Moment Method Analysis of Linearly Tapered Slot Antennas

by

Adnan Köksal

Low Loss Components for Switched Beam Radiometers

Final Report

NASA Grant No: NAG-1-943
Covering the period

Co-Principal Investigators: Robert J. Trew
J. Frank Kauffman

Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, NC

November 1992
Abstract

A Method of Moments (MoM) model for the analysis of the Linearly Tapered Slot Antenna (LTSA) is developed and implemented. The model employs an unequal size rectangular sectioning for conducting parts of the antenna. Piecewise sinusoidal basis functions are used for the expansion of conductor current. The effect of the dielectric is incorporated in the model by using equivalent volume polarization current density and solving the equivalent problem in free-space. The feed section of the antenna including the microstripline is handled rigorously in the MoM model by including slotline short-circuit and microstripline currents among the unknowns. Comparison with measurements is made to demonstrate the validity of the model for both the air case and the dielectric case. Validity of the model is also verified by extending the model to handle the analysis of the skew-plate antenna, and comparing the results to those of a skew-segmentation modeling results of the same structure and to available data in the literature. Variation of the radiation pattern for the air LTSA with length, height and taper angle is investigated and the results are tabulated. Numerical results for the effect of the dielectric thickness and permittivity are presented.
Table of Contents

List of Tables v

List of Figures vi

1 INTRODUCTION 1
 1.1 Problem Statement and Objectives 1
 1.2 Significance 3
 1.3 Background 4
 1.4 Overview of Report 8

2 FORMULATION OF THE METHOD 10
 2.1 Introduction 10
 2.2 Derivation of the Integral Equations 12
 2.3 Solution of the Integral Equations by the Method of Moments 17

3 IMPLEMENTATION OF THE METHOD FOR LINEARLY TAPERED SLOT ANTENNA 21
 3.1 Introduction 21
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Conductor Modeling</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Conductor Basis and Test Functions</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Dielectric Modeling</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Dielectric Basis and Test Functions</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>Source Modeling</td>
<td>31</td>
</tr>
<tr>
<td>3.7</td>
<td>Evaluation of the Matrix Equation</td>
<td>34</td>
</tr>
<tr>
<td>3.8</td>
<td>Solution of the Matrix Equation</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS AND DISCUSSION</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Verification of Computed Results</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Computed Results for Air Tapered Slot Antennas</td>
<td>58</td>
</tr>
<tr>
<td>4.4</td>
<td>Computed Results for Dielectric Tapered Slot Antennas</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>COMPUTER CODE AND PERFORMANCE</td>
<td>70</td>
</tr>
<tr>
<td>5.1</td>
<td>Code</td>
<td>70</td>
</tr>
<tr>
<td>5.2</td>
<td>CPU Time and Memory Requirements</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK</td>
<td>76</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>A.1</td>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>A.2</td>
<td>Preparation of Itsa</td>
<td>87</td>
</tr>
</tbody>
</table>
A.3 Running Itsa and pattern programs 87
A.4 Input File Organization and Variables 88
A.5 Listing of Programs .. 93
List of Tables

4.1 Results for the air LTSA study 60
List of Figures

1.1 LTSA Geometry ... 2
1.2 Skew-Plate antenna .. 7
2.1 Scattering Problem Geometry 10
2.2 Equivalent Problem .. 14
3.1 LTSA Geometry ... 21
3.2 Unequal Size Rectangular Sectioning 23
3.3 Piecewise Sinusoidal Conductor Currents a) Segment geometry b) Distribution in Current Direction c) Distribution in Perpendicular Direction 25
3.4 Parallel Monopoles ... 27
3.5 Perpendicular Monopoles 28
3.6 Dielectric Segmentation 29
3.7 Possible Source Configurations of the LTSA a) Receiving mode with a detector diode b) LTSA with a microstripline to slotline transition 32
3.8 Geometry of conductor and dielectric currents 36
4.1 E-Plane of the LTSA ... 43
4.2 H-Plane of the LTSA ... 43

4.3 Antenna configurations a) LTSA positioning, b) Standard gain antenna positioning. ... 46

4.4 Comparison of E-Plane radiation patterns for skew-plate and unequal-size rectangular modeling ($L = 1.0\lambda_0$, $H = 0.5\lambda_0$, $W_f = 0.004\lambda_0$, $\alpha = 5$ degrees). ... 47

4.5 Comparison of H-Plane radiation patterns for skew-plate and unequal-size rectangular modeling ($L = 1.0\lambda_0$, $H = 0.5\lambda_0$, $W_f = 0.004\lambda_0$, $\alpha = 5$ degrees). ... 47

4.6 E-Plane radiation pattern for a skew-plate antenna with two different segmentation ($L = 5.2\lambda_0$, $H = 0.9\lambda_0$, $W_f = 0.06\lambda_0$, $\alpha = 7$ degrees)... 48

4.7 H-Plane radiation pattern for a skew-plate antenna with two different segmentation ($L = 5.2\lambda_0$, $H = 0.9\lambda_0$, $W_f = 0.06\lambda_0$, $\alpha = 7$ degrees)... 49

4.8 Magnitude of antenna current along $z = 0.75\lambda_0$. — : J_z, —— : J_x ... 50

4.9 Phase of antenna current along $z = 0.75\lambda_0$. — : J_z, —— : J_x ... 51

4.10 Magnitude of antenna current along $z = 2.53\lambda_0$. — : J_z, —— : J_x ... 51

4.11 Phase of antenna current along $z = 2.53\lambda_0$. — : J_z, —— : J_x ... 52

4.12 Feed design of the test antenna ... 53

4.13 Measured and computed co-polar radiation patterns for LTSA in air

($L = 5.5\lambda_0$, $L_i = 0.5\lambda_0$, $H = 1.5\lambda_0$, $W_f = 0.02\lambda_0$, $\alpha = 7$ degrees)... 54
4.14 Measured and computed co-polar and cross polar D-Plane radiation pattern for LTSA in air \((L = 5.5\lambda_0, L_i = 0.5\lambda_0, H = 1.5\lambda_0, W_f = 0.02\lambda_0, \alpha = 7\) degrees). .. 55

4.15 Measured and computed co-polar E and H-Plane radiation patterns for a dielectric LTSA \((\varepsilon_r = 2.33, d = 0.02362\lambda_0, L = 5.5\lambda_0, L_i = 0.5\lambda_0, H = 1.5\lambda_0, W_f = 0.02\lambda_0, \alpha = 7\) degrees). 57

4.16 Measured and computed co-polar and cross-polar D-Plane radiation patterns for a dielectric LTSA \((\varepsilon_r = 2.33, d = 0.02362\lambda_0, L = 5.5\lambda_0, L_i = 0.5\lambda_0, H = 1.5\lambda_0, W_f = 0.02\lambda_0, \alpha = 7\) degrees). 57

4.17 Variation of E and H-Plane patterns of LTSA's with \(H\). 61

4.18 Variation of D-Plane pattern of LTSA's with \(H\). 61

4.19 Variation of E and H-Plane patterns of LTSA's with \(\alpha\). 62

4.20 Variation of D-Plane pattern of LTSA's with \(\alpha\). 63

4.21 Variation of E and H-Plane patterns of LTSA's with \(L\). 64

4.22 Variation of D-Plane pattern of LTSA's with \(L\). 65

4.23 Variation of the E-Plane pattern for LTSA's with \(\varepsilon_r\). A: \(\varepsilon_r = 2.33,\)
\(B: \varepsilon_r = 4.0, C: \varepsilon_r = 5.0 \ (L = 2.0\lambda_0, H = 0.4\lambda_0, W_f = 0.01\lambda_0, d = 0.03\lambda_0, \alpha = 5\) degrees). .. 66

4.24 Variation of the H-Plane pattern for LTSA's with \(\varepsilon_r\). A: \(\varepsilon_r = 2.33,\)
\(B: \varepsilon_r = 4.0, C: \varepsilon_r = 5.0 \ (L = 2.0\lambda_0, H = 0.4\lambda_0, W_f = 0.01\lambda_0, d = 0.03\lambda_0, \alpha = 5\) degrees). .. 67
4.25 Variation of the E-Plane pattern for LTSA’s with dielectric thickness,

d. A: \(d = 0.02\lambda_0 \), B: \(d = 0.06\lambda_0 \), C: \(d = 0.1\lambda_0 \) (\(\varepsilon_r = 2.33, L = 2.0\lambda_0, H = 0.4\lambda_0, W_f = 0.01\lambda_0, \alpha = 5 \text{ degrees} \)).

4.26 Variation of the H-Plane pattern for LTSA’s with dielectric thickness,

d. A: \(d = 0.02\lambda_0 \), B: \(d = 0.06\lambda_0 \), C: \(d = 0.1\lambda_0 \) (\(\varepsilon_r = 2.33, L = 2.0\lambda_0, H = 0.4\lambda_0, W_f = 0.01\lambda_0, \alpha = 5 \text{ degrees} \)).

4.27 Variation of the E-Plane pattern for LTSA’s with dielectric thickness,

d, high \(\varepsilon_r \) case. A: \(d = 0.02\lambda_0 \), B: \(d = 0.04\lambda_0 \) (\(\varepsilon_r = 9.8, L = 1.05\lambda_0, H = 0.38\lambda_0, W_f = 0.004\lambda_0, \alpha = 5.7 \text{ degrees} \)).

4.28 Variation of the H-Plane pattern for LTSA’s with dielectric thickness,

d, high \(\varepsilon_r \) case. A: \(d = 0.02\lambda_0 \), B: \(d = 0.04\lambda_0 \) (\(\varepsilon_r = 9.8, L = 1.05\lambda_0, H = 0.38\lambda_0, W_f = 0.004\lambda_0, \alpha = 5.7 \text{ degrees} \)).

5.1 Block Diagram of the Code

5.2 Matrix fill-time and solve time on Alliant FX-40 for air LTSA’s

5.3 Total CPU time comparison for air LTSA’s

5.4 CPU time on CRAY Y-MP for dielectric LTSA’s
CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Objectives

The main objective of this work is to develop a Moment Method Model for the radiation pattern characterization of single Linearly Tapered Slot Antennas (LTSA) in air or on a dielectric substrate. The geometry of the LTSA is shown in Figure 1.1. This characterization consists of:

- Finding the radiated far-fields of the antenna,

- Determining the E-Plane and H-Plane beamwidths and sidelobe levels,

- Determining the D-Plane beamwidth and cross polarization levels,

as antenna parameters length (L), height (H), taper angle (α), substrate thickness (d) and the relative substrate permittivity (ε_r) vary. The ranges of these parameters are:

$$0.25\lambda_0 \leq L \leq 5\lambda_0$$

$$0.25\lambda_0 \leq H \leq 3\lambda_0$$
2.5 deg ≤ α ≤ 9 deg

0.01\lambda_0 ≤ d ≤ 0.1\lambda_0

1 ≤ \varepsilon_r ≤ 10.5

where \lambda_0 is the free-space wavelength at the operating frequency.

The reason for these choices of parameter ranges will be explained in later sections.

The LTSA geometry which is shown in Figure 1.1, does not lend itself to analytical solution with the given parameter ranges. Therefore, a computer modeling scheme and a code are necessary to analyze the problem. This necessity imposes some further objectives or requirements on the solution method (modeling) and tool (computer code). These may be listed as follows:
• A good approximation to the real antenna geometry.

• Feasible computer storage and time requirements.

According to these requirements, the work is concentrated on the development of efficient modeling schemes for these type of problems and on reducing the central processing unit (CPU) time required for the computer code. A Method of Moments (MoM) code is developed for the analysis of LTSA's within the parameter ranges given.

1.2 Significance

An antenna is one of the most important components in all communication systems. With the development of radar during the 1940's, many new antennas have been introduced. The introduction of MoM to electromagnetics made the numerical analysis of many antennas possible. During the 1970's the developments in microstrip devices and circuits vastly increased the possibility of new antenna structures. Planar antennas enjoy the possibility of integration with the other parts of the system. In recent years, the new developments in the millimeter wave frequencies has increased the importance of planar antennas suitable for this frequency range. The tapered slot antenna is one likely candidate for both microwave and millimeter wave systems. It can be easily integrated to microstrip circuits with a microstrip-to-slotline transition. Its radiation characteristics are also promising. Initial studies on LTSA's were mostly
experimental. In recent years, some approximate analytical and numerical solutions for LTSA's have been developed, however the validity of the results are restricted by the choices of the antenna parameters or by the approximation of the real antenna geometry. Therefore, there is a need for better modeling and characterization of these antennas.

This work concentrates on rigorous computer modeling of single LTSA's with the use of MoM. The real antenna geometry is modeled closely for the first time, both the conducting parts of the antenna and the finite size dielectric region. Earlier modelings lacked accuracy in either modeling the conductor parts (by assuming a different shape of the conductors to ease the analysis), or in modeling the dielectric (by assuming the dielectric support infinite or assuming that it is very thin). The characterization of the LTSA will provide the researchers and designers in the field with better design guidelines in the range of the parameters given before. Also, the solution method is not unique to the problem, the analysis of similar structures may be carried out with a modification of the computer code for the particular problem.

1.3 Background

The Tapered Slot Antenna was introduced by Gibson [1]. He called it the Vivaldi Antenna. Since its introduction, its properties have been studied by many researchers in the field [2]-[12]. The first studies were mostly experimental [2, 3], dealing mostly
with the characterization of the antenna and derivation of some empirical design formulas. The usage of the antenna at millimeter wave frequencies as a feed array element [8], and the integration with the other elements of the system have also been studied [11, 12].

The first theoretical formulation for the radiation pattern of the antenna has been provided by R. Janaswamy [4, 6, 7]. In his work, the height of the LTSA (H in Figure 1.1) was assumed infinite. Assuming also infinitely long antennas, \(L \geq 3\lambda_0 \), enabled him to approximate the fields by those of two infinite cones which can be analyzed analytically [13]. However, assuming infinite conducting parts for the antenna leads to incorrect predicted fields if one uses the free-space Green’s function in the application of the Schelkunoff’s equivalence principle [14]. Due to this reason, he approximated the effect of the finite length of the antenna by assuming a conducting half-space at the end of the antenna, and using the related Green’s function.

In the analysis of LTSA’s on a dielectric substrate the preceding assumptions do not lead to an analytical solution due to the presence of the dielectric. Therefore, for this part of the analysis, he approximated the antenna taper step-wise, and solved the eigenvalue problem [15], to determine the aperture field distribution up to a multiplicative constant in each constant slot-line section [7]. Enforcing the power conservation principle for each junction yielded the field distribution which in turn was used to find the fields of the antenna with the same half-space Green’s function. This analysis also assumes an infinitely long structure and the effect of the dielectric is
not taken into account when finding the radiated fields using the aperture distribution.

In this early work, it has been found experimentally that the radiation properties of the antenna improve as the antenna height gets smaller [4, 7]. However, the summarized analysis is not suitable for the solution of this problem. It also suffers from the treatment of the dielectric presence. In many applications, [2, 11, 12], the length of the antenna is less than $3\lambda_0$, further restricting the applicability of these results. Therefore, there has been a need to analyze the problem within parameter ranges given in Section 1.

Contemporary to our work, attempts have been made to model the antenna by the MoM [9, 10]. In this work, the antenna has been modeled by the skew-plate geometry shown in Figure 1.2. The shortcoming of this approximation is the assumption of differently shaped conductor edges in the distances comparable to the wavelength. Since the approximated geometry of the antenna has also been utilized in experimental models, good agreement with measurements has been obtained. Our results [16] predict different radiation patterns for the real geometry of the LTSA. Also the effect of the dielectric still needed better consideration, since only low-permittivity (ϵ_r), and very thin dielectric support has been analyzed [10].

In electromagnetic radiation and scattering problems there are two main approaches: Differential equation (DE) modeling and integral equation modeling [17]. Traditionally, DE models are used in bounded problems and IE models are employed.
in exterior radiation and scattering problems. In DE models, the problem region is divided into meshes and the unknown is approximated by a function in each cell. The satisfaction of the boundary conditions at each mesh boundary yields the unknowns related to the fields. In IE models, the integral equation describing the problem is obtained first, then, the unknown in the equation is expanded using some basis functions. Weighting of the IE with some weight functions converts the integral equations to a linear system of equations. Solution for the currents (or unknown in the problem) is obtained by standard matrix inversion or iterative techniques. By their nature, DE models are local and IE models are global, and as a result, the matrices obtained from DE models are large but sparse as opposed to the relatively small and dense matrices obtained from IE models. DE models are extended to radiation and scatter-
ing problems in unbounded regions by utilizing the "absorbtive boundary conditions" [18]. However, since large matrices are obtained using DE models and since the solution times are on the same order for both of the methods, we have preferred the IE modeling scheme and MoM formulation [19, 20].

In IE methods, another recent approach is the Conjugate Gradient Method [21, 22], which has been applied to dielectric scattering, scattering from conducting plates and wire antenna problems. However, it is not applicable to mixed bodies such as the dielectric supported LTSA. It has been applied to LTSA's in air and infinite arrays of LTSA's by Catedra et al [23].

1.4 Overview of Report

The report is organized as follows. Chapter 2 presents the formulation of generalized scattering or radiation from a coated dielectric body problem. In Chapter 3, the implementation of the method for the LTSA is explained. The modeling approach for the conducting and the dielectric parts of the antenna with the basis and test function choices for MoM formulation is given in this chapter. Possible excitation types for the antenna and the modeling of the source are also discussed in Chapter 3. In Chapter 4, the results and discussion are presented. In section 4.2, favorable comparison to available data in the literature and to experimental measurements is made to verify the computational results. The accuracy of the results is checked and
discussed. A parametric study of air LTSA's with changing L, H and α is given in section 4.3. Conclusions on the behavior of the radiation characteristics of the antenna with respect to these parameters are drawn. In section 4.4, the effect of the dielectric thickness and the permittivity on the radiation characteristics of the antenna are presented. The developed MoM code is explained briefly in Chapter 5. The performance study of the code is also given in this chapter. Finally, the conclusions and the suggestions for future research are presented in Chapter 6.
CHAPTER 2

FORMULATION OF THE METHOD

2.1 Introduction

Many important electromagnetic problems involve radiation and scattering from a dielectric body partially covered with a conductor. This general problem geometry is shown in Figure 2.1. In this figure, the problem is shown as a scattering problem where

\[(E^i, H^i)\] is the incident field and \[(E, H)\], the total field in the presence of the scatterer, is the unknown. The location of the source for \[(E^i, H^i)\] is assumed to be at infinity so
that \((E^i,H^i)\) is not effected by the presence of the scatterer. In radiation problems the same formulation as for the scattering case can be used with only a proper change of the interpretation of the incident field. In this type of problem, \((E^i,H^i)\) is the field of the source \((J_i,M_i)\) which is usually on or in the structure and assumed to be known or approximated. When attempting to solve the problem numerically, a suitable source model is chosen. As a result of this modeling, some parts of the source model should also be included as having unknown current distribution. This is the major difference of the radiation and scattering cases.

Whether it is a scattering or a radiation problem, the analytical solution of the total fields for Figure 2.1 is very difficult in most cases. When the geometry of the dielectric body is a canonical one such as a sphere or a slab extending to infinity, the specific Green's function can be derived in the frequency domain or a series representation of it may be obtained. However, the solution for the conductor parts of the structure is still very difficult and is usually carried out by a numerical approach [24] such as MoM. For example, when the dielectric body is a slab extending to infinity, the Green's function is easy to derive in the frequency domain [24]. However, in the solution of the unknown conductor currents by moment method, one encounters Sommerfeld integrals which are difficult to integrate numerically. When using series form for the Green's function, the slow convergence is a typical problem.

When the difficulties regarding the Green's function are considered and when the geometry of the particular problem does not allow these approaches, the only possible
way is to use numerical methods [17].

In order to solve the general problem of Figure 2.1 numerically, the governing integral equations for the conductor and dielectric regions are obtained. This is explained in section 2.2 These equations are then solved numerically using MoM. This procedure is detailed in section 2.3. In the remaining sections of this chapter, the dielectric body will be assumed to have the permeability, \(\mu_0 \), of free-space, which is the case for most antenna problems.

2.2 Derivation of the Integral Equations

Referring to Figure 2.1, the conducting parts of the structure ,\(S_c \), can be modeled by applying Schelkunoff's equivalence [14] principle. According to this principle, the total tangential fields determine the equivalent electric and magnetic surface current densities,

\[
J_s = n \times H
\]

\[
M_s = -n \times E = 0
\]

which are introduced on the surfaces of the conductor; both bottom and top. Here, \(n \) is the unit outward normal to the conducting body. \(M_s \) is equated to zero in (2.2) since a perfect conductor assumption is made and on a perfect conductor the
tangential electric field is zero. When \(J_e \) and \(M_e \) are introduced on the conductor, the conductor can be removed and the currents \(J_e, M_e \) can be considered to radiate in free-space [25]. If the conductor is very thin, equivalent currents \(J_e \) and \(M_e \) might be considered as the vector sum of the currents on the top and bottom surfaces. Throughout the analysis this assumption will be made for the conductor regions.

In the dielectric region, \(V_d \), Maxwell’s equations may be written as:

\[
\nabla \times E = -j\omega\mu_0 H \tag{2.3}
\]

\[
\nabla \times H = j\omega\epsilon_\infty E
\]

\[
= j\omega\epsilon_0 E + j\omega(\epsilon - \epsilon_0)E \tag{2.4}
\]

Subsequently, (2.4) can be rewritten as,

\[
\nabla \times H = j\omega\epsilon_0 E + J_e \tag{2.5}
\]

where

\[
J_e = j\omega(\epsilon - \epsilon_0)E \tag{2.6}
\]

Equation (2.5) can be interpreted as a Maxwell’s equation in free-space with a current source \(J_e \) located at the position of the dielectric part of the structure. Therefore, one can replace the dielectric region with the equivalent volume electric polarization current density \(J_e \) and consider the whole problem in free-space [20, 26, 27, 28, 29]. The equivalent problem is shown in Figure 2.2.
On the conductor regions, the total tangential electric field intensity is zero. Therefore, the following equation must be satisfied on the conductor surfaces.

\[(E^i + E^e + E^s)_{\text{tan}} = 0 \quad (2.7)\]

In equation (2.7), \(E^i\), \(E^e\), and \(E^s\) are the fields radiated by the sources \(J_i\), \(J_s\), and \(J_e\), respectively.

In the dielectric region, \(V_d\), the condition

\[E^e + E^i + E^s = E \quad \text{or} \quad \frac{J_e}{j\omega(\varepsilon - \varepsilon_0)} \quad (2.8)\]

should be satisfied.

Equation (2.8) is merely the statement of the equality of the total fields in which (2.6) has been used to obtain the relation with the equivalent polarization current density, \(J_e\), in the dielectric region.
All the fields produced by the equivalent sources and the source can be expressed in terms of the free-space dyadic Green’s function as

\[E = \int_V \mathbf{J} \cdot \mathbf{G} dV \quad (2.9) \]

where,

\[\mathbf{G} = (\mathbf{I} + \frac{1}{k_0^2} \nabla \nabla) g_0 \quad (2.10) \]

and,

\[g_0 = \frac{\exp(-\gamma k_0 R)}{R} \quad (2.11) \]

\(\mathbf{I} \) is the unit dyad, \(R \) is the distance between the source and the field points, \(R = |\mathbf{r} - \mathbf{r}'| \), where \(\mathbf{r} \) and \(\mathbf{r}' \) are position vectors to the field and source points, respectively, and \(k_0 \) is the free-space wavenumber. The \(\nabla \) operator operates on unprimed coordinates which are the field coordinates. For surface current densities, equations (2.9) through (2.11) still can be used with surface integrals over source current densities replacing the volume integrals.

As a result, equations (2.7) and (2.8) are the two integral equations that must be satisfied by the unknown conductor current density \(\mathbf{J}_c \), and the equivalent volume polarization current density \(\mathbf{J}_p \).

Equation (2.7) states that the total tangential electric field intensity on a conductor surface is zero. Therefore, if a test source \(\mathbf{J}_m \) is placed in the conductor, its reaction [25] with all other sources, \((\mathbf{J}_c, \mathbf{J}_s, \mathbf{J}_e) \), will be zero. In equation form this
can be written as:

\[\int_{S_i} J_i \cdot E^m dS + \int_{S_i} J_i \cdot E^s dS + \int_{V_d} J_i \cdot E^m dV = \]

\[\int_{S_m} J_m \cdot E^s dS + \int_{S_m} J_m \cdot E^s dS + \int_{S_m} J_m \cdot E^s dS = 0 \]
(2.12)

where \(S_i \) and \(S_m \) are the regions in which \(J_i \) and \(J_m \) are nonzero. The field \(E^m \) is the field radiated by \(J_m \) in free-space.

Equation (2.12) is a reaction integral equation for the two unknown current densities \(J_i \) and \(J_e \). Satisfaction of this equation ensures that these currents have the proper reaction with a test source on the conductor surface. However, this does not insure the satisfaction of the field equality equation, (2.8), in the dielectric region. In order to incorporate the effect of the dielectric, we will multiply (2.8) by a vector weighting function \(W_m \), and integrate over \(V_d \), to obtain,

\[\int_{V_d} (E^s + E^s - \frac{J_e}{j\omega(\epsilon - \epsilon_0)}) \cdot W_m dV = -\int_{V_d} E^i \cdot W_m dV \]

(2.13)

Let us rewrite equations (2.12) and (2.13) as:

\[\int_{S_i} J_i \cdot E^m + \int_{V_d} J_i \cdot E^m = -\int_{S_i} J_i \cdot E^m = -V_m \]
(2.14)

\[\int_{V_d} (E^s + E^s - \frac{J_e}{j\omega(\epsilon - \epsilon_0)}) \cdot W_m dV = -\int_{V_d} E^i \cdot W_m dV = -V_{m'} \]
(2.15)
Equations (2.14) and (2.15) contain the unknown current densities in their kernels and are the governing reaction integral equations for the problem of Figure 2.1. These two coupled integral equations must be solved to find the unknown conductor and dielectric polarization current densities J_c and J_v, respectively. The equations (2.14) and (2.15) must hold for any arbitrary test function J_m and W_m. However, in order to solve these equations numerically with MoM, N distinct J_m and M distinct W_m will be used to reduce the equations to a square matrix equation, where N and M are the number of expansion functions for the conductor and dielectric regions, respectively.

It is worthwhile to mention here that, although the reaction concept is utilized to obtain (2.14), it is essentially an inner product of the integral equation (2.7) by the test functions J_m similar to the dielectric equation (2.8) and its inner product (2.15).

2.3 Solution of the Integral Equations by the Method of Moments

In order to solve equation (2.14) and (2.15) by MoM, the unknown currents are expanded as follows:

$$J_\text{c} = \sum_{n=1}^{N} I_m J_{en} \quad (2.16)$$

$$J_\text{v} = \sum_{n=N+1}^{N+M} I_m J_{en} \quad (2.17)$$

The total conductor surface current J_s is expanded by using the basis functions
In the dielectric, the volume polarization current density is similarly expanded using the basis functions J_m. In (2.16) and (2.17) J_m and J_n have known forms and I_m and I_n are the unknown multiplicative constants to be determined. In general, since the conductor current is a surface current density, J_m should contain two orthogonal components, whereas J_n is a volume current density and should contain three.

Substituting (2.16) and (2.17) into (2.14) and changing the order of integration and summation gives,

$$
\sum_{n=1}^{N} I_m \left(\int_{S_i} J_m \cdot E^n dS \right) + \sum_{n=N+1}^{N+M} I_m \left(\int_{V_d} J_m \cdot E^n dV \right) = -V_m
$$

$$
= -\int_{S_i} J_i \cdot E^n dS
$$

(2.18)

In (2.18), since J_m, J_n and E^m are known, the integrals may be evaluated leaving a linear equation in $N + M$ unknowns. Since E^m is the field of the test sources which are placed on the conductor, using N test sources in (2.18) gives N equations in $N + M$ unknowns.

Similarly, when (2.16) and (2.17) are substituted into (2.15) we obtain,

$$
\sum_{n=1}^{N} I_m \left(\int_{V_d} E^m \cdot W_m dV \right) + \sum_{n=N+1}^{N+M} I_m \left(\int_{V_d} \left(E^m - \frac{J_m}{j\omega(\epsilon - \epsilon_0)} \right) \cdot W_m dV \right) = -V_m
$$

$$
= -\int_{V_d} E^i \cdot W_m dV
$$

(2.19)
where E^m and E^n are the fields produced by the surface and the volumetric basis functions (currents), J^m and J^n, respectively. When M weighting functions are used in (2.19), M equations in $N + M$ unknowns result. Together with those obtained from (2.18) a square matrix of order $N + M$ is obtained.

Equations (2.18) and (2.19) represent a linear system of equations which can be written compactly,

$$\sum_{n=1}^{N+M} I_n Z_{mn} = V_m \quad \text{for } m = 1, \ldots, N + M \quad (2.20)$$

or in the matrix form as,

$$ZI = V \quad (2.21)$$

where, Z is the square impedance matrix, I is the current vector, and V is the excitation or voltage vector, and,

$$I_n = \begin{cases}
I_m & \text{if } n = 1, \ldots, N \\
I^n & \text{if } n = N + 1, \ldots, N + M
\end{cases} \quad (2.22)$$

$$V_m = \begin{cases}
-\int_{S_i} J_i \cdot E^m dV & \text{if } m = 1, \ldots, N \\
-\int_{V_d} E^i \cdot W_m dV & \text{if } m = N + 1, \ldots, N + M
\end{cases} \quad (2.23)$$

After the matrix elements, z_{ij}, are calculated using numerical integration, the unknown current coefficients are solved by standard inversion or iteration procedures.

Until this point the method is general in the sense that, neither the basis functions for the conductor and the dielectric, nor the testing (weighting) functions for them...
are specified. The difficulty or the complexity of the matrix element evaluation and the computation time for them are heavily influenced by these choices. The chosen basis and testing functions and their impact on the implementation of the method for LTSA’s will be explained in the next chapter.
3.1 Introduction

In this chapter, the implementation of the method explained in chapter 2 will be given. In order to apply the formulation of the previous chapter to the antenna geometry of Figure 3.1, the conducting parts of the antenna should be approximated by a surface modeling scheme. The definitions of the unknown currents on the conducting surfaces

Figure 3.1: LTSA Geometry
will complete this part of the analysis. The next step is to approximate the dielectric geometry and define the unknown currents for the dielectric region. When the test functions for both the conducting and the dielectric parts are determined, the matrix elements can be calculated.

The approximation of the conducting and dielectric parts also involves the modeling of the source. Depending on the source modeling, unknowns related to the source may be included in the matrix equation.

After the matrix equation is obtained by calculating the matrix elements and the right-hand side vector, the solution of this equation gives the unknowns. Once the unknown currents are calculated, any necessary information of the antenna such as the far-field radiation pattern, field distribution in the dielectric, input impedance, can be calculated easily.

3.2 Conductor Modeling

Possible choices for modeling the conductor surfaces are triangular sectioning [30, 31], polygonal plate modeling [32, 33, 34], or a combination of these with rectangular sectioning [35, 36]. As mentioned in chapter 2, the complexity of the matrix element calculation depends on this choice. Although triangular and polygonal plate modeling schemes are better in conformity to the surface than rectangular sectioning, the number of integrations involved in calculating the matrix elements is larger. Triangular
sectioning is best suited for modeling the LTSA geometry, however the integrations in the matrix element calculations have to be carried out on a triangular domain which is costly and difficult to do numerically. Polygonal plate sectioning is also suited to modeling the LTSA geometry. The difficulty in matrix element calculation however is worse than both the triangular and rectangular sections. The matrix element calculation integrations are four-fold in this case. Rectangular sectioning gives the simplest expressions for the matrix elements and is the least costly in terms of the computation time. Hence, whenever applicable, rectangular sectioning offers simplicity and computational savings. Referring to Figure 3.1, the range of the taper angle for useful antennas was determined earlier [4] to be less than 9 degrees. This small taper angle allows a good approximation with the unequally sized rectangular segmentation of Figure 3.2.

Figure 3.2: Unequal Size Rectangular Sectioning
3.3 Conductor Basis and Test Functions

The conductor current basis functions are chosen as overlapping piecewise sinusoidal functions. The current on the ith segment of the conductor consists of two monopoles. The current starts on the segment i and extends to the next segment. Each segment carries a monopole current which has components J_{x_i} and J_{z_i} defined by,

$$J_{x_i} = a_x \frac{1}{2\omega_i} \left\{ \frac{I_{1i} \sin(\omega_i h_i - z_i) + I_{2i} \sin(\omega_i z_i)}{\sin(\omega_i h_i)} \right\}$$

$$J_{z_i} = a_z \frac{1}{h_{i+1}} \left\{ \frac{I_{1i} \sin(\omega_i z_i - x_i) + I_{2i} \sin(\omega_i z_i + x_i)}{\sin(2\omega_i h_i)} \right\}$$

where a_x and a_z are the unit vectors in the directions of z and z, respectively, $2\omega_i$ is the segment width, and h_i is the segment height. I_{1i} and I_{2i} are the terminal currents, and take the values either 0 or 1. x_i and z_i are the local coordinate variables of the monopole measured from the bottom and the center of the monopole, respectively (See Figures 3.4 and 3.5). The z component of the monopole current extends h_{i+1} along z, to provide current overlap for the successive unequal-size rectangular sections. These monopole currents are piecewise sinusoidal in the current direction and constant transverse to it, and are the same as those in [25].

The combination of the two neighboring segment currents creates one unknown for the conductor. This combination and the resulting current distribution is shown in Figure 3.3. As seen from Figure 3.3, the conductor currents are continuous in the current direction since every surface dipole current overlaps a neighboring one.
Figure 3.3: Piecewise Sinusoidal Conductor Currents a) Segment geometry b) Distribution in Current Direction c) Distribution in Perpendicular Direction

The current is a constant with respect to the coordinate perpendicular to the current direction. The continuity of the current is a desired property for two reasons. Firstly, the current on the conductor is continuous, therefore, using continuous basis functions allows a good approximation, especially where the current is rapidly varying. Secondly, a discontinuous current approximation creates line charges where the current is discontinuous. Since this would be a fictitious line charge that shouldn't
be present it might lead to erroneous results for antenna currents and therefore other calculated results.

The test functions to complete the application of (2.18) are chosen the same as the basis functions. This is called Galerkin formulation. For this specific choice of basis and test functions, the matrix elements for the conductor-conductor interactions become mutual impedances between the respective currents. These mutual impedances are obtained by summing up the four monopole-to-monopole mutual impedances [25]. With the rectangular sectioning and the defined current distributions, there are only two types of monopole-to-monopole mutual impedance calculations. These are parallel and perpendicular cases which are shown in Figure 3.4 and Figure 3.5. With this choice of rectangular sectioning and current definition the monopole-to-monopole mutual impedances of Figure 3.4 and Figure 3.5 were earlier calculated by integrating the mutual impedance of line currents [36, 37, 38, 39] over the monopole surfaces. The simplest formula for the parallel case is reported in [40]. For the perpendicular case, a one dimensional integral formula for the mutual impedance between a dipole and a monopole is reported in [41]. None of these earlier formulations is valid for unequally sized parallel or perpendicular monopole-to-monopole interactions. The direct integration for the surface currents leads to faster and easier evaluation of matrix elements even in the general case of unequal size segments. Simple formulas for the mutual impedances of the two cases shown in Figure 3.4 and Figure 3.5 have been derived and reported in [42]. The derivations and the resulting expressions will
not be repeated here, however, it is worthwhile to mention that the parallel case contains only one-dimensional integrals and the perpendicular case is in closed form, containing exponential integrals only. It is these simple formulas that led to the choice of unequal size rectangular sectioning of the conductor. Tremendous savings of computation time makes possible the use of finer grid sizes and therefore better approximations of the antenna geometry. Another resulting benefit of the rectangular sectioning is the increased symmetry that further reduces the computation time. In large method of moment calculations it is important to consider the symmetries and eliminate the unnecessary computations. In summary, compared to triangular
3.4 Dielectric Modeling

The dielectric region of the LTSA of Figure 3.1 is a rectangular slab with a thickness \(d \). Therefore, any sectioning scheme would easily conform to its geometry. The most common modeling technique for the slab geometry that has extensively been used in the earlier work is cubical sections [26, 27, 28, 29]. For arbitrary dielectric shapes,
tetrahedron modeling has been employed \[43\] . Since cubical sectioning has been successfully used in the modeling of similar antenna structures, it has been employed in this work (See Figure 3.6).

![Figure 3.6: Dielectric Segmentation](image)

3.5 Dielectric Basis and Test Functions

In the dielectric region, pulse basis functions are employed which are suitable for the segmentation of Figure 3.6. Therefore, the polarization current density in the dielectric region is expanded as

\[
J_{el}(x, y, z) = \frac{\alpha_i}{L_y L_z} \mathbf{a}_x + \frac{\beta_i}{L_x L_z} \mathbf{a}_y + \frac{\gamma_i}{L_z L_y} \mathbf{a}_z
\]

(3.3)

if \((x, y, z)\) is in the \(i\)-th cell, (Figure 3.6), and zero if outside.

In the analysis of microstrip antennas, the assumption of infinite dielectric is
usually employed [44, 45, 46]. Since the finite dimensions of the dielectric are ignored in this assumption and since Sommerfeld-type integral evaluations are necessary for the calculation of the matrix elements, this approach is unsuitable for the LTSA analysis. In the analysis of scattering by homogeneous dielectrics, surface current formulations have also been employed [47, 48], which is also applicable to the LTSA problem. However, the case study for a sample LTSA has revealed that the surface current formulation would lead to larger matrix sizes and more difficult numerical integrations for the matrix element computations compared to the volumetric pulse expansion given in equation (3.3). The simplicity of volumetric pulse functions in terms of integration complexity was also the reason why overlapping triangular or sinusoidal basis functions were not preferred.

The expansion of the dielectric volume polarization current density by (3.3) satisfies the criteria that the divergence of the electric field intensity inside a homogeneous dielectric region is zero [29]. However, it introduces surface polarization charges on the faces of the volumetric pulses. The effect of these surface charges has been found to be negligible for the LTSA modeling.

The same modeling scheme for the dielectric regions has been successfully applied to dielectric scattering problems and wire antenna problems [28]. Recently, it has also been applied to the analysis of microstrip antennas [29].

The test functions for the dielectric region are chosen as delta functions located
at the center of each cell and directed in \(a_x, a_y \) and \(a_z \) directions. When employed in (2.19), this test function choice results in the field equation (2.8), which is merely a statement of the equality of the total fields at the center of each dielectric segment and for each component of the electric field intensity in \(a_x, a_y \) and \(a_z \) directions.

The reason for the choice of this test function is basically its simplicity. Other test functions would introduce additional complexity in addition to already numerically difficult field calculation for three dimensional sources, especially in the source region itself [49].

3.6 Source Modeling

Good source modeling in the LTSA analysis is very important because of the fact that the source can contribute to the radiation pattern appreciably. The reason for the source contribution is the openness of the feeding structures. The source region of the LTSA may differ appreciably according to the mode in which the antenna is being used or according to the feeding structure that is employed. Two of the most commonly used source configurations are shown in Figure 3.7. When the antenna is used in the receiving mode, power can be picked up easily by a detector diode soldered across the apex of the antenna as shown in part a) of Figure 3.7.

The second source configuration employs a microstripline-to-slotline transition [50] as shown in part b) of Figure 3.7. In this figure, \(L_i \) is the input transition.
Figure 3.7: Possible Source Configurations of the LTSA a) Receiving mode with a detector diode b) LTSA with a microstrip to slotline transition

length, x_0 is the distance of the microstripline to the antenna edge and W_q is the width of the microstripline. In this configuration power is delivered to the slotline with a microstripline which extends $\lambda_m/4$ past the slotline edge, where λ_m is the microstrip wavelength. Slotline, on the other hand, is short-circuited $\lambda_s/4$ away from the microstripline edge, λ_s being the slotline wavelength. This configuration creates a resonant structure with a very good voltage standing wave ratio over narrow
bandwidths [50]. The bandwidth can be increased by using matching circuitry on the microstripline, while impedance matching the latter to the other parts of the circuit at the same time.

Different source configurations of the LTSA must be modeled differently. For the diode reception mode, the diode is modeled as a dipole with a delta gap generator at its center [20]. When the dipole thickness is made equal to the thickness of the detector diode, it has been shown earlier that this source modeling yields good results [10].

For the input configuration of Figure 3.7, the microstrip radiation is initially modeled by an infinitesimal current element at the center of the slotline and the other parts of the antenna are approximated by rectangular sectioning, including the short circuit for the slot line. This has been accomplished by introducing another current at the exact short circuit location. The length of the short circuit current is made greater than the slot line width so as to make the current flow between the lower and upper parts of the antenna. It is found that the current element modeling for the microstripline gives very satisfactory results for the co-polar radiation characteristics of the antenna. However, it cannot predict the correct level of cross polarized radiation in the boresight direction. Therefore, a third source model is developed which accounts for the microstripline rigorously, by defining currents on the microstrip as well. The feed point of the microstrip is approximated by a current element in y direction, which avoids the difficulty of introducing the connection mode
currents between the microstripline and the antenna plates. This third model is found satisfactory for determining the radiation characteristics of the antenna, as will be seen in Chapter 4.

3.7 Evaluation of the Matrix Equation

The choices of the conductor and dielectric basis and test functions of sections 3.3 and 3.5 determine how the matrix elements will be computed. Assuming N unknowns for the conducting parts and S segments for the dielectric region, there will be $3S$ unknowns in the dielectric. Therefore, $3S = M$ of (2.19). If we consider Z as,

$$
Z = \begin{bmatrix}
A_{N \times N} & B_{N \times M} \\
C_{M \times N} & D_{M \times M}
\end{bmatrix}
$$

(3.4)

A and B submatrices will have elements which are calculated by reaction integrals. For currents J_i and J_j the reaction integral is given by

$$
Z_{ij} = \int_{S_i} E^i \cdot J_j \, dS = \int_{S_i} E^j \cdot J_i \, dS
$$

(3.5)

where E^i and E^j are the fields radiated by J_i and J_j, respectively, and S_i and S_j are the regions where J_i and J_j are nonzero. Submatrix A consists of the conductor-conductor interactions. Its elements are calculated by the reaction integrals between the conductor currents only. The calculation of these elements is explained in Section
3.3 since it is related to the geometry approximation directly. These elements are calculated by using the expressions reported in [42].

Since delta functions are chosen as the testing functions in the dielectric region, C and D submatrices are comprised of the fields radiated by the conductor currents and the dielectric polarization currents respectively at the center of each segment. Evaluation of the C submatrix elements is carried out using field equations for piecewise sinusoidal line sources [14]. The field of any conductor current can be found by adding the fields of the corresponding monopoles that makes up the whole current.

Referring to Figure 3.1, conductor currents can be in z or z directions only. For a current in z direction, the components of the electric field intensity, Z_{CD_s}, where s stands for z, y or z component, can be found as

$$Z_{CD_s} = \sum_{i=1}^{2} C_i \sum_{m=1}^{2} \int_{-k_0 \omega_i}^{k_0 \omega_i} \alpha_m \frac{(k_0 D - z)(k_0 L + \beta_m) \exp(-jR_m)}{R_m}$$ \hspace{1cm} (3.6)

$$Z_{CD_y} = \sum_{i=1}^{2} C_i \sum_{m=1}^{2} \int_{-k_0 \omega_i}^{k_0 \omega_i} \alpha_m \frac{k_0 H(k_0 L + \beta_m)}{((k_0 D - z)^2 + (k_0 H)^2)} \exp(-jR_m)}{R_m}$$ \hspace{1cm} (3.7)

$$Z_{CD_z} = \sum_{i=1}^{2} -C_i \sum_{m=1}^{2} \int_{-k_0 \omega_i}^{k_0 \omega_i} \alpha_m \frac{\exp(-jR_m)}{R_m}$$ \hspace{1cm} (3.8)

where D, H and L are the distances between the center point of the monopole i and the center of the dielectric cell, in z, y and z directions, respectively, as shown in Figure 3.8. The various other parameters are
The fields of the z-directed currents can be found using equations (3.6-3.8) with a coordinate rotation.

Returning to the submatrix B, and considering that its elements are the reaction integrals between the conductor currents and the dielectric currents, the following approach is applied in their calculation. The dielectric cell is divided into smaller cubical sections and the fields of the conductor current is calculated at the center of
each small section. Multiplication of these fields with the volume of the subdivision and summation over the cell gives a good approximation to the elements of the B submatrix. Therefore, if the dielectric cell has dimensions \(L_x, L_y \) and \(L_z \) and if it is divided into \(n_x, n_y \) and \(n_z \) segments in \(x, y \) and \(z \) directions, respectively, the reaction, \(Z_{DC} \), of a \(z \) directed conductor current on a dielectric current becomes

\[
Z_{DC} = \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} \sum_{k=1}^{n_z} -Z_{CD_{ijk}} \frac{J_z}{n_x n_y n_z} \frac{L_x L_y L_z}{n_x n_y n_z}
\]

(3.9)

where \(Z_{CD_{ijk}} \) is the field of the conductor current at the center of the subdivision \(ijk \), and \(s \) represents \(x, y \) or \(z \) directed dielectric current. The interactions between the \(x \)-directed conductor and dielectric currents can be found by using (3.9) with a coordinate rotation for the conductor current. This approximation to the dielectric-conductor interaction submatrix \(B \) is justified because of the fact that MoM usually yields diagonally dominant impedance matrices. Since the elements of \(B \) are off-diagonal, the results will not be as sensitive to errors in the calculation of these elements compared to the ones in diagonal elements of \(A \) and \(B \).

The elements of the submatrix \(D \) are directly calculated using equations (2.9-2.11). When calculating the field of a cell current in itself, the singularity in the expression is extracted as suggested in [49]. For the off-diagonal elements of \(D \), the same type of approximation as (3.9) is made to reduce the computation time.

The voltage vector calculation also follows the same approach. The first \(N \) elements are the reactions of the source and the conductor expansion currents, the
remaining \(M = 3S \) are the fields radiated by the assumed source distribution at the center of the dielectric segments.

All of the numerical integrations for the evaluation of the matrix elements are carried out using Gauss-Chebychev quadratures which are suitable for oscillatory kernels.

3.8 Solution of the Matrix Equation

The matrix equation,

\[
\mathbf{ZI} = \mathbf{V} \tag{3.10}
\]

is solved by using the Conjugate Gradient (CG) method [51, 52, 53]. CG method is an iterative conjugate direction method. In Conjugate Direction method the error functional is minimized successively in the directions of a set of Z-orthogonal vectors. A set of vectors \(\mathbf{P}_n, n = 1, 2, \ldots , (N + M) \) is said to be Z-orthogonal (or Z-conjugate) if they satisfy

\[
< \mathbf{Z}\mathbf{P}_i, \mathbf{P}_j^* > = 0 \quad \text{for } i \neq j \tag{3.11}
\]

where * denotes the conjugate.

In conjugate direction methods, at each iteration, \(\mathbf{I}_n + \alpha_n \mathbf{P}_n \) is minimized where \(\mathbf{P}_n \) lies on the \((N + M - 1)\) dimensional hyperplane

\[
< \mathbf{P}_n^*, \mathbf{ZI} - \mathbf{V} > = 0 \tag{3.12}
\]
whose normal is ZP. The conjugate direction methods differ in the way P_n are obtained. When the vectors P_n are obtained by Z-orthogonalization of the residual vectors, R_n, which will be defined subsequently, a CG method results.

The CG method is applicable to Hermitian matrices (operators). In the dielectric supported LTSA case the matrix Z is not symmetric and hence, CG method cannot be applied to (3.10) directly [51]. In order to satisfy the symmetry and the positive definite requirements for Z, both sides of (3.10) can be multiplied by Z^T, where T denotes transpose conjugate. The CG algorithm can then be applied to the transformed equation without actually forming the product $Z^T Z$ [54].

For an initial guess I_0, the CG method starts by evaluating,

$$R_0 = V - ZI_0$$

$$P_0 = Z^T R_0$$

and then develops each successive approximation by,

$$I_{n+1} = I_n + \alpha_n P_n$$

where

$$\alpha_n = \frac{||Z^T R_n||^2}{||Z P_n||}$$

The residual vectors are generated as

$$R_{n+1} = R_n - \alpha_n ZP_n.$$
The direction vectors at each iteration are obtained as

\[\mathbf{p}_{n+1} = \mathbf{Z}^T \mathbf{r}_{n+1} + \beta_n \mathbf{p}_n \]

(3.17)

where

\[\beta_n = \frac{||\mathbf{Z}^T \mathbf{r}_{n+1}||^2}{||\mathbf{Z}^T \mathbf{r}_n||}. \]

(3.18)

This algorithm minimizes the norm of the residual, \([|R_n|]_1\), at each iteration. The iterations are terminated when the error norm, \([|R_n|]_1\), is less than some ratio of the initial error norm, \([|R_0|]_1\). The initial guess in this work is taken as zero vector in all computed results. Therefore, \([|R_0|]_1 = V\). When \([|R_n|]_1 \leq 10^{-4}[|R_0|]_1\), the iterations are terminated. Different tolerance values \((10^{-5}, 10^{-6})\) have also been employed to check the sensitivity of the results around the solution with the same input data. The solutions obtained with smaller tolerances are nearly identical in terms of the radiation pattern and current distribution, and hence, \(10^{-4}\) is used in further results.

CG method has many nice features that make it useful in the solution of large linear systems of equations such as the one obtained in the LTSA analysis. Some of these which might explain the preference of CG iteration over the direct methods can be outlined as [54, 55]:

- The method is highly insensitive to the initial guess \(I_0\). As mentioned earlier, \(I_0 = 0\) is chosen in all of the computations involved in this work, with no difficulty in obtaining the solution.
• The number of iterations required for CG method is equal to the number of distinct eigenvalues of the matrix Z [54]. This property makes CG method especially useful for large MoM applications, since in most of the cases, the eigenvalues of Z are closely spaced. Actually, it is this property that favors CG method over direct methods since CG method lowers its computational cost with closely spaced eigenvalues. In order for CG method to be less costly compared to Gaussian Elimination, the number of iterations should be less than \((N+M)/3\), where \((N+M)\) is the size of the matrix Z. Most of the results in this work are obtained with number of iterations less than this number.

• The convergence of CG method is \(1/K\) quadratic [54], assuming that the solution is reached in \(K\) iterations. The reason for this rate definition of Sarkar [54] is that the algorithm requires \(K\) steps to achieve the effect of one step of a method with a true quadratic convergence rate.
CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the results of the analysis of LTSA's in air or with a dielectric support will be given. Verification of the computed results and comparison to experimental measurements are given section 4.2. A parametric study of air LTSA's is explained in Section 4.3. Finally, the computed results for dielectric LTSA's are presented in Section 4.4, where the effect of the dielectric thickness and permittivity are investigated.

The radiation patterns of the antenna in the E-Plane, H-Plane and the D-Plane are used throughout this chapter. With the coordinate system of Figure 3.1 for the antenna configuration, E-Plane of the antenna coincides with the $x-z$ Plane, whereas H-Plane is the $x-y$ plane, as shown in Figure 4.1 and Figure 4.2, respectively. The D-Plane is a diagonal plane located at 45 degrees to the E and H-Planes. The radiated patterns are measured and computed for co-polar and cross-polar components. The co-polar component of the field of the antenna is the θ component for both principal
Figure 4.1: E-Plane of the LTSA

Figure 4.2: H-Plane of the LTSA
planes (E and H). Therefore, E and H plane data are measured by considering Figure 4.1 and Figure 4.2, and measuring the field component in the direction shown by the direction of E in the mentioned figures. In the E-Plane, \(\phi = 0 \) degrees and \(\theta \) is varying, whereas in the H-Plane, \(\theta = 90 \) degrees and \(\phi \) is varying. These can be better understood by considering Figure 4.3 which shows the LTSA and the standard gain antenna positioning. In Figure 4.3 it is assumed that the test antenna (LTSA) is used in receive mode and the polarization of the transmit antenna is as shown, however, everything remains for the transmit mode operation of the LTSA. Considering Figure 4.3, co-polar measurements can be listed as:

- **E-Plane:** \(\beta_r = 90 \) degrees, \(\beta_t = 90 \) degrees.
- **H-Plane:** \(\beta_r = 0 \) degrees, \(\beta_t = 0 \) degrees.
- **D-Plane:** \(\beta_r = 45 \) degrees, \(\beta_t = 45 \) degrees.

For cross-polar measurements, changing the polarization of the transmit antenna will be sufficient, which means changing \(\beta_t \). This measurement strategy for the cross-polarized fields conforms to the third definition of Ludwig [56]. Therefore, cross-polar measurements can be done with the following set-up.

- **E-Plane:** \(\beta_r = 90 \) degrees, \(\beta_t = 0 \) degrees.
- **H-Plane:** \(\beta_r = 0 \) degrees, \(\beta_t = 90 \) degrees.
• D-Plane: $\beta_r = 45$ degrees, $\beta_i = -45$ degrees.

4.2 Verification of Computed Results

Numerical results obtained using the code are tested and verified both computationally and experimentally. First, the unequal-size rectangular sectioning scheme of section 3.2 is tested. In order to do this, the analysis is extended to handle all four edges of the skew-plate antenna of Figure 1.2. The results of this analysis is compared to those obtained from another code which uses skew segments, and hence models the skew-plate antenna exactly in the geometrical sense. In many cases that are computed, very good agreement is observed between the results. Figures 4.4 and 4.5 show the comparison for the E-Plane and H-Plane co-polar radiation patterns, respectively, for a skew-plate antenna with $L = \lambda_0$, $H = 0.5\lambda_0$, $\alpha = 5$ deg and $W_f = 0.004\lambda_0$. In the skew segmentation model, 7 segments across the length and 4 segments across the height are used. In the rectangular model, the number of divisions are 8 for the length and 5 for the height. As can be seen from Figures 4.4 and 4.5, the two computations agree very well, the largest difference between the two being about 1 dB. Considering that all four sides are approximated with unequal-size rectangular modeling and the fact that there is only one edge in the actual LTSA geometry, which is approximated in this manner, it is concluded that the accuracy would be even better in that case.
Figure 4.3: Antenna configurations a) LTSA positioning, b) Standard gain antenna positioning.
Figure 4.4: Comparison of E-Plane radiation patterns for skew-plate and unequal-size rectangular modeling ($L = 1.0\lambda_0$, $H = 0.5\lambda_0$, $W_j = 0.004\lambda_0$, $\alpha = 5$ degrees).

Figure 4.5: Comparison of H-Plane radiation patterns for skew-plate and unequal-size rectangular modeling ($L = 1.0\lambda_0$, $H = 0.5\lambda_0$, $W_j = 0.004\lambda_0$, $\alpha = 5$ degrees).
The convergence of the unequal size rectangular sectioning model is usually obtained using 6 to 7 segments per wavelength across the length and 4 to 5 segments per wavelength across the height of the LTSA. The number of segments required across the length is larger because the unequal-size rectangular sectioning is more sensitive to segmentation across the length. Figures 4.6 and 4.7 show the radiation pattern comparison for two different segmentations in the E and H planes, respectively, of a skew-plate antenna with parameters $L = 5.2\lambda_0$, $H = 0.9\lambda_0$, $W_f = 0.06\lambda_0$ and $\alpha = 7\deg$. The data represented by solid lines in these figures are obtained by using 30 segments across the length and 6 segments across the height, whereas the dotted lines are obtained using 35 and 7 segments across the length and the height.
Figure 4.7: H-Plane radiation pattern for a skew-plate antenna with two different segmentation ($L = 5.2\lambda_0$, $H = 0.9\lambda_0$, $W_f = 0.06\lambda_0$, $\alpha = 7$ degrees).

respectively. As can be seen from the figures, the analysis results are very close to each other until 150 degrees. The effect of the difference in segmentation is observed only after 150 degrees, displaying the good convergence behavior of the algorithm. The parameters of this antenna are chosen the same as that analyzed in [10, 5]. The results of Figures 4.6 and 4.7 agree very well with those reported in [10].

The ultimate test on any electromagnetic modeling code is done by calculating the near fields at the conducting boundary and in the dielectric region and checking the calculations for the satisfaction of the boundary conditions [17]. The cost of this test is the same as the solution of the MoM matrix equation and hence is not practical for large problem sizes. However, an easier approach to test the near-field behavior of a code is to calculate the current distribution on/in the structure and check it for
abnormalities in the amplitude and phase. This approach is used in this work to test the near-field performance of the code. Figures 4.8 to 4.11 show the magnitude and phase plots of the current on a LTSA with $L = 5.2\lambda_0$, $H = 1.5\lambda_0$, $W = 0.06\lambda_0$ and $\alpha = 7^\circ$.

![Graph showing the magnitude of antenna current along $z = 0.75\lambda_0$.](image)

Figure 4.8: Magnitude of antenna current along $z = 0.75\lambda_0$. $- - - : J_x$, $- - : J_z$.

Figures 4.8 and 4.9 show the magnitude and phase variation of the x and z components of the antenna current along a horizontal (z) cut at $0.75\lambda_0$ away from the lower antenna edge. Figures 4.10 and 4.11 gives the same components for horizontal (z) cut at $2.53\lambda_0$ away from the antenna edge. The traveling wave nature of the x component of the current is evident in Figures 4.8 and 4.9, and both the amplitude and the phase are free of abnormal behavior. The current displays a standing wave.
Figure 4.9: Phase of antenna current along $z = 0.75\lambda_0$. $-\cdots$ J_x, $-\cdots$ J_y.

Figure 4.10: Magnitude of antenna current along $x = 2.53\lambda_0$. $-\cdots$ J_x, $-\cdots$ J_y.
nature in z direction, as shown in Figures 4.10 and 4.11. This should be expected because the antenna height is small ($1.5\lambda_0$) and the current bounces back and forth between the two edges of the antenna.

Computed results are also verified by experimentation. For this purpose, two antennas are built and measurements are taken in E, H and D planes. The first antenna is intended to check the air LTSA results and was built using 5-mil brass sheet and supported using styrofoam which has a permittivity (1.05), very close to that of free-space. Microstripline to slotline transition is used in the feeding section of the antenna which extends $0.5\lambda_0$, where λ_0 is the wavelength at the operating frequency of 9 GHz. The feeding part of the antenna is designed using 31-mil, $\varepsilon_r = 2.33$, Duroid substrate. The substrate is terminated abruptly at the apex of the antenna, where
the taper starts. The guidelines given in [50] are used to design the microstripline to slotline transition which resulted in slotline impedance of 138.2Ω and microstripline impedance of 120Ω. This slotline impedance is achieved with $W_f = 0.659 \text{ mm}$ ($0.01977\lambda_0$ at 9 GHz). The wavelength in the slotline is 2.88 cm ($0.864\lambda_0$), whereas the microstripline wavelength is 2.4793 cm ($0.74379\lambda_0$). The width of the microstripline for 120Ω characteristic impedance is found as 0.4171 mm ($0.01251\lambda_0$). In order to match the microstripline to the 50Ω output impedance of the test equipment, a quarter wave impedance transformer is designed at the center frequency of 9 GHz. The final design is shown in Figure 4.12, where $H = 1.5\lambda_0$, $L_i = 0.5\lambda_0$, $\varepsilon \sigma_0 = 0.216\lambda_0$, $c = 0.01251\lambda_0$, $d = 0.03392\lambda_0$, $e = 0.0679\lambda_0$, $f = 0.63221\lambda_0$, and $g = 0.45\lambda_0$.

![Figure 4.12: Feed design of the test antenna](image-url)
The comparison between computation and measurement for co-polar E and H plane radiation patterns is given in Figure 4.13. Figure 4.14 shows the comparison for the co-polar and cross-polar radiation patterns in D plane. In the computation the dielectric support at the feeding part of the antenna is modeled rigorously. The microstrip line feed is modeled using only 120Ω characteristic impedance line extending to the edge of the antenna. In the numerical model 48 segments across the length and 6 segments across the height of the conductor are used. The microstrip line is modeled by 17 segments, resulting in 1059 conductor unknowns. The dielectric segments across length, width, and height are 4, 34 and 1, respectively, which give 408 dielectric current unknowns. The solution time for this case was 2062 CPU seconds on CRAY Y-MP.

Figure 4.13: Measured and computed co-polar radiation patterns for LTSA in air ($L = 5.5\lambda_0$, $L_i = 0.5\lambda_0$, $H = 1.5\lambda_0$, $W_f = 0.02\lambda_0$, $\alpha = 7$ degrees).
Figure 4.14: Measured and computed co-polar and cross polar D-Plane radiation pattern for LTSA in air ($L = 5.5\lambda_0$, $L_i = 0.5\lambda_0$, $H = 1.5\lambda_0$, $W_f = 0.02\lambda_0$, $\alpha = 7$ degrees).

As can be seen from Figures 4.13 and 4.14, quite good agreement is obtained between the computed results and measured data. The computed pattern predicts the main beam and the first side lobe level correctly. The pattern shapes also agree well. Slight discrepancies between the two is thought to be resulting from the alignment errors during the manufacturing of the test antenna and from the effect of the adhesive used to attach the antenna to the styrofoam. The difference between the cross-polar measured and calculated data below -90 degrees results from the use of an absorber piece over the source region during the measurements. However, the maximum cross polarization level and the cross polarized pattern is predicted correctly by the code until this angle. The effect of the absorber is negligible for the co-polar measurements,
which leads to the good agreement for this part of the comparison.

The second test antenna is built using a 31-mil thick, $\varepsilon_r = 2.33$ Duroid substrate, and is used to evaluate the dielectric LTSA calculations. This antenna has the same feed design values as the air LTSA test antenna. Figures 4.15 and 4.16 show the comparison for the E and H plane co-polar radiation patterns and co-polar and cross-polar radiation patterns for the D plane, respectively. The computed patterns for this case is obtained using 36 segments in length and 6 segments in height for the conductor parts, 17 segments for the microstripline, 40 segments in length, 1 segment in height and 24 segments in width for the dielectric region. The total number of unknowns is 3541 of which 661 is the conductor unknowns. The solution time for this case was 2766 CPU seconds on CRAY Y-MP.

A very good agreement is observed between the computed and measured data for this case. The code predicts the shape and the amplitudes of the radiation patterns accurately for this antenna as well. Actually, the agreement is better for this antenna since the dielectric support of the antenna extends through the whole length of the antenna. In the air case test antenna, the dielectric support is terminated in the feed section and hence the diffraction from the dielectric edge can be appreciable and is not handled by the code due to choice of the basis functions in the dielectric. Also, the slight discrepancies after 150 degrees in dielectric LTSA comparisons is again attributed to the use of an absorber block in the measurements over the input section of the antenna which is not modeled by the code.
Figure 4.15: Measured and computed co-polar E and H-Plane radiation patterns for a dielectric LTSA ($\varepsilon_r = 2.33, \delta = 0.02362\lambda_0, L = 5.5\lambda_0, L_i = 0.5\lambda_0, H = 1.5\lambda_0, W_f = 0.02\lambda_0, \alpha = 7$ degrees).

Figure 4.16: Measured and computed co-polar and cross-polar D-Plane radiation patterns for a dielectric LTSA ($\varepsilon_r = 2.33, \delta = 0.02362\lambda_0, L = 5.5\lambda_0, L_i = 0.5\lambda_0, H = 1.5\lambda_0, W_f = 0.02\lambda_0, \alpha = 7$ degrees).
The comparisons with available data in the literature and with experimental data that is presented in this section leads to the conclusion that the theoretical model and the code can predict the radiation characteristics of air or dielectric linearly tapered slot antennas with reasonable accuracy.

4.3 Computed Results for Air Tapered Slot Antennas

In this section, computed results for air LTSA’s will be presented. In [4], Janaswamy has observed that as the antenna height is decreased for fixed length and taper angle, better radiation patterns are achievable. In order to address this question, a parametric study of air LTSA’s is planned and carried out. Since the behavior of the dielectric LTSA is quite similar to the air LTSA, conclusions drawn for the air LTSA can also be applied to the dielectric LTSA. In the parametric study, the apex width, \(W_f \), of the LTSA is chosen as 2 mm (0.06\(\lambda \) at 9 GHz) and the antennas are assumed to be in the receiving mode with a diode soldered at the apex. The diode is modeled by a strip dipole of width 0.02\(\lambda \) and length 0.2\(\lambda \). Three levels for each of the parameters \(L, H \) and \(\alpha \) are chosen. The levels for \(\alpha \) are 5 deg, 7 deg and 9 deg. \(H \) assumes the values of \(\lambda, 1.5\lambda \) and \(2\lambda \), whereas \(L \) varies as \(\lambda, 3\lambda \) and \(5\lambda \). The analysis is valid for any frequency provided that all dimensions are the same used in the analysis in terms of the wavelength. These three levels for \(\alpha, H \) and \(L \) resulted in 27 numerical experiments. Co-polar radiation patterns in \(E, H \) and \(D \) planes and
cross-polar radiation patterns in D plane are computed for all experiments. Table 4.1 shows the experiments and the corresponding calculated figures of merit. The figures of merit used in Table 4.1 are:

1. EBW: 3-dB beamwidth in the co-polar E-Plane radiation pattern,

2. ESL: First sidelobe level in the E-Plane radiation pattern,

3. HBW: 3-dB beamwidth in the co-polar H-Plane radiation pattern,

4. HSL: First sidelobe level in the H-Plane radiation pattern,

5. DBW: 3-dB beamwidth in the co-polar D-Plane radiation pattern,

6. DSL: First sidelobe level in the D-Plane radiation pattern,

7. DXL: Peak cross-polarization level in the D-Plane radiation pattern.

Since the antenna and the receiving strip dipole are symmetric about the plane $z = 0$, the cross polarization is theoretically zero ($-\infty dB$), in the E and H planes of the antenna. This fact is also verified in the calculations. Considering Table 4.1, the following observations are made:

- As H decreases for a fixed L and α, EBW first decreases and then starts to increase again. ESL also behaves in the same manner. However, HBW increases steadily whereas HSL decreases. The D-Plane radiation pattern follows the same trend as the E-Plane with first decreasing then increasing DBW and
Table 4.1: Results for the air LTSA study

<table>
<thead>
<tr>
<th>Exp. No</th>
<th>L</th>
<th>H</th>
<th>α</th>
<th>EBW</th>
<th>ESL</th>
<th>HBW</th>
<th>HSL</th>
<th>DBW</th>
<th>DSL</th>
<th>DXL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>32.0</td>
<td>-11.41</td>
<td>41.2</td>
<td>-5.81</td>
<td>38.7</td>
<td>-7.66</td>
<td>-2.98</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>34.84</td>
<td>-14.02</td>
<td>41.0</td>
<td>-6.06</td>
<td>40.44</td>
<td>-6.72</td>
<td>-2.28</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>38.72</td>
<td>-15.08</td>
<td>42.0</td>
<td>-6.49</td>
<td>42.58</td>
<td>-5.84</td>
<td>-1.37</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.5</td>
<td>9</td>
<td>18.6</td>
<td>-14.05</td>
<td>48.4</td>
<td>-10.07</td>
<td>24.86</td>
<td>-9.76</td>
<td>-6.54</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1.5</td>
<td>7</td>
<td>20.0</td>
<td>-14.97</td>
<td>48.36</td>
<td>-10.35</td>
<td>26.28</td>
<td>-8.66</td>
<td>-5.57</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1.5</td>
<td>5</td>
<td>20.84</td>
<td>-12.20</td>
<td>48.52</td>
<td>-10.65</td>
<td>27.2</td>
<td>-7.60</td>
<td>-4.95</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1.0</td>
<td>9</td>
<td>32.9</td>
<td>-11.52</td>
<td>65.0</td>
<td>-20.38</td>
<td>36.24</td>
<td>-6.01</td>
<td>-4.18</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>1.0</td>
<td>7</td>
<td>34.5</td>
<td>-15.62</td>
<td>61.84</td>
<td>-19.64</td>
<td>36.36</td>
<td>-5.29</td>
<td>-3.91</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>1.0</td>
<td>5</td>
<td>40.9</td>
<td>-13.05</td>
<td>64.64</td>
<td>-20.07</td>
<td>38.96</td>
<td>-4.86</td>
<td>-3.28</td>
</tr>
<tr>
<td>* 10</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>43.2</td>
<td>-12.50</td>
<td>52.2</td>
<td>-5.63</td>
<td>52.1</td>
<td>-7.52</td>
<td>-2.38</td>
</tr>
<tr>
<td>* 11</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>44.0</td>
<td>-11.4</td>
<td>53.12</td>
<td>-5.62</td>
<td>52.40</td>
<td>-6.82</td>
<td>-2.00</td>
</tr>
<tr>
<td>* 12</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>45.0</td>
<td>-9.26</td>
<td>54.2</td>
<td>-5.45</td>
<td>52.62</td>
<td>-6.51</td>
<td>-1.86</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1.5</td>
<td>9</td>
<td>26.0</td>
<td>-4.31</td>
<td>59.24</td>
<td>-6.64</td>
<td>35.74</td>
<td>-5.93</td>
<td>-2.97</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>1.5</td>
<td>7</td>
<td>26.5</td>
<td>-4.10</td>
<td>53.96</td>
<td>-7.19</td>
<td>34.1</td>
<td>-6.26</td>
<td>-3.38</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>1.5</td>
<td>5</td>
<td>25.12</td>
<td>-3.79</td>
<td>54.0</td>
<td>-7.21</td>
<td>33.0</td>
<td>-5.77</td>
<td>-3.04</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1.0</td>
<td>9</td>
<td>38.2</td>
<td>-12.31</td>
<td>71.22</td>
<td>-17.47</td>
<td>44.2</td>
<td>-5.88</td>
<td>-4.72</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>1.0</td>
<td>7</td>
<td>41.6</td>
<td>-10.02</td>
<td>72.2</td>
<td>-18.42</td>
<td>46.1</td>
<td>-4.75</td>
<td>-4.17</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>1.0</td>
<td>5</td>
<td>45.3</td>
<td>-7.7</td>
<td>73.4</td>
<td>-17.31</td>
<td>48.0</td>
<td>-3.93</td>
<td>-3.73</td>
</tr>
<tr>
<td>** 19</td>
<td>1</td>
<td>2.0</td>
<td>9</td>
<td>101.4</td>
<td>-2.87</td>
<td>87.2</td>
<td>-6.48</td>
<td>72.0</td>
<td>-3.94</td>
<td>0</td>
</tr>
<tr>
<td>** 20</td>
<td>1</td>
<td>2.0</td>
<td>7</td>
<td>100.6</td>
<td>-2.48</td>
<td>86.0</td>
<td>-5.79</td>
<td>71.4</td>
<td>-3.67</td>
<td>0</td>
</tr>
<tr>
<td>** 21</td>
<td>1</td>
<td>2.0</td>
<td>5</td>
<td>100.0</td>
<td>-2.08</td>
<td>84.6</td>
<td>-5.05</td>
<td>71.0</td>
<td>-3.38</td>
<td>0</td>
</tr>
<tr>
<td>** 22</td>
<td>1</td>
<td>1.5</td>
<td>9</td>
<td>95.6</td>
<td>-2.45</td>
<td>98.5</td>
<td>-3.78</td>
<td>94.0</td>
<td>-3.21</td>
<td>0</td>
</tr>
<tr>
<td>** 23</td>
<td>1</td>
<td>1.5</td>
<td>7</td>
<td>95.0</td>
<td>-1.99</td>
<td>92.4</td>
<td>-3.20</td>
<td>93.0</td>
<td>-2.92</td>
<td>0</td>
</tr>
<tr>
<td>** 24</td>
<td>1</td>
<td>1.5</td>
<td>5</td>
<td>94.0</td>
<td>-1.54</td>
<td>87.0</td>
<td>-2.56</td>
<td>91.6</td>
<td>-2.63</td>
<td>0</td>
</tr>
<tr>
<td>** 25</td>
<td>1</td>
<td>1.0</td>
<td>9</td>
<td>81.5</td>
<td>-2.49</td>
<td>80.4</td>
<td>-3.66</td>
<td>96.2</td>
<td>-5.13</td>
<td>0</td>
</tr>
<tr>
<td>** 26</td>
<td>1</td>
<td>1.0</td>
<td>7</td>
<td>81.0</td>
<td>-2.03</td>
<td>79.5</td>
<td>-3.25</td>
<td>95.6</td>
<td>-4.76</td>
<td>0</td>
</tr>
<tr>
<td>** 27</td>
<td>1</td>
<td>1.0</td>
<td>5</td>
<td>80.4</td>
<td>-1.55</td>
<td>78.8</td>
<td>-2.78</td>
<td>93.8</td>
<td>-4.37</td>
<td>0</td>
</tr>
</tbody>
</table>

DSL. The peak cross polarization level in the D-Plane behaves differently for antennas of different length. For \(L = 5\lambda \), DXL first decreases then starts to increase, however, for \(L \leq 3\lambda \) it steadily decreases as \(H \) decreases. Figures 4.17 and 4.18 display these behaviors. The experiment numbers of Table 4.1 are
Figure 4.17: Variation of E and H-Plane patterns of LTSA's with H. Used to identify the data in these figures.

Figure 4.18: Variation of D-Plane pattern of LTSA's with H.
• As α decreases, EBW increases. ESL decreases slightly for $L = 5\lambda$. For shorter antennas, EBW remains nearly the same, however ESL increases. The H-Plane of the antenna is not as sensitive to variation in α, the main beam and sidelobe levels and the shape remain nearly the same, while lobe locations change slightly. Only for $H = \lambda$ and $L = 5\lambda$, a slight decrease of HBW is observed with decreasing α. DBW, DSL and DXL increase with decreasing α, the largest deviation in DXL being for large L. These variations are shown in Figures 4.19 and 4.20.

![Figure 4.19: Variation of E and H-Plane patterns of LTSA's with α.](image)

- As L increases, the antenna behaves as expected. All of the 3 dB beamwidths decrease, with decreasing sidelobe levels and peak cross polarization level in D-
Figure 4.20: Variation of D-Plane pattern of LTSA's with α.

Plane. However, an interesting behavior is observed for short antennas when the total height of the antenna is larger than the length. In these cases, the maximum in the E-Plane radiation pattern is not obtained in the boresight direction. These cases are marked with * in Table 4.1. For short antennas, the current does not have the traveling wave nature in x-direction any more. When individual segment currents in x and z directions are considered for the LTSA geometry, a similarity to the skewed linear antenna can be a possible explanation for this behavior. Depending on the included angle, the skewed line antenna can create a radiation pattern which has a maximum at a direction other than boresight. When the length of the antenna is further reduced, maxima of the computed patterns are obtained in the D Plane and in the
cross polarized direction (cases 19 to 27). This observation is again attributed to the fact that the radiation due to z directed currents are more important than x directed currents. These cases are marked with ** in Table 4.1. The behavior of the antenna as a function of L is demonstrated in Figures 4.21 and 4.22.

![Figure 4.21: Variation of E and H-Plane patterns of LTSA's with L.](image)

In general, it is observed that the peak cross polarization level of the antenna is quite high for the cases considered. However, it is interesting to note that a better radiation pattern can be obtained by decreasing the antenna height for a fixed L and α. Another interesting observation is that somewhat better antenna characteristics can still be obtained for short antennas ($L = \lambda$, for example) by keeping the antenna
4.4 Computed Results for Dielectric Tapered Slot Antennas

In this section, sample results for dielectric LTSA's will be given. In order to investigate the effect of the dielectric permittivity, the same antenna geometry with a
receiving diode is computed with three different permittivities of the dielectric support. The results with the antenna parameters are given in Figures 4.23 and 4.24.

It is seen that, as the permittivity increases the E and H-Plane pattern sidelobe levels increase. The 3 dB beamwidth in the E-Plane remains essentially the same for this particular antenna geometry, whereas the H-Plane pattern beamwidth decreases. This should be expected since a higher percentage of the radiated power is trapped in the dielectric region of the antenna as the permittivity increases. Also, with increasing permittivity, the H-Plane pattern becomes more asymmetrical.

The analysis of the antenna of Figure 4.23 with $\varepsilon_r = 2.33$ with changing dielectric thickness is shown in Figures 4.25 and 4.26. The same kind of behavior is observed
Figure 4.24: Variation of the H-Plane pattern for LTSA's with ε_r. A: $\varepsilon_r = 2.33$, B: $\varepsilon_r = 4.0$, C: $\varepsilon_r = 5.0$ ($L = 2.0\lambda_0$, $H = 0.4\lambda_0$, $W_f = 0.01\lambda_0$, $d = 0.03\lambda_0$, $\alpha = 5$ degrees).

Figure 4.25: Variation of the E-Plane pattern for LTSA's with dielectric thickness, d. A: $d = 0.02\lambda_0$, B: $d = 0.06\lambda_0$, C: $d = 0.1\lambda_0$ ($\varepsilon_r = 2.33$, $L = 2.0\lambda_0$, $H = 0.4\lambda_0$, $W_f = 0.01\lambda_0$, $\alpha = 5$ degrees).
Figure 4.26: Variation of the H-Plane pattern for LTSA's with dielectric thickness, d. A: $d = 0.02\lambda_0$, B: $d = 0.06\lambda_0$, C: $d = 0.1\lambda_0$ ($\varepsilon_r = 2.33$, $L = 2.0\lambda_0$, $H = 0.4\lambda_0$, $W_f = 0.01\lambda_0$, $\alpha = 5$ degrees).

with increasing dielectric thickness as with the increasing permittivity. However, in this case the variation in the sidelobe levels is not so large, a fact resulting from the small value of ε_r. To demonstrate this effect, a high permittivity antenna ($\varepsilon_r = 9.8$) with changing dielectric thickness is analyzed and the results are shown in Figures 4.27 and 4.28. In this case, the effects are much more pronounced than the low permittivity case of Figures 4.25 and 4.26. These observations follow those reported in [4].
Figure 4.27: Variation of the E-Plane pattern for LTSA's with dielectric thickness, d, high ε_r case. A: $d = 0.02\lambda_0$, B: $d = 0.04\lambda_0$ ($\varepsilon_r = 9.8$, $L = 1.05\lambda_0$, $H = 0.38\lambda_0$, $W_f = 0.004\lambda_0$, $\alpha = 5.7$ degrees).

Figure 4.28: Variation of the H-Plane pattern for LTSA’s with dielectric thickness, d, high ε_r case. A: $d = 0.02\lambda_0$, B: $d = 0.04\lambda_0$ ($\varepsilon_r = 9.8$, $L = 1.05\lambda_0$, $H = 0.38\lambda_0$, $W_f = 0.004\lambda_0$, $\alpha = 5.7$ degrees).
CHAPTER 5

COMPUTER CODE AND PERFORMANCE

5.1 Code

The block diagram of the code is shown in Figure 5.1. In the main program, struc, the geometry of the antenna is entered and the type of feeding is chosen. Subroutine mom calls the impedance matrix filling subroutines filec, filed, filde and fildd. These calculate the conductor-conductor, conductor-dielectric, dielectric-conductor and dielectric-dielectric interactions respectively. filvlt calculates the right hand side vector of the MoM matrix equation (2.22). The matrix equation is solved by the cgrad routine which utilizes the conjugate gradient method of Chapter 3. Organization of the input and output files of the code and the listings of the routines can be found in the appendix (under separate cover).

5.2 CPU Time and Memory Requirements

Since large matrices result in the analysis, the performance of the code is optimized by both approximations in the calculations and by vectorization. The final version of the
code is adapted to and run on CRAY Y-MP of the North Carolina Supercomputing Center. The cost analysis of the code is carried out in order to estimate the necessary run times. For N conductor current unknowns and M dielectric polarization current
density unknowns, the matrix filling cost \((FC)\) is given by

\[
FC = O(N)n + O(NM)n + O(NM)nm + O(M) \text{ Flops} \tag{5.1}
\]

where \(n\) is the number of integration points, \(m\) is the number of subdivisions used in the computation of the dielectric-conductor interaction submatrix and \(s\) is the number of divisions used in the dielectric to dielectric interaction approximations. It is seen from (5.1) that \(FC\) is linearly proportional to \((N + M)\), the total number of unknowns.

The solution cost \((SC)\) is given a

\[
SC \leq \frac{(N + M)^3}{3} \text{ Flops} \tag{5.2}
\]

As mentioned earlier in Section 3.8, \((N + M)^3/3\) is the upper limit of \(SC\). For most of the cases analyzed using the code, \(SC\) was much smaller than this limit because of the dominant diagonal of the resulting MoM matrix.

The performance of the code is monitored and enhanced throughout the work. Figure 5.2 shows the matrix fill time and the solution time of the code on Vector Alliant FX-40. The filling time increases linearly as predicted by (5.1), whereas the solution time increases faster, dominating the CPU time usage after about 400 unknowns. Figure 5.3 shows the comparison for the same cases analyzed using Alliant FX-40 and CRAY Y-MP. The big difference in the total run times in this figure results from the vectorization of the code and the high speed of the CRAY Y-MP.
Figure 5.2: Matrix fill-time and solve time on Alliant FX-40 for air LTSA's

Another influencing factor is that the CRAY Y-MP is an actual memory machine, so that no time is lost for array reading and writing to and from the disk. Figure 5.4 shows the total run time as a function of number of unknowns for the dielectric LTSA's. All of these cases were calculated on the CRAY Y-MP because of the large CPU time that would be required otherwise. Here, it is worthwhile to note that the vectorization of the solution part of the code resulted in nearly linear behavior of the computation time instead of a higher power close to 3.

The limiting value of the number of unknowns in the method is set to be about $N + M = 5000$, where in a typical analysis $N = 1000$, and $M = 4000$. The run time memory requirement for this limit is approximately 26 MWords. All cases analyzed using the code resulted in less number of unknowns than 5000, and hence less mem-
Figure 5.3: Total CPU time comparison for air LTSA's

Figure 5.4: CPU time on CRAY Y-MP for dielectric LTSA's
ory requirement. The largest case that is analyzed using the code is the experimental dielectric LTSA of Chapter 4, which resulted in about 4000 unknowns. For higher permittivity dielectrics than that was used in the experiment, \((\varepsilon_r = 2.33)\), one would need more subdivisions in the dielectric. This, in turn, would reduce the solvable antenna dimensions. Therefore, as the permittivity increases, smaller antennas can be analyzed accurately with the code. Also, increasing the dielectric thickness would have the same effect since more segments than one would be needed across the thickness \((y\) direction) of the dielectric. However, these statements are valid for current computational abilities and with the future developments in computer technology the solution of bigger problems with similar methods will be possible and less costly.
CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

In this work, a Method of Moments model for the analysis of the Linearly Tapered Slot Antenna is developed. The conducting parts of the antenna, including the feed section, are approximated closely for the first time. The finite dielectric region is modeled rigorously by including the equivalent volume polarization current density as an unknown in the formulation. The use of Schelkunoff's equivalence principle for the conducting region, together with the total field equality principle in the dielectric region, renders the problem into one which can be solved in free-space. As a result of this, the use of the particular Green's function and the associated approximations are avoided. The expansion functions are piecewise sinusoidal functions and unit pulses for conductor and dielectric regions respectively. Conductor basis functions are also used in the testing of the IE leading to a Galerkin type formulation for the conductor parts of the antenna. In the dielectric region, point matching is chosen to simplify the analysis.

The model is incorporated into a MoM code which can analyze LTSA's in air or
on a dielectric substrate, with a detector diode at the apex, or with a microstripline-
to-slotline transition in the feed section. The code results are compared favorably
to measurements and to available data in the literature. In order to check the ap-
proximation of the antenna taper by unequal size rectangular sectioning, the model is
extended to analyze the skew-plate antenna and the results are favorably compared
to a skew-segmentation model developed in this work. The variation of the radiation
pattern with changing antenna parameters is investigated for the air TSA and the
results are tabulated. It is observed that, narrower E-Plane beamwidths can be ob-
tained as the antenna height, H, is reduced. Another important observation is that
somewhat better antenna characteristics can be obtained for short antennas (small
L), by reducing the antenna height (H) as well.

Since the matrix filling part of the MoM analysis is a major computational task,
the computation time is reduced through the use of symmetry and the derivation
of new simpler formulas for the mutual impedances of the perpendicular and par-
allel coplanar sinusoidal surface monopoles. Furthermore, the speed of the code is
enhanced with vectorization of the matrix solution part of the algorithm, which em-
ployes a conjugate gradient iteration.

The model predicts the radiation characteristics of the LTSA with good accuracy.
The unequal size rectangular sectioning scheme is a suitable approach converging
to correct results by using approximately six segments per wavelength across the
length and four to five segments per wavelength across the height of the antenna.
The computation times are realizable even for the largest antenna analyzed. The largest CPU time that is consumed by the code was about 2400 CPU seconds for $20\lambda_0^2$ air antenna, whereas the largest dielectric supported antenna ($15\lambda_0^2$) analysis consumed 3700 CPU seconds on CRAY Y-MP. Solvable problem size reduces with increasing dielectric permittivity, since more segments are required in the dielectric region because of the reduced slotline wavelength.

Suggestions for future work can be stated as:

- The CPU time requirements of the code can further be reduced by employing a table look-up algorithm in the matrix filling part of the code. This will also allow solution of larger structures.

- Another extension which can make possible the analysis of even larger problems is the employment of inhomogeneous sectioning for different parts of the antenna. The rectangular sectioning used in this work is homogeneous in the sense that the grid lines are equidistant. This approach is very simple and easy to implement as a computer code in terms of the identification of currents and the symmetry search for the impedance matrix calculations. However, not all parts of the antenna require the same grid for the same accuracy. For example, in the feed part of a microstripline fed antenna, more sections are required for both conductor and dielectric regions since the field is varying rapidly. Solution accuracy in this part of the antenna has a more important effect on the overall
solution compared to the sections farther away in the tapered region, since the
wavelength in the slotline becomes larger. The same considerations also apply
to the segments right near the taper and away from it. Therefore, the use of
smaller sections in the feed part of the antenna and in the regions neighboring
the taper, and larger sections elsewhere will yield smaller matrix sizes com-
pared to homogeneous sectioning. However, the effect of this approach on the
overall impedance matrix filling time should be studied.

- Only LTSA’s are considered in this work. However, the developed model can
be extended to handle other antenna structures as well. A natural extension of
this work would be to analyze exponentially tapered slot antennas which have
similar characteristics to the LTSA. A comparison between the two antennas
with a parametric study (such as the one carried out in this work) would be very
useful to the designers in the field. In particular, the cross-polarization level
comparison can be very important, since the cross-polarization of the LTSA
is quite high. Another modified structure of interest is a bi-slotline antenna
which consists of two conducting sheets each having the same geometry as the
single TSA, separated by a dielectric stub. This antenna can also be fed by
a microstripline-to-bi-slotline transition. However, since the microstrip feed
is contained in the structure, better sidelobe and and cross-polarization levels
can be obtained.
Finally, with further modifications, the code can be specialized to other antenna types such as printed bi-conical antennas (provided that the antenna edges make small angles), and microstrip antennas.
REFERENCES

Appendix A

USER GUIDE FOR LTSA:

MoM Analysis Code for

Linearly Tapered Slot Antennas
Appendix A

USER GUIDE FOR LTSA:

MoM Analysis Code for

Linearly Tapered Slot Antennas
A.1 Introduction

In this part, the preparation of the executable program of the MoM code written for the analysis of LTSA's is explained. The preparation of the input files with explanation of the input variables are described. The code listing is also included for easy reference in Section A.5.

The code described here is compatible with Unicos 6.0 Fortran 77, which is supported by CRAY Y-MP of the North Carolina Supercomputing Center. However, language extensions are avoided to make transition to other systems easy.

A.2 Preparation of ltsa

In order to prepare the executable, all of the routines included in the makefile (See Section A.5) should be placed in one directory. Entering the command

```
make
```

in the same directory prepares and maintains the executable program. This method is also suitable for further modifications and development of the code because of the easiness of the maintenance.

A.3 Running ltsa and pattern programs

After the executable program is prepared, the preparation of input file has to be carried out which is explained in the next section. With an input file inp, and a desired output file out, the program is run by directing the default input and output to the files as follows:
Itsa < inp > out

At the end of execution, the program writes the unprepared data (unformatted sequential output is used to save CPU time) to the file out. Before the pattern calculation programs pattern and patdd can be run, this data should be organized using the organization program org. This program uses the file out as its input and generates the files cur and dat. The file cur contains the current densities for the conductor and the dielectric regions, whereas dat contains the segmentation data and other input variables which have to be carried to the pattern programs for the completion of the analysis. The program org is run with the following command.

org < out

The pattern programs are written in interactive fashion, that is, the user is required to enter the names of the input and output files and the number of data points in pattern calculations.

A.4 Input File Organization and Variables

The organization of the input file is as follows,

flgair, flgdip, flgms
w, wf, lo
li, ls, lssc
flang, ncw, mi
lsc, wsc
xd0, lend, bgc, er
nld, nwd, nhd
wq, lf, nf

No special formatting is required for the data, it is entered in free format. All lengths are required in terms of the free space wavelength at the frequency of oper-
ation. The descriptions of the input variables are given below. Whenever a variable is not applicable for the required analysis zero should be entered in its place unless otherwise stated.

Input Line 1

flgair, flgdip and flgms determine the antenna type that will be analyzed. Different feeding options are also possible. The following are the currently available options.

- flgair=1, flgdip=1, flgms=0.

 This choice of variables results in an analysis of air LTSA, with a receiver diode soldered at the apex.

- flgair=0, flgdip=1, flgms=0

 This set is used for dielectric LTSA's with a receiver diode at the apex.

- flgair=0, flgdip=0, flgms=0

 This set corresponds to dielectric LTSA's with an input transition part consisting of a microstripine to slotline transition. However, the microstripine is modeled by an infinitesimal current element for this choice of variables. This source modeling gives accurate results in the E and H plane of the antenna and for the D plane copolar radiation pattern. It cannot predict the correct cross polarization level though, since its choice results in a symmetric structure about x=0 (See Chapter 4).

- flgair=0, flgdip=0, flgms=1

 This set is used in the analysis of dielectric LTSA's with microstripine transition. In this case the microstripine current is also included among the unknowns.
Input Line 2

- \(w \): \(w \) is the height of the antenna (H) in the other parts of the report.

- \(w_f \): Apex width of the antenna. In other words, \(w_f \) is the slotline width where the antenna taper starts.

- \(l_o \): Length of the tapered part of the antenna.

Input Line 3

- \(l_i \): Length of the feeding section of the antenna, not applicable when \(\text{flgdip}=1 \).

- \(l_s \): \(l_s \) is the distance of source from the apex. For microstripline it is measured from the center of the microstripline. Not applicable when \(\text{flgdip}=1 \).

- \(lssc \): \(lssc \) is the distance of source from the slotline short circuit. For microstripline it is measured from the slot short circuit edge to the microstripline edge. Not applicable when \(\text{flgdip}=1 \).

Input Line 4

- \(\text{flang} \): Half taper angle of the LTSA in degrees.

- \(\text{ncw} \): Number of segments across the height of the antenna for the conductor parts. Note that \(H \) measures the height of only one plate of the antenna, not the total height.

- \(\text{mi} \): Number of segments across the length of the antenna when \(\text{flgdip}=1 \). When \(\text{figair}=0 \), \(\text{flgdip}=0 \), it becomes the number of segments across the feeding section of the antenna. The number of segments in the tapered part for this case is calculated in the program using this variable.
Input Line 5

- lsc: half length of the receiving diode when flgdip=1. When figair=0 and flgdip=0, it is the half length of the slotline short circuit current flowing between the lower and upper plates of the antenna.

- wsc: Half width of the receiving diode when flgdip=1, enter 0 otherwise.

Input Line 6

- xd0: Distance between the conductor edge and the dielectric edge in x direction if the two does not extend the same length. It is measured as \((x_{\text{dielectric}} - x_{\text{conductor}})\).

- lend: Length of the dielectric in x direction.

- hghd: Thickness of the dielectric region (y direction).

- er: Relative permittivity of the dielectric substrate.

Input Line 7

- nld: Number of segments in x direction for the dielectric substrate.

- nwd: Number of segments for the total width of the dielectric substrate.

- nhd: Number of segments across the thickness for the dielectric region. Currently the approximations in the code is written for nhd=1 case. Therefore, nhd=1 should be entered in the input file.
Input Line 8

- wq: Width of the microstripline, not applicable when figms=0.

- lf: Length of the microstripline, not applicable when figms=0.

- nf: Number of segments along the microstrip, not applicable when figms=0.
 (nf=1 results after the execution when figms=0, to account for the receiving diode.)

In the next section, the listings of the routines used in this work will be given. Explanation of the function of each routine is given at the beginning of the routines.
A.5 Listing of Programs

MAKEFILE

OBJS= mom.o struct.o fillcc.o filvltn.o decide.o par.o orthog.o \
filldc.o filldd.o fillcc.o zxx.o zxy.o zzy.o zyx.o \
zzz.o zcdxx.o zcdxy.o zcdxz.o zcdzx.o zcdzxy.o zcdzy.o zcdzz.o \
zcxy.o zcdczx.o zcdczy.o zdczxy.o zdczzy.o zdccxy.o \
gaus24.o gaus6.o gaus4.o gaus2.o symxx.o symxy.o symxz.o \
symyy.o symyx.o symzz.o partot.o ortot.o parf.o orf.o \
parftot.o orttot.o filvltn.o

1tea: $(OBJS) cgrad.o
 cf77 $(OBJS) cgrad.o -o tsar
struc.o: struct.f
 mom.o: mom.f
 cgrad.o: cgrad.f
 cf77 -Zv -c -Wf"_em" cgrad.f
filvltn.o: filvltn.f
 fillcc.o: fillcc.f
 filldc.o: filldc.f
 filldd.o: filldd.f
 decide.o: decide.f
 par.o: par.f
 parf.o: parf.f
 partot.o: partot.f
 parftot.o: parftot.f
 orthog.o: orthog.f
 orf.o: orf.f
 ortot.o: ortot.f
 orftot.o: orftot.f
zxx.o: zxx.f
 zxy.o: zxy.f
 zyy.o: zyy.f
 zyz.o: zyz.f
 zzz.o: zzz.f
 zcdxx.o: zcdxx.f
 zcdxy.o: zcdxy.f
 zcdxz.o: zcdxz.f
 zcdzx.o: zcdzx.f
 zcdzxy.o: zcdzxy.f
 zcdzy.o: zcdzy.f
 zcdzz.o: zcdzz.f
 zdcxx.o: zdcxx.f
 zdcxy.o: zdcxy.f
 zdcxz.o: zdcxz.f
 zdczy.o: zdczy.f
 zdccxx.o: zdccxx.f
 zdccxy.o: zdccxy.f
 gaus24.o: gaus24.f
 gaus6.o: gaus6.f
 gaus4.o: gaus4.f
 gaus2.o: gaus2.f
 symxx.o: symxx.f
 symxy.o: symxy.f
 symxz.o: symxz.f
 symyy.o: symyy.f
 symyx.o: symyx.f
 symyz.o: symyz.f
 symzz.o: symzz.f
program struct main
real length,wdth,fl,pi,ma,expo,lcz,wu(2000),hu(2000),
+ lcz,a,b,flag,ls,li,
+ xs0,lo,wsc,lsc,lssc,er,wf,1f,
+ widd,hgbd,ldx,ldy,land,frq,xd0
integer li,jj,ncl,ncw,cnt,j,m1,m2,mp,mq,nf,
+ lin,dumz(2000),elmnu,ctau,dum(2000),mi,ncl0,n,
+ nld,nhd,nwd,elnumd,md1,md2,flgair,flgdip,flgms

ccc
do 10 j=1,m1
 dum(j)=0
 wu(j)=lcx
 hu(j)=lcz

call decide to check if segment is in the geometry, if it is
calculate the segment sizes
 call decide(j,length,wdth,wf,ma,expo,a,b,lcx,lcz,ncl,ncw,+
 dum(j),hu(j),cntu,li)
 wu(j)=lcx
jj=int(((j-1)/ncl)+1
kj=j-(jj-1)*ncl
if (flgdip.eq.1) then
 if (jj.eq.ncw) then
 if (kj.eq.(mi+1)) then
 dum(j)=1
 wu(j)=lcx
 hu(j)=lcz
 endif
 endif
 endif
 endif
10 continue

make the segmentation for the lower plate
 do 15 j=m1+1,2*m1
 m2=int((j-ncl+ncw-1)/ncl)+1
 dum(j)=dum(j-(2*m2-1)*ncl)
15 continue

repeat the segmentation again to count the vertical currents
 do 17 j=2*m1+1,4*m1
 dum(j)=dum(j-2*m1)
17 continue

cntu=cntu-1

number the x-directed currents for the lower antenna plate
 do 20 j=1,m1
 jj=int((j-1)/ncl)+1
 ii=j-(jj-1)*ncl
 if (ii.eq.ncl) then
 dum2(j)=0
 goto 20
 endif
 if ((dum(j).eq.0).or.(dum(j+1).eq.0)) then
 dum2(j)=0
 else
 dum2(j)=cnt
 cnt=cnt+1
 endif
20 continue

number the x-directed currents for the upper antenna plate
 do 23 j=m1+1,2*m1
 dum2(j)=0
 m2=int((j-m1-1)/ncl)+1
 jj=j-(2*m2-1)*ncl
 if (dum2(jj).ne.0) then
 dum2(j)=cnt
 cnt=cnt+1
 continue
```plaintext
23 endif
24
25 continue

number the z-directed currents for the lower antenna plate

26 do j=2*m1+1,3*m1
27 dup2(j)=0
28 jj=int((j-2*m1-1)/ncl)+1
29 if (jj.eq.ncw) goto 26
30 if ((dum(j).eq.0).or.(dum(j+ncl).eq.0)) goto 26
31 dum2(j)=cnt
32 cnt=cnt+1
33
34 continue

number the z-directed currents for the upper antenna plate

35 do j=3*m1+1,4*m1
36 dup2(j)=0
37 jj=int((j-3*m1-1)/ncl)+1
38 if (jj.eq.ncw) goto 37
39 if ((dum(j).eq.0).or.(dum(j+ncl).eq.0)) goto 37
40 dum2(j)=cnt
41 cnt=cnt+1
42
43 continue
44
45 cnt is the number of elements

46 elnum=cnt
47 if (flgms.eq.1) then
48 hf=lf/nf
49 else
50 sq=0.0
51 hf=0.0
52 if=0.0
53 endif
54 do j=1,nf
55 dum2(4*m1+j)=elnum+j
56
57 continue
58
59 elnum=elnum+nf
60 n=elnum
61
62 elnumd=0
63 md1=0
64 md2=0
65 if (flgair.eq.1) goto 126
66
67 calculate the number of unknowns for the dielectric part of the antenna

68 widd=2.0*wdth+wf
69 mdl=nld*nwd
70 md2=mdl*nhd
71 ldx=1+end/(mdl)
72 ldy=hghd/(nhd)
73 ldx=widd/(nwd)
74 elnumd=3*md2
75
76 continue
77 n=elnum+elnumd
78
79 call the controlling routine -- mom

80 call mom(lngth,wdth,flang,lcx,lcz,wf,hw,wx,ws,sc,slc,ncl,+
81 ncw,m1,dum,dum2,elnum,n,er,mi,lend,wdx,hghd,mdl,+
82 nhd,nwd,ldx,ldy,ldz,elnumd,md1,md2,freq,xd0,+
83 flgair,flgdip,flgms,sq,hf,nf)
84 end
```
subroutine decide (j, lngth, wth, wf, ma, expo, a, b, w, h, n, ncw,
 dum, hu, cntu, li)
 real lngth, wth, wf, ma, expo, a, b, w, h, zant1, xc1, xc2,
 zant2, zcl, zc2, hu, li
 integer j, jj, ii, n, ncw, dum, cntu

ccccc... Subroutine decide if the segment is inside the geometry, if it c
cc is, it calculates the height and length of it. c
cc called by: struc c
ccc...jj=int((j-1)/n)+l
ii=j-(jj-1)*n
xc1=(ii)*w
zc1=-((ncw-jj)*w+wf/2.0)
zc2=zc1-h
if (xc1.ge.li) then
 zant1=-wf/2.0
else
 zant1=-a*(((w/2)*exp(expo*xc1))+
 b*(w/2.0+ma*(xc1-li)))
endif
if (zant1.ge.zc1) dum=1
xc2=(ii-1)*w
if (xc2.ge.li) then
 zant2=-wf/2.0
else
 zant2=-a*(((w/2.0)*exp(expo*xc1))+
 b*(w/2.0+ma*(xc2-li)))
endif
if (zant2.ge.zc2) dum=0
if (((zant2.gt.zc2).and.(zant2.le.zc1)) then
 if (zant1.ge.zc2) then
 hu=((zant2-zc2)+(zant1-zc2))/2.0
 else
 hu=((zant2-zc2)+(zant1-zc2))/2.0
if (hu.lt.-h) then
 write(6,'(A8)') 'Increase ncl or decrease ncw'
goto 776
endif
endif
if (hu.ge.(0.0)) then
 dum=0
else
 dum=2
endif
endif
endif
if (((zant2.ge.zc1).and.(zant1.lt.zc1)) then
 if (zant1.lt.zc2) then
 write(6,'(A8)') 'Increase ncl or decrease ncw'
goto 775
endif
 hu=((zant2-zc1)+(zant1-zc1))/2.0
 if (hu.ge.(0.0)) then
 dum=1
 endu
else
 dum=2
 hu=h+hu
endif
endif
endif
775 continue
if (hu.eq.h).and.(dum.eq.2)) dum=1
return
end
subroutine mom(lngth,wdth,flang,lcx,lcz,xf,hu,wu,xs0,wsc,lsc,
+ ncl,ncw,k,dum2,elnumc,n,er,mi,
+ lend,wdth,hghd,ndl,ehd,wdw,ly,ly,elnumd,
+ md1,md2,freq,xd0,flgair,flgdip,flgms,wq,hf,nf)
real xs0,lngth,wdth,flang,lcx,lcz,xf,hu(2000),xd0,
+ wsc,lsc,hu(2000),er,wq,hf,
+ lend,wdth,hghd,ly,ly,lx,freq
complex vv(n),imp(n,n),cr(n)
cc

Subroutine mom calls the necessary routines in the program and outputs the analysis results called by: struc
calls: filvlt, filvltn, filcc, filcd, fildc, fildc, cgrad

if (flgdip.eq.1) then
 do 11 j=1,n
 vv(j)=0.0
11 continue
vv(elnumc)=1.0
else
 if (flgms.eq.0) then
 if current element at apex call filvlt
 call filvlt(dum,dum2,lngth,wdth,hghd,k,ncw,ncl,elnumc,n,lcx,
 + lcx,xf,vv,hu,xs0,wsc,lsc,elnumd,md1,md2,ly,ly,xd0,nld)
 else
 if microstripline feed call filvltn
 call filvltn(dum,dum2,lngth,wdth,hghd,k,ncw,ncl,elnumc,n,lcx,
 + lcx,xf,vv,hu,xs0,wsc,lsc,elnumd,md1,md2,ly,ly,xd0,nld,nhd)
 endif
 endif
 endif
 fill the conductor-conductor interactions of the imp. matrix
 call filcc(lcx,lcx,lcx,ly,ly,ly,imp,dum,md2,ly,ncl,ncw,er,mi,
 + wq,hf,nf)
 if (flgair.eq.1) goto 76
 fill the conductor-dielectric interactions of the imp. matrix
 call filcd(lcx,lcx,lcx,ly,ly,ly,imp,dum,md2,k,ncl,ncw,md1,
 + md2,ndl,ndl,hghd,wdw,ly,ly,elnumc,elnumd,
 + wu,hs0,wsc,lsc,mi,xd0,wq,hf,nf)
 fill the dielectric-conductor interactions of the imp. matrix
 call fildc(lcx,lcx,lcx,ly,ly,ly,imp,dum,md2,k,ncl,ncw,md1,
 + md2,ndl,ndl,hghd,wdw,ly,ly,elnumc,elnumd,
 + wu,hs0,wsc,lsc,mi,xd0,wq,hf,nf)
 fill the dielectric-dielectric interactions of the imp. matrix
 call fildd(lx,ly,ly,imp,ndl,ndl,nld,wdw,ly,ly,elnumc,elnumd,
 + md1,md2,er,freq,elnumc,n)
76 continue

98
do 82 i=1,nu
 cr(i)=0.0
82 continue

solve the matrix equation using CG method

call cgrad(imp,vv,n,nu,cr)

output the analysis results

111 continue
 write(6,*) flgair,flgdir,flgms
 write(6,*) ncl,ncw,length,wdth,wi,k,elnumc
 write(6,*) xs0,wsc,las,zd0,mi,flang
 write(6,*) elnumd,md1,md2,nld,nhd,nwd,nghd
 write(6,*) lx,ly,lz,freq,er
 write(6,*) wq,hf,nf
 write(6,*) dum2,dum,wu,hu
 write(6,*) cr
344 continue
 return
end
Subroutine filvlt computes voltage vector for infinitesimal
z-directed current source
called by: mom
calls: elfld, zcdxz, zcdzz

pi=atan(1.0)+4.0
kwf=2.0*pi*wf
kt=2.0*pi*t
do 10 j=1,4*mc1+1
if (dum2(j).eq.0) goto 10
vv(dum2(j))=0.0
jxl=0
jxu=0
jyl=0
jyu=0
determine the location of the patch
if ((j.ge.0).and.(j.le.mc1)) jxl=1
if ((j.gt.mc1).and.(j.le.(2*mc1))) jxu=1
if ((j.gt.(2*mc1)).and.(j.le.(3*mc1))) jyl=1
if ((j.gt.(3*mc1)).and.(j.le.(4*mc1))) jyu=1
z12=0.0
if (jxl.eq.1) then
use symmetry
jj=1nt((j-1)/ncl)+1
hi=hu(j+1)*2.0*pi
wi=lcx*pi
dc=(xs0-(j-jj-1)*ncl)*lcx/2.0)*2.0*pi
hh=kt
l=(width+wf/2.0-(jj-1)*lcx)*2.0*pi
ii=0.0
i2=1.0
call zcdxz(d, hh, l, w1, hi, i1, i2, z)
z12=z12+z
i1=1.0
i2=0.0
d=d-lcx*2.0*pi
call zcdxz(d, hh, l, w1, hi, i1, i2, z)
z12=z12+z
vv(dum2(jj))=-vv(dum2(jp))
endif
if (jxu.eq.1) then
use symmetry
jj=1nt((j-mc1-1)/ncl)+1
jp=j-(2*jj-1)*ncl
vv(dum2(jj))=-vv(dum2(jp))
endif

if (j.eq.(4+mcl+1)) then

c for the short-circuit calculate z field of z current

w1=wscl*2.0*pi
hl=lscl*2.0*pi
d=(xs0-wsc)*2.0*pi
hh=kt
l=lscl*2.0*pi
jj=0.0
jj=1.0
call zcdzz(d,hh,l,w1,h1,i1,i2,z)
z12=z12+z
jj=1.0
l=1-hl
call zcdzz(d,hh,l,w1,h1,i1,i2,z)
z12=z12+z
vv(dum2(j))=z12*kwf
endif
c
if (jy1.eq.1) then
c
if z-current in the lower antenna plate calculate
the z field of z directed conductor current to find the
c voltage element
c
jj=int(((j-2*mc1-1)/ncl)+1)
jp=2*mc1
w1=lx*pi
hl=lscl*2.0*pi
de=(x0-(jp-(jj-1)*ncl)*lx+lx/2.0)*2.0*pi
hh=kt
l=lx+(jj-1)*lx/2.0*pi
jj=0.0
jj=1.0
call zcdzz(d,hh,l,w1,h1,i1,i2,z)
z12=z12+z
jj=1.0
l=1-hl
call zcdzz(d,hh,l,w1,h1,i1,i2,z)
z12=z12+z
vv(dum2(j))=z12*kwf
endif
c
if (jyu.eq.1) then
c
use symmetry for upper z-currents
jj=int(((j-3*mc1-1)/ncl)+1)
jp=2*jj*ncl
vv(dum2(j))=vv(dum2(jp))
endif
c
10 continue
c
continue with the dielectric region
do 27 i=1,md2
it=int((i-1)/md2)
ih=int((i-it*md2-1)/md1)
iw=int((i-it*md2-1h*md1-1)/nld)
jl=i-it*md2-1h*md1-1xw1

calculate the location of the dial. current
d=(x0+(il)*lx+lx/2.0-x0)*2.0*pi
hh=-(il)*ly+ly/2.0)*2.0*pi
l=lx+(il)*lx/2.0*(width+w2/2.0)*2.0*pi
c
calculate the field of the source at the center
call Efld(Ex,Ey,Ez,d,l,hh,kwf)
vv(i+elnuac)=-Ex
vv(i+elnuac+md2)=-Ey
vv(i+elnuac+2*md2)=-Ez

101
subroutine Efld(Ex, Ey, Ez, y, z, h, z)
real c1, c2, z, k, c5, h
complex p1, Ex, Ey, Ez, c3, c4

C calculates the field of an infinitesimal current element
C at the point x=y, y=h, z=z
p1=(0.0, 1.0)
c1=80.0*z
C2=sqrt(y**2+z**2+h**2)
c3=c1/(c2**4)*(1.0-p1/c2)
c4=p1*c1/(2.0*(c2**3))*(1.0-(p1/c2)-1.0/(c2**2))
Ex=(c3+c4)*y*z*exp(-p1*c2)
Ey=(c3+c4)*h*z*exp(-p1*c2)
Ez=(c3*z*z-c4*(y*y+h*h))*exp(-p1*c2)

C return
end
subroutine filvltn(dlm, dum2, length, width, t, mcl, ncw, ncl, elnumc, + n, lcx, lcx, wv, vv, hu, xs0, wsc, lsc, elnumcd, md1, + md2, lx, ly, lz, zd0, mld, wq, hf, nf)
real length, width, wf, kwf, lcx, lcx, pi, xs0, w1, h1, + wu(2000), hu(2000), i1, i2, xs0, wq, hf, hfj, + wcsc, lsc, t, kt, lx, ly, lz, zd0, d, hh, l
complex vv(n), z12, z, Ez, Ey, Ez
integer mcl, ncw, ncl, xl, xu, yl, yu, ii, jj, i, dum2(2000), + elnumc, dum(2000), jp, ip, n, md1, md2, elnumcd, it, ih, + ip, il, nud, j, jx1, jxu, jy1, jyu, nf, jf1, kj

Subroutine filvltn computes voltage vector for infinitesimal
y-current source located at feed point of microstripline

called by: mom
calls: Efldn, zcdxy, zcdzy

cccc cccc

pi=atan(1.0)*4.0
kwf=2.0*pi*wf
kt=2.0*pi*t

do 10 j=1,4*mcl+nf
if (dum2(j).eq.0) goto 10
vv(dum2(j))=0.0
jx1=0
jxu=0
jyl=0
jyu=0
jfl=0

c determine the location of the patch
if ((j.ge.0).and.(j.le.mcl)) jx1=1
if ((j.gt.mcl).and.(j.le.(2*mcl))) jxu=1
if ((j.gt.(2*mcl)).and.(j.le.(3*mcl))) jyl=1
if ((j.gt.(3*mcl)).and.(j.le.(4*mcl))) jyu=1
if ((j.gt.(4*mcl+1)).and.(j.le.(4*mcl+nf))) jf1=1
z12=0.0

c if (jx1.eq.1) then
if x-current in the lower antenna plate calculate
the y field of x directed conductor current to find the
voltage element
jj=int((j-1)/ncl)+1
h1=hu(jj)*2.0*pi
w1=lcx*pi
d=(xs0-(j-(jj-1)*ncl)*lcx+lcx/2.0)*2.0*pi
hh=kt/2.0
l=-(jj-1)*lcx+2.0*pi
i1=0.0
i2=1.0
call zcdxy(d, hh, l, w1, h1, i1, i2, z)
z12=z12+z
i1=1.0
i2=0.0
d=-lcx+2.0*pi
call zcdxy(d, hh, l, w1, h1, i1, i2, z)
z12=z12+z
vv(dum2(j))=z12*kt
endif

c if (jxu.eq.1) then
if x-current in the upper antenna plate calculate
the y field of x directed conductor current to find the

103
c voltage element, no symmetry in this case
jj=int((j-nc1-1)/nc1)+1
jp=j-(2*jj-1)*nc1
kj=j-nc1-(jj-1)*nc1
hi=hu(jp+1)*2.0*pi
wl=lcx*pi
l=-(jj+lcz+width+wf-hu(jp+1))*2.0*pi
d=(xs0-((kj-1)+0.50)*lcx)*2.0*pi
hh=kt/2.0
i1=0.0
i2=1.0
call zcdxy(d,hh,1,w1,h1,i1,i2,z)
z12=z12+z
i1=1.0
i2=0.0
d=d-lcx*2.0*pi
call zcdxy(d,hh,1,w1,h1,i1,i2,z)
z12=z12+z
vv(dum2(j))=z12*kt
endif
c if (j.eq.(4*nc1+1)) then
c for the short-circuit calculate y field of z current
wi=wsc*2.0*pi
hi=lsc*2.0*pi
d=(xs0-wsc)*2.0*pi
hh=kt/2.0
l=-(width+wf/2.0-lsc)*2.0*pi
i1=0.0
i2=1.0
call zcdzy(d,hh,1,w1,h1,i1,i2,z)
z12=z12+z
i1=1.0
i2=0.0
l=1-h1
call zcdzy(d,hh,1,w1,h1,i1,i2,z)
z12=z12+z
vv(dum2(j))=z12*kt
endif
c if (jyl.eq.1) then

endif
c if (jyl.eq.1) then

endif
c if (jyu.eq.1) then

endif
c if (jyl.eq.1) then

endif
if z-current in the lower antenna plate calculate
the y field of z directed conductor current to find the
voltage element, no symmetry in this case

\[
\begin{align*}
jj &= \text{int}\left((j-3*mcl-1)/ncl\right)+1 \\
kj &= j-3*mcl-(jj-1)*ncl \\
jp &= j-(2*jj-1)*ncl-2*mcl \\
w1 &= lcx*pi \\
h1 &= hu(jp)*2.0*pi \\
d &= (xSo-(kJ-1)+0.50)*1cx)*2.0*pi \\
hh &= kx/2.0 \\
l &= -(jj*lcx+wdh+w-hu(jp))*2.0*pi \\
i1 &= 0.0 \\
i2 &= 1.0 \\
call zcdzy(d,hh,1,w1,h1,i1,i2,z) \\
z12 &= z12+z \\
i1 &= 1.0 \\
i2 &= 0.0 \\
l &= -h1 \\
h1 &= hu(jp-ncl)*2.0*pi \\
call zcdzy(d,hh,1,w1,h1,i1,i2,z) \\
z12 &= z12+z \\
vv(dum2(j)) &= z12*kt \\
\end{align*}
\]
endif

if (jfl.eq.1) then
 if z-current on the microstrip line calculate
 the y field of z directed conductor current to find the
 voltage element

 \[
 \begin{align*}
 jj &= j-4*mcl-1 \\
kj &= (jj-1)*hf \\
w1 &= wq*pi \\
h1 &= hf*2.0*pi \\
d &= kx/2.0 \\
hh &= kx/2.0*pi \\
i1 &= 0.0 \\
i2 &= 1.0 \\
call zcdzy(d,hh,1,w1,h1,i1,i2,z) \\
z12 &= z12+z \\
i1 &= 1.0 \\
i2 &= 0.0 \\
l &= -h1 \\
call zcdzy(d,hh,1,w1,h1,i1,i2,z) \\
z12 &= z12+z \\
vv(dum2(j)) &= z12*kt \\
\end{align*}
\]
 endif
endif

10 continue

continue with the dielectric region

\[
\begin{align*}
\text{do} 27 & \text{ i}=1,md2 \\
& \text{it} = \text{int}\left((i-1)/md2\right) \\
& \text{ih} = \text{int}\left((i-it\text{md2-1})/md1\right) \\
& \text{iw} = \text{int}\left((i-it\text{md2-lhmd1-1})/nld\right) \\
& \text{i1} = \text{i-it}\text{md2 lhmd1-iw}\text{nld} \\
& \text{calculate the location of the dielectric current} \\
d &= (xSo+(i1)*lx-xl/2.0-xSo)*2.0*pi \\
hh &= 0.0 \\
l &= (iw+1lz/2.0)*2.0*pi \\
& \text{calculate the field of the source at the center} \\
call Erldm(Ex, Ey, Ez, d, l, hh, kt) \\
vv(i+elnumc) &= -Ex \\
vv(i+elnumc+md2) &= -Ey \\
vv(i+elnumc+2*md2) &= -Ez \\
\end{align*}
\]
105
27 continue
 return
 end

c subroutine Eflkn(Ex,Ey,Ez,x,y,kt)
real c1,kt,x,y,z,cx,cy,cz,r
complex pi,Ex,Ey,Ez

c calculates the field of an infinitesimal y-current element

c at the point x=x, y=y, z=z
pi=(0.0,1.0)
c1=30.0*kt
r=sqrt(x**2+y**2+z**2)
cx=x/r
cy=y/r
cz=z/r
Ex=-pi*c1*exp(-pi*r)*cx*cy*(-1.0+3.0*pi/r*(1.0-pi/r))/r
Ey=(1.0-cy**2+pi/r*(1.0-pi/r)*(3.0*cy**2-1))/r
Ey=-pi*c1*exp(-pi*r)*Ey
Ez=-pi*c1*exp(-pi*r)*cz*cy*(-1.0+3.0*pi/r*(1.0-pi/r))/r

return
 end

106
subroutine filcc(dum, dum2, lngth, width, ml, ncl, elnum, + lcx, wx, h, z, w, hu, x0, wsc, lsc, n, t, + er, mi, wq, hf, nf)
real lngth, width, w, cx, wu(2000), hu(2000), wsc, lsc, + w, h1, z1, z2, h2, d1, h1, d, h, ii, i2, i22, i2z, + t, e, p, k, d1, k1, h1, k2, k1, h2, w, h2, w2, + n, t, er, pi, n, n, er, pi, k, d, k1, h1, k2, + h2, w2, h2, w2, + x, x2, x, x2, 1, kb
complex z(n, n), z12, zs, p1
integer n, ii, jj, k, ncl, ncw, j, i, jxl, jxu, jyl, jyu, fff, mi, + ixl, iyu, iy1, iyu, i, j, pi, q, jfl, jfl, nf, + dum(2000), dum(2000), elnum, jjp, ip, ma, + mb, m, flg

Subroutine filcc computes the conductor-conductor interactions of the impedance matrix (submatrix A)

Subroutine called: mom

Subroutine calls: ortot, partot, orftot, parftot

do 30 j=1, 4*ml+nf
30 do 30 i=1, 4*ml+nf
if ((dum2(j).eq.0).or. (dum2(1).eq.0)) goto 30
flg=1

initialize
jxl=0
jxu=0
jyl=0
jyu=0
ixl=0
ixu=0
iy1=0
iy1=0
jfl=0
jfl=0
z12=0.0
z12c=0.0

If (jxl.eq.0).and.(jfl.eq.0) then

If (i=0) and (i=0) then

calculate interactions between lower plate x-directed conductor current and short-circuit or receiving diode
jj=int((j-1)/ncl)+1
kfl=jj-ncl
wl=wsc
hl=1/sc
h21=hl
w21=lcx/2.0
h22=wl(1)
hs=-((j-1)*lcz+wf/2.0-lsc)
d=(kflj+0.50)*1x-wsc

107
call ortot(d,hh,w1,h11,h21,w12,w22,h2,h12)
z(dum2(j),dum2(i))=z12
endif

if ((jxu.eq.1) .and. (i.eq.(4*m1+1))) then
use symmetry for upper x-directed conductor currents and
short-circuit or receiving diode interaction
jj=int((j-m1-1)/ncl)+1
jp=j-(2*jj-1)*ncl
z(dum2(j),dum2(i))=-z(dum2(jp),dum2(i))
endif

if ((jxl.eq.1) .and. (ifl.eq.1)) then
calculate interaction between lower plate x-directed
conductor current and microstripline current
jj=int((j-1)/ncl)+1
kj=j-(jj-1)*ncl
ii=1-4*m1-1
hf1=(ii-1)*hf
w1=q/2.0
h1=hf
h2=hu(j+1)
hh=(jj-1)*lcx-hfi
de=(j-1-0.50)*lcx-x0

call orftot(d,hh,-t,w1,h11,h21,w12,w22,h2,z12)
z(dum2(j),dum2(i))=z12
endf
endif

if ((jyl.eq.1) .and. (ifl.eq.1)) then
calculate interaction between upper plate x-directed
conductor current and microstripline current
jj=int((j-2*m1-1)/ncl)+1
kj=j-2*m1-(jj-1)*ncl
jp=j-2*jj-1)
ii=1-4*m1-1
hf1=(ii-1)*hf
w1=q/2.0
h1=hf
h2=hu(jp+1)
hh=jj*lcx+width-hu(jp+1)-hfi
de=(j-1-0.50)*lcx-x0

call orftot(d,hh,-t,w1,h11,h21,w12,w22,h2,z12)
z(dum2(j),dum2(i))=z12
endf
endif

if ((jyl.eq.1) .and. (i.eq.(4*m1+1))) then
calculate interaction between lower plate x-directed
conductor current and short-circuit or receiving diode
jj=int((j-2*m1-1)/ncl)+1
kj=j-2*m1-(jj-1)*ncl
jp=j-2*jj-1)
ii=1-4*m1-1
hf1=(ii-1)*hf
w1=q/2.0
h1=hf
h2=hu(jp+1)
hh=-width-(jj-1)*lcx+width/2.0-lsc)
\[
d = ((kj-1)+0.50) \times lc - wsc
\]
call parftot(d, hh, wi, hi1, h21, w2, h12, h22, z12)
\[z(dum2(j), dum2(i)) = z12\]
endif

c if ((jyu.eq.1) .and. (ifl.eq.(4*m1+1))) then
 use symmetry for upper z-directed conductor currents and
 short-circuit or receiving diode interaction
 jj = int((j-3*m1-1)/ncl)+1
 jp = j-2*jj+ncl
 z(dum2(j), dum2(i)) = z(dum2(jp), dum2(i))
endif

c if ((j.eq.(4*ml+1)) .and. (ifl.eq.1)) then
 calculate interaction between microstripline current
 and short-circuit or receiving diode
 ii = i-4*m1-1
 hfi = (ii-1)*hf
 w2 = wq/2.0
 h12 = hf
 h22 = hf
 wi = wsc
 hi1 = lsc
 h21 = lsc
 hh = -(wdth-hfi+wf/2.0-lsc)
 d = xq - wsc
 call parftot(d, hh, t, wi, hi1, h21, w2, h12, h22, z12)
 z(dum2(j), dum2(i)) = z12
endif

c if ((jyl.eq.1) .and. (ifl.eq.1)) then
 calculate interaction between upper plate z-directed
 conductor current and microstripline current
 jj = int((j-3*m1-1)/ncl)+1
 kj = j-3*m1-(jj-1)*ncl
 jp = j-2*jj+ncl
 li = i-4*m1-1
 hfi = (ii-1)*hf
 w1 = wq/2.0
 h11 = hf
 h21 = hf
 w2 = wu(jp)/2.0
 h12 = hu(jp)
 h22 = hu(jp-ncl)
 hh = (jj-1)*lcz-hfi
 d = ((kj-1)+0.50)*lcz-wsc
 call parftot(d, hh, t, wi, hi1, h21, w2, h12, h22, z12)
 z(dum2(j), dum2(i)) = z12
endif

c if ((jyu.eq.1) .and. (ifl.eq.1)) then
 calculate interaction between lower plate z-directed
 conductor current and microstripline current
 jj = int((j-3*m1-1)/ncl)+1
 kj = j-3*m1-(jj-1)*ncl
 jp = j-2*jj+ncl
 li = i-4*m1-1
 hfi = (ii-1)*hf
 w1 = wq/2.0
 h11 = hf
 h21 = hf
 w2 = wu(jp)/2.0
 h12 = hu(jp)
 h22 = hu(jp-ncl)
 hh = (jj-1)*lcz+hfi
 d = ((kj-1)+0.50)*lcz-xsc
 call parftot(d, hh, t, wi, hi1, h21, w2, h12, h22, z12)
 z(dum2(j), dum2(i)) = z12
endif
\[d = ((k_j - 1) + 0.50) \times 1c - x_0 \]

call parttot(d, hh, t, w1, h11, h21, w2, h12, z12)

\[z(dum2(j), dum2(i)) = z12 \]

endif

calculate interaction between microstrip line currents

if (j.le.i) then

\[jj = j - 4 \times m1 - 1 \]

\[ii = i - 4 \times m1 - 1 \]

if ((jj .eq. i) .and. (jj .gt. i)) then

\[z(dum2(j), dum2(i)) = z(dum2(j - 1), dum2(i - 1)) \]

else

\[h_fj = (j - 1) \times h_f \]

\[h_fi = (i - 1) \times h_f \]

\[h_hj = h_fj \]

\[h_hi = h_fi \]

\[w_l = w_1 / 2.0 \]

\[w_2 = w_1 \]

\[h_1 = h_1 \]

\[h_2 = h_2 \]

\[w_2 = w_2 \]

\[h_1 = h_1 \]

\[h_2 = h_2 \]

call parttot(d, hh, w1, h11, h21, w2, h12, h22, z12)

\[z(dum2(j), dum2(i)) = z12 \]

endif

endif

C if ((jfl .eq. 1) .and. (ifl .eq. 1)) then

calculate self interaction of short-circuit

c or receiving diode

\[w_1 = w_{sc} \]

\[h_1 = h_{sc} \]

\[w_2 = w_{sc} \]

\[h_2 = h_{sc} \]

\[d = 0.0 \]

\[h_h = h_h \]

\[h_h = h_h \]

\[w_2 = w_2 \]

\[h_1 = h_1 \]

\[h_2 = h_2 \]

call parttot(d, hh, w1, h11, h21, w2, h12, h22, z12)

\[z(dum2(j), dum2(i)) = z12 \]

endif

endif

C if ((jxl .eq. 1) .and. (ixl .eq. 1)) then

investigate interaction between lower plate x-directed antenna conductor currents

\[j_j = \text{int}((j - 1) / \text{ncl}) + 1 \]

\[i_i = \text{int}((i - 1) / \text{ncl}) + 1 \]

\[k_i = i - (i - 1) \times \text{ncl} \]

check various possibilities of symmetry

if (j .gt. i) then

\[z(dum2(j), dum2(i)) = z(dum2(i), dum2(j)) \]

else

if ((dum(j) .eq. 2) .or. (dum(j + 1) .eq. 2)) \(\text{flg} = 0 \)

if ((dum(i) .eq. 2) .or. (dum(i + 1) .eq. 2)) \(\text{flg} = 0 \)

C if ((j .gt. i) .and. (i .eq. j)) then

110
if ((dum2(aj).eq.0).or.(dum2(ai).eq.0)) flg=0
if ((dum(aj).eq.2).or.(dum(aj+1).eq.2)) flg=0
if ((dum(ai).eq.2).or.(dum(ai+1).eq.2)) flg=0
z(dum2(j),dum2(i))=z(dum2(aj),dum2(ai))
else
if ((jj.eq.1).and.(j.gt.1)) then
 aj=ki
 ai=i+j-ki
else
 aj=j-1
 ai=1
endif
if ((dum(aj).eq.0).or.(dum2(ai).eq.0)) flg=0
if ((dum(aj).eq.2).or.(dum(aj+1).eq.2)) flg=0
if ((dum(ai).eq.2).or.(dum(ai+1).eq.2)) flg=0
z(dum2(j),dum2(i))=z(dum2(aj),dum2(ai))
endif
endif
if (flg.eq.0) then
 no symmetry
 calculate interaction between lower plate x-directed antenna conductor currents
 w1=hu(j+1)/2.0
 h11=wu(j)
 h21=wu(j+1)
 w2=hu(i+1)/2.0
 h12=wu(i)
 h22=wu(i+1)
 d=(jj-ii)*lcx+w1-w2
 h1=-(j-ncl*(j-j)-i)*lcx+h12+h11
 call partrot(d,h1,w1,h11,h21,w2,h12,h22,z12)
 endif
endif
if ((jjxu.eq.1).and.(jxu.eq.1)) then
 use symmetry for interaction between upper plate x-directed antenna conductor currents
 jj=int((j-m1-1)/ncl)+i
 aj=j-(2*jj-1)*ncl
 ii=int((i-m1-1)/ncl)+j
 ai=i-(2*ii-1)*ncl
 z(dum2(j),dum2(i))=z(dum2(aj),dum2(ai))
endif
if ((jjxu.eq.1).and.(jxu.eq.1)) then
 investigate interaction between lower and upper plate x-directed antenna conductor currents
 jj=int((j-1)/ncl)+1
 ii=int((i-1)/ncl)+1
 ki=i-m1-(ii-1)*ncl
 ip=i-(2*ii-1)*ncl
 if ((dum(j).eq.0).or.(dum(j+1).eq.2)) flg=0
 if ((dum(i).eq.2).or.(dum(i+1).eq.2)) flg=0
check various possibilities of symmetry
if ((jj.gt.1).and.(ii.gt.1)) then
 a j = j - ncl
 a i = i - ncl
 if ((dum2(a j).eq.0).or.(dum2(ai).eq.0)) flg=0
 if ((dum(ai).eq.2).or.(dum(ai+1).eq.2)) flg=0
 if ((dum(ai).eq.2).or.(dum(ai+1).eq.2)) flg=0
 z(dum2(j), dum2(i)) = z(dum2(a j), dum2(ai))
else
 if ((jj.eq.i).and.(j.gt.1)) then
 if (ki.lt.J) then
 a j = k i
 a i = i + j - k i
 else
 a j = j - 1
 a i = i - 1
 endif
 if ((dum2(a j).eq.0).or.(dum2(ai).eq.0)) flg=0
 if ((dum(ai).eq.2).or.(dum(ai+1).eq.2)) flg=0
 if ((dum(ai).eq.2).or.(dum(ai+1).eq.2)) flg=0
 z(dum2(j), dum2(i)) = z(dum2(a j), dum2(ai))
 else
 flg=0
 endif
endif
if (flg.eq.0) then
 no symmetry
 calculate interaction between lower and upper plate
 x-directed antenna conductor currents
 w1 = hu(j+1)/2.0
 h11 = wu(j)
 h21 = wu(j+1)
 w2 = hu(ip+1)/2.0
 h12 = wu(ip)
 h22 = wu(ip+1)
 d = (jj-ii-ncw-1)*lcx-wf+w2+w1
 hh = -(j-ncl*(jj-ii)-i+mi)*lcx-h12+h11
 call partot(d, hh, w1, h11, h21, w2, h12, h22, z12)
 z(dum2(j), dum2(i)) = z12
endif

if ((jxu.eq.1).and.(ixl.eq.1)) then
use symmetry for interaction between upper plate x-directed
antenna conductor currents with those of lower plate
 z(dum2(j), dum2(i)) = z(dum2(i), dum2(j))
endif
if ((jy1.eq.1).and.(iyl.eq.1)) then
investigate interaction between lower plate z-directed
antenna conductor currents
 ii = int((ii-2*mi-1)/ncl)+1
 jj = int((jj-2*mi-1)/ncl)+1
 ki = i-2*mi-(ii-1)*ncl
 kj = j-2*mi-(jj-1)*ncl
 ip = i-2*mi
 j p = j-2*mi
 check various possibilities of symmetry
 if (j.gt.1) then
\[z(dum2(j), dum2(i)) = z(dum2(i), dum2(j)) \]

else

\[
\text{if } ((dum(j) .eq. 2).or.(dum(j+ncl).eq.2)) \text{ flg}=0
\]
\[
\text{if } ((dum(i).eq.2).or.(dum(i+ncl).eq.2)) \text{ flg}=0
\]

\[
\text{if } ((jj.gt.1).and.(ii.gt.1)) \text{ then}
\]
\[
a_j=j-ncl
\]
\[
a_i=i-ncl
\]
\[
\text{if } ((dum2(a_j).eq.(0)).or.(dum2(a_i).eq.(0))) \text{ flg}=0
\]
\[
\text{if } ((dum(a_j).eq.2).or.(dum(a_j+ncl).eq.2)) \text{ flg}=0
\]
\[
\text{if } ((dum(a_i).eq.2).or.(dum(a_i+ncl).eq.2)) \text{ flg}=0
\]
\[
z(dum2(j), dum2(i)) = z(dum2(a_j), dum2(a_i))
\]

else

\[
\text{flg}=0
\]
endif
endif
end.if

C

\[
\text{if } (flg.eq.0) \text{ then}
\]
\[
\text{no symmetry}
\]
C

\[
calculate interaction between lower plate z-directed antenna conductor currents
\]
\[
w_1=wu(jp)/2.0
\]
\[
h_{11}=hu(jp)
\]
\[
h_{21}=hu(jp+ncl)
\]
\[
w_2=wu(ip)/2.0
\]
\[
h_{12}=hu(ip)
\]
\[
h_{22}=hu(ip+ncl)
\]
\[
d=(k_i-k_j)*lcz-w_2+w_1
\]
\[
hh=(ii-jj)*lcz
\]
\[
call partot(d, hh, w_1, h_{11}, h_{21}, w_2, h_{12}, h_{22}, z_{12})
\]
\[
z(dum2(j), dum2(i)) = z_{12}
\]
endf
C

endif

C

\[
\text{if } ((jjl.eq.1).and.(iyu.eq.1)) \text{ then}
\]
\[
\text{investigate interaction between lower and upper plate z-directed antenna conductor currents}
\]
\[
jj=int((j-2*m_l-1)/ncl)+1
\]
\[
i_l=int((i-3*m_l-1)/ncl)+1
\]
\[
k_j=j-2*m_l-(jj-1)*ncl
\]
\[
jp=j-2*m_l
\]
\[
mp=(i-2*l)*ncl-2*m_l
\]
\[
\text{if } ((dum(j).eq.2).or.(dum(j+ncl).eq.2)) \text{ flg}=0
\]
\[
\text{if } ((dum(i).eq.2).or.(dum(i+ncl).eq.2)) \text{ flg}=0
\]
\[
\text{if } ((jj.gt.1).and.(ii.gt.1)) \text{ then}
\]
\[
\text{check various possibilities of symmetry}
\]

113
if ((dum2(aj).eq.(O)).or.(dum2(ai).eq.(O))) flg=O
if ((dum(aj).eq.2).or.(dum(aj+ncl).eq.2)) flg=O
if ((dum(ai).eq.2).or.(dum(ai+ncl).eq.2)) flg=O
z(dum2(j),dum2(i))=z(dum2(aj),dum2(ai))
else
 endif
 endif
 if (flg.eq.0) then
 no symmetry
 calculate interaction between lower and upper plate
 z-directed antenna conductor currents
 w1=wu(jp)/2.0
 h11=hu(jp)
 h21=hu(jp+ncl)
 w2=wu(ip)/2.0
 h12=hu(ip)
 h22=hu(ip-ncl)
 d=(ki-kj)*lcz-w2+w1
 hh=(ii+ncw+i-jj)*lcz+wf-h12
 call partot(d,hh,w1,h11,h21,w2,h12,h22,z12)
 z(dum2(j),dum2(i))=z12
 endif
endif
if ((jyu.eq.1).and.(jyl.eq.1)) then
 use symmetry for interaction between upper plate
 and lower plate z-directed antenna conductor currents
 z(dum2(j),dum2(i))=z(dum2(i),dum2(j))
endif
if ((jxl.eq.1).and.(jyl.eq.1)) then
 investigate interaction between lower plate x-directed
 and lower plate z-directed antenna conductor currents
 jj=int((j-1)/ncl)+1
 ii=int((i-2*ml-1)/ncl)+1
 ki=1-2*ml-(ii-1)*ncl
 kj=j-1+ncl
 ip=1-2*ml
 if ((dum(j).eq.2).or.(dum(j+1).eq.2)) flg=O
 if ((dum(i).eq.2).or.(dum(i+ncl).eq.2)) flg=O
 check various possibilities of symmetry
 if (jj.gt.1) then
 if (ii.lt.jj) then
 c
 endif
endif
114
\[a_j = j - (jj - ii) * ncl \]
\[q = 0 \]
\[ai = i + (jj - ii - 1) * ncl \]
else
\[a_j = 1 - ncl \]
\[ai = 1 - ncl \]
\[q = 1 \]
endif

if ((dum2(aj).eq.(0)).or.(dum2(ai).eq.(0))) flg=0
if ((dum(aj).eq.2).or.(dum(ai+1).eq.2)) flg=0
if ((dum(ai).eq.2).or.(dum(ai+ncl).eq.2)) flg=0
if (q.eq.0) then
\[z(dum2(j), dum2(i)) = -z(dum2(aj), dum2(ai)) \]
else
\[z(dum2(j), dum2(i)) = z(dum2(aj), dum2(ai)) \]
endif
else
if ((jj.eq.1).and.(j.gt.1)) then
if (j.le.ki) then
\[a_j = j - 1 \]
\[ai = i - 1 \]
q=0
else
\[a_j = ki \]
\[ai = i + (j - ki + 1) \]
q=1
endif
if ((dum2(aj).eq.(0)).or.(dum2(ai).eq.(0))) flg=0
if ((dum(aj).eq.2).or.(dum(ai+1).eq.2)) flg=0
if ((dum(ai).eq.2).or.(dum(ai+ncl).eq.2)) flg=0
if (q.eq.0) then
\[z(dum2(j), dum2(i)) = z(dum2(aj), dum2(ai)) \]
else
\[z(dum2(j), dum2(i)) = -z(dum2(aj), dum2(ai)) \]
endif
else
if ((j.eq.1).and.(ki.eq.2)) then
\[a_j = j - 1 \]
\[ai = i - 1 \]
if ((dum2(aj).eq.(0)).or.(dum2(ai).eq.(0))) flg=0
if ((dum(aj).eq.2).or.(dum(ai+1).eq.2)) flg=0
if ((dum(ai).eq.2).or.(dum(ai+ncl).eq.2)) flg=0
\[z(dum2(j), dum2(i)) = -z(dum2(aj), dum2(ai)) \]
else
flg=0
endif
endif
endif
endif
if (flg.eq.0) then
no symmetry
endif
endif
endif
endif

if (flg.eq.0) then
no symmetry
endif
endi
z(dum2(j), dum2(i)) = z12
endif

c
endif

c
if ((jz1.eq.1).and.(iyu.eq.1)) then
 investigate interaction between lower plate x-directed and upper plate z-directed antenna conductor currents
 jj=int((j-1)/ncl)+1
 ii=int((i-3*ml-1)/ncl)+1
 ki=i-3*ml-(ii-1)*ncl
 kj=j-(jj-1)*ncl
 ip=i-(2*ii-1)*ncl-2*ml
 if ((dum(j).eq.2).or.(dum(j+1).eq.2)) flg=0
 if ((dum(i).eq.2).or.(dum(i+ncl).eq.2)) flg=0
 c
 check various possibilities of symmetry
 if ((jj.gt.1).and.(ii.gt.1)) then
 aj=j-ncl
 al=i-ncl
 if ((dum2(aj).eq.0) .or. (dum2(al).eq.0)) flg=0
 if ((dum(aj).eq.2).or.(dum(aj+1).eq.2)) flg=0
 if ((dum(al).eq.2).or.(dum(al+ncl).eq.2)) flg=0
 z(dum2(j), dum2(i))=z(dum2(aj), dum2(al))
 else
 c
 if ((jj.eq.1).and.(j.gt.1)) then
 if (j.lt.ki) then
 aj--j-kj
 ai=i
 q=0
 else
 aj=ki
 ai=i+(j-kj+1)
 q=1
 endif
 if ((dum2(aj).eq.0).or.(dum2(ai).eq.0)) flg=0
 if ((dum(aj).eq.2).or.(dum(aj+1).eq.2)) flg=0
 if ((dum(ai).eq.2).or.(dum(ai+ncl).eq.2)) flg=0
 if (q.eq.0) then
 z(dum2(j), dum2(i))=z(dum2(aj), dum2(ai))
 else
 z(dum2(j), dum2(i))=-z(dum2(aj), dum2(ai))
 endif
 else
 c
 if ((kj.eq.1).and.(ki.eq.2)) then
 aj=j
 ai=i-1
 if ((dum2(aj).eq.0).or.(dum2(ai).eq.0)) flg=0
 if ((dum(aj).eq.2).or.(dum(aj+1).eq.2)) flg=0
 if ((dum(ai).eq.2).or.(dum(ai+ncl).eq.2)) flg=0
 z(dum2(j), dum2(i))=-z(dum2(aj), dum2(ai))
 else
 flg=0
 endif
 endif
 endif
 endif
 endif
 z(dum2(j), dum2(i))=-z(dum2(aj), dum2(ai))
endit
else
 c
 if (flg.eq.0) then
 no symmetry
 c
 calculate interaction between lower plate x-directed and upper plate z-directed antenna conductor currents
 wi=wu(ip)/2.0
 hi1=hu(ip)
 endif
endif
\[\begin{align*}
h_{21} &= h_u(i_p - n_c) \\
w_{12} &= w_u(j)/2.0 \\
w_{22} &= w_u(j+1)/2.0 \\
h_2 &= h_u(j+1) \\
h &= (j-j_{ii} - n_{cw} - i)*l_{cz} - w_{f} + h_{11} \\
d &= (k_j - k_i)*l_{cz} - w_{12} + w_{1} \\
\text{call ortot}(d, h, w_1, h_{11}, h_{21}, w_{12}, w_{22}, h_2, z_{12}) \\
z(dum2(j), dum2(i)) &= z_{12} \\
\end{align*} \]

\[\begin{align*}
\text{endif} \\
\text{end.if} \\
\text{if } ((j_{yl} \text{ eq } 1) \text{ .and. } (i_{xl} \text{ eq } 1)) \text{ then} \\
\text{use symmetry for interaction of upper plate z-directed} \\
\text{and lower plate x-directed currents } (j > i) \\
z(dum2(j), dum2(i)) &= z(dum2(i), dum2(j)) \\
\text{endif} \\
\text{if } ((j_{yl} \text{ eq } 1) \text{ .and. } (i_{xu} \text{ eq } 1)) \text{ then} \\
\text{use symmetry for interaction of lower plate z-directed} \\
\text{and upper plate x-directed currents } (j > i) \\
z(dum2(j), dum2(i)) &= z(dum2(i), dum2(j)) \\
\text{endif} \\
\text{if } ((j_{xu} \text{ eq } 1) \text{ .and. } (i_{yl} \text{ eq } 1)) \text{ then} \\
\text{use symmetry for interaction of upper plate x-directed} \\
\text{and lower plate z-directed currents } (j_{ij} = \text{int}((j - m_1 + 1)/n_{cl}) + i \\
ii = \text{int}((i - 3*m_1 - 1)/n_{cl}) + i \\
ai = i - 2*ii + n_{cl} \\
aJ = j - 2*jj + 1*n_{cl} \\
z(dum2(j), dum2(i)) &= -z(dum2(aj), dum2(ai)) \\
\text{endif} \\
\text{if } ((j_{xu} \text{ eq } 1) \text{ .and. } (i_{yl} \text{ eq } 1)) \text{ then} \\
\text{use symmetry for interaction of upper plate x-directed} \\
\text{and upper plate z-directed currents } (j_{ij} = \text{int}((j - m_1 + 1)/n_{cl}) + i \\
ii = \text{int}((i - 3*m_1 - 1)/n_{cl}) + i \\
ai = i - 2*ii + n_{cl} \\
aJ = j - 2*jj + 1*n_{cl} \\
z(dum2(j), dum2(i)) &= -z(dum2(aj), dum2(ai)) \\
\text{endif} \\
\end{align*} \]
and upper plate z-directed currents
jj = int((j-3*m1-1)/ncl) + 1
ii = int((i-3*m1-1)/ncl) + 1
aj = j-2*jj*ncl
ai = i-2*ii*ncl
z(dum2(j), dum2(i)) = z(dum2(aj), dum2(ai))
endif

continue
return
end
subroutine filcd(lcx,lcz,lx,ly,lz,imp,dum,dum2,mc1,
+ ncl,nw,m1,m2,nld,mdl,m2,nld,hl,h21,hl,m1,il,il,i2,i2)
real w1,w2,hl,h21,hl,m1,il,i2,il,i2
complex im(n,n),zi2,z,tee
integer dum(2000),dum2(2000),mc1,ncl,ncw,md1,md2,nld,nwd,hghd,wdth,wf,elnmnc,
+ elnumd,wu,hu,xsO,wsc,lsc,mi,xd0,wd,hf,nf

Subroutine filcd computes the conductor-dielectric interaction of the impedance matrix (submatrix C) called by: non calls: zcdxx, zcdxy, zcdxz, zcdzx, zcdyx, zcdyz

pi=atan(1.0)*4.0
nw=nwd/2
sym=1
do 30 j=1,4*mc1+nf
 do 30 i=1,3*md2
 if (dum2(j).eq.0) goto 30
 c determine the location of the conductor current
 if ((j.ge.0).and.(j.le.mc1)) jxl=1
 if ((j.gt.mc1).and.(j.le.(2*mc1))) jxu=1
 if ((j.gt.(2*mc1)).and.(j.le.(3*mc1))) jyl=1
 if ((j.gt.(3*mc1)).and.(j.le.(4*mc1))) jyu=1
 if ((j.gt.(4*mc1+1)).and.(j.le.(4*mc1+nf))) jfl=1
 c determine the location of the dielectric current
 it=int((i-1)/md2)
iw=int((i-it*md2-1)/mdl)
iw=m2-ih-mdi-4*iw=nld
 z12=0.0
 c if (jxl.eq.1) then
 c calculate interaction between lower plate x-directed c conductor current and dielectric currents if dielectric current is x,y,z directed call zcdxx,y,z resp.
jj=int((j-1)/mc1)+1
 hl=hu(j+j)+2.0*pi
 w1=lcx*pi
d=((i-0.5)*lx+i0-((j-1)*mc1)*lcz+lcz/2.0)*2.0*pi
 hh=((-i1-1)*lx-ly/2.0)*2.0*pi
 l=((i1+1)*lx-ly/2.0)-((j-1)*lcx)*2.0*pi
 i=0.0
 i2=1.0
 if (it.eq.0) call zcdxx(d,hu,1,w1,h1,il,i1,i2,z)
 if (it.eq.1) call zcdxy(d,hu,1,w1,h1,il,i1,i2,z)
 if (it.eq.2) call zcdxz(d,hu,1,w1,h1,il,i1,i2,z)
z12=z12+z
\[i_1 = 1.0 \]
\[i_2 = 0.0 \]
\[d = d_0 + \text{lcx} \times 2.0 \times \pi \]

if \((i_\text{eq.0})\) call \(zcdxx(d, h, l, w, h_1, i_1, i_2, z)\)
if \((i_\text{eq.1})\) call \(zcdxy(d, h, l, w, h_1, i_1, i_2, z)\)
if \((i_\text{eq.2})\) call \(zcdxz(d, h, l, w, h_1, i_1, i_2, z)\)

\[z_{12} = z_{12} + z \]

if \((j \text{eq.1})\) then
 investigate interaction between upper plate x-directed conductor current and dielectric currents
 \[jj = \text{int}((j - m_{c1} - 1) / n_{cl}) + 1 \]
 \[j_p = j - (2 * j_j - 1) * n_{cl} \]

if \((i_{w+1}) > n_{w}\) then
 \[a_i = i - (i_{w+1} - n_{w} - 1) * n_{ld} \]
else
 \[a_i = i + (2 * (n_{w} - (i_{w+1}) + 1)) * n_{ld} \]
endif

if \((i \text{sym} = 0)\) then
 no symmetry
 calculate interaction between upper plate x-directed conductor current and dielectric currents if dielectric current is x,y,z directed call \(zcdxx, y, z\) resp.

\[w_i = \text{lcx} \times \pi \]
\[h_1 = \text{hu}(j_p + 1) \times 2.0 \times \pi \]
\[d = (i_{i} \times l - l_x / 2.0 + x_d 0 - (j - m_{c1} - (j - 1) * n_{cl}) \times \text{lcx} + \text{lx} / 2.0) \times 2.0 \times \pi \]
\[h_h = ((i_{h+1}) \times l_y - l_y / 2.0) \times 2.0 \times \pi \]
\[l = ((i_{w} \times l_z - l_z / 2.0) - (j_j \times \text{width} + w_f - h_u(j_p + 1))) \times 2.0 \times \pi \]

\[i_1 = 0.0 \]
\[i_2 = 1.0 \]
if \((i_\text{eq.0})\) call \(zcdxx(d, h, l, w, h_1, i_1, i_2, z)\)
if \((i_\text{eq.1})\) call \(zcdxy(d, h, l, w, h_1, i_1, i_2, z)\)
if \((i_\text{eq.2})\) call \(zcdxz(d, h, l, w, h_1, i_1, i_2, z)\)

\[z_{12} = z_{12} + z \]

\[i_i = 1.0 \]
\[i_2 = 0.0 \]
\[d = d_0 + \text{lcx} \times 2.0 \times \pi \]
if \((i_\text{eq.0})\) call \(zcdxx(d, h, l, w, h_1, i_1, i_2, z)\)
if \((i_\text{eq.1})\) call \(zcdxy(d, h, l, w, h_1, i_1, i_2, z)\)
if \((i_\text{eq.2})\) call \(zcdxz(d, h, l, w, h_1, i_1, i_2, z)\)

\[z_{12} = z_{12} + z \]

imp\((i + i_{\text{num}}, \text{dum}2(j)) = z_{12} \)
else
if \((i_\text{eq.0})\) imp\((i + i_{\text{num}}, \text{dum}2(j)) = \text{imp}(a_i + i_{\text{num}}, \text{dum}2(j))\)
if \((i_\text{eq.1})\) imp\((i + i_{\text{num}}, \text{dum}2(j)) = \text{imp}(a_i + i_{\text{num}}, \text{dum}2(j))\)
if \((i_\text{eq.2})\) imp\((i + i_{\text{num}}, \text{dum}2(j)) = \text{imp}(a_i + i_{\text{num}}, \text{dum}2(j))\)
endif
endif
if \((j \text{eq.} (4 * m_{c1} + 1))\) then
 calculate interaction between short-circuit or receiving diode current and dielectric currents if dielectric current is x,y,z directed call \(zcdx, y, z\) resp.

\[w_i = \text{wsc} \times 2.0 \times \pi \]
\[h_1 = \text{lsc} \times 2.0 \times \pi \]
\[d = (i_{i} \times l - l_x / 2.0 + x_d - w_{sc} \times 2.0 \times \pi \]
\[h_h = ((i_{h+1}) \times l_y - l_y / 2.0) \times 2.0 \times \pi \]
\[l = ((i_{w} \times l_z - l_z / 2.0) - (w_{sc} \times \text{width} + w_f / 2.0) + l_{sc}) \times 2.0 \times \pi \]

\[i_1 = 0.0 \]
\[i_2 = 1.0 \]
if \((i_\text{eq.0})\) call \(zcdxz(d, h, l, w, h_1, i_1, i_2, z)\)
if \((i_\text{eq.1})\) call \(zcdzy(d, h, l, w, h_1, i_1, i_2, z)\)
if \((i_\text{eq.2})\) call \(zcdzx(d, h, l, w, h_1, i_1, i_2, z)\)

120
if (it.eq.2) call zcdzz(d,hh,l,wi,hi,ii,i2,z)
z12=z12+z
i1=1.0
i2=0.0
l=l-lsc*2.0*pi
if (it.eq.0) call zcdzx(d,hh,l,wi,hi,ii,i2,z)
if (it.eq.1) call zcdzy(d,hh,l,wi,hi,ii,i2,z)
if (it.eq.2) call zcdzz(d,hh,l,wi,hi,ii,i2,z)
z12=z12+z
imp(i+elnumc,dum2(j))=z12
endif
if (Jfl.eq.l) then
calculate interaction between microstripline current and dielectric currents if dielectric current is x,y,z directed call zcdzx,y,z resp.
wl=wl*pi
hl=hf*2.0*pi
jj=j-4*mcl-1
hhfj=(jj-1)*hf

if (it.eq.0) call zcdzx(d,hh,l,wi,hi,ii,i2,z)
if (it.eq.1) call zcdzy(d,hh,l,wi,hi,ii,i2,z)
if (it.eq.2) call zcdzz(d,hh,l,wi,hi,ii,i2,z)
z12=z12+z
i1=1.0
i2=0.0
l=l+hl
if (tt.eq.0) call zcdzx(d,hh,l,wi,hi,ii,i2,z)
if (tt.eq.1) call zcdzy(d,hh,l,wi,hi,ii,i2,z)
if (tt.eq.2) call zcdzz(d,hh,l,wi,hi,ii,i2,z)
z12=z12+z
imp(i+elnumc,dum2(j))=z12
endif
if (jvl.eq.1) then
calculate interaction between lower plate x-directed conductor current and dielectric currents if dielectric current is x,y,z directed call zcdzx,y,z resp.
jj=int((j-2*mcl-1)/ncl)+l
jp=j-2*mcl
wl=lx*pi
hl=hu(jp)*2.0*pi
d=(1+lx-1x/2.0+xd0-xa0)*2.0*pi
hh=((ih+l)-ly-ly/2.0)*2.0*pi
l=((i+1)*lx-1x/2.0-hfj)*2.0*pi
i1=0.0
i2=1.0
j=1
J=0.0
if (it.eq.0) call zcdzx(d,hh,l,wi,hi,ii,i2,z)
if (it.eq.1) call zcdzy(d,hh,l,wi,hi,ii,i2,z)
if (it.eq.2) call zcdzz(d,hh,l,wi,hi,ii,i2,z)
z12=z12+z
imp(i+elnumc,dum2(j))=z12
endif

endif

c if (jyu.eq.1) then
 c investigate interaction between upper plate x-directed
 c conductor current and dielectric currents

 jj=int((j-S*acl-1)/ncl)+1
 jp=j-(2*jj-1)*ncl-2*mcl
 aj=j-2*jj*ncl

 if ((iw+l).gt.nw) then
 ai=i-(2e(iw+l-ne)-l)*nld
 else
 ai=i+(2e(nw-(iw+1))+1)*nld
 endif

c if (sym.eq.O) then
 c no symmetry
 c calculate interaction between upper plate x-directed
 c conductor current and dielectric currents if dielectric
 c current is x,y,z directed call zcdzx,y,z resp.

 w1=lcex*pi
 h1=hu(jp)*2.0*pi
 d=(i1*l-x/2.0+xdo-(j-3*mcl-(jj-1)*ncl)*lcx+lcx/2.0)*2.0*pi
 hh=((i1*h+1)*ly-ly/2.0)*2.0*pi
 l=((iw+l)*lz-lz/2.0-(jj*lcw+wdth+wz-hu(jp)))*2.0*pi
 i1=0.0
 j2=1.0

 if (it.eq.0) call zcdzx(d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.1) call zcdzy(d,hh,l,el,hl,il,i2,z)
 if (it.eq.2) call zcdzz(d,hh,l,w1,h1,i1,i2,z)

 z12=z12+z
 i1=1.0
 i2=0.0
 l=1-h1
 h1=hu(jp-ncl)*2.0*pi

 if (it.eq.0) call zcdzx(d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.1) call zcdzy(d,hh,l,el,hl,il,i2,z)
 if (it.eq.2) call zcdzz(d,hh,l,w1,h1,i1,i2,z)

 z12=z12+z

 if (it.eq.0) imp(i+elnunc,dum2(j))=z12
 else
 if (it.eq.0) imp(i+elnunc,dum2(j))=-imp(ai+elnunc,dum2(a))
 if (it.eq.1) imp(i+elnunc,dum2(j))=-imp(ai+elnunc,dum2(a))
 if (it.eq.2) imp(i+elnunc,dum2(j))=imp(ai+elnunc,dum2(a))
 endif
endif

c 30 continue
return
end
subroutine fildc(lcx,lcz, lx, ly, lz, imp, dum, dum2, mcl, ncl, nw, nw0, hgd, width, ef, elnum, elnumd, wu, hu, xs0, wsc, lsc, n, mi, xo0, wq, hf, hfj)

real w1, hi, dl, hh, li, li2, lcx, lc0, lx, ly, lw0(2000), xo0,
+ width, ef, hgd, lsc, wsc, xo0, pjw, pjh, wq, hf, hfj,
+ hi, h21, hu(2000),
+ pi, klx, kly, klz

complex imp(n, n), z12, z, temp, maxz

integer dum(2000), dum2(2000), mcl, ncl, nw, nw0, mi, n, i, j, x0, eq, h0, ni, n, jfl

Subroutine fildc computes the dielectric-conductor interactions of the impedance matrix (submatrix B)

called by: mom

calls: zdxx, zdxy, zdxz, zdzy, zdzz

pi=atan(1.0)*4.0
klx=2.0*pi*lx
kly=2.0*pi*ly
klz=2.0*pi*lz
nw=nw0/2
sym=1

do 30 j=1,4*mcl+nf
 do 30 i=1,3*md2
 if (dum2(j).eq.0) goto 30
 jxl=0
 jxu=0
 jyl=0
 jyu=0
 jfl=0
 it=0
 ih=0
 il=0
 c determine the location of the conductor current
 if ((j.ge.0).and.(j.l.e.mcl)) jxl=1
 if ((j.gt.mcl).and.(j.l.e.(2*mcl))) jxu=1
 if ((j.gt.(2*mcl)).and.(j.l.e.(3*mcl))) jyl=1
 if ((j.gt.(3*mcl)).and.(j.l.e.(4*mcl))) jyu=1
 if ((j.gt.(4*mcl+1)).and.(j.l.e.(5*mcl+nf))) jfl=1
 c determine the location of the dielectric current
 it=int((i-1)/md2)
 ih=int((i-1-it-md2-1)/md1)
 il=int((i-1-it-md2-hd-md1-1)/nld)
 hjx=0
 hjy=0
 hjz=0
 if (jxl.eq.1) then
 c calculate interaction between lower plate x-directed conductor current and dielectric currents if dielectric current is x, y, z directed call zdxx, y, z resp.
 jj=int((j-1)/ncl)+1
 hj=hn(jj)+2.0*pi
 w1=lcx*pi
 d=(k1-0.50)*lx*xd0-(jj-1)*ncl)*lcx+lcx/2.0)*2.0*pi
 hjh=((hj+1)*ly-ly/2.0)*2.0*pi
 l1=((i+j1)*lx-lx/2.0)-(jj-1)*lcx)*2.0*pi
 if (abs(i).gt.(9.0*pi)) then

123
if (it.eq.0) z12 = -imp(i+elnumc,dum2(j))*klx
if (it.eq.1) z12 = -imp(i+elnumc,dum2(j))*kly
if (it.eq.2) z12 = -imp(i+elnumc,dum2(j))*klz
else
 i1 = 0.0
 i2 = 1.0
if (it.eq.0) call zdcxx(klx,kly,klz,d,hl,l,w1,h1,i1,i2,z)
if (it.eq.1) call zdcxy(klx,kly,klz,d,hl,l,w1,h1,i1,i2,z)
if (it.eq.2) call zdcxz(klx,kly,klz,d,hl,l,w1,h1,i1,i2,z)
endif

!

if (jxu.eq.1) then
 investigate interaction between upper plate x-directed conductor current and dielectric currents
 jj = int((j-mcl-1)/ncl) + 1
 jp = j - (2*jj-1)*ncl
 if ((iw+1).gt.nw) then
 ai = i - (2*(iw+1-nw)-1)*nld
 else
 ai = i + (2*(nw-(iw+l))+l)*nld
 endif
endif

if (sym.eq.0) then
 calculate interaction between upper plate x-directed current is x,y,z directed call zdcxx,y,z resp.
 w1 = lcx*epi
 h1 = hu(jp+1)*2.0*pi
 d = (i1*l1-1x/2.0+zd0-(j-mcl-(jj-1)*ncl)*lcx+1cx/2.0)*2.0*pi
 hh = ((ih+1)*ly-ly/2.0)*2.0*pi
 l = ((iw+l)*lz-lz/2.0)-(jj*lcx+wdth+wf-hu(jp+l+1))*2.0*pi
 if (abs(1).gt.(9.0*epi)) then
 if (it.eq.0) z12 = -imp(i+elnumc,dum2(j))*klx
 if (it.eq.1) z12 = -imp(i+elnumc,dum2(j))*kly
 if (it.eq.2) z12 = -imp(i+elnumc,dum2(j))*klz
 else
 i1 = 0.0
 i2 = 1.0
 if (it.eq.0) call zdcxx(klx,kly,klz,d,hl,l,w1,h1,i1,i2,z)
 if (it.eq.1) call zdcxy(klx,kly,klz,d,hl,l,w1,h1,i1,i2,z)
 if (it.eq.2) call zdcxz(klx,kly,klz,d,hl,l,w1,h1,i1,i2,z)
 z12 = z12+z
 i1 = 1.0
 i2 = 0.0
 d = d - lcx*2.0*pi
 if (it.eq.0) call zdcxx(klx,kly,klz,d,hl,l,w1,h1,i1,i2,z)
 if (it.eq.1) call zdcxy(klx,kly,klz,d,hl,l,w1,h1,i1,i2,z)
 if (it.eq.2) call zdcxz(klx,kly,klz,d,hl,l,w1,h1,i1,i2,z)
 z12 = z12+z
 endif
else
 if (it.eq.0) z12 = imp(dum2(jp),ai+elnumc)
 if (it.eq.1) z12 = imp(dum2(jp),ai+elnumc)
 if (it.eq.2) z12 = -imp(dum2(jp),ai+elnumc)
endif
endf
imp(dum2(j),i+elnumc)=z12
endf

if (j.eq.(4*mcl+1)) then
 calculate interaction between short-circuit or receiving
diode current and dielectric currents if dielectric
current is x,y,z directed call zdcxz,y,z resp.
wl=wsc*2.0*pi
hl=lsc*2.0*pi
de=(il*lx-lx/2.0+xd0-wsc)*2.0*pi
hh=((ih+1)*ly-ly/2.0)-(wdth+wf/2.0)+lsc)*2.0*pi
if (abs(d).gt.(15.0*pi)) then
 if (it.eq.0) zl2=-imp(i+elnumc,dum2(j))*klx
 if (it.eq.1) zl2=-imp(i+elnumc,dum2(j))*kly
 if (it.eq.2) zl2=-imp(i+elnumc,dum2(j))*klz
else
 i1=0.0
 i2=1.0
 if (it.eq.0) call zdcxz(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.1) call zdczy(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.2) call zdczz(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 zl2=zl2+z
 i1=1.0
 i2=0.0
 l=l-h1
 if (it.eq.0) call zdcxz(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.1) call zdczy(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.2) call zdczz(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 zl2=zl2+z
endif
inrp(dum2(j),i+elnumc)=zl2
end_if
if (jfl.eq.l) then
 calculate interaction between microstripline
current and dielectric currents if dielectric
current is x,y,z directed call zdcxz,y,z resp.
w1=wp*pi
h1=hf*2.0*pi
jj=j-4*mcl-1
hfj=(jj-1)*hf
de=(il*lx-lx/2.0+xd0-xs0)*2.0*pi
hh=-(ih+1)*ly-ly/2.0)*2.0*pi
l=((iw+1)*lz-lz/2.0-(wdth+wf/2.0)+lsc)*2.0*pi
if (it.eq.0) zl2=-imp(i+elnumc,dum2(j))*klx
if (it.eq.1) zl2=-imp(i+elnumc,dum2(j))*kly
if (it.eq.2) zl2=-imp(i+elnumc,dum2(j))*klz
else
 i1=0.0
 i2=1.0
 if (it.eq.0) call zdcxz(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.1) call zdczy(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.2) call zdczz(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 zl2=zl2+z
endif
imp(dum2(j),i+elnumc)=zl2
endf

if (jyl.eq.1) then
 calculate interaction between lower plate x-directed
 conductor current and dielectric currents if dielectric
current is x,y,z directed call zdcxz,y,z resp.
125
jj=int((j-2*mcl-1)/ncl)+1
jp=j-2*mcl
wl=lcx*pi
hl=hu(jp)*2.0*pi
d=(1*l+lx-1z-2.0*xd0-(jj-1)*mcl)*lcx+1cx/2.0)*2.0*pi
hh=((ih+1)*ly-ly/2.0)*2.0*pi
l=(((iw+1)*lz-lz/2.0)-(jj-1)*lcz)*2.0*pi
if (abs(d).gt.(15.0*w1)) then
 if (it.eq.0) z12=-imp(i+elnumc,dum2(j))*klx
 if (it.eq.1) z12=-imp(i+elnumc,dum2(j))*kly
 if (it.eq.2) z12=-imp(i+elnumc,dum2(j))*klz
else
 i1=0.0
 i2=1.0
 if (it.eq.0) call zdczx(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.1) call zdczy(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.2) call zdczz(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
z12=z12+z
 i1=1.0
 i2=0.0
 l=l-h1
 h1=hu(jp+ncl)*2.0*pi
 if (it.eq.0) call zdczx(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.1) call zdczy(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.2) call zdczz(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
z12=z12+z
endif
endf
imp(dum2(j),i+elnumc)=z12
endif
if (jyu.eq.l) then
 investigate interaction between upper plate x-directed
 conductor current and dielectric currents
 jj=int((j-3*mcl-1)/ncl)+1
 jp=j-3*mcl
 aj=j-2*mcl
 if ((iw+1).gt.nw) then
 ai=i-(2*(iw+1-nw)-l)_nld
 else
 ai=i+(2*(nw-(iw+1))+l)*nld
 endif
 if (sym.eq.0) then
 no symmetry
 endif
 calculate interaction between upper plate x-directed
 conductor current and dielectric currents if dielectric
 current is x,y,z directed call zdcx,y,z resp.
 w1=lcx*pi
 hl=hu(jp+ncl)*2.0*pi
 d=(1*l+lx-1z-2.0*xd0-(jj-1)*mcl)*lcx+1cx/2.0)*2.0*pi
 hh=((ih+1)*ly-ly/2.0)*2.0*pi
 l=(((iw+1)*lz-lz/2.0)-(jj-1)*lcz)*2.0*pi
 if (abs(d).gt.(15.0*w1)) then
 if (it.eq.0) z12=-imp(i+elnumc,dum2(j))*klx
 if (it.eq.1) z12=-imp(i+elnumc,dum2(j))*kly
 if (it.eq.2) z12=-imp(i+elnumc,dum2(j))*klz
 else
 i1=0.0
 i2=1.0
 if (it.eq.0) call zdcx(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.1) call zdcy(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
 if (it.eq.2) call zdcz(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
z12=z12+z
 endif
endif
endif
$i2=0.0$
$l=1-h/2$
$h1=hu(jp-ncl)*2.0*pi$

if (it.eq.0) call zdczx(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
if (it.eq.1) call zdczy(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)
if (it.eq.2) call zdczz(klx,kly,klz,d,hh,l,w1,h1,i1,i2,z)

$z12=z12+z$
endif
else
if (it.eq.0) $z12=-imp(dum2(aJ),ai+elnumc)$
if (it.eq.1) $z12=-imp(dum2(aJ),ai+elnumc)$
if (it.eq.2) $z12=imp(dum2(aJ),ai+elnumc)$
endif
imp(dum2(j),i+elnumc)=z12
endif

continue
return
end
Subroutine fildd computes the dielectric-dielectric interactions of the impedance matrix (submatrix D)
called by: mom
calls: zxx, zxy, zyy, zyz, zzz, symxx, symxy, symxx, symyy, symyz, symzz

pi=atan(1.0)*4.0
klx=2.0*pi*lx
kly=2.0*pi*ly
klz=2.0*pi*lz
pi=(0.0,1.0)
np=elmunc
sym=1
do 10 j=1,3*m2
do 10 i=1,3*m2
initialize
ok=0
mult=1.0
check obvious symmetry
if (j.gt.i) then
imp(j+np,i+np)=imp(i+np,j+np)
else
determine locations of the currents i, j
jt=int((j-1)/m2)
jh=int((j-jt*m2-1)/m1)
jw=int((j-jt*m2-jh*m1-1)/nl)
jl=j-jt*m2-jh*m1-jw*nl
it=int((i-1)/m2)
ith=int((i-it*m2-1)/m1)
iw=int((i-it*m2-ith*m1-1)/nl)
il=i-it*m2-ith*m1-iw*nl
determine {r-r'}
d=(jl-il)*klx
hh=(ih-jh)*kly
l=(jw-1w)*klz
if ((jt.eq.0).and.(it.eq.0)) then
both currents in x-direction
if (sym.eq.1) then
check symmetry
call symxx(j,i,jt,jh,jw,jl,il,ih,iw,il,nl,nw,nh,js,is,ok,mult)
endif
if no symmetry calculate interaction
if (ok.eq.0) call zxx(klx,kly,klz,d,hh,1,zi2)
endif
if ((jt.eq.0).and.(it.eq.1)) then
this interaction is zero for one y segment
if (sym.eq.1) then
call symxy(j,i,jt,jh,jw,jl,il,ih,iw,il,nl,nw,nh,js,is,ok,mult)
endif
if (ok.eq.0) call xyx(klx,kly,klz,d,hh,1,zi2)
zi2=0.0
endif if ((jt.eq.0).and.(it.eq.2)) then
 currents in x and z direction if (sym.eq.1) then
 check symmetry call symxz(j,i,jt,jh,jw,jl,ih,iw,il,ni,nh,js,is,ok,mult)
 endif if (ok.eq.0) then
 if ((abs(d).lt.klx).or.(abs(l).lt.klz)) then
 z12=0.0 else
 endif
 endif
endif if no symmetry calculate interaction
 call zxz(klx,kly,klz,d,hh,l,z12)
endif
endif
if ((jt.eq.1).and.(it.eq.1)) then
 both currents in y-direction if (sym.eq.1) then
 check symmetry call symyy(j,i,jt,jh,jw,jl,ih,iw,il,ni,nh,js,is,ok,mult)
 endif if (ok.eq.0) call zyy(klx,kly,klz,d,hh,l,z12)
endif
else
 if ((jt.eq.1).and.(jt.eq.2)) then
 if (sym.eq.1) then
 call symyz(j,i,jh,jw,jl,ih,iw,il,ni,nh,js,is,ok,mult)
 endif if (ok.eq.0) call zyz(klx,kly,klz,d,hh,l,z12)
 endif
endif
if ((jt.eq.2).and.(it.eq.2)) then
 both currents in z-direction if (sym.eq.1) then
 check symmetry call symzz(j,i,jt,jh,jw,jl,ih,iw,il,ni,nh,js,is,ok,mult)
 endif if (ok.eq.0) call zzz(klx,kly,klz,d,hh,l,z12)
endif
else use symmetry data to get the interaction
 imp(j+np,i+np)=imp(j+np,i+np) / klyeklz
else
 imp(j+np,i+np)=z12
endif
if (j.eq.i) then
 add the self term from the field equality equation
 imp(j+np,i+np)=imp(j+np,i+np)+
 pi*120.0*pi/(epsr-1.0)
endif
endif
endif
continue
do 20 j=1,3*m2
do 20 i=1,3*m2
multiply with the definition constants
if ((i.ge.1).and.(i.le.m2)) then
 imp(j+np,i+np)=imp(j+np,i+np)/(kly*klz)
endif
endif if ((i.gt.m2).and.(i.le.(2*m2))) then

imp(j+np,i+np)=imp(j+np,i+np)/(klx*klz)
endif
if ((i.gt.(2*m2)).and.(i.le.(3*m2))) then
imp(j+np,i+np)=imp(j+np,i+np)/(klx*kly)
endif
20 continue
return
end
subroutine cgrad(imp,vlt,n,nu,cr)
 real x1,x2,x3,tol,bk,alpha,c
 complex imp(n,n),cr(n),vlt(n),
 + p(n),r(n),temp(n)
 integer i,j,n,nu

cCCC

 c Subroutine cgrad solves nu by nu MoM matrix equation c
 c called by: mom c
 c calls: atrcgp, adot, uap, uapr c

ccCCC

 C
 c initialize the error and solution vectors
 c=l.e-4
 do 10 j=1,nu
 r(j)=vlt(j)
 cr(j)=0.0
 10 continue
 c calculate initial error norm
 call adot(n,nu,r,r,xl)
 c tolerance=c* initial error norm
 tol=c*sqrt(xl)
 write(6,*) 'initial error=',sqrt(xl)
 c calculate transpose conjugate of A times r (=p)
 call atrcgp(n,nu,imp,r,p)
 c iterate
 do 30 i=1,2*n
 c calculate transpose conjugate of A times r (=temp)
 call atrcgp(n,nu,imp,r,temp)
 c calculate norm of temp = x2
 call adot(n,nu,temp,temp,x2)

 cCDIR@ NOVECTOR

 c calculate A times p
 do 101 j2=1,nu
 temp(j2)=0.0
 101 continue
 do 301 j2=1,nu
 temp(j2)=temp(j2)+imp(j2,j2)*p(j2)
 301 continue

 c calculate norm of temp = x3
 call adot(n,nu,temp,temp,x3)
 alpha=x2/x3
 call uap(n,nu,cr,alpha,p)
 alpha=-alpha

 c calculate new r (error) vector
 call uap(n,nu,r,cr,alpha,temp)
 c check error norm against tolerance
 call adot(n,nu,r,r,x1)
 if (sqrt(x1).lt.tol) then
 itno=i
 goto 60
 endif
 c calculate transpose conjugate of A times r (=temp)
 call atrcgp(n,nu,imp,r,temp)
 c calculate norm of temp = x3
 call adot(n,nu,temp,temp,x3)
 bk=x3/x2
 c calculate new p vector

 cCCC
call uapr(n,nu,temp,p,bk)
30 continue
write(6,*) 2*n,'iterations without result'
goto 62
60 write(6,*) 'no of iterations = ',itno
62 continue
write(6,*) 'error now = ',sqrt(xi)
return
end
subroutine atrc_(n,nu,im,x,y)
complex im(n,n),x(n),y(n)
integer n,i,j,nu
calculates the multiplication of transpose conjugate of A (nu by nu)
with x, puts result into y vector
CDIR NOVECTOR
do 11 i=1,nu
y(i)=0.0
CDIR VECROR
do 10 j=1,nu
y(i)=y(i)+conjs(im(j,i))*x(j)
10 continue
11 continue
return
end
subroutine uapr(n,nu,temp,p,bk)
real bk
complex temp(n),p(n)
integer n,i,nu
calculates p=temp+bk*p , bk is a constant
DO 10 i=1,nu
p(i)=temp(i)+bk*p(i)
10 continue
return
end
subroutine adot (n,nu,r,s,t)
real t
complex r(n),s(n)
calculates the dot multiplication of r and s
integer n,i,nu
t=0.0
DO 10 i=1,nu
t=t+conjs(r(i))*s(i)
10 continue
return
end
subroutine uap(n,nu,u,a,p)
real a
complex u(n),p(n)
integer n,i,nu
calculates u_new = u_old + a * p , a is a constant
DO 10 i=1,nu
u(i)=u(i)+a*p(i)
10 continue
return
end
subroutine partot(d,hh,w1,h11,w2,h12,h22,z12)
real d,hh,w1,h11,h21,w2,h12,h22,111,112,121,122
complex z,z12
C Subroutine partot calculates the mutual impedance C
C between two coplanar parallel surface dipoles i and j C
C Dipole i extends from monopole ii to i2 whereas C
C Dipole j extends from monopole j1 to j2 C
C called by: filcc C
C calls: par C
C C
C calculate the first monopole interaction ii-j1
call par(111,121,112,122,d,hh,w1,h11,w2,h12,z)
z12=z
111=1.0
121=0.0
hh=hh-h11
C calculate the second monopole interaction i2-j1
call par(111,121,112,122,d,hh,w1,h21,w2,h12,z)
z12=z12+z
112=1.0
122=0.0
hh=hh+h12
C calculate the third monopole interaction i2-j2
call par(111,121,112,122,d,hh,w1,h21,w2,h22,z)
z12=z12+z
112=1.0
122=0.0
hh=hh+h11
C calculate the fourth monopole interaction ii-j2
call par(111,121,112,122,d,hh,w1,h11,w2,h22,z)
z12=z12+z
return
end
Subroutine parftot calculates the mutual impedance between two non-planar parallel surface dipoles i and j. Dipole i extends from monopole i1 to i2 whereas Dipole j extends from monopole j1 to j2. Called by: fylcc calls: parf
calculate the first monopole interaction i1-j1
 call parf(i11,i21,i12,i22,d,hh,l,w1,h11,w2,h12,z)
 z12=z
 i11=1.0
 i21=0.0
 i12=1.0
 hh=hh-h11
calculate the second monopole interaction i2-j1
 call parf(i11,i21,i12,i22,d,hh,l,w1,h11,w2,h12,z)
 z12=z12+z
 i11=1.0
 i21=0.0
 i12=1.0
 hh=hh+h12
calculate the third monopole interaction i2-j2
 call parf(i11,i21,i12,i22,d,hh,l,w1,h21,w2,h22,z)
 z12=z12+z
 i11=0.0
 i21=1.0
 hh=hh+h11
calculate the fourth monopole interaction i1-j2
 call parf(i11,i21,i12,i22,d,hh,l,w1,h11,w2,h22,z)
 z12=z12+z
return
subroutine ortot(d,hh,w1,h11,h21,w12,w22,h2,zi1)
real d,hh,w1,h11,h21,w12,w22,h2,i11,i21,i12,i22
complex z,zi2

c Subroutine ortot calculates the mutual impedance c
between two coplanar perpendicular surface dipoles i and j c
Dipole i extends from monopole iz1 to iz2 whereas c
Dipole j extends from monopole jx1 to jx2 c
called by: filcc c
calls: orthog c

c calculate the first monopole interaction iz1-jx1
call orthog(i11,i21,i12,i22,d,hh,w1,h11,w12,h2,z)
zi12=z
i11=1.0
i12=0.0
hh=hh-h11

c calculate the second monopole interaction iz2-jx1
call orthog(i11,i21,i12,i22,d,hh,w1,h21,w12,h2,z)
zi12=zi12+z
i11=1.0
i12=0.0
hh=hh+11

calculate the third monopole interaction iz2-jx2
call orthog(i11,i21,i12,i22,d,hh,w1,h21,w22,h2,z)
zi12=zi12+z
i11=0.0
i12=1.0
hh=hh+h11

c calculate the fourth monopole interaction iz1-jx2
call orthog(i11,i21,i12,i22,d,hh,w1,h11,w22,h2,z)
zi12=zi12+z
return
end
subroutine orftot(d,hh,l,hl1,hl2,h2,hl2,zl2)
real d,hh,hl1,hl2,h2,hl2,hl3,hl4,hl5
complex z,zl2

c Subroutine orftot calculates the mutual impedance c
between two non-planar perpendicular surface dipoles i and j c
Dipole i extends from monopole iz1 to iz2 whereas c
Dipole j extends from monopole jz1 to jz2 c
c called by: filcc c
c
i1=0.0
i2=1.0
i3=0.0

! calculate the first monopole interaction iz1-jz1 !
call orf(i11,i12,i122,d,hh,hl,hl1,hl2,h2,z)
z12=z
i11=1.0
i12=0.0
hh=hh-h11

! calculate the second monopole interaction iz2-jz1 !
call orf(i11,i21,i222,d,hh,hl,hl1,hl22,h2,z)
z12=z12+z
i11=1.0
i12=0.0
d=d+w22

! calculate the third monopole interaction iz2-jz2 !
call orf(i11,i21,i222,d,hh,hl,hl1,hl22,h2,z)
z12=z12+z
i11=0.0
i12=1.0
hh=hh-h11

! calculate the fourth monopole interaction iz1-jz2 !
call orf(i11,i21,i222,d,hh,hl,hl1,hl22,h2,z)
z12=z12+z
return
end
subroutine par(i11, i12, i21, i22, d, hh, w1, h1, w2, h2, z12)
 real pi, i11, i12, i21, i22, d, hh, w1, h1, k, kw, kh, ab(3),
 gamma, x1, x2, y1, y2, s1, s2, a, h1, w2, h2, kw2,
 z1(3), z2(3), b
 complex z12, z, pl, zd
 integer i, flag, j, ng

 Subroutine par calculates the mutual impedance between two coplanar parallel surface monopoles i and j
called by: partot
calls: gqld, fun1, ff1, ff2, fun2, ff3, ff4, ff, zz,
gaus2, gaus4, gaus6, gaus24
calculate the constants and initialize

 pi = (0.0, 1.0) * 4.0
 pi = atan(1.0) * 4.0
 k = 2.0*pi*d
 kw1 = 2.0*pi*w1
 kw2 = 2.0*pi*w2
 kh1 = 2.0*pi*h1
 kh2 = 2.0*pi*h2
 khh = 2.0*pi*h

 a(1) = i11 + i21 * cos(kh1)
 a(2) = i11 * cos(kh1) - i21
 b(1) = khh - kh1
 b(2) = khh
 ab(1) = kw1 + kw2 - k
 ab(2) = 2.0*kw
 if (w1.lt.w2) then
 ab(2) = 2.0*kw1
 endif
 ab(3) = kw1 + kw2 + k
 x1 = 0.0
 x2 = kh2
 y1 = abs(kw1 - kw2)
 y2 = kw1 + kw2
 s1 = -y2
 s2 = y2
 z1(1) = -y2
 z1(2) = -y1
 z1(3) = y1
 z2(1) = y1
 z2(2) = y1
 z2(3) = y2
 gamma = 7.50 / (kw1 * kw2 * sin(kh1) * sin(kh2))
 z12 = 0.0
 ng = 24
 if (abs(d).gt.(2.0*(w1+w2)/2.0)) ng = 6
 if (abs(d).gt.(4.0*(w1+w2)/2.0)) ng = 4
 if (abs(d).gt.(6.0*(w1+w2)/2.0)) ng = 2

calculate the mutual impedance

do 10 i = 1, 2
 flag = 1
 call gqld(khh, kh1, kh2, k, z1, x2, ab, z1, z2,
 kw1, kw2, i12, i22, b(1), flag, ng)
 z12 = z12 + z*a(1)
 flag = 2
 zd = 0.0
 do 17 j = 1, 3

10 continue
17 continue

137
if (zi(j).eq.z2(j)) goto 17
 call gqid(khh,kh1,kh2,kd,z,zi(j),z2(j),ab,z1,z2,
 + kw1,kw2,i12,i22,b(1),flag,ng)
 z12=z12+z*a(i)
17 continue
10 continue
 z12=z12*gamma*(-pi)
 return
endc
c gqld - calculates integral in one dimension
subroutine gqld(khh,khl,kh2,kd,z,xS,x2,ab,zS,z2,
 + kwS,kw2,i12,i22,b,flag,ngaus)
 real kd,xS,x2,kwS,kw2,xm,xr,pS,p2,x(24),w(24),dx,i52,
 + khh,i22,khS,kh2,ab(3),z1(3),z2(3),b,dist,pi
 complex z,rl,r2
 integer j,flag,ngaus
C if (ngaus.eq.24) call gaus24(x,u)
 if (ngaus.eq.6) call gaus6(x,u)
 if (ngaus.eq.4) call gaus4(x,u)
 if (ngaus.eq.2) call gaus2(x,u)
 x_=0.50*(xS+x2)
 xr=0.50*(x2-xl)
 z=0.0
 do 10 j=1,ngaus
 dx=xr*dx
 pl=xm+dx
 p2=xm-dx
 if (flag.eq.1) then
 call fun1(khh,kh1,kh2,kd,xl,x2,ab,zl,z2,kwS,kw2,i52,i22,b,pS,rl)
 call fun1(khh,khl,kh2,kd,xl,x2,ab,zl,z2,kwS,kw2,i52,i22,b,p2,r2)
 else
 call fun2(khh,khl,kh2,kd,xl,x2,ab,zl,z2,kwl,kw2,i12,i22,b,pS,rl)
 call fun2(khh,khS,kh2,kd,xS,x2,ab,zl,z2,kel,kw2,i52,i22,b,p2,r2)
 endif
 z=z+w(j)*(rl+r2)
10 continue
 z=xr*z
 return
and
C fun1 calculates the integrand of first integral
subroutine fun1(khh,kh1,kh2,kd,xl,x2,ab,zl,z2,kw1,kw2,
 + i12,i22,b,z12)
 real kd,b,kw1,kw2,i12,i22,x,z1,z2,ab(3),z1(3),z2(3),
 kh1,kh2,khh
 complex z,p1,z12
 integer j
C z12=0.0
 pi=(0.0,1.0)
 call ffl(kd,b,z1(1),z2(1),x,z,kh2,i12,i22)
 z12=z12*z
 call ffl(kd,b,z1(3),z2(3),x,z,kh2,i12,i22)
 z12=z12-z
 do 10 j=1,3
 call ffl(kd,b,z1(j),z2(j),x,z,kh2,i12,i22)
 z12=z12+ab(j)*z
10 continue
 z12=z12*pi
 return
end
C subroutine ffl(kd,b,y1,y2,x,z,kh2,i12,i22)

real kd,b,y1,y2,x,kh2,i12,i22,c1,c2,c3
complex z,p1

p1=(0.0,-1.0)
c1=sqrt((kd+y2)**2+(b+x)**2)
c2=sqrt((kd+y1)**2+(b+x)**2)
call ff(x,kh2,i12,i22,c3)
z=(cexp(p1*c1)-cexp(p1*c2))*c3
return
end

subroutine ff2(kd,b,y1,y2,x,z,kh2,i12,i22)
real kd,b,y1,y2,x,kh2,i12,i22,c1,c2,c3
complex z,p1,c4,c5

pl=(0.0,-1.0)
c1=sqrt((kd+y2)**2+(b+x)**2)
c2=sqrt((kd+y1)**2+(b+x)**2)
call ff(x,kh2,i12,i22,c3)
if (c1.eq.(0.0)) then
c4=1.0
else
 c4=cexp(p1*c1)*(kd+y2)/c1
endif
if (c2.eq.(0.0)) then
 c5=1.0
else
 c5=cexp(p1*c2)*(kd+y1)/c2
endif
z=(c4-c5)*p1*c3
return
end

fun2 calculates the integrand of 2nd integral

subroutine fun2(khh,kh1,kh2,kd,xl,x2,ab,zl,z2,kel,ke2,i12,i22,b,x,z12)
real kd,b,kh1,kh2,xl,x2,ab(3),zl(3),z2(3),
+ kh1,kh2,khh
complex z,p1,z12

z12=0.0
p1=(0.0,1.0)
call ff3(kd,b,kh2,x,zl,i12,i22)
z12=z12+z
z12=zf4(kd,b,kh2,x,zl,i12,i22)
z12=z12-z
if (x.lt.zl(2)) then
 z12=zl2*ab(1)
endif
if ((x.ge.zl(2)).and.(x.lt.z2(2))) then
 z12=zl2*ab(2)
endif
if (x.ge.z2(2)) then
 z12=zl2*ab(3)
endif
z12=z12+p1
return
end

subroutine ff3(kd,b,kh2,x,z,i12,i22)
real kd,b,kh2,x,i12,i22,c1,c2,c3,c4
complex z,p1,c5,c6

p1=(0.0,-1.0)
c1=sqrt((kd+x)**2+(b+kh2)**2)
c2=sqrt((kd+x)**2+b**2)
call ff(kh2,kh2,i12,i22,c3)
call ff((0.0),kh2,i12,i22,c4)
if (c1.eq.(0.0)) then
 c5=c3
else
 c6=cexp(p1*c1)*(b+kh2)*c3/c1
endif
if (c2.eq.(0.0)) then
 c6=c4
else
 c6=cexp(p1*c2)*b*c4/c2
endif
z=(c6-c8)*p1
return
end

subroutine ff4(kd,b,kh2_x,z,i12,i22)
real kd,b,kh2,x,i12,i22,c1,c2,c3,c4
complex z,p1
pl=(0.0,-1.0)
c1=sqrt((kd+x)**2+(b+kh2)**2)
c2=sqrt((kd+x)**2+b**2)
call zz(kh2,kh2,i12,i22,c3)
call zz((0.0),kh2,i12,i22,c4)
z=cexp(p1*c1)*c3-cexp(p1*c2)*c4
return
end

subroutine ff(x,kw,i12,i22,y)
real x,kw,i12,i22,y
y=i12*sin(kw-x)+i22*sin(x)
return
end

subroutine zz(x,kw,i12,i22,y)
real x,kw,i12,i22,y
y=-i12*cos(kw-x)+i22*cos(x)
return
end
Subroutine parr calculates the mutual impedance between two non-planar parallel surface monopoles i and j called by: parftot

calculate the constants and initialize

pi=(0.0,1.0)
pi=atan(1.0)*4.0
kd=2.0*pi*d
kw=2.0*pi*w
kw2=2.0*pi*w2
kh=2.0*pi*h
kh2=2.0*pi*h2
kh=2.0*pi*h
kt=2.0*pi*t
a(1)=(-i11+i12*cos(kh1))
a(2)=i11*cos(kh1)-i12
b(1)=kh-h1
b(2)=kh
ab(1)=kw+kw2-kd
ab(2)=2.0*kw2
if (s1.lt.w2) then
 ab(2)=2.0*kw2
endif
ab(3)=kw+kw2+kd
x1=0.0
z2=kh2
y1=abs(kw-kw2)
y2=kw+kw2
s1=-y2
s2=y2
zi(1)=-y2
z1(1)=y1
z1(2)=y1
z1(2)=y1
z1(3)=y1
z1(3)=y2
gamma=7.50/(kw+kw2*sin(kh1)*sin(kh2))
z12=0.0
flag2=0
dist=sqrt(d**2+hh**2)
if (dist.ge.(100.0*abs(t))) flag2=1

calculate the mutual impedance

do 10 i=1,2
 if (flag2.eq.1) then
 flag=1
 call gqldf(kt,khh,kh1,kh2,kd,z1,x1,x2,ab,z1,z2,
 + kw1,kw2,i12,i22,b(i),flag)
 z12=z12+z*a(i)
 flag=2
z=0.0
end if
do 17 j=1,3
if (zl(j).eq.z2(j)) goto 17
if (flag2.eq.1) then
 call gq1df(kt,khh,khl,kh2,kd,zl(1),z2(j),ab,zl,z2,
+ kw1,kw2,i12,i22,b(i),flag)
else
 call gq2df(kt,khh,khl,kh2,kd,zl(1),z2(j),x1,x2,ab,z1,z2,
+ kw1,kw2,i12,i22,b(i),flag)
endif
17 continue
10 continue
z12=z12+z*a(i)

end

g2qdf - calculates integral in two dimensions

subroutine g2qdf(kt,khh,khl,kh2,kd,z,x1,x2,y1,y2,ab,zl,z2,
+ kw1,kw2,i12,i22,b,flag)
 real kd,x1,x2,kw1,kw2,xm,xr,p1,p2,x(24),w(24),dx,i12,
+ khh,i12,khl,kh2,ab(3),z1(3),z2(3),b,dist,p1,y1,y2,
+ yr,dy,q1,q2,q3,q4
 complex z,x1,x2,yl,y2
 integer j,flag,ngaus
 pi=4.0*atan(1.0)
 ngaus=6
 call gaus6(x,w)
 xm=0.50*(x1+x2)
 xr=0.50*(x2-x1)
 ym=0.50*(y1+y2)
 yr=0.50*(y2-y1)
 z=0.0
 do 10 j=1,ngaus
 dx=xr*dx(j)
 pl=xm+dx
 p2=xm-dx
 do 11 t=1,ngaus
 dy=yr*dy(i)
 q1=ym+dy
 q2=ym-dy
 call funf3(kt,khh,khl,kh2,kd,x1,x2,ab,z1,z2,kw1,kw2,
+ i12,i22,b,q1,p1,x1)
 call funf3(kt,khh,khl,kh2,kd,x1,x2,ab,z1,z2,kw1,kw2,
+ i12,i22,b,q1,p2,x2)
 call funf3(kt,khh,khl,kh2,kd,x1,x2,ab,z1,z2,kw1,kw2,
+ i12,i22,b,q2,p1,x3)
 call funf3(kt,khh,khl,kh2,kd,x1,x2,ab,z1,z2,kw1,kw2,
+ i12,i22,b,q2,p2,x4)
 z=z+w(j)*w(i)*(x1+p1+r1+r4)
11 continue
10 continue
z=xr*yr*z
end subroutine

end

g1qdf - calculates integral in one dimension

subroutine g1qdf(kt,khh,khl,kh2,kd,z,x1,x2,ab,z1,z2,
+ kw1,kw2,i12,i22,b,flag)
 real kd,x1,x2,kw1,kw2,xm,xr,p1,p2,x(24),w(24),dx,i12,
+ khh,i12,khl,kh2,ab(3),z1(3),z2(3),b,dist,p1,kt
complex z,r1,r2
integer j,flag,ngaus

pi=4.0*atan(1.0)
ngaus=6

xm=0.80*(x1+x2)
xr=0.50*(x2-x1)
z=0.0

do 10 j=1,ngaus
dx=xr*x(j)
p1=xm+dx
p2=xm-dx

if (flag.eq.1) then
 call funlf(kt,khh,khl,kh2,kd,xl,x2,ab,zl,z2,kwl,kw2,
 + i12,i22,b,p1,x1)
 call funlf(kt,khh,khl,kh2,kd,xl,x2,ab,zl,z2,kwl,kw2,
 + i12,i22,b,p2,x2)
else
 call fun2f(kt,khh,khl,kh2,kd,xl,x2,ab,zl,z2,kwl,kw2,
 + i12,i22,b,p1,x1)
 call fun2f(kt,khh,khl,kh2,kd,xl,x2,ab,zl,z2,kwl,kw2,
 + i12,i22,b,p2,x2)
endif

z=z+w(j)*(r1+r2)
10 continue

z=xr*z
return

end

funf1 calculates the integrand of first integral

subroutine funf1(kt,khh,khl,kh2,kd,xl,x2,ab,zl,z2,kwl,kw2,
 + i12,i22,b,x,z12)
real kd,b,kw1,kw2,i12,i22,x,xl,x2,ab(3),zl(3),z2(3),
 + kh1,kh2,khh,kt
complex z,p1,z12
integer j

z12=0.0
pl=(0.0,1.0)
call fff(kh2,i12,t22,c2)
c1=sqrt((kd+x)**2+(b+y)**2+kt**2)
z12=cexp(-pl*c1)*c2/c1

10 continue

z12=z12*p1
return
end

funf3 calculates the integrand

subroutine funf3(kt,khh,khl,kh2,kd,xl,x2,ab,zl,z2,kwl,kw2,
 + i12,i22,b,x,z12)
real kd,b,kw1,kw2,i12,i22,x,xl,x2,ab(3),zl(3),z2(3),
 + kh1,kh2,khh,kt,y,c1,c2
complex z,p1,z12
integer j

z12=0.0
pl=(0.0,1.0)
call fff(y,kh2,i12,c2)
c1=sqrt((kd+x)**2+(b+y)**2+kt**2)
z12=cexp(-pl*c1)*c2/c1
if (x.lt.z1(2)) then
z12=z12*(x+kwl+kwl2)
endif
if ((x.ge.z1(2)).and.(x.lt.z2(2))) then
z12=z12*ab(2)
endif
if (x.ge.z2(2)) then
z12=z12*(-x+kwl+kwl2)
endif
return
end

C subroutine fflf(kt,kd,b,yl,y2,x,z,kh2,i12,i22)
real kd,b,yl,y2,x,kh2,i12,i22,cl,c2,c3,kt
complex z,p1
C
p1=(0.0,-1.0)
c1=sqrt((kd+y2)**2+(b+x)**2+kt**2)
c2=sqrt((kd+y1)**2+(b+x)**2+kt**2)
call fff(x,kh2,i12,i22,c3)
z=(cexp(pl+1)*c1)-cexp(pl+1)*c2)*c3
return
end

C subroutine ff2f(kt,kd,b,yl,y2,x,z,kh2,i12,i22)
real kd,b,yl,y2,x,kh2,i12,i22,cl,c2,c3,kt
complex z,pl,c4,c6
C
p1=(0.0,-1.0)
c1=sqrt((kd+y2)**2+(b+x)**2+kt**2)
c2=sqrt((kd+y1)**2+(b+x)**2+kt**2)
call fff(x,kh2,i12,i22,c3)
if (c1.eq.(0.0)) then
c4=1.0
else
c4=cexp(pl+1)*(kd+y2)/c1
endif
if (c2.eq.(0.0)) then
c5=1.0
else
c5=cexp(pl+1)*(kd+y1)/c2
endif
z=(c4-c6)*pl+c3
return
end

fun2f calculates the integrand of 2nd integral

C subroutine fun2f(kt,khh,khl,kh2,kd,xl,x2,ab,zl,z2,kwl,kw2, +
+ i12,i22,b,x,z12)
real kd,b,kw1,kw2,i12,i22,xl,x2,ab(3),zl(3),z2(3),
+ khl,kh2,khh,kt
complex z,pl,zl2
C
zl2=0.0
pl=(0.0,1.0)
call ff3f(kt,kd,b,kh2,x,z,i12,i22)
zl2=zl2*pl
call ff4f(kt,kd,b,kh2,x,z,i12,i22)
zl2=zl2-x
if (x.lt.z1(2)) then
zl2=zl2*ab(1)
endif
if ((x.ge.z1(2)).and.(x.lt.z2(2))) then
zl2=zl2*ab(2)
endif
if (x.ge.z2(2)) then
zl2=zl2*ab(3)
endif
endif
z12=z12*p1
return
end

subroutine ff3f(kt, kd, b, kh2, x, z, i12, i22)
real kd, b, kh2, x, i12, i22, c1, c2, c3, c4, kt
complex z, p1, c5, c6
p1=(0.0, -1.0)
c1=sqrt((kd+x)**2+(b+kh2)**2+kt**2)
c2=sqrt((kd+x)**2+b**2+kt**2)
call fff(kh2, kh2, i12, i22, c3)
call fff((0.0), kh2, i12, i22, c4)
if (c1.eq.(0.0)) then
 c5=c3
else
 c5=cexp(p1*c1)*(b+kh2)*c3/c1
endif
if (c2.eq.(0.0)) then
 c6=c4
else
 c6=cexp(p1*c2)*b*c4/c2
endif
z=(c5-c6)*p1
return
end

subroutine ff4f(kt, kd, b, kh2, x, z, i12, i22)
real kd, b, kh2, x, i12, i22, c1, c2, c3, c4, kt
complex z, p1
p1=(0.0, -1.0)
c1=sqrt((kd+x)**2+(b+kh2)**2+kt**2)
c2=sqrt((kd+x)**2+b**2+kt**2)
call zzf(kh2, kh2, i12, i22, c3)
call zzf((0.0), kh2, i12, i22, c4)
z=cexp(p1*c1)*c3-cexp(p1*c2)*c4
return
end

subroutine fff(x, kw, i12, i22, y)
real x, kw, i12, i22, y
y=i12*sin(kw-x)+i22*sin(x)
return
end

subroutine zzf(x, kw, i12, i22, y)
real x, kw, i12, i22, y
y=-i12*cos(kw-x)+i22*cos(x)
return
end
subroutine orthog(i11,i12,i21,i22,d,hh,w1,h1,w2,h2,z12)
 real p1,i11,i12,i21,i22,d,hh,h1,w1,td,ki2,khi,khh,
 a(2),h2,w2,kw2,kh2,gamma,x1(3),x2(3),spt,cj
complex z12,z,cj
integer i,j,typ,flag,ng

Subroutine orthog calculates the mutual impedance between two coplanar perpendicular surface monopoles i and j called by: ortot
calls: gqldo, funo, conso, gaus2, gaus4, gaus6, gaus24

calculate the constants and initialize

pi=atan(1.0)*4.0
kd=2.0*pi*d
kw1=2.0*pi*w1
kw2=2.0*pi*w2
kh1=2.0*pi*h1
kh2=2.0*pi*h2
khh=2.0*pi*h2
a(1)=-i11+i21*cos(kh1)
a(2)=-i21+i11*cos(kh1)
gamma=-30.0/(2.0*kwl*kh2*sin(2.0*kw2)*sin(kh1))

x1(1)=-kw1_kw2)
x1(1)=abs(kw1_kw2)
x1(2)=x2(1)
x1(2)=x1(2)
x1(3)=x1(2)
x1(3)=x1(2)

spt=-kd
z12=0.0
ng=24
if (abs(d).gt.(2.0*(w1+w2)/2.0)) ng=6
if (abs(d).gt.(4.0*(w1+w2)/2.0)) ng=4
if (abs(d).gt.(6.0*(w1+w2)/2.0)) ng=2

calculate the mutual impedance

do 10 i=1,2
 flag=i
 do 20 j=1,3
 if (x1(j).eq.x2(j)) goto 20
 call gqldo(kd,khh,kh1,kh2,z,typ,flag,x1(j),x2(j),
 kw1,kw2;i12,i22;ng)
z12=z12+z*a(i)
 call conso(kd,khh,kh1,kh2,z,typ,flag,x1(j),x2(j),
 kw1,kw2;i12,i22;ng)
z12=z12+z*a(i)
10 continue
z12=z12*gamma
return
end

gqldo - calculates integral in one dimension

subroutine gqldo(kd,khh,kh1,kh2,z,typ,flag,x1,x2,kw1,
 kw2,i12,i22,ng)
real kd,x1,x2,kw1,kw2,zm,xr,pi,p2,x(24),w(24),dz,
 i12,i22,kh1,kh2,p1,spt
complex z,x1,x2,cj
integer typ,j,flag,ngaus,m

146
if (ngaus.eq.24) call gaus24(x,w)
if (ngaus.eq.6) call gaus6(x,w)
if (ngaus.eq.4) call gaus4(x,w)
if (ngaus.eq.2) call gaus2(x,w)

xm=0.50*(x1+x2)
xr=0.50*(x2-x1)
z=0.0

do 10 j=1,ngaus
 dx=xr*x(j)
p1=xm+dx
p2=xm-dx
 call funo(kd,khh,khl,kh2,typ,flag,kw1,kw2,i12,i22,p1,r1,
 + x1,x2,spt,cj,m)
 call funo(kd,khh,khl,kh2,typ,flag,kw1,kw2,i12,i22,p2,r2,
 + x1,x2,spt,cj,m)
 z=z+(j)*(r1+r2)
10 continue

zfxr*z

return
end

c
funs calculates the integrand of one dim. integral

subroutine funo(kd,khh,khl,kh2,typ,flag,kw1,kw2,i12,i22,x1,x2,
 + cJ,m)
real kd,khh,khl,kh2,typ,flag,kw1,kw2,i12,i22,x1,x2,cJ, m
complex z,p1,p2,c6,c7,c1,c2,c3,c4,c5,cS,cP,c0,c03,c04,
x,pl,c6,c7,c8,c9,c10,c11,c12
integer typ,flag,m

p1=0.0,(flag)-2.0
p2=khh+c1*kh1
p3=sqrt((kd+x)**2+(c2+kh2)**2)

if (m.eq.1) then
 c6=il2*(cos(kw2-kwl-x)-cos(2.0*kw2))
 c6=c6+i22*(1.0-cos(x+kwl+kw2))
 g0=0.033
 g0=g0+i22*(1.0-cos(kw2+kwl-kd))
endif

if (m.eq.2) then
 if (kw1.gt.kw2) then
 c6=il2*(cos(kw2-kw1-x)-cos(2.0*kw2))
 c6=c6+i22*(1.0-cos(kw2+kw1+kw2))
 g0=0.033
 g0=g0+i22*(1.0-cos(kw2+kw2-kd))
 else
 c6=il2*(cos(kw2-kw1-x)-cos(kw2-kw1-x))
 c6=c6-i22*(cos(kw2+kw1+kw2)-cos(kw2-kw1+kw2))
 g0=0.033
 g0=g0-i22*(cos(kw2+kw1-kd)-cos(kw2-kw1-kd))
 endif
endif

if (m.eq.3) then
 c6=il2*(1.0-cos(x-kw1-kw2))
 c6=c6+i22*(cos(x+kw2-kw1)-cos(2.0*kw2))
147
g0=i12*(1.0-cos(-kwl-kw2-kd))
g0=g0+i22*(cos(kw2-kwl-kd)-cos(2.0+kw2))
endif

if ((kd+x).eq.(0.0)) then
 z=0.0
else
 z=c6=c6
 z=(z-c7*go)/(kd+x)
endif

cj=c7*go

c return
cend

conso calculates the extracted singularity of integral

subroutine conso(kd,khh,khl,kh2,z,typ,flag,x1,x2,
 kw1,kw2,i12,i22,sp1,t,j,cj)
 real kd,khh,khl,kh2,x1,x2,kw1,kw2,i12,i22,sp1
 complex z,cj
 integer typ,flag,j
if (sp1.eq.x1) then
 z=log(kd+x2)
else
 if (sp1.eq.x2) then
 z=-log(abs(kd+xl))
 else
 z=log(abs((kd+x2)/(kd+xl)))
 endif
endif
z=z*cj
return
cend
Subroutine orf

Calculates the mutual impedance between two non-planar perpendicular surface monopoles \(i \) and \(j \) called by: orftot

calls: gqldof, funof, conso, gaus6

calculate the constants and initialize

\[
\begin{align*}
\text{pi} &= \text{atan}(1.0) \times 4.0 \\
kd &= 2.0 \times \text{pi} \times d \\
kwl &= 2.0 \times \text{pi} \times w1 \\
kw2 &= 2.0 \times \text{pi} \times w2 \\
kh1 &= 2.0 \times \text{pi} \times h1 \\
kh2 &= 2.0 \times \text{pi} \times h2 \\
khh &= 2.0 \times \text{pi} \times hh \\
kt &= 2.0 \times \text{pi} \times t \\
a(1) &= -i11 + i12 \ast \cos(hh) \\
a(2) &= -i12 + i11 \ast \cos(hh) \\
\gamma &= -30.0 / (2.0 \ast kwl \ast kh2 \ast \sin(2.0 \ast kw2) \ast \sin(khl)) \\
x1(1) &= -(kwl + kw2) \\
x2(1) &= \text{abs}(kwl - kw2) \\
x1(2) &= x2(1) \\
x2(2) &= -x2(1) \\
x1(3) &= x2(2) \\
x2(3) &= -x1(1) \\
z12 &= 0.0
\end{align*}
\]

calculate the mutual impedance

\[
\begin{align*}
do \ 10 \ i=1,2 \\
\text{flag}=i \\
do \ 20 \ j=1,3 \\
\text{if } (x1(j) .eq. x2(j)) \text{ goto 20} \\
call \ gqldof(kt, kd, khh, kh1, kh2, z, typ, flag, x1(j), x2(j), + \text{kw1, kw2, i12, i12, j}) \\
z12 &= z12 + z \ast a(1) \\
20 \ \text{continue} \\
10 \ \text{continue} \\
z12 &= z12 \ast \gamma \\
\text{return}
\end{align*}
\]

gqldof - calculates integral in one dimension

Subroutine gqldof

\[
\begin{align*}
\text{pi} &= \text{atan}(1.0) \times 4.0 \\
\text{ngaus} &= 6 \\
call \text{gaus6}(x, w) \\
xm &= 0.50 \ast (x1 + x2) \\
xr &= 0.50 \ast (x2 - x1) \\
z &= 0.0 \\
do \ 10 \ j=1, \text{ngaus} \\
\text{dx} &= \text{dx} \ast x(j)
\end{align*}
\]
p1=xm+dx
p2=xm-dx

call funof(kd,khh,khl,kh2,typ,flag,kw1,kw2,i12,i22,p1,r1,+
x1,x2,m,kt)
call funof(kd,khh,khl,kh2,typ,flag,kw1,kw2,i12,i22,p2,r2,+
x1,x2,m,kt)
z=z+w(j)*(r1+r2)
10 continue
z=zf*z
return
end

C funof calculates the integrand of one dim. integral

C subroutine funof(kd,khh,khl,kh2,typ,flag,kw1,kw2,i12,i22,x,z,+
x1,x2,m,kt)
real kd,khh,khl,kh2,typ,flag,kw1,kw2,i12,i22,x,z,
+ x1,x2,m,kt
complex z,p1,c6
integer typ,flag,m
C calculate the related parameters
p1=(0.0,-1.0)
c1=flag-2.0

c2=khh*c1+khl

c3=sqrt((kd+x)**2+(c2+kh2)**2+kt**2)
c4=sqrt((kd+x)**2+c2**2+kt**2)
c5=(exp(p1*c3)-exp(p1*c4))
if (m.eq.1) then

c6=i12*(cos(kw2-kwl-x)-cos(2.0*kw2))
c6=c6+i22*(1.0-cos(x+kw2-kwl-x))
endif
if (m.eq.2) then
if (kw1.gt.kw2) then

c6=(1.0-cos(2.0*kw2))*i12+i22
else

c6=i12*(cos(kw2-kwl-x)-cos(kw2+kwl-x))
c6=c6+i22*(cos(kw2+kwl-x)-cos(kw2-kwl+x))
endif
endif
if (m.eq.3) then

c6=i12*(1.0-cos(x-kwl-kw2))
c6=c6+i22*(cos(x+kw2-kwl)-cos(2.0*kw2))
endif
z=c6*c6*(kd+x)/((kd+x)**2+kt**2)
creturn
end
subroutine zcdxx(kd,khh,kl,kw,kh,i1,i2,z12)
real i1,i2,kd,khh,kl,kw,kh,x1,
+ x2,a(2),gamma
complex z12,z1,p1
integer i,j,flag,ngaus

Subroutine zcdxx calculates the interaction between x-directed conductor and dielectric currents, which is E_x of the cond. called by: filcd
calls: gqld20, fun20, gaus2, gaus6

CALCULATE THE CONSTANTS AND INITIALIZE
p1=(0.0,1.0)
gamma=-30.0/(kh*sln(2.0*kw))
a(1)=i2*cos(2.0*kw)-i1
a(2)=-i2+i1*cos(2.0*kw)
x1=0.0
x2=kh
z12=0.0
ngaus=8
if (kl.gt.3.*kh) ngaus=2

CALCULATE THE MUTUAL IMPEDANCE
do 10 i=1,2
flag=2*i-3
call gqld20(kw,kh,kd,khh,kl,x1,x2,ngaus,flag,z)
z12=z12+z*a(1)
10 continue
z12=z12*gamma*p1
return

GQ1D20 - CALCULATES INTEGRAL IN ONE DIMENSION
subroutine gq1d20(kw,kh,kd,khh,kl,x1,x2,ngaus,flag,z)
real kw,kh,kd,khh,kl,x1,x2,xm,xr,p1,p2,x(24),w(24),dx,kw
complex z,z1,z2
integer i,flag,ngaus

if (ngaus.eq.2) call gaus2(x,w)
if (ngaus.eq.8) call gaus6(x,w)
xm=0.50*(x1+x2)
xr=0.60*(x2-x1)
z=0.0
do 10 i=1,ngaus
dx=xr*x(i)
p1=xm+dx
p2=xm-dx
call fun20(kw,kd,khh,kl,flag,p1,z1)
call fun20(kw,kd,khh,kl,flag,p2,z2)
z=z+w(i)*(z1+z2)
10 continue
z=xz*z
return

FUN CALCULATES THE INTEGRAND OF ONE DIMENSIONAL INTEGRAL
subroutine fun20(kw,kd,khh,kl,flag,x,z)
real kw,kd,khh,kl,x,c1,c2,c3,c4
complex z,p1
integer flag

c1=kl-x
c2=(flag)*kw
p1=(0.0,1.0)
c3=kd+c2
c4=sqrt(c1**2+c3**2+kh**2)
z=-cexp(-p1+c4)/c4
return
end
subroutine zcdxy(kd,khh,kl,kw,kh,il,i2,zl2)
real il,i2,kd,khh,kl,kw,kh,xi,gmma,
+ x2,a(2)
complex zl2,z,p1
integer i,j,flag,ngaus
C
cc
c Subroutine zcdxy calculates the interaction between x-directed c
conductor and y-directed dielectric currents, c
which is Ey of the conductor current. c
called by: filcd, filvltnc
calls: gqld21, fun21, gaus2, gaus6 c
cc
C CALCULATE THE CONSTANTS AND INITIALIZE
pl=(0.0,1.0)
gammaa=-30.0/(kh*sin(2.0*kw))
a(1)=i2*cos(2.0*kw)-i1
a(2)=-i2+i1*cos(2.0*kw)
x1=0.0
x2=kh
zl2=0.0
ngaus=6
if (kl.gt.(3.*kh)) ngaus=2
C
CALCULATE THE MUTUAL IMPEDANCE
do 10 i=1,2
flag=2*i-3
call gqld21(kw,kh,kd,khh,kl,xl,x2,ngaus,flag,z)
z12=z12+z*a(1)
10 continue
z12=z12*gaus*pl
return
end
C
GOID21 - CALCULATES INTEGRAL IN ONE DIMENSION
subroutine gqld21(kw,kh,kd,khh,kl,xl,x2,ngaus,flag,z)
real kw,kh,kd,khh,kl,xl,x2,xm,xx,pl,pi,p2,x(24),w(24),dx,kw
complex z,pl
integer flag
C
if (ngaus.eq.2) call gaus2(x,w)
if (ngaus.eq.6) call gaus6(x,w)
xm=0.60*(xl+x2)
xx=0.60*(x2-xl)
z=0.0
do 10 i=1,ngaus
dx=xx*x(i)
pi=xm+dx
p2=xm-dx
call fun21(kw,kd,khh,kl,flag,pi,z1)
call fun21(kw,kd,khh,kl,flag,p2,z2)
z=z+w(i)*(zl2+z2)
10 continue
z=zl2+z
data
return
end
C
FUN21 CALCULATES THE INTEGRAND OF ONE DIMENSIONAL INTEGRAL
subroutine fun21(kw,kd,khh,kl,flag,x,z)
real kw,kd,khh,kl,x,ci,c2,c3,c4,c5
complex z,pl
integer flag
C

\[\begin{align*}
\text{c1} &= k_l - x \\
\text{c2} &= (\text{flag}) \cdot kw \\
\text{p1} &= (0.0, 1.0) \\
\text{c3} &= kd + c2 \\
\text{c4} &= \sqrt{(c1^2 + c3^2 + khh^2)} \\
\text{c5} &= khh^2 + c1^2 \\
\text{z} &= khh \cdot \text{cexp}(-p1 \cdot c4) \cdot c3/(c4 \cdot c5) \\
\text{return} \\
\text{end}
\end{align*} \]
Subroutine zcdxz(kd,khh,kl,kw,kh,i1,i2,z12)
real i1,i2,kd,khh,kl,kw,kh,x1,gamma,
+ x2,a(2)
complex z12,z,p1
integer i,j,ngaus,flag

Subroutine zcdxz calculates the interaction between x-directed conductor and z-directed dielectric currents, which is Ez of the conductor current. Called by: filcd, filvlt
calls: gqld22, fun22, gauss2, gauss6

CALCULATE THE CONSTANTS AND INITIALIZE
pi=(0.0,1.0)
gamma=-30.0/(kh*sin(2.0*kw))
a(1)=i2*cos(2.0*kw)-i
a(2)=i2+i*cos(2.0*kw)
x1=0.0
x2=kh
z12=0.0
ngaus=6
if (kl.gt.3.*kh) ngaus=2

CALCULATE THE MUTUAL IMPEDANCE
do 10 i=1,2
 flag=2*i-3
 call gqld22(kw,kh,kd,khh,kl,x1,x2,ngaus,flag,z)
z12=z12+a(i)
10 continue
z12=z12*gamma*pi
return
end

GQ1D22 - CALCULATES INTEGRAL IN ONE DIMENSION
subroutine gqld22(kw,kh,kd,khh,kl,x1,x2,ngaus,flag,z)
real kd,khh,kh,kl,x1,x2,xm,xr,p1,p2,x(24),w(24),dx,kw
complex z,z1,z2
integer i,flag,ngaus
if (ngaus.eq.2) call gauss2(x,w)
if (ngaus.eq.6) call gauss6(x,w)
xm=0.60*(x1+x2)
xr=0.60*(x2-x1)
z=0.0
do 10 i=1,ngaus
 dx=xr*x(i)
p1=xm+dx
p2=xm-dx
 call fun22(kw,kd,khh,kl,flag,p1,z1)
 call fun22(kw,kd,khh,kl,flag,p2,z2)
z=z+w(i)*(z1+z2)
10 continue
z=xr*z
return
end

FUN22 CALCULATES THE INTEGRAND OF ONE DIMENSIONAL INTEGRAL
subroutine fun22(kw,kd,khh,kl,flag,x,z)
real kw,kd,khh,kl,x,c1,c2,c3,c4,c5
complex z,p1
integer flag

.ci=kl-x
c2=(flag)*kw
p1=(0.0,1.0)
c3=k2+c3
cc=sqrt(c1**2+c3**2+khh**2)
c6=khh**2+c1**2
z=c1*cexp(-p1*c4)*c3/(c4*c5)
return
dn
subroutine zcdzx(kd,khh,kl,kw,ki,il,i2,z12)
 real il,i2,kd,khh,kl,kw,ki,+
 x2,a(2),gamma
 complex z12,z,p1
 integer i,j,flag,ngaus

Subroutine zcdzx calculates the interaction between z-directed c
conductor and x-directed dielectric currents, c
which is Ex of the conductor current. c
called by: filcd c
calls: gqld23, fun23, gaus2, gaus6

 CALCULATE THE CONSTANTS AND INITIALIZE
 p1=(0.0,1.0)
 gamma=-30.0/(2.0*kw*sin(kh))
 a(1)=12*cos(kh)-i1
 a(2)=-12+i2+cos(kh)
 x1=kw
 x2=-x1
 z12=0.0
 ngaus=6
 if (kd.gt.(3.*kw)) ngaus=2

 CALCULATE THE MUTUAL IMPEDANCE
 do 10 i=1,2
 flag=i
 call gqld23(kw,kh,ki,khh,kl,xl,x2,ngaus,flag,z)
 z12=z12+a(i)
 10 continue
 z12=z12*gamma*p1
 return
end

GQ1D23 - CALCULATES INTEGRAL IN ONE DIMENSION
subroutine gqld23(kw,kh,ki,khh,kl,xl,x2,ngaus,flag,z)
 real kw,kh,ki,khh,kl,xl,x2,xm,xr,p1,x(24),w(24),dx,kw
 complex z,pl
 integer i,flag,ngaus
 if (ngaus.eq.6) call gaus6(x,w)
 if (ngaus.eq.2) call gaus2(x,w)
 xm=0.50*(xl+x2)
 xr=0.50*(x2-xl)
 z=0.0
 do 10 i=1,ngaus
 dx=xm*dx
 p1=xm*dx
 p2=xm-dx
 call fun23(kw,kh,ki,khh,kl,nflag,p1,z1)
 call fun23(kw,kh,ki,khh,kl,nflag,p2,z2)
 10 continue
 x=xm
 return
end

FUN23 CALCULATES THE INTEGRAND OF ONE DIMENSIONAL INTEGRAL
subroutine fun23(kw,kh,ki,khh,kl,nflag,x,z)
 real kw,kh,ki,khh,kl,x,c1,c2,c3,c4,c5
 complex z,p1
 integer flag
 c1=kx-x
c2=(flag-2)*kh
p1=(0.0,1.0)
c3=k1+c2
c4=sqrt(c1**2+c3**2+khh**2)
c5=c1**2+khh**2
z=c1*cexp(-p1*c4)*c3/(c4*c5)
return
d
Subroutine zcdzy calculates the interaction between \(z \)-directed conductor and \(y \)-directed dielectric currents, which is \(E_y \) of the conductor current.

Called by: filcd, filvltm
Calls: gqld25, fun25, gaus2, gaus6

CALCULATE THE CONSTANTS AND INITIALIZE

\[
\begin{align*}
\pi &= (0.0, 1.0) \\
\gamma &= -30.0 / (2.0 \cdot kw \cdot \sin(kh)) \\
a(1) &= i2 \cdot \cos(kh) - i1 \\
a(2) &= i2 + i1 \cdot \cos(kh) \\
x1 &= kw \\
x2 &= x1 \\
z1 &= 0.0 \\
\text{if} (\text{kd} > (3.0 \cdot kw)) \text{ ngaus} &= 2 \\
\end{align*}
\]

CALCULATE THE MUTUAL IMPEDANCE

\[
\begin{align*}
\text{do 10 i=1,2} \\
\text{flag} &= 1 \\
\text{call gqld25}(kw, kh, kd, khh, kl, x1, x2, ngaus, flag, z) \\
z12 &= z12 + a(i) \\
10 \text{ continue} \\
z12 &= z12 \cdot \gamma \cdot pl \\
\text{return} \\
\end{align*}
\]

GQ1D25 - CALCULATES INTEGRAL IN ONE DIMENSION

Subroutine gqld25(kw, kh, kd, khh, kl, x1, x2, ngaus, flag, z)

FUN25 CALCULATES THE INTEGRAND OF ONE DIMENSIONAL INTEGRAL

Subroutine fun25(kh, kd, khh, kl, flag, x, z)

Real kh, kd, khh, kl, x, c1, c2, c3, c4
Complex z, pl
Integer flag

c1 = kd - x
c2=(flag-2)*kh
p1=(0.0,1.0)
c3=k1+c2
c4=sqrt(c1**2+c3**2+khh**2)
z=khh*cexp(-p1*c4)*c3/(c4*(c1**2+khh**2))
return
end
subroutine zcdzz(kd,khh,kl,kw,kh,i1,i2,zl2)
 real i1,i2,kd,khh,kl,kw,kh,x1,
 x2,a(2),gamma
 complex z12,z,p1
 integer i,j,flag,ngaus

Subroutine zcdzz calculates the interaction between z-directed current and dielectric currents, which is Ez of the cond. called by: filecd, filvlt
calls: gqld26, fun26, gaus2, gaus6

CALCULATE THE CONSTANTS AND INITIALIZE
pi=(0.0,1.0)
gamma=-30.0/(2.0*kw*sin(kh))
a(1)=i2*cos(kh)-i1
a(2)=-i2+i1*cos(kh)
x1=-kw
x2=-x1
z12=0.0
ngaus=6
if (kd.gt. (3.0*kw)) ngaus=2

CALCULATE THE MUTUAL IMPEDANCE
do 10 i=1,2
 flag=i
 call gqld26(kw,kh,kd,khh,kl,xl,x2,ngaus,flag,z)
z12=z12+z*a(i)
10 continue
z12=z12*gamma*p1
return
end

GQLD26 - CALCULATES INTEGRAL IN ONE DIMENSION
subroutine gqld26(kw,kh,kd,khh,kl,x1,x2,ngaus,flag,z)
 real kw,kh,kd,khh,kl,x1,x2,xm,xr,p1,p2,p24,x,dx,kw
 complex z,z1,z2
 integer i,flag,ngaus
if (ngaus.eq.2) call gaus2(x,w)
if (ngaus.eq.6) call gaus6(x,w)
xm=0.60*(x1+x2)
xr=0.60*(x2-x1)
z=0.0
do 10 i=1,ngaus
 dx=xr*x(i)
p1=xm+dx
p2=xm-dx
 call fun26(kh,kd,khh,kl,flag,p1,z1)
 call fun26(kh,kd,khh,kl,flag,p2,z2)
z=z+w(i)*(z1+z2)
10 continue
z=zr+z
return
end

FUN26 CALCULATES THE INTEGRAND OF ONE DIMENSIONAL INTEGRAL
subroutine fun26(kh,kd,khh,kl,flag,x,z)
 real kh,kd,khh,kl,x,c1,c2,c3,c4
 complex z,p1
 integer flag
 c1=kd-x
c2=(flag-2)*kh

161
p1=(0.0,1.0)
c3=k1+c2
c4=sqrt(c1**2+c3**2+khh**2)
z=-cexp(-p1*c4)/c4
return
end
Subroutine zdcxx calculates the interaction between x-directed conductor and dielectric currents. Called by: fildc

Calculates: zcd_x

Calculate the constants and initialize

\[\pi = (0.0, 1.0) \]
\[z12 = 0.0 \]

if \((|k_l - 0.5 \times k_h| > 2.0 \times k_h)\) then
 \[m = 3 \]
endif

if \((|k_d| > 4.0 \times k_w)\) then
 \[m = 3 \]
endif

if \((|k_d| > 8.0 \times k_w)\) then
 \[m = 2 \]
endif

if \((|k_d| > 12.0 \times k_e)\) then
 \[m = 1 \]
endif

Calculate the mutual impedance

\[\text{do 10 } i = 1, n_x \]
\[\text{do 10 } j = 1, n_z \]
\[r_x = k_d - k_l / 2. + (i - 0.5) \times k_l / n_x \]
\[r_z = k_l - k_z / 2. + (j - 0.5) \times k_z / n_z \]
\[\text{call zcdxx}(r_x, k_h, r_z, k_w, k_l, i, j, z) \]
\[z12 = z12 + z \times k_l \times k_z / (n_x \times n_z) \]
\[\text{continue} \]
\[z12 = -z12 / (k_l \times k_z) \]
return
end
subroutine zdcxy(klx,kly,klz,kd,khh,kl,kw,kh,il,12,z12)
real il,12,kd,khh,kl,kw,kh,klx,kly,klz,rx,rz
complex z12,z,pl
integer i,j,flag,nx,nz,napp,m

c Subroutine zdcxy calculates the interaction between x-directed conductor and y-directed dielectric currents.
c called by: fildc
c calls: zcdxy

calculate the constants and initialize
pl=(0.0,1.0)
z12=0.0
if (abs(kl-0.5*kh).lt.(2.0*kh)) then
 m=4
if (abs(kd).gt.(4.*kw)) m=3
if (abs(kd).gt.(8.*kw)) m=2
if (abs(kd).gt.(12.*kw)) m=1
endif
if (abs(kl-0.5*kh).gt.(2.0*kh)) m=3
if (abs(kl-0.5*kh).gt.(4.0*kh)) m=2
if (abs(kl-0.5*kh).gt.(6.0*kh)) m=1
if (klx.ge.klz) then
 nx=int((klx/klz+0.5)
 nz=nx
 napp=int(klx/klz+0.5)
else
 nx=nx
 nz=nz
 napp
endif

calculate the mutual impedance
do 10 i=1,nx
 do 10 j=1,nz
 rx=kd-klx/2.+(i-0.5)*klx/nx
 rz=kl-klz/2.+(j-0.5)*klz/nz
 call zcdxy(rx,kbh,rz,kw,kh,il,i2,z)
 z12=z12+z*klx*klz*kly/(nx*nz)
 10 continue
z12=-z12/(klx*klz)
return
end
subroutine zdcxz (klx, kly, klz, kd, khh, kl, kw, kl, kly, klz, rx, rz)
real i1, i2, kd, khh, kl, kw, kl, kly, klz, rx, rz
complex zl2, z, pl
integer i, j, flag, nx, nz, napp, m

Calculate the constants and initialize
p1 = (0.0, 1.0)
z12 = 0.0
if (abs(kl-0.5*kh) .lt. (2.0*kh)) then
 m = 4
else
 if (abs(kd) .gt. (4.*kw)) m = 3
 if (abs(kd) .gt. (8.*kw)) m = 2
 if (abs(kd) .gt. (12.*kw)) m = 1
endif
if (abs(kl-0.5*kh) .gt. (2.0*kh)) m = 3
if (abs(kl-0.5*kh) .gt. (4.0*kh)) m = 2
if (abs(kl-0.5*kh) .gt. (6.0*kh)) m = 1
if (klx.ge.klz) then
 nx = m*napp
else
 nx = m*napp
endif

calculate the mutual impedance
do 10 i = 1, nx
 do 10 j = 1, nz
 rx = kd-klx/2.+(i-0.5)*klx/nx
 rz = kl-klz/2.+(j-0.5)*klz/nz
 call zcdxz(rx, khh, rz, kw, kl, kly, i, j, z)
 zl2 = zl2+z*klx*klz*kly/(nx*nz)
 10 zl2 = zl2/(klx*kly)
return
end

Subroutine zdcxz calculates the interaction between x-directed conductor and z-directed dielectric currents.

Called by: fildc
Subroutine zdczx calculates the interaction between z-directed conductor and x-directed dielectric currents. Called by: fildc

Call: zcdzx

CALCULATE THE CONSTANTS AND INITIALIZE

\[p_1 = (0.0, 1.0) \]
\[z12 = 0.0 \]
if (abs(kd) \lt (4.0 \times kw)) then
 m = 4
else if (abs(kl - 0.5 \times kh) \gt (2.0 \times kh)) m = 3
else if (abs(kl - 0.5 \times kh) \gt (4.0 \times kh)) m = 2
else if (abs(kl - 0.5 \times kh) \gt (6.0 \times kh)) m = 1
endif
if (abs(kd) \gt (4.0 \times kw)) m = 3
else if (abs(kd) \gt (8.0 \times kw)) m = 2
else if (abs(kd) \gt (12.0 \times kw)) m = 1
endif

\[n_{app} = \text{int}(klx/klz + 0.5) \]
\[nx = m \times n_{app} \]
else
 \[n_{app} = \text{int}(klz/klx + 0.5) \]
 \[nx = m \times n_{app} \]
endif

CALCULATE THE MUTUAL IMPEDANCE

do 10 i = 1, nx
 do 10 j = 1, nz
 \[rx = kd - klx/2. + (i - 0.5) \times klx/nx \]
 \[rz = kl - klz/2. + (j - 0.5) \times klz/nz \]
 call zcdzx(rx, khh, rz, kw, kh, i1, i2, z)
 \[z12 = z12 + z \times kly/klz/(nx \times nz) \]
 10 continue
\[z12 = -z12/(kly/klz) \]
return
end
subroutine zdczy(klx,kly,klz,klh,khh,kl,kw,kh,i1,i2,z12)
real i1,i2,klh,khh,kl,kw,kh,klx,kly,klz,rx,rz
complex z12,z,p1
integer i,j,flag,nx,nz,napp,a

Subroutine zdczy calculates the interaction between z-directed conductor and y-directed dielectric currents.

called by: fildc
calls: zcdzy

CALCULATE THE CONSTANTS AND INITIALIZE
pi=(0.0,1.0)
z12=0.0
if (abs(kd).lt.(4.0*kw)) then
 m=4
 if (abs(kl-0.5*kh).gt.(2.0*kh)) m=3
 if (abs(kl-0.5*kh).gt.(4.0*kh)) m=2
 if (abs(kl-0.5*kh).gt.(6.0*kh)) m=1
endif
if (abs(kd).gt.(8.0*kw)) m=3
if (abs(kd).gt.(12.0*kw)) m=2
if (abs(kd).gt.(20.0*kw)) m=1
if (klx.ge.klz) than
 napp=int(klx/klz+0.6)
 nz=m
 nx=m*napp
else
 napp=int(klz/klx+0.6)
 nz=m
 nx=m*napp
endif

CALCULATE THE MUTUAL IMPEDANCE
do 10 i=1,nx
do 10 j=1,nz
 rx=kd-klx/2.+(i-0.5)*klx/nx
 rz=kl-klz/2.+(j-0.5)*klz/nz
 call zcdzy(rx,khh,rz,kw,kh,i1,i2,z)
z12=z12+z*klx*klz*kly/(nx*nz)
10 continue
z12=-z12/(klx*klz)
return
end
subroutine zdczz(klx,kly,klz,kd,khh,kl,kw,kh,i1,i2,z12)
real i1,i2,kd,khh,kl,kw,kh,klx,kly,klz,rx,rz
complex z12,z,pl
integer i,j,flag,nx,nz,napp,m

Subroutine zdczz calculates the interaction between z-directed conductor and dielectric currents.
Called by: fildc

CALLS: zcdzz

CALCULATE THE CONSTANTS AND INITIALIZE
pi=(0.0,1.0)
if (abs(kd) .lt. (4.0*kw)) then
m=4
if (abs(kl-0.5*kh).gt.(2.0*kh)) m=3
if (abs(kl-0.5*kh).gt.(4.0*kh)) m=2
if (abs(kl-0.5*kh).gt.(6.0*kh)) m=1
endif
if (abs(kd).gt.(4.*kw)) m=3
if (abs(kd).gt.(8.*kw)) m=2
if (abs(kd).gt.(12.*kw)) m=1
if (klx.gt.klz) then
napp=int(klx/klz+0.5)
nx=m
nz=m*napp
else
napp=int(klz/klx+0.5)
nx=m
nz=m*napp
endif

CALCULATE THE MUTUAL IMPEDANCE
do 10 i=1,nx
 do 10 j=1,nx
 rx=kd-klx/2.+(i-0.5)*klx/nx
 rz=kl-klz/2.+(j-0.5)*klz/nz
 call zcdzz(rx,khh,rz,kw,kh,i1,i2,z)
 z12=z12+z*klx*klz*kly/(nx*nz)
 10 continue
z12=-z12/(klx*kly)
return
end
subroutine zxx(klx,kly,klz,kd,khh,kl,zl2)
 real klx,kly,klz,kd,khh,
 + gamma,x1,x2,y1,y2,z1,z2,kl,z,rc
 complex zl2,z,pl
 integer i,typ,j,k,flag,app,nx,nz,napp,m,ni
 C
 c CCC
 c Subroutine zxx calculates the interaction between x-directed
c dielectric currents, which is $E\times$ of x-directed dielectric
c current
c called by: fildd
c calls: zxxapp, gq3dxx, fun3xxi, gq2ddxx, fun2xx, fun2xx2,
c fun2xx3, gaus6
c c CCC
 c
c CALCULATE THE CONSTANTS AND INITIALIZE
 typ=0
 pi=(0.0,1.0)
 gamma=30.0
 zl2=0.0
 app=1
 rc=sqrt(klx**2+klz**2+kly**2)
 c if ((abs(kd).lt.klx).and.(abs(kl).lt.klz)) typ=1
 c if typ=1 use general form no approximation - used once
 x1=-klx/2.0
 x2=-klx
 y1=-kly/2.0
 y2=-klx
 z1=-klz/2.0
 z2=-klz
 r=sqrt(kd**2+khh**2+kl**2)
 m=4
 if (r.gt.(3.*rc)) m=3
 if (r.gt.(6.*rc)) m=2
 if (r.gt.(9.*rc)) _=m
 if (klx.ge.klz) then
 napp=int(klx/klz+0.5)
 nx=m*napp
 else
 napp=int(klz/klx+0.5)
 nx=napp
 endif
 c CALCULATE THE MUTUAL IMPEDANCE
 if ((app.eq.1).and.(typ.eq.0)) then
 use approximate interaction
 call zxxapp(kd,khh,klx,kly,klz,nx,nz,zl2)
 else
 use general form
 if (typ.eq.0) then
 call gq3dxx(khh,klx,kly,nx,nz,typ,flag,x1,x2,y1,y2,z1,z2)
 zl2=zl2+z
 flag=4
 else
 call gq2ddxx(khx,klx,kly,khh,kd,typ,flag,x1,x2,y1,y2,z1,z2)
 zl2=zl2+z
 flag=1
 else
 call gq2ddxx(klx,kly,khh,kd,typ,flag,x1,x2,y1,y2,z1,z2)
 zl2=zl2+z
 flag=2
call gq2ddxx(klx,kly,klz,khh,kl,kd,z,typ,flag,x1,z2,z1,z2)
z12=z12+z
flag=3
call gq2ddxx(klx,kly,klz,khh,kl,kd,z,typ,flag,x1,z2,y1,y2)
z12=z12+z
flag=4
call gq2ddxx(klx,kly,klz,khh,kl,kd,z,typ,flag,y1,y2,z1,z2)
z12=z12+z
endif
endif

z12=z12*gamma
return
end

subroutine zxxapp(kd,khh,kl,klx,kly,klz,nx,nz,z12)
real kd,khh,kl,klx,kly,klz,d,l,r,cx
complex z12,pl
integer nx,nz,i,j

calculates approximate interaction
z12=0.0
pl=(0.0,0.0)
do 10 i=l,nx
do 10 j=l,nz
d=kd+klx/2.0+(0.6-i)*klx/nx
l=kl+klz/2.0+(0.6-j)*klz/nz
r=sqrt(d**2+khh**2+l**2)
cx=d/r
z12=z12+(1-cx**2+pl/r*(1-pl/r)*(3*cx**2-1))*cexp(-p1*r)/r
10 continue
z12=p1*z12*klx*klz*kly/(nx*nz)
return
end

GQSDDXX - CALCULATES INTEGRAL IN THREE DIMENSIONS
subroutine gqBddxx(khh,kl,kd,z,typ,flag,xl,x2,yl,y2,sl,s2)
real kd,khh,kl,xl,x2,xm,xr,p1,p2,ql,q2,x(24),w(24),dx,dy,
+ yl,y2,ym,yr,sm,sr,rl,rl,r2
complex z,zl,z2,z3,z4,z6,z7,z8
integer j,i,k,typ,flag

call gaus6(x,w)
xm=0.50*(xl+x2)
xr=0.50*(x2-xl)

ym=0.50*(yl+y2)
yr=0.50*(y2-yl)
sm=0.50*(sl+s2)
sr=0.50*(s2-sl)

z=0.0
do 10 i=1,6
ds=sm*x(i)
r1=sm+ds
r2=sm-ds

do 20 j=1,6

dy=yr*x(j)
p1=ym+dy
p2=ym-dy

do 30 k=1,6
dx=xr*x(k)
q1=xm+dx
q2=xm-dx

170
CALL FUN3XX1(KD,KHH,KL,Z,Y,X,ZZ,TYPE)

REAL KD,KHH,KL,Z,Y,X

COMPLEX ZZ,PI

INTEGER TYPE

CALL GAUS6(X,W)

XM=0.5*(*1+*2)
XR=0.5*(-*1+*2)
YM=0.5*(-*1+*2)
YR=0.5*(-*2+*1)

Z=0.0

DO 10 I=1,6

DY=YM X(I)

Q1=YM+DY

Q2=YM-DY

DO 20 J=1,6

DX=XM DX

PI=XM DX

P2=XM DX

CALL FUN2XX(KHH,KD,KL,TYPE,FLAG,KLX,KLY,KLZ,SL,P1,Z1)

CALL FUN2XX(KHH,KD,KL,TYPE,FLAG,KLX,KLY,KLZ,P2,Z2)

CALL FUN2XX(KHH,KD,KL,TYPE,FLAG,KLX,KLY,KLZ,Q2,P3,Z3)

CALL FUN2XX(KHH,KD,KL,TYPE,FLAG,KLX,KLY,KLZ,Q2,P4,Z4)

Z=Z+W(I)*W(J)*(Z1+Z2+Z3+Z4+Z5+Z6+Z7+Z8)

20 CONTINUE

10 CONTINUE

Z=XR*YR*Z

RETURN

END

FUN3XX1 CALCULATES INTEGRAND OF THREE DIM. INTEGRAL

SUBROUTINE FUN3XX1(KD,KHH,KL,Z,Y,X,ZZ,TYPE)

REAL KD,KHH,KL,Z,Y,X

COMPLEX ZZ,PI

INTEGER TYPE

CALL GAUS6(X,W)

XM=0.5*(X1+X2)
XR=0.5*(X2-X1)
YM=0.5*(Y1+Y2)
YR=0.5*(Y2-Y1)

Z=0.0

DO 10 I=1,6

DY=YM X(I)

Q1=YM+DY

Q2=YM-DY

DO 20 J=1,6

DX=XM DX

PI=XM DX

P2=XM DX

CALL FUN2XX(KHH,KD,KL,TYPE,FLAG,KLX,KLY,KLZ,Q1,P1,Z1)

CALL FUN2XX(KHH,KD,KL,TYPE,FLAG,KLX,KLY,KLZ,Q1,P2,Z2)

CALL FUN2XX(KHH,KD,KL,TYPE,FLAG,KLX,KLY,KLZ,Q2,P1,Z3)

CALL FUN2XX(KHH,KD,KL,TYPE,FLAG,KLX,KLY,KLZ,Q2,P2,Z4)

Z=Z+W(I)*W(J)*(Z1+Z2+Z3+Z4+Z5+Z6+Z7+Z8)

20 CONTINUE

10 CONTINUE

Z=XR*YR*Z

RETURN

END

FUN2XX CALCULATES THE INTEGRAND OF DOUBLE INTEGRAL
subroutine fun2xx(khh,kd,kl,typ,flag,klx,kly,klz,q,p,zz)
real kd,kl,khh,klx,kly,klz,x,y,z,cl,c2,q,p
complex zz,pl,zp
integer typ,flag,i
pl=(0.0,l.o)
zz=0.0
do 10 i=-1,1,2
if (flag.eq.1) then
 x=kd-(i)*klx/2.0
 y=khh-p
 z=kl-q
 call fun2xx2(x,y,z,zp)
 zz=zz+zp*x*(i)
endif
if (flag.eq.2) then
 x=kd-p
 y=khh-(i)*kly/2.0
 z=kl-q
 call fun2xx2(x,y,z,zp)
 zz=zz+zp*y*(i)
endif
if (flag.eq.3) then
 x=kd-p
 y=khh-q
 z=kl-(i)*klz/2.0
 call fun2xx2(x,y,z,zp)
 zz=zz+zp*z*(i)
endif
if (flag.eq.4) then
 x=kd-(i)*klx/2.0
 y=khh-p
 z=kl-q
 call fun2xx3(x,y,z,zp)
 zz=zz+zp*x*(i)
endif
continue
return
end

subroutine fun2xx2(x,y,z,zp)
real x,y,z,cl
complex zp,pl
pl=(0.0,l.o)
cl=seqt(x**2+y**2+z**2)
zp=pl*cexp(-pl*cl)/(2.0*cl)
return
end

subroutine fun2xx3(x,y,z,zp)
real x,y,z,cl
complex zp,pl
pl=(0.0,l.o)
c1=seqt(x**2+y**2+z**2)
zp=cexp(-pl*c1)*((1.0/c1**2)-(pl/c1**3))
return
end
subroutine zxy(klx,kly,klz,kd,khh,kl2)
real klx,kly,klz,kd,khh,kl,r,rc,
gamma,x1,x2,y1,y2,z1,z2
complex zl2,z,p1
integer i,typ,j,app,nx,nz,napp,m
cccccctcccccctcctcccccccccccccccccccccccccccccccccctcccccccccccccccccctccc
\[
z_{12} = z_{12} + c x cy(-1 + (3 p_1/r) \cdot (1 - p_1/r)) \cdot \exp(-p_1/r)/r
\]

```
continue
z_{12} = z_{12} + k_{lx} k_{lz} k_{ly} / (nx * nz)
return
end
```

GQ1DIY - CALCULATES INTEGRAL IN ONE DIMENSION

```fortran
subroutine gqldxy(khh, kl, kd, x1, x2, klx, kly, klz)
  real kd, x1, x2, x, x1p, x2p, x(24), w(24), dx,
  + klx, kly, klz, khh, kl
  complex z, z1, z2
  integer j, i, ngaus
  ngaus = 6
  call gaus6(x, w)
  x = 0.60*(x1+x2)
  x = 0.60*(x2-x1)
  z = 0.0
  do 10 i = 1, ngaus
    dx = x - x(i)
  pl = x + dx
  p2 = x - dx
  call funlxy(khh, kd, kl, klx, kly, klz, pl, z1)
  call funlxy(khh, kd, kl, klx, kly, klz, p2, z2)
  z = z + w(i)*(z1 + z2)
  continue
  z = x*r
  return
end
```

FUNLXY CALCULATES INTEGRAND OF ONE DIM. INTEGRAL

```fortran
subroutine funlxy(khh, kd, kl, klx, kly, klz, z, zz)
  real kd, kl, khh, klx, kly, klz, x, y,
  + z
  complex zz, p1, zp
  integer i, j
  p1 = (0.0, 1.0)
  zp = 0.0
  z = kl - z
  do 10 i = 1, 2
    do 10 j = 1, 2
      x = kd - (2*i-3)*klz/2.0
      y = khh - (2*j-3)*kly/2.0
      call fun2xy(x, y, z1, zp)
      zz = zz + zp*(2*i-3)*(2*j-3)
  continue
  return
end
```

```fortran
subroutine fun2xy(x, y, z, zp)
  real x, y, z, c1
  complex p1, zp
  p1 = (0.0, 1.0)
  c1 = sqrt(x**2 + y**2 + z**2)
  zp = exp(-p1*c1)/c1
  return
end
```
subroutine zxz(klx, kly, klz, kd, khh, kl, z12)
 real klx, kly, klz, kd, khh, r, rc,
 + gamma, x1, x2, y1, y2, z1, z2, kl
 complex z12, z, pl
 integer i, j, k, app, nx, nz, napp, m

 C Subroutine zxz calculates the interaction between x-directed and z-directed dielectric currents, which is Ez of x-directed dielectric current called by: fildd
 C calls: zxzapp, gqldxz, funlxz, fun2xz, gaus6

 CALCULATE THE CONSTANTS AND INITIALIZE
 pi=(0.0,1.0)
gamma=-30.0
 z12=0.0
 approximate form is used to save time
 app=1
 r=sqrt(kd**2+khh**2+kl**2)
 rc=sqrt(klx**2+kly**2+klz**2)
 m=4
 if (r.gt.(0.3*rc)) m=3
 if (r.gt.(0.6*rc)) m=2
 if (r.gt.(0.9*rc)) m=1
 if (klx.ge.klz) then
 napp=int(klx/klz+0.8)
 nx=m*napp
 else
 p_=int(klz/klx+0.8)
 nz=m*napp
 endif

 CALCULATE THE MUTUAL IMPEDANCE
 if (app.eq.1) then
 use approximate interaction
 call zxzapp(kd, khh, kl, klx, kly, klz, nx, nz, z)
 else
 use general form
 y1=-kly/2.0
 y2=-y1
 call gqldxz(khh, kl, z, y1, y2, klx, kly, klz)
 endif
 z12=z*gamma*pl
 return
end

subroutine zxzapp(kd, khh, kl, klx, kly, klz, nx, nz, z12)
 real kd, khh, kl, klx, kly, klz, dx, cz
 complex z12, pl
 integer nx, nz, i, j

 calculates approximate interaction
 z12=0.0
 pl=(0.0,1.0)
do 10 i=1,nx
do 10 j=1,nx
d=kd+klx/2.0+(0.5-i)*klz/nx
 l=kl+klx/2.0+(0.5-j)*klz/nz
 r=sqrt(d**2+khh**2+l**2)
 cx=d/r
 cz=l/r
 10 continue
 end
z12 = z12 + cx * cz * (-1 + 3 * pi/r * (1 - pi/r)) * cexp(-pi*r)/r
continue
z12 = z12 * klx * klz * kly / (nx*nz)
return
end

c c GQ1DZ - CALCULATES INTEGRAL IN ONE DIMENSION

c subroutine gq1dz(khh, kl, kd, xl, x2, klx, kly, klz)
real kd, xl, x2, xm, xr, pl, p2, x(24), w(24), dx,
+ klx, kly, klz, khh, kl
complex z, z1, z2
integer j, i, ngaus

c ngaus = 6
call gaus6(x, w)
xm = 0.50*(xl+x2)
xr = 0.50*(x2-xl)
z = 0.0
do 10 i = 1, ngaus
 dx = xr*x(i)
p1 = xm+dx
p2 = xm-dx
call fun1xz(khh, kd, kl, klx, kly, klz, pl, z1)
call fun1xz(khh, kd, kl, klx, kly, klz, p2, z2)
z = z+w(1)*(z1+z2)
10 continue
z = xr + z
return
end

c c FUN1XZ CALCULATES INTEGRAND OF ONE DIM. INTEGRAL

c subroutine fun1xz(khh, kd, kl, klx, kly, klz, y, zz)
real kd, kl, khh, klx, kly, klz, x, y, yl
complex zz, pl, zp
integer i, j

c pi = (0.0, 1.0)
zz = 0.0
yl = khh - y
do 10 i = 1, 2
do 10 j = 1, 2
x = kd - (2*i-3)*klx/2.0
z = kl - (2*j-3)*klz/2.0
call fun2xz(x, yl, z, zp)
zz = zz+zp*(2*i-3)*(2*j-3)
10 continue
return
end

c subroutine fun2xz(x, y, z, zp)
real x, y, z, c1
complex pl, zp

c pi = (0.0, 1.0)
c1 = sqrt(x**2+y**2+z**2)
zp = cexp(-pi*c1)/c1
return
end

176
subroutine zyy(klx,kly,klz,kdh,klh,kl,zl2)
 real klx,kly,klz,kdh,klh,r,rc,
 + gamma,x1,x2,y1,y2,z1,z2,kl
 complex z12,z,p1
 integer i,typ,j,k,flag,app,nx,nz,napp,m

Subroutine zyy calculates the interaction between y-directed dielectric currents, which is Ey of y-directed dielectric current called by: fildd
 calls: zyyapp, gq3ddy, fun3yy1, gq2ddy, fun2yy, fun2yy2, fun2yy3, gaus6

CALCULATE THE CONSTANTS AND INITIALIZE

typ=0
 p1=(0.0,1.0)
 gamma=30.0
 zl2=0.0
 app=1

 if ((abs(kd).lt.klx).and.(abs(kl).lt.klz)) typ=1
 if (typ=1) use general form no approximation - used once
 r=sqrt(kd**2+kdh**2+kl**2)
 rc=sqrt(klx**2+kly**2+klz**2)
 m=4
 if (r.gt.(3.*rc)) m=3
 if (r.gt.(6.*rc)) m=2
 if (r.gt.(9.*rc)) m=1
 if (klx.ge.klz) then
 napp=int(klx/klz+0.5)
 nx=m*napp
 else
 napp=int(klx/klx+0.5)
 nx=m*napp
 endif
 x1=-klx/2.0
 x2=-x1
 y1=-kly/2.0
 y2=-y1
 z1=-klz/2.0
 z2=-z1

CALCULATE THE MUTUAL IMPEDANCE
 if ((app.eq.1).and.(typ.eq.0)) then
 use approximate interaction
 call zyyapp(kd,kdh,klx,kly,klz,nx,nz,zl2)
 else
 use general form
 if (typ.eq.0) then
 call gq3ddy(kdh,kl,kd,z,typ,flag,x1,x2,y1,y2,z1,z2)
 zl2=zl2+z
 flag=4
 call gq2ddy(klx,kly,klz,kdh,kl,kd,z,typ,flag,x1,x2,z1,z2)
 zl2=zl2+z
 else
 call gq3ddy(kdh,kl,kd,z,typ,flag,x1,x2,z1,z2)
 zl2=zl2+z
 flag=1
 call gq2ddy(klx,kly,klz,kdh,kl,kd,z,typ,flag,y1,y2,z1,z2)
 zl2=zl2+z

177
flag=2
 call gq2ddyy(klx,kly,klz,khh,kl,kd,z,typ,flag,xl,x2,zl,z2)
z12=z12+z
flag=3
 call gq2ddyy(klx,kly,klz,khh,kl,kd,z,typ,flag,xl,x2,yl,y2)
z12=z12+z
endif endif

 z12=z12*gamma
return
end

subroutine zyyapp(kd,khh,kl,klx,kly,klz,nx,nz,z12)
 real kd,khh,kl,klx,kly,klz,d,lpr,cy
 complex zI2,pI
 integarnx,nz,i,j
 calculates approximate interaction
 z12=0.0
 pl=(0.0,0.0)
do 10 i=1,nx
 do 10 j=1,nz
d=kd+klx/2.0+(0.5-j)*klx/nx
l=kl+klz/2.0+(0.5-j)*klz/nz
r=sqrt(d**2+khh**2+l**2)
cy=khh/r
z12=z12+(l-cy**2+pI/r*(l-pI/r)*(S*cy**2-1))*cmxp(-pI*r)/r
10 continue
 zl2=-pI*zl2*klx*klz*kly/(nx*nz)
return
end

subroutine gq3ddyy(khh,kl,kd,z,typ,flag,xl,x2,yl,y2,sl,s2)
 real kd,khh,kl,xl,x2,xm,xr,pl,p2,q2,x(24),w(24),dx,dy,
 yl,y2,ym,yr,sl,s2,ds,sm,sm,sr,rl,r2
 complex zI,zl,z2,zs,z6,z6,Z7,Z8
 integer J,i,k,typ,flag
 call gaus6(x,e)
xm=0.80*(xl+x2)
xr=0.80*(x2-xl)
 ym=0.80*(yl+y2)
yr=0.80*(y2-yl)
 sm=0.80*(sl+s2)
sr=0.80*(s2-sl)
z=0.0
 do 10 i=1,6
 ds=sm*x(i)
 ri=sm+ds
 r2=sm+ds
 do 20 j=1,6
 dx=xm+dx
 q1=xm+dx
 q2=xm-dx
call fun3yy1(kd,khh,kl,ri,p1,q1,z1,typ)
call fun3yy1(kd,khh,kl,ri,p2,q2,z2,typ)
call fun3yy1(kd,khh,kl,ri,p2,q1,z3,typ)
call fun3yy1(kd,khh,kl,x1,p2,q2,z4,typ)
call fun3yy1(kd,khh,kl,x2,p1,q1,z6,typ)
call fun3yy1(kd,khh,kl,z2,p1,q2,z6,typ)
call fun3yy1(kd,khh,kl,x2,p2,q1,x7,typ)
call fun3yy1(kd,khh,kl,x1,p2,q2,z8,typ)

z=z+w(i)*w(j)*w(k)*(z1+z2+z3+z4+z5+z6+z7+z8)

30 continue
20 continue
10 continue

z=xr*yr*z
return
end

FUN3YY1 CALCULATES INTEGRAND OF THREE DIM. INTEGRAL

subroutine fun3yy1(kd,khh,kl,z,y,x,zz,typ)
real kd,khh,kl,z
complex x
integer typ

calculate the related parameters
p1=(0.0,-1.0)
z=0.0
cl=sqrt((kd-x)**2+(khh-y)**2+(kl-z)**2)

calculate the integrand
if (typ.eq.0) then
zz=p1*exp(p1*cl)/cl
else
zz=exp(p1*cl)/2.0
endif
return
end

GQ2DDYY - CALCULATES INTEGRAL IN TWO DIMENSIONS

subroutine gq2ddyy(klx,kly,klz,khh,kl,kd,z,typ,flag,xl,x2,yl,y2)
real klx,kly,klz,khh,kl,kd,z
complex x
integer typ,flag

call gaus6(x,w)
xm=0.60*(xl+x2)
xr=0.60*(x2-xl)
ym=0.60*(yl+y2)
yr=0.60*(y2-yl)
z=0.0

do 10 i=1,6
dy=yr*z(i)
q1=ym+dy
q2=ym-dy

do 20 j=1,6
dx=xr*x(j)
p1=xm+dx
p2=xm-dx

call fun2yy(khh,kd,kl,typ,flag,klx,kly,klz,q1,p1,z1)
call fun2yy(khh,kd,kl,typ,flag,klx,kly,klz,q1,p2,z2)
call fun2yy(khh,kd,kl,typ,flag,klx,kly,klz,q2,p1,z3)
call fun2yy(khh,kd,kl,typ,flag,klx,kly,klz,q2,p2,z4)

z=z+w(i)*w(j)*(z1+z2+z3+z4)

20 continue
10 continue
z=xr*yr*z
return
end
FUN2YY CALCULATES INTEGRAND OF DOUBLE INTEGRALS

subroutine fun2yy(khh, kd, kl, typ, flag, klx, kly, klz, q, p, zz)
real kd, kl, khh, klx, kly, klz, x, y, z, ci, c2, q, p
complex zz, pi, zp
integer typ, flag, i

pi = (0.0, 1.0)
zz = 0.0
do 10 i = -1, 1, 2
 if (flag.eq.1) then
 x = kd - (i)*klx/2.0
 y = khh - p
 z = kl - q
 call fun2yy2(x, y, z, zp)
 zz = zz + zp*x*(i)
 endif
 if (flag.eq.2) then
 x = kd - p
 y = khh - (i)*kly/2.0
 z = kl - q
 call fun2yy2(x, y, z, zp)
 zz = zz + zp*y*(i)
 endif
 if (flag.eq.3) then
 x = kd - p
 y = khh - q
 z = kl - (i)*klz/2.0
 call fun2yy2(x, y, z, zp)
 zz = zz + zp*z*(i)
 endif
 if (flag.eq.4) then
 x = kd - p
 y = khh - (i)*kly/2.0
 z = kl - q
 call fun2yy3(x, y, z, zp)
 zz = zz + zp*y*(i)
 endif
10 continue
return
end

subroutine fun2yy2(x, y, z, zp)
real x, y, z, ci
complex zp, pi
pi = (0.0, 1.0)
ci = sqrt(x**2 + y**2 + z**2)
zp = pi * cexp(-pi**ci)/(2.0*ci)
return
end

subroutine fun2yy3(x, y, z, zp)
real x, y, z, ci
complex zp, pi
pi = (0.0, 1.0)
ci = sqrt(x**2 + y**2 + z**2)
zp = cexp(-(pi**ci)**(1.0/ci**2)-(pi/ci**3))
return
end
subroutine zyz(klx, kly, klz, kd, khh, kl, z12)
 real klx, kly, klz, kd, khh, r, rc,
 + gamma, x1, x2, y1, y2, z1, z2, kl
 complex z12, z, pl
 integer i, j, k, app, nx, nz, napp, m

Subroutine zyz calculates the interaction between y-directed
dielectric currents, which is Ez of
y-directed dielectric current
called by: fildd
calls: zyzapp, gqldyz, fun1yz, fun2yz, gaus6
c CALCULATE THE CONSTANTS AND INITIALIZE
 pl=(0.0,1.0)
gamma=-30.0
 z12=0.0
 approximate form is used to save time
 app=1
 r=sqrt(kd**2+khh**2+kl**2)
 rc=sqrt(klx**2+kly**2+klz**2)
 m=4
 if (r.gt.(3.*rc)) m=3
 if (r.gt.(6.*rc)) m=2
 if (r.gt.(9.*rc)) m=1
 if (klx.ge.klz) then
 napp=int(klx/klz+0.5)
 nz=m*napp
 else
 napp=int(klz/klx+0.5)
 nx=m
 nz=m*napp
 endif

CALCULATE THE MUTUAL IMPEDANCE
 if (app.eq.1) then
 use approximate interaction
 call zyzapp(kd, khh, kl, kly, klz, nx, nz, z)
 else
 use general form
 x1=-klx/2.0
 x2=-x1
 call gqldyz(khh, kl, kd, z, x1, x2, klx, kly, klz)
 z12=z*gamma*pl
 endif
 return
end

subroutine zyzapp(kd, khh, kl, kly, klz, nx, nz, z12)
 real kd, khh, kl, kly, klz, d, l, r, cy, cz
 complex z12, p1
 integer nx, nz, i, j

calculates approximate interaction
 z12=0.0
 p1=(0.0,1.0)
 do 10 j=1,nx
 do 10 i=1,nz
 d=kd+klx/2.0+(0.5-i)*klx/nx
 l=kl+klz/2.0+(0.5-j)*klz/nz
 r=sqrt(d**2+khh**2+l**2)
 cy=khh/r
 cz=kl/r
 10 continue

181
10 z12=z12+cy*cze(-l+3*p1/r*(1-p1/r))*cexp(-p1*r)/r
continue
z12=z12*klx*klz*kly/(nx*nz)
return
end

GQ1DYZ - CALCULATES INTEGRAL IN ONE DIMENSION

subroutine gq1dyz(khh,kl,kd,x1,x2,klx,kly,klz)
real kd,x1,x2,xm,xr,p1,p2,x(24),w(24),dx,
+ klx,kly,klz,khh,kl
complex z,zl,z2
integer j,i,ngaus

ngaus=6
call gaus6(x,w)
xm=0.50*(x1+x2)
xr=0.50*(x2-x1)
z=0.0
do 10 i=1,ngaus
dx=xr*x(i)
p1=xm+dx
p2=xm-dx
call fun1yz(khh,kd,kl,klx,kly,klz,p1,zl)
call fun1yz(khh,kd,kl,klx,kly,klz,p2,z2)
z=z+w(i)*(zl+z2)
10 continue
z=xr*z
return
end

FUN1YZ CALCULATES INTEGRAND OF ONE DIM. INTEGRAL

subroutine fun1yz(khh,kd,kl,klx,kly,klz,x,zz)
real kd,kl,khh,klx,kly,klz,x
complex zz,p1,zp
integer i,j

pi=(0.0,0.0)
zz=0.0
xl=kd-x
do 10 i=1,2
do 10 j=1,2
y=khh-(2*i-3)*kly/2.0
z=kl-(2*j-3)*klz/2.0
call fun2yz(xl,y,z,zp)
zz=zz+zp*(2*i-3)*(2*j-3)
10 continue
return
end

subroutine fun2yz(x,y,z,zp)
real x,y,z,ci
complex p1,zp

pi=(0.0,0.0)
ci=sqrt(x**2+y**2+z**2)
zp=cexp(-p1*ci)/ci
return
end
subroutine zzz(klx,kly,klz,kd,khh,kl,z12)
 real klx,kly,klz,kd,khh,r,rc,
 + gamma,x1,x2,y1,y2,z1,z2,kl
 complex z12,z,p1
 integer i,typ,j,k,flag,app,nx,nz,napp,m

 Csubroutine zzz calculates the interaction between z-directed current
 called by: fildd
 calls: zzzapp, gq3dzz, fun3zz1, gq2ddzz, fun2zz, fun2zz2,
 fun2zz3, gauss

 CALCULATE THE CONSTANTS AND INITIALIZE
 typ=0
 pi=(0.0,1.0)
gamma=30.0
 z12=0.0
 app=1
 if ((abs(kd).lt.klx).and.(abs(kl).lt.klz)) typ=1
 if typ=1 use general form no approximation - used once
 x1=-klx/2.0
 x2=-x1
 y1=-kly/2.0
 y2=-y1
 z1=-klz/2.0
 z2=-z1
 r=sqrt(kdx**2+khy**2+klz**2)
 rc=sqrt(klx**2+kly**2+klz**2)
 m=4
 if (r.gt.(3.*rc)) m=3
 if (r.gt.(6.*rc)) m=2
 if (r.gt.(9.*rc)) m=1
 if (klx.ge.klz) then
 napp=int(klx/klz+0.5)
 nz=m
 nx=m*napp
 else
 napp=int(klx/klz+0.5)
 nz=m
 nx=m*napp
 endif

 CALCULATE THE MUTUAL IMPEDANCE
 if ((app.eq.1).and.(typ.eq.0)) then
 use approximate interaction
 call zzzapp(kd,khh,klx,kly,klz,nx,nz,z12)
 else
 use general form
 if (typ.eq.0) then
 call gq3dzz(khh,klx,kd,x,typ,flag,x1,x2,y1,y2,z1,z2)
 z12=z12+z
 flag=4
 call gq2dzz(klx,kly,klz,khh,klx,kd,x,typ,flag,x1,x2,y1,y2)
 z12=z12+z
 else
 call gq3dzz(khh,klx,kd,z,typ,flag,x1,x2,y1,y2,z1,z2)
 z12=z12+z
 flag=1
 call gq2dzz(klx,kly,klz,khh,klx,kd,z,typ,flag,y1,y2,z1,z2)
 z12=z12+z
 flag=2
call gq2ddzz(klx,kly,klz,khh,kl, kd,z,typ,flag,x1,x2,z1,z2)
z12=z12+z
flag=3
call gq2ddzz(klx,kly,klz,khh,kl, kd,z,typ,flag,x1,x2,y1,y2)
z12=z12+z
flag=4
call gq2ddzz(klx,kly,klz,khh,kl, kd,z,typ,flag,x1,x2,y1,y2)
z12=z12+z
endif
endif
c z12=z12*gamma
return
end

c subroutine zzzapp(kd,khh,kl,klx,kly,klz,nx,nz,zl2)
real kd,khh,kl,klx,kly,klz,d,l,r,cz
complex z12,pl
integer nx,nz,i,j

calculates approximate interaction
z12=0.0
pl=(0.0,I.0)
do 10 i=1,nx
do 10 j=1,nz

d=kd+klx/2.0+(0.5-I)*klz/nx
l=kl+klz/2.0+(0.5-J)*klz/nz
r=sqrt(d**2+khh**2+l**2)
cz=l/r
z12=z12+((l-cz**2+pl/r)*(l-pl/r)*(S*cz**2-1))ecexp(-pl*r)/r
10 continue
zl2=-pl*zl2*klx*klz*kly/(nx*nz)
return
end

c subroutine gq3ddzz(khh,kl,kd,z,typ,flag,x1,x2,y1,y2,s1,s2)

real kd,khh,kl,xm,xr,ym,yr,sm,sr,pl,p2,ql,q2,x(24),w(24),dx,dy,
+ yl,yl2,ym,yl2,sm,sl,sr,rl,r2
complex z,zl,z2,z3,z4,zS,z6,z7,z8
integer j,i,k,typ,flag

call gaus6(x,w)
zm=0.50*(x+z2)
xr=0.50*(x2-x1)
ym=0.50*(y1+y2)
yn=0.50*(y2-y1)
sr=0.50*(s2-s1)
sr=0.50*(s2-s1)
z=0.0
do 10 i=1,6
ds=sm*di
ri=sm+ds
r2=sm-ds
do 20 j=1,6
dy=yr*di
pi=ym+dy
p2=ym-dy
do 30 k=1,6
dx=xr*di
qi=xm+dx
q2=xm-dx
call fun3zzl(kd,khh,kl,x1,pi,p1,q1,z1,typ)
call fun3zzl(kd,khh,kl,r1,pi,p2,q2,z2,typ)
call fun3zzl(kd,khh,kl,r1,p2,q1,z3,typ)
call fun3zzl(kd,khh,kl,r1,p2,q2,z4,typ)
call fun3zz1(kd,khh,kl,r2,p1,q1,z5,typ)
call fun3zz1(kd,khh,kl,r2,p1,q2,z6,typ)
call fun3zz1(kd,khh,kl,r2,q2,p1,z7,typ)
call fun3zz1(kd,khh,kl,r2,p2,q2,z8,typ)

z=z+w(i)*w(j)*w(k)*(zi+z2+z3+z4+z5+z6+z7+z8)
30 continue
20 continue
10 continue
z=xr*yr*sr*z
return
end

C FUN3ZZ1 CALCULATES INTEGRAND OF THREE DIM. INTEGRAL

subroutine fun3zz1(kd,khh,kl,z,y,x,zz,typ)
real kd,khh,kl,cl,x,y,z
complex zz,pl
integer typ
C CALCULATE THE RELATED PARAMETERS
cl=(0.0,-1.0)
z=0.0
cl=sqrt((kd-x)**2+(khh-y)**2+(kl-z)**2)
C CALCULATE THE INTEGRAND
if (typ.eq.0) then
zz=pl*cexp(pl*cl)/cl
else
zz=cexp(pi*cl)/2.0
endif
return
end

c FUN2ZZ CALCULATES THE INTEGRAND OF DOUBLE INTEGRAL

185
subroutine fun2zz(khh, kd, kl, typ, flag, klx, kly, klz, q, p, zz)
real kd, kl, khh, klx, kly, klz, x, y, z, c1, c2, q, p
complex zz, pi, zp
integer typ, flag, i

pi=(0.0,1.0)
z=0.0

10 do 10 i=-1,1,2

if (flag.eq.1) then
 x=kd-(i)*klx/2.0
 y=khh-p
 z=kl-q
 call fun2zz2(x, y, z, zp)
 zz=zz+zp*x*(i)
endif

if (flag.eq.2) then
 x=kd-p
 y=khh-(i)*kly/2.0
 z=kl-q
 call fun2zz2(x, y, z, zp)
 zz=zz+zp*y*(i)
endif

if (flag.eq.3) then
 x=kd-p
 y=khh-q
 z=kl-(i)*klz/2.0
 call fun2zz2(x, y, z, zp)
 zz=zz+zp*z*(i)
endif

if (flag.eq.4) then
 x=kd-p
 y=khh-q
 z=kl-(i)*klz/2.0
 call fun2zz3(x, y, z, zp)
 zz=zz+zp*z*(i)
endif

continue
return
end

subroutine fun2zz2(x, y, z, zp)
real x, y, z, c1
complex zp, pi
pi=(0.0,1.0)
c1=sqrt(x**2+y**2+z**2)
zp=pi*cexp(-pi*c1)/(2.0*c1)
return
end

subroutine fun2zz3(x, y, z, zp)
real x, y, z, c1
complex zp, pi
pi=(0.0,1.0)
c1=sqrt(x**2+y**2+z**2)
zp=cexp(-pi*c1)*((1.0/c1**2)-(pi/c1**3))
return
end
subroutine symx(j, i, jt, jh, jw, jl, ih, iw, il, ns, nh, + js, is, ok, mult)
 real mult
 integer j, i, jt, jh, jw, jl, ih, iw, il, ok, m1, m2, js, is

C Subroutine symx investigates symmetry for zxx
C If there is even symmetry, ok=1, mult=1
C If there is odd symmetry, ok=1, mult=-1
C called by: zxx
C calls: none

ml = ml * nw
m2 = m1 * nh
mult = 1.0
if ((jh.eq.ih).and.(jh.eq.0)) then
 if (jw.eq.0) then
 if (jt.gt.1) then
 js = j-1
 is = i-1
 ok = 1
 else
 js = j-(jl-il)
 is = i+(jl-il)
 ok = 1
 endif
 endif
else
 if (iw.gt.0) then
 js = j-nl
 is = i-nl
 ok = 1
 else
 if (jl.gt.1) then
 if (il.gt.Jl) then
 js = j-1
 is = i-1
 ok = 1
 endif
 endif
 endif
endif
else
 if ((jh.eq.ih).and.(jh.gt.0)) then
 js = js-jl
 is = is+jl
 ok = 1
 else
 if ((jh.ne.ih).and.(jh.lt.lh)) then
 if (jw.eq.0) then
 if (jt.gt.1) then
 js = j-1
 is = i-1
 ok = 1
 endif
 else
 js = j-(jl-il)
 is = i+(jl-il)
 ok = 1
 endif
 endif
 endif
endif
else
 if ((jh.ne.ih).and.(jh.lt.ih)) then
 if (jh.eq.0) then
 if (jl.gt.1) then
 js = j-1
 is = i-1
 ok = 1
 else
 js = j-(jl-il)
 is = i+(jl-il)
 ok = 1
 endif
 endif
 endif
endif
else
 js = js-il
 is = is-il
 ok = 1
endif
endif
endif
endif
endif
endif
else
endif
endif
return
end
subroutine symxy(j, i, jh, jw, jl, it, ih, iw, il, ml, nw, nh, js, is, ok, mult)

real mult
integer j, i, jh, jw, jl, it, ih, iw, il, ok, ml, nw, nh

cc
Subroutine symxy investigates symmetry for zxy

c If there is even symmetry, ok=1, mult=1

c If there is odd symmetry, ok=1, mult=-1

c called by: zxy
c
ccalls: none

c

c
m1=ml*ml
m2=ml*nh
if ((jh.eq.ih).and.(jh.eq.0)) then
if (iw.eq.0) then
if (jw.eq.0) then
if (j.gt.1) then
if (il.ge.jl) then
js=j-1
is=i-1
ok=1
else
js=j-(jl-il)
isl=(jl-il)
mult=-1.0
ok=1
endif
endif
else
if (iw.gt.0) then
js=j-nl
is=i-nl
ok=1
else
if (jl.gt.1) then
if (il.ge.jl) then
js=j-1
is=i-1
ok=1
else
js=j-(jl-il)
isl=(jl-il)
mult=-1.0
endif
endif
endif
else
if (j.eq.ih).and.(j.gt.0)) then
js=j-n1
is=i-m1
ok=1
else
if ((jh.ne.ih).and.(jh.lt.ih)) then
if (jh.eq.0) then
if (j.gt.1) then
if (il.ge.jl) then
js=j-1
is=i-1
ok=1
else
js=j-(jl-il)
is=i+(jl-il)
mult=-1.0
ok=1
endif
endif
endif
else
endif
endif
else
 js=j-ml
 is=i-ml
 ok=1
endif
else
 if ((jh.ne.ih).and.(jh.gt.ih)) then
 js=j-(jh-ih)*ml
 is=i+(jh-ih)*ml
 mult=-1.0
 ok=-1.0
 endif
endif
endif
endif
return
end
subroutine symxz(j,i,jt,jh,jw,jl,ih,il,iw,il,nl,nw,nh,
js,is,ok,mult)
real mult
integer js,is,jt,jh,jw,jl,ih,il,iw,il,nl,nw,nh,
+ js,is,ok,mult

Subroutine symxz investigates symmetry for zxz
If there is even symmetry, ok=1, mult=1
If there is odd symmetry, ok=1, mult=-1
called by: zxz
calls: none

ok=0
mj=nl*nw
m2=ni*nh
if ((jh.eq.ih).and.(jw.eq.0)) then
if (jw.eq.0) then
if (jl.ge.jl) then
js=j-1
is=i-1
ok=1
else
js=j-(jl-il)
is=i+(jl-il)
mult=-1.0
ok=1
endif
endif
else
if (iw.gt.0) then
js=j-nl
is=i-nl
ok=1
else
if (jl.gt.jl) then
js=j-1
is=i-1
ok=1
else
js=j-(jl-il)
is=i+(jl-il)
mult=-1.0
ok=1
endif
endif
endif
else
if ((jh.eq.ih).and.(jw.gt.0)) then
js=j-m1
is=i-m1
ok=1
else
if ((jh.ne.ih).and.(jw.lt.ih)) then
if (jw.eq.0) then
if (jl.ge.jl) then
js=j-1
is=i-1
ok=1
else
js=j-(jl-il)
is=i+(jl-il)
mult=-1.0
ok=1
endif
else
js=j-m1
is=i-m1
ok=1
endif
else
if ((jh.ne.ih).and.(jh.gt.ih)) then
js=j-(jh-ih)*m1
is=i+(jh-ih)*m1
ok=1
endif
endif
endif
endif
return
end
subroutine symyy(j,i,jt,jh,jw,jl,it,ih,il,nl,nw,nh,
 js,is,ok,mult)
 real mult
 integer j,jt,jh,jw,jl,it,ih,il,nl,nw,nh,js,is,ok,mult

ccc
Subroutine symyy investigates symmetry for zyy
If there is even symmetry, ok=1, mult=1
If there is odd symmetry, ok=1, mult=-1
CC called by: zyy
CC calls: none
cc
ml=nl*nh
m2=ml*nh
mult=1.0
if ((jh.eq.ih).and.(jh.eq.0)) then
if (jw.eq.0) then
if (j.gt.(m2+1)) then
if (il.ge.jl) then
js=j-1
is=i-1
ok=1
else
js=j-(jl-il)
is=i+(jl-il)
ok=1
endif
endif
else
if (iw.gt.0) then
js=j-nl
is=i-nl
ok=1
else
if (jl.gt.1) then
if (il.gt.Jl) then
js=j-1
is=il-1
ok=1
endif
endif
endif
else
if ((jh.eq.ih).and.(jh.gt.0)) then
js=j-m1
is=i-m1
ok=1
e else
if ((jh.ne.ih).and.(jh.lt.ih)) then
if (jh.eq.0) then
if (j.gt.(m2+1)) then
if (il.ge.jl) then
js=j-1
is=il-1
ok=1
else
js=j-(jl-il)
is=i+(jl-il)
ok=1
endif
else
js=j-m1
is=i-m1
ok=1
endif
e else
js=j-ml
is=i-ml
on=1
endif
eendif
subroutine symyz(j,i,jt,jh,jw,jl,it,ih,iw,il,nl,nw,nh,
+ js,is,ok,mult)
 real mult
 integer js,is,jt,jh,jw,jl,it,ih,iw,il,ok,m1,m2
 C Subroutine symyz investigates symmetry for zyz
 C If there is even symmetry, ok=1, mult=1
 C If there is odd symmetry, ok=1, mult=-1
 C called by: zyz
 C calls: none
 C C
 C m1=nl*nw
 C m2=m1*nh
 if ((jh.eq.ih).and.(jh.eq.0)) then
 if (jw.eq.0) then
 if (j.gt.(m2+l)) then
 js=j-1
 is=t-1
 ok=1
 else
 js=j-(Jl-il)
 is=t+(Jl-il)
 ok=1
 endif
 endif
 else
 if ((Jh.eq.in).end.(Jh.gt.O)) then
 is=j-m1
 is=i-n1
 ok=1
 else
 if ((Jh.ne.lh).end.(Jh.lt.Jl)) then
 if (Jh.eq.O) then
 if (j.gt.(m2+l)) then
 js=j-1
 is=t-1
 ok=1
 else
 js=j-(Jl-il)
 is=t+(Jl-il)
 ok=1
 endif
 endif
 endif
eendif
eendif
eelse
 endif
endif
is=i-m1
ok=1
endif
else
else if ((Jh.ne.ih).and.(Jh.gt.ih)) then
js=j-(jh-ih)*m1
is=i+(jh-ih)*m1
mult=-1.0
ok=1
endif
endif
endif
return
end
subroutine symzz(j,i,jt, jh, jw, jl, it, ih, iw, il, nl, nw, nh, + js, is, ok, mult)
 real mult
 integer j, i, jt, jh, jw, jl, it, ih, iw, il, ok, mi, m2, js, is
 c Subroutine symzz investigates symmetry for zzz
 c If there is even symmetry, ok=1, mult=1
 c If there is odd symmetry, ok=1, mult=-1
 c called by: zzz
 c calls: none
 c
 ml=nl=nh
 m2=mi=nh
 mult=1.0
 if ((jh.eq.ih).and.(jh.eq.0)) then
 if (jw.eq.0) then
 if (j.gt.(2*m2+1)) then
 if (il.ge.jl) then
 js=j-1
 js=1
 ok=1
 else
 js=j-(jl-il)
 is=i+(jl-il)
 ok=1
 endif
 endif
 else
 if (iw.gt.0) then
 js=j-nl
 is=i-nl
 ok=1
 else
 if (jl.gt.1) then
 if (il.gt.jl) then
 js=j-1
 is=i-1
 ok=1
 endif
 endif
 endif
 endif
 elseif ((jh.eq.ih).and.(jh.gt.0)) then
 js=j-ml
 is=i-ml
 ok=1
 else
 if ((jh.ne.ih).and.(jh.lt.ih)) then
 if (jw.eq.0) then
 if (j.gt.(2*m2+1)) then
 if (il.ge.jl) then
 js=j-1
 is=i-1
 ok=1
 endif
 endif
 else
 js=j-(jl-il)
 is=i+(jl-il)
 ok=1
 endif
 endif
 else
 js=j-ml
 is=i-ml
 ok=1
 endif
endf
subroutine gaus2(z,w)
real z(24),w(24)

Subroutine gaus2 contains the roots of 4th order
Legendre polynomial
called by: various integration routines prefixed gq

z(1) = .3399810435848560
z(2) = .8611363115940530

w(1) = .6521451548625460
w(2) = .3478548451374540

return
end
subroutine gaus4(z,w)
real z(24),w(24)
cc
cc Subroutine gaus4 contains the roots of 8th order c
cc Legendre polynomial c
cc called by: various integration routines prefixed gq c
cc
cc

z(1) = 0.1834346424956600
z(2) = 0.5285324099163290
z(3) = 0.7966664774136270
z(4) = 0.980269564975390

w(1) = 0.3626837833783620
w(2) = 0.3137066488778870
w(3) = 0.2223810344533740
w(4) = 0.1012285362903760

cc return cc
end
subroutine gaus6(z,w)
 real z(24),w(24)

 Subroutine gaus6 contains the roots of 12th order Legendre polynomial called by: various integration routines prefixed gq

 z(1) = .125233408511469
 z(2) = .367831498998180
 z(3) = .587317954286617
 z(4) = .769902674194306
 z(6) = .904117256370476
 z(6) = .981560634246719

 w(1) = .249147045813403
 w(2) = .233492538568355
 w(3) = .203167426723006
 w(4) = .1600783286543346
 w(5) = .106939325095318
 w(6) = .04717533638512

 return
end
subroutine gaus24(z,w)
 real z(24),w(24)

 Subroutine gaus24 contains the roots of 48th order
 Legendre polynomial
 called by: various integration routines prefixed gq

 z(1) = .032380170962860362033
 z(2) = .09700469209462698930
 z(3) = .16122386068851780686
 z(4) = .22473790394699061225
 z(5) = .28736248785645667736
 z(6) = .34875688292160739160
 z(7) = .408886481990716729916
 z(8) = .466902904750968404546
 z(9) = .523160974722233033878
 z(10) = .577224278083972733818
 z(11) = .626887364776513623995
 z(12) = .677787237963266930212
 z(13) = .7240341309238146474
 z(14) = .767159032615740339264
 z(15) = .80706620402426757083
 z(16) = .843588261624393530711
 z(17) = .87657202072472478865906
 z(18) = .9068791367156569672822
 z(19) = .93138669070856533114
 z(20) = .95597703160430860723
 z(21) = .97951950264427450481
 z(22) = .98412458372268677745
 z(23) = .99230172266360757648
 z(24) = .998771007262426218601

 w(1) = .06473769681263922603
 w(2) = .06446614443695050082207
 w(3) = .063924238584648188624
 w(4) = .0631141226264026667
 w(5) = .062039423159802663904
 w(6) = .0607044391656993860653
 w(7) = .05911483969383656746
 w(8) = .057277292104003216705
 w(9) = .05519950399994162866
 w(10) = .05326018948510366706
 w(11) = .0508350355385447968
 w(12) = .047616658492400474826
 w(13) = .044674560566940260419
 w(14) = .04154602943484749214
 w(15) = .03824135106583070637
 w(16) = .0347772226647704388983
 w(17) = .031167227832798088902
 w(18) = .027426059708356948200
 w(19) = .023570760839324379141
 w(20) = .01961610487385827814
 w(21) = .015579315722943848728
 w(22) = .011477234579234539490
 w(23) = .007327653901276262102
 w(24) = .00315334805230583633

 return
end
program org main
real* 8 length, width, wE, wq, hf,
+ x0, wsc, lsc, t, er,
+ lx, ly, lz, freq, xd0, lang
integer elnumc, ncl, ncw, m1, flgair, flgdip, flgms,
+ nf, mi, elnumd, md1, md2, nld, nhd, nwd

Program org organizes the output data for further analysis.
The current vector is written to the file 'cur', other data necessary for the analysis is written to the file 'dat'.
calls: orgsub

subroutine orgsub(ncl, ncw, length, width, wF, m1, elnumc, x0, lsc,
+ wsc, xd0, elnumd, flgair, flgdip, flgms, lang,
+ md1, md2, nld, nhd, nwd, t, lx, ly, lz, freq, er, nn,
+ wq, hf, nf, mi)
end

subroutine orgsub(ncl, ncw, length, width, wF, m1, elnumc, x0, lsc,
+ wsc, xd0, elnumd, flgair, flgdip, flgms, lang,
+ md1, md2, nld, nhd, nwd, t, lx, ly, lz, freq, er, nn,
+ wq, hf, nf, mi)
real* 8 length, width, h, w, pi, teta, phi, eabs(200), max, wq,
+ hu(2000), wu(2000), x0, wsc, lsc, tetdum, tc, t, er, hf,
+ lx, ly, lz, kx, kly, klz, kwf, freq, xd0, xt, kxs0, lang
complex r(nn), teta, pi, zs
integer i, j, cut, no, elnumc, dum2(2000), ncl, ncw, m1, dum(2000),
+ mi, elnumd, md1, md2, nld, nhd, nwd, nn, flgair, flgdip,
+ flgms, nf
read(5, *) r
open (unit=9, file='dat')
open (unit=2, file='cur')
write(9, *) flgair, flgdip, flgms
write(9, *) ncl, ncw, length, width, wF, m1, elnumc
write(9, *) x0, wsc, lsc, xd0, mi, lang
write(9, *) elnumd, md1, md2, nld, nhd, nwd, t
write(9, *) lx, ly, lz, freq, er
write (9, *) wq, hf, nf
if (i.le.m1) then
write(9, *) dum2(i), dum(i), wu(i), hu(i)
else
write (9, *) dum2(i)
endif
continue
write(2, *) r
continue
close(unit=9)
close(unit=2)
return
end
program pattern main
real* 8 lngth,wdth,h,w,wf,pi,teta,phi,max,wq,hf,z0,
+ hu(2000),wu(2000),xso,wsc,lsc,tetdum,tc,t,er,
+ tkl,ly,klx,ly,klz,kwf,freq,xdo,kt,xso,flang,
+ sabs(901),sabsph(901),sabsth(901),sabstph(901)
complex* 16 r(5000),steta,p1,zsteta,zphi,phi
integer i,j,cut,no,elnumc,dum2(2000),ncl,nce,ml,
+ mi,elnumd,mdl,ml2,nld,nhd,nwd,flgair,
+ flgdi,flgms
character cur*15,dat*15,hacp*15,aacp*15,haxp*15,
aexp*15
Ccc
C Program pattern computes the far-fields of the antenna
C in the E and H planes of the antenna only
C calls: fsource, farfld, ediel, calc, dipfld
Ccc
write(6,*) 'enter current and data file name'
read(5,*) cur,dat
write(6,*) 'enter ecp,hcp,exp,hxp'
read(5,*) ecp,hacp,exp,haxp
flgx=0
write(6,*)'enter 1 if x-pol is required'
write(6,*)'note: for air LQS x-pol shouldn't be requested'
write(6,*)'since it is zero, underflow may result !'
open (unit=2,file=cur)
open (unit=9,file=dat)
open (unit=3,file=hacp)
open (unit=7,file=exp)
if (flgx.eq.1) then
open (unit=33,file=haxp)
open (unit=77,file=eaxp)
endif
pi=datan(1.0d0)*4.0d0
p1=(0.0d0,1.0d0)
read(9,*) flgair,flgdi,flgms
read(9,*) ncl,ncw,lngth,wdth,wf,mi,elnumc
read(9,*) xso,wsc,lsc,xdo,mi,flang
read(9,*) elnumd,mdl,md2,nld,nhd,nwd,t
read(9,*) lx,ly,lz,freq,er
read(9,*) wq,hf,er
klx=2.0d0*pilx
kly=2.0d0*pily
klz=2.0d0*pilz
kt=2.0d0*piw
kxs=2.0d0*piw
xso=2.0d0*piw
z0=wdth*2.0d0*piw/2.0d0
do 7 j=1,4*mi+nf
if (j.le.mi) then
read(9,*) dum2(j),dum(j),wu(j),hu(j)
else
read(9,*) dum2(j)
endif
7 continue
w=lngth/dble(ncl)
h=wdth/dble(ncw)
do 10 i=1,elnumc+elnumd
read(2,*) r(i)
10 continue
max=0.0d0
205
do 836 cut=0,1
if (cut.eq.1) then
teta=90.d0
teta=teta*pi/180.d0
phi=0.d0
else
phi=0.d0
phi=phi*pi/180.d0
teta=0.d0
endif

C no=number of data points
no=360
tc=2.d0*pi/dble(no)

C do 20 j=0,no
if (cut.eq.1) then
phi=tc*dble(j)
tetdum=teta
else
teta=tc*dble(j)
if (teta.gt.pi) then
tetdum=2.d0*pi-teta
phi=pi
else
tetdum=teta
phi=0.d0
endif
endif

call the far-field calculating routine
call farfld(ncl,dum2,wdth,r,h,w,tetdum,phi,teteta,m1,pi,wf,
+wu,hu,xs0,wsc,lsc,t,er,mi,etphi,xd0,
+md1,md2,nld,klx,kly,klz,elnumc,elnumd,wq,hf,nf)
if (flgdip.eq.1) goto 892

C add the far-field of the source
call fsourc(p1,pi,tetdum,phi,kxsf,kxs0,kt,zsteta,zsfphi,
+flgms,z0)
eteta=teta-zsteta
etphi=etphi-zsfphi
892 continue
 continue
 continue

C find the max of the field and organize
if (cut.eq.1) then
eabsth(j+1)=cdabs(teteta)
if (eabsth(j+1).gt.max) max=eabsth(j+1)
if (flgx.eq.1) then
eabsph(j+1)=cdabs(eph)
if (eabsph(j+1).gt.max) max=eabsph(j+1)
endif
else
eabste(j+1)=cdabs(teteta)
if (eabste(j+1).gt.max) max=eabste(j+1)
if (flgx.eq.1) then
eabspe(j+1)=cdabs(eph)
if (eabspe(j+1).gt.max) max=eabspe(j+1)
endif
endif
20 continue
836 continue

calculate dB values and write to output files
do 836 cut=0,1
do 30 j=0,no
if (cut.eq.1) then
 eabsth(j+1)=20.0*dlog(eabsth(j+1)/max)/dlog(10.0)
if (flgx.eq.1) then
 eabsph(j+1)=20.0*dlog(eabsph(j+1)/max)/dlog(10.0)
endif
else
 eabste(j+1)=20.0*dlog(eabste(j+1)/max)/dlog(10.0)
if (flgx.eq.1) then
 eabspe(j+1)=20.0*dlog(eabspe(j+1)/max)/dlog(10.0)
endif
endif
if (cut.eq.1) then
 phi = tc*dble(j)*180.0/pi
else
 phi = tc*dble(j)*180.0/pi
endif
if (cut.eq.1) then
 write(3,* phi,eabsth(j+1)
if (flgx.eq.1) then
 write(33,* phi,eabsph(j+1)
endif
else
 write(7,* phi,eabste(j+1)
if (flgx.eq.1) then
 write(77,* phi,eabspe(j+1)
endif
continue
continue
end subroutine fsource(p1,pi,teta,phi,kwf,kxs0,kt,
+ zsteta,zsphi,flgms,z0)
real*8 pi,teta,phi,kwf,kxs0,kt,z0
complex*16 zs,pl,zsteta,zsphi
integer flgms
subroutine fsource calculates the far-fields of the source
if (flgms.eq.0) then
 zs=kwf*dsin(teta)
 zs=zs*cdexp(pl*kxs0*dsin(teta)*dcos(phi))
 zsteta=zs*cdexp(pl*kt*dsin(teta)*dsin(phi))
 zsphi=0.0
else
 zs=kt*cdexp(pl*kxs0*dsin(teta)*dcos(phi))
 zs=zs*cdexp(pl*kt/2.0*dsin(teta)*dsin(phi))
 zsteta=zs*cdcos(teta)*dsin(phi)
 zsphi=-zs*dcos(phi)
endif
return
end subroutine farfzd(ncl,dum2,wdth,r,h,w,teta,phi,eteta,m1,pi,
+ wf,wu,xs0,ws,ssc,lsc,t,er,mi,ephi,xdo,
+ md1,md2,nld,klx,kly,klz,elnumc,elnumd,wq,hf,ni)
real*8 hi,w1,h,w,teta,phi,gam,alp,y1,x1,wdth,pi,d,hh,wf,
+ i1,i2,hu(2000),hu(2000),xs0,ssc,lsc,t,er,1,xdo,
+ hfi,h11,h21,wq,hf,
+ klx,kly,klz
complex*16 r(5000),eteta,ephi,z12,r1,r2,r3,a,b
integer i,j,m1,ip,il,jj,dum2(2000),ncl,m1,
+ md1,md2,nld,elnumc,elnumd,aj,it,ih,iv,il,ni
subroutine farfld calculates the far-fields of the antenna

e地形=0.d0
ephi=0.d0

dc 10 i=1,4*m1+nf+md2
if (i.le.(4*m1+nf)) then
if (dum2(i).eq.0) goto 551
z12=0.d0
do 23 j=1,2
if (j.eq.1) then
ii=0.d0
i2=1.d0
else
ii=1.d0
i2=0.d0
endif
23
if ((i.ge.0).and.(i.le.ml)) then
gambar=pi/2.d0
alp=1.5d0*pi
ii=int((i-1)/ncl)+1
jj=i-(ii-1)*ncl
if (j.eq.1) then
w1=hu(i+1)/2.d0
hi=hu(i)
y1=dble(jj)*w
x1=wdth-dble(ii-1)*h-hu(i+1)/2.d0+w/2.d0
else
w1=hu(i+1)/2.d0
hi=hu(i+1)
y1=dble(jj)*w
x1=wdth-dble(ii-1)*h-hu(i+1)/2.d0+w/2.d0
endif
l=0.d0
endif

if ((i.gt.ml).and.(i.le.(2*ml))) then
gambar=pi/2.d0
alp=1.5d0*pi
ii=int((i-ml-1)/ncl)+1
jj=i-ml-(ii-1)*ncl
ip=i-ml-(2*ii-1)*ncl
if (j.eq.1) then
wl=hu(ip+1)/2.d0
hl=hu(ip)
y1=dble(jj)*w
x1=dble(ii)*h+hu(ip+1)/2.d0-w/2.d0
else
w1=hu(ip+1)/2.d0
hi=hu(ip+1)
y1=dble(jj)*w
x1=dble(ii)*h+hu(ip+1)/2.d0-w/2.d0
endif
l=0.d0
endif

if ((i.gt.(2*ml)).and.(i.le.(3*ml))) then
gambar=0.d0
alp=0.d0
ii=int((i-2*ml-1)/ncl)+1
jj=i-2*ml-(ii-1)*ncl
ip=i-2*ml
if (j.eq.1) then
w1=hu(ip)/2.d0
hi=hu(ip)
else
w1=0.d0
hi=0.d0
endif

endif
endif
endif
endif
calculate the distance of the monopole from the origin

d = dcos(alp) * x1 - dsin(alp) * y1
hh = dsin(alp) * x1 + dcos(alp) * y1

call dipfld(r(dum2(i)), hl, w, l, theta, phi, gam, alp,
eteta=eteta+a
ephi=ephi+b

23 continue
else

calculate the distance of dielectric current from the origin

aj=aj-4*m1-nf
it=int((aj-1)/md2)
ih=int((aj-it*md2-1)/md1)
iw=int((aj-it*md2-ih*md1-1)/nld)
il=aj-it*md2-ih*md1-iw*nld
ri=r(slnumc+aj)
r2=r(slnumc+aj+md2)
r3=r(slnumc+aj+2*md2)
d=xld0+dbl(e(il)*klx-kly/2.d0
hh=dble(iw)*kly+kly/2.d0
l=dbl(e(iw)*klx+kly/2.d0-(wdth+wf/2.d0)*2.d0*pi
call ediel(teta,phi,d,hh,1,r1,r2,r3,klx,kly,klz,a,b)
eteta=eteta+a
ephi=ephi+b
endif
continue
continue
end

subroutine ediel(teta,phi,d,hh,1,rl,r2,r3,klx,kly,klz,a,b)
real*8 teta,phi,d,hh,l,klx,kly,klz
complex*16 r,a,c,b,rl,r2,r3

subroutine ediel calculates far-fields of dielectric part

calls: calcc for the calculation of a common term

call calcc(teta,phi,klx,kly,klz,d,hh,1,c)
a=c*(dcos(teta)*dcos(phi)*rl*klx+dsin(teta)*dsin(phi)*r2*kly-
+dsin(teta)*r3*klz)
b=c*(-dsin(phi)*r1*klx+dcos(phi)*r2*kly)
return
end

subroutine calcc(teta,phi,klx,kly,klz,d,hh,1,c)
real*8 teta,phi,klx,kly,klz,d,hh,1,c1,c2,c3,c4,c5
complex*16 c,p1

subroutine calcc calculates the common term in dielectric
far-field calculations

p1=(0.d0,1.d0)
c1=d*sin(teta)*dcos(phi)+hh*dsin(teta)*dsin(phi)+l*dcos(teta)
c2=klx*dsin(teta)*dcos(phi)/2.d0
c3=1.d0
if (c2.ne.(0.d0)) c3=d*sin(c2)/c2
if (c2.ne.(0.d0)) c4=d*sin(c2)/c2
if (c2.ne.(0.d0)) c5=d*sin(c2)/c2
p2=c*exp(p1*c1)*c3*c4*c5
return
end

subroutine dipfld(r,hi,w1,d,hh,1,teta,phi,gam,alp,
+pi,eta,eph,ii,i2)
real*8 h1,w1,d,hh,1,teta,phi,gam,alp,pi,c,b,a,ii,i2,a2,h1,1
complex*16 eta,aa,pi,x,c2,q1,q2,eph
subroutine dipfld calculates the far-fields of the monopole
 currents for the conducting parts of the antenna using a
closed form formula obtained from the vector potential

 \begin{align*}
 kh1 &= 2 \pi \rho \sin \theta \\
 c &= (d \sin \phi + \rho \sin \phi) + 2 \pi \rho \\
 b &= (d \cos \phi \sin \phi - \rho \cos \phi) + \rho \cos \phi \\
 a &= \frac{d \cos \phi \sin \phi - \rho \cos \phi}{d \rho \sin \phi} \\
 p_1 &= (0, 0, 1) \\
 a_2 &= 2 \pi \rho \sin \theta \\
 q_1 &= \frac{\rho \sin \phi + \rho \sin \phi - \rho \sin \phi}{(1 - \rho^2) \sin \phi} \\
 q_2 &= \frac{\rho \cos \phi + \rho \cos \phi - \rho \cos \phi}{(1 - \rho^2) \sin \phi} \\
 \text{if } (a \neq -1) \\
 q_1 &= \frac{\rho \sin \phi + \rho \sin \phi - \rho \sin \phi}{(1 - \rho^2) \sin \phi} \\
 q_2 &= \frac{\rho \cos \phi + \rho \cos \phi - \rho \cos \phi}{(1 - \rho^2) \sin \phi} \\
 \text{end if} \\
 c_2 &= 1 \\
 \text{if } (b \neq 1) \\
 c_2 &= c_2 \sin (\sin \phi) \\
 \text{end if} \\
 \text{continue} \\
 e.p.h. &= (\rho \sin \phi \sin \phi) \\
 \text{return}
 \end{align*}
program patdd main
 real*8 length, width, h, w, pi, teta, phi, max, wq, hf,
 + h0(2000), wu(2000), xs0, wsc, lsc, tc, t, er,
 + lx, ly, ktx, kly, ktl, ktw, freq, x0, kt, kxs0, flang,
 + dcpabs(901), dxxpabs(901), phim, beta, gamma, z0
 complex*16 r(5000), eteta, pi, zsteta, zphi, edcp, edxp
 integer i, j, cut, no, enu, dum2(2000), ncl, ncv, mi, dum(2000),
 + 1i, elnumc, md1, md2, nhd, nwd, flgsair, flgdip,
 + flgairs, fflng, mi,
 + elntmd, nd2, nld, nhd, nwd, f1gair, f1gdip,
 + 1f, 51*16
character cur*16, date15, dcp*16, dxxp*16
cc
cc
 Program patdd computes the far-fields of the antenna c
 in a plane specified with the angles beta and gamma c
 beta: offset angle of TSA from the rotation axis c
 gamma: offset angle of standard gain antenna from rot. axis c
 calls: fsource, farfld, ediel, calcc, dipfld c
 ccc
write(6,*) 'enter current and data file name'
read(5,*) cur, dat
write(6,*) 'enter dcp, dxxp'
read(5,*) dcp, dxxp
open (unit=2, file=cur)
open (unit=9, file=dat)
open (unit=7, file=flgair)
pi=datan(1.d0)*4.d0
pi=(0.d0, 1.d0)
read(9,*) flgair, flgdip, flgms
read(9,*) ncl, ncv, length, width, w, mi, elnumc
read(9,*) xs0, wsc, lsc, x0, mi, flang
read(9,*) elnumc, mi, md2, nhd, nwd, t
read(9,*) lx, ly, lx, freq, er
read(9,*) wq, hf, nf
kt=2.d0*pi*lx
kt=2.d0*pi*lx
kt=2.d0*pi*lx
kt=2.d0*pi*t
kt=2.d0*pi*wf
kxs0=2.d0*pi*xs0
z0=width*2.d0*pi*ktof/2.d0
do 7 j=1,4*mi+nf
if (j .le. mi) then
 continue
else
 continue
 continue
w=length/dble(ncl)
 h=width/dble(ncw)
do 10 i=1, elnumc+elnumd
read(2,*) r(i)
10 continue
max=0.d0
write(6,*) 'Enter beta-offset angle of TSA'
read(5,*) beta
write(6,*) 'Enter gamma-offset angle of measurement ant.'
read(5,*) gam
beta=beta*pi/180.d0

212
gam=gam*pi/180.d0
no=360
tc=2.d0*pi/dble(no)
do 20 j=0,no
phim=tc*dble(j)
calculate the pattern angles as seen by LTSA
call calc(pi,phim,beta,teta,phi)
call the far-field calculating routine
call farfld(ncl,dum2,wdth,x,h,y,teta,phi,teta,m1,pi,wf,
+ wu,hu,xs0,swc,1sc,t,er,mi,phi,xd0,
+ m1,m2,nld,klx,klz,elnumc,elnumd,wq,hf,nf)
861 continue
if (flgd_p.eq.1) goto 892
add the far-field of the source
call fsource(pi,pi,teta,phi,kw,kxs0,kt,zsteta,zsphi,
+ flgs,z0)
eteta=eteta-zsteta
ephi=ephi-zsphi
892 continue
calculate the measured quantity in terms of theta and phi
components of the electric field intensity of LTSA
call meas(pi,phim,beta,gam,teta,phi,eteta,ephi,edcp,edxp)
find the max of the field and organize
dcpabs(j+1)=cdabs(edcp)
dxpabs(j+1)=cdabs(edxp)
if (dcpabs(j+1).gt.max) max=dcpabs(j+1)
if (dcpabs(j+1).gt.max) max=dxpabs(j+1)
20 continue
calculate dB values and write to output files
do 30 j=0,no
dcpabs(j+1)=20.d0*dlog(dcpabs(j+1)/max)/dlog(10.d0)
dxpabs(j+1)=20.d0*dlog(dxpabs(j+1)/max)/dlog(10.d0)
phi=tc*dble(j)*180.d0/pi
if (phi.gt.(180.d0)) phi=phi-360.d0
write(3,*) phi,dcpabs(j+1)
write(7,*) phi,dxpabs(j+1)
30 continue
end

subroutine meas(pi,phim,beta,gam,teta,phi,
+ eteta,ephi,edcp,edxp)
real*8 pi,phim,beta,gam,teta,phi,a,b,c,d,gam2
complex*16 eteta,ephi,edcp,edxp
subroutine meas
calculates the measured quantity in terms of theta and phi
components of the electric field intensity of LTSA

gam2=gam*pi/2.d0
a=-d2in(phim)*dcos(teta)*dcos(phi)
a=a+dcos(phim)*dcos(beta)*dcos(teta)*dsin(phi)
a=a-dcos(phim)*dsin(beta)*dsin(teta)
b=d2in(phim)*dsin(phi)+dcos(phim)*dcos(beta)*dcos(phi)
c=dsin(beta)*dcos(teta)*dsin(phi)+dcos(beta)*dsin(teta)
d=dsin(beta)*dcos(phi)
edcp = (a * dsin(gam) - c * dcos(gam)) * eteta
edcp = edcp + (b * dsin(gam) - d * dcos(gam)) * etphi
edxp = (a * dsin(gam2) - c * dcos(gam2)) * eteta
edxp = edxp + (b * dsin(gam2) - d * dcos(gam2)) * etphi
return
end

subroutine calc(pi, phim, beta, teta, phi, x, y, z, pl)
real*8 plLim, beta, teta, phi, x, y, z, pl
C subroutine calc calculates the pattern angles as seen by LTSA
x = dcos(phim)
y = dsin(phim) * dcos(beta)
z = dsin(phim) * dsin(beta)
if ((beta.eq.(pi/2.d0)) .and. (y.lt.(1.d-7))) then
 if (x.ge.(0.d0)) phi=0.d0
 if (x.lt.(0.d0)) phi=180.d0
else
 if (x.eq.(0.d0)) then
 if (y.gt.(0.d0)) phi=pi/2.d0
 if (y.lt.(0.d0)) phi=pi/2.d0
 else
 if ((y/x).lt.(0.d0)) then
 if (y.lt.(0.d0)) phi=datan(y/x)+pi*2.d0
 if (y.gt.(0.d0)) phi=datan(y/x)+pi
 else
 if ((y/x).eq.(0.d0)) then
 if (y.gt.(0.d0)) phi=datan(y/x)+pi/2.d0
 if (y.lt.(0.d0)) phi=datan(y/x)+pi/2.d0
 else
 if ((y/x).ge.(0.d0)) then
 if (y.lt.(0.d0)) phi=datan(y/x)+pi
 if (y.gt.(0.d0)) phi=datan(y/x)
 endif
 endif
 endif
 endif
 endif
endif
endif
teta=dacos(z)
return
tend

subroutine fsource(pi, pi, teta, phi, kwf, kxs0, kt, +
 zsteta, zsphi, flgs, z0)
real*8 pi, teta, phi, kwf, kxs0, kt, z0
complex*16 zs, pi, zsteta, zsphi
integer flgs
C subroutine fsource calculates the far-fields of the source
if (flgs.eq.0) then
 zs=kwf*dsin(teta)
 zs=zs*cdexp(pi*kx0*dsin(teta)*dcos(phi))
 zsteta=zs*cdexp(pi*kt*dsin(teta)*dcos(phi))
 zsphi=0.d0
else
 zs=kt*cdexp(pi*kx0*dsin(teta)*dcos(phi))
 zs=zs*cdexp(pi*kt*dsin(teta)*dcos(phi))
 zs=zs*cdexp(pi*kt*dsin(teta)*dcos(phi))
 zsteta=-zs*dcos(teta)*dsin(phi)
 zsphi=-zs*dcos(phi)
endif
return
tend

subroutine farfld(ncl, dum2, width, r, h, w, teta, phi, eteta, etphi, +
 mi, pi, +
 md1, md2, md, k1x, k1y, k1z, etnumc, etnumd, w, h, f, nf)
real*8 hi, h, w, teta, phi, gam, alp, y1, x1, width, pi, d, hh, wf,
C subroutine farfld calculates the far-fields of the antenna

eteta=0.d0
eph=0.d0

do 10 i=1,4*ml+nf+md2
if (i.le.(4*ml+nf)) then
if (dum2(i).eq.0) goto 551
x12=0.d0
do 23 j=1,2
if (j.eq.1) then
i1=0.d0
i2=1.d0
else
i1=1.d0
i2=0.d0
endif
if ((i.gt.ml).and.(i.le.(2*ml))) then
if ((i.ge.0).and.(i.le.ml)) then
j=pi/2.d0
alp=pi/2.d0
ii=int((i-1)/ncl)+1
jj=ii-(ii-1)*ncl
if (j.eq.1) then
wl=hu(i+1)/2.d0
h1=hu(i)
y1=dble(jj-1)*w
x1=width-dble(ii-1)*h-hu(i+1)/2.d0-wf/2.d0
else
wl=hu(i+1)/2.d0
h1=hu(i)
y1=dble(jj)*w
x1=width-dble(ii-1)*h-hu(i+1)/2.d0-wf/2.d0
endif
l=0.d0
endif
if ((i.gt.ml).and.(i.le.(2*ml))) then
i=pi/2.d0
alp=pi/2.d0
ii=int((i-ml-1)/ncl)+1
jj=ii-(ii-1)*ncl
if (j.eq.1) then
wl=hu(i+1)/2.d0
h1=hu(i)
y1=dble(jj-1)*w
x1=width-dble(ii)*h-hu(ip+1)/2.d0-wf/2.d0
else
wl=hu(ip+1)/2.d0
h1=hu(ip+1)
y1=dble(jj)*w
x1=width-dble(ii)*h-hu(ip+1)/2.d0-wf/2.d0
endif
l=0.d0
endif
if ((i.gt.(2*ml)).and.(i.le.(3*ml))) then
gam=0.d0
alp=0.d0
endif
\[ii = \text{int}((i - 2*m1 - 1)/ncl) + 1\]
\[jj = i - 2*m1 - (ii-1)*ncl\]
\[ip = i - 2*m1\]

if (j.eq.1) then
\[wi = \text{wu}(ip)/2.0\]
\[hi = \text{hu}(ip)\]
\[xi = \text{dble}(jj-1)*w + \text{wu}(ip)/2.0\]
\[yi = \text{dble}(ii-1)*h - \text{wth} - \text{wf}/2.0\]
else
\[wi = \text{wu}(ip+ncl)/2.0\]
\[hi = \text{hu}(ip+ncl)\]
\[xi = \text{dble}(jj-1)*w + \text{wu}(ip+ncl)/2.0\]
\[yi = \text{dble}(ii)*h - \text{wth} - \text{wf}/2.0\]
endif
l=0.d0
endif

if (i.eq.(4-ml)) then
\[gam = 0.0\]
\[alp = 0.0\]
\[wi = sc\]
\[hi = sc\]
if (j.eq.1) then
\[xi = wi\]
\[yi = hi\]
else
\[xi = wi\]
\[yi = 0.d0\]
endif
l=0.d0
endif

if ((i.gt.(3*m1)).and.(i.le.(4*m1))) then
\[gam = 0.0\]
\[alp = 0.0\]
\[ii = \text{int}((i - 3*m1 - 1)/ncl) + 1\]
\[jj = i - 3*m1 - (ii-1)*ncl\]
\[ip = i - (2*ii-1)*ncl - 2*m1\]
if (j.eq.1) then
\[wi = \text{wu}(ip)/2.0\]
\[hi = \text{hu}(ip)\]
\[xi = \text{dble}(jj)*w + \text{wu}(ip)/2.0\]
\[yi = \text{dble}(ii)*h - \text{hu}(ip) + \text{wf}/2.0\]
else
\[wi = \text{wu}(ip+ncl)/2.0\]
\[hi = \text{hu}(ip+ncl)\]
\[xi = \text{dble}(jj)*w + \text{wu}(ip+ncl)/2.0\]
\[yi = \text{dble}(ii)*h + \text{wf}/2.0\]
endif
l=0.d0
endif

if ((i.gt.(4*m1)).and.(i.le.(4*m1+nf))) then
\[gam = 0.0\]
\[alp = 0.0\]
\[ii = i - 4*m1 - 1\]
\[wi = sq/2.0\]
\[hi = hf\]
if (j.eq.1) then
\[xi = xs0\]
\[yi = \text{dble}(ii-1)*hf - \text{wth} - \text{wf}/2.0\]
else
\[xi = xs0\]
\[yi = \text{dble}(ii)*hf - \text{wth} - \text{wf}/2.0\]
endif
l=t
calculate the distance of the monopole from the origin

d = dcos(alp) * x1 - dsin(alp) * y1
hh = dsin(alp) * x1 + dcos(alp) * y1

call dipfld(r(dum2(i)), h1, w1, d, hh, l, teta, phi, gam, alp, + pi, a, b, i1, i2)
eteta = eteta + a
ephi = ephi + b

continue

else

calculate the distance of dielectric current from the origin

aj = i - 4 * ml - nf
it = int(0.5 * (aj - 1) / md2)
h1 = int(0.5 * (aj - it + md2 - 1) / md1)
iw = int(0.5 * (aj - it + md2 - 1 - nh + md1 - 1) / nld)
il = aj - it + md2 - ih + md1 - iw + nld
rl = r(elnumc + aj)
r2 = r(elnumc + aj + md2)
r3 = r(elnumc + aj + 2 * md2)
d = x0 + dble(Il) * klx - kly / 2.0
hh = dble(Ih) * kly + kly / 2.0
1 = dble(Iw) * klz - kly / 2.0 - (width + w2) / 2.0 * pi

call ediel(teta, phi, d, hh, l, r1, r2, r3, klx, kly, kly, a, b)
eteta = eteta + a
ephi = ephi + b

endif

561 continue
10 continue
return
end

subroutine ediel(teta, phi, d, hh, l, r1, r2, r3, klx, kly, kly, a, b)
real*8 teta, phi, d, hh, l, klx, kly, kly
complex*16 c, pl

subroutine ediel calculates far-fields of dielectric part

calls: calcc for the calculation of a common term

call calcc(teta, phi, klx, kly, kly, d, hh, l, c)
a = c * (dsin(teta) * dcos(phi) * r1 * klx + dcos(teta) * dsin(phi) * r2 * kly + dsin(teta) * r3 * kly)
b = c * (-dsin(phi) * r1 * klx + dcos(phi) * r2 * kly)
return
end

subroutine calcc(teta, phi, klx, kly, kly, d, hh, l, c)
real*8 teta, phi, klx, kly, kly, d, hh, l, c1, c2, c3, c4, c5
complex*16 c, pi

subroutine calcc calculates the common term in dielectric

far-field calculations

pi = (0.0, 1.0)
c1 = dcos(teta) * dcos(phi) + hh * dcos(teta) * dsin(phi) + 1 * dcos(teta)
c2 = kly * dcos(teta) * dsin(phi) / 2.0

c3 = 1.0
if c2 .ne. (0.0) c3 = dcos(c2) / c2

c2 = kly * dcos(teta) * dsin(phi) / 2.0

c4 = 1.0
if c2 .ne. (0.0) c4 = dcos(c2) / c2

c2 = kly * dcos(teta) / 2.0

c5 = 1.0
if c2 .ne. (0.0) c5 = dcos(c2) / c2

c = c * exp(pi * c1 * c3 * c4 * c5)
return
subroutine dipfld calculates the far-fields of the monopole currents for the conducting parts of the antenna using a closed form formula obtained from the vector potential formulation

\[
\begin{align*}
 k_{hl} &= 2.0 \times \pi \times h1 \\
 c &= (d \times \sin(teta) \times \cos(phi) + hh \times \cos(teta) + \\
 &\quad l \times \sin(teta) \times \sin(phi) - h1 \times \sin(teta) \times \sin(phi)) \times 2.0 \times \pi \\
 a &= \cos(alp) \times \sin(teta) \times \cos(phi) - \sin(alp) \times \sin(teta) \times \cos(phi) \\
 a1 &= (0.0, 1.0) \\
 a2 &= 2.0 \times \pi \times a \\
 q1 &= i1 \times (\cos(a2 \times h1) - dcos(khl) + p1 \times \sin(a2 \times h1) - p1 \times \sin(khl)) \\
 q2 &= c \times \exp(p1 \times a2 \times h1) \times (p1 \times \sin(h1) - dcos(khl)) \\
 \text{if } (a \neq (-1.0, 0.0)) \text{ and } (a \neq (1.0, 0.0)) \text{ then} \\
 q1 &= q1 / ((1.0 - a^2) \times \sin(khl)) \\
 q2 &= i2 \times (q2 + 1.0) / ((1.0 - a^2) \times \sin(khl)) \\
 \text{else} \\
 q1 &= -khl \times \sin(a \times khl) + pl \times \sin(khl) \\
 q2 &= i2 \times q2 / (-2.0 \times a \times \sin(khl)) \\
 \text{endif} \\
 a &= \exp(p1 \times c) \\
 c2 &= 1.0 \\
 \text{if } (b > 1.0) \text{ and } (0.0) \text{ then} \\
 c2 &= c2 \times \sin(w1 \times b) / (w1 \times b) \\
 \text{endif} \\
 a &= a \times c2 \times (q1 + q2) \times r \\
 ete &= a \times (-\cos(teta) \times \cos(phi) \times \sin(alp) - \cos(alp) \times \sin(teta)) \\
 \text{continue} \\
 eph &= a \times (\sin(phi) \times \sin(alp)) \\
\end{align*}
\]

return