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ABSTRACT

Distributed parameter modeling is being seen to offer a viable alternative to finite element
approach for modeling large flexible space structures. The introduction of the transfer matrix
method into the continuum modeling process provides a very useful tool to facilitate the distributed
parameter model applied to some more complex configurations. A uniform Timoshenko beam
model for the estimation of the dynamic properties of beam-like structures has given comparable _ .
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results. But many aeronautical and aerospace structures are of the non-uniform sections or
sectional propertigs, such as aircraft wing, satellite antenna.

This paper proposes a piecewise continuous Timoshenko beam model which is used for the
dynamic analysis of tapered beam-like structures. A tapered beam is divided into several segments
of uniform beam elements. Instead of arbitrarily assumed shape functions used in finite element
analysis, the closed-form solution of the Timoshenko beam equation has been used. Application
of transfer matrix method relates all the elements as a whole. By corresponding boundary
conditions and compatible conditions a characteristic equation for the global tapered beam has been
yielded, from which natural frequencies can be derived. A computer simulation is shown in this
paper, and compared with the results obtained from the finite element analysis. While piecewise
continuous Timoshenko beam model decreases the number of elements significantly, comparable
results to the finite element method are obtained.

SYMBOLS

A sectional area, or characteristic matrix

a parameter in the Timoshenko beam equation, a2 = EI/m
C1.C2,C3,C4 mode shape coefficients

Det [A] characteristic determinant

E modulus of elasticity

G shear modulus

I second moment of area of the beam section
k bending stiffness, k = EI

L length of the jth beam segment

M bending moment

m mass per unit length of the beam

Q shear force

r radius of gyration of the beam section, 12 = /A
T time function

t time

X, Y, Z Cartesian coordinates

y(z,t) lateral deflection

z dimensionless z-coordinate, Z = z/L.

Y(2) spatial lateral deflection function

o, Y dimensionless parameters

B eigenvalue coefficient, 4 = w2/ a2
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£ Timoshenko shear coefficient

L'} slope of lateral deflection

® circular natural frequency

(D] transfer matrix for the global beam

[®]; transfer matrix for the jth beam segment
Dy elements of the global transfer matrix

¢ 5@ elements of the jth beam transfer matrix

1. INTRODUCTION

Distributed parameter modeling is being seen to offer a viable alternative to finite element
approach for modeling large flexible space structures. Continuum models have been made of
several flexible space structures, which include the Spacecraft Control Laboratory (SCOLE) (13,
Solar Array Flight Experiment [2), NASA Mini-Mast Truss [3), the Space Station Freedom (4.
Especially, the introduction of the transfer matrix method into the continuum modeling process
provides a very useful tool to facilitate the distributed parameter model applied to some more
complex configurations [56]. A uniform Timoshenko beam model for the estimation of the
dynamic properties of beam-like structures has given comparable results [7]. But many
aeronautical and aerospace structures are of the non-uniform sections or sectional properties, such
as aircraft wing, satellite antenna.

This paper proposes a piecewise continuous Timoshenko beam model which is used for the
dynamic analysis of tapered beam-like structures. A tapered beam is divided into several segments
of uniform beam elements. Instead of arbitrarily assumed shape functions used in finite element
analysis, the closed-form solution of the Timoshenko beam equation has been used. Application
of transfer matrix method relates all the elements as a whole. By corresponding boundary
conditions and compatible conditions a characteristic equation for the global tapered beam has been
yielded, from which natural frequencies can be derived. A computer simulation is shown in this
paper, and compared with the results obtained from the finite element analysis. While piecewise
continuous Timoshenko beam model decreases the number of elements significantly, comparable
results to the finite element method are obtained.

2. TRANSFER MATRIX OF A TIMOSHENKO BEAM
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Timoshenko beam model accounts for both rotary inertia and shear deformation of the
beam. Usually, Timoshenko beam model produces more accurate estimation of the modal natural
frequencies compared with the Bernoulli-Euler beam equation, especially for the range of higher
frequencies [g). In this section, a transfer matrix for Timoshenko beam model has been derived.
The Timoshenko beam is represented by the equation,

4 4
ay .Y!Lay _m_( +-E) dy +m2 8y=0 2.1
oz TE a2 %G 92292 €EGA? gt

For harmonic motion, y(x,t) can be expressed as

y (x,t) = Y(x) et
then, Eq.(2.1) will become

~ o I Eye?Y + (M2 | M yeRY =
Y +EA(1+€G)(1)Y+( 5 EI)O)Y 0 2.2)
Defining B4=w?/a2, where a2=El/m, Eq.(2.2) becomes
] 4 2 _E_ » 4 4 j_ ) -
Y 4B 2 (1+ By Y+ '8 (B)-uY =0 2.3)

where, r2=I/A, the radius of gyration of the section. If we use the following dimensionless
parameters,

Z=4&, o
L

II
oh

E =12
) G’ Ly
the Timoshenko equation may finally be written as

Y™+ BLY (a+y) Y +BL [(BL) ay-11Y=0 (2.4)

Assuming that the solution is
YZ) = A e(BL)Z

which, when substituted into Eq.(2.4), leads to
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(BL)* + BL)* (@ +7) BLY? + BL) [ BLY ory-11=0 (2.5)

The solution to the Eq.(2.5) is as follows.

(BL), ;=% (ML) =1 fzi [- BLY @+ + ¥ (L)% - 2+ 4(BL)* ]

(BL)s, 4 =% (BL) =+ 2 [ (BL) (@ + 1 + ¥ (BL) (@ - 1+ 4BL)" ]

Then, the solution to the Eq.(2.4) can be expressed as

Y(Z) = C; sin (6LZ) + C; cos (BLZ) + C; sinh (nLZz) + C4 cosh (NLZ) (2.6)

Similarly, for the bending slope y the differential equation has the same form as the

Eq.(2.4),
¥+ BL) (a+y)¥ +(BL) [BL) oy-1]1¥=0 Q2.7

The solution to Eq.(2.7) will be
¥(z) = 6,C; cos (8LZ) - 6,C; sin (BLZ) + 6,C3 cosh (NLZ) + 65C4 sinh (NLZ) (2.8)

where,

=1|@L) - <%— B L) +-% (BL
L[(e ) & (BL)] and o+ o5 o'

For the Timoshenko beam model, the shear force is

dy y oy
Q(z,t) = -k — ] — (2.9)
923 €0A g2 a2
or, equivalently,
- 4 Imﬁ. ’
Q(2) kYﬁ+k£GA Y'+Jo? ¢ (2.10)
And the bending moment is
82y 82y
=k—L k- 2L 2.11
MGt =k 322 kZGA a2 @11
or, equivalently,
40
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M(z) =k Y + k m@2 2.12
(@ +k£GAY (2.12)

Eqgs. (2.10) and (2.12) can be written in dimensionless format as,

__k_ ~ k 4 ., _k— 4
Q(i)—L3Y +§a(|3L) Y+Lzy(BL) i (2.13)
M@ =X v+ Ka@L)'y (2.14)
L2 L2

Substituting the solutions of Y(z)(Eq.2.6) and ¥(z)(Eq.2.8) into Eqs.(2.13) and (2.14), we derive
Q(Z)=-k0,,Cc0s0LZ+ko1CosinBLZ+k07,C scoshnLZ+ko,CysinhmLZ  (2.15)
M(2)=-k0,C5in0LZ-k012,Cc0s0LZ+k02,C3sinhnLZ+ko,,Cscoshnlz (2.1 6)

where,
o1 = 8- aL2B4B - ’YL2[34O'1 ' 1y = 0°- ocL2[34

4 4 4
ou =n’+al?pn+yL’B oz 22 =M%+ al?p

For the jth beam element, the displacement Y(0), slope ¥(0), shear Q(0), and the bending
moment M(0) at the end of z=0 can then be written in matrix form as,

Yo
0 1 0 1 ’Cl
QO] -kO’n 0 kO’zl 0 \lC;;
0 -koy;z 0 kot \Cals
MO ; J ]
Thus,
Yo
Ci .
Cad _[a),{ 7° (2.18)
Cs Qo
Cs
J MO i
where,
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0 1 0 {1 M G1021+02011 k(01021+02011)
- - —On__ 0 0 1
[)»]J [+}] 0 2 0 : Ci2+02 k(012+022)
ko 0 ko O 0 o S 0
G1621+020) k(01021+0:611)
0 koiz 0 koxnj o1 0 0 ]
| C124+02 k(ciz+oz) )

Similarly, at the end of z=L, the corresponding quantities are, if written in matrix form,

where,

sinOL
o1cosOL

[¢];=

-kc 1 ICOSQL

| ko2sinfL

Cll
=[¢]; S ’ (2.19)
J

cosbL sinhnL coshnL
o,sinhnL
koy15in6L koyicoshnl  koy;sinhnL

-018in6L ozcoshnL

-ko12€0s8L  kozsinhmL  kopcoshnl |

LS

Substituting Eq.(2.18) into Eq.(2.19) we obtain

YL Yo

o } =[a]; o (2.20)
Q Qo

M, i Mo j

[o]; =[¢];[A); (2.21)
and the elements of the transfer matrix [®]; are as follows.

=_1_ h L
P11 O1at0m (022c080L + G2coshnL)

Q12= (0718in6L + oy;sinhnL)
01021+0201
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P13= 1 (- G,5in6L + G;sinhmL)

k(61021+62611)
=—=l - L
P14 k(012+622)( cosOL + coshnL)
P21 =- —1 (016228in0L - 6,062sinhnL)
C12+022
=—1 __ (6,64,c086L + 0,6, coshnL
P22 0’1621;0'02.0'“( 1021 2011c0oshnL)
- 102
= - cos6L + coshnL
P22 k(0'10'21+0'2011)( nL)
= ¢5inBL inhnL
P24 _—l_k(612+022)( 18inBL + oosinhnL)
= G110228in6L + 617,65 sinhnL
P31 012;022( 11022 1206218inhnL)
=-—X0U%21_ (cosBL - coshnlL
P22 0’10'21'*'0'20'11( nb)
= 0,20711c0s6L + 0162;coshnL
P33 61021+02611( 2011 1021coshnL)
@34 =—L— (- 6145in6L + 6,;sinhmL)
012+622

-.k0120%; L-
Qa1 1zt Tos (cos6L - coshnL)

Qa2 =- ——K——(01,07;5in6L - 6,055sinhnL)

01021+02011
(

Qa3 = G26128in0L + 61032sinhnL)

01021+02011 :

P4ag= —1 (o12c086L + 63;coshnl)
G12+022

3. PIECEWISE CONTINUOUS MODEL FOR A TAPERED BEAM

A tapered beam can be considered as a piecewise continuous step beam consisting of N

uniform beam elements as shown in the figure. Using the transform matrix (Eq.2.21) to describe
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each beam element, then the state vectors at the two ends of the global beam will be related by the
global transfer matrix [®], that is,
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T Y1 o]l Y 3.1)
\Q \Q
M|N Mo
where, the global transfer matrix
1
] =] [a];
=N

Without loss of generality, let us consider the case of N=3. As N=3, the global transfer matrix
will be

5[5 oremd 3 (5 ooty 33 oot 5[5 oftept

(4] 5 (3 optd (3 oe@ptt 35 ool 3 (5 oRept? "
3 (3 oReBpt? (3 0B 3. (3 oRem? (3 o0mpi2
| (3 oReBpiP 3 (S oRoB (5 oReBp 35 oRBpl?

where, the superscripts (j) represent the jth beam, and ¢ is the elements of the transfer matrix
for the jth beam.

If we consider a cantilevered beam fixed at the end of z=(0, we have the following boundary
conditions: at the fixed end: Y(0)=0 and y(0)=0; at the free end: Q(L)=0 and M(L)=0. Applying
the boundary conditions to the global equation (3.1), we will have

Y
M
- (@] g (3.3)
t
3

0 0

Rearranging the state vector, Eq.(3.3) can be written as
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Bk
- [A]\% =[0] (3.4)

where, the coefficient matrix

-1 0 @y3 Dyg

[A]= 0 -1 B3 Dy
D33 D3s

D43 Dag

and ®jj's are the elements of the global transfer matrix. The condition for Eq.(3.4) to have a non-
trivial solution is that the determinant of the coefficient matrix equals zero, that is

-1 0 13 D1
0 -1 d23 P2
D33 Das

0 D43 Dy

=0 (3.5)

Eq.(3.5) is the so-called characteristic equation. Solving for the roots of the characteristic
equation, we obtain the natural frequencies @'s. Expanding the determinant in Eq.(3.5) we can
simplify the characteristic equation as

D33 Dyy - P34 Py3=0 (3.6)

or, expressing Eq.(3.6) in terms of the elements of each sub-transfer matrices, we have

5[5 malels(5 mael fy g el g mapil-o oo

If we consider a free-free beam, then the boundary conditions will become as Qp=M=0 and
Q3=M3=0 at the both ends. Thus the characteristic equation (Eq.3.5) should be

D3 P32 0 O
Det[A]=Det| T ®2 0 0 |_p (3.8)
D Oz -1 O

Dy 22 0 -1
or,
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D3 Byz - D32 D4 =0 (3.9)

Expressing Eq.(3.9) in terms of the elements of each sub-transfer matrices, we have

(53 o2pt][3; (3 oe}ot]-[3 (3 o2}t][3: (3 o8]0 .10

i=] \k=1 i=] \k i=]

4. COMPUTER SIMULATION

The computer simulation is designed to analyze the natural frequency for a tapered beam
with 15-meter length (Fig.4.1). The modulus of elasticity is assumed to be E=200*10° N/m2. To

@ | @ T .

BN o

Sm 5Sm Sm

Fig.4.1 A Tapered Beam

simplify the calculation, the change of the sectional foil is specified by the changes of the second
moment of area of the beam section and the mass of the beam segments along the longitudinal axis
z, that is, assuming

I = (0.0222-0.62+5.375)*10°8 (m4) (4.1)
and

m = 0.0112z2-0.4952+7.708 (kg.) 4.2)

In so doing, we may readily determine the sectional parameters necessary for the element
stiffness and mass matrices when we divide the beam as any desired number of segments. For
example, if we use three uniform beam elements to represent the global tapered beam, then we use
2,=2.5, z,=7.5 and z,=12.5 to calculate the Ij and m; for each beam element according to Egs.(4.1)
and (4.2). They are
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[,=4*106, ,=2*106, L,=1*10-6 (m?4) and m,=6.54, m,=4.03, m,;=3.27 (kg)

In the computer simulation, three-segment piecewise continuous Timosenko beam model
has been applied. For finite element analysis, the commonly used two-node and four-degree-of-
freedom plane beam element has been selected. Table 4.1 exhibit the comparison of the frequency
results calculated by both the piecewise continuous Timosenko beam model and the finite element
model. The results show that at least ten beam elements are needed for the finite element analysis
to achieve the comparable frequency values while the piecewise continuous Timosenko beam
model uses only three beam segments. The advantage is clear in decreasing the number of
elements by using the piecewise continuous Timosenko beam model to analyze large flexible
tapered beam-like structures.

Table 4.1 The comparison of the results obtained from
Finite Flement Method & Piecewise Continuous Timoshenko Beam Model

( Circular Natural Frequency, radisec)

Order of Mode 1 2 3 4 5
3| 15.274 | 70.066 | 179.455 | 415.646 | 775.990
a z | 4] 13.364 | 61.444 | 159.541 | 305.038 | 577.351
E g S| 12.210 | 55.790 | 143.917 | 278.314 | 455.985
- é 6| 11.208 | 51.205 | 131.761 | 253.865 | 419.438
E 9| 7] 10.411 | 47.566 | 122.267 | 234.973 | 387.374
': E 8| 9.760 | 44.592 | 114.562 | 219.847 | 362.437
E E 9| 9.223 | 42.108 | 108.144 | 207.421 | 340.663
10| 8.748 | 39.989 | 102.689 | 198.878 | 323.080
Piec_evise
lf:;netlu&o:g) 8.776 | 39.993 | 101.758 | 204.243 | 329.268

5. CONCLUDING REMARKS

This paper proposed a piecewise continuous Timoshenko beam model which is to be used
for the dynamic analysis of large flexible tapered beam-like structures. The procedure for
establishing natural frequency has been described in detail. A tapered beam is divided into several
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segments of uniform beam elements. Instead of arbitrarily assumed shape functions used in finite
element analysis,-the elosed-form solution of the Timoshenko beam equation has been used.
Application of transfer matrix method relates all the elements as a whole. By corresponding
boundary conditions and compatible conditions a characteristic equation for the global tapered
beam has been yielded. Through the root-searching process to the characteristic equation the
natural frequencies have been derived. A computer simulation is shown in this paper, and
compared with the results obtained from the finite element analysis. While the comparable results
is obtained, piecewise continuous Timoshenko beam model decreases the number of elements
significantly.
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