Bipolar Rechargeable Lithium Battery
For High Power Applications

Presented to the
NASA Aerospace Battery Workshop
NOVEMBER 17–19, 1992

U.S. Space and Rocket Center
Huntsville AL
S. Hossain, G. Kozlowski and F. Goebel

Yardney Technical Products, Inc.
82 MECHANIC STREET, PAWCATUCK CT 06379
Anode or Negative Electrode : Li
Cathode or Positive Electrode : CuCl₂
Electrolyte : SO₂ based LiAlCl₄
OCV : 3.45V versus Li
NO organic electrolytes offer as high conductivity as SO$_2$-based electrolytes

Vapor-pressure lower than atmospheric pressure can be achieved with SO₂-based electrolytes.

Vapor Pressures of LiAlCl₄/SO₂ Electrolytes at Various Temperatures

SO$_2$ based Li–ion conducting electrolytes offer several advantages

- High ionic conductivity ($1 \cdot 1 \times 10^{-2}$ S cm$^{-1}$)
- Excellent electrochemical voltage window
- Limited overcharge tolerance
- Very low shelf–discharge rate (<0.1% per month)
- Insignificant Li–anode passivation
Bipolar Rechargeable Lithium Battery: REACTION MECHANISMS

The use of high surface area carbon and SO$_2$—based LiAlCl$_4$ electrolyte provides extra capacity before SO$_2$—reduction occurs.

Discharge

Anode: \(\text{Li} \rightarrow \text{Li}^+ + e^- \)

Cathode:

1. \(\text{Cu}^{++} + e^- \rightarrow \text{Cu}^+ \text{ (\sim 3.4 versus Li)} \)

2. \(\text{LiAlCl}_4 \cdot 3\text{SO}_2 + x\text{C} + 3e^- \rightarrow \text{LiClAl} \) \(\text{OSO} \)

3. \(2\text{SO}_2 + 2e^- \rightarrow \text{S}_2\text{O}_4^{2-} \text{ (\sim 2.8V versus Li)} \)

4. \(\text{Cu}^+ + e^- \rightarrow \text{Cu}^0 \text{ (\sim 2.5V versus Li)} \)

Charge

Anode: \(\text{Li}^+ + e^- \rightarrow \text{Li} \)

Cathode: \(\text{Cu}^+ \rightarrow \text{Cu}^{++} + e^- \text{ (\sim 3.5V versus Li)} \)

\(\text{LiClAl(OSO)}_3 \cdot x\text{C} + 3\text{Cl}^- \rightarrow \text{LiAlCl}_4 \cdot 3\text{SO}_2 + x\text{C} + 3e^- \text{ (\sim 3.65V versus Li)} \)

\(\text{LiAlCl}_4 \rightarrow \text{Li}^+ + \text{AlCl}_3 + \frac{1}{2}\text{Cl}_2 + e^- \text{ (\sim 3.9V versus Li)} \)
Discharge/charge behavior of a Li/CuCl$_2$ cell in LiAlCl$_4$·6SO$_2$ electrolyte at 1mA/cm2
Discharge/charge behavior of a Li/CuCl₂ cell in LiAlCl₄•6SO₂ electrolyte at 1mA/cm²
Discharge behavior of a Li/CuCl$_2$ rechargeable cell in LiAlCl$_4$·6SO$_2$ electrolyte at 1mA/cm2
Li/CuCl₂ Rechargeable Cells: CYCLING BEHAVIOR

Charge behavior of a Li/CuCl₂ cell in LiAlCl₄·6SO₂ at 1mA/cm²
Coulombic efficiency of 1 shows excellent cycling behavior.

Coulombic efficiency of a Li/Cl\textsubscript{2} cell at 1mA/cm2 discharge/charge rate.
Discharge/charge behavior of a Li/CuCl₂ cell at 40mA/cm² discharge for 20 seconds and 4.44mA/cm² charge for 180 seconds.
Cycle number vs capacity of a Li/LuCl$_2$ cell at 40mA/cm2 discharge for 20 seconds and 4.44mA/cm2 charge for 180 seconds. Voltage limits 2.5–4.0 V.
Discharge/charge behavior of a Li/CuCl₂ cell at 50mA/cm² discharge for 20 seconds and 5.56mA/cm² charge for 180 seconds.
Discharge/charge behavior of a Li/CuCl₂ cell at 50mA/cm² discharge for 20 seconds and 5.56mA/cm² charge for 180 seconds.
Cycle number vs capacity of a Li/CuCl₂ cell at 50mA/cm² discharge and 5.56mA/cm² charge for 180 seconds. Voltage limits: 2.5–4.0 V.
Coulombic efficiency of a Li/CuCl$_2$ cell discharged at 50mA/cm2 for 20 seconds and charged at 5.56mA/cm2 for 180 seconds
Discharge/charge behavior of a Li/CuCl$_2$ cell at 50mA/cm2 discharge for 20 seconds and 5.56mA/cm2 charge for 180 seconds
Discharge/charge behavior of a Li/CuCl₂ cell at 50mA/cm² discharge for 20 seconds and 5.56mA/cm² charge for 180 seconds
Bipolar Lithium Rechargeable Batteries: CYCLE LIFE

Cycle number vs capacity of a Li/LuCl₂ cell at 50mA/cm² discharge for 20 seconds and 5.56mA/cm² charge for 180 seconds.
Voltage limits 2.5–4.0 V.
Coulombic efficiency of a Li/CuCl₂ cell discharged at 50mA/cm² for 20 seconds and charged at 5.56mA/cm² for 180 seconds
Bipolar Lithium Rechargeable Batteries: CELL ASSEMBLY

1. Nickel substrate
2. Carbon/TFE undercoat
3. Tefzel insulator
4. Anode and cathode
5. Fill tube and separator
6. Stack sealed except in fill tube area, then activated. Final.

BIPOLAR STACK ASSEMBLY SEQUENCE
Discharge/charge behavior of a bipolar Li/CuCl$_2$ battery (4-cell stack) at 50mA/cm2 discharge for 20 seconds and 5.56mA/cm2 charge for 180 seconds. Voltage limits 10.0–16.0 V.
Bipolar Rechargeable Lithium Battery

Based on the present state-of-the-art of bipolar rechargeable lithium batteries, a cumulative specific power of 1mW/kg and specific energy of 6kWh/kg can be achieved

Develpment of a 270V bipolar rechargeable battery

Requirements:

- Discharge: 20 seconds at 50mA/cm² (Total = 30A)
- Average operating voltage: 270 V
- Charge: 180 seconds at 5.56mA/cm² (Total=3.33A)
- Charge cut-off voltage: 360 V
- Total number of cycles: 800 cycles

Total weight of bipolar battery: 6 kg

\[
\text{Specific Power} = \frac{270 \times 30}{6} \text{ W/kg} = 1.35 \text{kW/kg}
\]