THE FIRST IDENTIFICATION OF C₂ EMISSION BANDS IN COMET SCORICHENKO-GEORGE (1989e₁) SPECTRUM

Churyumov K.I., Chorny G.F.

Astronomical Observatory of Kiev Shevchenko University,
Main Astronomical Observatory of Ukrainian Academy of Sciences

ABSTRACT

Wave lengths from 360 emissions within the spectral range λλ 3380-6290 Å in the spectrum of the comet Scorichenko-George, obtained with the help of the TV spectral scanner of a 6-meter reflector BTA (in Special AO) have been determined. The CN, C₂, C₃, NH, CH, CO, Na, NH₂, N₂⁺, CO⁺, CH⁺, CO₂⁺, H₂O⁺, and C⁻ emissions have been identified. For the first time it has been shown that emissions of C₂ (the transitions 0-0, 0-1 et al.) in the cometary spectrum possibly exist. Molecular ions C⁻ column density with cross-section 1 cm² is \(N = 1.44 \times 10^{-12} \) cm⁻² and their upper limit of gas C₂ productivity is \(Q(C₂⁻) = 2 \times 10^{28} \) s⁻¹.

INTRODUCTION

The present paper was stimulated by the original spectral observations on the 6-m telescope BTA at Pastukhov's Mount (Northern Caucasus) and the calculations of radiative transition probabilities in C⁻ made by Rosmus and Werner (1984).

As early as 1963 it was noted that the low intensity of the Phillips emission bands from comets might be caused at least by one of two reasons. The first one: the C₂ molecules are formed initially in a triplet state and do not have any time to decay to the \(X^1Σ_g^- \) state during the time when a comet is reasonably close to the Sun. The second one: the C₂ molecules are converted from the \(X^1Σ_g^- \) state to the \(a^3Π_u \) state by an optical pumping mechanism that involves solar radiation, the conversion from singlet to triplet occurring via the perturbed levels (Ballik and Ramsay, 1963).

Later on an important work has been done to verify the mechanism of this type of optical pumping (Krishna Swamy, 1986). Noted by Krishna Swamy (1985) some overpopulation of the lower vibrational levels in the low triplet \(a^3Π_u \) state of the C₂ radical is connected with the optical pumping too.

There is, in principle, one more process which ideally promotes both the depopulation of the ground \(X^1Σ_g^- \) state and the appearance of C₂ mainly in the lower vibrational levels of the \(a^3Π_u \) state. The problem concerns the formation of the C⁻ anions
either by radiative attachment of electrons to the \(C_2 \) radicals or
by dissociative attachment of electrons to the \(C_2H_2 \) molecules if
\(C_2 \) is a granddaughter species of \(C_2H_2 \). The \(C^- \) ions are formed
in the ground \(X^2\Sigma_g^- \) state. Afterwards under the influence of solar
radiation they can be excited into the bound \(B^2\Sigma_u^+ \) electronic sta-
te and either perform a spontaneous transition to the ground state
(with emission in the optical range) or autodecay. As soon as
the excited \(C^- \) ions occur on the vibrational levels \(v'\geq6 \) the
autodecay rate can be comparable with the spontaneous transition
rate. In its turn this autodetachment rate in \(C_2a^3\Pi_u + e \) is abo-

\[\text{Because the level } C_2 B^2\Sigma_u^+ v' = 6 \text{ interferes with the } C_2 a^3\Pi_u v'' = 0 \text{ and } 1 \text{ levels, the autodetachment from the level } v' = 6 \text{ goes preferably to the levels } v'' = 0 \text{ or } 1 \text{ of the } C_2 \text{ radical in the } a^3\Pi_u \text{ state.} \]

Thus the process in question proceeds in the very direction
the optical repumping process does. It may be true that both
mechanisms of repumping coexist in cometary atmospheres. A
quantitative study of the role of the \(C_2 \) formation in the
photochemical kinetics of cometary \(C_2 \) will be performed later. It
is quite possible that the efficiency of this process (limited
only by reagents abundances) is higher than the efficiency of the
intercombination transitions \(C_2 a^3\Pi_u \rightarrow C_2 X^2\Sigma_g^- \) and may be
comparable with the efficiency of the \(C_2 a^3\Pi_u v' = 4 \rightarrow C_2 \rightarrow \text{C}_2 a^3\Pi_u v < 4 \) transitions surveyed in (Krishna Swami, 1986).

We have calculated \(g \)-factors of fluorescence efficiency in the
\(C_2 B^2\Sigma_u^+ v' \rightarrow C_2 X^2\Sigma_g^- v'' \) bands for a possible identification of emis-
sions in the observed cometary spectra (Tab. I). We used the formula

\[g_{v,v'} r^2 / (n \Phi_0) = 8.853 	imes 10^{-5} \alpha_{v,v'} v_{v,v'} n_{v,v'} \]

where \(r \) is the comet's heliocentric distance (AU), \(n \Phi_0 \) - solar
irradiance at \(r=1 \) AU (phot/(s nm cm\(^2\))). For the meaning of the
rest of the variables see e.g. (Lutz, 1987). Missing oscillator
strength in the absorption have been calculated by the formula

\[f_{v,v'} = 3.04 	imes 10^{-6} \tilde{v}_{v,v'} q_{v,v'} |<x|z|B>|^2 \]

using the moments \(<X|z|B> \) from (Rosmus and Werner, 1984).

Note also that some evidence on the presence of the radiative
attachment of electrons to the cometary \(C_2 \) molecules can be seen
in the observed cometary spectrum in the range 3642.3-3679.1 \(\AA \)
where the onset of \(C_2 X^2\Sigma_g^- v = 0 \rightarrow C_2 X^2\Sigma_g^- v = 0 \) emissions lies (in
accordance with the electron affinity value 3.370-3.404 eV
(Nichols and Simons, 1987)). The photoattachment cross-section for
the \(C_2 + e \rightarrow C_2 + h\nu \) reaction is about \(10^{-17} \text{ cm}^2 \) (Feldman, 1970).
Table I. Oscillator strength $f_{\nu'\nu''}$ and g-factors of fluorescence efficiency for $B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$ bands of C_2^- anion.

| $\nu'\nu''$ | band a) | b) | $\langle |X|Z|B| \rangle^2$ | $f_{\nu'\nu''}(10^{-4})$ | $\frac{r^2g_{\nu'\nu''}}{n_F^2}$ (cm2/nm) |
|------------|--------|-----|-----------------|-----------------|------------------|
| 0 0 | 5415.87 | 0.7 | 1.1100 | 1/3 0.436c | 3.7739$\times10^{-16}$ |
| 0 1 | 5984.82 | 0.2 | 1.1100 | 1/3 0.113c | 1.1944$\times10^{-16}$ |
| 1 0 | 4902.02 | 0.3 | 0.7742 | 1/5 0.144c | 0.6127$\times10^{-16}$ |
| 1 1 | 5363.26 | 0.3 | 0.7742 | 1/5 0.132 | 0.6723$\times10^{-16}$ |
| 1 2 | 5912.69 | 0.3 | 0.7742 | 1/5 0.119 | 0.7366$\times10^{-16}$ |

POSSIBLE IDENTIFICATION OF C$_2^-$ EMISSIONS IN COMETARY SPECTRUM

The spectra of the comet Scorpchenko-George (1989c) were observed by V.I.Afanasyev, A.I.Shapovalova and K.I.Churyumov on Feb 26.7 UT, 1990 at the Special Astrophysical Observatory of the USSR Academy of Sciences (Nizhny Arkhyz) with the help of the TV scanner located on a spectrograph in the Nasmyth focus of a 6-meter reflector BTA. The spectrographic slit was observed with a mask that selects two regions of the comet that are separated from one another by the angular distance 20" (31000 km). This gave the opportunity during one exposition to accumulate in the computer memory two spectra, one of which is referred to the cometary nucleus, the other to the coma's region. The six spectra were recorded in three channels, which are characterized by the following spectral ranges: 1 - 3350-4450 Å, 2 - 4290 - 5390 Å, 3 - 5190 - 6290 Å. Spectral resolutions for each channel is 1.1 Å. The identification of the spectrum showed that it contains many typical cometary emissions (wave lengths of 360 emissions are measured with the precision up to ±0.5 Å). Among them are: CN, C$_2$, C$_3$, CH, NH, NH$_2$, Na, CO, CO$^+$, N$_2$, CH$^+$, CO$_2$, H$_2$O$^+$ and C$_2^-$. This spectrum for the first time has found out the emissions of the negative ions C$_2^-$ (see λ_{obs} in the Table II):

Table II. Identification of C$_2^-$ emissions in the comet's spectrum

<table>
<thead>
<tr>
<th>λ_{obs} ±0.5 Å</th>
<th>$\lambda_{\nu'\nu''}$</th>
<th>$\nu'\nu''$</th>
<th>λ_{obs} ±0.5 Å</th>
<th>$\lambda_{\nu'\nu''}$</th>
<th>$\nu'\nu''$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5416.5</td>
<td>5415.9</td>
<td>0-0</td>
<td>4902.5</td>
<td>4902.0</td>
<td>1-0</td>
</tr>
<tr>
<td>5984.4</td>
<td>5984.8</td>
<td>0-1</td>
<td>5363.1</td>
<td>5363.3</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

dthe theoretical $\lambda_{\nu'\nu''}$ from Table I

Comparison of the observable and theoretical data shows their
close coincidence within the measurement made. The sharp peaks in the spectrum are the transitions 0-0 and 0-1 (see Fig.a,b) that have the largest values of g-factors. The transitions 1-0, 1-1 and 1-2 have some emission peculiarities in the spectrum. The spectrum also contains the band in the wave length range 3542.3-3679.1 Å (the observed band is 3642.4-3678.7 Å), where lies the beginning of the transition $\nu'=0^2\Sigma^+_g \rightarrow \nu'=0^2\Sigma^+_u$ (Fig.c).

CONCLUSIONS

1. It has been shown that emissions of C_2 in the cometary spectrum possibly exist. 2. The presence of ions C_2^- leads to the poverment of the singlet state of C_2 molecules and the enrichment of the triplet state of these molecules. This substantially enriches the chemical kinetics of C_2 and improves the model of the inner coma (the process of photochemical reactions). 3. Calculation of molecular ions C_2 column density with cross section 1 cm$^{-2}$ gives $N = 1.44 \times 10^{12}$ cm$^{-2}$.

REFERENCES

