
111111 llllllll Ill Ill11 11111 Ill11 11111 11111 111ll111111llll111111 Ill 11111 1111
US005 189709A

United States Patent 1191 1111 Patent Number: 5,189,709
Wang et al. [45] Date of Patent: Feb. 23, 1993

DYNAMIC PATTERN MATCHER USING
INCOMPLETE DATA

Inventors: Lui Wang, Houston, Tex.; Gordon G.
Johnson, Princeton, N.J.

Assignee: The United States of America as
represented by the United States
National Aeronautics and Space
Administration, Washington, D.C. .

Appl. No.: 749,819

Filed: Aug. 26, 1991

Int. (3.5 ... G06K 9/00
US. Cl. .. 32/10; 382/30;

381/43
Field of Search 381/42, 43; 382/10,

382/14, 15, 36, 37, 38, 39, 30, 34

References Cited
U.S. PATENT DOCUMENTS

Re. 26,104 I1/1966 Glauberman et a1
3,727,183 4/1973 LeMa
3,919,722 9/1976 Sakoe 382/30
4,001,820 1/1977 Rosenbaum et al. 343/5 SA
4,319,221 3/1982 Sakoe 340/146.3 Q
4,446,531 5/1984 Tanaka 364/728
4,467,437 8/1984 Tsuruta .. 382/30
4,511,697 2/1986 Watanabe 364/561
4,601,054 7/1986 Watari et al. 382/1
4,618,988 10/1986 Schiller
4,670,850 6/1987 Sakoe 381/43
4,794,528 12/1988 Hirose et a1
4,817,176 3/1989 Marshall et a1
4,882,756 11/1989 Watari 381/42

4,887,304 12/1989 Terzian 382/30
5,067,166 11/1991 Ito ... 382/30
5,109,431 4/1992 Nishiya et al. 382/30
5,121,465 6/1992 Sakoe 381/43

Primory Examiner-30% L. Couso
Attorney, Agent, or Firm-Hardie R. Barr; Guy M.
Miller; Edward K. Fein

1571 ABSTRACT
A method of matching a first query pattern with a plu-
rality of stored data is disclosed. For each stored data
pattern, the number of components are counted which
are identical to corresponding components in the first
query pattern, thereby forming a set of match numbers
equals the number of components in any stored pattern,
that stored data pattern is displayed as an output pattern
set indicating a match. If no match exists then a second
query pattern is determined by modifying the first query
pattern, component by component, in dependence upon
both a first, global influence of all stored patterns on all
components of the first query pattern and a second,
particular influence of all stored patterns on each re-
spective component of the first query pattern. The first
two method steps are then repeated using the second
query pattern in place of the first query pattern. If no
match a third query pattern similarly is determined by
modifying the second query pattern. Finally, the output
pattern is displayed, component by component, with
those respective components of the third query pattern
that have been modified at most once from the first
query pattern.

20 Claims, 3 Drawing Sheets

I t h COMPONENT VALUE

/ \

U S . Patent Feb. 23, 1993 Sheet 1 of 3

B'
(0,I) STORED AT HEIGHT

(1 , l) STORED

5,189,709

B2
AT HEIGHT

FIG.2
81

SURFACE S

B2
(1 , l) STORED

FI

U.S. Patent Feb. 23, 1993 Sheet 2 of 3 5,189,709

Bl
(0,I) STORED

B2
(1.1) STORED

(1.0)
FIG.4

STORE (0 , O)

SURFACE

FIG.5
B l

(0.1) STORED
QUERY POINT

82
(1,IISTORfD

FIG.6

U S . Patent Feb. 23, 1993 Sheet 3 of 3 5,189,709

I

5.189,709
1

DYNAMIC PATTERS MATCHER USING
INCOMPLETE DATA

ORIGIN OF THE INVENTION

The invention described herein was made in the per-
formance of work under a NASA contract and is sub-
ject to the provisions of Section 305 of the National
Aeronautics and Space Act of 1958, Public Law 85-568
(72 Stat. 435; 42 U.S.C. 2457).

BACKGROUND OF THE INVENTION

Field of the Invention
This invention relates generally to pattern matching

systems, and more particularly to a method for dynami-
cally adapting the system to enhance the effectiveness
of a pattern match.

State of the Art

Apparatus and methods for calculating the similarity
between patterns are known. For example, U.S. Pat.
No. 3,727,183 to LeMay discloses a pattern recognition
device using an image recognition algorithm capable of
compensating for registration errors. A scanning wave-
form is used to scan the input image. The scanning
waveform is capable of being modified to minimize the
degree of error.

U.S. Pat. No. 4,446,531 to Tanaka teaches the use of
a computer for calculating the similarity between pat-
terns employing a pattern recognition technique using
height or “weight” factors as measures of relative im-
portance.

U.S. Pat. No. Re. 26,104 to Glauberman et a1 dis-
closes data processing apparatus utilizing a pattern rec-
ognition method designed for analyzing character sym-
bols.
U.S. Pat. No. 4,319,221 to Sakoe shows a pattern

recognition arrangement wherein a single input pattern
feature vector is pattern matched with the reference
pattern.

There is considerable interest in the storage and re-
trieval of data, particularly, when the search is called or
initiated by incomplete information. For many search
algorithms, a query initiating a data search requires
exact information, and the data file is searched for an
exact match. Inability to find an exact match thus results
in a failure of the system or method.

It is therefore desirable to provide a method of stor-
age and retrieval that shares some of the attributes of an
artificial neural network (ANN), such as searching for a
match using a query having only incomplete informa-

5

10

15

20

25

30

35

40

45

50

55
tion, whileavoiding some i f the deficiencies such as
long “learning” time and possible “retraining” when
additional data is stored. In addition, it is desirable to
provide several features not available in ANN systems,
such as attaching relative importance as well as time
dependence to stored data points. Thus, stored data may
change in importance over time, whether the time de-
pendent change is caused by the user, by outside input,
or simply by a programmed degradation or appreciation 65
over time. It is desirable that the stored data be allowed
to change in this way without affecting the speed of
retrieval or requiring additional training.

60

2
SUMMARY O F THE INVENTION

It is an object of the present invention to find an exact
match between a query pattern and one or more stored
patterns, if an exact match exists.

It is another object of the present invention to find the
“best” match between a query pattern and a stored
pattern; Le., to find one or more stored patterns which
are the closest to a match with the query pattern if no
exact match exists.

It is an additional object of the present invention to
isolate a subset of the stored patterns for which a partial
match is possible and to distinguish those portions of the
stored patterns in the subset which match the query
from those portions which do not match and are there-
fore ambiguous.

It is a further object of the present invention to allow
the user to efficiently enhance the probability of a
match by focusing on only the ambiguous portion of the
stored and query patterns.

It is a still further object of the present invention to
allow the user to efficiently enhance the probability of a
match by restating the query with additional data.

It is a yet further object of the present invention to
allow the user to efficiently enhance the probability of a
match by storing more data.

It is an even further object of the present invention to
allow the user to efficiently enhance the probability of a
match by modifying one or more of the stored patterns.

The present invention incorporates procedures that
seek a response which will be exact, if the query is an
exact match to a positive stored data item of a given
relative importance, or a “reasonable guess” in view of
both the query and the stored data. The invention will
return a stored item if the query is within a predeter-
mined variance of a stored item, or the response may
contain certain “ambiguous” components indicating
that there is a conflict in the stored data that causes an
inexact response to the particular query. The particular
portions of the pattern which are ambiguous are indi-
cated to the user. The invention, in this event, asks for
instructions as to how the user wishes to proceed in
effecting a match, as for example, changing the data in
the query or changing one or more of the stored pat-
terns.

Many physical entities (photographs, electrocardio-
grams, voice patterns, seismic signatures, written docu-
ments, star patterns, fingerprints, eye fundus patterns,
etc.) are capable of being represented by patterns of
other physical entities (elements) in some format suit-
able for electronic systems such as a sequence of digital
electronic signals. As is well known, these patterns are
capable of being stored in a computer memory to create
a library of stored patterns. The present invention
makes use of this capability as well as the ability to
incorporate within each pattern a relative time-depend-
ent importance property.

Preferably, the query pattern comprising a set of
elements representative of the entity to be matched is
also created in the same format as the stored patterns. If
not, it should be converted to this format prior to pat-
tern matching.

The aforementioned objects and advantages are
achieved in accordance with the present invention, by
the following method:

The data to be stored and queried, as well as the
query itself, is assumed to be in the form of binary lattice
points (l , l ,O ,O, . . . , 0); that is, as points (also called

3
5,189,709

“patterns”) in a finite dimensional space having only
zero or one as components. A positive integer n is used
to indicate the length of such a point; Le., the number of
components or elements defining the point. The data
and query are then stored in the n-dimensional space. 5
For example, if the data points to be stored, as well as
the queries, are of the form (0,0,1,0) or (l,O,l,O), then
n = four.

Let K denote the number of data points or patterns
stored. For each data point Bm, where m is an integer 10
from 1 to K, we have

Bm=(b“‘l , . . . , 6%)

which is point associated with the time tm. For each ,5
point Bm we define an integer H(m, tm) indicating the
relative importance of the point with respect to the
other points at the time tm. The function H(m,t,)
(which is the coefficient of a positive integer P, to be
more fully explained later), may be allowed to incre- 2o
ment or decrement as the time parameter t varies from
some initial time. In addition, for the point Bm there is
associated with the relative importance H(m,tm) a direc-
tion number C(m,t,) indicating whether the point
should be sought; Le., whether it is attractive, (a posi-
tive one); avoided or repelled (a negative one); or ig-
nored (a zero).

Generally, the method of the present invention in-
volves a comparison of a query pattern with each of the
stored patterns, on an element-by-element basis to de-
termine the total number of elements which match, 30
called the “degree of match”, for each stored pattern. A
“complete match” is said to exist between the query and
one or more of the stored patterns if the degree of
match for any stored pattern or patterns is equal to (or
within some predetermined variation from) the number 35
of elements in the patterns. For some applications, lo-
cating a complete match finishes the exercise. In other
applications (for example, when H(m,t) is a much more
significant factor that the degree of match) the pattern
matching procedure continues. Of course, if C(m,t) is 40
zero a complete match is not-significant.

If no complete match is found by this first element-
by-element comparison, a new or shifted query, called
the “derived query,” is formulated from the original
query. In formulating the derived query, use is made of 45
the closeness of match, or degree of match, between the
query of each of the stored patterns determined in the
first comparison. In this way, the probability of a match
between one or more of the stored patterns and the
derived query is increased. 50

The derived query is then compared on an element-
by-element basis with each of the stored patterns in
another attempt to find a match. The closeness of match
of the derived query with each of the stored patterns is
also determined and may be called the “second degree 55
of match”.

A complete match between the derived query and
one or more of the stored patterns exists and is indicated
if the second degree of match for any stored pattern is
equal to the number of elements in the patterns. If a 60
complete match is not found with the derived query
pattern, a response pattern is created from the original
query pattern and other information determined from
the comparisons of the original and derived query pat-
terns with the stored patterns. The response or “an- 65
swer” pattern has as its elements both “determined”
elements-i.e., those which are identical with corre-
sponding elements of one (or more) or the set of closest

25

4
stored patterns-as well as “ambiguous” elements
(those which are not identical).

The representational format of the answer pattern
may then be converted to a desired (usually the origi-
nal) format (photograph, etc.) with the ambiguous ele-
ments distinguished from the determined elements in
some manner (e.g., lighter, darker, as + or -, etc.)

Various manipulations may then be performed to
enhance the probability of match, such as refining, en-
hancing, supplementing, etc., the ambiguous portions of
the query and repeating the above steps.

The preferred embodiments of the present invention
will now be described with reference to the accompa-
nying drawings.

BRIEF DESCRIPTION O F THE DRAWINGS
FIG. 1 is a representational diagram of a two-dimen-

sional figure (n=2) having vertices at all binary points.
FIG. 2 is a representational diagram of the two-di-

mensional figure of FIG. 1 in which two stored points
of prescribed height are placed perpendicular to the
two-dimensional figure.

FIG. 3 is a representational diagram identical to that
of FIG. 2 in which a smooth surface S is formed over
the set of points in three-dimensional space.

FIG. 4 is a representational diagram similar to that of
FIG. 3 showing the slope of the surface at a query point
thereon in each of the two directions.

FIG. 5 is a representational diagram showing two
stored points placed on a two dimensional figure and
illustrating a conflict in the stored data.

FIG. 6 is a representational diagram similar to that of
FIGS. 1-4 illustrating that the query point is “moved”
to a new position.

FIG. 7 is a process diagram showing the procedure
for producing a response to an original query.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Conceptual Illustration
As an illustration of the present invention, consider

an n-dimensional cube with a_ direction and relative
importance of C(m,t)PH(mJ) (see FIG. 1 for n=2). The
relative importance of each stored point Bm may be
shown by placing a point in the n+ 1 dimension space
perpendicular to the n-dimensional cube with direction
and relative importance of C(m,t)PH(mJ). FIG. 2 illus-
trates the case where n=2; two points, B1 and B2, are
stored at (0,l) and (1,l) with relative importance magni-
tudes of H(1,t) and H(2,t), respectively. The direction
numbers C(1,t) and C(2,t) are both positive ones since
relative importance H(1,t) and H(2.t) both are shown in
the positive n + 1 direction.

As an assist in conceptualizing, imagine a smooth
surface S formed over the set of points in n+ 1 dimen-
sional space. As shown in FIG. 3, this undulating sur-
face rises at stored points with a positive C value, falls
toward a zero height over non-stored points, and is
negative at points that are to be avoided; Le., points
having a negative C value. This surface may change in
time as the relative importance (magnitude of H) of
stored data items (patterns) increment or decrement. It
also, of course, changes as the sign of C changes.

For purposes of this invention, significance lies not so
much in the surface itself, but, rather, in the slope of the

5,189,709
5 6

surface in each of the n directions at a point of interest If the ifh element of the query point is 0 and the first
such as a query point. (See FIG. 4.) slope in the i“J direction is negative, then the ith element

If a query point (pattern) is present, noting also that it of the response is 0.
is a binary point in the n-dimensioned cube, it is desired If the ifh element of the query point is 1 and the first
to determine toward which binary point in the cube it 5 slope in the ifh direction is positive, then the ifh element
would need to move to effect a match. Assuming that of the response is 1.
“high” or relatively important points attract, relatively If the ifhelement of the query point is 0, the first slope
lower points attract less and negative points repulse, the in the ifh direction is positive and the second slope in the
tendency at the query point would be to accord- i’h is negative, then the irh element of the response is

equally attracted to two or binary points (or If the ith element of the query point is 1, the first slope
in the i‘hdirection is negative and the second slope in the equally repulsed by two or more points).

For example, in FIG. 5, that stored points irh direction is positive, then the ifh element of the re-
(0,O) and (1,l) have the same relative importance, signi- ’POnse i‘ ambiguous; i*e‘’ **

Thus the response is of the form (O,O,l,l,l, . . . ,l,O,l)
for a definitive response or complete match, or the tied by the same height perpendicular to the n-dimen-

ingly. Ambiguities may exist, as when the query is 10 ambiguous (denoted herein by the Symbol *).

1s

cube’ A query at point (lye) be is of the form (0,0,1,*,1 . . . ,+,0,1) when =me
of the elements are ambiguous; i.e., the response is par-

encounter no conflict 20 degree of match is equal to the number of elements in

attracted to both points, a query at point (o*l)l
thus a conflict or ambiguity is indicated. On the other tially ambiguous. A complete match is said to exist if the

and would be most Strongly attracted to point (1,1)-k the patterns. the case of a partially ambiguous re-
no movement-because the ’lope Of the surface s i’ sponse, there are several options or combination of
zero in every direction. Likewise, a query at point (08) options available to the user. One, obviously, is to re-

have no tendency to move from that point. Of phrase the query or use another query. Another is to
course, if the relative importance of(l91) and (070) were 25 store more data in the stored patterns, and yet another
significantly different, then the response to a query such is to of the stored data.
as (190) would not be ambiguous, it would move toward It should be noted that the stored points, each of
the relatively more important point. The invention fa- which has a time dependent relative importance prop-
cilitates dealing with ambiguities as will be explained in erty, can decrement Over time to a near zero value, or
detail hereinbelow. 30 become negative or positive or zero, thus allowing a

As previously noted, the imaginary surface s is not stored point to more strongly attract (or repulse) or
significant; only its slope at points of interest (query ignore. While the relative importance property of a
points) is important in the decision process. Further, the point can be increased or decreased at any time, or
magnitude of the slope is not necessarily significant for allowed to remain constant, none of these changes re-
our purposes, only its algebraic sign. If the sign of the 35 quire any “retraining time”. This particular feature is
slope in the i‘h direction is positive, then the point not found in artificial neural systems.

FIRST EXAMPLE should “move” in the ith direction, while if the sign is
negative, the query point should ‘‘move” in the negative
irh direction. When the slope in the irh direction is zero,
there is no “movement” in the ilh direction.

The method according to the present invention pro-
ceeds as follows: The slopes in each of directions on
the surface are determined for the query point and the
values stored. A new or “shifted” query point tnot

hand, a query at point (kl)

The following example of this method was installed
40 and operated in a Symbolic computer using a LISP

Program as Set forth in the attached Appendix. It Should
be pointed out that both the “zero” and “one” elements
of a point were considered to be of equal significance.
Using the previously stated concepts, a pattern match

necessarily a binary point) is determined from the origi- 45 was attempted between a query pattern and a library Of

rial query in a manner to be described below, and it is pat- stored patterns to determine a response Or

then applied to the n-dimensioned cube. The slopes in
each of the n directions on the surface at the new posi-
tion (the second slopes) are determined and the values
noted and stored, completing the numerical computa-
tions. (See FIG. 6.) It should be noted that no more than
two iterations are required to determine the response.
The information gained from the computations can be
analyzed for a response to the original query.

The sign of the slope in each direction at the original

tern using the
(1) Suppose that n is the maximum length of a point to

be stored.
(2) Each of B1, B2, . . . , Bkis a data point to be stored

of relative importance H(l,tl), . . . , H(k,tk) and sign
C(l,tl), . . . , C(k,tk) respectively.

calculations) and each of L and L an integer

50

(3) Let denote a positive number (for mod

5s (L>L’>l).
(4) Let x=(xl, . . . , x,) be a query

query point is noted; thereafter, the sign of the slope in (5) We first compute and store, for each integer i from
each direction at the shifted query point is noted.

The response point or answer pattern is formed from
the original query point and the slopes of the original 60
and shifted query points as follows:

0 and both the first slope and the second slope in the ifh

1 to n, the value of the Dl,i(m below), which is
proportional to the slope in the i‘h direction at the
query point x=(x l , . . . , xn),

If the i‘h component Or Of the query point is D,i[r]: XrBl, . , . $9 = C(1,r) $(I,‘) [pJ(X.l)l Sl(X,o +

direction are positive, then the i‘h element of the re-

slopes in the ifh direction are negative, the i f h element of

c(2.r) pH(2J) [W X q S2(X,r) +
c(3,I) $(3*’) [WXS3)] S3(x.l) + . . . + sponse is 1. 65

If the i‘h element of the query point is 1 and both
qal) Mk‘) [W q SfiX.1)

the response is 0.

5,189,709
7

where
(1) C(m,t) is the sign (or 0) of the stored point Bm

at time t (if 0, C is then ignored in computations),
(2) H(m,t) is the height of the stored point Bm at

time t, 5
(3) J(X,j) is the number of components of B that

agree with the corresponding component of X,
Le., a measure of closeness and

(4) S,(X,i) is - 1 if the irh component of B, agrees

1 if the ifh component of l3 agrees with the ifh com-

-P3 if the irh component of X is 1 and the irh com-

P3 if the irh component of X is 0 and the irh compo- 15

with the ifh component of X and is 0; 10

ponent of X and is 1;

ponent of W. is 0; and

nent of Biis 1.
P can be any prime number. In the preferred embodi-

(6) A new point X’ is formed from the query point X
and the signs of the numbers D I , ~ ([t] : X : Bl, . . . 20
, Bk), . . . , D1 “([t] : X : Bl, . . . , Bk) in the following
manner:

If the irh component of the query point is 0 and Dl
I([t]:X:BI, . . . , Bk) is positive, then the irh compo-
nent of X’ is 1;

If the irh component of the query point is 1 and Dl
I([t]:X:BI, . . . , Bk) is negative, then the ifh compo-
nent of X’ is 0; and

If the irh component of the query point is 0 and D
,([t]:X:BI, . . . , Bk) is zero, then the irh component 30
of X’ is the ifh component of X.

(7) For each integer i from 1 to n, we compute and
store the value of the D2.j (see below), which is
proportional to the slope in the irh direction at the

ment, P=2.

25

shifted point X’=(x’l, . . . , x ’ ~) . 35

& X [f] : X:B’. E 9 = C(1.r) PI(’.‘) [F’(x*l)] Sl(X.i) + . . . +

C(k 1) P/ck*‘) [P”(x*k)] SAxX.i)
40

where
(1) C(m,t) is the sign (or 0) of the stored point Bm

at time t;
(2) H(i,t) is the height of the stored point Bfat time

t; 45
(3) J(X’,J) is the number of components of Bi that

agree with the corresponding component of X‘;
and

(4) S,(X’,i) is - 1 if the irh component of Bi agrees

1 if the irhcomponent of Biagrees with the ifhcompo-
nent of X’ and is 1;
-P3 if the irh component of X’ is 1 and the irh com-

P3 if the irhcomponent of X’ is 0 and the ithcompo- 55

with the ifh component of X’ and is 0; 50

ponent of B‘is 0; and

nent of Bi is 1.
At this point the response to the original query is

(8) The value of the slope in each direction at the
original query point X has been stored and the 60
value of the slope in each direction at the shifted
point X’ has been stored.

If the ifh component of the query point is 0 and both
the slope of the query point X and the slope of the
shifted point X’ in the irh direction is positive, then the 65
irhcomponent of the response is 1.

If the irh component of the query point is 1 and both
the slope of the query point X and the slope of the

made in the following manner (see FIG. 7):

8
shifted point X’ in the irh direction is negative, then the
i f h component of the response is 0.

If the i f h component of the query point is 0 and the
first slope in the ith direction is negative, then the ifh
component of the response is 0.

If the irh component of the query point is 1 and the
first slope in the i“J direction is positive, then the irh
component of the response is 1.

If the irh component of the query point is 0, the slope
of the query point X in the irh direction is positive and
the slope of the shifted point X‘ in the irh direction is
negative, then the ifhcomponent of the response is *; i.e.,
it is uncertain.

If the irh component of the query point is 1, the slope
of the query point X in the irh direction is negative and
the slope of the shifted point X’ in the ifh direction is
positive, then the irhcomponent of the response is *; i.e.,
it is uncertain. This process is shown in FIG. 7.

If there is uncertainty in the response, then the afore-
mentioned options come into play. The machine may be
queried by the user with a different query, additional
data may be added and a query made, or one or more of
the items stored may be modified and a query made. In
any event, a query may be made immediately, as there is
no “training time” required.

If there is no uncertainty, then stored data may be
modified and another query made.

SECOND EXAMPLE
In the case described in FIGS. 2,3 and 4, the dimen-

sion is two (n=2) P=2, L=5 and L’=3 and for simplic-
ity we set t=tl=t2=0. The points Bl=(0,1) and
B2=(l,l) are stored at relative importance H(1,0)=7
and H(2,0)=5 with C(1,0)=1 and C(Z,O)=I. The
query point is X=(O,O).

For this case:

J(X.1) = I ,
4 x 2) = 0,
Sl(X, l) = - I ,
and Sz(X.1) = Z3.

We now have:
0,1(O:XB’,B2) = C(1.0) 2H(’,O) 2UXSl) Sl(X.1) i

~(2 .0) 2~(2.0) 2~x .2) ~~(x.1) = I x 27 x 25x1 (-1) +
1 x 25 x 25x0 x 23 = -212 + 28 < 0.

Di2(O:X:B1,B2) = C(1,O) ZH(I*O) 2u(X*1) Sl(X.2) +
q2,o) 2H(2,0) 2W‘J) ~ ~ (x . 2) = I x 27 x 25x1 x 23 +

I x 25 x 25x0 x 23 = 215 + 28 < 0.

Because DI I(O:X:B~, B2)<0 and DIJ(O:X:BI,B~)>O
the energy point X=(O,O) is “moved” to a new point
X’=(O,l). Also since the first component of X is 0 and
DI,I is less than zero it follows that the response in the
first component is 0, and there is no need to compute
D2.1.

we now compute &(o:x:B’,B~) =

C(1,O) 2ml.O) 2L’aX.I) Sl(X.2) + C(2.0) 2W2.0) 2L‘&XJ)’S2(X,2) =

1 x 27 x 23x2 x I + 1 x 25x1 x 23x1 x I > 0.

Because D12 and D2 2 are both positive and the sec-
ond component of the query point X is 0, it follows that
the second component of the response is 1; thus we find
the response to the query X=(O,O) is (0,l).

9
5,189,709

10
The algorithms indicated for the method according query pattern, component by component, in depen-

to the invention are intended to be implemented on a dence upon both a first, global influence of all
multiprocessor machine as there is a considerable stored patterns on all components of the first query
amount of parallelism. pattern and a second, particular influence of all

The pattern matching method according to the pre- 5 stored patterns on each respective component of
ferred embodiment of the present invention is summa- said first query pattern (steps (5) a (12) in the Ta-
rized in the following Table: ble).

Step No. Step Name Operation Sutncripts

TABLE

Store Patterns B = b.. i = 1. ..., n
j = 1, k

Define Query X = xi. i = 1, . . . , n
Match Set M = mj.
Initial output i = 1, ..., n

j = 1, . . . , k
Disturbance LM = Lm, j = l , . . . , k

18

oj = oij = X&
where mj = n

Where 2 d L d 20 Max. Range,

LM + H(t) = Lmj + h,
Sgn = s g n i j = 2 bjj - I.

C(t)

Mag = magjj = [(logxor (b j? xi) = 1)N:ll.
Where 2 S N 5 20 Max. range,

3 5 N S 7 Best range.

3 d L S 7 Best range.
Disturbance j = I, . . . , k
with Height
Sign i = 1. . . . , n

j = 1. . . . , k
Sign with Sgn = c j s g n , ~ = Cj(2 b,j - 1). i = I , . . . , n
Direction Where c j = + 1 , - 1 or 0. j = I, . . . , k
Magnitude

i = 1, . . . , n
j = 1, . . . , k
i = 1, . . . , n
j = 1. . . . , k

Exponent

Positive/
Negative Sums
Pos. sumj = P(expjj) + . . . + P(exp;,jJ for each (expi,&) of j
where sgn,j > 0,
Neg. sum; = P(expj,i) + . . . + P(exp;.k) for each (expi.k) of j
where sgnjJ < 0.
Second Query

Exp = expjj = Lmj + magj,j.

For each i = 1, . . . , n form two sums:

Form intermediate set D = d j
If Pos. sum; 2 Neg. sum,, then d; = 1;
Else d; = 0.
Form X' = xj' = d;. i = 1, . . . , n

Intermediate R = rj i = 1 , . . . , n
Response

Where

Set X = X'. X' = xj',
Set L = L'. where L' < L
Go through steps (3H9) forming a
new intermediate set D = d;

Computations are required only for
those components i that had "set flag".

r; = x;, i fd j = x;, and
r; = set flag, if d; = x;.

Initialize

Recompute

i = 1. n

i = I , . . . , n
Third Query For those components that had "set flag";

if d j = xi, then xj" = XI(. and
if d j = xi, then x i ' = *.

OUlDUf ' 0 = X" = XI)'. i = l n

In the pattern matching method set forth in this table 50
a first query pattern, taking the form of a set X = x j , is
matched with a plurality of stored data patterns, taking
the form of a matrix B=bp where i=i, . . . , n is the
number of components in each pattern and j =j, . . . , k
is the number of stored patterns. As may be understood 55
from this table, the method comprises the following
essential steps:

(a) For each stored data pattern, the number of com-
ponents which are identical to corresponding com-
ponents in said first query pattern are counted, 60
thereby forming a set of match numbers M=m,,
(steps (1)-(3) in the Table).

(b) If any match number mj=n, then the respective
jrh stored data pattern is displayed as an output
pattern set Oj=oijindicating a match (step (4) in the 65
Table).

(c) If no match number mj=n, then a second query
pattern X'=x; is determined by modifying the first

(d) Steps ,-, and (b) are then repeated using the sec-
ond query pattern in place of the first query pat-
tern.

(e) If no match number mj=n, a third query pattern
X"=xI' is determined by modifying the second
query pattern, component by component, in depen-
dence upon both a third, global influence of all
stored patterns on all components of the second
query pattern and a fourth, particular influence of
all stored patterns on each respective component of
the second query pattern, with the third and fourth
influences being less than the first and second influ-
ences, respectively (steps (13 and (14) in the Table).

(f) The output pattern O=Oj, is then displayed, com-
ponent by component, with those respective com-
ponents of the third query pattern that have been
modified at most once from the first query pattern
(step (15) in the Table).

5,189,709
11 12

If desired, those respective components that have to the set LM for purposes of determining the matrix
been modified twice from the first query pattern may be Exp.
displayed in the output pattern O=ojin such a manner The height factor components hjmay be a function of
as to indicate conflict between the first query pattern time and are also preferably an integer, such as - 1, 0, 1,
and the set of all stored data patterns. For example, 5 2, etc.
these components that have been modified twice may According to a further preferred embodiment of the
be displayed as an asterisk (*). present invention a sign factor set C=Cj is associated

The step (c) indicated above preferably comprises the with the components of each stored pattern bQ Each
steps of: sign factor component cj is indicative of whether the

(1) multiplying each match number mjof a match set 10 pattern component is to be sought, avoided or ignored.
M by a first disturbance factor L to produce a set The sign factor set C is multiplied by the sign matrix
LM; Sgn for the purposes of determining the positive and

(2) determining a sign matrix Sgn for all components negative sums.
sgno by setting each component equal to - 1 if the Some or all of the sign factor components cjmay be a
corresponding stored pattern component bo is 0, 15 function of time. These sign factor components Cj are
and to + 1 if the stored pattern component is 1;

(3) determining a magnitude matrix Mag for all com- The maximum range for the first disturbance factor L
ponents according to the formula magg= [(logxor is approximately 2 to 20; the best range for this factor L
(bg, xi) = 1) N:l], where N is a magnification factor; is 3 to 7. For example, the first disturbance factor L may

exponent matrix Exp=LM + Mag 20 be chosen to be 3 while the second disturbance factor L'
for all components according to the formula ex- is chosen to be 2.
pg= Lmj+mago; The maximum range for the magnification factor N is

components as follows:
Pos.sum;=P(expi,,) +. . . + P(expi,k) for each 25

Neg.sum;=P(exp;,l) +. . . + P(exp;,k) for each

(6) determining a second query pattern set X'=X; for

preferably the integer values + 1, 0 and - 1.

(4) determining

(5) forming the positive and negative Sums for all 2 to 20 with the best range of values 3 to 7. For example,
the magnification factor may be chosen as 3.

In conclusion, the method of matching a first query
pattern, represented by the set X, with a plurality of
stored data patterns, represented by the matrix B, is
accomplished by approximating the surface in vector
space defined by the stored patterns by a Bernstein

30 Polynomial. This approximation makes it possible to
compute the derivative of the surface in all directions at
the query. point. It is thus possible to determine a new
query Point by proceeding in the direction of positive
slope (derivative) and in the opposite direction of a

A preferred embodiment and best mode of a LIST
computer program which implements the present in-
vention is set forth in the attached Appendix.

There has thus been shown and described a novel
40 dynamic pattern matcher which fulfills all the objects

Similarly, step (e) indicated above preferably includes and advantages sought therefor. Many changes, modifi-
the steps (1) through (6) using a second disturbance cations, variations and other uses and applications of the
factor L' which is less than the first disturbance factor L subject invention will, however, become apparent to
for those components i that have a set flag. those skilled in the art after considering this specifica-

According to a preferred embodiment of the present 45 tion and the accompanying drawings which disclose the
invention, the height factor set H=hjis associated with preferred embodiments thereof. All such changes, mod-
the components of each stored pattern bo, each height ifications, variations and other uses and applications
factor component hj being indicative of the relative which do not depart from the spirit and scope of the
importance of each stored pattern with respect to the invention are deemed to be covered by the invention,
other stored patterns. This height factor set H is added 50 which is to be limited only by the claims which follow.

(expi,&) of j where S g n j j > O ,

(expi,&) of j where sgn;j<O and

all i as follows:
if Pos. sum;SNeg. sumj, then x i= 1,
else x/=O.

Thereafter, a response set R=r i is determined for all
i as follows:

35 negative slope (derivative).

r i=xj ifx, '=x;, and

ri=serJTag, i fx /=x; .

APPENDIX

.., ... --- node: LISP: Syntax: Cormon-llrp: Package: USLA: Base : 5 2 -.-
: (defmcro flip (X I
: '(cond ((0 . x 0) 11

(t 0)))

Idelflavor box-mouae-renaitive-icema-m~xin
((item-llrc nill
(renritlve-item nill
(ltem-blinkerl)

(:=equired-flavorr cv:aheet)
(:aettrbl8-inrc~nce-varl~les item-liscl)

0

(d e f r t n x t (i t e m)
left

13
5,189,709

14
t OP
r i g h t
b o t t e n
t s t a t e 0)
name)

(d e f m e t h d (b o x - ~ u r e - r e n s i e i v e - l t e ~ - ~ x i n : a f t e r : i n i t) (iwore)
(se tq i tem-bl inker

(tv:mrlre-blinker s e l f ' cv :bo l lou-reccrn~~ lr : -b~ inkcr : v i r i b l l i t y r i l l) l

(d e f m t h d (box-roust-senait ive- i t .M-dxin : f l nd - l t eau) (r c - l h t)
(l oop i c r item i n i t e m - l i a t

nconc
(and (member (item-nuns item) re-list : t e a t ('equal)

(list iceml) 1 I

(d e f n u t h e ~ b o x - m o u ~ e - r e n ~ l t l v t - i t e ~ - ~ x i n :uke-rcem)
(name l e f t t o p r i g h t bottom)

(let ((i t e m (make-item : l e f t l e f t
: top top
: r i g h t r i g h t
: b o t t o m b o t t o m
:n- n a m)))

(push i t e m itemlist1
(tv:amu..-rak.upI
i t m m) 1

(defmrthod (box-nouac-renait:ve-leemr-mixln :prlnt-l tem-contene)
t rop t iona l (strmam *eerminal- io*) 1

(loop f o r l t e m in itewlist
f o r l e f t - (l t m m l m f t item)
t o r top - (item-top icemi
f o r r i g h t - (i t em- r igh t i tam)
f o r bottom - (ltem-bottom 1t.n)
f o r state (item-atate l t m m l
f o r nrn r - (t te rna l ru item)
do

(fo rua t atrmam ' -bnuu - -D l e f t - -D top - -D r i g h t - -0 bottom - -0 rcate - -D'
nrn r lmf t t o p r iqhc bottom a t a c e)))

(defmrthod ~ b o x - m o u ~ c - s m n ~ l t l v e - l t c ~ - n i x i n :remove-icemi (:ten)
(s c t q item-list (de lq i t e m item-liat))
(tv : rou . e - r~*up))

(def*thod (b o x - m o u a c - a e n n l ~ l v e - l f e m a ~ ~ x ~ n :rmmovc-rlll (1
t r ecq item-list n i l)
l tv:nouse-aieup))

(dmtacho5 (b o x - m o u a e - a e n s i t l v e - l t e n a - ~ x l n : reaec-scatm) ()

(loep i o r item i n i temlist
do

l a m t i (item-state i t e m) 0)))

:: Wore t h i s func t ion uses t h e cJr=enc item-list o r d e r and t o gene ra t e a l i n e a r b i t vector

(defmmthod (bex-mouse-senaatlve-iteau-rixir. : a r k e - i r e s r t r t c - a r r . y) 0
.. .. ltem-list 0rd.r cannot b. alter!!!! -

(let. ((1 (l eng th lcmm-lis:))

(s ta tm-array (nuke-array 1 :mlemnt- typc ' tunaigncd-bpe 1 1)))
(dec la re (ryr:array-rmglsce: atac*-array) 1 ,
(loop f o r Item i n l t em- l i s t

f o r indmx downfrom (1- 1)
d e

atate-array))
(reef (b i t atare-array index) (i tem-atace i t e m 1 1)

: (defun foo trow-index eol- index :at d l r)
; (let. ((nux-row-index 4)

(nux-col-index 4)
(n o - r w r (l+ mu-row-index))

(no-cola (1+ r u - c o l - i n d e x) l l
: (loop f o r c from 0 to mu-row-index

collect
(loop f o r r from 0 t o ux-eol- i rdc.<

collect
(u a m d i r

(:row tn th (+ (* c no-rows) I) 1 s t))
(:eel (n th (+ c (* r no-cola)) 1 s t)))))))

:(defun t e a t (no-rwa no-sols 1st d i r)
: (loop f o r c from 0 k l o r no-rows

co1l.c:
(loop f o r r from 0 k l o w no-eolo

c o l l e c t
(U s e dir - (: r o w (n th (+ (. c no-rows1 rI 1st))
(:eo1 (n t h t* c (* r no-cola)) 1 ~ ~ 1 1))))

; (defun b a r (l a t)
: (let ((11 (1.n-h tear 1st))))
: (loop f o r i i n 1st

5,189,709
15

nconc
(loop for k from 0 below (1- 11) by 2

collect
(let ((counter 01 I

l i f ldotims (c 3 (if (2 counter 2) . t nil) I
(and 1- (nth c kl i) 1) (inci counter)) 1

1
0) 1 l) I l

;Idefxr. xx (item-list no-rovs no-cola Loprional t t y p :=owl1
: (let (t r i l trevarae item-list))

; (Cas. type
outor-loop-count inner-loop-count)

(:row lrcrq outer-loop-count no-rows1
l s e t q inner-loop-count no-cola))

(:eo1 (aecq oucer-loop-count no-eolsl
(set< inner-loop-counc no-coral))

: (loop for c from 0 b l o w outer-loop-count
collocr

(loop Lor r from 0 b l o w inner-loop-count
coliect
(nth (cas. type

(:eo1 I* I- r outer-loop-count1 5 1 1
(:row (* (0 c outer-loop~countI ?) I 1 rill

:: (item-scat. (nth 1- 1- c outer-loop-count1 r)
) I l l

rill I

(defun-method get-list boxaoure-sensitive-ltcnr~xin (no-rows no-cols coptiorul (typ. :row])
(let I tril (reverse item-liat) 1

outer-loop-count inner-loop-count1

(:row (sat< cuter-loop-counc no-rout1
(setq inner-loop-eount no-colrll

(:eo1 (aorq curer-loop-count no--1.1
tsecq inner-loop-count no-rows)ll

(loop for c from 0 k l o w outer-loopcount

tcas. typ.

C O l l * C ~
(loop for r from 0 b e l o w inner-loop-count

c o l l e c t
(i t - - a t a t e (nch (u s e c y p e

(:eo1 I- (* r outer-loop-count) e l l
(:row 1- (0 c outer-loop-eounc) 11)) r i l l)

) I))

16

(defun-method compresa-%l* ~x-souse-aenaitive-rc.mr-mixin I l a t)
(let (121 I h n g t h (car istl) I I

(loop for i in l a c
nconc

(loop for k from 0 b e l o w (1- 111 by 2
COl leet

(le+ ((counter 01 I
(if ldocinus le 3 (i f (2 cou=ter 21 t nil))

land I- (nth (0 c kl il 1: linci counter)))
1
0)) I) l)

(defun ~ o - C o l - l l t t (list no-rows no-col3I
(loop for c from 0 below no-rows

collect
(loop for r from 0 b e l o w no-cols

to11ect
Inch (- c (* r no-rowal) lirt)lll

(defun uko-rc-liaC I l f S t no-rows no-eola ckey l t y p :coli)
(let (outer-loop-count inner-loop-count)

(Cas. type
(: r o w (setq outer-loop-count no-rows)

(:eo1 (aeeq outer-loop-eounc no-cols)

(loop for c from 0 b l o w outer-loop-count

(secq lnnet-loop-counc no-colsi)

lretq inner-loop-count no-rows)))

col lect
:loop for r from 0 h l o w inn.+-loop-count

collacr
lnth (cam cyp.

(:eo1 I* I* r outer-loop-count1 el)
(:row I* (* c outer-loop-count1 rl I I list1 1)) 1

ldefmothod ~box-mcurc-s*nsicivo-ice~-~xin :compress1 (typ.1
(let. llalse litem-nam (car itam-llac)))

(no-rows (1- (car sixei])
(no-eo18 (1- (cdr site111
(compress-rows (1- (floor I/ no-row. 31 I I I
tconrpraas-cols (1- (f l o o r (1 no-cols 31 I 1)
tco=prass-ce-vaccor make-array 1- coqxess-rows comprmaa-cols)

compress-list outer-loop-count inner-loop-courrti
:elemnt-cype * lunaignd-by+e 11 1)

(declare (apoc la l conrssa-re-vastor) I
(print (nuke-re-list

(eompresa-ale (qet-lisc no-rows no-cola :coi))
conpress-rows no-cola : c y p :?or) 1

17
5,189,709

t s e t q compress-lilt
(i f 1.4 t m :cell

(p r i n t (compresa-mle (nuke-rc-1Lat
(compress-=le (vet-list no-rovs no-cols :rev))
no-rovs compress-sols :typ. :toll))

I: t h e fol lowlru; code 1s wrong
(p r l n t (compress-rule (make-re-llst

(compress-rule (get-list no-rows no-cola :col))
compress-rovs no-cola :type :row11 I) 1

IC..* type
(:row (secq outer-loop-count compress-rows)

(:eo1 trmtq outer- loop-count compresssols)
(a e t q lnner-loop-count colapreas-eols)l

(aerq inner- loop-count compress-rowst))
(loop for c from 0 below o u t e r l o o p - c o u n t

do
(loop for r f rom C &lor i nne r - loopcoun t

do
(ret2 (b i t conyrera-rc-vector (case type

(:eo1 (- c 1. r o u t e r - l e a p c o u n t)))
(:rev (* r (* c outer- lwp-count))))

(pop compress-list))l)
c o l r g r e ~ a - r c - v e ~ o r ~

18

(eefwh0pp.r (box-aor;se-aensitive-ite~-~xln :handle-nmuse) 0 -
(unrlnd-protect

1 cont lnuwwhopp. r)
Iretq a e n a l t l v e - i t e r n l l)
(lend l t * R b l l n k e r : r e t - v i a i b i l l t y nil1)l

(de f rc t rod (box-l.cuae-sensltlve-itema-~xin :rho-linedocurnnt~tlon-string~ (1
(s l : a t r i n ~

-L: :gq le Blt, L-2:Cle.r Pad Grid HfHold):Draw, R(Hold1:Erasr. Ctl-L:S.ve. kta-L:Run Suyr-L: Run NN

-1 1
: when aens i t l ve - i t em (i tem-docurnncat lon s e n s i t i v e - i t e m)))

(defrwchod (box-~uae-aenritive-items-~xl~ :mouse-aenrit ive-it .m) (x y)
(decf x (send self :left-nurgin-rise))
(deci y (send relf : t o p - u r g i n - a l x e))
(aetq sen r i t l ve - l t em

(d o l l a t (item i t e m - l l s t)
(rhon (and (2 y (i tem-top item))

(< y (i t e r -bo t tom item) 1
ti? x (i t e m - l e f t item))
(c x (i t em- r lgh t item) 1 1

f r r c u r n item)) 1))

(de tmtbod (box-mousr-aenai t l v e - i t e r n - a i x l n :aouse-moves 1 Ix y)
(tv:wuae-set-blink:.r~rao~os~
:: See if t h r movie l a i n s i d e an item
(let ((l t w c (rend self :mouse-aensitivr-itex x y)))

(cone (;: It l a , t u n on the b l i n k e r
(not (null item))
(l e t ((left (i t em- le f t f t e m) 1

(t o p (item-cop l t e m))
(r l q h t (i tem-right i tem1 1
(bettom (i tem-bottom item)) I

(rend i t em-b l inke r : r e t - c u r a o r p r left t op)
(send i t e r - b l i n k e r :s . t -s ize (- r i g h t left1 (- bottom t o p))
t iend item-blink.: : s e t - v l a i b i l l t y t)))

I: It's not on an item, cur3 off t h e bllnker.
(E t rend i t em-b l inke r : a e t - v i a l b i l l c y ni l)))))

: (de:rchod (box-movle-rcnaltlvr-ite~-~xln :rouse-cllck) (button x y)
: (let ((l t e m (send sal: :mouse-a.nrlt lve-iter x y l l 1 1 1

(de f f l avor s e n s i t i v e - p a d - a x l n ((r o w n i l) (col 'nL1lJ
(1

(:required-f1avor8 box-mouse-senaltive-itemr-mixin t v : Q r a p h l c s - ~ x l n tv:ulndow)
:aettablr-rnarance-vari~bleaJ

tdefnr thoe (senal t ive-pad-mlxln : .uke-srnslElve-areal
(pad-width pad-height)

:: The order of the loop l a o x t r e m l y Lmportant!! It d e t e r r u n e s t h e scanning of th. grid from left t o .. .- right and t o p t o bottom l a how la done now..

(rend self :remove-all)
(loop f o r r 2:om 0 b e l o w row

f o r t o p from 0 by pad-hexqht
do

(loop f o r c from 0 h l o v col
f o r left from 0 by pad-width
do

trend self :uke-item Icon1 2 C) l e f t COP (0 left pad-rldth) (* t o p p . d - h e l g h t) l l))

(defrrathod (¶eniLtlV*-pAd-RdXin :d ra r -q r ld)
t r apc lona l (n u k e - s e n ~ t e l v e - ~ r ~ a r ti

5,189,709
19

(erase-concent tI
L U X p a d w i d t h pad-height g r i d w i d t h prid-height1

(w h r n r rasr-concent
(rend Se l f : e X p o S * l
(s r n e self :clear-window11

(satq prd-rid:h (floor (I width COLI 1 1
(s e t q pad-hmight (floor I/ h e i g h t row1 1 1
(serq gr id -wid th I * col pad-width11
(srtq gr id -he igh t 1. row pad-height11
(l o o p f o r c from 0 EO row

f o r y from 0 by pad-helght
do

(ml r ip l e -va lue -b ind (width he igh t1 laend s e l f : i n r id r - r i s e1

(if e y height1 (decf y l l
trend s e l f :draw-llne 0 y g r i d - w i d t h y t v : a l u - a e c a ~)

(loop f o r r from 0 to col
f o r x ::om 0 by pad-vidth
do

l l f (2 x width1 (d-cf xl)
(send s e l f :draw-line x 0 x g r id -he igh t tv:a1u-ae~aIl

(:f nuke-8enri t ive-areas
(send ariL :nukr-senai t lve-area pad-idrh pad -h r igh t l l l l

(defun draw-pat tern (row c o l p a t t e r n - a r r a y window .optional (site n i l 1 (from-x 01 (from-y 01
La- box-u ld th box-height a l u (draw-half n i l) (d i m -11
(p pa t t e rn -a r r ay1 1

(declarr (ayr:array-r+Flater p l l
(ml t lp l e -va lua -b ind (v l d t h heigkel (i f (n c l l sizrl (send ulndow : in s ide - s i se l

(apply (' v r l w s a i s e l l
(aetq box-rldth (floor I / width co1)Il
(s e t G box-height (f l o o r I/ h e i g h t row111
(loop for c from 1 t o row

for top from from-y by box-Might
do

(loop f o r r from 1 t o eo1
f o r left from from-x by box-width
do

(case (bit p (i n c f dlmll
((1 tl (set$ r l u tv:al~-~mtaIl
((0 n i l l lratq a l u tv:r lu-andcal)
I* (src$ draw-half t)I)

(if (nor draw-half1
(srn.5 window :draw-rectangle box-width box-bright (1+ l e f t) (1+ top1 alul
(srnd window :draw-rectangle

(-Clear I/ box-width 21 i
(f l o o r I/ box-height 211
1- l e f t (f l o o r (/ box-width 4 1 1 1
1- t o p (f loor I/ box-hrlght 4)))
t v : rlu-seta 1

(s e t $ L-aw-half n i l) I l l 1 1

: : tarcq foe (tv:%kr-window 'tv:window : e e r r - f r o r a :?Dous* : b l lnke r -p nil11

IeeffLavor s to r rd -pa t t e rns -pane (input-patzem-ac:ea~ atac~-lirt qarya-stat.-list he iph t - lL8 t)
(b o x - ~ u r t - a e n r l t l v r - i t e ~ - ~ x i n sensiclvc-prd-mlxin
tv:g:aphrcs-mixin tv:pane-raixin rv:windowl

: s e c : a b l e - i n ~ ~ i n c e - v ~ r l ~ l e a l

(d e f x r h & (s rc . ' ed -pa t t e rna -~n* : w h o - l i n c - d o ~ n * n t a t l o n - ~ t ~ l n g i (1
tz1:rcr ing 'L-2:Dclrte. Ctl-L:noeify'Il

(d e f x t h o d la torrd-pacrems-prne :divlde-atorage-boxe~l (a-row B-col)
l s rne self :sr:-row a-row1
(send self :arc-col s-col)
ls rnd self : d r a w q r i d t l)

(d t f m t h o d (storrd-patcmrna-pane : U ~ a C ~ ~ ~ t a ~ e - a d - h e l g h t - l l s ~ l (1
Isecq stare-list n i l l
(s e t $ g a y ~ - s t a t ~ - l l s t . n i l 1
(serq h e i g h t - l l s t n i l l
(loop f o r 1 i n item-llrt

f o r s t a t e - (ltrm-stare 1)
f o r h - Iltem-nmte 11
do

(when 1t-p State ' a r ray1
(set$ s t a t e - l i r t Icons sta:e atate-list))
(s e t q herghc-llst Icons h h e i g h t - l l s t l)))

(W C Q c a r y a - r t a t = - l l r t Impcar 'convmrt-to-one statr-~ist]~]

(defun-method e d i t - p a t t e r n s tored-pat terns-pane (item-stat. r indowl
(let ((i tem-array ltenrstitel

(1s-items t r r v r r s e (send ulndou : l t ~ m - l l s r 1 1))
(drclare (sys : a r r ay - reg i s t e r item-array))
(send window : r e se t - r t ace l
(send window :clrar-vlndowl
(send window :draw-qrid n i l l -
(loop f o r 1 LE ip-item.

for lndex iron 0
do

(Send window :uplace-item i :draw11111
(If 1- (bit item-ar:ay index1 1)

: (de fmthod (scorec!-pat:erns-panr :after : r r f r e a h I 0
; (send B d f :draw-grid n l l l l

: (de f f l avor b e m a t e i n - f l a v o r (atorr-prtcerr.a-array-anc!-heig~-l~stl 0
; :aecrtrblr- lnaturce-vari~ lra l

(de f f l avor Input-pat tern-pane (r to r r -pa t t e rns - s t r eam
(pen-box-i 1)
(pen-box-b 11)

(bax-rouu-aenaitlvc-ltrlsr- in unrlt ive-pad-w.kclr .
rv :q raph lca -dx in tv :pmr -n ix ln tv:vlndovl

: u e t . b l e - l r u t a n u - v a r l ~ l r ~ l

(drfun-method update-one-item inpu t -pa t t r rn -pane (item ty3.1
(lee ((l e f t (itrm-left l e e m r 1

(t o p (l r ea - top i t e m 1 I
(rlqh: (l tem-rlFht i t e m) 1
(~ t t a n (i tem-bottom item) I
(state (i t em-a ta t r i t r m l I
. lUI

(artf (item-atate i t e m 1 (car. type
(:togqlc (and (set$ alu tv:r~u-xo:l (f l i p atate1)I
(:drAv (and (artq alu tv:alu-aet&l 11)
(:errre (and (setq alu tv:afu-anCul 0 l) I l

(s rnd a e l f : d rav - rec t anp l r
(- r i p k t left 1 1 (- bottom t o p 1 1 (l* l e f t 1 (1- top1 &U)I)

(drfmethod (lnput-pattern-pan. :reverae-padl (1
(loop f o r lrem l n (a r n d s r l f :lcem-llacl

do
(updatr-ow-itea i t e m :toqgleiIl

(defmthod (input-pat tcrn-panr :colirc:-up4ate-boxesl (e511
(1st ((row-index (car & h i))

(send a e l f : f ind-i tems
tcol-index (cd r c b l l I I

(loop f o r 1 from row-index b e l o w (* row-index pen-box-:)
nconc

(loop f o r j from ee l - ind rx b l o w (- col-mdrx pen-box-hl
col lect

(cons i j l 1) I) l

(drfmethod (inpu t -pa t t r r r -pan r :update-iteml (l trn typei
(let ((Nrrenc-ro--col- lndex (i tem-nmr i teml))

(d o l l a t (i t em (send s e l f :collect-up4atr-boxes current-row-col-LnCexll
(updace-onr-ater item typei)Il

(d e f m t h d (lnput-pattern-pane :aCOr*-patternl 0
(let ((sp (send u l f : s t o r r - p a t c e r m s - a t r e ~ l

(p-row (ne& 8.1: :row11
(p-sol (1rnd self : c o l))
(pa t t e rn -a r r ay (send self : ~ k e - l t e n r s t a t e - ~ r r a y] l
sror*d-pad-lt8m left top1

(a e t q stored-pad-item (loop :or 1 in (r o v e r r e (send sp : i t e = l l a t ~ l

(aecq l e f t (l t e r l e f : acored-pad-iter1 I
(setq t o p (l t e r t o p s tored-pad-i tem,)
(srtf (1t.m-atatr stored-p.d-ltem1 pactrrn-array1
(srtf (i tem-nam atored-pad-item1 3) :defaul t heigh:
(draw-pattern p r o - p-col pa t t e rn -a r r ay op

t h r r e i a (and tnumberp (lte-staze 1 1 1 1) I I

(list (- (Ltrm-right s to r rd -pac - i t rm) l c f c l
(- (item-battom atorrd-pad-item] top]]

l e f t t o p)
(*end aP : d r a w q r l d n l l ~ 1)))

(d*fmethod (input-pat tern-pane :after : a t o r r - p a t t r r n ~ (1
(let ((SP (wnd r*lf : r t o r r - p . r t r m a - r t r e ~ ,) !

(rend sp : u p d r t e - r t a t r - a d - h e ~ ~ t - l l s t)))

(defmcbod (iWutWCt*m-p.M : M U s e - e l l c k) (but ton x y)

22

5,189,709
23

(let ((item (send s e l f :moure-aenritive-item x y)))
(cond ((AX! item (eql b u t t o n #\muse-L-ll)

(update-one-item item :tomlel
tl

(when (and row col l
((-1 b u t t o n #\mouse-L-Z)

(send self :draw-grid n i l)
(send self :reset-statel
t) 1

((eql b u t t o n #\c-rouse-L-ll
(send self : s tore-par . te rn1 .
t)

: :(procera-mn-functlon 'Run Beratein',' (lambda (1
(let 1 l i p (send s e l f : s tore-pa t te rns-s t ream) 1

((e q l b u t t o n I\m-souse-L-l)

(op Isend (send s e l f : super ior) : ~ e t - p a n e ' o u t p r r ~ a t t e m) 1
(l i s p (send (r e n d s e l f :sup.riOrl :cet-pam 'lispll)

(send l i s p :Clear-rindow)
laend op :clear-rlndow)
(draw-?rttern rw c o l

(tOP-l*V*l (send Se l f : N k * - i C * ~ J t . t t - r r r . y)
trend J p . : l t a t e - l l S t) (send Sp : h e l g b t - l i ~ e l
1i.p)

OPI I 1

:: (proteas-run-function 'Run Bers te in '
::,'(lUn!¶da (1
(let ((s p (send s e l f :store-patternr-~treami)

1 (*Ul b u t t o n f \JUper-mouJe-L-l)

(cp (send (.end self : s u p r r i o r) :get-pane ' o u t ~ t - p . t t e r n) 1
(1 l J p (send (send Je1f : J U P r i O r) :get-pm. ' l i s p)))

(send lisp rclear-uindowl
(send OP :clear-rlndowl
(d r a w - p a t t e r n row eo1

(garya-top-level (send self :Mte- i t . r - sca te -ar ray l

OPI 1)

(send ap :qarya-atace-list)
l i s p 1

::I1
I C t l l l l

(defwhoppnr (iP.pU:-Patt*rn-Pan* : ~ U s e a o V e J l lx y)
(let ((item (send self :aauac-senait lve-ltem x y))

(but ton (t v : a o u r e - b u t t o n s l))
(cond ((a& i ter (member b u t t o n ' (2 4)))

(And I- b u t t o n 21 (update-one-item item :d rau))
(and 1- b u t t o n 4 1 (update-one-item 1:em : e r a s e))
t l

t: n i l)))
lcontrnue-uhopper x y))

(d e f f l a v o r output -pa t te rn-pane (1
(tv:pane-mxin tv:window))

(d e f f l a v o r l i sp-pane (1
(tv : l ' ap- l l s tener -pane tv:windou)) -

1def:hvor r n t e r f a c e 0
(tv :border r - rdxin tv:border~d-conaCrrrnt-Zr~~-rith-ahared-io-bufferl

:aec:able-~natance-variables
1 :defaUlt-Xhit-pliSt
:paner
- ((s ~ o r e d - p a r t c r n a s:ored-patterna-p.n*

: l a b e l , t z l : a t r i n q -Stored Pacterris-1
:b l inker -p n i l
:save-bita t)

(input -pa t te rn Lnpuc-p.tt*m-p.n*
:label , (z l : s t r i n q 'Input Pad-)
: b l i n k e r - p nil
: s a v r - b i t s t l

(ou tput -pa t te rn output -pac tem-pane
: l h l , t z l : s t r i n g 'Owput D~aplay' l
: h l l n k e r - p n i l
:aave-bftr el

(1i.P l i t p - P M *) 1
: conf lgura t rons

((r u i n (:layout
(w i n : c o l w s t o r e d - p a t t e m s r idd le l i a p l
(d d d l e :rw i n p u t - p a t t e r n o u t w t - p a t t e r n) 1

(:sizes
(main (J tOmd-p*t t*mJ o-so)

: then (riddle 0.50)
: then (l i s p :even) 1

(middle (i n p u t - p a t t e r n :0-21
:ehcn (output -pa t te rn : e v e n)))))

: conf igura t ion ' w i n))

(d e f m c h d (i n t e r f a c e :After : i n i t 1 (Crest iGnOre1

l i p (send s e l f :get-pane ' i n p u t - p a t t e r n)))
(le t ((s p (send s e l f :qet-pne ' r t o r . d - p a t t * r n ~ I l

(send ap : s e t - i n p u c - ~ t t e r n - s t r e u l p)
(send i p :set-store-patterns-scre~ a p l))

24

25
5,189,709

(secq foo (tv:mk+-uindov 'interface :blinker-? nil :.dges-from :IOU.*))

(a r t< bar (tv:nuke-uindov ' i n t e r f a c e :blinker-; n l l :edges-from c us el I

(defvar ' s t o re -a r r ay - l i a t* nil)
(defvar *store-hei(lht- l ia t* nil1
tecfvar -pat tem-rou-col* n i l)

(defun save (f i l e w indow-f ra r l
(let ((sp (.end wlndow-f=mr :gec-pane 'rcored-pacte~.- . l I

t i p (send window-frur :get-pane ' i n p u t - ? a t e e r n l) l
(s y r : d ~ - f o N - t o - f i l e (fa :parae -p . thnu fi le1

' ((s e t $ *store-ar:ay-list* ' . (send ap :atrce-liatll
(s e t q . s tore-helght- l isr ' ' . (rend ap : h e i g h t - l i a t l l
(a e t q *pattarn-row-col* ',(con. (w n d i p : r O U l

fWnd i p :col~))l)ll

(defun retrieve (file r l n d o w - f r u l
(l e t ((s p (send wlndov- f r aa : g e t - p a ~ ' s t o red -pa t t a rna l I

l i p (send window-f ra r :pet-pane ' input-pat tern111
(when (y-or-n-p 'Has t h e S t o r e ?actern rraa k e n se tup? - 1

(load (f s : p a r r e - p a t h n u file1 I
b e n d i p :aet-rw (car * p a t t e r n - r o r - c o l * l ~
(send i p :ret-sol (cdr *pattern-row-col*l~
(send i p :draw-grid)
(loop f o r p i n *stor8-array-liac*

fo r h i n *atore-heighc-l ise*
for pa i n (r e v e r s e (send s p :item-listll
for left - (i tem-lef t p a l
for t o p - t i t e r t o p pa1
do

(.*ti (i t e m - a t a t e pal pl
(se r f (i t e m - a u r pal h)
tc?r~~-patt*rn (car ~pa t t e rn - row-co l*) tcdr *~actern-rov-col.l p ap

(- (item-bottom pal t o p) I
(list (- (i tem-right pal l e f t)

l e f t t o p))
(send sp :L-avT:ld n;l n i l)
(senr! sp : s e t - a c a t e - l i s t * s to re -a r r ay - l i s c*)
trend s p :ret -gaya-scate- l i s t

co l lect

-
(loop f o r e in (r and s p :rtate- l isc)

(convert- to-one el I)
(send s p :set-heighc-llrt * a ~ o r c - h e l q h t - l i r c ' l l ~ l

:Wefun t e s (1
: (cl:tLM
: (loop f o r i from 0 to 1000 do

: 1 1 --- Hod.: LISP: Syncax: Common-liap: Package: USER: Ease: 10 -*-

(* 1 111

(d r fun u k e - q - a r r a y (l eng th l n l t i a l - c o n c e n t a l

: f i l l - p o i n t e r t l
(u k e - a r r a y l e n g t h : e l emnt -cyp . ' (unalqned-byte 11 : i n l t l a l - e o n 1 i n i t i a l - c o n t e n t s

(defnucro closeness-count (pat tern- lenqrh q store-vectors-liar)
' (l oop for atore-vector i n .a tore-vactora- l iac

collect
(let ((a atore-voccor) I

(declare (ay r : a r r ay - reg la t e r 811
(loop f o r 1 from 0 klov .pattern-lenqrh

count (89 (b i t .q 11 (bit a 11 I I) I I

(dofun S ~ l 8 t - a n d - 2 n d - t * ~ a S (p . t r e rn - l eng th c l o w n e s s - l i a r disturb-factor stor~-b.ight-liae)
pa t t e rn - l eng th
(loop f o r i in c l o s e n e s s - l i s t

f o r j i n s t o r e - h e i g h t - l i r e
collect
:: : i f (- -c t rern- l t r rgth 11 n i l
I* (* 2 ascurb-factor) j l

) I
:;I

(dofx~cro aura-third-terrraux (rum-value q bl
' (va lues . b :b 1s 1 then le's p o r i t i v e

(i f 4 - (lopxor ,q .bl 1 1 (+ .aum-value 31 .sum-valuell)

tcefrsrcro fli? (X I

'(cond ((- .x 01 1 1
(t 011)

(defun add-b i t s (o n - b i t s - l i l t on-bi t)
tloop for w m - l u t - (me-r on-bi t on -b i t s - l i a r1

u n t i l (and (n u l l mein-list) (puah on-bit on-bats- l ls t l (return on-b i t s - l i s t11
do

27
5,189,709

(aecq On-bl tJ- l lSt (remove on-bi t on -b i t a - l l s c l l
(set$ on-bi t (1, on-bi t) 1) I

28

(&.tun d-index-new ($-value a rc red -vec to ra - l i s t sum-value-list Cia-index1
::&optional (window pp l l

(let ((por-sum n i l l
(neg-aura n i l l
exact-nrtch)

l s e t q exact-match
(loop f o r b i n sto?ea-vec:ors-l iat

f o r b-vl iue - l b & t b dim-index)
f o r .-value i n a u r v a l u e - l i a t
do

(i f t n u l l .-value)
(?*turn bl
(nu l t ip l r -va lu r -b ind (bucker vsl231

ISUm-tk1rd-tera-a~~ .-value $-value b-valual

(1 (secq poa-sum (add-bi ts poa-sum vsl23111
I O (artq nee-aum Iadd-bi ts nq-sum vs12311111111

(Case bucket

:: (p r i n t exacc-match 111
:: (i f e x a c t - u t c h
: :exaCt-Utch

(loop f o r --poi - (if (null-poa-awnl -1 (apply # ‘ u x poa-awnl)
f o r u x - n q - (if t nu l l rug-au~nl -1 (apply I ’ u x nep-sum~!
u n t i l (o r (and 1- -1 u x - p o a mx-nmgl (r e t u r n n i l))

(and I= lux-pas ~ . x - n e g l
(if (> sax-poa max-me1 (r e tu rn 1) (r e t u r n 0) 1) I.

do
(ret$ pot-aum Ideleta u x - p o a pas-arrml)
lsatq n e t s u m (d r l e t a mu-nec n e ~ - a u n l ~ ~

;:I
I 1 -

terfrrn d-Camrnai0r.s (pattern-length query-array-vector s to red -vec to r - l i s t
disto:b-factor atored-heigt l t - l is t r e s u l t - a r r a y
topclonal (procars- index-l iar n i l))

(let (lr r e su l t - a r r ay1
(q query-array-vector1
s-1-21

(declare (rya:array-regiacer r ql I
(setq a-1-2 (xm-ls? m d - Z n d - t e m p a t t e n - l e n g t h

lcloseneas-count pa t t e rn - l ang th q a t o r e d - v e c t o r - l i s t)
L l s tu rh - fac to r r to rod -hexgh t - l i a t l)

: : (p r in t a-1-2 1 1 1
(i f p rocoss - index- l i s t

(loop f o r 1 i n p rocess - lnd rx - l i s t
f o r pre-bi t -value - (b i t r 1)
f o r qbic-value - (b i t q 2)

f o r d-valru - (d-Lndax-Mw qbi t -value s to red -vec to r - l i s t a-1-2 1)
u n t i l (And (t w p d-value ‘array1 t r e tu rn d-valw))
do ,

::(break ‘in proeeaa-index-list’)
: : (f o n u t 11 -4 d-value - -D’ d-valual
(if I- (loqxor pra-bi t -value

d - v d u e)
11

(s o t f (b i t r 11 ‘ *)) I
(setp process - indax- l i s t

(l o o p f o r 1 from 0 b l o w pat tern- langth
f o r p r e - b i t r r l u e - (b i t r 11
for q b l t - v a l u e - (b i t q 1)
f o r d-value - (d-index-new q b i t - v r l u e s torod-voetor- l fac a-1-2 1)
::do (f0-t t -4 d-value -D’ d-valrul
u n t i l (and (t w p d-value ‘array1 (r e t u n d -va lue l)
nconc

(whan (- (loqxor pre-bit-value d - v a l w)

(s e t f (b i t r 11 (f l i p pre-bi t -valuel l
(l i a r ill111

1)

Ivalrua r p r o c e s ~ - L n d e x - l L ~ t ~ l)

I 4ceicn top - l eve l (ciuery-array-vector s t o r e d r e c t o r - l i s t s to=ed-h . igh t - l i a t
&optional . (w i n d o w e) I

(let ((pac te rn - l eng th (a r r a y - t o t a l - s i r e q w r y - u r a y - v e c t o r) l
r a a u l t - a r r a y
p rocess - index- l i a t l

(s e t q r o s u l t - a r r a y lmkr -a r r ay pattern-length 1)
(copy-arzay-contents query-array-vector r e su l t - a r r ay)
(:omat window--* rirat i teration!!’)
(mult iple-value-secq (r e s u l t - a r r a y process- index-l is t)

(d d i m a n a l o n s pa t t e rn - l eng th query-array-vector a to rad -voccor - l i a r S
s to rad -he lphe - l i s t reaul t -ar=ayl l

(when (and p roceaa - lndax- l i s t (l i s t p proceaa- index-l isc) l
(format window -4 Second iteration!!’)
(f ana rc window --a process- index-1ls t - -5’ prow~s- lndex-11s t I
(d d i . u n a i o n a pa t t e rn - l eng th r e su l t - a r r ay a to red -vec to r - l i s t 3

s to red -he igh t - l t a t reaulc-array p rocess -Lndu- l l s r l l
r e s u l t - a r r a y 1 I

29
5,189,709

30
DBA REPORT

HQ AFESC/DEC PREPARED BY: DATE: 07/271

RUN N W E R : 0 1 SET W E E R : 01 LCC RUN MLneER: 06
PROGRAM I D : AFLC PROJECT I D : ROBIN FACIL ITY ID: t 1 5

COSTS CALCULATED ARE: CONSTANT $

YEARLY CONSTANT $ ENERGY L CLEANING VALUES
DESCRIPTION COST PTY
CLEANING ==> 1 3 1 0
HEATING ==> 1 3 0 2 6 304
A/C -=> 14 114
FNS/LGHTS==) 16 i i o
USER DEFl==>
USER DEF2==>
USER OEF3=->
USER OEF4==>

ENERGY TYPE

NAT US
ELECTRIC
ELECTRIC

DELETE EST IMATE DATA

Initial menu item "8" is selected to delete estimate data. CCMAS
tells a user how data may be deleted, then asks for the CCMAS-ID.

-

DATA CAN BE DELETED BY ENTERING:

CCMAS-ID; CCMAS-ID AND RUN #; OR CCMAS-ID, RUN# AND SET#:

ENTER PROGRAM, PROJECT, FACILITY-ID (CCMAS-ID):

ENTER RUN NUMBER:

If the user inputs a <CR> instead of a run number CCMAS responds:

DO YOU WANT TO DELETE ALL ESTIMATE DATA FOR:
CCMAS-ID: XXXXXXXXXX

If the user inputs a run number, CCMAS responds:

ENTER SET NUMBER:

If the user inputs a <CR> instead of a set number CCMAS responds:

DO YOU WANT TO DELETE ALL
CCMAS-ID: XXXXXXXXXX
RUN NUMBER: X

If the user enter a set number

DO YOU WANT TO DELETE ALL
CCMAS-ID: XXXXXXXXXX
RUN NUMBER: X
SET NUMBER: X

ESTIMATE DATA FOR:

CCMAS responds:

ESTIMATE DATA FOR:

A "No" response to the DO YOU WANT TO DELETE ALL ESTIMATE DATA
FOR: returns the user to the previous data input. To a "YES"
reply , CCMAS responds:

DATA WILL BE DELETED
DELETING ESTIMATE DATA FOR:

RUN NUMBER: X (If Specified)
SET NUMBER: x (If Specified)
CCMAS-ID: XXXXXXXXXX

DATA DELETED

The user is then returned to the initial menu.

5,189,709

What is claimed is:
1. A method of comparing, with the aid of a comput-

ing system, a query pattern with a set of stored patterns,
said method comprising the steps of:

a) creating a library of stored patterns in a desired
format wherein each pattern comprises a set of
elements, each pattern having a relative time-
dependent importance/avoidance property;

b) presenting a query pattern comprising a set of
elements representative of the entity to be matched lo
in the same size and format as the stored patterns;

c) comparing the query pattern with each of the
stored patterns, on an element-by-element basis and
determining a first degree of match for each stored
pattern; 15

d) indicating a complete match if one exists;
e) creating, if no complete match exists, a derived

query pattern having the same number of elements
as the original query pattern and the stored pat- 2o
terns, said derived query pattern being created as
follows:
1) determining a set of first change numbers D

according to the following formula:
25

where:
D1 ;is the first change number for the ifhelement

t indicates a function of time,
C(i,t) is the algebraic sign of the relative impor-

tance property at time t of stored pattern B ,
ph(fJ) is the magnitude of the relative impor-
tance property of stored pattern Biat time t,

J(X,i) is the degree of match with stored pattern 4.0
Bi,

(SdX,i) is:

of the query pattern,
35

- 1 if thei fhelement of Bland the ifhelement of

1 if the ifh element of Bland the i fh element of 45

-p3 if the ifh element of Bz is 0 and the ifh

p3 if the ifh element of BZis 1 and the ifh element

2) setting the value of the ifh element of the derived
query pattern at 1 if the value of the ifh element of
the query pattern is 1 and the first change num-
ber for the ifh element is positive;

3) setting the value of the if" element of the derived s5
query pattern at 1 if the value of the ifhelement of
the query pattern is 1 and the first change num-
ber for the ifh element is zero;

4) setting the value of the ifh element of the derived
query pattern at 0 if the value of the ithelement of
the query pattern is 1 and the first change num-
ber for the i'h element is negative;

5) setting the value of the ifh element of the derived
query pattern at 1 if the value of the i'helement of 65
the query pattern is 0 and the first change num-
ber for the ifh element is positive;

X are both 0;

X are both 1;

element of X is 1;

of X .is 0, 50

60

_ _
32

6) setting the value of the i"J element of the derived
query pattern at 0 if the value of the ifh element of
the query pattern is 0 and the first change num-
ber for the i"J element is zero;

7) setting the value of the i'h element of the derived
query pattern at 0 if the value of the ifhelement of
the query pattern is 0 and the first change num-
ber for the i2h element is negative;

f) comparing the derived query pattern with each of
the stored patterns, on an element by element basis
and determining a second degree of match;

g) indicating an answer pattern, said answer pattern
being the derived query pattern if a complete
match exists between the derived query pattern
and a stored pattern,

h) creating, if no complete match exists, an answer
pattern having the same number of elements as the
derived query pattern and the stored patterns, said
answer pattern being created as follows:
1) determining a set of second change numbers D2

according to the following formula:

where:
D2 i is the second change number for the irh ele-

ment of the query pattern,
t indicates a function of time,
C(i,t) is the algebraic sign of the relative impor-

tance property (or zero) of the stored pattern
Biat time t,

pH(i.0 is the magnitude of the relative importance
property of stored pattern Bi,

J(X',i) is the second degree of match Bi and X,
SdX',l) is:
- 1 if the element of Bz, and the ifh element of

X' are both 0;
1 if the i"J element of BZ and the ifh element of

X' are both 1;
-P3 if the ifh element of Bz is 0 and the ifh

element of X' is 1; P3 if the if* element of B2
is 1 and the ifh element of X' is 0,

2) setting the value of the ifh element of the answer
pattern at 1 if the value of the i f h element of the
query pattern is 0 and both the first change num-
ber and the second change number for the ifh
element are positive;

3) setting the value of the ifh element of the answer
pattern at 0 if the value of the ith element of the
query pattern is 1 and both the first change num-
ber and the second change number for the ifh
element are negative;

4) setting the value of the ifh element of the answer
pattern at 0 if the value of the ifh element of the
query pattern is 0 and the first change number
for the ifh element is negative;

.

5,189,709

5) setting the value of the ifh element of the answer
pattern at 1 if the value of the irh element of the
query is 1 and the first change number is positive;

6) setting the value of the ifh element of the answer
pattern at *, where * indicates ambiguity, if the
value of the i‘h element of the query pattern is 0,
the first change number for the i‘h element is
positive and the second change number is nega-
tive; and

setting the value of the irh element of the answer
pattern at * if the value of the i‘h element of the
query pattern is 1, the first change number is
negative and the second change number for the
ifh element is positive; and

i) converting answer pattern from representational
format to desired format with ambiguous elements
distinguished from determined elements in some
manner.

2. A method, using a computing system, for calculat-
ing the similarity between a first pattern, called a “query
pattern”, and at least one of a library of k second pat-
terns, called “stored patterns, ” the query pattern being
representative of a physical entity and being repre-
sented by a first sequence of successive feature elements
X=(Xi, X2, . . . , Xi, . . . , X,) where n equals the number
of feature elements, each stored pattern being represen-
tative of a physical entity and being represented by a
second sequence of successive feature elements B=(Bl,
B2,. . . , Bi, . . . B,), the method comprising the steps of:

(a) comparing the query pattern with the mfh stored
pattern on an element by element basis;

(b) counting as a “first degree of match” for the mrh
stored pattern, the number of elements of the query
pattern which are equal to the corresponding ele-
ment of the mth stored pattern;

(c) outputting a “matched pattern” indication if the

5

10

15

20

25

30

34
1 if the irhelement of Bland the irh element of X

-p3 if the irhelement of BZis 0 and the i‘helement

p3 if the irh element of Bz is 1 and the ifh element

(8) computing, using the query pattern X and the first
et of change numbers, a derived query pattern X‘
where X’=(X’1, X‘2. . . , X’i, . . . , X’n);

(h) comparing the derived query pattern to the mfh
stored pattern on an element by element basis;

(i) counting as a “second degree of match” for the
mth stored pattern, the number of elements of the
derived query pattern which are equal to the corre-
sponding element of the mrh stored pattern;

(i) outputting a “matched pattern” indication if the
second degree of match for the mrh stored pattern is
equal to n;

(k) storing the count for the second degree of match
for the mfh stored pattern if less than n;

(l) repeating steps (h) through (k) for each remaining
stored pattern;

(m) computing a second set of n change numbers for
the set of stored patterns using the query pattern
and the second degree of match;

(n) computing an ‘‘answer pattern” using the query
pattern, the first set of change numbers and the
second set of change numbers.

3. The method of claim 2, further comprising the
further step of computing the second set of n change
numbers according to the follow equation:

are both 1;

of X is 1; and

o f x i s 0

first degree of match for the mlh stored pattern is
equal of n;

(d) storing the count for the first degree of match for
the mrh stored Dattern if less than n:

where:
40

(e) repeating step’s (a) through (d) for each remaining
stored pattern;

(f) computing, using the query pattern and the first
degree of match, a first set of n change numbers for
the set of stored patterns according to the follow-
ing equation;

45

where:
(1) D1 iis the first change number for the i‘helement 55

(2) P is a positive prime number;
(3) L and L’ are integers such that (L>L‘> 1);
(4) t indicates a function of time;

of the query pattern;

(1) D2 i is the second change number for the irh ele-

(2) t indicates a function of time;
(3) C(i,t) is the algebraic sign of the relative impor-

(4) pH(iJ) is the magnitude of the relative importance
property;

(5) J(X’,i) is the second degree of match (the number
of elements of B that agree with the corresponding
element of X’;

- 1 if the element of B and the irhelement of X’ are

1 if the i‘h element of B and the ith element of X’ are

-p3 if the irh element of B is 0 and the i’helement of

p3i the ithelement of B is 1 and the ifhelement of X’

4. A method of matching a fvst query pattern, taking

ment of the query pattern;

tance property (or zero);

(6) S,(X‘,i) is:

both 0;

both 1;

X‘ IS 1; and

is 0.
(5) C(i,t) is the algebraic sign of the relative impor- -60

(6) pH(iJ) is the magnitude of the relative impor-

(7) J(X,i) is the degree of match with stored pattern

(8) SAX$) is:

tance property of stored pattern Bi,

tance property of stored pattern Bi;

Bi;

- 1 if the element of BZand the i’h element of X

the form of a set X=xa with a plurality of stored data
patterns, taking the form of a matrix B=bi,z, where
i= 1, . . . , n is the number of components in each pattern
and j= 1, . . . , k is the number of stored data patterns,

(a) for each stored data pattern, counting the number
of components which are identical to correspond-
ing components in said first query pattern, thereby

65 said method comprising the steps of:

are both 0

5.189.709
35

forming a set of match numbers M=m,;! where
j=1,. . . , k;

(b) if any match number mj=n, then displaying the
respective jfh stored data pattern an an output pat-
tern set Oj'oij indicating a match;

(c) if no match number mj=n, then determining a
second query pattern X'=x/ by modifying said
first query pattern, component by component, in
dependence upon both a first, global influence of
all stored patterns on all components of said first
query pattern and a second, particular influence of
all stored patterns on each respective component of
said fmt query pattern, wherein such step further
comprises the steps:
(1) multiplying each match number mj of a match

set M by a first disturbance factor L to produce
a set LM;

(2) determining a sign matrix Sgn for all compo-
nents sgng by setting each component equal to
- 1 if the corresponding stored pattern compo-
nent bijis 0, and to + 1 if the stored pattern com-
ponent is 1;

(3) determining a magnitude matrix Mag for all
components according t o the formula magij= [-
(logxor(bij,x;)= I), where N is a magnification
factor;

(4) determining an exponent matrix Exp = LM + -
Mag for all components according to the for-
mula expo= Lmj+mago;

(5) forming the positive and negative sums for all
components as follows:
Pos.sum;=P(exp;,1)+. . . +P(expi,k) for each

. Neg.sumi=P(expj,l)+. . . +P(expj,k) for each

(6) determining a second query pattern set X'=x/

(exp;,k) of j where sgnij>O,

(expi,k) of j where sgnij<0;

for all i as follows:
if Pos.sum;SNeg.sum;, then xi= 1,
else x/ =O;

(d) repeating steps (a) and (b) using said second query
pattern in place of said first query pattern;

(e) if no match number mj=n, then determining a
third query pattern X"=x/' by modifying said
second query pattern, component by component,
in dependence upon both a third, global influence
of all stored patterns on all components of said
second query pattern and a fourth, particular influ-
ence of all stored patterns on each respective com-
ponent of said second query pattern, said third and
fourth influences being less than said first and sec-
ond influences, respectively; and

(0 displaying as said output pattern 0-32 Oj, compo-
nent by component, those respective components

36
of said third query pattern that have been modified
at most once from said first query pattern.

5. The method defined in claim 4, further comprising
the step of determining a response set R= r; for all i as

5 follows:

ri=xi fxj'=xi, and

r i = w flag. f x ; =xi.

10
6. The method defined in claim 5, wherein step (e)

includes the steps (1) through (6), using a second distur-
bance factor L' which is less than said first disturbance
factor L, for those components i that have a set flag.

7. The method defined in claim 4, wherein a height
factor set H=hj is associated with the components of
each stored pattern bg, each height factor component h,
being indicative of the relative importance of each
stored pattern with respect to the other stored patterns,

2o and wherein said height factor set H is added to the set
LM for purposes of determining the matrix Exp.

8. The method defined in claim 7, wherein at least
some of said height factor components hjare a function
of time.

9. The method defined in claim 7, wherein each of
said height factor components hj is an integer.

10. The method defined in claim 4, wherein a sign
factor set C = C j is associated with the components of
each stored pattern bij, each sign factor component cj

3o being indicative of whether the pattern component is to
be sought, avoided or ignored, and wherein said sign
factor set C is multiplied by the sign matrix Sgn for the
purposes of determining the positive and negative sums.

11. The method defined in claim 10, wherein at least
3s some of said sign factor components cjare a function of

time.
12. The method defined in claim 10, wherein each of

said sign factor components Cj is an integer.
13. The method defined in claim 10, wherein each of

said sign factor components cpsumes one of the values
+ l , Oand -1.

14. The method defined in claim 4, wherein said first
disturbance factor L is in the range of 2 to 20.

15. The method defined in claim 4, wherein said first

16. The method defined in claim 4, wherein said first

17. The method defined in claim 16, wherein said

18. The method defined in claim 4, wherein said mag-

19. The method defined in claim 4, wherein said mag-

20. The method defined in claim 4, wherein said mag-

25

4s disturbance factor L is in the range of 3 to 7.

disturbance factor L is 3.

second disturbance factor L' is 2.

nification factor N is in the range of 2 to 20.

nification factor N is in the range of 3 to 7.

5o

55 nification factor N is 3. * * * * *

60

65

