THE FIRST IDENTIFICATION OF C₂ EMISSION BANDS IN COMET
SCORICHENKO-GEORGE (1989e₁) SPECTRUM

Churyumov K.I., Chorny G.F.

Astronomical Observatory of Kiev Shevchenko University,
Main Astronomical Observatory of Ukrainian Academy of Sciences

ABSTRACT

Wavelengths from 360 emissions within the spectral range \(\lambda\lambda 3380-6290\) Å in the spectrum of the comet Scorichenko-George, obtained with the help of the TV spectral scanner of a 6-meter reflector BTA (in Special AO) have been determined. The CN, C₂, C₃, NH, CH, CO, Na, NH₂, N₂⁺, CO⁺, CH⁺, CO₂⁺, H₂O⁺, and C⁻ emissions have been identified. For the first time it has been shown that emissions of C⁻ (the transitions 0-0, 0-1 et al.) in the cometary spectrum possibly exist. Molecular ions C⁻ column density with cross-section 1 cm² is \(N = 1.44 \times 10^{-12}\) cm⁻² and their upper limit of gas C⁻ productivity is \(Q(C⁻) = 2.10^{28}\) c⁻¹.

INTRODUCTION

The present paper was stimulated by the original spectral observations on the 6-m telescope BTA at Pastukhov's Mount (Northern Caucasus) and the calculations of radiative transition probabilities in C⁻ made by Rosmus and Werner (1984).

As early as 1963 it was noted that the low intensity of the Phillips emission bands from comets might be caused at least by one of two reasons. The first one: the C₂ molecules are formed initially in a triplet state and do not have any time to decay to the \(X'\Sigma_g^+\) state during the time when a comet is reasonably close to the Sun. The second one: the C₂ molecules are converted from the \(X'\Sigma_g^+\) state to the \(a^3\Pi_u\) state by an optical pumping mechanism that involves solar radiation, the conversion from singlet to triplet occurring via the perturbed levels (Ballik and Ramsay, 1963).

Later on an important work has been done to verify the mechanism of this type of optical pumping (Krishna Swamy, 1986). Noted by Krishna Swamy (1985) some overpopulation of the lower vibrational levels in the low triplet \(a^3\Pi_u\) state of the C₂ radical is connected with the optical pumping too.

There is, in principle, one more process which ideally promotes both the depopulation of the ground \(X'\Sigma_g^+\) state and the appearance of C₂ mainly in the lower vibrational levels of the \(a^3\Pi_u\) state. The problem concerns the formation of the C⁻ anions.
either by radiative attachment of electrons to the C₂ radicals or by dissociative attachment of electrons to the C₂H₂ molecules if C₂ is a granddaughter species of C₂H₂. The C⁻ ions are formed in the ground X²Σ⁺ state. Afterwards under the influence of solar radiation they can be excited into the bound B²Σ⁺ electronic state and either perform a spontaneous transition to the ground state (with emission in the optical range) or autodetach. As soon as the excited C⁻ ions occur on the vibrational levels v'≥6 the autodetachment rate can be comparable with the spontaneous transition rate. In its turn this autodetachment rate in C₂a³Πₜ₊e is about ten times more than it is in C₂X²Σ⁺ + e (Jones et al., 1980). Because the level C₂B²Σ⁺ v'=6 interferes with the C₂a³Πₜ v''=0 and 1 levels, the autodetachment from the level v'=6 goes preferably to the levels v''=0 or 1 of the C₂ radical in the a³Πₜ state.

Thus the process in question proceeds in the very direction the optical repumping process does. It may be true that both mechanisms of repumping coexist in cometary atmospheres. A quantitative study of the role of the C₂ formation in the photochemical kinetics of cometary C₂ will be performed later. It is quite possible that the efficiency of this process (limited only by reagents abundances) is higher than the efficiency of the intercombination transitions C₂a³Πₜ → C₂X²Σ⁺ and may be comparable with the efficiency of the C₂a³Πₜ v≥4 → C₂b³Σ⁺ v' → C₂a³Πₜ v<4 transitions surveyed in (Krishna Swami, 1986).

We have calculated g-factors of fluorescence efficiency in the C₂B²Σ⁺ v→C₂X²Σ⁺ v'' bands for a possible identification of emissions in the observed cometary spectra (Tab. I). We used the formula

\[g_{v,v'} \cdot \frac{r^2}{(\pi F_0)} = 8.853 \cdot 10^{-3} \cdot \lambda_{v,v'} \cdot I_{v,v'} \cdot \tilde{\nu}_{v,v'} \]

where r is the comet's heliocentric distance (AU), \(F_0 \) - solar irradiance at r=1 AU (phot/(s nm cm²)). For the meaning of the rest of the variables see e.g. (Lutz, 1987). Missing oscillator strength in the absorption have been calculated by the formula

\[I_{v,v''} = 3.04 \cdot 10^{-6} \cdot \tilde{\nu}_{v,v''} \cdot q_{v,v''} \cdot |<x|z|B>|^2 \]

using the moments \(<X|z|B> \) from (Rommus and Werner, 1984).

Note also that some evidence on the presence of the radiative attachment of electrons to the cometary C₂ molecules can be seen in the observed cometary spectrum in the range 3642.3-3679.1 Å where the onset of C₂X²Σ⁺ v =0 → C₂X²Σ⁺ v = 0 emissions lies (in accordance with the electron affinity value 3.370-3.404 eV (Nichols and Simons, 1987)). The photoattachment cross-section for the C₂ + e → C₂ + hv reaction is about 10⁻¹⁷ cm² (Feldman, 1970).
Table I. Oscillator strength $f_{v'}^v$ and g-factors of fluorescence efficiency for $B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$ bands of C_2 anion.

| $v'v''$ | band a) | b) | $|\langle X | z | B >\rangle^2$ | $\tilde{\omega}_{v'v''}$ | $f_{v'v''}(10^{-4})$ | $\frac{r^2g_{v'v''}}{n_F\theta}$ (cm2nm) |
|---------|---------|---------|-------------------------------|-----------------|-----------------|-------------------------------|
| 0 0 | 5415.87 | 0.7 | 1.1100 | 1/3 | 0.436c | 3.7739$\cdot 10^{-16}$ |
| 0 1 | 5984.82 | 0.2 | 1.1100 | 1/3 | 0.113 | 1.1944$\cdot 10^{-16}$ |
| 1 0 | 4902.02 | 0.3 | 0.7742 | 1/5 | 0.142c | 0.6127$\cdot 10^{-16}$ |
| 1 1 | 5363.26 | 0.3 | 0.7742 | 1/5 | 0.132 | 0.6723$\cdot 10^{-16}$ |
| 1 2 | 5912.69 | 0.3 | 0.7742 | 1/5 | 0.119 | 0.7366$\cdot 10^{-16}$ |

αHerzberg and Lagerqvist (1968), βJones et al. (1980), γRosmus and Werner (1984).

POSSIBLE IDENTIFICATION OF C_2^- EMISSIONS IN COMETARY SPECTRUM

The spectra of the comet Scorichenko-George (1989e) were observed by V.L.Afanasiev, A.I.Shapovalova and K.I.Churyumov on Feb.26.7 UT,1990 at the Special Astrophysical Observatory of the USSR Academy of Sciences (Nizhny Arkhyz) with the help of the TV scanner located on a spectrograph in the Nasmyth focus of a 6-meter reflector BTA. The spectrographic slit was observed with a mask that selects two regions of the comet that are separated from one another by the angular distance 20" (31000 km). This gave the opportunity during one exposition to accumulate in the computer memory two spectra, one of which is referred to the cometary nucleus, the other to the coma's region. The six spectra were recorded in three channels, which are characterized by the following spectral ranges: 1 - 3350-4450 Å, 2 - 4290 - 5390 Å, 3 - 5190 - 6290 Å. Spectral resolutions for each channel is 1.1 Å. The identification of the spectrum showed that it contains many typical cometary emissions (wave lengths of 360 emissions are measured with the precision up to ±0.5 Å). Among them are: CN,C_2,C_3,C_4,CH,NH,NH_2,Na,CO,CO^*,N_2,CH^*,CO^*, H_2O^+ and C_2^-. This spectrum for the first time has found out the emissions of the negative ions C_2^- (see λ_{obs} in the Table II):

Table II. Identification of C_2^- emissions in the comet's spectrum

<table>
<thead>
<tr>
<th>λ_{obs} ±0.5 Å</th>
<th>$\lambda_{v'v''}$</th>
<th>$v'v''$</th>
<th>λ_{obs} ±0.5 Å</th>
<th>$\lambda_{v'v''}$</th>
<th>$v'v''$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5416.5</td>
<td>5415.9</td>
<td>0-0</td>
<td>4902.5</td>
<td>4902.0</td>
<td>1-0</td>
</tr>
<tr>
<td>5984.4</td>
<td>5984.8</td>
<td>0-1</td>
<td>5363.1</td>
<td>5363.3</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5913.1</td>
<td>5912.7</td>
<td>1-2</td>
</tr>
</tbody>
</table>

ϕthe theoretical $\lambda_{v'v''}$ from Table I

Comparison of the observable and theoretical data shows their
close coincidence within the measurement made. The sharp peaks in
the spectrum are the transitions 0-0 and 0-1 (see Fig.a,b) that
have the largest values of g-factors. The transitions 1-0, 1-1 and
1-2 have some emission peculiarities in the spectrum. The
spectrum also contains the band in the wave length range
3542.3-3679.1 Å (the observed band is 3642.4-3678.7 Å), where lies
the beginning of the transition ν' = 0Σg + C → ν' = 0Σg + C (Fig.c).

\[\text{Fig. The fragments of the spectrum of comet 1989e with C}_2 \]

CONCLUSIONS
1. It has been shown that emissions of C\(_2^-\) in the cometary
spectrum possibly exist. 2. The presence of ions C\(_2^-\) leads to
the poorment of the singlet state of C\(_2\) molecules and the enrich-
ment of the triplet state of these molecules. This substantially
enriches the chemical kinetics of C\(_2\) and improves the model of the
inner coma (the process of photochemical reactions). 3. Calculation
of molecular ions C\(_2\) column density with cross section 1 cm\(^{-2}\) gives
\[N = 1.44 \times 10^{12} \text{ cm}^{-2}. \]

REFERENCES
Ballik E.A., Ramsay D.A. (1963) The A\(^g\)\(^3\) - X\(^g\)\(^3\) \(_\Pi\) band system of C\(_2\)
stabilen negativen Jonen. Zeitschrift fur Naturforschung 25, 621
Herzberg G. and Lagerqvist A. (1968) A new spectrum
Jones P.L., Mead R.D., Kohler B.E. and Lineberger W.C. (1980) Photo-
detachment spectroscopy of C\(_2\) autodetaching resonances. J. Chem.
Phys., 73, 4419-4432.
gapore. 274 pp.
Rosmus P. and Werner H.-J. (1984) Multireference-CI calculations of