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Abstract

Engineering systems designed specifically for space applications of-

ten exhibit a high level of autonomy in the control and decision-making

architecture. As the level of autonomy increases, more emphasis must

be placed on assimilating the safety functions normally executed at the

hardware level or by human supervisors into the control architecture of

the system. This paper details the development of a decision-making
structure which utilizes information on system safety. A quantita-

tive measure of system safety, called the safety self-information, is

defined. This measure is analogous to the reliability self-information

defined by Mclnroy and Saridis, but includes weighting of task con-

straints to provide a measure of both reliability and cost. An example

is presented in which the safety self-information is used as a decision
criterion in a mobile robot controller. The safety self-information is

shown to be consistent with the entropy-based Theory of Intelligent

Machines defined by Saridis.
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1 Introduction

Safe operation is a consideration whenever an engineering system is designed

and constructed. Research in the safety of robotic systems has been concen-

trated in three areas: human factors, such as the layout of control panels,

teach pendants, and mechanical guards; robot factors, such as perimeter

safety zones and "watchdog" safety systems; and systems issues, such as

fault-tree analysis of robot accidents and operator training [1]. Each of these

issues can be categorized as "hardware level" approaches to safety; the goal

of these approaches is to minimize the risk of accidents caused by human

interference with the robotic system, and provide emergency shutdown of

the system when an accident is imminent or has occurred.

Although each of these safety issues may be relevant in the construction

of highly autonomous and fully autonomous systems, the ideas are gener-

ally drawn from safety approaches in fixed automation systems, which op-

erate within highly specified physical constraints over a well-defined set of

parameters. They fail to address the needs of highly autonomous systems,

particularly those designed to perform ill-defined tasks in unstructured envi-

ronments. In addition, only the safety of the human operator is considered;

in autonomous systems, the safety of the system with regard to environmen-

tal hazards must also be taken into account. Consider, for example, a mobile

robotic platform operating as an exploration vehicle on unknown terrain. Al-

though it would be necessary to provide standard safety features, such as a

bumper system hardwired to stop the drive motors in the event of collision,

other standard safety features would fall short in fully safeguarding the sys-

tem. A safety fence cannot be built around the terrain to be explored; the

controller of the robotic system must be capable of assessing potential envi-

ronmental hazards and making control decisions with this hazard assessment

in mind. In addition, the controller must be capable of weighing potential

risks to the system with the urgency of the task to be performed; the con-

troller should be capable of making a control decision when it may become

necessary to violate an operating specification in order to complete an urgent

task.

This paper presents a method for assessing the level of safety of various

plans for performing a task in an autonomous system. A quantity known as

the safety self-information (SS[) will be introduced. This quantity will be a

reflection of both the probability that a plan will violate a task specification,
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as well as the potential hazard to the system caused by violating that specifi-

cation. This work is based on the reliability analysis for Intelligent Machines

formulated by McInroy and Saridis [2-4]. The approach will be demonstrated

in a case study of a mobile robot performing a task with a dynamic obstacle

in the environment. In addition, since the safety analysis is to be used as

a decision-making tool within the Hierarchical Control structure for intelli-

gent machines, the SSI will be shown to be consistent with the principle of

Increasing Precision with Decreasing Intelligence [5,6].

2 Safety Analysis for Autonomous Systems

Safety analysis for autonomous systems is concerned with selecting a plan

for executing a specified task based on minimizing the potential risk to the

system. The analysis is probabilistic in nature; it is assumed that knowledge

obtained from sensors and contained in the data base of the autonomous

system controller contains a degree of uncertainty, and can be modeled as a

random variable. Safety analysis is based on reliability theory, but provides

augmentation of reliability with cost information to establish a measure of

risk to the autonomous system. In this section, a review of reliability theory

will be presented. From this background, a method of safety analysis for

autonomous systems will be proposed. The Theory of Intelligent Machines

will be introduced, and the proposed safety analysis will be shown within the

structure of intelligent machines.
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2.1 Reliability Analysis

In order to develop safety analysis for autonomous systems, a review of re-

liability theory is necessary. Safety analysis uses as its basis the following

definition of structural reliability, presented by Ang and Tang [7], and applied

to Intelligent Machines by McInroy and Saridis [2-4].

Consider a system whose states are defined by a set of i random variables,

zi. These states represent sensor data or knowledge contained in a data base

for use by the intelligent controller of the autonomous system. The task to

be performed is described by a series of performance functions, which are

functions of the system states, each denoted 9(X). The performance func-

tions are defined such that if the specification is not violated, then g(X) > 0;
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failing to meet the specification results 9(X) <_ O. With these definitions,

the reliability index/3 is defined as the minimum distance between the ori-

gin of a set of uncorrelated standard normal variates derived from the state

variables X and the failure surface g(X) = 0. Physically,/3 can be thought

of as the "distance" between the current state of the system and a state at

which the specification in question would be violated. In the case where the

xi are uncorrelated Gaussian random variables with mean /_i and standard

deviation _ri, and g(X) is a linear specification of the following form:

g(x) = + E (1)
i

the reduced variates can be determined by:

, zi - #i
z i= ,i= 1,2,...,n (2)

and the reliability index/3 can be determined by:

=

/3 = ao + E_ a_ (3)

= =

L_
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From this, the reliability can be measured by:

R= ¢(9) (4)

where _(.) is the normal cumulative distribution function. Methods for cal-

culating the reliability index and reduced variates for other standard distri-

butions and nonlinear specifications can be found in Ang and Tang[7].

The reliability calculated using this method is known as the system reli-

ability, and can be interpreted as the probability that a given task specifica-

tion will not be violated. For tasks with multiple specifications, reliabilities

of parallel specifications must be combined using the following relationship:

= t- II(t- R,) (5)
i

After reducing parallel reliabilities such that only a set of series reliabilities

remain, the overall reliability of a system performing the specified task can

be computed as follows:

Riot = R1R2...R_, (6)
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McInroy and Saridis propose that for an Intelligent Machine, this con-

cept of system reliability can be viewed as a flow of reliability information

through the Hierarchical Control structure. They define the reliability self-

information (asI), denoted I(R), as follows:

z(R) = -log(}{) (7)

It can be shown that by definition of RS[, reliability can be treated in a frame-

work consistent with the Theory of Intelligent Control [2,9]. By evaluating

the RSI for a list of plans generated by an autonomous system controIler and

selecting the most reliable plan, an intelligent control system can use this

reliability analysis as a design tool [2-4].

Reliability analysis can be used to determine the probability that a task

specification is met. However, in using the RSI as a means of selection

of a plan for task execution, it is implied that all task specifications are

of equaI importance; no information regarding the priority of specifications

or the cost of violating a given specification are included in the analysis.

Consider the situation where multiple specifications define a given task, i.e.

a robot performing a peg insertion with specifications on gripper position,

gripper overshoot, and execution time. Implicitly, there are economic costs

associated with the violation of constraints; in the example case, assume that

violation of the position and overshoot constraints will cause damage to the

workpiece, while violation of the execution time specification will result in a

delay of mission and increases in mission costs. In this case, a decision based

solely on RSI will ignore the costs associated with the specifications; perhaps

an alternative analysis could be performed which would weigh the relative

costs of workpiece replacement and mission time, prioritize the specifications

based on this weighting, and calculate some decision index analogous to the

RSI but including a weighting function. The following anaIysis will result in

a quantity defined as the safet!l self-in.tbrmation (SSI), which can be viewed

as a weighted measure of reliability. It is proposed that this SSI quantity can

be used in a decision-making structure of an Intelligent Machine.

2.2 Safety Analysis and Safety Self-Information

Consider the system used in the derivation of RSI presented in Section 2.I:

a system whose states are represented by n uncorrelated Caussian random
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variables :r,, each with a known expected value #i and standard deviation

cri, designated to perform a task described by rn specifications, 9k(X). With

each specification, there is an economic cost associated with violation of that

specification, denoted Ck. Using these definitions, a safety analysis resulting

in the calculation of the SSI will be derived. From the standpoint of an

autonomous system, safety analysis will be defined as the measurement and

reduction of risk to an autonomous system. In the course of the analysis,

risk is measured as the penalty incurred by the system when a specification is

violated. Often, this penalty is defined as an economic cost, such as the cost

of replacing a part damaged when a specification is violated, or the cost of

repeating a task which is performed improperly. In the presentation of this

analysis, this economic definition of penalties will be used; however, it should

be noted that cost information is used as a relative weighting function, and

non-economically based weighting functions may be substituted for economic

cost information in the analysis.

The philosophy of the safety analysis is as follows: in the calculation

of the reliability of a plan, the statistics of the random variables describing

system states are used to calculate the probability that a given constraint

will not be violated. In order to focus the analysis on constraints which are

most costly, information regarding the states of the system will be treated as

more uncertain when misestimated state information could result in greater

risk to the system. To accomplish this, the standard deviations of the state

variables are modified according to the weighting of the constraint being

analyzed; the standard deviations of the state variables are increased pro-

portionally to increased cost. This has the effect of "stretching out" the

distributions of state variables when calculating the probability of violating

costly constraints; in essence, risk is introduced into the safety analysis by

assuring that costly constraints are met with a greater "factor of safety". By

introducing a higher level of uncertainty into the analysis in areas of greater

risk, reliability information is augmented with cost information.
The calculation of the SSI is as follows: numerical cost vaIues for each

constraint are normalized to provide a measure of relative costs. These rela-

tive costs are defined by:
Ck

= b. n (s)
where Cmi, is the minimum cost of all Ck. This relative cost value is then

used to modify the distribution of all state variables used in the specification



g_(X). It is used as a multiplier for the standard deviation, yielding a term

analogous to the reliability index, known as the safety indez v), computed as

follows:
ao -1- _i ait-zi

= (9)

Utilizing the normalized, zero-mean, Gaussian cumulative distribution func-

tion, the safety factor, S, can be computed:

s = (to)

Similarly to the RSI, the SSI, denoted F(S) is computed as follows:

F(S) = -log(S)

Physically, the SSI can be viewed as a measure providing a more conservative

estimate of system reliability, in which specifications carrying a greater risk

are met with a higher degree of certainty. Numerically, the SSI can be used

as an index on which to base safety-related decisions in the control structure

of an intelligent machine. An illustrative example is provided in Section 3.
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2.3 Safety Self-Information and the Theory of Intel-

ligent Machines

The safety analysis presented in this paper is intended to be used as a design

and analysis tool for the control of autonomous systems. The development

of general tools for the design of Intelligent Machines has been addressed by

Saridis [5,6]. The method proposed by Saridis is summarized in the Theory

of Intelligent Machines. In this section, it will be shown that safety analysis

based on the principle of the SSI is consistent with the general framework of

the Theory of Intelligent Machines, and can be integrated into hierarchical

control structures developed utilizing the principles of this theory.

The Theory of Intelligent Machines is a design and analysis method de-

veloped by Saridis to provide a theoretical structure for intelligent control

systems. The theory unifies concepts from Artificial Intelligence, Operations

Research, and Control Theory; in this theory, machine intelligence is mod-

eled as a flow of information through the hierarchical control structure of

the Intelligent Machine [5,6]. A fundamental concept of the Theory of In-

telligent Machines is the Principle of Increasing Precision with Decreasing
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Intelligence. It will be shown in this section that the information provided

by the safety self-information quantity is consistent with this principle, and

can be used within the hierarchical structure of the Intelligent Machine.

In short, the Principle of Increasing Precision with Decreasing Intelligence

states that Machine Intelligence (MI) operates on facts in a database (DB)

to produce a rate of knowledge flow in the machine (R):

(MI):(DB)_(R)

This implies that for a constant rate of knowledge R, machine intelligence is

larger for a small database. As shown by McInroy and Saridis [2], reliability

self-information can be interpreted within the framework of this principle; at

the tow levels of an intelligent machine, a decrease in the size or accuracy

of the database must be countered with an increase in control performance

to maintain a constant RSI. The same can be said to be true for the SSI.

As shown in Equations 9-11, the SSI is shown to be directly proportional to

both the uncertainty of the state variable measurements and the costs asso-

ciated with the task specifications; for measurements with a large variance or

specifications with a large associated cost, the SSI becomes large, indicating

a decreased level of safety. To counter this decrease in the level of safety

caused by an increase the uncertainty of information in the database, in-

creased control performance must be obtained. In this manner, the Principle

of Increasing Precision with Decreasing Intelligence is shown to be applicable

to analysis using the SSI. In addition, since the safety analysis makes use of

a self-information term calculated on a logarithmic scale, it can be described

by the same mathematical properties as entropy. This interpretation of SSI

as an analog to entropy provides a convenient method for incorporating SSI

into the information theoretic setting of the Theory of Intelligent Machines.

3 Example: A Safety-Based Decision Struc-

ture for a Mobile Robot

In this section, the safety analysis presented in Section 2 will be applied to

a simplified problem which is representative of the type encountered in an

autonomous mobile robotic environment. The results of a reliability analysis

will be contrasted with the results of the safety analysis. The analysis will

7
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be shown to be consistent with the structure of the Theory of Intelligent

Machines.

3.1 Problem Statement

A mobile robot, rl, is operating in an environment with a dynamic obstacle,

r2 (see Figure 1). The positions of rl and r2 are known exactly, as shown

in Figure 1. It is known with perfect certainty that r2 is traveling at 3

m/s along a straight path perpendicular to the path of rl, which is also

straight. The velocity of the robot rl can be obtained from sensors; the sensor

currently reads 5 m/s, and the sensor information is known to be normally

distributed with a standard deviation of 0.1 m/s. A collision between rl and

r2 will result in damage to the bumper of rl, which will yield repair costs

of $500. The mission to be completed is to transport collected soil samples

out of the collection area before contamination occurs; therefore, rl must

move at least 4.5 m along the current path in 1 s. If contamination occurs,

the mission will have to be repeated and more soil samples will need to be

collected, at a cost of $200. Additionally, it is known that the drive motor

of rl has speed limitations, and the motor will be damaged at velocities

greater than 6.1 m/s. Motor replacement bears a cost of $900. At this stage

of autonomous planning, the intelligent control structure must be used to

select an acceleration profile for rl. Three options are available: accelerate

at 1 m/s 2, maintain constant velocity, or decelerate at 1 m/s 2. It is assumed

for simplicity that the decision will be made instantaneously, and cannot be

changed again during the course of operation.

In order to proceed with reliability and safety analysis, the task specifi-

cations must be posed in standard notation. Using the format introduced in

the previous section, the task specifications can be written as a set of four

constraint equations:

For the velocity specification:

gl(v,a) = 6.1 - v - at > 0 (12)

For the mission specification:

g2(v,a) = vt+_at _ -4.5 > 0 (13)
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For collisionavoidance:

g3(v,a)= 5- vt-!at_> 0 (14)2

g_(,,a)= vt+ _t_- 5> 0 (15)

where v isthe velocityof rl,a isthe accelerationofrl,and t isthe elapsed

time. For simplicity,we willconsider a time intervalof 1 s. Let the three

accelerationprofiles(accelerate,maintain constant velocity,and decelerate)

be denoted P1, P_, and P3, respectively.

3.2 Reliability Analysis

Using reliability analysis, each of the three p[ans (P1, P2, and P3) will be

evaluated. The plan with the smallest RSI, I(R), will be selected as the most

reliable plan. The reliability of P1, where a = lm/s 2, can be determined as

follows:

For specification gl(a,v) = 5.1 - v > 0:

5.1 - #,_
fll - (16)

_/((-I)(i))_

With #. - 5re�s, thiscan be evaluated as:

_i = 1.0

Evaluating the cumulative distributionfunction:

= 0.8413

Repeating this analysis for each of the remaining three specifications yields:

_2 = 9.0; R_ " i

#3 = -5.0; R3 _- 0

#4=5.0;R4 _ i

9
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Since specifications g3 and g4 can be viewed as parallel specifications, their

reliabilities can be combined as follows:

(18)

=1

For the total reliability of P1, consider R1, R2, and R3.4 in series:

Rtot,1= RI R_R3,4

= 0.8413

Calculation of the RSI of P1 follows directly from this:

z,(R) = -iog(R,o,,,) (19)

= 0.0750

Similar analysis can be used to evaluate the RSI of P2 and Pa-

of the RSI yields the following results: For P_:

Calculation

R1 _- 1;R2 _- 1;R3,4 = 0.75

For P3:

h(R) =0.1249

Rl _-- 1; R2 = 0.1587; R3,4 _ ]

/3(R) =0.7994

Therefore, from a reliability standpoint, P1 should be selected. The results

are summarized in Table 1.

Further analysis of these results shows that each plan results in a nonzero

probability of violating one of the operating specifications while meeting the

other two specifications with almost perfect certainty: P1 will perform the

mission and avoid a collision with nearly perfect reliability, but resuIts in

a 16% chance of exceeding the maximum velocity; P_ has a 25% chance of

colliding with the moving obstacle, but will meet the mission specification and

stay within the velocity bounds with nearly perfect certainty; and Pa results

in an 84% chance of not meeting the mission specification, but will stay

within the velocity bounds and avoid collision with nearly perfect reliability.

10
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Since no cost penalties are included in the reliability analysis, and since each

plan results in a nonzero probability of failure of only one specification, PI

is chosen because it offers a higher reliability with respect to the velocity

constraint than does either P2 with respect to the collision specification or

Pa with respect to the required task.

It is clear from this analysis that P1 offers the plan with the highest

probability of meeting all task constraints. However, looking at the costs

associated with violation of the specifications as stated in the problem state-

ment may complicate this result. Although P1 offers the greatest probability

of meeting all three specifications, the constraint it has the highest probabil-

ity of violating is the velocity constraint. The assigned cost values show that

this specification has the highest associated cost. In this scenario, it may

be preferable to select another plan; one which is not as reliable, but has a

higher probability of meeting the costly velocity constraint, while relaxing

the less costly collision or mission specifications. For this type of analysis, a

decision based on SSI: may be employed.

3.3 Safety Analysis

Safety analysis is performed using the methods described in Section 2.2. The

analysis is as follows:

First, costs are normalized:

$900

c_ = $200

= 4.5

$200

c2 = $200

= 1.0

$5@
ca,4- $200

= 2.5

These cost values are now used for calculation of the safety index, _. For

PI"
5 - #.

=

11
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With #_ = 5.0 and cl = 4.5, _1 can be computed as:

_1 = 0.4938

Evaluating the cdf yields a safety factor, $1, of:

=

= 0.6983

Similar analysis can be used for g2, g3, and g4- Computation yields the

following results:

$2 _- 1.0

$3 = 0.0228

$4 = 0.9772

As with the RSI calculation, reduction of parallel specifications and combi-

nation of series specifications can be used to yield the total safety factor of

Stot,1 = 0.6827

From this, the SSI can be found directly:

F,(S) = -log(S,o,,,) (22)

= .1658

Repeating this analysis for P_ and Pa yields:

F (S) = . 28t

F3(S) = .7994

These results are summarized in Table 2. Choosing the p|an with the lowest

associated SSI results in selection of P2- Although it has been shown that

P1 is the most reliable plan, safety analysis shows that P; has the lowest

associated risk; from this definition of safety, P; is the safest plan. Although

it allows for a higher probabiIity of violating the mission specification than

does P1 with the velocity specification, the lower cost of violating the mission

specification outweighs the higher probability of violation. In effect, this

analysis has tightened the bounds on the velocity constraint to account for

its higher associated cost.

12
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3.4 Consideration of the Theory of Intelligent Ma-

chines

As was stated in Section 2.3, the Theory of Intelligent Machines is a design

and analysis tool developed by Saridis to provide a theoretical structure

for intelligent control systems. Safety analysis using SSI was shown to be

consistent with this theory. This can be further demonstrated by considering

the example problem.

Combination of Equations 3 and 9 yield the following relationship:

_,j, = _ (23)
ck

This implies that for specification k with associated cost ck, the safety in-

dex _ of plan i is directly proportional to the reliability index fl of plan

i with respect to specification k. In the example case, the largest cost is

associated with the velocity constraint; therefore, when evaluating each of

the three plans, the velocity measurement is treated as most uncertain when

evaluating the safety index associated with specification 1. As shown in

Equation 23, the use of a high cost value results in a decreased safety in-

dex and a corresponding increase in the SSI, indicating a decreased level of

safety. As suggested by the Principle of Increasing Precision with Decreasing

Intelligence presented in Section 2.3, this decreased level of safety must be

countered with an increase in control performance; in this case, Equation 23

shows that the selection of a plan with a high reliability index with respect

to specification 1 will counter the decrease in the level of safety caused by the

cost-induced uncertainty. Using this result, safety analysis using the SSI can

be viewed as a method of selecting plans which yield the highest weighted

combination of specification reliabilities, requiring more reliable control with

regard to more costly specifications. As indicated in Tables 1 and 2, plan

P_ is judged as the safest plan since it is highly reliable with respect to

costly constraint l, even though its overall reliability is lower than that of

Pz, which is less reliable with respect to constraint 1. By considering control

reliability to be a measure of precision and cost-induced uncertainties as a

decrease in intelligence, the Principle of Increasing Precision with Decreasing

Intelligence can be seen to manifest itself in safety analysis using SSI; more

reliable control performance is expected in response to greater cost-induced

uncertainties.

13
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4 Conclusion

This paper has presented a quantifiable approach to safety for autonomous

systems. A review of reliability theory has been presented, and the augmen-

tation of reliability theory with cost information has been proposed. The con-

cept of safety self-information has been defined, and has been demonstrated

in a decision-making structure for a mobile robot. The safety analysis based

on safety self-information has been shown to be consistent with the principle

of Increasing Precision with Decreasing Intelligence.

Research will be continuing in the development of a quantifiable approach

to safety, tn autonomous environments, data sampling is often used as a

means of collecting information about an unstructured environment. Prob-

ability distributions determined from finite data sets contain a degree of

uncertainty characterized by confidence levels; this uncertainty will be used

to augment the safety analysis presented in this paper. Also, this analysis

does not address the issues of safety problems encountered due to failure of

hardware and software components of the system; these component reliabil-

ities will also be included in the safety analysis. In addition, the current

safety analysis can only analyze existing plans; future research may include

the use of the SSI to formulate plans. Future research may also address

the computation time issues involved in safety analysis; often quick decisions

must be made which cannot allow for a full analysis. In these cases, the need

to perform an analysis must be weighed against the urgency of the decision
at hand.
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Plan
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Table 1" Reliability Analysis

R1

0.8413

1.0000

1.0000

R2

i.0000

1.0000

0.1587

R3 R4

0.0000 1.0000

0.5000 0.5000

1.0000 0.0000

0.8413

0.7500

0.1587

I(R,o,)
0.0750

0.1249

0.7994

!

w

Plan

&
&
P3

S1

0.6983

0.9927

1.0000

$2

1.0000

1.0000

0.1587

Table 2: Salty Analysis

Sa & Stot

0.0228 0.9772 0.6827

0.5000 0.5000 0.7445

1.0000 0.0000 0.1587

F(S,o,)
0.1658

0.1281

0.7994


