CAPACITY RECOVERY AFTER STORAGE
Negatively Precharged Nickel Hydrogen Cells

John E. Lowery
NASA, Marshall Space Flight Center
Recovery of Capacity Lost During Open Circuit Storage of Negatively Precharged Nickel Hydrogen Battery Cells

- During Storage, NiH2 Cells Experience Loss in Useable Capacity.

- Cells from all Manufacturers exhibit losses.

- Loss Due to Cobalt Migration?

- Extent of Migration and the Ability to recover are function of the Length of Storage Period.

- Attempt to quantify amount of useable capacity that may be recovered and propose a timely procedure for the recovery.
Test Cells

- Four EPI RNH 90-3, TM2 Lot.
- Air Force Design, Pineapple Slice, Neg Precharge.
- Acceptance Test Procedure after build.
- 41 Months Open Circuit Storage at 0 deg C.
Eagle Picher RNH-90-3

Developed for the Hubble Space Telescope
RECOVERY PROCEDURE

- Cells Initially discharged (OCV < .2 V).
- Temp stabilized at 0 deg C.
- Baseline Charge, 160% of C rating in 24 hours:
 - C/10 (9.3 A) for 10 hours.
 - C/22.5 (4 A) for 14 hours.
- Raise Temp to room level.
- Allow to sit open circuit for 14 - 16 days.
- Lower Temp to 0 deg C.
- Discharge cells at C/6 (15 A) to 1.0 V/cell.
- Recondition cells 12 - 16 hours (V < .2).
- Baseline charge cells and allow to stabilize 1 hour.
- Discharge cells at C/6 (15 A) to 1.0 V/cell.
- Capacity is measured at 1.0 V/cell.
Capacity Gain from Open Circuit Stand
EPI RNH 90-3

Fig. 1.
Capacity Gain from OC Stand

EPI RNH 90-3

Cap Gain During OC Stand (Ahrs)

<table>
<thead>
<tr>
<th>S/N</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>11.44</td>
<td>8.33</td>
<td>6.37</td>
<td>1.40</td>
<td>1.02</td>
</tr>
<tr>
<td>113</td>
<td>7.22</td>
<td>4.31</td>
<td>4.84</td>
<td>2.28</td>
<td>1.32</td>
</tr>
<tr>
<td>119</td>
<td>12.62</td>
<td>8.36</td>
<td>3.85</td>
<td>1.90</td>
<td>0.63</td>
</tr>
<tr>
<td>120</td>
<td>18.28</td>
<td>1.65</td>
<td>3.90</td>
<td>3.85</td>
<td>0.88</td>
</tr>
</tbody>
</table>

41 Months Storage

Fig. 2.
Capacity Loss from Acceptance Test Value

EPI RNH 90-3

Capacity Loss (Ampere Hours)

-28.9 -22.27 -32.02 -32.78

S/N 110 S/N 113 S/N 119 S/N 120

Storage 1st
3rd 2nd
4th 5th

41 Months Storage

Fig. 3.
Present Capacity as % of Acceptance Test Value

EPI RHN 90-3

![Bar Chart]

Fig. 4.
STORAGE

Open Circuit vs. 3/4 Volt at 0 deg?

- 2 Cells OC:
 - S/N 119, 120.
- 2 Cells in series at 1.5 V:
 - S/N 110 - 1.32 V, S/N 113 - .18 V.
 - 1 month in series
- Divide equally at 1.1 V/cell.
- 2 Cells paralleled at .75 V:
 - S/N 110 - .75 V, S/N 113 - .75 V.
 - 1.5 months paralleled.

- Question??? Do cells retain their recovered capacity upon cycling?
Capacity Behavior After Initial Recovery

EPI RNH 90-3

Fig. 5.

-287-

Nickel-Hydrogen Storage / Capacity Fade Session

1992 NASA Aerospace Battery Workshop
CONCLUSIONS

- Capacity lost during storage can be regained as useable capacity.

- Storage conditions did not appear to effect ability to retain capacity.

- Useable capacity lost cannot be regained a second time.

- Future Plan is to LEO cycle cells to investigate capacity retention during cycling.
QUALIFICATION NiH2 CPV BATTERY

CAPACITY (AMPERE-HOURS)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Qualification Random Vibration
Qualification Thermal Vacuum Test
QUALIFICATION NiH2 CPV BATTERY

CAPACITY (AMPERE-HOURS)

Spacecraft Integration Testing

20 Day Open Circuit Stand @ 10°C

30 Day Open Circuit Stand @ 20°C

1992 NASA Aerospace Battery Workshop
Nickel-Hydrogen Storage / Capacity Fade Session