OPTIMIZATION TECHNIQUES APPLIED TO PASSIVE MEASURES FOR IN-ORBIT SPACECRAFT SURVIVABILITY: CONTRACT NAS8-37378

FINAL REPORT

JUNE 1992

PREPARED FOR:

GEORGE C. MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER, AL 35812

PREPARED BY:

ROBERT A. MOG
MICHAEL J. HELBA
JANEIL B. HILL
OPTIMIZATION TECHNIQUES APPLIED TO PASSIVE MEASURES FOR IN-ORBIT SPACECRAFT SURVIVABILITY:

CONTRACT NAS8-37378

FINAL REPORT

JUNE 1992

PREPARED FOR:

GEORGE C. MARSHALL SPACE FLIGHT CENTER
MARTSHALL SPACE FLIGHT CENTER, AL 35812

PREPARED BY:

ROBERT A. MOG
MICHAEL J. HELBA
JANEIL B. HILL

Science Applications International Corporation
An Employee Owned Company
ACKNOWLEDGMENTS

We would like to thank Jennifer Robinson, Joel Williamsen, Sherman Avans, and Ben Hayashida of the Marshall Space Flight Center and Marv Price of SAIC for their direction and contributions to these developments under NASA Contract NAS8-37378. In particular, we thank Jennifer Robinson for recommending the approach and numerous trades for the advanced shielding concepts, Joel Williamsen for suggesting many of the features and development approaches for the Monte Carlo simulation tool, Sherman Avans for recommending many of the initial features of IMPACT10V and PSDOC, Ben Hayashida for suggesting various improvements to PSDOC, and Marv Price for providing the key initial technology and various suggestions along the way.
LIST OF SYMBOLS

\(a_i \) = estimated parameters for regression

\(a_{ij} \) = exponent for objective function term i and variable j

\(a_{ijl} \) = exponent for term i, variable j, in constraint l

\(A \) = spacecraft space debris area

\(A_l \) = acceleration factor of primal penalty function for constraint l

\(B \) = spacecraft orientation factor

\(c_i \) = coefficient for objective function term i

\(c_{il} \) = coefficient for term i in constraint l

\(c_{is} \) = coefficient for posyseparable term i

\(C \) = bumper material speed of sound

\(d, D \) = projectile diameter

\(DOD \) = geometric programming degree of difficulty

\(f \) = non-normalized impact velocity distribution

\(f_n \) = normalized impact velocity distribution

\(F \) = space debris flux

\(F_h \) = fraction of hyperspace for random search

\(g_l \) = constraint l

\(h \) = spacecraft altitude

\(i \) = spacecraft inclination

\(k \) = number of independent variables

\(K_l \) = right hand side of primal constraint l

\(L_2 \) = wall material constant
\(m \) = projectile mass

\(m_h \) = number of random search points

\(m_l \) = number of terms in constraint 1

\(n \) = number of terms in objective function or number of plates (bumpers and wall)

\(n_j \) = positive integer value corresponding to variable \(j \)

\(N \) = cumulative space debris flux or number of "walls" penetrated (including witness plates)

\(N_1 \) = number of walls penetrated (normal impact)

\(N_t \) = total meteoroid flux

\(p \) = number of constraints

\(P \) = space debris growth rate

\(P_h \) = required confidence for random search

\(P_0 \) = spacecraft probability of no penetration

\(q \) = number of discrete variables

\(r_j \) = discrete availability factor for variable \(j \)

\(s \) = solar flux

\(S, S_i \) = bumper/wall separation

\(t_1, t_i \) = bumper thickness

\(t_2, t_n \) = wall thickness

\(T \) = mission duration

\(V \) = projectile impact velocity

\(V_{\text{max}} \) = maximum space debris impact velocity

\(W \) = structure mass per unit area or weight

\(\alpha_i \) = acceleration factor of primal penalty function for discrete constraint 1

\(\delta_i \) = dual variable corresponding to objective function term \(i \)
\(\delta_j \) = dual variable corresponding to term j in constraint l
\(\delta_l \) = binary factor of primal penalty function for constraint l
\(\delta_{lj} \) = first dual variable for discrete constraint of variable j
\(\delta_{2j} \) = second dual variable for discrete constraint of variable j
\(\Delta_l \) = binary factor of primal penalty function for discrete constraint l
\(\varepsilon \) = convergence parameter for penalty function
\(\varepsilon_1 \) = initial exploratory step size for Hooke and Jeeves
\(\varepsilon_2 \) = final exploratory step size for Hooke and Jeeves
\(\theta \) = impact angle from surface normal
\(\mu_l \) = dual objective function variable in constraint l
\(\nu \) = dual objective function
\(\phi \) = primal penalty function
\(\rho_1, \rho_i \) = bumper density
\(\rho_2, \rho_w \) = wall density
\(\rho_p \) = projectile mass density
\(\psi \) = spacecraft inclination factor

\lceil \cdot \rceil \ = nearest integer of quantity in brackets

A 0 subscript denotes optimal value for a primal variable.
A * superscript denotes optimal value for a dual variable.
Table of Contents

1 INTRODUCTION .. 1
 1.1 Problem Statement ... 1
 1.2 Contract Purpose .. 2
 1.3 Study Goals .. 4
 1.4 Study Results ... 4
 1.5 Major Findings of This Study ... 5

2 MONTE CARLO SIMULATION DEVELOPMENT TASK ... 6
 2.1 Monte Carlo Simulation Purpose ... 6
 2.2 Monte Carlo Simulation Development Approach ... 6
 2.3 Particle Time-Arrival Process for Monte Carlo Simulation Development 7
 2.4 Simulation Status ... 11
 2.5 Selected Results ... 12

3 ADVANCED SHIELDING CONCEPTS TASK ... 40
 3.1 Introduction ... 40
 3.2 Extension to Multiple Bumpers for Wilkinson Predictor .. 40
 3.3 Results ... 42
 3.4 Extension to Multiple Bumpers for Ballistic PEN4 Predictor .. 50
 3.5 Advanced Shielding Task For Projectile Shatter (Multibumpers) 51
 3.6 Multibumper Protective Structures Design Trades .. 74
 3.7 Intrinsically Nonlinear Regression For Multibumper Projectile Shatter 87
 3.8 Conclusions and Recommendations ... 88

4 PROJECTILE SHAPE EFFECTS TASK ... 91

5 REFERENCES ... 93

6 APPENDICES .. 107
1 INTRODUCTION

1.1 Problem Statement

Spacecraft designers have been concerned since the 1960's about the effects of meteoroid impacts on mission safety. Recent concerns have extended to the space debris environment, which typically displays more massive particles than the meteoroid environment for the same risk level. Additionally, the higher exposure area-time product of future space missions (e.g., Space Station) poses a more critical design problem than current short term missions. Finally, the inherent uncertainties in projectile mass, velocity, density, shape, and impact angle make the traditional deterministic design approach impractical.

The engineering solution to this design problem has generally been to erect a bumper or shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. This passive measure has resulted in significant structural weight savings relative to a single wall concept with the same protective capability. The problem, then, is how to efficiently design these protective structures so that the bumper disrupts the projectile without posing a lethality problem to the wall protecting the crew and equipment.

Spacecraft designers have a number of tools at their disposal to aid in the design process. These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic codes. Perhaps the most widely accepted of these tools is impact testing, which has the advantage of providing actual spacecraft design verification. On the other hand, maximum test velocities are currently limited (8 km/sec) relative to maximum space debris (about 15 km/sec) and meteoroid (about 72 km/sec) velocities. Also, extensive testing is required to develop statistically significant trends for the large number of parameters associated with hypervelocity
impact. Hydrodynamic code analysis can overcome the velocity limitation problem. However, this method is very computer (and time) intensive, and there is a fair amount of controversy involved in the selection of appropriate codes and code-specific parameters.

Analytic impact predictors generally provide the best quick-look estimate of design tradeoffs. Their use is constrained by the limitations of the testing from which they are experimentally derived, the assumptions used in their theoretical derivation, or the regression analysis used in their statistical formation. However, analytic predictors may provide information that is clearer than that obtained from the examination of experimental results.

The most complete way to determine the characteristics of an analytic impact predictor is through (nonlinear) optimization of the protective structures design problem formulated with the predictor of interest. Optimization techniques provide analytic or numerical solutions depending on the nature of the predictor, the problem formulation, and the technique used.

1.2 Contract Purpose

The purpose of this contract is to provide Space Station FREEDOM protective structures design insight through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. Major findings from contract inception to the beginning of this study are detailed in References 100-105 and are shown below:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTECTIVE STRUCTURES DESIGN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The Nysmith Predictor Has a Systemic Inequality Constraint.</td>
</tr>
<tr>
<td>2</td>
<td>All Predictors Investigated Show a Large Relative Incentive for Increasing Bumper/Wall Separation from 10 to 15 cm. (Shift to Knee)</td>
</tr>
<tr>
<td>3</td>
<td>All Predictors Investigated Show a Large Relative Disincentive for Increasing System Probability of No Penetration. (Already at Knee)</td>
</tr>
<tr>
<td>4</td>
<td>All predictors reflect increasing design sensitivity to projectile diameter and decreasing design sensitivity to bumper/wall separation.</td>
</tr>
<tr>
<td>5</td>
<td>Optimal Design Ratios Vary With Mission, Requirements, Environment, and Materials Parameters. Variations in Bumper/Wall Materials Show Large Design/Weight Differentials. (Even Among Aluminum Alloys only)</td>
</tr>
<tr>
<td>6</td>
<td>Optimal Bumper Thickness is Most Heavily Influenced by Projectile Mel/Vaporization Region While Optimal Wall Thickness is Most Heavily Influenced by Projectile Shatter Region.</td>
</tr>
<tr>
<td>7</td>
<td>Posynomial Programming May Be Useful in Predicting Design Trends as Functions of Estimated Regression Parameters Before Testing.</td>
</tr>
</tbody>
</table>

ENVIRONMENT SENSITIVITY

8 Debris Dominates Meteoroids From a Design Standpoint, But Optimal Ratios are Considerably Different.

9 Debris Growth Rate, Mission Altitude, Schedule, Safety, and Duration All Have Significant Effects on Optimal Design Values and Ratios

OPTIMIZATION APPROACHES

10 Global Protective Structures Design Optimization Is Achievable Using Many Hypervelocity Impact Predictors (e.g. Nysmith, Burch, Wilkinson, Madden, Maiden, 42 Test Sub-database).

11 Global analytic nonlinear design optimization can be performed for the projectile melt/vaporization region (Wilkinson), for normal impacts in the projectile shatter region (Burch), and for the Nysmith predictor using Geometric Programming.

12 Differences Between Global and Local Design Optimization May Result in Large Weight Differentials.

13 The Power of the Geometric Programming Optimization Method Increases With Increasing Design Complexity (More Bumpers, Materials, etc.).

14 Material Properties Optimization Can Be Achieved Using a Hooke and Jeeves Pattern Search Approach.

16 Global (and sometimes analytic) optimization of discrete posynomial programs can be performed using dual approaches coupled with partial invariance techniques.

17 Primal methods require less "pencil and paper" effort than dual methods and are more easily applied to most problems.

18 Primal methods do not generally obtain global solutions for the discrete posynomial program.

19 The dual method may be advantageous in cases where the objective function may be sufficiently separable, since posysparable programs do not require solutions of coupled nonlinear equations in the dual-to-primal variable transformation.

STATISTICAL ANALYSES

20 Posynomial Regression Can Be Performed To a Statistically Significant Level for Hypervelocity Impact Test Databases.
1.3 Study Goals

The goals of this study are to:

1. Develop a Monte Carlo simulation tool which will provide top level insight for Space Station protective structures designers.
2. Develop advanced shielding concepts relevant to Space Station Freedom using unique multiple bumper approaches.
3. Investigate projectile shape effects on protective structures design.

The period of performance for this effort is 7-1-91 through 6-30-92.

1.4 Study Results

1. Goal 1 was completed and is discussed in Section 2. A source listing is provided in Appendix A.
2. Goal 2 was completed and is discussed in Section 3.
3. Goal 3 was completed and is discussed in Section 4.
1.5 Major Findings of This Study

1. The Monte Carlo simulation tool is feasible from a development standpoint and appears to have advantages over current expected value models.
2. A numerical approximation to a nonstationary Poisson arrival process for impact events appears to be sufficient.
3. Both the Wilkinson and ballistic PEN4 predictors may be extended to multiple bumper models.
4. The multiple bumper Wilkinson predictor optimization problem is a 0 degree of difficulty polynomial programming formulation.
5. Intrinsically Linear Polynomial Regression Can Be Performed to Statistically Significant Levels for Multiple Bumpers.
6. Residual Plot vs. Number of Bumpers Draws Suspicion to That Parameter.
7. Other Residual Plots Seem Appropriate.
8. Resulting Geometric Program has 0 Degree of Difficulty.
9. Optimal Areal Densities are Equal for Bumper(s).
10. Optimal Bumper(s) and Wall Areal Densities are Generally Not Equal.
12. Wall Areal Density Dominates Bumper Areal Densities for Multiple Bumpers.
13. Optimal Individual Separations are Equal.
14. Optimal Number of Bumpers Increases with Increasing Particle Diameter. (Note Transition Region Between d=1 cm and d=1.25 cm, particle sizes.)
15. Penalty for Selecting Wrong Number of Bumpers is Not Symmetric about Optimal Solution.
16. Protective Structures Design Sensitivity to Velocity is Flat with Optimal Number of Bumpers = 1.
17. Transition from Single to Double Bumper System is Found for Total Standoffs Between 15 and 20 cm.
18. Impact Angle Sensitivity is Monotonically Decreasing with Constant Optimal Number of Bumpers = 1.
19. Transition from Single to Double Bumper System is Found for Particle Densities Between 4.5 and 5 gm/cm2.
20. Minimum System Mass Per Unit Area is Sensitive to Wall Penetration Factor. (Transition From 2 Bumpers to 1 is Found Between 0.5 and 0.6.)
21. Minimum System Mass Per Unit Area is Sensitive to the Number of Bumpers.
22. Three Year Schedule Slippage Results in 33% Increase in Design.
24. Transition Region From 1 to 2 Bumpers is Between 10 and 15 Year Durations.
25. Optimal Protective Structures Design is Very Sensitive to Average Mission Altitude Above 400 km.
26. Transition Region From 1 to 2 Bumpers is Between 400 and 500 km Altitudes.
27. Optimal Protective Structures Design is Very Sensitive to Mission PNP Above 0.96.
28. Knee of the PNP Curve is Compatible With Baseline Requirement of 0.9733.
29. Transition Region From 1 to 2 Bumpers is Between 0.9733 and 0.98 PNP: (0.9955 and 0.9966/Element).
30. Optimal Protective Structures Design is Very Sensitive to Total Debris Area.
31. Transition Region From 1 to 2 Bumpers is Between 700 and 800 m2.
32. Optimal Protective Structures Design is Sensitive to Total Bumper/Wall Separation Between 5 and 20 cm.
33. Knee of the Separation Curve Appears to Be Between 10 and 15 cm.
34. Shift to 15 cm Separation Results in About 33% Reduction in Protective Weight.
2 MONTE CARLO SIMULATION DEVELOPMENT TASK

2.1 Monte Carlo Simulation Purpose

The purpose of this simulation is to provide a statistical tool to address and quantify protective structures design risks, uncertainties, and options, and to address system-level issues relevant to designer decision-making and possible implications. The system of initial interest is the structural configuration of WP01, including the Core Module Configuration. "Grow-to" systems include module internal configurations and external structures (trusses, solar arrays, etc.) as specified in the redesign.

Initial investigations of interest include statistical analyses of primary impacts, penetrations, and vulnerable areas. "Grow-to" investigations include interior effects, secondary ricochet effects, and SSF element interrelations.

Risk considerations include environment particle velocity, impact angle, and component probability of impact. Uncertainty considerations include SSF IOC/FOC, particle diameter, mass-density, shape, and uncertainties in particle velocity and impact angle distributions.

2.2 Monte Carlo Simulation Development Approach

The tool development approach is to define the current SSF mission parameters and design configuration, and interpret the geometry mathematically using FASTGEN. The mission parameters drive requirements specification, including environment definitions. These considerations, combined with appropriate random number modules and the FASTGEN results, produce the necessary shotline time histories and intersecting body calculations. Survivability assessments follow and employ deterministic models for hypervelocity penetration prediction. Statistical assessments follow to supply answers to the questions of interest.
2.3 Particle Time-Arrival Process for Monte Carlo Simulation Development

Several algorithms have been developed for the particle time-arrival process. The standard assumption in this area is that arrival times are Poisson distributed. This means that the inter-arrival times are exponentially distributed, and sorting of arrival times is not required. Mean data is derived from the environment flux and appropriate spacecraft areas. This algorithm leads to a terminating simulation defined by the mission profile.

Realistically, however, the meteoroid and debris environments are both nonstationary Poisson processes, at best, since the mean arrival rates vary in time over the mission profile. An approximation algorithm has been developed which alters the mean arrival rate to represent the time period under consideration. However, this algorithm is not exact, since a period of high arrival rates could be neglected using a low arrival rate corresponding to the previous period, or vice versa. Thus, a more exact (continuous) algorithm should be developed. The approximating algorithm for the space debris environment is given as:
1. Input $T_i, T_f, d_{\text{max}}, d_{\text{min}}, \Delta d$. Set $t = T_i$.

2. Using equations [1]-[7], develop a cumulative flux-diameter distribution:

$$P(x \leq d) = \frac{\left(\sum_{i=0}^{\infty} \frac{(-1)^i}{\Delta x_i} \right)^{+1}}{\sum_{i=0}^{\infty} \frac{(-1)^i}{\Delta x_i} \Delta x_i, h, i, t, s}
\frac{\left(\sum_{i=0}^{\infty} \frac{(-1)^i}{\Delta x_i} \right)^{+1}}{\sum_{i=0}^{\infty} \frac{(-1)^i}{\Delta x_i} \Delta x_i, h, i, t, s}$$

$$\forall d = d_{\text{min}} + \Delta dx, x \in \left[0, \frac{d_{\text{max}} - d_{\text{min}}}{\Delta d} \right]$$

3. Draw $U_1 \sim U[0, 1]$.

4. Find $F \ni P(x \leq d) = U_1$.

5. Set $\beta = 1/F$.

6. Draw $U_2 \sim U[0, 1]$.

7. Set $\Delta t = -\beta \ln(U_2)$.

8. Update simulation time: $t = t + \Delta t$.

9. Is $t \geq T_f$?

No, then go to 2 to create next event.
Yes, then quit and gather statistics.

In step 1, the mission start date and end date are input as reals, followed by the maximum and minimum particle diameters of interest and the associated particle step size. The maximum particle of interest is generally that particle size above which protective structures designers reasonably assume no liability in their considerations. For instance, there is a small but nonzero
probability that the Space Station will be impacted by a truck-size particle. However, designers could not be reasonably expected to defeat that particle size given weight constraints. Under current environment expectations, the choice of maximum particle diameter could reasonably be in the 10-1000 cm range. The choice of maximum particle diameter affects result accuracy and run time. The minimum particle diameter of interest is generally considered to be that size below which impacts are highly unlikely to lead to perforations, contamination, or any other measure of effectiveness which is of interest to the protective structures designer. This value is very much a function of the ballistic limit curves of interest. Reasonable values for current design scenarios might be found below 0.1 or 0.2 cm. The designer may wish to vary this value to investigate the sensitivity of designer measure of performance to this input. A sufficiently low value for this parameter would be one below which no appreciable difference resulted in design measure of effectiveness. It should be noted that the minimum diameter should be carefully selected due to its strong effect on run time and result accuracy. The diameter step size is also a critical factor in these two areas. This value determines the fidelity of the resulting flux-diameter distributions. The smaller this value is, the more accurate will be the distribution in a continuous sense. However, the run time increases with decreasing step size, since the flux distributions are being evaluated at each event time. (The requirement for re-evaluation of flux distributions at each event is due to the nonstationary Poisson characteristic of the space debris process. Generally, the diameter step size is chosen to be some fraction, say 10-20%, of the minimum particle diameter. The maximum, minimum, and step size values for the particle diameter are tuning parameters whose optimal values will vary depending on mission, configuration, and design measure of effectiveness. Thus, it is highly recommended that these values be adjusted before final results are displayed for each individual analysis.
In step 2, the flux-diameter distribution is developed at the given mission time as a function of the tuning parameters. This distribution is then transformed to a cumulative flux-diameter distribution, which is normalized to achieve a valid probability distribution from which random numbers may be drawn. The file size of this distribution is completely determined by the tuning parameters. A switch in the program input file allows the user to print out these distributions throughout the mission. This option should be carefully used for long missions or large distribution sizes due to the potentially large files that would be created.

In step 3, a uniform random variate is drawn. This variate is compared in step 4 with the normalized cumulative flux-diameter (probability) distribution to determine the particle diameter at the next event. The (absolute) value of the flux is then inverted in step 5 to determine the exponential (interarrival) parameter. A second uniform random variate is drawn in step 6 for determining the interarrival time for the particle diameter determined from step 4. Step 7 uses the exponential distribution and the results of steps 5 and 6 to determine the particle interarrival time. In step 8, the mission clock is updated and compared with the final mission time in step 9. If the clock is past the end of the mission, the mission is terminated and statistics are gathered. Otherwise, the process reverts to step 2 for creation of new distributions and events.

If independent mean and variance data for arrival rates are available, a uniform arrival process may be used as an alternative to Poisson arrivals. To compare this approach with the Poisson process, the variance may be set equal to the square of the mean. An algorithm has been developed for independent mean and variance data.
Augmentation/repair times may be modelled using a number of distributions, if this modelling is of interest. If mean data only for time to repair is available, an exponential service model may be used. If independent mean and variance data are available, the gamma, weibull, lognormal, or beta distributions may be appropriate.

2.4 Simulation Status

To date, the following items have been completed:

<table>
<thead>
<tr>
<th>A. Enveloping Geometries Established For:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sphere: Enter Radius</td>
</tr>
<tr>
<td>2. Cylinder: Enter Radius, Length</td>
</tr>
<tr>
<td>3. Box: Enter length, Width, Height</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Nonstationary Poisson Arrival Process Algorithm For Space Debris</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. First Random Variate Establishes Point On Cumulative Flux-Diameter Curve At Current Mission Time</td>
</tr>
<tr>
<td>2. Absolute Flux Is Inverted To Give Mean Interarrival Time</td>
</tr>
<tr>
<td>3. Second Random Variate Establishes Time Between Arrivals Using Exponential Distribution</td>
</tr>
<tr>
<td>4. Cumulative Flux-Diameter Curve Is Updated For New Mission Time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Impact Characteristics For Space Debris</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Impact Velocity</td>
</tr>
<tr>
<td>2. Impact Angle</td>
</tr>
<tr>
<td>3. Particle Density/Mass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D. Look-Up Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Solar Flux (Monthly)</td>
</tr>
<tr>
<td>2. Inclination Factor</td>
</tr>
<tr>
<td>3. Flux-Diameter Curves</td>
</tr>
</tbody>
</table>

| E. Impact History Data Including Event Time, Diameter, Density, Mass, Velocity, Angle |

| F. Fixed Time Data Including Absolute Flux, Normalized Flux, Cumulative Normalized Flux Distributions As Functions of Diameter |

| G. Geometry/Shotline Integration to Include Impact Location |

| H. Stationary Poisson Arrival Process Algorithm For Meteoroids |
2.5 Selected Results

A great many sensitivities may be generated using this simulation. Figures 2.5-1 through 2.5-21 provide examples of a few possible results. The following tables provide the input values for these example cases. (Results are for the enveloping geometry only.) Figures 2.5-22 through 2.5-25 show results for the current baseline configuration, shield design and mission.

<table>
<thead>
<tr>
<th>* Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1995-2004</td>
</tr>
<tr>
<td>2. 460 km Altitude</td>
</tr>
<tr>
<td>3. 28.5 degree Inclination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>* Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Spherical Enveloping Geometry</td>
</tr>
<tr>
<td>2. Radius = 72.5 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>* Recorded Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 0.02 - 5.0 cm</td>
</tr>
<tr>
<td>2. Spherical</td>
</tr>
<tr>
<td>3. 5% Debris Growth Rate</td>
</tr>
</tbody>
</table>

| * Flux Distribution Fidelity: 0.01 cm |
| * NASA TM-100471 (Debris) |
| * NASA SP-8013 (Meteoroids) |
SINGLE RUN STATISTICS

* 2125 Debris Impacts
 1. Average Diameter = 0.0474 cm
 2. Average Velocity = 10.26 km/sec
 3. Average Interarrival Time = 1.971 Days

* 9453 Meteoroid Impacts
 1. Average Diameter = 0.0259 cm
 2. Average Velocity = 21.06 km/sec
 3. Average Interarrival Time = 0.372 Days
Figure 2.5-1. Cumulative Debris Impacts vs. Mission Time
Figure 2.5-2. Debris Particle Diameter vs. Impact Time
Figure 2.5-3. Debris Impacts vs. Mission Time
Figure 2.5-4. Meteoroid Impacts vs. Mission Time
Figure 2.5-5. Debris Impacts vs. Change in Time

Mean: 1.971 days
Standard Deviation: 39.676 days
Mean: 1.971 days
Standard Deviation: 39.676 days

Figure 2.5-6. Debris Impacts vs. Change in Time
Mean: 1.971 days
Standard Deviation: 39.676 days

Figure 2.5-7. Debris Impacts vs. Change in Time
Figure 2.5-8. Meteoroid Impacts vs. Change in Time
Figure 2.5-9. Meteoroid Impacts vs. Change in Time
Figure 2.5-10. Debris Impacts vs. Particle Diameter
Figure 2.5-11. Meteoroid Impacts vs. Particle Diameter
Figure 2.5-12. Debris Impacts vs. Particle Mass
Figure 2.5-13. Meteoroid Impacts vs. Particle Mass
Figure 2.5-14. Debris Impacts vs. Particle Velocity

Mean: 10.26
Standard Deviation: 2.71
Figure 2.5-15. Velocity Probability Distribution for 28.5 Degrees Inclination
Figure 2.5-16. Meteoroid Impacts vs. Particle Velocity
Figure 2.5-17. Meteoroid Velocity Probability Distribution
Figure 2.5-18. Debris Flux at Beginning and End of Mission
Figure 2.5-19. Debris Flux at Beginning and End of Mission
MULTIPLE RUN STATISTICS

Average CPU Time = 278.61 secs (Fidelity = 0.01 cm)

Average CPU Time = 319.13 secs (Fidelity = 0.02 cm)
Figure 2.5-20. Multiple Run Statistics (Debris)
Figure 2.5-21. Multiple Run Statistics (Meteoroids)
Figure 2.5-22. PNP VS. Mission Start Date
Figure 2.5-23. PNP VS. Mission Duration

Figure 2.5-24. PNP VS. Average Mission Altitude

Figure 2.5-25. PNP VS. Total Bumper/Wall Separation

3 ADVANCED SHIELDING CONCEPTS TASK

3.1 Introduction

The development of advanced shielding concepts presented in this section includes a preliminary theoretical modification of the Wilkinson and ballistic PEN4 predictors to multiple bumper situations and nonlinear regression of multibumper test data from the MSFC Hyper-velocity Impact Test Database.

3.2 Extension to Multiple Bumpers for Wilkinson Predictor

A number of different approaches have been attempted to modify the Wilkinson predictor theoretically for multiple bumper systems. The one successful approach (physically) found from these approaches is given as follows:

Modify the Wilkinson form in a product sense as:

\[t_n = \frac{0.364D^3\rho_p V \cos(\theta)}{L_n \left(\prod_{i=1}^{n-1} S_i^2 \right) \rho_n} \quad \text{for} \quad \frac{D\rho_p}{\prod_{i=1}^{n-1} \rho_i} \leq 1, \quad [3.2-1] \]

\[t_n = \frac{0.364D^4\rho_p^2 V \cos(\theta)}{L_n \left(\prod_{i=1}^{n-1} S_i^2 \right) \left(\prod_{i=1}^{n-1} \rho_i \right) \rho_n} \quad \text{for} \quad \frac{D\rho_p}{\prod_{i=1}^{n-1} \rho_i} > 1. \quad [3.2-2] \]

If our goal is to minimize system mass per unit area subject to the total separation between first bumper and last wall equal to some desired value, we may write this as

\[\min W = \sum_{i=1}^{n-1} m_i + \frac{0.364D^4\rho_p^2 V \cos(\theta)}{L_n \left(\prod_{i=1}^{n-1} S_i \right) \left(\prod_{i=1}^{n-1} m_i \right)} \quad [3.2-3] \]

\[\text{s.t. } \sum_{i=1}^{n-1} S_i = S_{Tot} \quad [3.2-4] \]

where \(m_i = \rho_i \)
S_{TOT} is the total separation between the first bumper and the wall, and $n-1$ is the total number of bumpers (n is the total number of plates).

Under condition [3.2-2], the dual Geometric Programming objective function is given by

$$
\max \nu(\delta) = \prod_{i=1}^{n-1} (\frac{1}{\delta^i})^{\delta_i} (K/\delta^a) \delta^a \mu^a \prod_{j=1}^{n-1} \left(\frac{1}{S_{TOT} \delta^j} \right)^{\delta^j} \quad [3.2-6]
$$

$$
K = \frac{0.364D^4 \rho^2 V \cos(\theta)}{L_n} \quad [3.2-7]
$$

$$
\sum_{i=1}^{n} \delta^i = 1 \quad [3.2-8]
$$

$$
\delta^i - \delta^a = 0, \quad i = 1, 2, \ldots, n - 1 \quad [3.2-9]
$$

$$
-2\delta^a + \delta^j = 0, \quad j = 1, 2, \ldots, n - 1 \quad [3.2-10]
$$

$$
\mu_1 = \sum_{j=1}^{n-1} \delta^j \quad [3.2-11]
$$

Note that the degree of difficulty is 0, with $2n-2$ independent variables corresponding to the $n-1$ bumper areal densities and the $n-1$ separations.

Equations [3.2-9] and [3.2-10] together imply

$$
\delta^i = \delta^a = 1/n, \quad i = 1, 2, \ldots, n - 1 \quad [3.2-12]
$$

$$
\delta^j = 2\delta^a = 2/n, \quad j = 1, 2, \ldots, n - 1 \quad [3.2-13]
$$

The minimum weight and globally areal densities are given by

$$
W_0 = n \left[\frac{0.364D^4 \rho^2 V \cos(\theta)}{L_n} \right]^{1/n} \left(\frac{n - 1}{S_{TOT}} \right)^{\frac{2n-2}{n}} \quad [3.2-14]
$$

$$
m_0 = \left[\frac{0.364D^4 \rho^2 V \cos(\theta)}{L_n} \right]^{1/n} \left(\frac{n - 1}{S_{TOT}} \right)^{\frac{2n-2}{n}}, \quad i = 1, 2, \ldots, n \quad [3.2-15]
$$
The optimal individual separations are given by

\[S_{j} = \frac{S_{\text{tot}}}{n - 1}, \quad j = 1, 2, \ldots, n - 1 \]

[3.2 - 16]

The optimal separations are equal and uniformly distributed over the total available separation. Thus, the globally optimal algorithm for the multi-bumper Wilkinson Predictor is

1. Determine \(\prod_{i=1}^{n-1} m_i \) from equation [3.2 - 15].
2. Compute \(\frac{D\rho_p}{\prod_{i=1}^{n-1} m_i} \).
3. If \(\frac{D\rho_p}{\prod_{i=1}^{n-1} m_i} > 1 \), then quit.
4. If \(\frac{D\rho_p}{\prod_{i=1}^{n-1} m_i} \leq 1 \), the optimal design is \(\left(m_1, m_2, \ldots, m_n \left(\frac{D\rho_p}{\prod_{i=1}^{n-1} m_i} \right) \right) \).

3.3 Results

Several results using the development of Section 3.2 are given in this section. The baseline assumptions are a particle density of 2.8 gm/cm³, velocity of 9 km/sec, diameter of 1 cm, impacting normally into a configuration with a total bumper/wall separation of 10 cm.

Figures 3.3-1 and 3.3-2 show how the optimal protective structures design configuration varies with number of bumpers for projectile diameters of 1 and 3 cm, respectively. Note that
for a 1 cm particle diameter, the optimal number of bumpers is 2, while for 3 cm, it is 3 bumpers. Also, note the significant penalty for choosing the wrong number of bumpers in these cases, as well as the lack of symmetry of these penalties about the optimal number of bumpers.

Figure 3.3-3 shows the optimal protective structures design configuration including optimal number of bumpers as a function of particle diameter. Increasing particle diameter results in an increasing optimal number of bumpers to defeat the particle. Note the optimal transition regions between 1 and 2 bumpers (corresponding to particle diameters between 0.75 and 1 cm) and 2 and 3 bumpers (corresponding to particle diameters between 2.25 and 2.5 cm). Also, note the very linear minimum system areal density, showing the stabilizing effect of increasing the number of bumpers in the configuration.

Figure 3.3-4 shows the optimal protective structures design configuration including optimal number of bumpers as a function of particle velocity. The most striking feature of this trade is the relative insensitivity to velocity for a dual bumper system.

Figure 3.3-5 shows the optimal protective structures design configuration as a function of total bumper/wall separation. As in previous studies, there is a large weight incentive for increasing the total separation. Furthermore, increased separation allows for more bumpers to disrupt the incoming particle.

Figure 3.3-6 is a replica of Figure 3.3-5, except that the optimal individual separations are included.
Particle Density = 2.8 gm/cm³, Normal Impact
Particle Velocity = 9 km/sec, Diameter = 1 cm
Total Bumper/Wall Separation = 10 cm

Figure 3.3-1. Determining Optimal Number of Bumpers for Multibumper Wilkinson
Particle Density = 2.8 gm/cm³, Normal Impact
Particle Velocity = 9 km/sec, Diameter = 3 cm
Total Bumper/Wall Separation = 10 cm

Figure 3.3-2. Determining Optimal Number of Bumpers for Multibumper Wilkinson
Figure 3.3-3. Optimal Protective Structures Design Values vs. Particle Diameter

(Multibumper Wilkinson)
Particle Density = 2.8 gm/cm3, Normal Impact
Particle Diameter = 1 cm
Total Bumper/Wall Separation = 10 cm

Figure 3.3-4. Optimal Protective Structures Design Values vs. Particle Velocity

(Multibumper Wilkinson)
Particle Density = 2.8 gm/cm³, Normal Impact
Particle Velocity = 9 km/sec, Diameter = 1 cm

Figure 3.3-5. Optimal Protective Structures Design Values vs. Total Bumper/Wall Separation (Multibumper Wilkinson)
Figure 3.3-6. Optimal Protective Structures Design Values vs. Total Bumper/Wall Separation (Multibumper Wilkinson)
3.4 Extension to Multiple Bumpers for Ballistic PEN4 Predictor

The multiple bumper recursion equations are given by:

\[V_j = 4100, \quad \frac{T_1}{D} \leq 0.4 \] \[\text{[3.4 - 1]} \]

\[V_j = 4986 \left(\frac{T_1}{D} \right)^{0.21}, \quad \frac{T_1}{D} > 0.4 \] \[\text{[3.4 - 2]} \]

\[V_{s0_j} = \left[\left(\frac{0.6T_j}{\rho_j} \right)^{1/3} \cos(\theta) \right]^{1/3} \left(\frac{2S_{y_j}}{\rho_p} \right) \] \[\text{[3.4 - 3]} \]

The first bumper is penetrated if

\[V > V_{s0_{j+1}} \] \[\text{[3.4 - 4]} \]

The residual velocity (from the first bumper) is

\[V_{R_1} = \left[\frac{1.33V^2R_p^2\rho_p - \left(8S_{y_1}T_1e^{-0.0003125V} \cos(\theta) \right)}{1.33R_p^2\rho_p + R_pT_1\rho_1/\cos(\theta)} \right]^{1/2} \] \[\text{[3.4 - 5]} \]

The second bumper is penetrated if

\[V_{R_1} > V_{s0_{j+2}} \] \[\text{[3.4 - 6]} \]

The residual velocity (from the second bumper) is

\[V_{R_2} = \left[\frac{1.33V^2R_p^2\rho_p - \left(8S_{y_2}T_2e^{-0.0003125V} \cos(\theta) \right)}{1.33R_p^2\rho_p + R_pT_2\rho_2/\cos(\theta)} \right]^{1/2} \] \[\text{[3.4 - 7]} \]

The third bumper is penetrated if
The residual velocity (from the \((n-1)\)st bumper) is

\[
V_{R_{n-1}} = \left\lfloor \frac{1.33V^2_{R_{n-2}}R_p^2 + \left(8S_{T_{n-1}}T_{n-1} \right) e^{-0.0003125V^2_{R_{n-2}}} \cos(\theta)}{1.33R_p^2 + R_p T_{n-1} \cos(\theta)} \right\rfloor^{1/2}
\]

[3.4 – 9]

The \(n\)th bumper is penetrated if

\[
V_{R_{n-1}} > V_{50_{n-1}}
\]

[3.4 – 10]

3.5 Advanced Shielding Task For Projectile Shatter (Multibumpers)

The database used for regression is the MSFC Hypervelocity Impact Test Database Developed by the Materials & Processes Lab. Database filtering was performed by Bill Jolly of Sverdrup Technology Inc. Data constraints include metallic configurations with velocities greater than 2.5 km/sec and no MLI present. The database filtering resulted in 234 single bumper tests, 72 double bumper tests, and 7 triple bumper tests. A preliminary investigation using various posynomial regression forms was performed. The fact that Space Station Freedom has sufficiently low curvature in primary areas needing protection allows for the assumption of minimizing system mass per unit area. The "best" intrinsically linear posynomial form resulting from this preliminary investigation is given by:

\[
N + 1 = K d^a \rho_p^a V^a \left\lfloor \cos \left(\frac{\theta}{g(n-1)} \right) \right\rfloor^{a_2} \left(\prod_{i=1}^{n-1} S_i \right)^{a_3} \left(\prod_{i=1}^{n-1} \rho t_i \right)^{a_4} (\rho_p \rho_a)^{a_5} (n-1)^{a_6}[3.5 – 1]
\]
A linear least squares analysis results in:

\[K = 3.8010, \quad a_1 = 1.0301, \quad a_2 = 0.3892, \quad a_3 = 0.2879, \quad a_4 = 0.3288, \quad a_5 = -0.4876, \quad a_6 = -0.3464, a_7 = -0.2929, \quad a_8 = -0.6137 \] \[[3.5 - 2] \]

with optimal bumper scaling functions (found through search) of

\[g(n-1) = n-1, \quad h(n-1) = (n-1)^{0.65} \] \[[3.5 - 3] \]

Table 3.5-1 shows the resulting analysis of variance.

<table>
<thead>
<tr>
<th>Source</th>
<th>Degrees of Freedom</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (uncorrected)</td>
<td>313</td>
<td>284.03</td>
<td>0.9074</td>
<td>-----</td>
</tr>
<tr>
<td>Mean</td>
<td>1</td>
<td>185.81</td>
<td>185.81</td>
<td>-----</td>
</tr>
<tr>
<td>Total (corrected)</td>
<td>312</td>
<td>98.22</td>
<td>0.3148</td>
<td>-----</td>
</tr>
<tr>
<td>Regression</td>
<td>8</td>
<td>29.56</td>
<td>3.695</td>
<td>16.363</td>
</tr>
<tr>
<td>Residual</td>
<td>304</td>
<td>68.66</td>
<td>0.2258</td>
<td>-----</td>
</tr>
</tbody>
</table>

The regression F value of 16.363 is greater than the table value corresponding to the 1% significance level with 8 numerator degrees of freedom and 312 denominator degrees of freedom. This table value is roughly 2.51. Therefore, we reject the null hypothesis that the slope vector of the regression plane is significantly close to 0, and we conclude that the assumption of a linear relationship between the natural log values is statistically significant.
The correlation coefficient is given by

\[R^2 = 0.301 \] \hspace{1cm} [3.5 - 4]

\[R = 0.549 \] \hspace{1cm} [3.5 - 5]

The table value for the correlation coefficient at the 1% significance level, 9 total estimated values, and 312 degrees of freedom is well below 0.5. Since R is greater than this table value, we reject the null hypothesis that there is low statistical correlation in this regression. Additionally, the student-t statistic of 13.85 is well above the table value of 2.576 corresponding to a significance of 0.5% and an infinite number of degrees of freedom. This allows us to reject the null hypothesis that the correlation is low.

The residual plots are shown in Figures 3.5-1 through 3.5-9. The only suspicious plot appears to be the one for residuals vs. number of bumpers. This correlation could be due to the fact that a single term posynomial does not sufficiently represent the hypervelocity impact phenomena over potentially complex differences between 1, 2, and 3 bumpers.
Figure 3.5-1. Residuals vs Particle Diameter for Shatter Region
Figure 3.5-2. Residuals vs Particle Density for Shatter Region
Figure 3.5-3. Residuals vs Particle Velocity for Shatter Region
Figure 3.5-4. Residuals vs Particle Impact Angle from Normal Factor for Shatter Region
Figure 3.5-5. Residuals vs Standoff Distance Factor for Shatter Region
Figure 3.5-6. Residuals vs Bumper Mass Per Unit Area Factor for Shatter Region
Figure 3.5-7. Residuals vs Wall Mass Per Unit Area for Shatter Region
Figure 3.5-8. Residuals vs Number of Bumpers for Shatter Region
The designer problem statement is given by:

Minimize system mass per unit area:

\[
\min W = \sum_{i=1}^{n-1} m_i + \frac{K}{\Pi_{i=1}^{n-1} \left(S_i^{(n-1)^{2/3}} \right)^{1.1827}} \left(\frac{m_i^{(n-1)^{2/3}}}{\Pi_{i=1}^{n-1} m_i^{(n-1)^{2/3}}} \right) \]

where

Figure 3.5-9. Residuals vs Predicted Values for Shatter Region
subject to the following constraint: The total separation (first bumper to wall) is limited to a prespecified value

\[s.t. \sum_{i=1}^{n-1} S_i = S_{\text{Tot}} \]

where \(m_i = \rho_i t_i \) \[3.5 - 8 \]

We must determine the optimal values of the mass per unit area for the bumper(s) and wall, the optimal individual separations, and the minimum system mass per unit area. \((S_{\text{Tot}})\) is the total separation between the first bumper and the wall, and \(n-1\) is the total number of bumpers (\(n\) is the total number of plates.).

The problem solution is developed using Geometric Programming. The dual Geometric Programming objective function is given by

\[\max v(\delta) = \prod_{i=1}^{n-1} (1/\delta_i) \delta_i (K/\delta_s) \delta_s \mu_1 \prod_{j=1}^{n-1} \left(\frac{1}{S_{\text{Tot}} \delta_j} \right)^{\delta_j} \]

\[3.5 - 10 \]

\[\delta_i = \left(\frac{1.1827}{(n-1)^{0.65}} \right) \delta_s = 0, \quad i = 1, 2, \ldots, n-1 \]

\[3.5 - 12 \]

\[\delta_j = \left(\frac{-1.6647}{(n-1)^{0.65}} \right) \delta_s + \delta_j = 0, \quad j = 1, 2, \ldots, n-1 \]

\[3.5 - 13 \]

\[\mu_1 = \sum_{j=1}^{n-1} \delta_j \]
These equations imply

$$\delta_i = \frac{1.1827}{(n - 1)^{0.65}} \delta_n \quad i = 1, 2, \ldots, n - 1 \quad [3.5 - 15]$$

$$\Rightarrow \delta_n = \frac{1}{1.1827(n - 1)^{0.35} + 1} \quad [3.5 - 16]$$

$$\Rightarrow \delta_i = \frac{1.1827}{1.1827(n - 1) + (n - 1)^{0.65}} \quad i = 1, 2, \ldots, n - 1 \quad [3.5 - 17]$$

$$\delta_j = \frac{1.6647}{1.1827(n - 1) + (n - 1)^{0.65}} \quad j = 1, 2, \ldots, n - 1 \quad [3.5 - 18]$$

$$\mu_i = \frac{1.6647(n - 1)}{1.1827(n - 1) + (n - 1)^{0.65}} \quad [3.5 - 19]$$

The minimum weight and globally optimal areal densities are given by

$$W_0 = \left(\frac{1.1827(n - 1) + (n - 1)^{0.65}}{1.1827}
ight)^{\frac{1.1827(n - 1)}{1.1827(n - 1) + (n - 1)^{0.65}} + \frac{1}{1.1827(n - 1) + (n - 1)^{0.65}}} \left[\frac{1.1827(n - 1) + (n - 1)^{0.65}}{1.1827(n - 1) + (n - 1)^{0.65}}\right]^{1.1827(n - 1)} + 1 \quad [3.5 - 20]$$

$$m_i = \delta_i W_0 \quad [3.5 - 21]$$

$$m_n = [1 - (n - 1)\delta_i]W_0 \quad [3.5 - 22]$$

The optimal individual separations are given by

$$S_j = \frac{S_{\text{to}}}{n - 1} \quad j = 1, 2, \ldots, n - 1 \quad [3.5 - 23]$$
Baseline Parameters

The baseline parameters for an impact systemic parameter sensitivity study are given in Table 3.5-1.

Table 3.5-1. Baseline Systemic Impact Parameters

- Particle Diameter = 1 cm
- Particle Density = 2.8 gm/cm³
- Particle Velocity = 5 km/sec
- Total Bumper/Wall Separation = 10 cm
- Normal Impact
- Ballistic Limit (N = 1)

Figure 3.5-10 shows the sensitivity of the optimal protective structures design mass per unit area to the number of bumpers in the configuration for a particle diameter of 1 cm and velocity of 5 km/sec. The optimal number of bumpers is one. Figure 3.5-11 shows the same sensitivity except for a particle diameter of 2 cm. In this case, the optimal number of bumpers
is 2. Thus, the optimal number of bumpers is clearly a function of the systemic impact parameters.

Figure 3.5-12 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to particle diameter. A transition region is found between 1 and 1.25 cm. In this region, the optimal number of bumpers changes from 1 to 2 due to increases in diameter penetrability.

Figure 3.5-13 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to particle velocity. The significant conclusion here is the lack of sensitivity of the design over a fairly wide velocity range (3-7.5 km/sec).

Figure 3.5-14 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to total bumper/wall separation. A transition region is found between 15 and 20 cm total separation. In this region, the optimal number of bumpers changes from 1 to 2 due to increased spacing availability. Thus, as the allowable spacing from first bumper to pressure wall increases, the more incentive there is to add bumpers.

Figure 3.5-15 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to particle impact angle from surface normal. No transition region is found in this sensitivity. The optimal number of bumpers remains at 1.

Figure 3.5-16 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to particle density. A transition region is found between 4.5 and 5 gm/cm³. In this region, the optimal number of bumpers changes from 1 to 2 due to increases in particle density penetrability.

Figure 3.5-17 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to wall penetration factor (1 being ballistic limit). A transition region is found between 50% and 60% penetration. In this region, the optimal number of bumpers decreases from 2 to 1 due to increased allowable particle penetration.
Particle Density = 2.8 gm/cm³, Normal Impact
Particle Velocity = 5 km/sec, Diameter = 1 cm
Total Bumper/Wall Separation = 10 cm, B.L.

Figure 3.5-10. Determining Optimal Number of Bumpers for Shatter Region
Figure 3.5-11. Determining Optimal Number of Bumpers for Shatter Region
Figure 3.5-12. Optimal Protective Structures Design Values vs. Particle Diameter

(Shatter Region)

Particle Density = 2.8 gm/cm³, Normal Impact
Particle Velocity = 5 km/sec
Total Bumper/Wall Separation = 10 cm, B.L.
Figure 3.5-13. Optimal Protective Structures Design Values vs. Particle Velocity
(Shatter Region)
Figure 3.5-14. Optimal Protective Structures Design Values vs. Total Bumper/Wall Separation (Shatter Region)
Particle Density = 2.8 gm/cm^3
Particle Velocity = 5 km/sec, Diameter = 1 cm
Total Bumper/Wall Separation = 10 cm, B.L.

Figure 3.5-15. Optimal Protective Structures Design Values vs. Impact Angle
(Shatter Region)
Figure 3.5-16. Optimal Protective Structures Design Values vs. Particle Density (Shatter Region)
Figure 3.5-17. Optimal Protective Structures Design Values vs. Wall Penetration

(Shatter Region)

3.6 Multibumper Protective Structures Design Trades

The baseline parameters and assumptions for an orbital debris analysis of multibumper systems is shown below. The parametric sensitivities investigated are also shown.
Figure 3.6-1 shows the sensitivity of the optimal protective structures design mass per unit area to the number of bumpers in the configuration for the baseline parameters. The optimal number of bumpers is one.

Figure 3.6-2 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to mission start date. A three year slip in the mission start date results in a 33% increase in protective structures design weight. The optimal number of bumpers remains constant at one for mission start dates through 2005.
Figure 3.6-3 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to mission duration. A transition region from one bumper to two is found in the 10-15 year duration range. The shape of this curve is partly reflective of the space debris growth rate model and partly reflective of the solar flux effect.

Figure 3.6-4 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to average mission altitude. A transition region is found between 400 and 500 km altitude. In this region, the optimal number of bumpers changes from 1 to 2 due to increased particle threat.

Figure 3.6-5 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to total mission probability of no penetration. A transition from 2 bumpers to one is found in the region between 0.9733 and 0.98 PNP. This corresponds to element PNP's between 0.9955 and 0.9966.

Figure 3.6-6 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to total mission debris area. A transition region is found between 700 and 800 m². In this region, the optimal number of bumpers changes from 1 to 2 due to increases in particle threat size.

Figure 3.6-7 shows the sensitivity of optimal protective structures design variables (including optimal number of bumpers) to total bumper/wall separation. No transition region is found from 5 to 30 cm total separation. An increase in total separation from 10 to 15 cm results in a 33% reduction in weight.

Figures 3.6-8 through 3.6-11 show ballistic limit curves for the combined (shatter and 0.8-Wilkinson) multibumper predictor. Seven curves are shown in each figure corresponding to seven different first bumper thicknesses. The baseline Space Station protective structures design is found behind the first bumper. The separation between first and second bumpers is...
varied from 2 to 8 inches across the four curves. The transition region from projectile shatter to vaporization is assumed to be in the 7-8 km/sec region and is not well understood. Curves like these are useful in determining protective structures measures of performance for advanced shielding systems.

Figure 3.6-1. Determining Optimal Number of Bumpers
Figure 3.6-2. Optimal Protective Structures Design Values vs. Mission Start Date
Figure 3.6-3. Optimal Protective Structures Design Values vs. Mission Duration

CBD Deb. Env. (Dens. ≈ 2.8 gm/cm³), MSHATT/MWILK 0.8
1997 beg., 398 km, 28.5 deg., 0.9733 PNP, 603 m²
Total Bumper/Wall Separation = 10 cm, B.L.
Figure 3.6-4. Optimal Protective Structures Design Values vs. Average Mission Altitude
Figure 3.6-5. Optimal Protective Structures Design Values vs. Total Mission PNP

CBD Deb. Env. (Dens. = 2.8 gm/cm³), MSHATT/MWILK0.8
1997-2007, 398 km, 28.5 deg., 603 m²
Total Bumper/Wall Separation = 10 cm, B.L.
Figure 3.6-6. Optimal Protective Structures Design Values

vs. Total Mission Debris Area
Figure 3.6-7. Optimal Protective Structures Design Values

vs. Total Bumper/Wall Separation
Figure 3.6-8. Ballistic Limit Curve for Front Separation of 5.08 cm
Figure 3.6-9. Ballistic Limit Curve for Front Separation of 10.16 cm
Figure 3.6-10. Ballistic Limit Curve for Front Separation of 15.24 cm
3.7 Intrinsically Nonlinear Regression For Multibumper Projectile Shatter

The intrinsically nonlinear regression form is given by

\[N = \sum_{i=1}^{r} (K_i d_i \rho_p \alpha_i V_i \cos \left(\frac{\theta}{(n - 1) \alpha_i} \right)) \left(\prod_{j=1}^{r-1} S_j \right) \]

\[\cdot \left(\prod_{j=1}^{r-1} \rho_i f_j \right)^{\alpha_i (n - 1) \alpha_i} \]

\[\cdot \left(\rho_i \alpha_i (n - 1) \alpha_i \right)^{\alpha_i} \left(\alpha_i \right) \]

\[[3.7 - 1] \]
To date, the addition of posynomial terms has not shown significant advantages or improvements over a single term posynomial for the combined multibumper database. Multiple term posynomial predictors, multiple databases, and separation of variables are approaches currently under investigation (but beyond the scope of this effort).
3.8 Conclusions and Recommendations

Conclusions

1. Intrinsically Linear Posynomial Regression Can Be Performed to Statistically Significant Levels for Multiple Bumpers.
2. Residual Plot vs. Number of Bumpers Draws Suspicion to That Parameter.
3. Other Residual Plots Seem Appropriate.
4. Resulting Geometric Program has 0 Degree of Difficulty.
5. Optimal Areal Densities are Equal for Bumper(s).
6. Optimal Bumper(s) and Wall Areal Densities are Generally Not Equal.
8. Wall Areal Density Dominates Bumper Areal Densities for Multiple Bumpers.
9. Optimal Individual Separations are Equal.
10. Optimal Number of Bumpers Increases with Increasing Particle Diameter. (Note Transition Region Between d=1 cm and d=1.25 cm. particle sizes.)
11. Penalty for Selecting Wrong Number of Bumpers is Not Symmetric about Optimal Solution.
12. Protective Structures Design Sensitivity to Velocity is Flat with Constant Optimal Number of Bumpers = 1.
13. Transition from Single to Double Bumper System is Found for Total Standoffs Between 15 and 20 cm.
15. Transition from Single to Double Bumper System is Found for Particle Densities Between 4.5 and 5 gm/cm².
16. Minimum System Mass Per Unit Area is Sensitive to Wall Penetration Factor. (Transition From 2 Bumpers to 1 is Found Between 0.5 and 0.6.)
17. Minimum System Mass Per Unit Area is Sensitive to the Number of Bumpers.
18. Three Year Schedule Slippage Results in 33% Increase in Design.
20. Transition Region From 1 to 2 Bumpers is Between 10 and 15 Year Durations.
21. Optimal Protective Structures Design is Very Sensitive to Average Mission Altitude Above 400 km.
22. Transition Region From 1 to 2 Bumpers is Between 400 and 500 km Altitudes.
23. Optimal Protective Structures Design is Very Sensitive to Mission PNP Above 0.96.
24. Knee of the PNP Curve is Compatible With Baseline Requirement of 0.9733.
25. Transition Region From 1 to 2 Bumpers is Between 0.9733 and 0.98 PNP. (0.9955 and 0.9966/Element).
26. Optimal Protective Structures Design is Very Sensitive to Total Debris Area.
27. Transition Region From 1 to 2 Bumpers is Between 700 and 800 m².
28. Optimal Protective Structures Design is Sensitive to Total Bumper/Wall Separation Between 5 and 20 cm.
29. Knee of the Separation Curve Appears to Be Between 10 and 15 cm.
30. Shift to 15 cm Separation Results in About 33% Reduction in Protective Weight.
Recommendations

1. Perform Second Order Sensitivities.
2. Perform PNP Requirements Balancing Among Critical Elements.
3. Investigate Configuration Build-up Timelines/Augmentation.
5. Disjoin Posynomial Form Into Impact Parameters and Configuration Parameters.
4 PROJECTILE SHAPE EFFECTS TASK

SAIC developed posynomial regression techniques and combined them with posynomial optimization techniques for application to this area. These techniques are available for immediate application to the test data resulting from projectile shape effects testing. Currently, limited test data produces unclear results when attempts are made to correlate data from various projectile shapes. Results are inconclusive. Further investigation of the projectile shape effects includes methodologies found in sources such as "A Preliminary Investigation of Projectile Shape Effects In Hypervelocity Impact of a Double-Sheet Structure," by R. H. Morrison, NASA-TN-6944, August 1972, but will remain inconclusive until further test are performed. A summary of literature in this area follows.

Burch reasoned that for multiplate systems, both projectile geometry and material play a significant role in terms of the characterization of hypervelocity impact damage. More specifically, Piekutowski provides visual confirmation of the effect that cylinder inclination at impact has on debris cloud features and rear wall damage severity. Shockey reports that provided the cylinder length exceeds both its diameter and the target plate thickness, at least part of the projectile will remain solid, independent of velocity. He also states that disk-type projectiles (L/D < 1) tend to be more completely vaporized, and that rod-like projectiles tend to remain in the solid state. Backman adds that pointed penetrators pierce, while blunt-shaped projectiles plug.

Morrison considered cylinders of various L/D ratios fired at near 0 degree inclination, and found that cylinders were generally, and often considerably, better penetrators than spheres. (This is due to the lack of vaporization and shatter of the entire rod, the spike in the debris cloud, and the fact that the debris cloud front for cylinders travels about 14% faster than for spheres.) Specifically, Morrison found that on an equal mass basis, cylinders with L/D of 3/2 were the most damaging to double sheet structures, followed by L/D ratios of 1/2 and 1, respectively. Morrison kept a constant
L/D of $1/2$, decreased L and D simultaneously, and found that a cylinder could achieve the same penetrability as a sphere at $1/3$ the mass. Next, he kept the cylinder diameter constant, decreased the length systematically, and found that the same penetrability could be achieved with $1/7$ the mass of the sphere. Counterintuitively, he discovered that for L/D ratios between $1/7$ and $1/2$, the lower ratios are more effective penetrators of 2-sheet structures, given equal mass. To quote Morrison, "Thus, the use of only spherical projectiles in testing double-sheet structures can be misleading. In fact, this practice has yielded nonconservative empirical equations now in use in the design of impact-resistant spacecraft structures. Although cylinders are no more typical of meteoroid shapes than spheres, the damage incurred by actual meteoroids is undoubtedly being underestimated by a significant factor." Obviously, this conclusion is even more pertinent for space debris impacts.
5 REFERENCES

6 APPENDICES
SPIES

SPACECRAFT IMPACT ENVIRONMENT SIMULATION

*** Robert A. Mog ***

*** SAIC Huntsville ***

Program to model space debris and meteoroid environments for the analysis of in-orbit spacecraft survivability.

REVISION JAN 14, 1992

CK FACTORS AND SURFACE AREA DIFFER FOR THE BOX

THEREFORE ADDED SAM & SAD (SURFACE AREA METEORID & SURFACE AREA DEBRIS)

```c
C DOUBLE PRECISION T, DELTAT
REAL DIA, K, M, D, H, T, TF, ET, S, SA, SD, SAM, PVD(150, 3),
1 DIA, D, M, M, D, M, D, H, INCL,
2 NSEED, IDISTFLAG, IMFLAG)
CALL GET PARAMETERS(TI, TF, DMIN_D, DMAX_D, D_D, DV,
1 DMIN_M, DMAX_M, M, D, M, H, INCL,
2 NSEED, IDISTFLAG, IMFLAG)
CALL GEOMETRY(SAD, SAM, K)

C******************************************************
C CALL GETSRFLX(TI, TF)
CALL GET_INCL_FACTOR(INCL, PSI)
CALL DEB_VEL(INCL, PVD, D, IMAX_PVD)
C IMAX = INT((DMAX_D - DMIN_D) / D_D)
C
C **** OUTPUT BEGIN AND END MISSION FLUX DISTRIBUTIONS ****
C **** IF IDISTFLAG IS SET ****
C IF (IDISTFLAG .EQ. 1) THEN
OPEN(UNIT=9, STATUS='NEW', FILE='VELDIST.OUT')
T = TI
CALL FLUX_DIAMETER(SAD, DMIN_D, DMAX_D, D_D, K, H, PSI, T, TF)
WRITE(9, 525) T
DO 15 I = 0, IMAX
15 WRITE(9, 530) (FL(I, II), II=0, 3)
DO 16 I = 0, IMAX
16 WRITE(9, 530) (FL(I, II), II=0, 3)
DO 17 I = 1, IMAX_PVD
17 WRITE(9, 520) (PVD(I, II), II=1, 3)
ENDIF
C******************************************************
C OPEN(UNIT=8, STATUS='NEW', FILE='SPIES_D.OUT')
OPEN(UNIT=11, STATUS='NEW', FILE='PEN99.OUT')
C
C T = TI
CALL FLUX_DIAMETER(SAD, DMIN_D, DMAX_D, D_D, K, H, PSI, T, TF)
C
C******************************************************
C LOOK UP DIAMETER
C X = RAN(NSEED)
CALL LKUP_DIAMETHR(X, DIA, IMAX, N)
C******************************************************
```
C
C **
C CALCULATE DENSITY AND MASS
C DEN = DENSITY(DIA)
MASS = CALC_MASS(DIA)
C **
C **
C LOOK UP VELOCITY AND CALCULATE IMPACT ANGLE
C X=RAN(NSEED)
CALL LKUP_VEL(PVD,IMAX_PVD,X,VEL,ANGLE)
C **
C REVISION JAN 14,1992 - JANEIL HILL
C SURVIVABILITY MODULE
C BASED ON VELOCITY
C **
C CALL SURVIVE_HIT(VEL,DIA,DEN,ANGLE)
C **
C CALCULATE CHANGE IN TIME
C X=RAN(NSEED)
B = 1./FL(N,1)
DELTAT = LOG(X) * (-B)
T = T + DELTAT
C **
C WRITE(N,500) T,DELTAT,DIA,MASS,VEL,ANGLE
C IF (T.GE.TF) GOTO 150
C GOTO 10
150 CONTINUE
CLOSE(8)
CLOSE(11)
C **
C **
C IF (IMFLAG .NE. 1) GOTO 200
OPEN(UNIT=10,STATUS='NEW',FILE='SPIES_M.OUT')
T = TI
IMAX = INT(((DMAX_M - DMIN_M) / D_M))
C **
C BUILD METEOROID FLUX AND VELOCITY DISTRIBUTION TABLES
C CALL METEOROID_FLUX(SAMH,DMIN_M,DMAX_M,D_M,MFL)
CALL GET_METEOROID_SPEED(VELMAX)
C **
C IF (IDISTFLAG .EQ. 1) THEN
WRITE(9,525) T
DO 155 I=0,1MAX
WRITE(9,535) MFL(I,1),MFL(I,3),MFL(I,4),MFL(I,5)
WRITE(9,537) MFL(I,2)
DO 156 I=1,VELMAX
WRITE(9,538) I,MVEL(I,1),MVEL(I,2)
CLOSE(9)
ENDIF
C **
C LOOK UP DIAMETER
C X=RAN(NSEED)
CALL LKUP_MET_DIAMETER(MFL,X,DIA,IMAX,N)
C **
C **** DENSITY IS CONSTANT, SET MASS AND DENSITY ****
MASS = MFL(N,2)
DEN = 0.5
IF(MFL(N,2).LE.1E-06)DEN=2.0
IF(MFL(N,2).LE.0.01.AND.MFL(N,2).GT.1E-06)DEN=1.0
C **
CALL LKUP_MEL_VEL(MVEL,IVELMAX,X,VEL)

**** ANGLE IS FIXED ****
ANGLE = 90.0

CALCULATE CHANGE IN TIME

X=RAN(NSEED)
B = 1./MFL(N,3)
DELTAT = LOG(X) * (-B)
T = T + DELTAT

WRITE(10,510) T,DELTAT,DIA,DEN,MASS,VEL,ANGLE

IF (T.GE.TF) THEN
CLOSE(10)
CALL SORTMERGE
GOTO 200
ENDIF
GOTO 175

STOP

REAL FUNCTION CALC_MASS(D)
CALC_MASS = 3.1416 * DENSITY(D) * D ** 3./6.
RETURN
END

REAL FUNCTION DENSITY(D)
IF (D.LT.0.62) THEN
DENSITY = 4.0
ELSE
DENSITY = 2.8 / D ** 0.74
ENDIF
DENSITY = 2.8
RETURN
END

REAL FUNCTION FLUX(K,D,H,PSI,T,S)
REAL PHI,F1,F2,G1,G2,PSI,K

**** FIXED GROWTH RATE P ****
P = 0.05
Q=0.02
QP=0.04

PHI = 10.**((H/200.-S/140.-1.5)/(10.**((H/200.-S/140.-1.5)+1.))
F1 = 1.22E-05 * D ** (-2.5)
F2 = 8.1E10 * (D + 700.) ** (-6.)
G1 = (1 + Q) ** (T-1988.)
IF(T.GE.2011) THEN
G1 = (1 + Q) ** (T-2011.)
ENDIF
G1 = G1*(1 + QP) ** (T-2011.)
ENDIF
G2 = (1 + (P * (T-1988)))
HD=(10.0*2.71828**((-1.0*(LOG(D)-0.78)**2.0)/0.405769))*0.5
FLUX = K * HD*PHI * PSI * (F1 * G1 + F2 * G2)
RETURN
END

SUBROUTINE LKUP_DIAMETER(X,DIA,IMAX,N)
COMMON /ARRAYS/SOLARFLX(0:150),FL(0:1000,0:3)
I = 0
IF (X.LT.FL(0,0)) GOTO 100
DO 50 I = 1,IMAX
IF ((X.GE.FL(I-1,3)).AND.(X.LT.FL(0,3))) GOTO 100
50 CONTINUE
I00 RETURN

SUBROUTINE FLUX_DIAMETER(SA,DMIN,DMAX,D,K,PSI,T,TI)
COMMON /ARRAYS/SOLARFLX(0:150),FL(0:1000,0:3)
REAL FLTOTJ_ROB
S = SOLARFLX(INT((T-TI)*I2))
FLTOT = 0.0
PROB = 0.0
IMAX = INT((DMAX-DMIN)/D)
IF (IMAX .GT. 1000) WRITE(*,*) 'DATA IS TOO LARGE FOR',
1 'DEBRIS FLUX ARRAY: FL'
DO 100 I = 0,IMAX
Diameter = DMIN + I*D
FL(I,0) = DIAMETER
FL(I,1) = SA * FLUX(K,DIAMETER,H,PSI,T,S)
FLTOT = FLTOT + FL(I,1)
100 CONTINUE
DO 110 I = 0,IMAX
FL(I,2) = FL(I,1) / FLTOT
PROB = PROB + FL(I,2)
110 CONTINUE
C *** INDICES FOR FL ARE AS FOLLOWS:
C 0 - DIAMETER / 1 - IMPACTS/YEAR / 2 - NORMALIZED / 3 - CUMULATIVE
C **
RETURN
END

SUBROUTINE GET_INCL_FACTOR(INCL,PSI)
REAL INCL
OPEN(UNIT=12,FILE=FLUXFAC.DAT,STATUS='OLD',READONLY)
IX = 0
DO 10 WHILE (IX .LT. INCL)
READ(12,*), IX,PSI
GOTO 30
10 WRIT(*,*) 'ERROR READING FLUXFAC.DAT'
CLOSE(12)

SUBROUTINE GETSLRFLX(T,TF)
COMMON /ARRAYS/SOLARFLX(0:150),FL(0:1000,0:3)
OPEN(UNIT=12,FILE=SOLAR1.FLX,STATUS='OLD',READONLY)
11 = INT((T-1988.)*I2.)
DO 10 I=1,11
10 READ(12,*), I1
11 = INT((TF-TI)*I2.)
DO 20 I=0,11
READ(12,*), ERR=25) S
SOLARFLX(I) = S
20 CONTINUE
GOTO 30
25 WRIT(*,*) 'ERROR READING SOLAR1.FLX'
CLOSE(12)
RETURN
END
SUBROUTINE GEOMETRY(SAD,SAM,K)
REAL R,L,W,H,PI,K
PI = 3.141593
5 WRITE(*,100)
READ(*,110) I
IF(I.EQ.1 .OR. I.EQ.3) THEN
WRITE(*,*) 'Invalid Choice.'
GOTO 5
ENDIF
GOTO (10,20,30),I
10 WRITE(*,210)
READ(*,215) R
SAD=4*PI*R*R
SAM = 4 * PI * R * R
K = 2.7
GOTO 50
20 WRITE(*,220)
READ(*,215) R
WRITE(*,225)
READ(*,215) L
SAD = 2* PI * R * (L + R)
SAM = 2* PI * R * (L + R)
50 C C *** NEED TO CALCULATE K ***
C
GOTO 50
30 WRITE(*,230)
READ(*,215) L
WRITE(*,232)
READ(*,215) W
WRITE(*,235)
READ(*,215) H
K1 = 2.6
K2 = 1.6
SAD = K1*W*H + 2*K2*L*H
K = 1.
C C *** WITH BOX A DOUBLE K FACTOR IS NEEDED ***
C FOR NOW IT IS HARD WIRED IN K1 = 2.6 (FRONT) K2 = 1.6 (SIDE)
C
50 WRITE(*,300) SAD,SAM
RETURN
100 FORMAT(2X,'Input type of enveloping geometry:/10x,'1 - Sphere'/10X,'2 - Cylinder'/10X,'3 - Box./2X,'Choice?',$)
110 FORMAT(12)
210 FORMAT(4X,'Sphere:/6X,'Enter Radius (m) :',$)
215 FORMAT(F7.2)
220 FORMAT(4X,'Cylinder:/6X,'Enter Radius (m) :',$)
225 FORMAT(F7.2)
230 FORMAT(4X,'Box:/6X,'Enter Length (m) :',$)
232 FORMAT(F7.2)
235 FORMAT(4X,'Enter Width (m) :',$)
300 FORMAT(4X,'Surface Area is ',F19.2,' m2',F19.2,' m2')
END

SUBROUTINE DEB_VEL(XINCL,XPV,DV,TIME)
REAL XPV(150,3)
YG=250.0
YP=0.0
YC=0.0125
YE=0.55+0.005*(XINCL-30.0)
YH=1.0-0.0000757*(XINCL-60.0)**2.0
YA=2.5
YB=0.3
YD=1.3-0.01*(XINCL-30.0)
YV0=7.7
IF(XINCL.LE.60.0)THEN
YB=0.5
YG=18.7
YV0=7.25+0.015*(XINCL-30.0)
ENDIF
IF(XINCL.LE.80.0 .AND. XINCL.GT.60.0)THEN
YB=0.5-0.01*(XINCL-60.0)
YG=18.7+0.0289*(XINCL-60.0)**3.0
ENDIF

IF(XINC_GT. 100.0) THEN
 YC = 0.0125 + 0.00125 * (XINC - 100.0)
ENDIF

IF (XINC .LE. 50.0) THEN
 YF = 0.3 + 0.0008 * (XINC - 50.0) * (XINC - 50.0)
ENDIF

IF (XINC .GT. 50.0 .AND. XINC .LE. 80.0) THEN
 YF = 0.3 - 0.01 * (XINC - 50.0)
ENDIF

XSUMIV = 0.0
IVMAX = 1
IV = I
XV = 1

100 XPV(I,1) = XV
 XPV(I,2) = YF*2.7183*(2.0*(YV0-YV0-XV)**2.0)
 XPV(I,2) = XPV(I,2) + YF*2.7183*(-1.0*((XV-YD*YV0)/(YD*YV0))**2.0)
 IF(XPV(I,2) .LE. 0.000) THEN
 XPV(I,2) = 0.000
 IVMAX = I
 ENDIF
 XPV(I,2) = XPV(I,2)*(2.0*XV*YV0-XV**2.0)
 XPV(I,2) = XPV(I,2) + YH*YC*(4.0*XV*YV0-XV**2.0)
 IF(XPV(I,2) .LE. 0.000) THEN
 XPV(I,2) = 0.000
 IVMAX = I
 ENDIF
 GOTO 100

150 PROB = 0.0
 DO 200 I = I, IVMAX
 XPV(I,2) = XPV(I,2)/XSUMIV
 PROB = PROB + XPV(I,2)
 XPV(I,3) = PROB
 CONTINUE
200 CONTINUE

C ************** INDICES ARE: **************
C 1 - VELOCITY 2 - NORMALIZED 3 - CUMULATIVE
C **************--**************************
IMAX = IVMAX

C RETURN
END

SUBROUTINE LKUP_VEL(XPV,IVMAX,XV,A)
REAL XPV(150,3)
XV = XPV(I,1)
DO 10 I = 1, IVMAX
 IF (RGE(XPV(I,3)) .AND. (RLT.XPV(I+1,3))) THEN
 XV = XPV(I+1,1)
 GOTO 20
ENDIF
10 CONTINUE
20 CONTINUE
A = ACOS(D(XV/15.4))
RETURN
END

SUBROUTINE GET_PARAMETERS(TI,TF,DMIN_D,DMAX_D,D_D,DV,D_MIN_M,
1 DMAX_M,D_M,H,INCL,NSEED,IDISTFLAG,IMFLAG)
REAL TI,TF,DMIN,DMAX,D,DV,H,INCL
INTEGER NSEED
OPEN(UNIT=12,FILE='SPIES99.IN',STATUS='OLD',READONLY)
READ(12,*), TI
READ(12,*), TF
READ(12,*), DMIN
READ(12,*), DMAX
READ(12,*), D
READ(12,*), DV
READ(12,*), DMIN
READ(12,*), DMAX
READ(12,*), D
READ(12,*), H
READ(12,*), INCL
READ(12,*), NSEED
READ(12,*), IDISTFLAG
READ(12,*), IMFLAG
SUBROUTINE METEOROID_FLUX(SA,H,DMIN,DMAX,D,MFL)
REAL DMIN,DMAX,D,DIAMETER,LOGM,MASS,H,NETA,MFLTOT,
1 MFL(0:1000,5)
C *** CALCULATION FOR G USES 6378 KM RADIUS FOR EARTH ***
G = 1.0+6478.0/(6378.+H)
NETA = (1.0+COS(ASIN(6478.0/(6378.0+H))))/2.0
IMAX = INT((DMAX-DMIN)/D)
IF (IMAX .GT. 1000) WRITE(*,*) 'MUST REDIMENSION METEOROID',
1 'FLUX ARRAY. DATA IS TOO LARGE.'
MFLTOT = 0.
PROB = 0.
DO 10 IMAX = 1,IMAX
C *** MASS CALCULATION USES AVERAGE DENSITY OF .5 G/CM3 ***
DIAMETER = DMIN + IMAX*D
DEN = 0.5
IF(MFL(N,2).LE.1E-06)DEN=2.0
IF(MFL(N,2).LE.0.01.AND.MFL(N,2).GT.1E-06)DEN=1.0
MASS = 3.141593 * DEN * DIAMETER ** 3.0 / 6.0
MFL(I,1) = DIAMETER
MFL(I,2) = MASS
LOGM = LOG10(MASS)
IF (MASS .LE. .000001) THEN
MFL(I,3) = 10**(-14.339 - 1.584*LOGM - 0.063 * LOGM ** 2)
ELSE
MFL(I,3) = 10**(-14.37 - 1.215 * LOGM)
ENDIF
C0=3.156E07
C1=2.2E03
C2=15.
C3=1.3E-09
C4=1.0E11
C5=1.0E27
C6=1.3E-16
C7=1.0E06
MFL(I,3)=C6/(MASS+C7*MASS**2.0)**0.85
MFL(I,3)=MFL(I,3)+C3/(MASS+C4*MASS**2.0+C5*MASS**4.0)**0.36
MFL(I,3)=MFL(I,3)+1.0/(C1*MASS**0.306+C2)**0.38
MFL(I,3)=C0*MFL(I,3)
C *** MULTIPLY BY G,NETA, AND NO. OF SEC/YEAR ***
MFLTOT = MFLTOT + MFL(I,3)
10 CONTINUE
DO 20 IMAX = 1,IMAX
MFL(I,4) = MFL(I,3) / MFLTOT
PROB = PROB + MFL(I,4)
MFL(I,5) = PROB
20 CONTINUE
C *** INDICES ARE : ***********************
C 1 - DIAMETER 2 - MASS 3 - IMPACTS/YEAR
C 4 - NORMALIZED 5 - CUMULATIVE
RETURN
END

SUBROUTINE GET_METEOROID VELOCITY(MVEL,IMAX)
REAL MVEL(100,2),PVEL,PTOT,PVCUM
OPEN(UNIT=8,FILE='METVEL.IN',STATUS='OLD',READONLY)
PVCUM = 0.
PTOT = 0.
10 READ(*,END=100),I,MVEL
C MVEL(1,1) = PVEL
IF(I.LT.11)MVEL(1,1)=0.0
IF(I.GE.11.AND.I.LE.18)MVEL(1,1)=0.112
IF(I.GT.16.AND.I.LT.55)MVEL(1,1)=3.32E05*(FLOAT(I)**5.34)
IF(I.GE.55.AND.I.LE.72)MVEL(1,1)=1.695E-04
PTOT = PTOT + MVEL(1,1)
GOTO 10
100 IMAX = 1
DO 110 I=1,IMAX
MVEL(I,1) = MVEL(1,1) / PTOT
PVCUM = PVCUM + MVEL(I,1)
MVEL(I,2) = PVCUM
110 CONTINUE
SUBROUTINE LKUP_MET_VEL(MVEL,IMAX,R,VEL)
REAL VEL,MVEL(100,2)
VEL = 1.0
DO 10 I = 1,IMAX-1
 IF ((R.GE.MVEL(I,2)) .AND. (R.LT.MVEL(I+1,2))) THEN
 VEL = FLOAT(DO)
 GOTO 20
 ENDIF
10 CONTINUE
20 CONTINUE
RETURN
END

SUBROUTINE LKUP_MET_DIAMETER(MFL,X,DIA,IMAX,N)
REAL MFL(0:1000,5)
I=0
IF (X.LT.MFL(0,5)) GOTO 100
DO 50 I = I,IMAX
50 IF ((X.GE.MFL(I-1,5)) .AND. (X.LT.MFL(I,5))) GOTO 100
100 CONTINUE
DIA = MFL(I,1)
N = I
RETURN
END

SUBROUTINE SORT_MERGE
CHARACTER*58 DDATA2,MDATA2,DDATA1*3,MDATA1*3
REAL TD,TM
OPEN(UNIT=8,STATUS='OLD',FILE='SPIES_D.OUT',REDO=N)
OPEN(UNIT=9,STATUS='OLD',FILE='SPIES_M.OUT',REDO=N)
OPEN(UNIT=10,STATUS='NEW',FILE='SPIES_BOTH.OUT')
READ(8,500,END=100) DDATA1,TD,DDATA2
READ(9,500,END=200) MDATA1,TM,MDATA2
50 DO 60 WHILE (TD.LE.TM)
 WRITE(10,500) DDATA1,TD,DDATA2
 READ(8,500,END=100) DDATA1,TD,DDATA2
60 CONTINUE
DO 70 WHILE (TD.GT.TM)
 WRITE(10,500) MDATA1,TM,MDATA2
 READ(9,500,END=200) MDATA1,TM,MDATA2
70 CONTINUE
GOTO 50
100 READ(9,500,END=300) MDATA1,TM,MDATA2
WRITE(10,500) MDATA1,TM,MDATA2
GOTO 100
200 READ(8,500,END=300) DDATA1,TD,DDATA2
WRITE(10,500) DDATA1,TD,DDATA2
GOTO 200
300 CLOSE(8)
CLOSE(9)
CLOSE(10)
RETURN
500 FORMAT(2X,A3,F13.8,A58)
END

SUBROUTINE SURVIVE_HIT(VEL,DIA,DEN,THETA)
REAL VEL
C SURVIVABILITY MODULE JAN 14,1992
C JANEIL HILL
C VEL VELOCITY OF PARTICLE
C BIGN PERFORATION LEVEL
C DIA DIAMETER OF PARTICLE
C DEN PARTICLE DENSITY
C THETA ANGLE OF IMPACT
C S1 ARRAY OF SEPERATION OF BUMPER
C RH0I ARRAY OF DENSITY OF BUMPER
C THI BUMPER THICKNESS
C N NUMBER OF BUMPERS
C FOR NOW ALL THE VARIABLES THAT WILL BE READ IN ARE HARDWIRED HERE
REAL SI(I0),RHOI(I0),THI(I0),LN

LN = .401
N = 2
THI(1) = .127
THI(2) = .311
SI(1) = 10.16
RHOI(1) = 2.71
RHOI(2) = 2.81

IF (VEL .LE. 7.5) THEN
 TEMPI = 1.0
 TEMPI = 1.0
 DO I=I,(N-1)
 TEMPI = TEMPI * SI(I)
 TEMPI = TEMPI * RHOI(I) * THI(I)
 ENDDO
 BIGN = ((3.801*DIA**1.0301 * DEN**.3892 * VEL**.2879 *
 (COSD(FHETA/(N-1))**.3288)) /
 (TEMPI**((.4826 / (N-1)**.65) * TEMP2**(.3464/(N-1)**.65) *
 (RHOI(N)*THI(N))**.2929 * (N-1)**.6137)) - 1.
 WRITE(I1,*)(BIGN)
ELSE
 C **** IF VELOCITY > 7.5)
 TEMPI = 1.0
 TEMPI = 1.0
 DO I=I,(N-1)
 TEMPI = TEMPI * SI(I)**2.
 TEMPI = TEMPI * RHOI(I) * THI(I)
 ENDDO
 RMPUA = (1.25*DIA * DEN) / TEMPI
 IF (RMPUA .GT. 1.0000) THEN
 TN = (.364 * (1.25*DI A)**4. * DEN**2. * VEL * COSD(FHETA)) /
 (LN * TEMPI * RHOI(N))
 ELSE
 C **** RMPUA <= 1
 TN = (.364 * (1.25*DI A)**3. * DEN * VEL * COSD(FHETA)) /
 (LN * TEMPI * RHOI(N))
 END IF
 IF (TN .GE. THI(N)) THEN
 WRITE(11,*)' 1.500'
 ELSE
 WRITE (11,*)' 0.000'
 ENDIF
ENDIF
RETURN
END