CSI Related Dynamics and Control Issues in Space Robotics

Authors: Eric Schmitz and Madison Ramey

Robotics and Advanced Controls Section
Martin Marietta Astronautics Group

Outline

- CSI issues in space robotics
- Control of elastic payloads:
 - 1-DOF example
 - 3-DOF Harmonic Drive arm with elastic beam
- Control of large space arms with elastic links:
 - Testbed description
 - Modelling
 - Experimental implementation of colocated PD and end-point tip position controllers
- Conclusions
CSI MODELLING AND CONTROL ISSUES

SMALL, DEXTEROUS MANIPULATORS

<table>
<thead>
<tr>
<th>Lumped compliance due to actuator geartrain</th>
<th>Distributed flexibility in the links</th>
<th>Rigid & elastic payloads with lightly damped vibration modes</th>
<th>Compliant base or free-flying base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant effect (free-free resonance modes in the 10-50 Hz range, (\gamma < 0.1) for FTS-like arms with Harmonic Drive gearings)</td>
<td>No significant effect except for lumped compliances arising from mechanical interfaces, actuator housing and end-effectors.</td>
<td>Important effect as dexterous robots will be used for spacecraft servicing (dominant payload frequencies can be inside or outside the robot control system nominal bandwidth) (typically, (\omega = 1) to 3 Hz)</td>
<td>Important effect for dexterous arms mounted on a space station node or on a stabilizer arm, or at the end of a long, flexible RMS-like manipulator.</td>
</tr>
<tr>
<td>Active damping of geartrain mode is achieved with either analog/digital collocated rate feedback or analog output torque feedback.</td>
<td>Control system should include active filters to gain stabilization of flexible modes due to lumped compliances. Other approach is to use passive damping if it is feasible.</td>
<td>No general control approach developed yet. Conventional rate controller can be used to act as a vibration absorber for elastic payload. Robot controller acts as a collocated controller for the elastic payload.</td>
<td>Practical engineering solutions will have to be developed. Use of wrist mounted or body-mounted sensors for active feedback of base mode will be key to effective control. Passive energy dissipation mechanisms (friction brake, viscoelastic mount) will need to be designed.</td>
</tr>
<tr>
<td>Effect is as or more important than distributed flexibility (lowest locked joint frequency for RMS in the 0.1 to 2 Hz range, depending on load)</td>
<td>Significant effect, especially for the cases of very large payloads (RMS dominant elastic mode in the 0.03 to 0.4 Hz range, depending on load).</td>
<td>For each flown payload detailed pre-flight simulations are run for the RMS. Special studies need to be run to assess dynamic coupling when payload fundamental vibration mode (clamped interface) is below 0.5 Hz. Future RMS-like arm will need to handle massive and elastic systems.</td>
<td>The Space Shuttle/RMS system is the first free-flyer servicing spacecraft. Free-flying base effect becomes more important as payload mass becomes comparable to Shuttle mass/inertia. Compliance of Space-Station RMS mount on truss needs to be accounted for in design. Cooperative use of the base and the arm controllers will be needed for future autonomous operations.</td>
</tr>
<tr>
<td>RMS control system is based on analog/digital collocated rate control (PR). Active CSI controller using links and wrist-mounted sensors have been demonstrated in the lab.</td>
<td>RMS control system based on collocated rate feedback damps out elastic modes but at the expense of rigid-body bandwidth. Laboratory systems are currently testing CSI-based controllers using links and wrist-mounted sensors. Future space arms will have control modes based on proximity/vision sensing systems.</td>
<td>No general control approach yet developed. As for rigid arms, conventional collocated rate controllers will not destabilize the payload elastic modes. For performance, additional sensors will be needed to increase active damping on dominant payload modes as necessary. A general approach will have to consider the cooperative use of the payload attitude control system together with the arm controller.</td>
<td>Effect of base compliance shows up as pairs of lightly damped poles and zeros in each joint open-loop transfer function. Effective damping of these modes can be increased through a combination of collocated control and wrist-mounted sensors (accelerometers and/or inertial position sensors)</td>
</tr>
</tbody>
</table>

CSI Issues in Space Robotics
Control of Elastic Payloads: 1-DOF Example

- 1-DOF rigid arm with 1-DOF elastic payload:

- Payload dynamics can be defined by its dynamic stiffness:

\[Z_p(s) = \frac{F_p(s)}{x_p(s)} = \frac{M_p s^2}{s^2 + 2\zeta_p \omega_p s + \omega_p^2} \]

- Equations of motion for arm/payload system can be expressed in terms of the INDIVIDUAL arm & payload dynamics:

- Assume standard PD control for robot arm:

\[u = -k_A (x_A - x^c_A) - k_R x_A \]

- Arm is acting as a colocated actuator/sensor pair for payload.

\[\Rightarrow \] ELASTIC MODE ALWAYS STABLE

- Payload closed-loop elastic mode is a function of the ratio where:

\[\frac{\omega_A}{\Omega_p} \]

\[\omega_A = \text{Rigid Arm Closed-Loop Bandwidth} \]

\[\Omega_p = \text{First Cantilevered Vibration Frequency of the payload} \]
Control of Elastic Payloads: 1-DOF Example (cont’d)

• For cases where arm controller is "detuned" (\(\omega_a \gg \Omega_p \)), we can implement an additional IMPEDANCE control law to actively damp the payload's elastic mode:

\[
\begin{align*}
\text{PD Control:} & \quad u = k_A x_p + k_R s \\
\text{Arm:} & \quad \frac{1}{M_A s^2} \\
\text{Payload:} & \quad Z_p(s) \\
\text{Force Sensor:} & \quad -1
\end{align*}
\]

\[
\begin{align*}
F_p &= -(B_1 s + K_1) x_p \\
\text{Impedance Control:} & \quad \frac{1}{B_1 s + K_1}
\end{align*}
\]

• We Have:

\[
\begin{align*}
&x_p^c = x_p^c \quad \text{(High-Gain PD Control)} \\
&x_p = \frac{-F_p}{B_1 s + K_1} \quad \text{(Impedance Control)} \\
&\Rightarrow \text{Force } F_p \text{ applied to payload acts as a virtual spring/damper selected by the user}!!
\end{align*}
\]

• Root-Locus vs. Force Sensor Gain:

\[
\begin{align*}
\text{Root-Locus vs. Force Sensor Gain:} & \quad \omega_p \\
\text{Gain:} & \quad \frac{K_1}{B_1} \\
\Rightarrow \text{With proper choice of } \left[K_1, B_1 \right] \text{ gains, payload elastic mode is actively damped}!!
\end{align*}
\]
Control of Elastic Payloads: Planar Arm Example

- Three DOF Arm with Elastic Beam Payload:

- Payload linearized dynamics model is obtained from FEM techniques applied to elastic body on moving base:

\[
\begin{bmatrix}
M_{rr} & M_{rc} \\
M_{rc}^T & M_{ee}
\end{bmatrix}
\begin{bmatrix}
\dot{q}_r \\
\dot{q}_c
\end{bmatrix} + \begin{bmatrix}
0 & 3 & 0 \\
0 & n_3 D_{ee} & 3n
\end{bmatrix}
\begin{bmatrix}
q_r \\
q_c
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 3n \\
0 & n_3 K_{ee}
\end{bmatrix}
\begin{bmatrix}
q_r \\
q_c
\end{bmatrix} = \begin{bmatrix}
F_p \\
0
\end{bmatrix}
\]

- In summary:

\[
\begin{bmatrix}
F_x(s) \\
F_y(s) \\
T_\phi(s)
\end{bmatrix} = Z_p(s) \begin{bmatrix}
x_c(s) \\
y_c(s) \\
\phi_c(s)
\end{bmatrix}
\]

where \(Z_p(s)\) = DYNAMIC STIFFNESS of ELASTIC PAYLOAD

- Arm dynamics linearized around given configuration:

\[
M(\Theta_0) \dot{\Theta} = \Theta_A + J(\Theta_0) F_c
\]

with \(M(\Theta_0)\) = 3x3 inertia matrix

\(J(\Theta_0)\) = Jacobian matrix expressed in end-effector frame

Can be transformed in terms of end-effector coordinates \(x_c\):

\[
M(x_0) \Delta x_c = J(\Theta_0) \Theta_A + F_c
\]

with \(M(x_0)\) = "Cartesian" inertia matrix

\[
= J(\Theta_0) M(\Theta_0) J(\Theta_0)^T
\]

- Coupled arm / payload dynamics:
Control of Elastic Payloads: Planar Arm Example

- Force/Torque Sensor
- Flexible Beam Payload
- Single Axis Accelerometer
- Airpad (Typical)
- 3-DOF Harmonic Drive Arm
- Glass Top
Control of Elastic Payloads: Planar Arm Example

- System Block Diagram:

- Characteristic frequencies for 3-DOF Arm & Payload dynamic system (derived using TREETOPS multi-body software):

<table>
<thead>
<tr>
<th></th>
<th>F₁ (Hz)</th>
<th>F₂ (Hz)</th>
<th>F₃ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm Joints Locked</td>
<td>1.2</td>
<td>14.0</td>
<td>42.2</td>
</tr>
<tr>
<td>Arm Joints Free</td>
<td>2.1</td>
<td>14.3</td>
<td>42.3</td>
</tr>
</tbody>
</table>

- Arm Mass Properties:

<table>
<thead>
<tr>
<th>Link</th>
<th>Mass (kg)</th>
<th>Center of Mass (m)</th>
<th>MOI (kg-m²)</th>
<th>Link Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder</td>
<td>13.8</td>
<td>0.406</td>
<td>0.77</td>
<td>0.56</td>
</tr>
<tr>
<td>Elbow</td>
<td>10.1</td>
<td>0.37</td>
<td>0.607</td>
<td>0.56</td>
</tr>
<tr>
<td>Wrist</td>
<td>13.7</td>
<td>0.14</td>
<td>0.106</td>
<td>0.254</td>
</tr>
</tbody>
</table>

- Payload Mass Properties:

<table>
<thead>
<tr>
<th>Part</th>
<th>Mass (kg)</th>
<th>Center of Mass (m)</th>
<th>EI (N-m²)</th>
<th>Link Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>0.4</td>
<td>0.38</td>
<td>7.28</td>
<td>0.765</td>
</tr>
<tr>
<td>Tip Mass</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Control of Elastic Payloads: Planar Arm Example (cont'd)

- Arm controller is designed assuming a rigid payload:
 - Independent analog torque loop controllers (elastic gearmotors behave as direct drive actuators)
 - Standard nonlinear control law: \[T_a = M_r (\theta) \left[-K_p \left(\theta - \theta_c \right) - K_R \dot{\theta} \right] \]
 - For a rigid arm, closed-loop dynamics is approximated by 3 decoupled second-order integrators.
 - For a rigid arm with elastic payload, arm can be treated as a virtual cartesian 3-dof colocated actuator/sensor pair.

- Dominant payload closed-loop elastic mode is a function of the ratio \(\frac{\omega_A}{\Omega_p} \) where:

 \[\omega_A = \text{Rigid Arm Closed-Loop Bandwidth} \]
 \[\Omega_p = \text{First Clamped Vibration Frequency of the Payload} \]

![Diagram of Arm Acts as a:
- Free-flying base
- Vibration absorber
- Inertially fixed base](image)

Experimental time responses for an initial payload elastic deformation:

Arm acts as a vibration absorber: \(\frac{\omega_A}{\Omega_p} = 1 \)

Arm acts as a rigid base: \(\frac{\omega_A}{\Omega_p} = 2 \)
Control of Elastic Payloads: Planar Arm Example (cont'd)

- For cases where arm controller is detuned \((\omega_A > \Omega_p)\), we can implement an impedance control law to actively damp dominant payload elastic modes:

\[
\begin{align*}
\phi &= \frac{c}{\Theta_0} \quad \text{(High-Gain PD Control)} \\
\phi &= \frac{-T_\phi}{B_\phi s + K_\phi} \quad \text{(Impedance Control)}
\end{align*}
\]

\[\Rightarrow \text{Torque } T_\phi \text{ applied to payload acts as a virtual spring/damper selected by the user}!!\]

Experimental time responses for an initial payload elastic deformation:

- Impedance controller:
- Arm acts as a rigid base:
Control of Elastic Arms: Testbed Description
Control of Elastic Arms: Testbed Description (cont'd)

- System Block Diagram:

Control of Elastic Arms: Dynamic Modelling

- Modelling tool is the multi-flexible body dynamic analysis code TREETOPS:
 - Code developed by Dynacs for NASA-MSFC can simulate controlled dynamics of a general chain of articulated rigid and elastic bodies.
 - Preprocessor generates finite element mass, damping and stiffness matrices for each link with user-selectable end boundary conditions.
 - Linearized models can be loaded in the control analysis software packages MATLAB and MATRlXx.
 - Nonlinear TREETOPS simulation can be run with the MATRlXx/System-Build nonlinear simulator. This allows to easily design and simulate control laws with the TREETOPS-generated dynamic models.

- Simple analytical models have also been derived to understand the basic characteristics of the system to control: linear and nonlinear models for a 1-DOF, and 2-DOF planar slender elastic arms with a rigid payload and with nonlinear or linear geared actuators.
Equations of motion for 2-DOF elastic arm numerically assembled by TREETOPS:

\[
\begin{bmatrix}
M_{\pi}(\theta_r) & M_{\pi}(\theta_r) \\
M_{\pi}^T(\theta_r) & M_{ee}
\end{bmatrix}
\begin{bmatrix}
\dot{\theta}_r \\
\dot{X}_e
\end{bmatrix}
+
\begin{bmatrix}
D_{\pi} & 0 & 0 & 0 \\
0 & D_{ee}
\end{bmatrix}
\begin{bmatrix}
\dot{\theta}_r \\
\dot{X}_e
\end{bmatrix}
+
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\ddot{\theta}_r \\
\ddot{X}_e
\end{bmatrix}
=
\begin{bmatrix}
I_2 \\
0_{n2}
\end{bmatrix}
\begin{bmatrix}
\dot{\theta}_r \\
\dot{X}_e
\end{bmatrix}
+
\begin{bmatrix}
J_{\theta r} \\
J_{X e}
\end{bmatrix}
\begin{bmatrix}
F_{r x} \\
F_{r y}
\end{bmatrix}
\]

where \(\theta_r\) and \(X_e\) are respectively the joint angles and the generalized elastic coordinates.

Equations of motion are linearized around a given arm configuration. A state-space model is derived with the two control actuators as inputs. The model outputs are the joint angles, motor rates and linearized tip displacements (dx,dy).

Characteristic System frequencies: JL = free joints FF = joint locked.

<table>
<thead>
<tr>
<th>Mode</th>
<th>(\theta_1 = 0^\circ)</th>
<th>(\theta_1 = 90^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>JL</td>
<td>FF</td>
</tr>
<tr>
<td>1</td>
<td>0.29</td>
<td>5.12</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
<td>6.70</td>
</tr>
<tr>
<td>3</td>
<td>7.53</td>
<td>18.3</td>
</tr>
<tr>
<td>4</td>
<td>14.5</td>
<td>25.3</td>
</tr>
<tr>
<td>5</td>
<td>27.1</td>
<td>40.9</td>
</tr>
<tr>
<td>6</td>
<td>38.7</td>
<td>63.2</td>
</tr>
</tbody>
</table>

Control of Elastic Arms: Colocated PD Control

Closed-loop system block diagram:

PD controller with joint position and motor velocity feedback:

\[
T_s = \left[k_{ps}(\theta_s^c) + k_{Rs} \theta_s \right] L_{2s}(s)
\]

\[
T_e = \left[k_{pe}(\theta_e^c) + k_{Re} \theta_e \right] L_{2e}(s)
\]

where \(L_{2s}\) and \(L_{2e}\) are two second-order lag filters:

\[
L_2(s) = \frac{S^2 + 2\zeta_2 \omega_2 s + \omega_2^2}{S^2 + 2\zeta_2 \omega_2 s + \omega_2^2}
\]
Control of Elastic Arms: Colocated PD Control (cont'd)

- Example of gain-stabilization of the 4th vibration mode (85 Hz) with PD controller implemented at 200 Hz. Second-order lag filter provides high-frequency roll-off in compensator:

Open-loop shoulder transfer function $G(s)K(s)$
Control of Elastic Arms: End-point Controller

- End-point controller is designed for configurations with the elbow angle nearly equal to 90 degrees:
 - Tip sensor Xt channel is fed back to elbow actuator.
 - Tip sensor Yt channel is fed back to shoulder actuator.

- For each channel, the tip controller consists of a second-order lead compensator with motor rate feedback:

\[T_i = - \left[k_{pi} \frac{(s + a)}{(s + b)(s + c)} \left(z_i - 2 \right) + k_{Ri} \dot{\theta}_i \right] L_{2i}(s) \]

with \(a << b \ & c \) and \(L_{2i} \) is a second-order lag filter.
Control of Elastic Arms: PD Control vs End-point Control

- Arm is commanded to move along a straight line in the y-direction:
 - A fifth-order spline command profile is used for the tip position command
 - For the independent joint controller, equivalent joint command profiles are computed using inverse kinematics (assuming arm is rigid).

- Arm configuration for reference slew maneuver:
Experimental Time Responses for Slew Maneuver

Cartesian End Point Responses

Tip Sensor Responses

Control Torques

Time (sec)

0 2 4 6 8 10 12

0 2 4 6 8 10 12
Control of Elastic Arms: Disturbance Response to Tip Forces

- Experimental set-up:

- The arm is under closed-loop control in a given configuration (joint or tip control).
- A constant force is applied at the tip using a force gage.
- After steady-state has occurred, tip force is removed.
Control of Elastic Arms: Disturbance Response to Tip Forces (cont'd)

Experimental Data for 0.5 Lb Tip Force Applied along Y axis:

- Effective cartesian stiffness with tip position control is one order of magnitude larger than with joint feedback.
- With joint control, tip disturbance forces excite fundamental low-frequency and the lightly-damped elastic mode of the arm (0.5 Hz frequency). With tip controller, transient response is well damped.
Conclusions

- With additional sensing capability, simple and robust control laws can be used for active damping of space robots:
 - wrist-mounted force/torques sensors can be used to damp out large elastic payload vibration modes with a simple impedance control law.
 - sensors which directly sense the wrist motion can be used to damp out link elastic modes for RMS-class arms.
 - output torque sensors can also be used to damp out gearmotor elastic modes.

- Experimental testbeds have been designed to validate modelling techniques and to demonstrate in 2-D the feasibility of new control/sensing implementation for FTS/SPDM-class and RMS-class manipulators. These testbeds are useful as a complement to 3-D simulation studies.

- Space-based experiments should be planned to demonstrate CSI-technology for FTS/SPDM-class and RMS-class manipulators.