCREASE OPERABILITY, IMPROVE RELIABILITY, PROVIDE NEW CAPABILITIES, WHILE REDUCING LIFE CYCLE COSTS

- ENHANCE SAFETY, RELIABILITY, AND SERVICEABILITY OF CURRENT SPACE SHUTTLE
- PROVIDE TECHNOLOGY OPTIONS FOR NEW MANNED SYSTEMS THAT COMPLEMENT THE SHUTTLE AND ENABLE NEXT GENERATION VEHICLES WITH RAPID TURNAROUND AND LOW OPERATIONAL COSTS
- SUPPORT DEVELOPMENT OF ROBUST, LOW-COST HEAVY LIFT LAUNCH VEHICLES
- DEVELOP AND TRANSFER LOW-COST TECHNOLOGY TO SUPPORT COMMERCIAL ELV's AND UPPER STAGES
- IDENTIFY AND DEVELOP HIGH LEVERAGE TECHNOLOGIES FOR IN-SPACE TRANSPORTATION, INCLUDING NUCLEAR PROPULSION, THAT WILL ENABLE NEW CLASSES OF SCIENCE AND EXPLORATION MISSIONS

TRANSPORTATION TECHNOLOGY

SHUTTLE ENHANCEMENT

- SSME Improvements
- Durable Thermal Protection Systems
- Improved Health Monitoring
- Light Structural Alloys
- Lidar-Based Adaptive Guidance & Control

NEXT GENERATION MANNED TRANSPORTS

- Configuration Assessment
- High Frequency, High Voltage Power Management/Distribution Systems
- LOX/LH2 Propellant for OMS/RCS
- Maintenance-free TPS
- Advanced Reusable Propulsion
- GPS-Based Autonomous GN&C
- Composites & Advanced Lightweight Metals
- Vehicle-Level Health Management For Autonomous Operations

HEAVY-LIFT CAPABILITY

- Advanced Fabrication (Forming & Joining)
- STME Improvements
- Systems & Components for Electric Actuators
- On-Vehicle Adaptive Guidance & Control
- Health Monitoring for Safe Operations
- AL-Li Cryo Tanks

LOW-COST COMMERCIAL

- Alternate Booster Concepts
- Advanced Cryogenic Upper Stage Engines
- Low-Cost Fab/Automated Processes/NDE
- Continuous Forging Processes for Cryogenic Tanks
- Fault-Tolerant, Redundant Avionics

IN-SPACE TRANSPORT

- High-Power Nuclear Thermal & Electric Propulsion
- High Performance, Multiple Use Cryogenic Chemical Engine
- Highly Reliable, Autonomous Avionics
- Low Mass, Space Durable Materials
- Long-Term, Low-Loss Management of Cryogenic Hydrogen
- Autonomous Rendezvous, Docking & Landing
- Aeroassist Technologies
TRANSPORTATION TECHNOLOGY MISSION MODEL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SHUTTLE</td>
<td>EVILUTION</td>
<td>PERSONNEL LAUNCH SYSTEM</td>
<td>ADVANCED MANNED LAUNCH SYSTEM</td>
<td>NASP/N-30</td>
</tr>
<tr>
<td>NEW MANNED SYSTEMS</td>
<td>STME INITIAL CAPABILITY</td>
<td>LUNAR</td>
<td>NEW LAUNCH VEHICLES</td>
<td>CHEMICAL</td>
</tr>
<tr>
<td>HEAVY LIFT LAUNCH VEHICLES (HLLV)</td>
<td>EVOLUTION UPGRADES</td>
<td>NEW LAUNCH VEHICLES</td>
<td>CHEMICAL</td>
<td>NUCLEAR THERMAL/ELECTRIC</td>
</tr>
<tr>
<td>COMMERCIAL LAUNCH VEHICLES & UPPER STAGES</td>
<td>CHEMICAL</td>
<td>NUCLEAR THERMAL/ELECTRIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPACE TRANSFER VEHICLE/LANDERS</td>
<td>CHEMICAL</td>
<td>NUCLEAR THERMAL/ELECTRIC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSPORTATION MILESTONES

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SHUTTLE ENHANCEMENT</td>
<td></td>
</tr>
<tr>
<td>OEX Flight Data Analysis Complete</td>
<td>Integrated Health Monitoring Capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Canopy TFI Test</td>
<td>Vacuum Plasma Spray Treat Chamber Demo in TPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEXT GENERATION MANNED TRANSPORTS</td>
<td></td>
</tr>
<tr>
<td>Developing Optimized HL-20 Data Base</td>
<td>Identity Preferred Propulsion Concepts</td>
<td>Complete Aero-Aerodynamic Config. Analysis</td>
<td>Select Candidate Concept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSTO Assessment Complete</td>
<td>Identity Preferred Vehicle Concepts</td>
<td>Integral Structural Concept Demo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAVY LIFT CAPABILITY</td>
<td></td>
</tr>
<tr>
<td>Integrated ACHIC, CASE, AIPS Demo</td>
<td>Cryogenic Fluid Film Bearing Tech.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW-COST COMMERCIAL TRANSPORT</td>
<td></td>
</tr>
<tr>
<td>Cooperative Industry/Government Program Defined</td>
<td>Booster Engine Concept Verification</td>
<td>Advanced VM-M Demonstrated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Forged AL-LI Cyl Tank Test Article</td>
<td>OXe4B Expander Cycle Verification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPACE TRANSFER VEHICLE/LANDERS</td>
<td></td>
</tr>
<tr>
<td>Aerosol Flight Experiment</td>
<td>Cryo Engine Characterized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEVELOP TECHNOLOGIES TO INCREASE ON-ORBIT MISSION EFFICIENCY AND DECREASE LIFE CYCLE COSTS FOR FUTURE MANNED AND UNMANNED SCIENCE, EXPLORATION & COMMERCIAL MISSIONS.

• DEVELOP TECHNOLOGIES THAT WILL DECREASE LAUNCH WEIGHT AND INCREASE THE EFFICIENCY OF SPACE PLATFORM FUNCTIONAL CAPABILITIES
• DEVELOP TECHNOLOGIES THAT WILL INCREASE HUMAN PRODUCTIVITY AND SAFETY OF MANNED MISSIONS
• DEVELOP TECHNOLOGIES THAT WILL INCREASE MAINTAINABILITY AND REDUCE LOGISTICS RESUPPLY OF LONG DURATION MISSIONS
• IDENTIFY AND DEVELOP FLIGHT EXPERIMENTS IN ALL TECHNOLOGY AND THRUST AREAS THAT WILL BENEFIT FROM THE UTILIZATION OF SSF FACILITIES

SPACE PLATFORMS TECHNOLOGY

EARTH ORBITING PLATFORMS

• Structural Dynamics
• Power Systems
• On-Orbit Non-Destructive Evaluation Techniques
• Thermal Management
• Space Environmental Effects
• Advanced Information Systems

SPACE STATIONS

• Regenerative Life Support
• Extravehicular Mobility
• Integrated Propulsion and Fluid Systems Architecture
• Telerobotics
• Space Environmental Effects
• Artificial Intelligence

SPACE-BASED LABORATORY AND TESTBED

• Exploit Microgravity and Crew Interactive Capability to Advance and Validate Selected Technologies

DEEP SPACE MISSIONS

• Power and Thermal Management
• Propulsion
• Guidance, Navigation and Control
SPACE PLATFORMS TECHNOLOGY MISSION MODEL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTH OBLERVING SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td>ESSAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOS POLAR</td>
<td>EOS GEO</td>
</tr>
<tr>
<td>SPACE STATION FREEDOM</td>
<td></td>
<td></td>
<td>MTC</td>
<td>FOLLOW-ON PHASES USER OPERATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PMC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPACE SCIENCE</td>
<td></td>
<td>LUNAR OBSERVER</td>
<td>MARS NETWORK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOLAR PROBE</td>
<td></td>
</tr>
<tr>
<td>COMMUNICATIONS</td>
<td></td>
<td>ADRSS</td>
<td>GEO PLATFORMS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPACE PLATFORMS MILESTONES

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Testing & e-0 Evolutionary Model</td>
<td>Conduct CSI Beretta Studies for Multi-P/L Platforms & Attached P/L</td>
<td>CBI Ground Test Bed Operational</td>
<td>Laboratory Test & Selection of On-Orbit NDI Technologies</td>
<td>Complete Advanced LEO Mars and Solar Array</td>
<td>Demo Advanced Control Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|---------------|------|------|------|------|------|------|------|------|------|------|------|

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Demo Fault Tolerant PM/B</td>
<td>Demo 500 W/kg Planar PV Module</td>
<td>Demonstrate Advanced Guidance Methodology</td>
<td>Demo Advanced Inertial Power Conversion Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | Demo Advanced Ambiguity Reduction Methodology | Demo Advanced Inertial Power Conversion Unit |

49
SPACE TECHNOLOGY PLANNING CYCLE

Winter

Integrated NASA Space Technology Plan - Baseline

R&T Base & Focused R&T Program Revisions

SSTAC Preliminary Review of Planning

Spring

Integrated NASA Space Technology Annual Plan - Revised

Final Integrated Annual Plan and Budget To Code A

Summer

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

TECHNOLOGY READINESS LEVELS

LEVEL 1 BASIC PRINCIPLES OBSERVED AND REPORTED
LEVEL 2 TECHNOLOGY CONCEPT AND/OR APPLICATION FORMULATED
LEVEL 3 ANALYTICAL & EXPERIMENTAL CRITICAL FUNCTION AND/OR CHARACTERISTIC PROOF-OF-CONCEPT
LEVEL 4 COMPONENT AND/OR BREADBOARD VALIDATION IN LABORATORY ENVIRONMENT
LEVEL 5 COMPONENT AND/OR BREADBOARD VALIDATION IN RELEVANT ENVIRONMENT
LEVEL 6 SYSTEM/SUBSYSTEM MODEL OR PROTOTYPE DEMONSTRATION IN A RELEVANT ENVIRONMENT (Ground or Space)
LEVEL 7 SYSTEM PROTOTYPE DEMONSTRATION IN A SPACE ENVIRONMENT
LEVEL 8 ACTUAL SYSTEM COMPLETED AND *FLIGHT QUALIFIED* THROUGH TEST AND DEMONSTRATION (Ground or Flight)
LEVEL 9 ACTUAL SYSTEM *FLIGHT PROVEN* THROUGH SUCCESSFUL MISSION OPERATIONS

March 29, 1991

JCM 7207b