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A New Method for Recognizing Quadric Surfaces from Range Data and
Its Application to Telerobotics and Automation
(phase II)

by

Nicolas Alvertos* and Ivan D’Cunha**

Abstract

The problem of recognizing and positioning of objects in three-dimensional space
is important for robotics and navigation applications. In recent years, digital range
data, also referred to as range images or depth maps, have been available for the
analysis of three-dimensional objects owing to the development of several active range
finding techniques. The distinct advantage of range images is the explicitness of the
surface information available. Many industrial and navigational robotics tasks will be

more easily accomplished if such explicit information can be efficiently interpreted.

In this research, a new technique based on analytic geometry for the recognition
and description of three-dimensional quadric surfaces from range images is pressented.
Beginning with the explicit representation of quadrics, a set of ten coefficients are
determined for various three-dimensional surfaces. For each quadric surface, a unique
set of two-dimensional curves which serve as a feature set is obtained from the various
angles at which the object is intersected with a plane. Based on a discriminant

method, each of the curves is classified as a parabola, circle, ellipse, hyperbola, or a
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line. Each quadric surface is shown to be uniquely characterized by a set of these

two-dimensional curves, thus allowing discrimination from the others.

Before the recognition process can be implemented, the range data have to
undergo a set of pre-processing operations, thereby making it more presentable to
classification algorithms. One such pre-processing step is to study the effect of median
filtering on raw range images. Utilizing a variety of surface curvature techniques, reli-
able sets of image data that approximate the shape of a quadric surface are determined.
Since the initial orientation of the surfaces is unknown, a new technique is developed
wherein all the rotation parameters are determined and subsequently eliminated. This

approach enables us to position the quadric surfaces in a desired coordinate system.

Experiments were conducted on raw range images of spheres, cylinders, and
cones. Experiments were also performed on simulated data for surfaces such as hyper-
boloids of one and two sheets, elliptical and hyperbolic paraboloids, elliptical and
hyperbolic cylinders, ellipsoids and the quadric cones. Both the real and simulated
data yielded excellent results. Our approach is found to be more accurate and compu-
tationally inexpensive as compared to traditional approaches, such as the three-

dimensional discriminant approach which involves evaluation of the rank of a matrix.

Finally, we have proposed one other new approach, which involves the formula-
tion of a mapping between the explicit and implicit forms of representing quadric sur-
faces. This approach, when fully realized, will yield a three-dimensional discriminant,
which will recognize quadric surfaces based upon their component surface patches.
This approach is faster than prior approaches and at the same time is invariant to pose

and orientation of the surfaces in three-dimensional space.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

One of the most important tasks in computer vision is that of three-dimensional
object recognition. Success has been limited to the recognition of symmetric objects.
Recently, research has concentrated on the recognition of small numbers of asymmetric
objects as well as objects placed in complex scenes. Unlike the recognition procedure
developed for intensity-based images, the recent development of active and passive
sensors extracting quality range information has led to the involvement of explicit
geometric representations of the objects for the recognition schemes [1, 2]. Location
and description of three-dimensional objects from natural light images are often
difficult to determine. However, range images give a more detailed and direct
geometric description of the shape of the three-dimensional object. A brief introduc-
tion to range images and the laser range-finder is presented in Section 1.2. In Section
1.3, a precise global definition of the object recognition problem is discussed. The
objective of this dissertation and its relevance to the global three-dimensional problem

is presented in Section 1.4.

1.2 Range Image and Data Acquisition

Range images share the same format as intensity images, i.e., both of these
images are two-dimensional arrays of numbers, the only difference being that the
numbers in the range images represent the distances between a sensor focal plane to
points in space. The laser range-finder or tracker [3] is currently the most widely used

sensor. The laser range-finder makes use of a laser beam which scans the surfaces in



the scene of observation from left to right and top to bottom. Thus the distances
obtained measure both depth and scanning angle. The principle of triangulation is util-
ized to obtain the three-dimensional coordinate of each pixel. Unless a specific algo-
rithm demands a special form of the range images, it is usually this depth information
which is utilized for the recognition process. Active triangulation techniques use an
extra source of light to project some pattern onto the objects to be measured, thereby
reducing complexity of the stereo matching problem [4, 5]. Many industrial and navi-
gational robotic tasks such as target identification and tracking, automated assembly,
bin picking, mobile robots, etc., will be better accomplished if such explicit depth

information can be efficiently obtained and accurately interpreted.

Modeling human vision is a complex process. To date, machine vision systems
can hardly perform a fraction of the capabilities of the human visual system. An
efficient mechanism which can acquire relevant information from the three-dimensional
world and subsequently form models of the real world will, to some extent, bridge the

gap between machine and human capabilities.

1.3 Definition of the Object Recognition Problem

Three-dimensional object recognition is vast problem. In the course of the

succeeding text, we will give a somewhat precise definition of this problem.

In the real world, the things human see and feel are primarily solid objects.
When people view objects for the first time, they attempt to collect information from
various aspects of the object. This process of collecting and forming information
about unknown objects is known as model formation [8]. After gaining familiarity
with many objects, we are able to identify objects from any arbitrary viewpoint

without further investigation.

The human vision system has the capability of analyzing and determining not

only the color but also the spatial orientation of objects relative to a fixed coordinate



system. Since we are interested in an automatic, computerized process to recognize
objects, the input data we use must be compatible with available digital computers.
Hence, two-dimensional matrices of numerical values usually known as digitized sen-
sor data, constitute the information that is processed to describe or recognize three-
dimensional objects. The sensor used for this process can be a passive sensor, like a
camera, or an active sensor, such as a laser range mapper. Summarizing, the three-
dimensional recognition problem constitutes a detailed completion of model formation
of the object leading to an in-depth knowledge of its shape and orientation with respect

to a fixed view of the real world.

1.4 Objectives and Organization of the Report

An approach based on two-dimensional analytic geometry 1o recognize a series of
three-dimensional objects is presented in this research. Among the various three-
dimensional objects considered are the hyperboloids of one and two sheets, ellipsoids,
spheres, circular and elliptical quadric cones, circular and elliptical cylinders, parabolic

and hyperbolic cylinders, elliptic and hyperbolic paraboloids, and parallelepipeds.

The difficulties in recognizing three-dimensional objects stems from the complex-
ity of the scene, the number of objects in the database and the lack of a priori infor-
mation about the scene. Techniques vary based upon the difficulty of the recognition

problem. In our case we attempt to recognize segmented objects in range images.

Location and orientation of three-dimensional objects has always been the most
complex issue in many computer vision applications. Algorithms for a robust three-
dimensional recognition system must be view-independent. Herein, we have developed
a technique to determine the three-dimensional object location and orientation in range
images. Once the object lies in a desired stable rest position, our proposed recognition
scheme quickly and accurately classifies it as one of the objects mentioned above. In

comparison to most of the present day methods utilized for range image object



recognition, our proposed approach attacks the problem in a different manner and is

computationally inexpensive.

Chapter Two rteviews some of the earlier and current work in this area. It
includes a review of some of the mathematical concepts associated with three-
dimensional object recognition. A mathematical quadric classification method based
on a three-dimensional discriminant is discussed while in this chapter. In chapters
Three and Four we discuss, in detail, our proposed three-dimensional approach.
Chapter Three addresses the various pre-processings steps involved prior to the appli-
cation of the recognition algorithm. Median filtering, segmentation, three-dimensional
coefficient evaluation, and rotation alignment being some of them. The demerits of
existing schemes in the area of three-dimensional object recognition and the unique-
ness and improvizations brought about through our recognition procedures are also dis-
cussed in Chapter Three. In Chapter Four, after a brief discussion of the practical
merits of using planar intersections, characteristic feature vectors are obtained for each
of the quadric surfaces under investigation. Results are summarized in Chapter Five.
A large set of real range images of spheres, cylinders, and cones were utilized to test
the proposed recognition scheme. Results obtained for simulated data of other quadric
surfaces, namely, hyperboloids and paraboloids are also tabulated in Chapter Five.

Chapter Six concludes with a discussion of possible areas for future investigation.



CHAPTER TWO
BACKGROUND

2.1 Introduction

Past and present research in the field of three-dimensional object recognition is
reviewed in Section 2.2. Surface curvatures which are widely utilized in this research
area are briefly reviewed in Section 2.3. Section 2.4 investigates a three-dimensional
approach to classification and reduction of quadrics as presented by Olmstead [24],
wherein various invariant features of the quadratic form under translation and rotation

are discussed.

2.2 Literature Review

Many of the currently available techniques for describing and recognizing three-
dimensional objects are based on the principle of segmentation. Segmentation is the
process in which range data is divided into smaller regions (mostly squares) [4].
These small regions are approximated as planar surfaces or curved surfaces based upon
the surface mean and Gausssian curvatures. Regions sharing similar curvatures are
subsequently merged. This process is known as region growing. Other approaches
[6-10] characterize the surface shapes while dealing with the three-dimensional recog-
nition problem. Levine et al. [11] briefly review various works in the field of segmen-
tation, where segmentation has been classified into region-based and edge-based
approaches. Again surface curvatures play an important role for characterization in

each of these approaches.

Grimson et al. [12] discuss a scheme utilizing local measurements of three-

dimensional positions and surface normals to identify and locate objects from a known



set. Objects are modeled as polyhedra with a set number of degrees of freedom with
respect to the sensors. The authors claim a low computational cost for their algorithm.
Although they have limited the experiments to one model, i.e., data obtained from one
object, they claim that the algorithm can be used for multiple object models. Also,
only polyhedral objects with a sufficient number of planar surfaces can be used in their

scheme.

Another paper by Faugeras et al. [13] describes surfaces by curves and patches
which are further represented using linear parameters such as points, lines and planes.
Their algorithm initially reconstructs objects from range data and consequently utilizes
certain constraints of rigidity to recognize objects while positioning. They arrive at the
conclusion that for an object to be recognized, at least a certain area of the object
should be visible (approx. 50%). They claim their approach could be used for images

obtained using ultrasound, stereo, and tactile sensors.

Hu and Stockman [14] have employed structured light as a technique for three-
dimensional surface recognition. The objects are illuminated using a controlled light
source of a regular pattern, thereby creating artificial features on the surfaces which are
consequently extracted. They claim to have solved the problem known as "grid line
identification.” From the general constraints, a set of geometric and topological rules
are obtained which are effectively utilized in the computation of grid labels which are
further used for finding three-dimensional surface solutions. Their results infer that
consistent surface solutions are obtained very fast with good accuracy using a single
image.

Recognition of polyhedral objects involves the projection of several invariant
features of three-dimensional bodies onto two-dimensional planes [15]. Recently,
recognition of three-dimensional objects based upon their representation as a linear
combination of two-dimensional images has been investigated [16]. Transformations

such as rotation and translation have been considered for three-dimensional objects in



terms of the linear combination of a series of two-dimensional views of the objects.
Instead of using transformations in three-dimensions, it has been shown that the pro-
cess is the equivalent of obtaining two-dimensional transformations of several two-
dimensional images of the objects and combining them together to obtain the three-

dimensional transformation. This procedure appears computationally intensive.

Most of the techniques and algorithms mentioned above have a common criterion
for classifying the three-dimensional objects in the final phase. They have a database
of all the objects they are trying to recognize and hence try to match features from the

test samples to the features of the objects in the database.

Fan et al. [17] use graph theory for decomposing segmentations into subgroups
corresponding to different objects. Matching of the test objects with the objects in the
database is performed in three steps: the screener, which makes an initial guess for
each object; the graph matcher, which conducts an exhaustive comparison between
potential matching graphs and computes three-dimensional transformation between
them; and finally, the anallyzer, which based upon the results from the earlier two
modules conducts a split and merge of the object graphs. The distinguishing aspect of
this scheme is that the authors used occluded objects for describing their proposed

method.

As has been mentioned, most of the present research on three-dimensional objects
utilize range imagery rather than stereo images. But at the same time, it should be
noted that it was stereo imagery which, to a large extent, was initially used to investi-

gate the problem of three-dimensional object recognition.

Forsyth et al. [18] use stereo images to obtain a range of invariant descriptors in
three-dimensional model-based vision. Initially, they demonstrate a model-based
vision system that recognizes curved plane objects irrespective of the pose. Based
upon image data, models are constructed for each object and the pose is computed.

However, they mainly describe three-dimensional objects with planar faces.



Lee and Hahn [19] have actually dealt with an optimal sensing strategy. Their
main objective is to obtain valuable and effective data or information from three-
dimensional objects, which subsequently could be used to describe and recognize
natural quadric surfaces. Other works on stereo vision can be found in references 20,
21, 22 and 23.

The visible-invariant surface characteristics mentioned before are the Gaussian
curvature (K) and the mean curvature (H), which are referred to collectively as surface
curvatures. Mean curvature is an extrinsic surface property, whereas Gaussian curva-
ture is intrinsic. In the following section we briefly describe these two widely used

invariant surface characteristics for three-dimensional objects.

2.3 Differential Geometry of Surfaces: Mean and Gaussian Curvatures

Mean and Gaussian curvatures [8] are identified as the local second-order surface
characteristics that possess several desirable invariance properties and represent extrin-
sic and intrinsic surface geometry, respectively. The explicit parametric form of a gen-
eral surface S in E> (three-dimensional Euclidean space) with respect to a known

coordinate system is given as

S = {(X(u,V), y(u,v), z(u,v)): (u,v) € D}, 2.1
where D is any surface patch and is a subset of E%.

However if the depth maps are assumed to be in the form of a graph surface

(Monge patch surface) [8], then S can be written as

S= {(x,y,Z(x,y)), (x,y) € D},

where z(x,y) is the depth at a point (x,y) in a given range image.



The representations for the Gaussian and the mean curvatures are as follows:

Gaussian curvature, K, is defined by, 2.2)
2
0%z
9%z 9%z oxdy
x: oyt z
Y e & &y
dx dy
Mean curvature, H, is defined by, 2.3)
2
% (o], 2 22 2%

2 2 2 2 2 |9x| “ox "9y oxd
S P P |af o
ox ady ox 21+_a_z_+_éz_

ox dy

dy
Both of these curvatures are invariant to translation and rotation of the object as long
as the object surface is visible.

Based upon the sign of the Gaussian curvature, individual points in the surface
are locally classified into three surface types as shown in Figure 2-1:

(a) K >0 implies an elliptic surface point,

(b) K < 0 implies a hyperbolic surface point, and

(c) K =0 implies a parabolic surface point.

Besl and Jain in their paper [8] have shown that the Gausssian and mean curva-
tures together can be utilized to give a set of eight different surfaces as shown in Fig-
ure 2-2:

1) H<Oand K >0 implies a peak surface.

2) H>0and K >0 implies a pit surface.

3) H< Oand K =0 implies a ridge surface.

4) H>0and K =0 implies a valley surface.
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(b) Hyperbolic point (K <0)

|
Vol anss

(a) Elliptic point (K > 0) (c) Parabolic point (k = 0)

Figure 2-1. Shape of a surface in the vicinity of an elliptic, hyperbolic, and parabolic
point.



Peak Surface H<0,K >0

Flat Surface H=0,K =0

-

[

Pit Surface H>0,K >0

Minimal Surface H=0,K <0

7

Ridge Surface H<0,K=0

[

Saddle Ridge H <0, K <0

Valley Surface H>0,K =0

P

Saddle Valley H>0,K <0

=

(ON

Figure 2-2. A set of eight view-independent surface types for a visible surface.
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5) H=0and K =0 implies a flat surface.
6) H=0and K <0 implies a minimal surface.
7) H<0and K <0 implies a saddle ridge surface.

8) H> 0and K <0 implies a saddle valley surface.

2.4 Three-Dimensional Discriminant

In this section we investigate a three-dimensional approach to classification and
reduction of quadrics as presented by Olmstead [24], which looks into the invariants of

the quadratic form under translation and rotation of three-dimensional objects.

The general quadric surface of second degree in the three variables x, y, and z

can be written in the form

F(x,y,z) = ax? + by? + cz? + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d=0

Associated with F(x,y,z) are two matrices: e and E, where

ahg
e=|hbf
f ¢

and

ahgop
Ezhbfq_
g fcr
qrd

Let the determinant of E be denoted by A, and the determinant of e be denoted
by D. Also let the cofactors of each element of A be denoted by the corresponding
capital letters. Three-dimensional surfaces are classified as singular or non-singular,
based upon E being singular or non-singular. Examples of non-singular surfaces are

ellipsoids, hyperboloids, and paraboloids. The other quadrics are singular.
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Let us now consider the two basic ransformations, namely translation and rota-
tion, and try to arrive at some invariant features. Consider the two rectangular right-
handed coordinate systems as shown in Figure 2-3. Any point in space has two sets of
coordinates, one for each set of axes. The problem is to find a relationship between
these two sets of coordinates so that one can convert from one coordinate system to

the other.

2.4.1 Translation

Inspecting Figure 2-4, we see that the coordinates of O’ and P in the xyz sys-
tem are (X, YoZo) and (X,y,z), respectively, and the coordinates of P in the x'y’z’ sys-
tem are (x’,y’,z"). The two sets of coordinates of P are related by the following trans-

lation equations:

x =% + X, 24)
y=y + Y, (2.5)
z=17+z, (2.6)

The set of equations, (2.4), (2.5), and (2.6) relate the coordinates of a point in the
x'y’z’ system to its coordinates in the xyz system. Direct substitution of equations

(2.4) - (2.6) into F(x,y,z) results in the following theorem:

Theorem 2.1. For any quadric surface, the coefficients of the second degree terms,

and therefore the matrix e, are invariant under translation.

2.4.2 Rotation

Consider the two rectangular coordinate systems as shown in Figure 2-5. With
respect to the x'y’z’ system, let the direction cosines of the x, y, and z axes be
OV, (Ag02.¥,), and (A3,03,V3), respectively. Then with respect to the xyz sys-
temn, the direction cosines of the x’, y’, and z axes are (A1, Aps A3), (1, Uy, V3), and

(v}, Vo, V3), Tespectively.



Figure 2-3. Two right-handed rectangular coordinate systems.

Xe

Figure 2-4. Relation between the coordinates of P upon translation.
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Figure 2-5. Two rectangular coordinate systems having the same origin.

15



16

For any point, P, whose coordinates in the two systems are (x,y,z) and x"y,z),

the following two sets of rotation equations are obtained:

x = Ax + 0y + V7,
y = Mx’ + 0y + Vo7,
z= 7\.3x' + U3y’ + V3Z',

and

X' = AMx + Ay + A3z,
y = V;x + Vyy + 3z,
7 = ViX + V¥ + V3Z,

which gives rise to the rotation matrix

A vV
A=A vy Vg, 2.7
A3 V3 V3
where the elements of the rows (or columns) are direction cosines of perpendicular

directions. Direct calculation results in the following theorem:

Theorem 2.2. The determinant D of the rotation matrix A is equal to 1.

Before arriving at a particular set of invariant features of a quadric, we first

describe a plane of symmetry of a certain type, called a principal plane.

Definition 2.1 A principal plane is a diametrical plane that is perpendicular to the
chord it bisects [24].

Consider the matrix e again:

ahg
e=|h b f|.
f c

The eigen-values of the matrix e can be calculated from
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g f c-k
This cubic equation in k is called the characteristic equation of the matrix e. Its
roots are called the characteristic roots of e. The quantities given below are found to

be invariant as a consequence of the following theorem [25].

Theorem 2.3 If the second degree equation F(x.y,z)=0 is transformed by means of a
translation or a rotation with fixed origin, the following quantities are invariant:

D, A, p3, P I, J, ky, Ky, and ks, where D, A are the determinants of the matrices €
and E, respectively; and p; and p, are the ranks of the matrices e and E, respec-

tively. Also

I=a+b+cg,

J=ab+ac+bc—f2—gt-h?
and finally k;, k,, and kj are the characteristic roots of e.

Based upon the above set of invariants, surface classifications are listed in Table

In Chapters Three and Four, we discuss our proposed recognition scheme in

detail.
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Number Surface P3 | ps | Signof A | k’s same sign
1 Real ellipsoid 3 4 - yes

2 Hyperboloid of one sheet | 3 4 + no

3 Hyperboloid of two sheets | 3 4 - no

4 Real quadric cone 3 3 no

b Elliptic paraboloid 2 4 - yes

6 Hyperbolic paraboloid 2 4 + no

7 Real elliptic cylinder 2 3 yes

8 Hyperbolic cylinder 2 3 no

9 Parabolic cylinder 1 3

Table 2-1. Surface classification using the three-dimensional discriminant approach.
p3 is the rank of matrix e and py is the rank of matrix E. The characteristic roots of
the matrix e are referred by k’s.



CHAPTER THREE

QUADRIC SURFACE REPRESENTATION

3.1 Introduction

Section 3.2 considers the various three-dimensional quadric surfaces used in the
recognition process. While describing each of these objects, we will be considering
the surfaces with their centers aligned to the origin of our coordinate system. Section
3.3 explains our quadric recognition algorithm in detail. This section also addresses
the acquisition of range data and the necessary pre-processing steps, the representation
of quadric surfaces by a second degree polynomial, and the rotation alignment algo-
rithm whereby each of the quadric surfaces are placed in a coordinate system of our
choice. The merits of the proposed technique are addressed while considering the
improvizations brought about in the recognition of three-dimensional objects (espe-

cially quadrics) in Section 3.4.

3.2 Quadric Surface Description

In this section by means of Figures 3-1, 3.2, and 3-3, we illustrate and represent
the following three-dimensional quadric surfaces which are considered for the recogni-
tion process: ellipsoids, the hyperboloids of one and two sheets, quadric cones, elliptic
paraboloids, hyperbolic paraboloids, elliptic cylinders, hyperbolic cylinders, parabolic
cylinders, and parallelepipeds.

Most three-dimensional objects of practical use consist of at least one of the sur-
faces described above. All the representations of surfaces which were described above
hold true under ideal conditions, i.e., when the source data is perfect, exact pose and

orientation of the objects are known, the system is noiseless, etc. However in the real

19
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2 x2 2 Z

Real Ellipsoid: R A Hyperboloid of one sheet: — 2=
a a2 b ¢

. £y 7z : LN S
Hyperboloid of two sheets: —; +%; STl Real quadric cone: — *715 "~ 7 =

Figure 3-1. Quadric representations of Real ellipsoid, Hyperboloid of one sheet,
Hyperboloid of two sheets, and real quadric cone.
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2
Elliptic cylinder: ‘)Ei + y’ =1 Parabolic cylinder: x*+ 2rz = 0
a

b

Figure 3-2. Quadric representations of Elliptic paraboloid, Hyperbolic paraboloid,
Elliptic cylinder, and Parabolic cylinder.
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Hyperbolic cylinder: 7 ™ 2
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—

Parallelepiped

Figure 3-3. Quadric representations of Hyperbolic cylinder and Parallelepiped.
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world, practically none of these conditions hold true. Any set of data, whether it is
derived or generated from a passive (camera) or an active sensor (laser range mapper),
can at best be approximated to a second-degree polynomial. Whether this polynomial
accurately represents a surface or not, and if so, how these coefficients (representa-
tion) can be chosen to come close to recognizing a three-dimensional object, is the

whole issue of the recognition problem.

In the next few sections, while formulating our recognition scheme, we describe
one such technique which generates ten coefficients (which are sufficient under ideal
conditions) to describe all the objects of interest [26].

However, before elaborating on the recognition scheme, an overview of the tech-
nique is presented. The recognition scheme utilizes a two-dimensional discriminant
(which is a measure for distinguishing two-dimensional curves) to recognize three-
dimensional surfaces. Instead of utilizing the ten generated coefficients and attempting
to recognize the surface from its quadric representation, the quadrics are identified
using the information resulting from the intersection of the surface with different
planes. If the surface is one of those listed above, there are five possible two-
dimensional curves that may result from such intersections, @) a circle, (ii) an ellipse,
(iii) a parabola, (iv) a hyperbola, and (v) a line. Thus, a feature or pattern vector
with five independent components can be formed for characterizing each of the sur-

faces.

3.3 Recognition Scheme
Our recognition scheme consists of the following steps:
(1) acquisition of the range data and conducting the pre-processing Steps,
(2) description and representation of objects as general second degree surfaces,
(3) determination of the location and orientation of the objects with respect to a

desired coordinate system,
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(4) performance of the rotation and translation transformations of the object so as to
place it in a stable desired coordinate system,

(5) use of the principle of two-dimensional discriminants to classify the various curves
obtained by intersecting the surfaces with planes, and

(6) acquisition of an optimal set of planes sufficient enough to distinguish and
recognize each of the quadric surfaces. Angular bounds within which every

surface yields a distinct set of curves are determined in step 6.

The range data, as mentioned in Chapter One, is a pixel-by-pixel depth value
from the point of origin of the laser to the point where the beam impinges on a sur-
face. The objects are scanned from left-to-right and top-to-bottom. A grid frame may
consist of 256 x 256 pixels. Before this range data is applied to the object classifier, it
has to undergo the following pre-processing steps:

a) median filtering, and

b) segmentation.

3.3.1 Median Filtering

Conventionally, a rectangular window of size M x N is used in two dimensional
median filtering. As in our case [27], experiments were performed with square win-
dows of mask sizes 3 x 3 and 5 x 5. Salt and pepper noise in the range images used
in this research was uniformly distributed throughout. Irrespective of the mask size,
the range information at every pixel in the image is replaced by the median of the pix-
els contained in the M x M window centered at that point. Referring to Figure 3-4
and keeping in mind that the black pixels correspond to the background and the white
pixels to the object, black pixels inside the object are referred to as pepper noise and
white pixels in the black background are referred to as salt noise. Figure 3-5 is
obtained as a result of a 3 x 3 mask being moved over the entire image. The image

looks as sharp as the original image though some of the noise still exists. A 5 x 5 and



Figure 3-4. Raw range image of the sphere.

Figure 3-5.

3 x 3 median filtered image of the raw sphere.
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a 7 x 7 mask removes all of the visual salt and pepper noise, but the images as seen in
Figures 3-6 and 3-7 respectively, to some extent, have lower contrast than the original
image.

Once a range image is filtered using a median filter of different masks, the next
concern is to study the changes to the original data which have been brought about by
filtering. Evaluating curvatures is one good way of distinguishing similarities and dis-
similarities among the filtered images and the original range data.

First and second order derivatives are evaluated along the x and y axes to check
the uniformity of the original and the filtered images. Approximating, the first-order

derivative for a pixel (A;;) centered at i,j is given as:

JA 1

- 2e (Pt ~ Aije) + (A1 ~ Aig)]
and

JdA 1

Sy = 3 Awrga - Ay ) + Ajja = Al

Similarly approximating, the second order derivatives for a pixel centered at A; is

given as:

%% = ;%[Ai-—l,j - 2A;; + Al
and

-a;;j;‘ = ;12‘[/’*1,3'—1 = 2A;; + Ajulds

where € represents the spacing between picture cell centers.

A sign map, which shows the relationships among two neighboring pixels with
respect to the depth value, was also generated to check the effect of median filtering
on the original data. Sign maps of some of the experimented quadric surfaces are

illustrated in Chapter Five.



Figure 3-6. 5 x 5 median filtered image of the raw sphere.

Figure 3-7. 7 x 7 median filtered image of the raw sphere.
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3.3.2 Segmentation

Since isolated objects instead of complex scenes are considered, a simple thres-
holding whereby the object is separated from the background is utilized for the seg-
mentation process. In the case where objects are irregular or a scene consists of a
cluster of objects, Gaussian and mean curvatures have to be utilized to sub-divide the
scene into planar or curved surfaces. Each surface is then recognized separately.

Range image segmentation has been extensively studied by Levine et al. 9]

Now that the available range data has been processed to eliminate salt and pepper
noise, we can now utilize the image data to obtain the quadric surface which best fits
the data. To achieve this goal, we need to determine the coefficients of a second

degree polynomial representation for the three-dimensional surface.

3.3.3 Three-Dimensional Coefficients Evaluation

Our objective is to obtain a surface described by Equation (3.1) from a given set
of data (range) points. We assume that the data is a set of range-image samples
obtained from a single surface which can be described by a quadric equation.
F(x,y,z) = ax? + by2 + cz? + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz+d =0. (3.1
We shall therefore define the best description to be the one which minimizes the
mean-squared error (MSE) between the range data and the quadric [26].

Equation (3.1) in vector notation becomes
F(x,y,z) =a'p =0, (3.2)
where aT =[abc2f2g2h 2p2q2rd Jand pT = [x* y? 22 yzzx xy xy z 1 ].

The error measure for any data point (x,y,z) can be measured by evaluating
F(x,y,z). If this point lies exactly on the surface then, F(x,y,z) = 0, meaning that the

erTor is zero.
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The mean-squared error, E, is defined as
E = min Y |IFll,. (3.3)
a s
In vector notation, Equation (3.3) becomes
E = min YaTpp'a = min a'Ra, (3.4)
a S a
where R is the scatter matrix for the data set equal to
R = EppT. (3.5)
S

Minimizing E leads to a trivial solution of a = 0, implying all the coefficients are zero.
We therefore attempt to find the minimum of aTRa with respect to a, subject to some
constraint K(a) = k.

Let

G(a) = a'Ra (3.6)

and

K(a) = a'Ka, 3.7

where K is another undetermined constant matrix. Using Lagrange’s method [28], we

write the function

U = G(a) - AK(a), (3.8)

where A again is an undetermined constant. To find a minimum solution for U, we

form

9U _ 2R - AK)a = 0. (3.9)
oa
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Solving %g— = 0 and K(a) = k simultaneously, we find a and A to give a minimum
solution. We wish to evaluate the constraint K(a) such that it gives a non-zero solu-
tion for a for all the quadric surfaces of interest.

In order to determine the function of the coefficient vector a which is invariant to

translation and rotation, we write the quadric equation as

F(x,y,z) = F(v) = viDv + 2vliq+d =0, (3.10)
where
X
v =yl (3.11)
Z
ahg
D=}h b f (3.12)
f ¢
and

| %
q= H (3.13)

r
After carrying out the transformations, translation and rotation, it is observed that the
second-order terms and the eigen-values are the only invariants of D under translation
and rotation, respectively.

We now derive a function of the eigen-values of D, i.e., f(A), which will allow us
to obtain all of the quadrics of interest. The constraint should be in a quadratic form,

such that when we substitute it in

a_u =2(R - AK)a =0, (3.14)
da

we get a linear equation from which we can solve for a.
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From reference 29, a good choice for the constraint f(A) is
fO) =3IA2=1, (3.15)
i
i.e.,

TAZ = r(D? = a? + b% + ¢? + 262 + 2g7 + 20’ (3.16)

Writing it in the form of equation K(a) = a'Ka:

K, 0
tr(D?) = a’ 0 ol® (3.17)

where the constraint matrix K is

1000 0 O

0100 0 O

0010 0 O
K2=lo0012 0 o (3.18)
- 000 0 172 0

000 0 0 12

Equation Ra = AKa, can now be written as

C B K, 0
|

where C is the 6 x 6 scatter matrix for the quadratic terms a, b, and ¢; B is the 6 x 4

scatter matrix for the mixed terms 2f, 2g, and 2h and A is the 4 x 4 scatter matrix for
the linear and constant term, i.e., 2p, 2q, 2r, and d. B is the 6 x 1 vector of the qua-

dratic coefficients and « is the 4 x 1 vector of the linear and the constant coefficients.

Solving Equation (3.19), we get

CB + Ba = AK,p (3.20)

and
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BTB + Aa = 0. (3.21)
From Equation (3.21) we get

a = - A"'BTp. (3.22)

Substituting o in Equation (3.20), we have

( C - BAIBT )B = AK,B. (3.23)

Labeling ( C — BA7!BT) as M, we have

MB = AK,B, (3.24)

which appears similar to an eigen-value problem. Writing K, as H? , where,

1 00 O 0 0 ]
0 10 O 0 0
_10.01 0 0 O
H=1p 00142 0 0] (3.25)
0 00 0 1M O
0 00 0 0 12
1000 0 O
0100 0 O
4 _loo10 0 0
H' = 000v2 0 Ol (3.26)
000 0 V2 0
0000 0 V2
We can write MB = AK,p as MP = AHHP, or H'MH'HB = AHB.
Let p’ = HP and M’ = H"'MH"™!, where M’ is a real symmetric matrix, then
M'B’ = AB’. (3.27)

M’ has six A;’s and six corresponding B;’s.
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For the minimum error solution, we choose the eigen-vector corresponding to the

smallest eigen-value, i.e.,

B, =H'B (3.28)

Solving for o; = —-A"1BTB,, we have our solution.

Once the procedure described in Section 3.3.3 has been performed, the median

filtered range data can be described as

F(x.y,z) = ax? + by? + cz? + 2fyz + 2gax + 2hxy + 2px + 2qy + 2rz +d = 0, (329

where the values of the coefficients a, b, c, f, g, h, p, q, T, and d are known. Generally
speaking, all of the objects in the experiments generate all ten coefficients as is shown
in Chapter Five. The question now is: How can we distinguish one object from the
another and how accurately can we describe the recognized object? In the following
sections of this chapter and Chapter Four, we describe the necessary scheme to solve

the recognition problem of quadric surfaces.

3.3.4 Evaluation of the Rotation Matrix

The determination of the location and orientation of a three-dimensional object is
one of the central problems in computer vision applications. It is observed that most
of the methods and techniques which try to solve this problem require considerable
pre-processing such as detecting edges or junctions, fitting curves or surfaces to seg-
mented images and computing high order features from the input images. Since
three-dimensional object recognition depends not only on the shape of the object but
also the pose and orientation of the object as well, any definite information about the

object’s orientation will aid in selecting the right features for the recognition process.

In this research we suggest a method based on analytic geometry, whereby all the

rotation parameters of any object placed in any orientation in space are determined and
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eliminated systematically. With this approach we are in a position to place the three-
dimensional object in a desired stable position, thereby eliminating the orientation
problem. We can then utilize the shape information to explicitly represent the three-

dimensional surface.

Any quadric surface can be represented by Equation (3.29) in terms of a second

degree polynomial of variables x, y, and z.

Let (x,y,z) describe the coordinates of any point in our coordinate system. As
shown in Figure 3-8(b), consider a rotation of angle o about the z axis, i.e. in the

xy-plane. Then the new coordinates in terms of the old are represented as

x = x'cosa + y’sina
and
y = —x'sinat + y’cosa;

i.e., the rotation matrix is

coso. sina O
R, = |-sina cosa Of.
0 0 1

Next, as shown in Figure 3-8(c), consider a rotation about the x’ axis by an angle B,
i.e., in the y'z plane, of the same point. The resultant coordinates and the old coordi-

nates are now related by the following equations:

y’ = y”cosP + z’sinf

and

z = —y”’sinf + z'cosf,

where the rotation matrix is
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1 0 0
Rg= [0 cosp sinB|.
0 -sinf} cosP

Finally as shown in Figure 3-8(d), consider a rotation about the y” axis by an angle

v, i.e., in the x’Z’ plane, then

z' = zcosy + x”’siny

and

’

x’ = —z"siny + x”cosy.

The rotation matrix for the above transformation is

cosy 0 —siny

Ry=10 1 0

siny 0 cosy
Observing that
x xll
y = RQRBR‘Y y’l ’

z

we obtain the following:

x = x”(cosacosy + sinasinPsiny) + y”sinacosp + z”(-sinycosa + cosysinasinf),

y = x”(~cosysina + sinysinBcosa) + y”cosPeosa + z”'(sinysina + cosysinBcosa)
and
z = x”sinycosP ~ y”’sinP + z”cosycosp.

After substituting the new x, y, and z coordinates into Equation (3.29), we get an

entire set of new coefficients for x’2, y”2, 72, y'z”, x"z”, x"y", x”, y”, and 2".
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Figure 3-8. Rotation transformation of the coordinate system.
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These new coefficients are listed below.

a” = cosy [a-cos?a + b-sin®0] + sinzﬂsinzy [a-sinol + b-cos2at]

+ 2sinasinPsinycosacosy (a — b) + c-sin%ycos (3.30)
— sin2a [h-sin?Psin®y] — sin2y [f-sinccosp + g-cosocosf

+ h-cos2asinP — h-sinBsin%a 1+ sin2Psin?y (f-cosat — g-sina) + h-sin20:cos2y.

b” = (a-sin?a + b-cosZa)cos2P + c-sin?P + sin2p [-f-cosa — g-sina |
+ h-sin20cos?p. | (3.31)

¢” = sin?y (a-cos?a + b-sin?0) + (a-sin®a + b-cos20))cosysinP

+ 2sinasinBsinycosacosy (a — b) + c-cosycos?p + sin2a [h-cosZysinB — h-sin®y] (3.32)
+ cos?ysin2P [f-cosat + g-sina] + sin2y [—f-sinacospP + g-cosacosP+ h-cos2asinf).

2 = [(b'cosza + a-sinZo + h-sin2a — ¢)sin2P + (2g-sina + 2f-cosa)0052[3] cosy

+ [((a — b)sin2a + 2h-cos2a)cosP — (2g-cosa — 2f-sinat)sinP | siny. (3.33)

2g" = sin2‘y[—cos2a(a + b-sin?B) — sinZa(a-sin?p + b) — c-cos*B
— sinfcosP(f-cosa + g-sina) + h-sinacosacos (3.34)
+ 2cosPcos?y(f-sino — g-cosat) + 2h-sinP(sinasin2y — cosZocos%y).

2h” = sinZa[cosoccosB(b -a) - h'sinBsinycosB] + sin2Psiny(a-sin®a — b-cos?a + ¢)

+ cosysinP(2g-cosa — 2f-sina) + sin*Bsiny(2g-sina + 2f-cosa) (3.35)
~ 2h-cosZacosycosP.

2p” = 2cosy [-p-cosat + q-sina] — 2sinPsiny [prsina + g-cosa] — 2r-sinycosp. (3.36)
2q” = 2cosP [p-sina + g-cosa] — 2r-sinf. (3.37)

21” = 2cosysinP [prsina + g-coso] + 2siny [pcosa — g-sina] + 2r-cosycosp. (3.38)

d” =d. (3.39)
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As seen from the above expressions, all of the coefficients are affected by the rotations
a, B, and 7y except for the constant d”.

In order to eliminate the product terms 2f”, 2g”, and 2h”, expressions (3-33) -
(3.35) must be set equal to zero and solved simultaneously. As seen from these three
expressions, each of them is a function of the rotation angles o, B, and 7y. It is not
possible to analytically find the rotation angles which eliminate the product terms.
Instead, in the next section we present an iterative technique which performs the elimi-

nation of the product terms.

3.3.5 Product Terms Elimination Method
The product terms yz, xz, and xy in F(x,y,z), denote the rotation terms which are
to be eliminated. Elimination of all these rotation terms will place the three-

dimensional surface on a coordinate system plane parallel to our coordinate system.

Observe that in the presence of a single rotation term, say yz, Equation (3.29)

takes the form
F(x,y,z) = ax? + by? + cz? + 2fyz + 2px + 2qy + 2rz + d = 0.

The equation of the trace of the surface in the yz plane is obtained by setting x = 0.
An appropriate rotation about the origin in the yz plane by an angle B will eliminate

the yz term.

However, in the presence of two or more rotation terms, trying to eliminate a
second rotation term will force the previously eliminated rotation term to reappear.
Therefore, there will be at least two rotation terms present. The approach we propose
is an iterative process, whereby at each stage the object is rotated in each of the coor-
dinate planes, sequentially. The procedure is repeated until all the product terms are

eliminated, i.e., the coefficients f, g, and h converge to zero in the limit.
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Since our aim is to eliminate the rotation terms Xy, yz, and xz, let’s exclusively
consider the coefficients of these rotation terms, namely f, g, and h evaluated in Sec-
tion 3.3.4. In our iterative procedure we are able to eliminate all of the product terms.
For example, suppose we wish to eliminate the term xy. By a specific rotation of «
about the z axis, we will be able to accomplish our goal. However, while executing
this process, the orientation of the object about the two planes yz and zx, ie., the
angles the object make with these two planes have been changed. If we wish to elim-
inate the yz term, the object has to be rotated about the x axis by an angle . How-
ever, in this instance, while performing the process, the previously eliminated xy term
reappears though the magnitude of its present orientation has been reduced. Hence by
iterating the above process, an instance occurs when all the coefficients of the product

terms converge to zero in the limit.

Consider the Equations (3.33), (3.34), and (3.35). First eliminate the coefficient h,
i.e, the xy term. This can be accomplished by rotating the object about the z axis by
an angle o, whereas P=y=0. Under these circumstances the new coefficients are as

shown below.

2f11 = 2g'sina1 + 2f‘COS(11,
2g;, = 2g-cosoy — 2f-sinay,
and
2h;; = (a - b)sin2a + 2h-cos20y =0,

b—-a
2h

where cot2a,) =

As seen above, the coefficient h has been forced to 0. The first digit of the subscript
refers to the iteration number, whereas the second digit of the subscript denotes the
number of times the object has been rotated by a specific angle. The remaining

coefficients a, b, ¢, p, q, and r also reflect changes brought about by the above rotation.
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The new coefficients are
ay = a-cos?a; + brsin®a; — 2h-sinacosay,
b = b-cos?a, + a-sin®o; + 2hrsino cosay,
i1 =6
2p;; = 2p-cosq — 2g-sinay,

2qq; = 2p-sinay + 2g-cosoy,

and

21'11 =2r.
The new quadric equation is

F(x,y,z) = a“x2 + b”y2 + c“z2 + 2f;,yz + 21Xz + 2ppx + 29y + 2rjiz+d=0.

Consider the second step wherein the coefficient corresponding to the yz term is
forced to zero. In this particular case, the object has to be rotated by an angle [
about the x axis, where o=y=0. Under these circumstances, the new rotation

coefficients (signifying the product terms) become
2f12 = (b12 - Clz)Sin2B1 + 2f11‘C052B1 =0,
where cot2f; =

2g;, = 2g;y°cosPy,

and

2hy, = —2gy;'sinf;.
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At the same time the other coefficients become

a12 = 411
byy = ¢ sin?Py + by -cos?B; — 2f;;-sinBjcosPl,
¢1g = byy-sin?P; + ¢yy°cos?By + 2fy;-sinPcosPl,
2py2 = 2p11s

2q;2 = 2qp;°cosPy — 2ryysinfy,

and

21'12 = 2q11‘sinB1 + 21'11‘COSB1.

The new quadric equation is:

F(X,y,l) = 312)(2 + b12y2 + 01222 + 2g12XZ + 2h12)(y + 2p12X + 2Cl12y + 21'122 +d=0.

In the final step of the initial iteration, the coefficient corresponding to the xz term is
forced to zero. In this case, the object is to be rotated by an angle 7y about the y

axis, whereas a=B=0. Under these circumstances, the new rotation coefficients beco-

men

2fy3 = 2hyysiny; = -2g;y'sinBysinyy,

2g13 =(aj3 — €3)sin2y; + (2g;;cosay — f,,'sina; )cosP,cos2y; =0,

Ci2 ~ 412

where cot2y, =
2812

b

and

2h13 = 2h12'COS'Y1 = —2g11'sinﬁlcosyl.
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Let’s now carefully analyze the coefficients of xy, yz, and zx obtained in the final step
of the first iteration. Consider, for instance, the coefficient corresponding to the yz
term. It is observed that while proceeding from one step to the other, the new
coefficients are getting multiplied by the sine or cosine of the concerned angle. This
implies that in every succeeding step these coefficients are decreasing in their magni-
tude. To justify the above statement, let us now consider all the coefficients obtained

in the second iteration.

At the end of stage 1 of the second iteration, the rotation coefficients become

2f21 = 2f13‘cosa/2 = “2g11‘SinBlSin'YlCOSOQ,

2g,, = —2f,5'sina, = 2g;'sinf;siny; sinoy,

and
b, —a
2hy; = 0, where cot2a, = 130
At the end of the second stage of the second iteration, the rotation coefficients
become
Cyy— b
2f,, = 0 where cot2f; = 22
2f5;
285, = 2g1;-sinBisiny;sino,cosP,,
and

2h,, = —2g;;-sinP;siny;sinaysinp,.

Similarly at the end of the final stage of the second iteration, the rotation coefficients

reduce to

2f23 = —2g1I'Sinﬁlsin’ylSinazsinﬁzsinyz,
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bj3 — a3

2g,3 =0 where cot2a, = oh ,
13

and
2h,y = —2g,;-sinf,siny;sinaysinBycosy,

The terms o, B,, and 7, are the respective rotation angles along the z, x, and y axes
in the second iteration. Hence it is observed with each iteration that the rotation

coefficients get smaller and smaller in magnitude and eventually disappear in the limit.

We are now in a position to formulate a rotation matrix whose elements
correspond to the directional cosines of the x, y, and z axes of the rotated object.

The rotation matrix = R,RgRy,

where
—cosa sinQ. 01
R, = [-sina cosa Of,
0 0 1]
(1 0o 0]
Rg =10 cosp sinf|,
|0 —sinB cosP

and

cosy 0 -siny

R,=10 1 0
siny 0 cosy



Subsequently,

cosacosy — sinasinPsiny cosysina + sinysinfcoso —sinycosp

RRgR, = —cosPsina cosfcosa sinf |, (3.40)
sinycosa. + cosysinasinB  sinasiny—cosysinfcosa cosPcosy

where

n n n
a=Yo, p=YB;, and y=3% . n corresponds to the iteration where all the rota-
i=1 i=1 i=1

tion terms go to zero in the limit.
Once the rotation terms, i.e., Xy, ¥z, and xz are eliminated, the three-

dimensional surface has the representation of

F(x,y,z) = Ax? + By? + Cz2 + 2Px + 2Qy + 2Rz + D = 0, (3.41)

where A, B, C, P, Q, and R are the coefficients resulting after the elimination of the
rotation terms. A natural question to ask is: Can the terms of the first degree be elim-
inated by means of a translation? The answer is sometimes they can and sometimes
they cannot. The case, where the term can be eliminated, is supported by the follow-

ing theorem.

3.3.6 Translation of the Rotated Object

Theorem 3.2. The terms of the first degree of an equation of a quadric surface
can be eliminated by means of a translation if and only if the surface has a center, in
which case the first degree terms are eliminated if and only if the new origin is a
center [24].

The method of completing squares is the easiest to determine the coordinates of

the new origin. Consider Equation (3.41). Grouping the like terms:

Ax2 +2Px +By? + 2Qy + Cz? +2Rz+D =0 =
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+D=0.

Alx2+ 2P 2] + Bly2 +2QL 24 REZ
[x A] [y QB + Clz C

Upon completing squares, we get

p 2 2 R2 P2 Q* R
Ax+—A—] +B[y+%] +C[Z+E] +D - —A—+—B—+—C— =0, (342)

where -P/A, -Q/B, and -R/C are the coordinates of the new origin.

3.4 Summary and Problem Identification

All of the above procedures performed until now result in a second degree poly-
nomial describing an unknown object, the center of the object lying at the origin of
our coordinate system. Had the test data been simulated, the three-dimensional
discriminant approach which was mentioned in Chapter One could be used to describe
and recognize the object. Since the test data is not simulated, we should utilize a
recognition algorithm which will distinguish and recognize each of the test surfaces

from one another.

The intersection of a surface with a plane generates a curve. The nature of this
curve depends solely on what type of object is intersected and with which particular
plane and in which orientation. Since we have no knowledge of the surface type, a
priori, one approach is to intersect the surface with a series of planes. We need to
determine the optimum number of planes which will uniquely characterize each of the
quadric surfaces.

Our goal is to derive a consistent method for determining the minimum number
of planes necessary to intersect a given quadric surface so that the generated conics
uniquely characterize the surface. This goal includes the derivation and formulation of
the angular bounds for which a particular plane intersecting a surface generates the

same two-dimensional curve. In summary, each of the quadric surfaces is represented
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by a unique five-tuple, whose elements signify the presence or absence of the follow-
ing curves: circle, ellipse, hyperbola, parabola, and a line.
Chapter Four covers the description and recognition of each of the three-

dimensional surfaces we have above mentioned in Section 3.2. A distinct pattern vec-

tor is obtained for each of the surfaces.



CHAPTER FOUR
QUADRIC SURFACE CHARACTERIZATION AND RECOGNITION

4.1 Introduction

Our proposed method utilizes a two-dimensional discriminant which is a measure
for distinguishing curves. Since the ten generated coefficients described in Section
3.3.3 of Chapter Three give a three-dimensional representation of the surfaces, we pro-
pose to identify the quadrics using the information resulting from the intersection of
the surface with different planes. If the surface is one of those considered for the
recognition process (see figures 3-1, 3-2, and 3-3), there are five possible two-
dimensional curves that may result from such intersections: (i) a circle, (i) an ellipse,
(iii) a parabola, (iv) a hyperbola, and (v) a line. Thus, a feature or pattern vector with

five independent components can be formed for characterizing each of the surfaces.

The two-dimensional discriminant criteria we use to recognize each of the two-
dimensional curves created by planes intersecting the various quadric surfaces is dis-
cussed in Section 4.2. In Section 4.3 the results of Chapter Three are used to com-
pletely implement our recognition algorithm. Concomitantly, we derive a consistent
method for determining the minimum number of planes that are necessary to intersect
a given three-dimensional surface so that the generated conics uniquely characterize
the surface. The formulation of a three-dimensional discriminant similar to the two-
dimensional discriminant is presented in Section 4.4. The mapping between the expli-

cit and implicit representations of quadric surfaces is also examined in this section.

47
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4.2 Two-Dimensional Discriminant

Given a conic of the form
F(x,y) = Ax? + Bxy + Cy? + Dx + Ey + F =0,

the discriminant & = B2 — 4AC characterizes it as one of the following [30]:
If § = B2 — 4AC < 0, then the conic is an ellipse or a circle.
If § = B2 — 4AC = 0, then the conic is a parabola.
If & = B2 — 4AC > 0, then the conic is a hyperbola.

Our objective is to derive a consistent method for determining the minimum
number of planes required to intersect a given three-dimensional surface so that the
generated conics uniquely characterize the surface. This includes the derivation and
formulation of the angular bounds for which a particular intersecting plane yields the

same two-dimensional curve.

The three-dimensional surfaces (objects) to be recognized are listed below:
(2) an ellipsoid, |
(b) a circular cylinder,
(c) a sphere,
(d) a quadric cone,
(e) a hyperboloid of one sheet,
(f) a hyperboloid of two sheets,
(g) an elliptic paraboloid,
(h) a hyperbolic cylinder,
(i) a parabolic cylinder,
(j) a hyperbolic paraboloid, and

(k) a parallelepiped.
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4.3 Quadric Surface Description and Representation

As discussed in Section 3.2 of Chapter Three, we now assume that the three-
dimensional objects have undergone two basic transformations, rotation and translation.
Consequently the product terms in the representation F(x,y,z) for a particular surface
have been eliminated and the center of the surface lies at the origin of our specified
coordinate system. As illustrated in Figure 4-1, all of the surfaces are contained in the
xy plane with their centers at O (the origin). For each surface, the characterization is
performed in two steps. Initially we consider the intersection of each object with two
planes (horizontal and vertical). This step does not require that the surface undergoes a
translation transformation. We refer to plane 1 as the one that intersects the object
parallel to the xy plane, i.e., z constant. Also refer to plane 2 as the one that inter-
sects the object parallel to the xz plane, i.e., y constant. In the second step, the
minimum set of intersecting planes needed to yield a unique feature vector (the various
curves serve as features) is determined. In this step we assume that the object has
undergone the translation transformation. The following sections describe the

representation procedure for each of the quadric surfaces listed in Section 4.2.
4.3.1 Ellipsoid

Step 1:

Consider the equation of an ellipsoid resting on a plane parallel to the xy plane

and its axis of revolution parallel to the z axis. Equation (3.1) reduces to the form

F(x,y,z) = ax? + by2 +czt+ 2px + 2qy + 2rz +d =0, 4.1)

which further reduces to



1

Figure 4-1. Quadric surfaces from left to right and top to bottom: ellipsoid,
quadric cone, hyperboloid of one sheet, elliptic cylinder, hyperboloid of two
sheets, hyperbolic cylinder, hyperbolic paraboloid, elliptic paraboloid, and
parabolic cylinder.
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o g b

+ — +
1 1

a b c

=0, 4.2)

2 2
where a > 0, b> 0, ¢ > 0 and we have assumed the scaling d = ) —ql-)— + — r - 1.
a c
It should be noted that the coefficients a, b, ¢, p, q, 1, and d are all known; ‘\/ %,

‘\/ _tl)_’ and '\f-(l:— are the semi-major and minor axes of the ellipsoid, respectively; and

[-p/a, -q/b, -1/c] are the coordinates of the center of the ellipsoid.

Consider the intersection of the ellipsoid with plane 1, ie., z = k, where
—'\/i<k<_—r+‘\f—l—,thcn,
c c c
(y + )2 x+ £?
b a

-1=0, (4.3)

<+
1 (ck+n? 1 (ck+1?
b bc a ac

which is the equation of an ellipse.

Let’s now consider the intersection of the ellipsoid with plane 2, ie., y = k,

where :9- ‘\’ <k<— '\/ , then,

(x+ 2y (z+ =)
a C

+ -1=0, (4.4)
1 (k+g? 1 _ (bk+g)?
a ab c bc

which is again the equation of an ellipse. For the case when the two minor axes are
equal, the surface is called a spheroid. Also, when all the axes are equal, i.e,a=b=
¢, the surface is a sphere. Intersection of the sphere with planes is discussed in Sec-

tion 4.3.3.
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Step 2:

As mentioned before, we assume that the ellipsoid has undergone a translation,
such that its center aligns with the origin of our desired coordinate system as shown in
Figure 4-2. Hence its representation can be assumed as

X2 Y* 7
PO .
where A, B, and C are the major and minor semi-axes, respectively, of the ellipsoid.
As seen in step 1, intersection of the ellipsoid with any Z = | k |, -C < k < C, will be
an ellipse. Let us now determine the bounds within which inclined sub-planes of Z =
| k | still result in an elliptic intersection with the ellipsoid.

Consider the points E(A,0,0), F(0,B,0), and G(0,0,K), where K > 0. The equa-

tion of the plane containing these points is:
BKX + AKY + ABZ - ABK = 0.

Solving for Z and substituting in Equation (4.5) yields the curve of intersection:

X2(B2C? + B2K2) + YXA2CE + AZK?) + 2AK?BXY + -+ - =0. (4.6)

In the above equation only terms which are necessary to determine the intercepted

curve are retained. Proceeding with the discriminant test,

5 = 4AZBY—C* - 2C%K?).

Since the discriminant is always negative, the intercepts are ellipses. Angular bounds
in terms of an angle are not needed in this case, since the only occasion the intercepts
are different than ellipses is when two of the semi-axes are equal. Under that cir-
cumstance, we arrive at a circular intercept. Figure 4-3 illustrates vertical planes inter-

secting the ellipsoid. Table 4-1 summarizes the result obtained above.
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DETAILED VIEW: HORIZONTAL INTERSECTIONS

Figure 4-2. The plane parallel to the x-axis and all its inclined sub-planes generate
ellipses. In the case of a spheroid all intersections are ellipses except when the
plane is parallel to one of the axes under which case the intersection is a circle.



DETAILED VIEW: VERTICAL INTERSECTIONS

Figure 4-3. The plane parallel to the z-axis and all its inclined sub-planes generate
ellipses. In the case of a spheroid all intersections are ellipses except when the
plane is parallel to one of the axes under which case the intersection is a circle.
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PLANE INTERSECTION
Z=K Ellipse
Y =K Ellipse

Any inclined sub-planes to Z=K, Y=K Ellipse

Table 4-1. Intersection of ellipsoid with planes.

4.3.2 Circular (elliptic) cylinder

Step 1:
Consider the general representation of a circular cylinder resting on a plane paral-
lel to the xy plane and its axis of revolution parallel to the z axis. It's representation

then reduces to

F(x,y,z) = bx? + by? + 2px + 2qy + d = 0, (4.7)
which is the same as
2 2
q P
+ =+ + =
F(x,y,z) = I + N -1=0, (4.8)
b b

<, p
only ifd = - + *— — 1 and also b > 0.
b b
In the case of the elliptic cylinder, Equation (4.7) becomes
F(x,y,z) = ax? + by? + 2px + 2qy + d = 0,

which further reduces to
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2 2
b a
-1=0, 4.9)

F 1y == +
(x,y,2) T I

b a
2 2
onlyifd=%+%-—1anda>o,b>o.

Intersection of the circular or elliptic cylinder with plane 1 would not affect its
representation, since it is independent of the variable z. Hence the resultant curve
intercepted is the same as represented by Equations (4.7) or (4.9), which is an equation

of a circle or an ellipse, respectively.

Consider the case where the circular cylinder is intersected with plane 2,1i.e.y =

k,where_—;L—‘\/-tl:<k<-_—l:l+'\’%. Then,

2 2
Pl _ 1 bk + q
{x+ a} 5 [ b } . (4.10a)

Solving for x generates the equation of a pair of parallel lines. A similar result is

obtained when the elliptic cylinder is intersected with plane 2, namely

2 2
l:x+ E] =l_2[bk+q] , (4.10b)

Step 2:

As with the ellipsoid, consider the elliptic cylinder to have undergone the transla-
tion transformation. Its center is aligned with the origin of the coordinate system as
shown in Figure 4-4. Let the height of the cylinder be 2L. The representation of the

elliptic cylinder can be assumed as

2 2
%+%2-=1, 4.11)
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where A and B are the major and minor semi-axes of the cylinder. Intersection of the
cylinder with any plane Z=1lk |, -L<k<L, is an ellipse. The angular bounds
within which an inclined plane will still result in an elliptic intersection is determined

next.

Consider the intersection of the plane passing through the points E(A,0,0),
F(-A,0,K), and G(0,-B,0) with the cylinder as shown in Figure 4-4. The equation of

the plane containing these points is:

BKX - AKY + 2ABZ - ABK = 0.
Solving for X,

_ AKY - 2ABZ + ABK

X
BK

Substituting X in Equation (4.11) results in
2K?Y? + 4B?Z% - 4BKYZ +... = 0.
The discriminant results in a quantity less than zero. Hence the intersection is an
ellipse.
Given any two planes, a;x + by + ¢;z + d; = 0, and ayx + by + Cpz +dy =0,
the angle of intersection is given as

|a1a2 + b1b2 + C1C2|

VaZ + b2 + c}Va} + b? + ¢}

cosB =

Hence, in the above case the intersections with respect to the plane z = 0 and all the

planes inclined to it (which we will refer to as inclined-sub planes), yield ellipses for

0 < 2AB
V(AK? + 4A2B2 + BK?)

Cos
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DETAILED VIEW: HORIZONTAL INTERSECTIONS

-------------

plane 1

<

plane 3

Figure 4-4. Plane 1 and the planes parallel to it within the range -L toL
(length of the cylinder) intersect the cylinder in parallel lines. Plane 2 and
plane 3 are the inclined sub-planes of plane 1 which determine the maxi-
mum range or inclination (with plane 1) wherein similar curves ( ellipses)
are generated . 0 is the angular bound for the inclination in terms of an
angle.
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The angular bounds with respect to the plane X = K,-~A <K £ A, and its inclined

sub-planes is determined next.

Intersection of the plane X = Kor Y = K and the cylinder results in an inter-
section of a pair of straight lines. The equation of the plane passing through the points

H(0,B,-L), I(0,-B,-L), and J(K,0,L), [K |> 0, as shown in Figure 4-5, is

KZ -2LX +LK =0.

Solving for X,

_K@Z+L)

X
2L

Substituting in Equation (4.11), yields the interception

KAZ+L1)?  Y?

= 1,
41.2A2 B?

which is an ellipse.

All intersections of the inclined plane X = K, K[> 0, yield degenerate ellipses.

In terms of the angle of intersection,

2L
cosh <« ——————.
VAZ + 4K2
Figure 4-6 illustrates a lateral view of all the possible curves intercepted by the inter-
section of the cylinder and the planes. Table 4-2 summarizes the results obtained

above.



DETAILED VIEW : VERTICAL INTERSECTIONS

plane 2

Figure 4-5. Plane 1 and the planes parallel to it within the range -atoa
intersect the cylinder in parallel lines. Plane 2 and plane 3 are the inclined
sub-planes of plane 1 which determine the maximum range or inclination
(with plane 1) wherein similar curves (degenerate ellipses) are generated.
9is the angular bound for this inclination in terms of an angle.



LATERAL VIEW

INTERSECTION OF A PLANE AND A QUADRIC CYLINDER

Figure 4-6. Plane P1 and its inclined sub-plane generate ellipses. Though plane P2
generates a pair of lines, its inclined sub-planes start generating degenerate ellipses
as the inclination start to increase.
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PLANE INTERSECTION

Z=K Circle, Ellipse

X=K Lines
Inclined sub-planes of Z=K Ellipse
Inclined sub-planes of X=K Lines

Table 4-2. Intersection of quadric cylinder with planes.
4.3.3 Sphere

Step 1:

As mentioned in Section 4.1., the sphere is a special case of an ellipsoid, where

the three semi axes are all equal. Equation (4.1) thus reduces to

F(x,y,z) = ax? + ay? + az? + 2px + 2qy + 2rz + d = 0, (4.12)

which further reduces to

+ + N 4.13
T T T @1
a a a
2 2
onlyifdzp—+q—+ﬁ—l.
a b a

Consider the case when the sphere is intersected with plane 1, ie., z = k, where

—_—r——'\fl<k<i+‘\/l. Then,
a a a a
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(4.14)

7t 7
l_[ak+r] _1__ ak+r]

which is the equation of a circle.

A similar equation results when the sphere is intersected with plane 2, in which

case y = k, where b R ‘\f 1 <k< 34 ‘\/ —1-, and subsequently Equation
a a a

a

(4.13) becomes

2 2
{HP.} [HL}
a a
-+ - -1=0. (4.15)
1 _|ak+q 1 |ak+gq
a a a a

Step 2:
Figure 4-7 illustrates the sphere which has undergone translation and has its
center aligned with the origin of our desired coordinate system. The representation of

the sphere thus becomes:

2 2 2
X, Y,z (4.16)

A? AT A?
where A is the radius of the sphere. As seen in step 1, intersection of the sphere with
any Z=1K |, -A <K <A, will be a circle. Next, we determine the bounds within

which inclined sub-planes of the Z = |K | plane still result in circular intersections

with the sphere.



Consider the points E(0,0,K), F(A,0,0), and G(0,-A,0), where K > 0. The equa-

tion of the plane passing through these points is
-YK + AZ+ KX - AK=0.

Solving for Z and substituting in Equation (4.16), yields the equation of the intercept

as
(A2 + KHX2 + Y2(AZ+ K - 2KXXY + -+ =0,

where only the necessary terms to determine the nature of the intercepted curve are

retained. Proceeding with the discriminant test,
8 = —4A(1 + 2K2).

Since the discriminant is negative, the intercepts are ellipses or circles. Angular
bounds are not needed since none of the other curves are ever intercepted. Similar
results are obtained while considering inclined sub-planes of X =K lor Y =K 1.
Figure 4-7 shows a lateral view of all the curves intersected in a sphere by various

planes. Table 4-3 summarizes the various results obtained above.

PLANE INTERSECTION
Z=XK Circle
Y=K Circle
X=K Circle

Any inclined sub-planes to X=K, Y=K, and Z=K Ellipse

Table 4-3. Intersection of sphere with planes.



INTERSECTION OF A PLANE AND A SPHERE

CIRCULAR INTERSECTION

Figure 4-7. The intersection of plane and a sphere results in a circular
line of intersection.
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4.3.4 Quadric circular (elliptic) cone

Step 1:

The general representation of a circular cone on a plane parallel to the xy plane

and its axis of revolution parallel to the z axis is

F(x,y.z) = bx? + by? + cz? + 2px + 2qy + 2rz + d = 0,

2 2
wherebc<0andd=p—+q—+ﬁ.
b b C

From Equation (4.17), upon completing squares, we have

p| q|’ |’ P g 7
F(xvy’z)=b|}(+ b] +b|iy+ b:| +C[Z+€:| +d - b - b - —=0.

c
2 2
Since d = Bb- + —%— + _ri’ Equation (4.18) becomes
c
' 2 2 2
P 9 r
+ + +
F(x,y,z) = + - =0.

1 1 -1

b b c

F(x,y,z) = +

(4.17)

(4.18)

(4.19)

(4.20)

where ab > 0, ac < 0, and bc < 0. If ¢ < 0, i.e., b> 0, the intersection of the cone

represented by Equation (4.19) with plane 1, ie., z = k, where = -

C

-T -1
<k<— + ——, would generate
c c

L

C
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2 2 2
b b C
+ = , (4.21)

where —% is a positive quantity. The above equation is that of a circle. The elliptic

cone on the other hand which is represented by Equation (4.20), upon intersection with

plane 1,i.e., z = k, where - hul § <k <i + \/ t 3 , would generate
c c c c
2 2 2

P q xr

+ + k +
+ = , .

T 1 1 (@22

a b c

which is an ellipse. The intersection of the circular cone with plane 2, ie., y=k,

where :Eq - ‘\/% <k< :él + ‘\/ —ll;’ would generate
2 2 2
[x + -E] [z + L] {k + S_]
b c b
= (4.23)

1 -1 | S

b C b

where —% is a positive quantity. Equation (4.23) represents a hyperbola. A similar

result is obtained when the elliptic cylinder is intersected with plane 2.

Step 2:

The quadric representation of the elliptic cone illustrated in Figure 4-8 1s

2 2 2
X Y Z . 0. (4.24)

A2 B2 &



Intersection of the cone with horizontal planes z = k, where —¢ < k < ¢, generates
ellipses as intercepts. Let us consider the horizontal plane Z = -C and determine the
various intercepts formed by its inclined sub-planes. The equation of the plane passing

through the points E(A,0,-C), F(0,-B,-C), and G(0,0,L) where -C < L < C, is
~A(C+L)Y + ABZ + B(C+L)X - ABL = 0.
Substituting Z in Equation (4.24) results in
B2[C2 — (C+L)YX2 + AZ[C? — (C+L)}]Y? - 2AB(C+L)’XY + ... =0,
thereafter,
§ = 4AZB2[(C+L)* — (L+2LC)Y.
Analyzing 8 leads to the following bounds:

For L > 0 the intersections are hyperbolas.

For all values of L, -C < L < O, except for I,———C+—%, the intersections are

ellipses.
For the one particular case where L=—C+—\IC—§—, the intersection is a parabola. In

terms of @, the angle between the Z = -C plane and its inclined sub-plane is

AB
V(AXC+L)? + A2BZ + BYC+L))

cosO =

Next, consider the intersections formed by the plane X = 0 and its sub-planes.

Substituting X = 0 in Equation (4.24) leads to the intersection

2 2
Y _Z _y

B2 (2

Y’

which is a degenerate hyperbola. For all -A < X <A, the intercepts are hyperbolas.
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

&

Figure 4-8. Plane P1 and planes parallel to it within the range -c toc (except
the one passing through the origin) generate ellipses. Plane P2 is the inclined
sub-plane which denotes the maximum inclination or range (of plane P1) wit-
hin which ellipses are generated. 8 is the angular bound in terms of the angle.
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The equation of the plane passing through the points H(0,-B,-C), 1(0,B,-C), and
J(L,0,C), where L > 0 is

LZ-2CX+1LC=0.

Solving for Z and substituting in Equation (4.24) leads to the representation of the

intercept as
XYL? - 4A2B2 + L2A%Y2 + 4AZBXL + - -+ =0. (4.25)
Solving L2—4AZ2, indicates the following conditions for the various intercepts:
For L = 2A, the intercept is a parabola.
For all values of L, -2A < L < 2A, the intercepts are hyperbolas.

For all L > 2A, the intercepts are ellipses.
Figure 4-9 illustrates all of the above results. The angle between the X = 0 plane

and its inclined sub-planes for the above obtained interceptions is

+2C
V@2 + 4¢?)

cosO <

Figure 4-10 shows a lateral view of all possible curves intercepted in a quadric cone

by the various planes. Table 4-4 summarizes all of the results obtained in this section.
4.3.5 Hyperboloid of one sheet

Step 1:

The general representation of a hyperboloid of one sheet resting on a plane paral-

lel to the xy plane and its axis of revolution parallel to the z axis is
bx2 + by? + cz® + 2px + 2qy + 2rz + d =0, (4.26)

where base of the cylinder is circular and bc < 0.
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DETAILED VIEW : VERTICAL INTERSECTIONS

2

Figure 4-9. Plane P1 and planes parallel to it within the range -b to b generates

degenerate hyperbolas. Plane P2 is the inclined sub-plane which shows the outer
region or the maximum inclination (of plane P1) within which hyperbolas are int-
ercepted. Ois the angular bound in terms of the angle. Plane P3 is the only exce-
ption where the intersection is a parabola. In this case the inclination of the plane
P3 is equal to the base angle of the cone.
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LATERAL VIEW

INTERSECTION OF A PLANE AND A CONE

Figure 4-10. P1, P2, P3, and P4 are the four planes which generate all the
intersections with the quadric cone. Plane P1 which has the same base angle
as that of the cone intercepts a parabola. Plane P2 intercepts a hyperbola.
Plane P3 intercepts a circle and finally plane P4 intercepts an ellipse. (The

quadric cone under question has a circular base).



PLANE INTERSECTION
Z=K Circle, Ellipse
X=K Hyperbola
Inclined sub-planes of Z=K, L20 Hyperbolas
Inclined sub-planes of Z=K, -C<L <O Ellipses
Inclined sub-planes of Z=K, L=—C+7C_2— Parabola
Inclined sub-planes of X=K, L = 2A Parabola
Inclined sub-planes of X=K, L < 2A Hyperbolas
Inclined sub-planes of X=K, L > 2A Ellipses

Table 4-4. Intersection of quadric cone with planes.
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Equation (4.26) upon completion of squares reduces to

Py 92 _ I
(X+b) (y+b) (Z+C)

F(x,y,z) = + + =1,
Cya =7 T =y
b b C
2 2
whercd=L+—q—+ﬁ—l.
b b c

If c <0, ie, b > 0, intersection of the hyperboloid with plane 1, i.e., z = k, where

-r/c - ;1- <k <-r/c + —i, results in
c c
y+P 2y k+ =)?
+ = 14— 4.27)
1 1 i
b b c

where -1/c is a positive quantity. Equation (4.27) represents a circle. For a hyper-

boloid with elliptic base, this intersection will be an ellipse.

Intersection of the hyperboloid with plane 2,i.e., y= k, where -q/b - \/ —_Fl <

k <-q/b +\/ —_-bL, generates

Py rs q.\2
+ = + — k + —
(x b) _(z c) =1_(+b)

1 -1 -1

b c b

where -1/c is a positive quantity. This equation is that of a hyperbola. Similar results

are obtained when the hyperboloid has elliptic bases.
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Step 2:

As in the case of the other quadric surfaces, the elliptic hyperboloid of one sheet
shown in Figure 4-11 is assumed to have undergone translation such that its center is
aligned with the origin of the coordinate system. The axis of the hyperboloid coincides
with the z axis. Under these conditions the quadric representation of the hyperboloid
is

XX Y Z
—E+§——C—2'—l. (4.28)

The intersection of the hyperboloid with horizontal planes ranging from Z = Oto Z
= |K | are ellipses, where -C < K < C and A, B, and C are the semi-axes of the sur-
face. The angular bounds of the various sub-planes with respect to the Z = 0 plane

which intersects the hyperboloid in ellipses is determined next.

As shown in Figure 4-11, the equation of the plane passing through the points
D(A.0,0), E(0,-B,0), and F(K,0,C) where IKI>0is
—ACY + B(A-K)Z - BCX - ABC=0.
Solving for Z and substituting in Equation (4.28) results in
X2BYA-K)? - A%B2] + YAAZA-K)? - A} - 2A’BXY + -~ =0.

Proceeding with the discriminant test,

§ = 4AZBY[A? + K2 - 2AK][A? - K? + 2AK].
Since A and K are always positive, based upon the term

[AZ — K2 + 2AK],
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

Z=0

Z A

plane 3

Figure 4-11. Plane 1 (z=0) and all sub-planes parallel to it intersect the
hyperboloid in ellipses. Plane 2 and plane 3 denote the maximum bound
or inclination, within which the hyperboloid still intercepts ellipses.
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a decision can be made whether the intersection is an ellipse, a hyperbola or a para-

bola. Solving for K, we determine that for
K= A(—\E + 1), the intersection is a parabola,
K > A(=V2 + 1), the intersection is an ellipse, and

K < A(=V2 + 1), the intersections are hyperbolas. The inclination of the plane at

each of these intersections is given as

B(A - K)
VBAA-K)? + AXC2 + BXC?

cosO =

Next, consider intersection of the plane Z = -C with the hyperboloid as shown

in Figure 4-12. Substituting Z = -C in Equation (4.28) results in the intersection

X2  Y?
AT

’

which is an ellipse as expected. To determine the bounds at which the inclined Z =
-C plane still generates ellipses, consider the plane passing through the points
G(L,0,-C), H(0,-B,-C), and I(M,0,K), where -C < K < C, IL!>1Al The equation of

the plane results in
B(C + K)X - L(C + K)Y — B(L - M)Z - (2BCL + BLK - BCM) = 0.
Solving for Z and substituting in Equation (4.28) results in the intersection

X2[C2BY(L - M2 - AZBXC + K)?] + Y} [C?B*(L - M)? — AZLYC + K)3)
+2LBAYC + K)2XY + - -+ =0.

Evaluating the discriminant leads to the following:

§ = 4AZBHL2AL(C + K)* - [C2(L - M)2 — AXC + KYJ[CHL - M)? - LAC + K)*]]
The bounds for the various intercepts are obtained as follows:

M = L, the intersection is a parabola,
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

Figure 4-12. Plane 1 (z =-c) and all sub-planes parallel to it intersect the
hyperboloid in ellipses. Plane 2 denotes the maximum bound or inclination,
within which the hyperboloid still intercepts ellipses.
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M > L, the intersection is a hyperbola, and

M < L, the intersection is an ellipse.

In terms of the angle,

B(L - M)
VBXC + K)? + LXC + K)? + BAL - M)?

cosO =

Next, consider the various intersections of the plane X = 0 and its inclined sub-
planes as shown in Figure 4-13 with the hyperboloid. As seen before, for
—K < X < K, the intercepts are hyperbolas. The equation of the plane passing through

the points J(0,B,-C), M(0,B,-C), and N(K,0,C) is

-KZ + 2CX - KC =0.

Solving for Z and substituting in Equation (4.28) results in the intersection

X2(K? - 4A%) + AZK2Y? + % + - =0

It is observed that for all K < |2A | the intersections are hyperbolas. However for the
case K = 2A, the intersection takes the form

A2K2Y2+%+ -

which is a parabola. Similarly for the case K > | 2A | the intersections are ellipses. In

terms of the angle, the bounds for the plane X =0 are

cos < €
VK2 + 4C?

Figure 4-14 shows the lateral view of the various curves intercepted in a hyperboloid

by various planes. Table 4-5 summarizes the results obtained in this section.
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DETAILED VIEW : VERTICAL INTERSECTIONS

Figure 4-13. Plane 1 and all sub-planes parallel to it intersect the hyperboloid in
hyperbolas. The inclined sub-planes of plane 1 which are denoted in the above
figure by plane 2 and plane 3 determine the maximum range or bound wherein
hyperbolas are still intercepted. Beyond this range the hyperboloid intersects
various planes in ellipses except the case when the plane makes an angle of 9,
under which case the intercepted curve is a parabola.
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LATERAL VIEW

INTERSECTION OF A PLANE AND HYPERBOLOID OF ONE SHEET

=,
14 \3‘)
N
\:‘\\::—.::5// /
~— —

Figure 4-14. Plane P1 intersects the hyperboloid in a parabola, plane P2
and all planes parallel to it intersect the hyperboloid in hyperbolas. Plane
P3 and all planes parallel to it in the range -c to +c intersect the hyperbo-
loid in ellipses.

c-2



PLANE INTERSECTION
Z=K Circle, Ellipse
X=K Hyperbola
Inclined sub-planes of Z=0, K=A(-2 + 1) Parabola
Inclined sub-planes of Z=0, K>A(-V2 + 1) Ellipse
Inclined sub-planes of Z=0, K<A(-V2 + 1) Hyperbola
Inclined sub-planes of Z=-C,1Z 1< C Ellipse
Inclined sub-planes of Z=-C,|Z1>C Hyperbola
Inclined sub-planes of X=K, K <|2A1 Hyperbola
Inclined sub-planes of X=K, K =2A Parabola
Inclined sub-planes of X=K, K >12A1 Ellipses
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Table 4-5. Intersection of hyperboloid of one sheet with planes.
4.3.6 Hyperboloid of two sheets

Step 1:

Unlike the hyperboloid of one sheet, the hyperboloid of two sheets consists of
two separate pieces. The quadric representation of a hyperboloid of two sheets lying

on a plane parallel to the Xy plane is

bx? + by? + cz? + 2px + 2qy + 2rz +d =0, (4.29)

where the base of the hyperboloid is circular, bc < 0. Completing squares results in
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Py 9y _ I
(X+b) (Y+b) (Z+c)
F(x,y,z) = + 1 + ) =-1,

1
b b c

2 2
where d = % + ﬂb— + —1;3 +1, and -1/c is a positive quantity. Intersection of the

object with the plane 1,i.e., z= k, where k | > V=1/c, results in

x+ 22 (y+ Ly (k + )2
LI b s —°
1 1 -1

b b c

where -1/c is a positive quantity. This equation is of a circle. For a hyperboloid with
an elliptic base, this intersection will be an ellipse. However, when |k | = V(=1/c), the

intersection will result in a point.

Consider the case when the object is intersected with the plane 2,ie, y = k,

where - q/b - '\’ -1b— <k<-ghb +‘\’ Il)_ This intersection results in

—(x + 2.)2 —(z + _r_)2 (k + ﬂ_)z
b c b
+ = +1,

-1 -1

1 -1 -1
b c
which is an equation of a hyperbola. Similar results are obtained for a hyperboloid

with an elliptic base.

Step 2:

As in the case of the hyperboloid of one sheet, the elliptic hyperboloid of two
sheets is assumed to have undergone translation so that its center is aligned with the
origin of the coordinate system as shown in Figure 4-15. The axis of the hyperboloid
coincides with the z axis. Under these conditions the quadric representation of the

hyperboloid is



2 2 2
XX, Y _ Zz __ (4.30)

A2 B?
The intersection of the hyperboloid with the horizontal plane Z = K, IKI<C,is an
imaginary ellipse. For | K |> C, the horizontal plane will intersect ellipses as seen
from Equation (4.30).
Consider the case where Z = -T, where T refers to the length of segment OG.

Substituting in Equation (4.30) leads to the intersection

X2 y? T?
= — -1,

AR
which is an ellipse. Let us now determine the bounds wherein the inclined sub-planes
of the plane Z = - T still intersect the hyperboloid in an ellipse. Equation of the
plane passing through the points D(A,0,-T), E(0,-B,-T), and G(0,0,L), where -T < L <
T is
A(T + L)Y - ABZ - B(T+ L)X + ABL =0.

Solving for Z, and substituting in Equation (4.30) yields

B2(C? - (T + L)X + AXC? - (T + L)2)Y? + 2AB(T + Ly’XY+ - - =0.
Discriminant
§ = 4AZBY[(T+L)* — [(C? - (T+L)?»?]1.

The bounds for the various curves are obtained as follows:

C . ..
For L = — — T, the intersection is a parabola,
2 P
C . ..
for L > 5 — T, the intersection is a hyperbola, and

C . L. .
for L < — — T, the intersection is an ellipse.

V2
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

7 A

Figure 4-15. Plane 1 (z=k,1k1>Icl)and all its inclined sub-planes
which span angle 0 intersect the hyperboloid (of two sheets) in ellipses.
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Angle 6 at each of these values of L is determined as

AB
V_AZ(-T+C) + AZB? + BA-T+C)?

cosO =

Next, consider the vertical plane X = 0 and its inclined sub-planes. Substituting X

= 0 in Equation (4.30) yields the equation of a hyperbola.

To determine the angular bounds of the various intercepts formed through the
intersection of the inclined sub-planes and the hyperboloid, consider the plane shown
in Figure 4-16. The equation of the plane passing through the points H(0,B,-T),
1(0,-B,-T), and J(L,0,T) is

LZ +2TX + LT =0.

Solving for Z and substituting in Equation (4.30) yields

E_+Xi_21x_+_@i__1
A2 B2 122 -

Expanding and re-arranging the terms, leads to the equation of the intercept as
B2L2C? — 4A2THX? + AZL2CPY? + 4T?APBLX - AZBLACE-TH + -+ - =0.
Based upon the term 1.2C2 — 4A2T? which is the coefficient of X2, a decision can be
made about the nature of the intercept. Since C < T, for all values L < 2A, the inter-

cept will be a hyperbola. The coefficient of X2 will disappear when L = 2%1—‘, which

case the intersection is a parabola. For all other cases, i.e., L = 2A, the intersections
are ellipses.
In terms of ©, where hyperbolas are intersected, the angle between the two planes
is
cosf = —__——_ZI__—
VL + 412
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DETAILED VIEW : VERTICAL INTERSECTIONS

Z 4

plane 1 C

Figure 4-16. Plane 1 (x=0) and all its inclined sub-planes, plane 2 being
one of them, spans angle 6 while intersecting the hyperboloid (of two
sheets) in hyperbolas.
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Figure 4-17 shows the lateral view of all the curves intercepted in a hyperboloid of

two sheets by various planes. Table 4-6 summarizes the results obtained above.

PLANE INTERSECTION
Z=K Circle, Ellipse
Z=K,IKl|>c¢c Circle, ellipse
Z=K,IKl=c¢c Point
Z=K IKl<c Imaginary ellipse
Z=- Ellipse
X=K Hyperbola
Inclined sub-planes of Z=-T, L =-C Hyperbola
Inclined sub-planes of Z=-T, L = % -T Parabola
Inclined sub-planes of Z=-T, L > % -T Hyperbola
Inclined sub-planes of Z=-T, L < % -T Ellipse
Inclined sub-planes of X = K, L<2A Hyperbola
Inclined sub-planes of X = K, L< 2/2:T Parabola
Inclined sub-planes of X = K, L22A Ellipse

Table 4-6. Intersection of hyperboloid of two sheets with planes.
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LATERAL VIEW

INTERSECTION OF THE HYPERBOLOID OF TWO SHEETS

WITH PLANES

/Pl P2

Figure 4-17. Plane P1 intersects the hyperbolid in a parabola, plane P3 and
all planes parallel to it intersect the hyperboloid in ellipses, and finally, plane
P2 and all planes parallel to it intersect the hyperboloid in hyperbolas.
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4.3.7 Elliptic paraboloid

Step 1:
The quadric representation of the elliptic paraboloid resting on a plane parallel to

the xy plane is

ax? + by? + 2px + 2qy + 21z +d = 0. (4.31)

Equation (4.31) upon complcﬁng squares, reduces to the form

x+ B2 g+ Y
+ + =0

1 1

1
a b 2r
p? ¢ 1 1 .
only if d = 'Y + B e . are the semi-major and minor axes of the para-

boloid, whereas 1/2r is the height of the paraboloid.

Consider the intersection of the elliptic paraboloid with the plane 1,1ie., z = k,

where 0 < k < 1/2r. The equation of the intercept is

P2 q\2
(x + a) (y+ b) )

+ = — 432
T T @32
a b 2r
where l_/2r is a positive quantity. Equation (4.32) is that of an ellipse.
Consider the intersection of the surface with the plane 2,ie, y = k, where ;l:l—

- '\f % <k< __bi + ‘\f % The curve intercepted is the parabola

(x + 22 (k + Ly
a z b

va  |172c b



91

Step 2:

Unlike step 1, the elliptic paraboloid in this section has undergone translation.
Hence, its center is aligned with the origin of the coordinate system as shown in Fig-
ure 4-18. The axis of the paraboloid coincides with the z axis. Thus, the quadric

representation of the surface is

2 2
% + %{7 +2Z=0. (4.33)

Intersection of the elliptic paraboloid with planes X = K and Y = K where
-A <K <A, and -B <K < B, respectively, will yield parabolas as discussed in step
1. Also, the planes Z = K, where K < 0, intersect the paraboloid in ellipses. Con-
sider the intersection of the horizontal plane Z = -L (where L is the length of the seg-
ment OG) and its inclined sub-planes with the paraboloid. The equation of the plane
passing through the points D(A,0,-L) (where L is the length of the segment OG, and
"a" is the semi-minor axis), E(0,-B,-L), and F(0,0,K), K120, is

~A(K+L)Y + ABZ + B(L+K)X - ABK = 0.
Solving for Z and substituting in Equation (4.32) yields the equation of the intercept
as

2 2 -
pSIR GO 2 A(K+L)Y — B(K+L)X + ABK) o
A? B2 AB

Substituting K = -L will intercept the ellipse
X2 Y?
AR
Consider the case where K = 0. Under this condition the resultant intercept is

X*  Y* LY _IX

+ — +
A2 B2 B A

’

which is an ellipse. Hence in the range —-L € Z <0, the inclined sub-planes of
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

Figure 4-18. Plane P1 and planes parallel to it intersect the paraboloid in
ellipses. Plane P2 is one of the inclined sub-planes which determines the
maximum inclination or range (of plane P1) within which ellipses are still

generated. @ is the angular bound in terms of the angle.
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Z = -L, intercept ellipses. Analyzing the discriminant 8 leads to the following
bounds:

AB
V(A2(K+L)2 - A2B? - BL+K)?)

0 <cosB £

Next, consider the various intersections made by the plane X = 0 and its
inclined sub-planes as illustrated in Figure 4-19. The plane X = O generates the

intercept

which is a parabola. Consider the plane passing through the points H(0,-B,-L),
1(0,B,-L), and J(N,0,M), where L<M<0, and 0 < N < A. The equation of the

plane is found to be
NZ - L+M)X + LN = 0.

Solving for X and substituting in Equation (4.32) yields the intercept

NZ? + 2LNZ + 27 + ﬁ =0
242 2 2
L+M)“A A“(L+M) B

which represents ellipses, except when N = 0.

Hence all inclined sub-planes of the plane X = K, where -A < K < A, yield

intercepts as ellipses. In terms of 6,

+L+M)
3 (4.34)
VN? - LMD

cos0 <

Equation (4.34) denotes the angular bounds within which the intersections are all
ellipses. Table 4-7 summarizes the various conics obtained when various planes inter-

sect the elliptic paraboloid.
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DETAILED VIEW : VERTICAL INTERSECTIONS

P2

Figure 4-19. Plane P1 (x=0) and all planes parallel to it intersect the paraboloid in
parabolas. The inclined plane P2 determines the range within which parabolas are
still intersected. After an angular span of 8, the plane intersects the paraboloid in
ellipses.



PLANE INTERSECTION
Z=K Ellipse
X=K Parabola

Y =K Parabola
Inclined sub-planes of Z = - L Ellipse
Inclined sub-planes of X =0 Ellipse

Table 4-7. Intersection of elliptic paraboloid with planes.

4.3.8 Hyperbolic paraboloid

Step 1:

95

Unlike the elliptic paraboloid, the hyperbolic paraboloid is symmetrical with

respect to the xz plane, the yz plane and the z axis. Its representation is as follows:

ax? + by? + 2px + 2qy + 2rz +d = 0.

In this case, however, ab < 0. Upon completing squares we have

x+ 22 (y+ Ly
a b

- +
1 1

a b

2 2

only if d = };— + 4 and Y is a positive quantity.

b

=0
1
2r

Intersecting the surface with plane 1,ie, z = k, results in

P2 q\2
(X+a) (y+b)

1 1

a b

(4.35)
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where -1/b is a positive quantity. This equation is that of a hyperbola. In the case
when z =k = 0, it results in a pair of parallel lines which is a degenerate case of a

hyperbola.

Consider the case when the object is intersected with plane 2, ie., y =k, then

(x + 22 (k + 12
a+z= a

1

1
a 2r b
which is an equation of a parabola. The two planes considered in step 1 by them-
selves prove sufficient enough to distinguish the hyperbolic paraboloid from all the
other quadric surfaces considered for the recognition process. Hence, angular bounds
to extract the regions where a unique set of features (curves) is obtained are not
necessary in the case of this quadric surface. However, Figures 4-20 and 4-21 illus-
trate the regions, if necessary, where extra features (curves) can be evaluated. Table
4-8 summarizes the curves intercepted by planes 1 and 2 with the hyperbolic para-

boloid.

PLANE | INTERSECTION

Z=K Hyperbola
X = Parabola
= Parabola

Table 4-8. Intersection of hyperbolic paraboloid with planes.
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

Figure 4-20. Planes parallel to the xy-plane (z=k) and all its inclined sub-planes
intersect the hyperbolic paraboloid in hyperbolas.
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DETAILED VIEW : VERTICAL INTERSECTIONS

\
s
\V

Figure 4-21. Planes parallel to the xz-plane (y=k) and all its inclined sub-planes
intersect the hyperbolic paraboloid in parabolas.
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4.3.9 Hyperbolic cylinder

Step 1:

As in the case of a regular circular or elliptic cylinder, the surface of the hyper-
bolic cylinder is parallel to the z axis. Subsequently, the variable z is not present in
its quadric representation. It’s general representation when resting on a plane parallel

to the xy plane is

ax? + by? + 2px + 2qy + d = 0, (4.36)

where ab < 0. Completing squares

u+§ﬂ w+%ﬂ
- +1=0

a b

+1. Also, -1/b is a positive quantity. Intersection of the

ok,

2
only if d=%—+

cylinder with plane 1, ie., z = k, generates a hyperbola. Since Equation (4.36) is
independent of the variable z, the curve intercepted is the one represented by Equation

(4.36).
Intersection of the hyperbolic cylinder with plane 2, ie., y =k results in the

equation

B2 ws Dy
a - a _ 1
] -1 ’

a b

which when solved results in a pair of straight lines. As in the case of the hyperbolic
paraboloid, angular bounds to extract the regions where a unique set of features
(curves) are determined are not necessary, since the two planes considered in step 1

by themselves prove sufficient to distinguish this surface from all the other quadric
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surfaces considered in the recognition process. A follow-up on the various inclined
sub-planes of the z= k and y = k planes leads to a similar set of intercepts as with
the x =k plane. Figures 4-22 and 4-23 illustrate the regions, if required, where extra
features (curves) can be determined. Table 4-9 displays the intercepts formed when

the hyperbolic cylinder is intersected with the two planes.

PLANE | INTERSECTION

Z=K Hyperbola
=K Lines
=K Lines

Table 4-9. Intersection of the hyperbolic cylinder with planes.
4.3.10 Parabolic cylinder -

Step 1:

Unlike the two quadric cylinder considered before, i.e., the circular (elliptic) and
the hyperbolic, this surface is parallel to the y axis. Hence the variable y is not
present in its quadric representation. It’s general representation when resting on a

plane parallel to the xy plane is
f(x,y,z) = ax? + 2px +2rz +d = 0. 4.37)
Upon completing squares it reduces to

(x + 2
L (4.38)
1/a 1/2r
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

Figure 4-22. Planes parallel to the xy-plane (z=k) and all its inclined sub-planes
intersect the hyperbolic cylinder in hyperbolas.
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DETAILED VIEW : VERTICAL INTERSECTIONS

AL

7

Figure 4-23. Planes parallel to the xz-plane (y=k) and all its inclined sub-planes
intersect the hyperbolic cylinder in lines.
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2
only if d = r;—. Intersection of the parabolic cylinder with plane 1,ie., z =k, 0<

k < 2r/ab, where b is any finite positive quantity signifying the width of the base of

the cylinder, yields

(x + &2
a

’

k
1 1
a 2r
which, when solved, results in a pair of parallel lines.

Consider the intersection of the parabolic cylinder with plane 2, ie., y = k.
Since Equation (4.37) is independent of the variable y, the resultant curve intersected
is the same as Equation (4.37), which is a equation of a parabola. As in the case of
the hyperbolic paraboloid and the hyperbolic cylinder, angular bounds to extract the
regions wherein a unique set of features (curves) are determined are is not necessary.
The two planes considered in step 1 by themselves proved sufficient enough to distin-
guish this surface from all the other quadric surfaces considered from the recognition
process. Figures (4-24) and (4-25) illustrate the regions, if required, where extra
features (curves) can be determined. Table 4-10 displays the intercepts formed when

the parabolic cylinder is intersected with the two planes.

PLANE | INTERSECTION

Lines

Y =K Parabola

Table 4-10. Intersection of the parabolic cylinder with planes.
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

Figure 4-24. Planes parallel to the xy-plane (z=k) and all its inclined sub-planes
intersect the parabolic cylinder in lines.
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DETAILED VIEW : VERTICAL INTERSECTIONS

Figure 4-25. Planes parallel to the xz-plane (y=k) and all its inclined sub-planes
intersect the parabolic cylinder in parabolas.
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4.3.11 Parallelepiped

Since planar surfaces cannot be represented with quadratic equations, we con-
sider a plane of the parallelepiped. The general equation of a plane from Equation

(4.1) is of the form

2px + 2qy + 2rz+ d = 0. (4.39)

Intersection with plane 1,i.e., z =Kk, will generate

2px +2qy +d + 2rk =0,

which is the equation of a line. Similarly, intersection of the plane denoted by Equa-

tion (4.39) with plane 2 will generate the line

2px + 2rz +d + 2gk = 0.

Table 4-11 summarizes the short results obtained for the parallelepiped.

PLANE | INTERSECTION

Z=K Line
= Line
Y =K Line

Table 4-11. Intersection of the parallelepiped with planes.
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Table 4-12 summarizes the various curves (conics) derived from intersecting each
of the eleven surfaces with the two planes z =k and y =k. These observations fol-
low the results obtained in step 1 of each of the quadric surfaces. As seen from
Table 4-12, the quadric cone and the hyperboloid of one and two sheets all generate
similar curves. However, after using the results of step 2 (where angular bounds have
been determined), we are able to distinguish each of the quadric surfaces from one
another. Each of the quadric surfaces can be represented by a binary five-tuple, where
the numeral 1 indicates the presence of a particular curve and the numeral 0 refers to
the non-existence of that curve. Table 4-13 below presents the feature vector for each

of the quadric surfaces.

Quadric surfaces which seem to have identical feature vectors in the table above,
get differentiated when the angular bounds theory as defined and derived for each of
the surfaces (step 2) is applied. The next section briefly presents one other surface
recognition approach which is very similar to the two-dimensional discriminant
approach utilized to distinguish two-dimensional curves. It is one of our primary areas

for future investigation.

4.4 Mapping of Explicit to Implicit Representations for Quadric Surfaces

Another objective which should be discussed is the formulation of a three-
dimensional discriminant similar to the two-dimensional discriminant described earlier
as means of recognizing three-dimensional objects. Consider the general quadratic

representation of quadrics again, i.e.,
F(x,y,z) = ax? + by? + cz? + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz +d = 0. (4.40)
This equation can be written implicitly, such that

z = F(x,y) = Ax* + By? + Cxy + Dx + Ey + F. (4.41)



OBJECT PLANE1:x =k PLANE 2 :y =k
Ellipsoid Ellipse Circle
Circular cylinder Circle Line

Sphere Circle Circle
Quadric cone Circle Hyperbola, Parabola
Hyperboloid of one sheet Circle Hyperbola, Parabola

Hyperboloid of two sheets
Elliptic paraboloid
Hyperbolic cylinder
Parabolic cylinder
Hyperbolic paraboloid
Parallelepiped

Circle, Point
Ellipse
Hyperbola
Line
Hyperbola

Line

Hyperbola, Parabola
Parabola
Line
Parabola
Line

Line
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Table 4-12. The various curves intercepted by the quadric surfaces when intersected
with the planes z =k and y = k.
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3-D SURFACE CIRCLE | ELLIPSE | PARABOLA | HYPERBOLA | LINE
Ellipsoid 1 1 0 0 0
Circular cylinder 1 1 0 0 1
Sphere 1 0 0 0 0
Quadric cone 1 1 1 1 1
Hyperboloid of one sheet 1 i 1 1 0
Hyperboloid of two sheets 1 1 1 1 0
Elliptic paraboloid 1 I 1 0 0
Hyperbolic cylinder 0 0 0 1 1
Parabolic cylinder 0 0 1 0 1
Hyperbolic paraboloid 0 0 1 1 1
Parallelepiped 0 0 0 0 1

Table 4-13. Feature vectors (representing the prescence or absence of curves) for each

of the quadric surfaces.
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Equation (4-40) characterizes the complete surface through its representation, whereas
Equation (4-41) characterizes surface patches on three-dimensional surfaces. As dis-
cussed in Chapter Two, where surface curvatures are utilized to describe surface
patches as being planar or curved (hyperbolic, parabolic, or elliptic), we wish to utilize
the ten coefficients of Equation (4.40) in the form of a discriminant to represent
patches on three-dimensional surfaces. In case we justify the existence of the implicit
form, we would like to derive a mapping from F(x,y,z) to F(x,y); i.e., we would like to
investigate the relations between A, B, C,D,E,and Fand a, b, ¢, d, p, q, r and d If
this is possible, then we can attempt to derive a discriminant using A, B, C, D, E, and
F, the combination of which can distinguish three-dimensional objects.

We approach this problem in two directions. In the first approach we would
numerically solve and derive relations for each coefficient in Equation (4-41) in terms
of the coefficients of Equation (4-40). For example, while solving for F we arrive at its

representation as

Fo “2r + Var? — 4cd

2c

Similarly, expressions for the coefficient B have been found to be

_, V2 (frgrn) - delatbi2he2pt2gHd)

B
4c

Each of the above coefficients were derived while setting the variables x and y as
zero. Similarly the remaining coefficients can be derived after solving several linear
and non-linear equations. In the second approach, derivatives are utilized to obtain a
pattern vector based on the coefficients of Equation (4-40). Rewriting Equation (4-40)

in terms of a quadratic of z,

—[cz? + 2fyz + 21z + 2gxz] = f(x,y) = ax? + by? + 2hxy + 2px + 2qy + d, (4.42)



111

which is similar to Equation (4-41), i.e., to

z = F(x,y) = Ax? + By? + Cxy + Dx + Ey + F.

Differentiating Equation (4-42) with respect to each of the variables, x, y, and z,

yields the following equations:

9F _ 267 = 2by + 2hx + 2q,
dy
i)£=2gz=2ax+2hy+2p,
ox
and
g—F=202+2fy+2r+2gx=O.
Z

Each of these expressions are utilized individually in Equation (4-40) to yield an

expression of the form

Ax2+C2+Bxy+Ex+Fy+D=O,

from which the discriminant B? — 4AC again produces results which are either less
than zero, equal to zero, or greater than zero. A list of pattern vectors which seem to
be invariant has been derived for some of the quadric surfaces. Much more work has

to be done on simulated as well as real data before arriving at definite conclusions.

The theory developed in chapters Three and Four were experimented with several
sets of real and simulated range data. Results of which are summarized in Chapter

Five.
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CHAPTER FIVE
EXPERIMENTAL RESULTS

5.1 Introduction

Section 5.2 discusses our study of median filtering on range images. Section 5.3
explains the process whereby filtered range images of spheres, cylinders, and quadric
cones undergo the recognition criterion. Subsequently, Section 5.4 discusses the appli-
cation of the rotation alignment algorithm to the processed as well as simulated range
images. Section 5.5 briefly presents the results obtained while using the three-
dimensional discriminant approach to simulated and real range data.

Range data obtained using a laser radar three-dimensional vision system is similar
to intensity images obtained- from a normal camera. However, instead of intensity
(brightness) information, range (depth) information is available. Thus it is possible to
interpret intensity information as range information when a range image is displayed
on a image processing monitor. The nearer the object, the brighter it appears on the

screen.
The experimental work was performed in the following order :
(i) The effect of median filtering on range images was studied.
(ii) The proposed recognition scheme was applied to filtered range images.
(iii) The quadric alignment algorithm was applied to simulated and real data.

(iv) The three-dimensional discriminant approach was tested with simulated data.

112
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5.2 Median Filtering on Range Images

Range images of objects like spheres, cylinders and cones were segmented in
order to separate the object from its background. The resulting image, which is
referred to as the raw image, was then median filtered with mask sizes 3 x 3,5x 5

and 7x7.

Consider Figure 5-1 which is the actual range image of a sphere with its back-
ground. Figure 5-2 is the image after segmentation. The effect of median filtering on
Figure 5-2 can be observed in Figure 5-3 (3 x 3 mask), Figure 5-4 (5 x 5§ mask), and
Figure 5-5 (7 x 7 mask). The curvature sign map, which is discussed in Chapter
Three, was then utilized to study the effect of median filtering on the original range
image shown in Figure 5-2. Evaluating the first and second derivatives with respect to
the x and y axes and comparing each of these maps determines whether or not the
median filtering has altered the original range data to any extent. Figures 5-6a, 5-6b,
5-6c, and 5-6d are the first and second derivatives with respect to the x and y axes,
respectively, for figure 5-2. Similarly figures 5-7a, 5-7b, 5-7c, 5-7d; figures 5-8a, 5-
8b, 5-8c, 5-8d; and figures 5-9a, 5-9b, 5-9¢, 5-9d are the first and second derivatives

for the images in figures 5-3, 5-4, and 5-5, rcspectivcly.

In all of these figures, "+" is assigned to a particular pixel position if the magni-
tude of the derivative (first or second) of that pixel is greater than the magnitude of the
derivative (first or second) of the pixel to its right. Similarly "-" is assigned to a par-
ticular pixel position if the magnitude of the derivative (first or second) of that pixel is
less than the magnitude of the derivative (first or second) of the pixel to its right. In
the case when the magnitudes of the derivatives (first or second) of either pixels is the

same, a blank is assigned.

Sign maps are also generated to check the integrity of the image data before and

after the filtering process. Based on the magnitude of the depth value of a pixel and
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Figure 5-1. Raw range image of the sphere with its background.

Figure 5-2. Range image of the sphere after segmentation.
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Figure 5-3. 3 x 3 median filtered image of the raw sphere.



Figure 5-4.

Figure 5-5.

5 x 5 median filtered image of the raw sphere.

7 x 7 median filtered image of the raw sphere.
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Figure 5-6(a). First derivative w.r.t x-axis of the original sphere.
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Figure 5-6¢. Second derivative w.r.t x-axis of the original sphere.
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Figure 5-6d. Second derivative w.r.t y-axis of the original sphere.
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Figure 5-7a. First derivative w.r.t x-axis of the sphere filtered with a mask size
of 3 X 3.
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Figure 5-7b. First derivative w.r.t y-axis of the sphere filtered with a
mask size of 3 X 3.
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Figure 5-7c. Second derivative w.r.t x-axis of the sphere filtered with a
mask size of 3 X 3.
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Figure 5-7d. Second derivative w.r.t y-axis of the sphere filtered with a
mask size of 3 X 3.
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Figure 5-8a. First derivative w.r.t x-axis of the sphere filtered with a
mask size of 5 X 5.
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Figure 5-8b. First derivative w.r.t y-axis of the sphere filtered with a
mask size of 5 x 5.
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Figure 5-8c. Second derivative w.r.t x-axis of the sphere filtered with a
mask size of 5§ X 5.
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Figure 5-8d. Second derivative w.r.t y-axis of the sphere filtered with a
mask size of 5 X 5.
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Figure 5-9a. First derivative w.r.t x-axis of a sphere filtered with a
mask size of 7 x 7.
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Figure 5-9b. First derivative w.r.t y-axis of a sphere filtered with a
mask size of 7 x 7.
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its adjacent neighbor, a "+" or "-" or " " (blank) is assigned to the pixel location in the
sign map. Figure 5-10 is the sign map generated for the original raw image data of the
sphere. Similarly figures 5-11, 5-12, and 5-13 are the sign maps generated for the 3 x
3, the 5x 5, and the 7 x 7 filtered images of the sphere. A careful observation of
these sign maps suggests that only a small variation has been brought about due to the
filtering process.

The prime objective of median filtering is to remove salt and pepper noise in the
range images and thus present a noise free range image for the evaluation of the
objects coefficients [27]. It can be seen from figures 5-3, 5-4, and 5-5 that these filters
met the objective. However, looking at the curvature maps it is observed that as the
filter size increases, the apparent curvature is distorted relative to the original curva-
ture. The 3 x 3 filtered image, being the closest to the original raw image, can be
utilized for further processing and for describing the surface features. The validity of
the curvature map calculations were checked using a "best fit" analysis.

Once the data files were obtained for each of the filtered images, the depth infor-
mation of each of these files was converted into rectangular coordinates. The opera-
tion manual for the laser radar three-dimensional vision system [31] describes the
equations used for the transformations of the range information from spherical coordi-

nates to rectangular coordinates:

X = (R - L)sin8y, (5.1)
Y=R- —S—Gt-— L)sin@ cosOy, (5.2)
cos g
and
Z=(R - —6——9,—- L)cos0,cosH;, (5.3)
Ccos &

where 6; is the horizontal scanning angle and B, 1s the vertical scanning angle.
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Figure 5-11. Sign map generated for the 3 x 3 filtered image of the sphere taking
into consideration the magnitude of the depth value at a particular pixel and its

neighboring pixel.
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Figure 5-12. Sign map generated for the 5 x 5 filtered image of the sphcre takipg
into consideration the magnitude of the depth value at a particular pixel and its
neighboring pixel.
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O¢ = 25° — (horizontal pixel #) (0.1961 deg/pixel). 54
Og = (vertical pixel #) (0.1961 deg/pixel) —25°. (5.5)
L =0.362m. (5.6)

R is Range in meters = (0.00459 m/pixel)(Range pixel) + (n — 1/2), 3.7

where n is the electronic range in meters set by the operator. The cartesian coordi-
nate information was then utilized for determining the coefficients which describe each

of the three-dimensional surfaces.

Experiments were conducted on range data for spheres and cylinders. Results of

median filtering for one such set of range data is presented.

Figure 5-14 is the actual range image of a cylinder. Figure 5-15 is the range
image after segmentation. Similarly, figures 5-16 and 5-17 illustrate the 3 x 3 and the
5 x § median filtered images of the cylinder range data.

Curvature maps for studying the effect of median filtering on the range data are illus-
trated in figures 5-18(a,b,c,d), figures 5-19(a,b,c,d), and figures 5-20(a,b,c,d), which are
the first and second derivatives with respect to the x and y axes for the original
cylinder image, the 3 x 3 filtered cylinder image, and the 5 x § filtered cylinder
image, respectively.

Sign maps similar to the ones derived for the sphere are generated for the
cylinder and are shown in figures (5-21), (5-22), and (5-23). The figures correspond to
the original, the 3 x 3 filtered image, and the 5 x 3 filtered images of the cylinder,
respectively. Analyzing the curvature maps for the cylinder indicates the filtering pro-
cess removed the noise and smoothed the image data without effecting significant dis-
tortions. The sign maps, much like the curvature maps, seem not much affected by the
filtering process other than some information (range data) being lost at the edges.

Listed in tables 5-1 and 5-2 are the coefficients obtained for the original range images,
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Figure 5-14. Raw range image of the cylinder with its background.

Figure 5-15. Range image of the cylinder after segmentation.
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Figure 5-16. 3 x 3 median filtered image of the raw cylinder.

Figure 5-17. 5 x 5 median filtered image of the raw cylinder.
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Figure 5-18a. First derivative w.r.t x-axis of the original cylinder.
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Figure 5-18b. First derivative w.r.t y-axis of the original cylinder.
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Figure 5-19a. First derivative w.r.t x-axis of the cylinder filtered with a
mask size of 3 X 3.
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Figure 5-19b. First derivative w.r.t y-axis of the cylinder filtered with
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Figure 5-19c. Second derivative w.r.t x-axis of the cylinder filtered with a

mask size of 3 X 3.
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Figure 5-19d. Second derivative w.r.t y-axis of the cylinder filtered with
a mask size of 3 X 3.
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Figure 5-20a. First derivative w.r.t x-axis of the cylinder filtered with a

mask size of 5 X 5.



Figure 5-20b. First derivative w.r.t y-axis of the cylinder filtered with

a mask size of 5 X 5.
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Figure 5-20c. Second derivative w.r.t x-axis of the cylinder filtered

with a mask size 5 X 5.
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Figure 5-21. Sign plot for the original cylinder. The sign "+" or "-" is
assigned depending whether the adjacent pixel has a range value lesser
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Figure 5-22. Sign plot for the 3 x 3 filtered image of the cylinder. The sign
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lesser or greater than the pixel to its left.



155

- = = = 4=+ tt4+
———— +++++
----- -+ - ++++
-— - - e R
- ++++
—————— - - ++++
——————— - =+ ittt
_—— - - - +4+4+4+4
—————— - - - 4444+
—————— - -+ +++
————— - +++
- - -4 - +++
- - ——-= + 4 —H4+E
- - --- +4+ ++++
- - -—- + ++++
- - -—- + 444+
_——— - - ++++
et SR L S 2
————— —= -4 4444+
————— -—-- ++++4+
------- ——= 444+t
—————— ——— - 44ttt
———mem—m— - 44 +++4+
——— e + ++++
——— e - ++++
—— - ~—  ++++
-——— - - = 44+t
——— -+ - —++4+
_— -+ - ++++
-——— = +++4+
-— - - +++++
—_————=- - ++4+4
_——_————— - ++++
e S
et S
-—— - - - +4+4+
——— - - —+- ++++
——————= - ++++
—_—————- - +4+++
e +4+++
——— - == -- +4+++
- - - ++++
-—- +-- - ++++
-—-- e +++
-— - - -- +++
————— - - 4+t
———— - - +++
——— - - +++

|
1
1
1
+
[}

Figure 5-23. Sign plot for the 5 x 5 filtered image of the cylinder. The sign
"+" or "-" is assigned depending whether the adjacent pixel has a range value
lesser or greater than the pixel to its left.



156

the 3 x 3 filtered images, the 5 x 5 filtered images and finally the 7 x 7 filtered

images of a sphere and a cylinder.

These tables show that none of the coefficient sets describe a real sphere or
cylinder with any certainty. The following procedure was utilized to determine which
particular set of coefficients best describes the original range data of the object. A

small surface patch of the object is chosen. In the quadratic form,
F(x,y,z) = ax? + by? + cz? + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0,

the coefficients a, b, ¢, d, f, g, h, p, q, and r are inserted and for each (x,y,z) of the
object patch, the error is evaluated for each set of coefficients. A plot is generated in
which every point of the surface patch is replaced with the numerals 1, 3, 5, and 7
signifying that the minimum error was obtained for that particular set of coefficients.
Figure 5-24 is one such plot for the raw segmented image of the sphere. Numeral 1
refers to the situation when the original set of coefficients fits best, and similarly
numerals 3, 5, and 7 are used depending whether the 3 x 3 or the S5xS5orthe 7x
7 set of coefficients, listed in Table 5-1, of the sphere fits best. As seen from Figure
5-24, the presence of excess number of the numeral 3 confirms the results obtained
from the curvature maps for the sphere range data. Figure 5-25 is the plot using the
coefficients listed in Table 5-2 for the cylinder. Both of these plots validate our

findings from the analysis of the curvature maps.
The experiments mentioned above were performed on a large number of real
range data sets for spheres, cylinders, and cones, the results of which are shown in

appendix A.

5.3 Application of the Recognition Process to the Processed Image Data

The next objective was to apply our recognition schemes to the processed images
of a sphere, a cylinder and a quadric cone. Each of the processed images of the

sphere, the cylinder, and the cone were intersected with two planes (one parallel to the
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Figure 5-24. Best fit plot for the sphere raw image.
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Figure 5-25. Best fit plot obtained for the cylinder belonging to set A. Numerals
"1, 3, 5, 7" denote the original image, the 3 x 3 image, the 5 x 5 image, and the
7 x 7 image respectively.
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COMPARISON OF COEFFICIENTS EVALUATED FOR THE ORIGINAL

AND THE PROCESSED IMAGES OF A SPHERE

COEFFICIENT RAW IMAGE | 3 X3 FILT. IMAGE

5 X 5 FILT. IMAGE

7 X 7 FILT. IMAGE

A, COEFF. OF X?
B, COEFF. OF Y?
C, COEFF. OF Z*
F, COEFE. OF YZ
G, COEFF. OF XZ
H, COEFF. OF XY
P, COEFF. OF X
Q, COEFF. OF Y
R, COEFF. OF Z

D, CONSTANT

0.3026

0.2734

0.6545

0.5310

0.6357

0.3524

0.3036

0.4199

0.8172

0.2847

0.2211

0.2802

0.7747

-0.5348

-0.4860

0.2339

0.1999

0.4401

-1.0163

03717

-0.3260

-0.4860

-0.3338

0.4834

0.7194

-0.5801

0.3159

-0.3524

0.3191

0.0973

0.4242

0.2178

0.5845

-0.3417

-0.7452

0.4353

0.3127

0.1996

-0.5858

0.1516

Table 5-1. Comparison of the coefficients evaluated for the original and the processed

images of a sphere.



COMPARISON OF COEFFICIENTS EVALUATED FOR THE ORIGINAL
AND THE PROCESSED IMAGES OF A CYLINDER
COEFFICIENT RAW IMAGE | 3 X 3 FILTERED IMAGE 5 X 5 FILTERED IMAGE
A, COEFF. OF X? 0.8338 0.6636 0.0572
B. COEFF. OF Y? 0.0041 0.0209 0.599
C. COEFF. OF 2! 0.059 00923 0.4416
F, COEFF. OF YZ -0.00103 00219 0.807
G. COEFF. OF XZ 0636 -0.7604 0.459
H, COEFF. OF XY 0.4437 0.7727 -0.149
P, COEFF. OF X -0.0141 0.4242 05915
Q. COEFF. OF Y 0.189 02155 1.089
R, COEFF. OF Z 0.193 0374 -1.019
D, CONSTANT -0.1341 0253 0.664
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Table 5-2. Comparison of the coefficients evaluated for the original and the
processed images of a cylinder.
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xy plane, the other parallel to the xz plane). The results obtained for the sphere are
tabulated in Table 5-3. A decision on the curve being an ellipse or a circle was made

based upon the parity and disparity of the x2, y2, and z* coefficients.

Sphere Images

plane 1, y =k | Ellipse | Ellipse Ellipse

plane 2, z =k | Ellipse | Ellipse Circle

Table 5-3. Curves intercepted by the two planes, z =k, y = k, with real raw and
processed range data of the sphere.

Experiments conducted with the raw and the processed images of the cylinder led

to the results tabulated in Table 5-4.

Cylinder Images

plane 1, y =k | Ellipse Line Line

plane 2, z = k | Ellipse | Ellipse Ellipse

Table 5-4. Curves intercepted by the two planes, z = k, y = K, with real raw and
processed range data of the cylinder.

As seen from the tabulated results, the raw images come close in generating the
desired curves for each of the objects, but at the same time a § x § filter in either case
generates the exact two-dimensional curves.

Experiments conducted with the raw and the processed images of the quadric

cone led to the results tabulated in Table 5-5.
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Quadric cone Images

plane 1,z = k | Ellipse Ellipse Ellipse

plane 2, y =k | Ellipse Hyperbola | Hyperbola

Table 5-5. Curves intercepted by the two planes, z =k, y = k, with real raw and
processed range data of the quadric cone.

As seen from the tabulated results, the raw images do not come close in generating the
desired curves for each of the objects, but at the same time the 3 x 3 as well as the
5 x 5§ filter in either case generates the exact two-dimensional curves. Coefficients
generated for the raw image data of the cone as well as the 3 x 3 and 5 x 5 median

filtered image data of the quadric cone are listed in Appendix B.

5.4 Application of the Rotation Alignment Algorithm

The rotation alignment algorithm which determines the orientation of the quadric
surfaces in space and then aligns them in accordance to our desired coordinate system
was applied to simulated data as well as real data.

Consider tables 5-6, 5-7, and 5-8, which compare the coefficients of the sphere
range data before and after rotation alignment.

Each of the image data sets, i.e., the original raw image of the sphere and the 3
x 3 and the 5 x 5 median filtered images of the sphere, required three iterations to
eliminate the product terms. Since a sphere is symmetric about all coordinate axes, no

rotation alignment should be needed. The alignment algorithm was performed just to

see how the coefficients relate to each other before and after the rotation. The
coefficients were basically invariant as expected.

Similarly, tables 5-9, 5-10, and 5-11, show the coefficients obtained before and
after the rotation alignment for the cylinder range data. However, in these cases, each

of the image data sets, i.e., the original raw image of the cylinder, the 3 x 3 and the
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COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X? 0.3026 0.3206466
B, COEFF. OF Y? 0.2734 0.184263
C, COEFF. OF Z* 0.6545 0.7999953
F, COEFF. OF YZ 0.5310 0.0
G, COEFF. OF XZ 0.6357 0.0
H, COEFF. OF XY 0.3524 0.0
P, COEFF. OF X 0.3036 0.252
Q, COEFF. OF Y 0.4199 0.41686

R, COEFF. OF Z -0.8172 -0.8623

D, CONSTANT 0.2847 0.2847

Table 5-6. New coefficients of the raw image data of sphere after alignment.

COEFFICIENT BEFORE AFTER ALIGNMENT
A, COFFF. OF X? 0.264 0.249
B, COEFF. OF Y? 0.129 0.1311
C, COEFF. OF Z? 0.5738 0.634
F, COEFF. OF YZ -0.6275 0.0
G, COEFF. OF XZ -0.783 0.0
H, COEFF. OF XY 0.4014 0.0

P, COEFF. OF X 0.4826 0.4405
Q, COEFF. OF Y 0.3670 0.3746

R, COEFF. OF Z -0.7218 -0.7401

D, CONSTANT 0.2210 0.2210

Table 5-7. New coefficients of the 3 x 3 median filtered image data of sphere

after alignment.
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COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X? 0.303 0.3765
B, COEFF. OF Y? 0.392 0372
C, COEFF. OF Z* 0.6526 0.6417
F, COEFF. OF YZ -0.4487 0.0
G, COEFF. OF XZ -0.8376 0.0
H, COEFF. OF XY 0.2416 0.0

P, COEFF. OF X 0.4047 0.4259
Q. COEFF. OF Y 0.2214 0.2184

R, COEFF. OF Z -0.7089 -0.7423

D, CONSTANT 0.1913 0.1913

Table 5-8. New coefficients of the 5 x 5 median filtered image data of sphere

after alignment.

COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X? 0.8338 0.9812
B, COEFF. OF Y? 0.00411 -0.1143
C, COEFF. OF Z? 0.059 0.03255
F, COEFF. OF YZ -0.00103 0.0
G, COEFF. OF XZ -0.636 0.0
H, COEFF. OF XY 0.4437 0.0
P, COEFF. OF X -0.0141 -0.0876
Q, COEFF. OF Y -0.189 -0.2478

R, COEFF. OF Z 0.193 -0.01125

D, CONSTANT -0.1341 -0.1341

Table 5-9. New coefficients of the raw image data of cylinder after alignment.
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COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X? 0.6636 0.9235
B, COEFF. OF Y? 0.0209 -0.2967
C, COEFF. OF Z* -0.0923 -0.00207
F, COEFF. OF YZ -0.0219 0.0
G, COEFF. OF XZ -0.7604 0.0
H, COEFF. OF XY 0.7727 0.0

P, COEFF. OF X 0.4242 0.1923
Q, COEFF. OF Y -0.2155 -0.5368

R, COEFF. OF Z 0.374 0.05379

D, CONSTANT -0.253 -0.2533

Table 5-10. New coefficients of the 3 x 3 median filtered image data of cylinder
after alignment.

COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X? 0.0572 -0.07251
B, COEFF. OF Y? 0.599 0.977
C, COEFF. OF Z? 0.4416 0.1930
F, COEFF. OF YZ -0.807 0.0
G, COEFF. OF XZ 0.459 0.0
H, COEFF. OF XY -0.149 0.0

P, COEFF. OF X -0.5915 -0.1764
Q, COEFF. OF Y 1.089 1.5696

R, COEFF. OF Z -1.019 -0.1902

D, CONSTANT 0.664 0.664

Table 5-11. New coefficients of the 5 x 5 median filtered image data of cylinder
after alignment.
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5 x 5 median filtered images of the cylinder, required four iterations to eliminate the
product terms. Except for the coefficients of the raw image data, both the 3 x 3 and
5 x 5 filtered coefficients after alignment yielded the desired curves when intersected
with various planes. Making use of the coefficients of the 5§ x 5 filtered image, the
diameter of this particular cylinder was calculated to be 4.99 centimeters. The actual
diameter of the cylinder was 5 centimeters. Appendix C contains more results
obtained while carrying out the rotation alignment algorithm for other cylinder range
images.

The rotation alignment technique was utilized for a large group of simulated data.
Listed in tables 5-12, 5-13, and 5-14 are several upon which the utilization of our
recognition scheme correctly identified the surfaces. Upon application of our recogni-
tion scheme the quadric surfaces represented in Tables 5-12, 5-13, and 5-14 were
correctly recognized as an ellipsoid, a hyperboloid of one sheet, and a hyperbolic
cylinder, respectively.

All the simulated data sets of quadric surfaces could be recognized after conduct-
ing the rotation alignment technique on the original quadratic representation. The
three-dimensional discriminant approach which was described in Chapter Two was

applied to several simulated data of quadrics.

5.5 Application of Three-Dimensional Discriminant Technique

Results for the simulated data are illustrated in Table 5-15 and are very effective
as predicted by the theory. Object (1) refers to a parabolic cylinder, (2) refers to a
hyperbolic paraboloid, (3) refers to a hyperboloid of one sheet, (4) refers to an ellip-
soid, (5) refers to a hyperbolic cylinder, (6) refers to a quadric cone, (7) refers to a
hyperboloid of two sheets, and (8) refers to an elliptic paraboloid. A listing of a sam-
ple data file is included in Appendix D. However, as expected, unsatisfactory results

were obtained while experimenting with real data. A listing of all the programs
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COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X? 103 49.84
B, COEFF. OF Y? 125 96.887
C, COEFF. OF 2} 66 145.3905
F, COEFF. OF YZ -60 0.0
G, COEFF. OF XZ -12 0.0
H, COEFF. OF XY 48 0.0

P, COEFF. OF X 0.0 0.0
Q, COEFF. OF Y 0.0 0.0

R, COEFF. OF Z 0.0 0.0

D, CONSTANT -294 -294

Table 5-12. New coefficients of an unknown simulated data obtained after alignment.

COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X* 0.0 2.0
B, COEFF. OF Y? 2.0 -4.0
C, COEFF. OF Z? 1.0 -1.0
F, COEFF. OF YZ 40 0.0
G, COEFF. OF XZ 40 0.0
H, COEFF. OF XY 0.0 0.0

P, COEFF. OF X 0.0 0.0
Q, COEFF. OF Y 0.0 0.0

R, COEFF. OF Z 0.0 0.0

D, CONSTANT -4.0 40

Table 5-13. New coefficients of an unknown simulated data obtained after alignment.
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COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X? 0.0 3.0
B, COEFF. OF Y? 0.0 0.0
C, COEFF. OF Z? 0.0 -3.0
F, COEFF. OF YZ -1414 0.0
G, COEFF. OF XZ 0.0 0.0
H, COEFF. OF XY 1.0 0.0
P, COEFF. OF X 0.0 0.0
Q, COEFF. OF Y 0.0 0.0
R, COEFF. OF Z 0.0 0.0

D, CONSTANT -3.0 -3.0

Table 5-14. New coefficients of an unknown simulated data obtained after alignment.




169

SURFACE CHARACTERIZATION USING THREE-DIMENSIONAL DISCRIMINANT APPROACH FOR
SIMULATED DATA
COEFFICIENTS OF THE SIMULATED OBJECTS

A, COEFF. OF X* 1 0 0 1 0 0 1 3
B, COEFF. OF Y? 4 1 0 3 0 0 0 0
C, COEFF. OF Z? 9 20 0 2 6 1 3 2
F, COEFF. OF YZ 6 4.5 1.5 -1 1.5 3 | 0
G, COEFF. OF XZ 3 25 1 0 1 -2 -1 2
H, COEFF. OF XY 2 0.5 0.5 1 0.5 1 0 0
P, COEFF. OF X 1 0.5 -1 2 2 2 0 0
Q, COEFF. OF Y 7 0 0 5 3 3 1 1
R, COEFF. OF Z 0 0 3 0 0 0 3 0
D, CONSTANT 10 0 0 8 0 12 9 19
OBJECT IS o ) 3) Q) &) 6) ) (8)

Table 5-15. Surface characterization using three-dimensional discriminant approach

for simulated data.
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utilized in this research is included in Appendix E. The program that generates the ten
coefficients for quadric surfaces and the program which aligns the quadric surfaces to a

desired coordinate system are among those listed.



CHAPTER SIX
CONCLUSIONS

6.1 Overview

We have presented a new approach based on two-dimensional analytic geometry
to recognize a series of three-dimensional objects. Among the various three-
dimensional objects considered are the hyperboloids of one and two sheets, the ellip-
soids, the spheres, the circular and elliptical quadric cones, the circular and elliptical
cylinders, the parabolic and hyperbolic cylinders, the elliptic and hyperbolic para-
boloids, and the parallelepipeds.

Our proposed method utilizes a two-dimensional discriminant which is a measure
for distinguishing curves. Instead of evaluating the ten generated coefficients and
attempting to recognize the surface from its quadric representation, we can identify
the quadrics using the information resulting from the intersection of the surface with
different planes. If the surface is one of those listed above, there are five possible
two-dimensional curves that may result from such intersections: (i) a circle, (ii) an
ellipse, (iii) a parabola, (iv) a hyperbola, and (v) a line. Thus, a feature or pattern
vector with five independent components can be formed for characterizing each of the
surfaces.

Although all of the quadric surfaces considered have been symmetric, our recog-
nition system can be extended to other three-dimensional objects. Figures 6-1, 6-2,
and 6-3 are examples of these surfaces which exist in the real world. To recognize
complex objects a suitable segmentation technique is required for the isolation of each

individual surface.
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Figure 6-1. This delta rocket is composed of cylindrical and conical shapes (Courtesy

NASA).
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NASA).

Figure 6-3. Cylindrical space station with a half sphere dome top (Courtesy NASA).
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6.2 Advantages of the Recognition Scheme

Some of the advantages of our recognition scheme are listed below:
(1) Recognition systems using the curvature approach (evaluation of the mean and
Gaussian curvatures) are very computationally intensive. These approaches never
really describe the quadric surface in question. Our proposed recognition system is
computationally efficient. All of the quadric surfaces are recognized as well as
described in terms of their dimensions.
(2) The three-dimensional discriminant approach discussed in Chapter Two works
only on ideal or simulated data. It is not useful for real range data. Our recognition
system is shown to work for both simulated and real range data.
(3) The best-fit plot technique used for analyzing processed range images is a new
and efficient technique to determine the validity and integrity of the processed range
images.
(4) The rotation alignment technique is a new method which systematically and
effectively eliminates the product terms and aligns the quadric surfaces in our desired
coordinate system through an iterative technique.
(5) The curvature analysis technique and the best-fit plot can be used to determine

performances of various laser range mappers.

The equations of the planes which determine distinct feature vectors for each of
the quadric surfaces are very sensitive to the quality of the digitized range data. In
case the coefficient determining algorithm does not perform as expected, errors might
be encountered while forming the feature sets. Active sensors like laser range mappers
have only recently been developed. Much improvement is expected in the quality of
range images in the near future. This will make the various recognition schemes much

more reliable and flexible.



175

6.3 Future Goals and Research Directions

As seen from the best-fit plot in Chapter Five, regions within the range images
have been marked to indicate which particular filter size (median) fits the image data
the best at a particular pixel. While arriving at the coefficients of a second degree
polynomial which describe a quadric surface, the range data considered were either the
original, the 3 x 3, the 5 x 5, or the 7 x 7 median filtered range images. A filter
whose mask size varies from region to region could possibly be a more effective filter

which would not significantly distort the images.

Though experiments were performed on a large sample of range images belong-
ing to spheres, cylinders, and cones, the effectiveness and accuracy of the developed
recognition system can be tested further by using real range images of paraboloids,
hyperboloids and cylinders (hyperbolic and parabolic). The recognition algorithm,

however, has been very accurate when applied to simulated data.

We propose to extend our recognition algorithm to recognize quadric surfaces
from complex scenes (scenes composed of more than two objects). This can be
achieved by first utilizing an effective (existing) segmentation process, whereby range
data of various surfaces will be separated. We could extend our recognition system to
recognize irregular surfaces which are made up piece-by-piece of regular quadric sur-

faces.

Finally, we would like to investigate fully the mapping of the extrinsic and intrin-
sic representations of quadric surfaces. This process will lead to a three-dimensional
discriminant analogous to the two-dimensional discriminant, which will distinguish all
of the quadric surfaces considered for the recognition process in the course of this
research. The development of such a discriminant will not only reduce the computa-
tional complexity, but will also eliminate the process of eliminating the product terms
(rotation parameters) from the representation of the quadric surfaces. This approach

will be invariant to pose and orientation.
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APPENDIX A

Appendix A consists of the ten coefficients generated for the original and pro-
cessed range images of a sphere and a cylinder whose data is mapped using a different
type of laser range mapper. Files with extension *.cod refer to the range data con-
verted into cartesian coordinates, and files with extension *.coe consist of the

coefficients generated for each of the images.
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The input file was "spavgmedl.cod
The output file is "spavgmedl.coe

The coeff of x-squared is 0.2963710
The coeff of y-squared is -7.1920902E-03
The coeff of z-squared is 0.6404306
The coeff of yz i
The coeff of zx
The coeff of xy

The coeff of
The coeff of
The coeff of
The constant

X

y
z
d

is -0.2438449
is -0.9575970
is 0.1657399
is 0.5431624
is 0.1216914
is -0.6774822
is 0.1

Coefficients for an averaged sphere image.
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The input file was "SPAMED31.COD "
The output file is "SPAMED31.COE "
The coeff of x-squared is 0.1939911

The coeff of y-squared is -6.4082608E-02
The coeff of z-squared is 0.7181194

The coeff of yz is -0.1474224

The coeff of zx is -0.9272834

The coeff of xy is 5.9526406E-02

The coeff of x is 0.6028971
The coeff of 'y is 6.9603384E-02
The coeff of z is -0.8269780
The constant d is 0.2249310

Coefficients for a 3 x 3 median filtered averaged sphere image.
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The input file was "SPAMEDS51.COD "
The output file is "SPAMEDS51.COE "
The coeff of x-squared is 0.2154791

The coeff of y-squared is 0.1832946
The coeff of z-squared is 0.6808279
The coeff of yz is 0.8267535

The coeff of zx is -0.2360811

The coeff of xy is -0.4166962

The coeff of is -0.2436151

The coeff of vy is -0.4302364

The coeff of z is -0.4764909

The constant d is 9.0547577E-02

>

Coefficients for a 5 x 5 median filtered averaged sphere image.
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The input file was "stavgmedl.cod
The output file is "stavgmedl.coe
The coeff of x-squared is -0.1682273

The coeff of y-squared is 4.3279368E-02
The coeff of z-squared is 0.7034476

The coeff of yz is 4.8151415E-02
The coeff of zx is  0.9669251

The coeff of xy is 0.1127514

The coeff of x is -0.7436121
The coeff of 'y is -8.4567606E-02
The coeff of z is -1.537530
The constant d is 0.7877931

Coefficients for an averaged cylinder image.
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The input file was "STAMED31.COD "
The output file is "STAMED31.COE "
The coeff of x-squared is 0.2759137

The coeff of y-squared is 2.7527343E-02
The coeff of z-squared is 0.7029013

The coeff of
The coeff of
The coeff of
The coeff of
The coeff of
The coeff of
The constant

Coefficients for a 3 x 3 median filtered averaged cylinder image.

yz
ZX

Xy

>

o N <

is
is
is
is
is
is
is

0.1449835
-0.9098228
-9.6383080E-02
0.5634921
-8.9731783E-02
-0.8506840

0.2536311
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The input file was "STAMEDS51.COD "
The output file is "STAMEDS1.COE "
The coeff of x-squared is 0.1115851

The coeff of y-squared is 3.1368352E-02
The coeff of z-squared is 0.8936580

The coeff of yz is 0.1347357

The coeff of zx is -0.5961419

The coeff of xy is -4.8396215E-02
The coeff of is 0.4117958

The coeff of 'y is -9.9320240E-02
The coeff of z is -1.295335

The constant d is 0.4731036

»”

Coefficients for a 5 x 5 median filtered averaged cylinder image.
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APPENDIX B

This appendix consists of the ten coefficients generated for the original and pro-
cessed range images of a quadric cone. Files with extension *.cod refer to the range
data converted into cartesian coordinates, and files with extension *.coe consists of the

coefficients generated for each of the images.
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The input file was "coner.cod
The output file is "coner.coe
The coeff of x-squared is 0.9966836
The coeff of y-squared is -4.400091E-03
The coeff of z-squared is -1.723930E-03
The coeff of yz is 2.299275E-02
The coeff of zx is -0.1116501

The coeff of xy is -1.4285150E-02
The coeff of x is 9.4580045E-04
is -4.7494676E-03

"

The coeff of 'y
The coeff of z is 1.7082826E-03
The constant d is -2.6372296E-04

Coefficients for a raw quadric cone image.



The input file was “conep.cod
The output file is "conep.coe
The coeff of x-squared is

0.9950956

The coeff of y-squared is -3.4555167E-02

The coeff of z-squared is
18

The coeff of
The coeff of
The coeff of
The coeff of
The coeff of
The coeff of
The constant

Coefficients for a median filtered quadric cone image.

yz
ZX

Xy

>

o N«

is
is
is
is
is
is

-8.4933117E-03

5.0487362E-02
-0.1104977
-4.7736488E-02
9.5897805E-04
-1.6880523E-02
6.8076607E-03
-1.0696481E-03
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APPENDIX C

This appendix consists of a sample executed file generated using the surface
alignment algorithm. The coefficients considered are that of a 3 x 3 filtered image of

a raw cylinder.
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OUTPUT DATA FILE OF THE SURFACE ALIGNMENT PROGRAM

***t*#**#***#tt#tt**#*#*tt*t#***##t#*##******#**t**##*#t**t**t#t**##tt

THE COEFFICIENTS CONSIDERED ARE OF THE 3 X 3 FILTERED IMAGE OF THE RAW

CYLINDER.
o R R R R Rk KRR kb bk Rk
THE NUMBER OF ITERATIONS COMPLETED IS : 3

**#**************##***********#**#****##*****#**********#*************

COEFE. OF X SQUARE TERM IS : -0.5819000
COEFF. OF Y SQUARE TERM IS : -2.5060000E-02
COEFF. OF Z SQUARE TERM IS : -0.4078000
COEFF. OF YZ SQUARE TERM IS : -9.1289997E-02
COEFF. OF XZ SQUARE TERM IS :  0.9860000
COEFF. OF XY SQUARE TERM IS :  8.9539997E-02
COEFF. OF X TERM IS : -0.3951000

COEFF.OF Y TERM IS : 4.5000002E-02

COEFF. OF Z TERM IS :  0.3026000

CONSTANT OF PROP. IS : -4.4810001E-02

****#*************************t********************* sk o ok ok K o ok ok K
#***************************************t*********** ok ok ak ok ok ok sk ok ok
**************t**************t******************#*** ek ok ok ok ok e s Nk

-0.5854765  -2.1506138E-02 -0.4078000 -1.2481645E-02 0.9838626
0.0000000E+00 -0.3974287 1.3208531E-02 0.3026000

-0.5854765  -2.1405339E-02 -0.4079008 0.0000000E+00 0.9837343
-1.5888708E-02 -0.3974287 8.3200261E-03 0.3027738

109965052  -2.1405339E-02 3.1279027E-03 -1.0188361E-02 0.0000000E+00
-1.2192142E-02 -0.4991140 8.3200261E-03 -2.2511929E-02

09965433  -2.1367228E-02 3.1279027E-03 -1.0188161E-02 -6.3691252E-05
0.0000000E+00 -0.4990523 1.1440012E-02 -2.2511929E-02

109965433 -2.2384373E-02 4.1450467E-03 0.0000000E+00 -6.2458355E-05
-1.2471168E-05 -0.4990523 6.8105781E-03 -2.4316186E-02

109965433  -2.2384373E-02 4.1450476E-03 3.8919640E-10 0.0000000E+00
-1.2471168E-05 -0.4990530 6.8105781E-03 -2.4300613E-02

109965433  -2.2384373E-02 4.1450476E-03 3.8919640E-10 2.4912431E-15
0.0000000E+00 -0.4990530 6.8137725E-03 -2.4300613E-02

109965433  -2.2384373E-02 4.1450476E-03 0.0000000E+00 2.4912431E-15
-1.8273728E-23 -0.4990530 6.8137725E-03 -2.4300613E-02

0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

***********#*************t******#tt***t*********#tt* ook ok ok ok koo ek ok
***********t******************t****t****t###*#****** dkkokkkokkkkkk

***t*******************t******#*t************t#***** Hookododk ok koK ok ok kK

THE NEW COEFF. OF X SQUARE TERM IS : -0.9965433
THE NEW COEFF. OF Y SQUARE TERM IS : -2.2384373E-02
THE NEW COEFF. OF Z SQUARE TERM IS : 4.1450476E-03
THE NEW COEFF. OF X TERM IS : -0.4990530

THE NEW COEFF. OF Y TERM IS : 6.8137725E-03

THE NEW COEFF. OF Z TERM IS : -2.4300613E-02

THE NEW CONSTANT OF PROP. IS : 4.4810001E-02

***********************************t********t******* ok o ok ke ok ke ok ke ok
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*#***********‘******#****#***#****##**********t***#*
t*******##******#****t************##t**t*##***#*****
**********************#**********#***#*#*##*#***t***
t*********t***t***#******#**********t#*t*#***t******
******************#*************#t****#*********t***

ok ok ook ok ok ok ok ok ok
T T T2 1
ook ok ok kR
ko ok ok ek ak ok ok ok
kKoK k KKk

Alpha

Beta

Gamma

4.567488
-0.3581797

0.9253277
-11.29185

39.88381

-1.7880693E-03
-3.6674985E-04  4.2027511E-07  0.0000000E+00

***********#**#t**#**#*******************#*******#**
*****t********#*****************t**********#********

ALPTOT BETTOT GAMTOT
4208942 -10.36652 39.88202

***t********t*****#*************t*#***#********t*t**
*************#t****f********#*****#*****************
********tt******************************************
*******#t*****t**********t#***t*#***#*#t************

THE ROTATION MATRIX IS :

o e ek e ok ok ok
ok sk ok ok ke ok e ke ke ok

e e ok 3 2 e s o ok e ke 2
a4 3 e a3k ok A ok ok ok
akak o ok ok Aok ok kK
stk ok ok ok ook ok ok kK

0.7640848

-7.1428910E-02 -0.6411492

7.9622917E-02 0.9966942
-3.8710725E-02 0.7672463

0.6401832

-1.6149314E-02

**********##*#****#***t*t*****##******t*#t*t***#*##* sk dokkokdkRkkkk

A B C F G H P Q R
.0.58548 -0.02151 -0.40780 -0.01248 0.98386 0.00000 -0.39743 0.01321 0.30260
0.58548 -0.02141 -0.40790 0.00000 0.98373 -0.01589 -0.39743 0.00832 0.30277
2099651 -0.02141 0.00313 -0.01019 0.00000 -0.01219 -049911 0.00832 -0.02251
.0.99654 -0.02137 0.00313 -0.01019 -0.00006 0.00000 -0.49905 001144 -0.02251
099654 -0.02238 0.00415 0.00000 -0.00006 -0.00001 -0.49905 0.00681 -0.02432
1099654 -0.02238 0.00415 0.00000 0.00000 -0.00001 -0.49905 0.00681 -0.02430
099654 -0.02238 0.00415 0.00000 0.00000 0.00000 -0.49905 0.00681 -0.02430
099654 0.02238 0.00415 0.00000 0.00000 0.00000 -0.49905 0.00681 -0.02430
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



APPENDIX D

This appendix consists of a sample data file which is generated while executing
the 3-D discriminant algorithm. The unknown quadric surface is later classified as a

parabolic cylinder.
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Cressesarsnkss SAMPLE DATA OF 3-D DISCRIMINANT PROGRAM

Coeff. of xA2 (A):
A=

Coeff. of yA2 (B):

Coeff. of zA2 (C):

Coeff. of yz (F):

Coeff. of xz (G):

Coeff. of xy (H):

Coeff. of x (P):

Coeff. of y (Q):



195

Coeff. of z (R):
R=

Constant of prop. (D):

D=

10
e =

1 -2 3
2 4 -6

3 6 9
EE =

1 2 3 1
- 4 6 17
3 6 9 0
1 7 0 10
dt_e =

0
dt_EE =



K K=

-0.0000
0.0000
14.0000

rho_3 =

rho_4 =

s_d_EE =

flag =
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The sign of the ch. roots are not the same

The rank of EE is :  1.0000

The rank of e is : 3.0000

The sign of the determinant of EE is :  0.0000

The characterstics roots have the same sign? :  0.0000

The object is a PARABOLIC CYLINDER
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APPENDIX E
This appendix consists of the listings of the following programs:

Program “Median Filtering", which performs the 3 x 3 and 5 x 5 median filtering
on range images.

Program "Derivatives" that evaluates the first and second derivative with respect
to x and y axes of the data files and then transforms it into a sign map.

Program "Rangediff" that generates the sign map for each of the range images
based upon the magnitude of the range value of neighboring pixels.

Program "Surface" that generates the ten coefficients which describe each of the
range images.

Program “Surface Alignment” which eliminates the product terms from the
representation of quadn'é surfaces thereby aligning them according to a desired

coordinate system.

Program "3-D discriminant” which implements the classification of the quadrics

based upon the discriminant procedure.
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oNONP!

123

223

cC
CcC
CC

o000

PROGRAM MEDIAN FILTERING
PARAMETER (N=512)

INTEGER*2 A(N,N),MED(N,N)
CHARACTER*12 INFILE,OUTFILE

MAIN PROGRAM

WRITE(*,123)

FORMAT(5X,"INPUT FILE NAME : INFILE’)
READ(*,*)INFILE

WRITE(*,223)

FORMAT(5X,”OUTPUT FILENAME : OUTFILE’)
READ(*,*)OUTFILE

OPEN (UNIT=1,FILE=INFILE,RECL=2048,STATUS="OLD")
READ (1,9)((A(1,),J=1,N),I=1,N)

FORMAT(51214)

M=3

CLOSE(1,DISPOSE="SAVE"’)

CALL MEDFLT(A,MED,N,M)

OPEN (UNIT=2,FILE=OUTFILE,RECL=2048,STATUS="NEW")

WRITE (2,11)((MED(1,]),J=1,N),I=1,N)
FORMAT(51214)
CLOSE(2,DISPOSE="SAVE")

STOP

END

SUBROUTINE MEDIAN FILTER

SUBROUTINE MEDFLT(A,MED,N,M)
INTEGER*2 A(N,N),MED(N,N),SORT(50)
LOGICAL NEXCHAN

MM=M ** 2
X=(M+1)/2
Y=X-1
M1=(MM+1)/2
DO 7 I=X,(N-Y)
DO 9 J=X,(N-Y)
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13
11

17
15

~

21
19

K1=0

DO 11 K=(I-Y),(I+Y)

DO 13 L=(J-Y),J+Y)
K1=K1+1
SORT(K1)=A(K,L)

CONTINUE

CONTINUE

DO 15 I1=1,(MM-1)

DO 17 Kl1=1,(MM-II)
IF (SORT(K1).GT.SORT(K1+1)) THEN
TEMP=SORT(K1)
SORT(K1)=SORT(K1+1)
SORT(K1+1)=TEMP
END IF

CONTINUE

CONTINUE

MED(1,J)=SORT(M1)

CONTINUE

CONTINUE

DO 19 I=1,Y

DO 21J=1,N

MED(,J)=A{1,J)

MED(N+1-LY)=A(N+1-LJ)

MED(J,N+1-I)=AJ,N+1-1)

MED{J,)=A(J.I)

CONTINUE

CONTINUE

RETURN

END
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C***¥* PROGRAM DERIVATIVES

C***** This program determines the derivative along the x and the
C****% y axes. A group of files can be compared to see whether a
C*¥**% 3 particular location has the same curvature or not.

INTEGER*2 11,J1,T1PLKL,LJ

REAL DX1,DX2,DX3,DY1,DY2,DY3

REAL DX11,DX22,DX33,DY11,DY22,DY33
REAL D(70,350),E(70,350),A(1000,3),AA(60,50)
REAL D1(70,350),E1(70,350)

INTEGER*2 STREC,ENDREC

CHARACTER*12  INFILEL,INFILE2,INFILE3,POINT

CHARACTER*2 GRAPH1(70,100),GRAPH2(70,100), GRAPH3(70,100)

CHARACTER*2 GRAPH4(70,100)
WRITE(*,20)

20 FORMAT(5X," INPUT FILE NAME : INFILE!")
READ(*,*)INFILE1
OPEN(UNIT=1, FILE=INFILE1, STATUS="UNKNOWN")
DO 100 1=1,969
READ(1,*)}(A(L)),J=1,3)

100 CONTINUE
DO 811 K=1,51
DO 815 L=1,19
AA(K,L)=AL+(19*(K-1)),3)

815 CONTINUE

811 CONTINUE

300 FORMAT(51214)

C** TO FIND THE DERIVATIVE ALONG X-AXIS

C1111 WRITE(*,908)

C908 FORMAT(CINPUT THE STARTING RECORD NUMBER: STREC")
C READ(*,*)STREC

9008 FORMAT(CINPUT THE ENDING RECORD NUMBER: ENDREC’)

OPEN(UNIT=2,FILE="FILE! X’,STATUS="UNKNOWN")
OPEN(UNIT=3,FILE="FILEL.Y’ ,STATUS="UNKNOWN")
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11178

1204
1104
1965

11104

324

326
325

OPEN(UNIT=4,FILE="FILE1.XX',STATUS="UNKNOWN")
OPEN(UNIT=8,FILE="FILEL.YY’,STATUS="UNKNOWN")

DO 1104 I1=1,51

DO 1204 J1=1,19
D(Il,J1)=0.5*((AA(Il,J1+1)-AA(Il.Jl))+(AA(Il+1,Jl+1)-AA(II+1,JI)))

D1(I11,J1)=(AA(I1,J1-1)-2*(AA(I1,J1))+AA(I1,J1+1))

E1(11,J1)=(AA@1+1,J1)-2%(AA(I1,J1))+AA(I1-1,]1))
E(Il,Jl)=0.5*((AA(Il,Jl+1)-AA(Il,Jl+1))+(AA(Il,JI)-AA(Il+1 J1))
CONTINUE
CONTINUE

DO 11104 I1=1,51
WRITE(2,*)(D(11,J1),J1=1,19)
WRITE(3,*)(E(11,J1),J1=1,19)
WRITE®4,*)(D1(11,J1),J1=1,19)
WRITE(8,*)}(E1(11,]1),J1=1,19)
CONTINUE
CLOSE(Q)
CLOSEQ®)
CLOSE®@4)
CLOSE)

OPEN(UNIT=2,FILE="FILE1.X’,STATUS="UNKNOWN")
OPEN(UNIT=3,FILE="FILE1.Y’ ,STATUS="UNKNOWN")
OPEN(UNIT=4,FILE="FILE1.XX",STATUS="UNKNOWN")
OPEN(UNIT=5,FILE="FILEL.YY",STATUS="UNKNOWN")
DO 324 11=1,51,1

READ(2,%)(D(11,J1),J1=1,19)

CONTINUE

DO 325 I1=1,51,1

DO 326 J1=1,19

IF (D(11,J1).GT.D(I1,JI+1))THEN

GRAPH1(1J1)="-’

ENDIF

IF (D{1,J1).LT.D(11,J1+1))THEN

GRAPH1(1,J1)="+

ENDIF

IF (D(I1,J1).EQ.D(1,JI+1))THEN
GRAPH1(1,J1)=""

ENDIF

CONTINUE

CONTINUE

202



328

330
329

332

334
333

336

DO 328 I1=1,51,1
READ(3,*)(D1(11,J1),J1=1,19)

CONTINUE
DO 329 I1=1,51,1
DO 330 J1=1,19
IF (D1(11,J1).GT.D1(11,J1+1))THEN
GRAPH2(I1,J1)="-’
ENDIF
IF (D1(11,J1).LT.D1(11,JI+1))THEN
GRAPH2(I11,J1)="+
ENDIF
IF (D1(11,J1).EQ.D1(11,J1+1))THEN
GRAPH2(11,J1)=""
ENDIF
CONTINUE
CONTINUE
DO 332 I1=1,51,1
READ(4,*)(E(11,J1),J1=1,19)
CONTINUE
DO 333 I1=1,51,1
DO 334 J1=1,19
IF (E(11,J1).GT.E(11,JI+1))THEN
GRAPH3(1,J1)="-’
ENDIF
IF (E(11,J1).LT.E(11,JI+1))THEN
GRAPH3(1,J1)="+
ENDIF
IF (E(11,J1).EQ.E(1,JI+1))THEN
GRAPH3(I1,J1)=""
ENDIF
CONTINUE
CONTINUE

DO 336 11=1,51,1
READ(5,*)(E1(11,J1),J1=1,19)
CONTINUE
DO 337 11=1,51,1
DO 338 J1=1,19

IF (E1(11,J1).GT.E1(11,JI+1))THEN
GRAPH4(I1,J1)="-’
ENDIF
IF (E1(I11,J1).LT.E1(11,JI+1))THEN
GRAPH4(I1,J1)= "+
ENDIF
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338
337
1324

21104
1234

IF (E1(11,J1).EQE1(I1,JI+1))THEN
GRAPH4(I1J1)=""
ENDIF

CONTINUE

CONTINUE

CONTINUE

OPEN(®U NIT=13,FILE=’GRAPH.X’,STATUS=’UNKNOWN’)
OPEN(U NIT=14,FILE=’GRAPH.Y’,STATUS=’UNKNOWN’)
OPEN(UNIT=1 5,FILE=’GRAPH.XX’,STATUS=’UNKNOWN’)
OPEN(U NIT=16,FIL&’GRAPH.YY’,STATUS=’UNKNOWN’)
DO 21104 11=1,51,1

WRITE(13,1234)(GRAPH1(11,]1),J1=1,19)
WRITE(14,1234)(GRAPH2(11,J1),J1=1,19)
WRITE(15,1234)(GRAPH3(11,J1),J1=1,19)
WRITE(16,1234)(GRAPH4(11,J1),J)1=1,19)

CONTINUE
FORMAT(30X,20A1)
WRITE(*,21)

GOTO 64

END
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205

C***+** PROGRAM RANGE SIGN MAP (RANGEDIFF)

C***x% THIS PROGRAM GENERATES A SIGN MAP FOR DATA FILES
C*****x BY TAKING INTO CONSIDERATION THE ABSOLUTE

C**+%* DIFFERENCE IN RANGE VALUE OF NEIGHBORING PIXELS.

20

100
300

INTEGER*2 A(0:511,0:512),D(100,100)

INTEGER*2 11,J1,T1,P1,ZZ XX

CHARACTER*12  INFILELINFILE2,INFILE3,POINT
CHARACTER*2 GRAPH1(100,100)

WRITE(*,20)

FORMAT(SX, INPUT FILE NAME : INFILE1")
READ(*,*)INFILE1

OPEN(UNIT=1, FILE=INFILE1, STATUS="UNKNOWN’, RECL=2048)
DO 100 I=1,511

READ(1,300)(A(L,]),J=1,512)

CONTINUE

FORMAT(51214)

27=1

XX=1

DO 43 1=165,215

XX=1

DO 53 J=260,278

D(ZZ,XX)=A(,))

77=77+1

XX=XX+1

CONTINUE

XX=1

27=77+1

XX=1

CONTINUE

WRITE(*,¥*)XX,ZZ
OPEN(UNIT=2,FILE="rangeval.dat’,STATUS="UNKNOWN")
OPEN(UNIT=3,FILE="rangediff.dat’, STATUS="UNKNOWN")
OPEN(UNIT=4,FILE="FILE1. XX ,STATUS="UNKNOWN")

DO 325 1=1,ZZ-1
DO 326 J=1,XX-1
IF (D(1,)).GT.D(,J+1))THEN
GRAPHI1(1J))="+



326
325

ENDIF
IF (D(,)).LT.D(1,J+1))THEN
GRAPHI({,J)="-"
ENDIF
IF (DA,)).EQ.D({,J+1))THEN
GRAPHI())=""
ENDIF
CONTINUE
CONTINUE
DO 21104 1=1,ZZ-1
WRITE(3,1234)(GRAPH1(1,J),J=1,XX-1)
WRITE(2,3000)(D{,0),J=1,XX-1)

21104 CONTINUE

1234
3000

FORMAT(35X,20A1)
FORMAT(4)

STOP

END
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207

C Program Surface
C:**************************************************************
C This program approximates the coefficients of a surface

C generated by given data points. The input file consists of

C the rectangular coordinates of points on some surface.
C **************************************************************

integer i,j,k,ip .
real x(9000),y(9000),2(9000),x_2(9000)
real y_2(9000),z_2(9000),p(9000,10)
real yz(9000),zx(9000),xy(9000),p_ptr(90()0,10,10),50(10,10)
real a(4,4),b(6,4),b_tr(4,6),c(6,6),h(6,6),h_inv(6,6)
real ris(4,8),a_inv(4,4),ba_inv(6,4),ba_invbt(6,6),m(6,6)
real h_invm(6,6),m_pr(6,6),2i(6,6),bi(6,6).ci(6,6)
real cigval(6,6),eigvec(6,6),ei_vcc(6),a_invbt(4,6)
real alpha(4),beta(6),a_vect(10)
character*18 infile,outfile
Type*,” Enter coordinates file @’
Accept*,infile
Type*,” Enter output coefficients file =’
Accept*,outfile
open(unit=1,file=infile,status="old M)
opcn(unit=2,ﬁle=outﬁlc,status=’new’)
c**%*** The constraint matrix h and h_inv is created ko kkokok &

write(*,3)

3 format(5x, Input total points not exceeding 7750: ip=")
read(*,*) ip
root=1/(sqrt(2.))

do 24 i=1,6
do 26 j=1,6
h(i,j)=0

26 continue

24 continue
h(1,1)=1
h(2,2)=1
h(3,3)=1
h(4,4)=root
h(5,5)=root
h(6,6)=root



22
20

C*

30

¢ **kkk the vector P for scatter matrix is formed here dokokk ¥

32

34

rootl=sqrt(2.)
do 20 i=1,6
do 22 j=1,6
h_inv(ij)=0
continue
continue
h_inv(1,1)=1
h_inv(2,2)=1
h_inv(3,3)=1
h_inv(4,4)=root1
h_inv(5,5)=rootl
h_inv(6,6)=root!

*¥kk¥kk Datg 1s read here ***********************************

do 30 i=1,ip

read(1,*) (x(i),y(1),z())
continue

do 32 i=l,ip
x_2(1)=x(1)**2
y_2()=y(i)**2
z_2()=z()**2
yz()=y(i)*z()
zx(1)=z(@)*x()
xy(i)=x(i)*y(i)
continue

do 34 i=1,ip
p@,1)=x_2(1)
p@.2)=y_2(1)
p(.3)=2_2(i)
p(i,4)=yz(i)
p(i,5)=zx(i)
p@,6)=xy(i)
p@,7)=x()
p(i,8)=y(1)
p(i,9)=2(1)
p(i,10)=1
continue

do 36 i=1,ip
do 38 j=1,10

do 40 k=1,10
p_ptr(i,j,k)=p(i,j)*p(ik)
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40 continue
38 continue
36 continue
do 42 j=1,10
do 44 k=1,10
sc(j,k)=0
44 continue

42 continue
c¥*%% The Scatter Matrix is formed here ~ *¥kikhdddackbioai

do 46 j=1,10
do 48 k=1,10
do 50 i=1,ip
sc(j.k)=sc(j,k)+p_ptr(i,j.k)
50 continue
48 continue
46 continue

c*¥**xkk* The Scatter matrix sc is decomposed into a,bb_tr,c **

do 52 i=1,6
do 54 j=1,6
c(i,j)=sc(ij)
54 continue
52 continue
do 56 i=1,6
do 58 j=1,4
b(i,j)=sc(i,j+6)
58 continue
56 continue
do 60 i=1,4
do 62 j=1,6
b_tr(i,j)=sc(i+6,))
62 continue
60 continue
do 64 i=1,4
do 66 j=1,4
a(i,j)=sc(i+6,j+6)
66 continue
64 continue
do 68 i=1,4
do 70 j=1,4
ris(i,j)=a(ij)
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70
68

74
72

78
76

84
82
80

88
86

94
92
90

98
96
c

continue

continue
call invers(ris,4,4,8)

do 72 i=14

do 74 j=1,4

a_inv(i,j)=ris(i,j)

continue

continue

sodokdadokdokkkkokkkk Now to Compl.I[C M sk 3k 3k 3¢ ok 3k ok ok 3k ke ke e ok ok Kk ok ok %k ok

do 76 i=1,6
do 78 j=14
ba_inv(i,j)=0
continue
continue
do 80 i=1,6
do 82 j=14
do 84 k=1,4
ba_inv(i,j)=ba_inv(i,j)+b(i k) *a_inv(k,))

continue
continue
continue
do 86 i=1,6
do 88 j=1,6
ba_invbt(i,j)=0
continue
continue
do 90 i=1,6
do 92 j=1,6
do 94 k=14
ba_invbt(i,j)=ba_invbt(i,j)+ba_inv(i,k)*b_tr(k,j)
continue
continue
continue
do 96 i=1,6
do 98 j=1,6
m(i,j)=c(i,j)-ba_invbt(i,))
continue
continue

C kkkkkkkk Now to compute M’ Sk 3k ok 3k 2k ok ok ke ok ok ok ok ke ke 3k ok

C

do 100 i=1,6
do 102 j=1,6
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102
100

108
106
104

112
110

118
116
114
c

¢ **krkkkkx Now to find the eigen values of M’ ¥dkkakkaokx

C

C

¢ ***xikkk To find the smallest eigen value and its corresponding **

C sk 3k 3k ok ok ok ok cigcn vector *****************************************

C

120

122

h_invm(,j)=0
continue
continue
do 104 i=1,6
do 106 j=1,6
do 108 k=1,6
h_invm(i,j)=h_invm(i,j)+h_inv(i,k)*m(k,j)
continue
continue
continue
do 110 i=1,6
do 112 j=1,6

m_pr(i,j)=0
continue
continue
do 114 i=1,6
do 116 j=1,6
do 118 k=1,6
m_pr(i,j)= _pr(i,j)+h_invm(i,k)*h_inv(k,j)
continue
continue
continue

nd=6
call eig(nd,m_pr,eigval,eigvec)

s_eig=eigval(l,1)
kount=1

do 120 1=2,6
if (s_eig.gt.eigval(i,i)) then
s_eig=eigval(i,i)
kount=i
endif
continue
do 122 i=1,6
ei_vec(i)=eigvec(i,kount)
continue
do 124 i=1,6
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126
124

132
130
128

136

134

138

140
c

cl42

beta(i)=0
do 126 j=1,6
beta(i)=beta(i)+h_inv(ij)*ei_vec(j)
continue
continue
do 128 i=1,4
do 130 j=1,6
a_invbt(i,j)=0
do 132 k=14
a_invbt(i,j)=a_invbt(i,j)+a_inv(i,k)*b_tr(k,j)
continue
continue
continue
do 134 i=14
alpha(i)=0
do 136 j=1,6
alpha(i)=alpha(i)+a_invbt(i,j)*beta(j)
continue
alpha(i)=-alpha(i)
continue
do 138 i=1,6
a_vect(i)=beta(i)
continue
do 140 i=1,4
a_vect(i+6)=alpha(i)
continue
do 142 i=1,10
write(2,*) (" The input file was ",infile,”"’)
write(2,*) (" The output file is "’,outfile,”’)

write(2,*) (C The coeff of x-squared is > a_vect(1))
write(2,*) ( The coeff of y-squared is *a_vect(2))
write(2,*) (" The coeff of z-squared is *,a_vect(3))
write(2,*) (" The coeff of yz is ',a_vect(4))
write(2,*) (" The coeff of zx is ',a_vect(5))
is ’,a_vect(6))
is ",a_vect(7))
is ’,a_vect(8))
is ’,a_vect(9))
is *,a_vect(10))

write(2,*¥) (" The coeff of x
write(2,*) (" The coeff of
write(2,*) (" The coeff of
write(2,*%) (" The coeff of
write(2,*) (" The constant
continue

«

o N < X

close(unit=2,dispose="save’)
close(unit=1,dispose="save’)
end
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C *********************************************************

Subroutine Invers(ris,N,Nx,Mx)
Dimension ris(Nx,Mx)
N1=N-1
N2=2*N
Do 2 i=1,N
Do 1 j=1.N
jl=j+N
1 ris(i,j1)=0.
jl=i+N
2 ris(i,jl)=1.
Do 10 k=1,N1
C=ris(k k)
If (Abs(C)-0.000001) 3,3,5
5 k1=k+1
Do 6 j=k1,N2
6 ris(k,j)=ris(k,j)/C
Do 10 i=kl,N
C=ris(i,k)
Do 10 j=k1,N2
ris(i,j)=ris(,j)-C*ris(k,j)
10 Continue
Npl=N+l
If (Abs(ris(N,N))-0.000001) 3,3,19
19 Do 20 j=Np1,N2
20 ris(N,j)=ris(Nj)/ris(N,N)
Do 200 1=1,N1
k=N-1
kl=k+1
Do 200 i=Npi1,N2
Do 200 j=k1,N
200  ris(k,i)=ris(k,i)-ris(k,j)*ris(j,1)
Do 250 i=1,N
Do 250 j=1,N
jl=j+N
250  ris(i,j)=ris(i,jl)
Return
3 Type*, Singularity in row found’
Return
End

Subroutine eig(nd,ai,bi,ci)
dimension ai(nd,nd),bi(nd,nd),ci(nd,nd)
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71

72

101
100

(7]

10

integer n1,m1,n2,m2
nl=nd
MIl=nd
n2=nd
m2=nd
ANorm=0.0
Sn=Float(N2)
Do 100 i=1,N2
Do 101 j=1,N2
If (-j) 72,71,72
Bi(i,j)=1.0
Goto 101
Bi(i,j)=0.0
ANorm=ANorm+Ai(,j)*Ai(i,j)
Continue
Continue
ANorm=Sqrt(ANorm)
FNorm=ANorm*(1.0E-09/Sn)
Thr=ANorm
Thr=Thr/Sn
Ind=0
Do 102 i=2,N2
il1=i-1
Do 103 j=1,il
If (Abs(Ai(j,i))-Thr) 103,4,4
Ind=1
Al=-Ai(j,1)
Am=(Ai(j,j)-Ai(,1))/2.0
Ao=Al/Sgrt((Al*Al)+(Am*Am))
If (Am) 5,6,6
Ao=-Ao
Sinx=Ao0/Sqrt(2.0*(1.0+Sqrt(1 0-Ao*A0)))
Sinx2=Sinx*Sinx
Cosx=Sqrt(1.0-Sinx2)
Cosx2=Cosx*Cosx
Do 104 k=1,N2
If k-j) 7,10,7
If (k-i) 8,10,8
At=Ai(k,})
Aik,j)=At*Cosx-Ai(k,i)*Sinx
Aik,D)=At*Sinx+Ai(k,i)*Cosx
Bt=Bi(k,j)
Bi(k,j)=Bt*Cosx-Bi(k,i)*Sinx
Bi(k,i)=Bt*Sinx+Bi(k,i)*Cosx
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104

105
103
102

20
25

29
30

111

110

114
112

Continue
Xt=2.0*Ai(j,i)*Sinx*Cosx
At=Ai(,j)

Bt=Ai(i,i)

Ai(j,j)=At*Cosx2+Bt*Sinx2-Xt

Ai(i,i))=At*Sinx2+Bt*Cosx2+Xt

Ai(j,i)=(At-Bt)*Sinx*Cosx+Ai(i,i)*(Cosx2-Sinx2)

Ai(i,j)=Ai(,1)

Do 105 k=1,N2
Ai(,k)=Ai(k,))
AiG,k)=Aik,1)

Continue
Continue

Continue
If (Ind) 20,20,3

If (Thr-FNorm) 25,25,23
Do 110 i=2,N2

j=1
If ((Abs(Ai(j-1,j-1)))-(Abs(AiG.j)))) 30,1 10,110
At=Ai(-1,j-1)
Ai(j-1,j-1=Ai(,))
Ai(j,j)=At
Do 111 k=1,N2
At=Bi(k,j-1)
Bi(k,j-1)=Bi(k,))
Bi(k,j)=At
Continue
=1
If j-1) 110,110,29
Continue
do 112 i=1,N2
do 114 j=1,N2
ci(i,j)=bi(@.}j)
bii,j)=ai(i,})
continue
continue
return
end
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C**** PROGRAM SURFACE ALIGNMENT

C**** This program is used to eliminate the product terms

C**** from the quadratic representation of any 3D surface.

C**** The new coefficents generated consisits of the square terms,
C**** the X, y, Z, and the constant term.

aOnn

REAL AA,BB,CC,DD,FF,GG,HH,PP,QQ,RR,D,Test_f,Test_g,test_h
REAL A(50,50),B(50,50),C(50,50),F(50,50)

REAL G(50,50),H(50,50),ALPHA(100),BETA(100)

REAL RESULT(200,200),P(50,50),Q(50,50),R(50,50)

REAL AAA BBB,CCC,DDD,EEE FFF,GGG,HHH,III,ROT(3.3)
REAL DELI,DEL2,DEL3,A_A,B_B,C_C,F_F,G_G,H_H,GAMMA(100)
REAL VV,VVV,VVVV,VVVVV,THRESHLD,INITMIN,ABSA,ABSB,ABSC
REAL A_AA,B_BB,C_CC,D_DD,P_PP,Q_QQR_RR

REAL ABSF,ABSG,ABSH,ABSP,ABSQ,ABSR,RRR(50),alptot,bettot
REAL gamtot

INTEGER NM,LJ
F(X,Y,Z)=Ax**2+By**2+Cz**2+2Fyz+ZGxz+2ny+2Px+2Qy+2Rz+D
=0

PARAMETER (THRESHLD= 0.00000000000000001)

OPEN(UNIT=1,FILE="CONVERGENCE.DAT" ,STATUS="NEW’)
TYPE*,’ENTER VALUE FOR THRESHLD:’
ACCEPT* THRESHLD

Type*, Enter coef. of x ** 2 .
Accept*,AA

Type*,’Enter coef. of y ** 2’
Accept*,BB

Type*, Enter coef. of z ** 2’
Accept*,CC

Type*, Enter coef. of yz
Accept* FF

Type*, Enter coef. of xz
Accept*,GG

Type*,’Enter coef. of xy @’
Accept*,HH
Type*,’Enter coef. of x :
Accept*,PP

Type*, Enter coef. of y
Accept*,QQ

Type*, Enter coef. of z
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Accept* RR
Type*, Enter constant of prop. :’
Accept*,D

A(1,1)=AA
B(1,1)=BB
C(1,1)=CC
F(1,1)=FF
G(1,1)=GG
H(1,1)=HH
P(1,1)=PP
Q(1,1)=QQ
R(1,1)=RR
ABSA=ABS(AA)
ABSB=ABS(BB)
ABSC=ABS(CC)
ABSF=ABS(FF)
ABSG=ABS(GG)
ABSH=ABS(HH)
ABSP=ABS(PP)
ABSQ=ABS(QQ)
ABSR=ABS(RR)
RRR(1)=ABSA
RRR(2)=ABSB
RRR(3)=ABSC
RRR(4)=ABSF
RRR(5)=ABSG
RRR(6)=ABSH
RRR(7)=ABSP
RRR(8)=ABSQ
RRR(9)=ABSR
DO 3980 1=1,9
IF (RRR(T).EQ.0)THEN
RRR(I)=10000
ENDIF

3980 CONTINUE
INITMIN=AMINI(RRR(1),RRR(2).RRR(3),RRR(4),RRR(5),RRR(6),RRR(7)

+ RRR(8),RRR(9))

WRITE(*,*)INITMIN
IF (ABS(INITMIN).LT.1.0)THEN
A(1,1)=A(1,1)/INITMIN
B(1,1)=B(1,1)/INITMIN
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345
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57

C(1,1)=C(1,1)/INITMIN
F(1,1)=F(1,1)/INITMIN
G(1,1)=G(1,1)/INITMIN
H(1,1)=H(1,1)/INITMIN
P(1,1)=P(1,1)/INITMIN
Q(1,1)=Q(1,1)/INITMIN
Q(1,1)=Q(1,1)/INITMIN
DD_D=D/INITMIN
ELSE

GOTO 3405

ENDIF

A(1,1)=AA

B(1,1)=BB

C(1,1)=CC

F(1,1)=FF

G(1,1)=GG

H(1,1)=HH

P(1,1)=PP

Q(1,1)=QQ

R(1,1)=RR

if (b(1,1).eq.a(1,1)) then

goto 1167

else

goto 57

endif

else

goto 57

endif

alpha(1)=(0.5*ATAND((H(1,1)/(B(1,1)-A(1,1)))))
A(1,1)=A(l,1)*COSD(ALPHA(1))*COSD(ALPHA(1))+B(1,l)*
SIND(ALPHA(1))*SIND(ALPHA(1))- H(1,1)*SIND(ALPHA(1))*
COSD(ALPHA(1))
B(1,1)=B(1,1)*COSD(ALPHA(1))*COSD(ALPHA(l))+A(1,1)*
SIND(ALPHA(I))*SIND(ALPHA(I))+H(1,1)*SIND(ALPHA(1))*
COSD(ALPHAC(1))

C(1,1)=C(1,1)
F(l,1)=G(1,1)*SIND(ALPHA(1))+F(1,1)*COSD(ALPHA(1))
G(1,1)=G(1,1)*COSD(ALPHA(1))—F(1,1)*SIND(ALPHA(1))
H(1,1)=0
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1167

1200

219

P(1,1)=P(1,1)*COSD(ALPHA(1))-Q(1 ,*SIND(ALPHA(1))
Q(l.1)=Q(1,1)*COSD(ALPHA(1))+P(1,1)*SIND(ALPHA(1))

R(1,1)=R(1,1)

IF (ABS(F(1,1)).LT.THRESHLD)THEN

GOTO 1005

ELSE

GOTO 1167

ENDIF

IF (ABS(G(1,1)).LT.THRESHLD)THEN

GOTO 1812

ELSE

GOTO 1167

ENDIF

IF (C(1,1).EQ.B(1,1))THEN

GOTO 1169

ELSE

GOTO 1200

ENDIF
BETA(1)=(0.5*ATAND((F(1,1)/(C(1,1)-B(1,1)))))
A(1,2)=A(1,1)
B(1,2)=B(1,1)*COSD(BETA(1))*COSD(BETA(1))+C(1,1)*

+ SIND(BETA(1))*SIND(BETA(1))-F(1,1)*SIND(BETA(1))*COSD(BETA(1))

C(1,2)=C(1,1)*COSD(BETA(1))*COSD(BETA(1))+B(1,1)*

+ SIND(BETA(I))*SIND(BETA(I))+F(1,1)*SIND(BETA(1))*COSD(BETA(I))

1007

F(1,2)=0

G(1,2)=G(1,1)*COSD(BETA(1))
H(1,2)=-G(1,1)*SIND(BETA(1))

P(1,2)=P(1,1)
Q(1,2)=Q(1,1)*COSD(BETA(1))-R(1,1)*SIND(BETA(1))

R(1,2)=R(1,1)*COSD(BETA(1))+Q(1,1)*SIND(BETA(1))
IF (ABS(H(1,2)).LT.THRESHLD)THEN

GOTO 1007

ELSE

GOTO 1169

ENDIF

IF (ABS(G(1,2)).LT.THRESHLD)THEN
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1009

GOTO 1812
ELSE
GOTO 1169
ENDIF

IF (C(1,2).EQ.A(1,2))THEN
GOTO 67

ELSE

GOTO 1235

ENDIF

GAMMA (1)=(0.5*ATAND((G(1,2)/(C(1,2)-A(1,2)))))
A(1,3)=A(1,2)*COSD(GAMMA(1))*COSD(GAMMA(1))+C(1 2)*
SIND(GAMMA(1))*SIND(GAMMA(1))-G(1,2)*SIND(GAMMA(1))
*COSD(GAMMAC(1))

B(1,3)=B(1,2)
C(1,3)=C(1,2)*COSD(GAMMA(1))*COSD(GAMMA(1))+A(1 2)*
SIND(GAMMA(1))*SIND(GAMMA(1))+G(1 2)*SIND(GAMMAC(1))
*COSD(GAMMAC(1))

F(1,3)=H(1,2)*SIND(GAMMA(1))

G(1,3)=0

H(1,3)=H(1,2)*COSD(GAMMA(1))

P(1,3)=P(1,2)*COSD(GAMMA(1))-R(1 ,2)*SIND(GAMMA(1))

Q(1,3)=Q(1,2)
R(1,3)=R(1,2)*COSD(GAMMA(1))+P(1,2)*SIND(GAMMA(1))

IF (ABS(F(1,3)).LT.THRESHLD)THEN
GOTO 1009

ELSE

GOTO 67

ENDIF

IF (ABS(H(1,3)).LT.THRESHLD)THEN
GOTO 1812

ELSE

GOTO 67

ENDIF
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71

e 0

O O 006

177

+

1011

167

DO 10 1=2,100
DO 20 J=1

if((b(i-1,3).eq.a(i-1,3)))then
goto 167

else
if(h(i,3).eq.0)then

goto 67
else
goto 67
endif
else
goto 177
endif

alpha(D)=(0.5*ATAND((H(I-1,3)/(B(I-1,3)-A(I-1,3)))))
A(L,1)=A(I-1,3)*COSD(ALPHA(I))*COSD(ALPHA(D)+(B(I-1,3))*
SIND(ALPHA(I))*SIND(ALPHA(I))- H(I-1,3)*SIND(ALPHA(1))*
COSD(ALPHA(I))
B(,1)=B(-1,3)*COSD(ALPHA(I))*COSD(ALPHA (I))+A(I-1,3)*
SIND(ALPHA(I))*SIND(ALPHA(I))+H(I-1,3)*SIND(ALPHA(D)*
COSD(ALPHA(I))

C@,1)=C(d-1,3)

F(I,1)=F(I-1,3)*COSD(ALPHA(I))
G(1,1)=-F(I-1,3)*SIND(ALPHA(I))

H(I,1)=0
P(1,1)=P(I-1,3)*COSD(ALPHA(I))-Q(-1,3)*SIND(ALPHA(I))
Q(,1)=Q(I-1,3)*COSD(ALPHA(T))+P(I-1,3)*SIND(ALPHA(I))
R(,1)=R{-1,3)

IF (ABS(F({,1)).LT.THRESHLD)THEN
GOTO 1011

ELSE

GOTO 167

ENDIF

IF (ABS(G(1,1)).LT.THRESHLD)THEN
N=I

GOTO 666

ELSE

GOTO 167

ENDIF

if((c(i,1).eq.b(i,1)))then
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59

222

goto 69

else

goto 59

endif

else

goto 59

endif

BETA()=(0.5*ATAND((F(,1)/(C1,1)-B(L,1)))))
A(,2)=A1,1)
B(1,2)=B{,1)*COSD(BETA(I))*COSDBETAM)+C(I, 1)*

+ SIND(BETA(I))*SIND(BETA(I))-F(I,1)*SIND(BETA(I))*COSD(BETA(I))

1013

c69
69

C(1,2)=C(1,1)*COSD(BETA(1))*COSD(BETA(I)+B(1,1)*
SIND(BETA(I))*SIND(BETA(I))+E(I,1)*SIND(BETA(I))*COSD(BETA(D)
F(1,2)=0

G(1,2)=G(1,1)*COSD(BETA(I))

H(1,2)=-G(,1)*SINDBETA())

P(1,2)=P(1,1)

Q(1,2)=Q(1,1)*COSD(BETA(D)-R(1,1)*SIND(BETA(I))

R(1,2)=R(1,1)*COSD(BETA(1))+Q(,1)*SIND(BETA(I))

IF (ABS(G(1,2)).LT.THRESHLD)THEN
GOTO 1013

ELSE

GOTO 69

ENDIF

IF (ABS(H(1,2)).LT.THRESHLD)THEN
N=I

GOTO 666

ELSE

GOTO 69

ENDIF

if(g(1,2).eq.0)then
if((c(i,2).eq.a(i,2)))then

goto 10

else

goto 63

endif
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C else
goto 63
endif
63 GAMMA(D=(0.5*ATAND((G(1,2)/(C{,2)-A1,2)))))
A(1,3)=A(,2)*COSD(GAMMA®))*COSD(GAMMA®@))+C(1,2)*
+ SIND(GAMMA(I))*SIND(GAMMA(I))—G(I,2)*SIND(GAMMA(I))
+ *COSD(GAMMA®)
B({1,3)=B(1.2)
C{,3)=C(,2)*COSD(GAMMA())*COSD(GAMMA))+A(1,2)*
SIND(GAMMAD))*SIND(GAMMA(I))+G(I,2)*SIND(GAMMA(D)
+ *COSD(GAMMA(D))
F(1,3)=H({,2)*SIND(GAMMA({))
G(1,3)=0
H(1,3)=H(1,2)*COSD(GAMMA())

<+

P(1,3)=P(1,2)*COSD(GAMMA(]))-R(1,2)*SIND(GAMMA(T))

Q(1,3)=Q(1.2)
R(1,3)=R(1,2)*COSD(GAMMA(D))+P(1,2)*SIND(GAMMA(D))

IF (ABS(F(1,3)).LT.THRESHLD)THEN
GOTO 1015
ELSE
GOTO 10
ENDIF
1015 IF (ABS(H(1,3)).LT.THRESHLD)THEN
N=I
GOTO 666
ELSE
GOTO 10
ENDIF

20 CONTINUE
10. CONTINUE
1812 N=1

666  WRITE(*,*)N
WRITE(*,123)

123 FORMAT(SX”****************************************************
+ ************’)

WRITE(*,*)('THE NUMBER OF ITERATIONS COMPLETED IS:",N)



1001
1000

198
298
398
498
598

2000

M=N*3

DO 1000 I=1,N

DO 1001 J=1,3
RESULTQ3*(I-1)+J,1)=A(LJ)
RESULT(3*(-1)+J,2)=B(.J)
RESULT(3*(-1)+],3)=C(J)
RESULT(3*(I-1)+J,4)=F(J)
RESULT@3*(1-1)+J,5)=G(L.J)
RESULT(3*(I-1)+J,6)=H(LJ)
RESULT(3*(-1)+J,7)=P(1,J)
RESULT(3*(I-1)+J,8)=Q(LJ)
RESULT(3*(I-1)+J,9)=R(L.J)

CONTINUE
CONTINUE

WRITE(1,*)C THE NUMBER OF ITERATIONS COMPLETED IS :’,N)

WRITEC(1,123)

WRITE(1,*)(COEFF. OF X SQUARE TERM IS : ', AA)
WRITE(1,*)( COEFF. OF Y SQUARE TERM IS : ’, BB)
WRITE(1,*)( COEFF. OF Z SQUARE TERM IS : ', CO)
WRITE(1,*)("COEFF. OF YZ SQUARE TERM IS : ', FF)
WRITE(1,*)("COEFF. OF XZ SQUARE TERM IS : * ,GG)
WRITE(1,%)('COEFF. OF XY SQUARE TERM IS : > .HH)

WRITE(1,*)('COEFF. OF X TERM IS : ’, PP)
WRITE(1,*)(COEFF. OF Y TERM IS :’, QQ)
WRITE(1,*)(COEFF. OF Z TERM IS : ’, RR)
WRITE(1,*)(CONSTANT OF PROP. IS : ’, D)

write(1,123)

write(1,123)

write(1,123)

DO 2000 I=1.M
WRITE(1,*}(RESULT(1,)),J=1,9)
CONTINUE

A_AA=RESULT(M-2,1)
B_BB=RESULT(M-2,2)
C_CC=RESULT(M-2,3)
P_PP=RESULT(M-2,7)
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Q_QQ=RESULT(M-2,8)
R_RR=RESULT(M-2,9)
D_DD=D

do 30001 i=1,3
write(1,123)

30001 continue
WRITE(1,*)(THE NEW COEFF. OF X SQUARE TERM IS : ’, A_AA)
WRITE(1,*)THE NEW COEFF. OF Y SQUARE TERM IS : ', B
WRITE(1,*)(THE NEW COEFF. OF Z SQUARE TERM IS : ', C_CO
WRITE(1,*)('THE NEW COEFF. OF X TERM IS : ’, P_PP)
WRITE(1,*)C THE NEW COEFF. OF Y TERM IS : ’, Q_QQ)
WRITE(1,*)('THE NEW COEFF. OF Z TERM IS : ’, R_LRR)
WRITE(1,*)('THE NEW CONSTANT OF PROP. IS : *,D_DD)

do 3001 i=1,3
write(1,123)
3001 continue

write(1,1278)
1278 format(6x,’A’,9x.’B’,9x'C’,9x,’F’,9x,’G’.9x,’H’,9x,’P’,
+ 9x,’Q’,9x,’R’)
write(1,1897)
1897 format(5X,’------==-===-==nmensmmm=smsomssssssoosmssssooonsoooso
B )

DO 2001 I=1,M
WRITE(1,1234)(RESULT(1,)),J=1,9)
2001 CONTINUE
1234 format(9F10.5)
DO 3000 I=1,5
WRITEC(1,123)
3000 CONTINUE
write(1,1908)
1908 format(6x,’Alpha’,9x,’Bcta',9x,’Gamma’)
write(1,1897)
DO 4000 I=1,N
WRITE(1,*)ALPHA(I), BETA(I) GAMMA(I)
4000 CONTINUE
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c*****
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alptot=alpha(1)+a1pha(2)+a1pha(3)
bettot=beta(1)+beta(2)+beta(3)
gamtot=gamma(1)+gamma(2)+gamma(3)
write(1,123)
write(1,123)
write(1,1998)
format(6x,’ALP’I‘OT’,9x,’BET'I‘OT’,9x,’GAMTOT’)
write(1,¥)alptot,bettot,gamtot
write(1,123)

To evaluate coeff. of yz, xz, and xy once alpha, beta

c***** and gamma are evaluated.

+

+

+ +

write(* *)alpha(1),beta(1), gamma(1)
AAA=BB*cosd(alpha(l))*cosd(alpha(l))+(AA*sind(alpha( 1)
*sind(alpha(l)))+((HH/2)*sind(2*alpha( 1)))-CC
BBB=gg*sind(alpha(l ))+(ff*cosd(alpha(1)))
CCC=((aa-bb))*sind(2*alpha( 1))+(hh*cosd(2*alpha(1)))
DDD=gg*cosd(alpha(l ))-(ff*sind(alpha(1)))
EEE=aa*(cosd(alpha(l ))*cosd(alpha(1))-(sind(alpha(1 )
*sind(alpha(l ))*sind(beta(1))*sind(beta(1))))
FFF=bb*(sind(alpha(1))*sind(alpha(l ))-(cosd(alpha(1))
*cosd(alpha(l))*sind(bcta(l))*sind(bcta(l))))
GGG=cc*cosd(beta(1))*cosd(beta(1))
HHH=(gg/2)*sind(alpha(l )*sind(2*beta(l ))+((ff/2)*cosd(alpha(1))*
sind(2*beta(1)))

[II=(hh/2)*sind(2*alpha(1))*(1 +sind(beta(1))*

sind(beta(1)))

Tcst_F=(AAA*sind(2*bcta(l))+BBB*cosd(2*bcta(1)))*
cosd(gamma(l))+(CCC*cos(beta(1))-DDD*sind(bcta(1)))
*sind(gamma(1))

Test_G=(EEE+FFF-GGG-HHH—III)*SIND(Z*GAMMA(1)) +
(CCC*SIND(BETA(1))+COSD(B ETA(1))*DDD)*COSD(2*GAMMA(1))

TEST_H=(CCC*COSD(BETA(l))—DDD*SIND(BETA(1)))*COSD(GAMMA(1)) -

C

+

(AAA*SIND(Z"‘BETA(1))+BBB*COSD(2*BETA(1)))*SIND(GAMMA(1))

write(1,123)
write(1,123)



[¢]

124

c****

989

write(1,124)

write(1,%)test_f,test_g,test_h

write(1,123)

write(1,123)

write(1,124)

format(5x,” THE ROTATION MATRIX IS : ")
To evaluate the rotation matrix

rot(l,1)=cosd(alpha(1))*cosd(gamma(1))-(sind(alpha(1))*
sind(beta(1))*sind(gamma(1)))
rot(l,2)=-sind(alpha(1))*cosd(gamma(1))-(cosd(a1pha(1))*
sind(beta(1))*sind(gamma(1)))
rot(1,3)=-sind(gamma(1))*cosd(beta(l )]

rot(2,1)=sind(alpha(1))*cosd(beta(l )
rot(2,2)=cosd(beta(1))*cosd(alpha(l )]
rot(2,3)=-sind(beta(1))

rot(3,1)=cosd(alpha(1))*sind(gamma(l ))+(sind(alpha(1))*
sind(beta(1))*cosd(gamma(1)))

rot(3 ,2)=cosd(a1pha(1))*cosd(gamma(1))*sind(beta( 1))
-(sind(alpha(1))*sind(gamma(1)))
rot(3,3)=cosd(gamma(1))*cosd(beta(l ))

DO 989 1=1,3
WRITE(1,*)(ROT(LJ),J=1,3)
CONTINUE

stop
end
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C***+x PROGRAM 3-D DISCRIMINANT
C****+ Implementation of the 3-D discriminant approach
C***#** Implemented on MATLAB
diary on
input("Coeff. of xA2 (A): ");
A=ans
input("Coeff. of yA2 (B): °);
B=ans
input("Coeff. of zA2 (C): ");
C=ans
input(’Coeff. of yz (F): °);
F=ans
input("Coeff. of xz (G): ’);
G=ans
input("Coeff. of xy (H): );
=ans
input("Coeff. of x (P). ')
P=ans
input("Coeff. of y (Q): ")
Q=ans
input("Coeff. of z (R): "),
R=ans
input(’Constant of prop. (D): *);
D=ans
F=F/2;
G=G/2;
H=H/2;
P=P/2;

dt_EE=det(EE)

K_K=eig(e)
rho_3=rank(e)
rho_4=rank(EE)
s_d_EE=sign(dt_EE)



s1=sign(K_K(1}))
s2=sign(K_K(2}))
s3=sign(K_K(3))

flag=0

if sl = s2;
flag=flag+1
end;

if sl = s3;
flag=flag+1
end;

if flag == 2;
an_w=1;

fprintf("\n\n  The sign of the ch. roots are the same \n’)

else;
an_w=0;

end;

fprintf("\n\n The sign of the ch. roots are not the same \n’)

fprintf(\n\n
fprintf("\n\n
fprintf(\i\a
fprintf(\o\n

if tho_3==3
if rho_4==4

if s_d_EE==-1

if an_w==1

The rank of EE is : %9.4f\n °, tho_3)

The rank of e is : %9.4f \n °, tho_4 )

The sign of the determinant of EE is : %9.4f\n’,s_d_EE)

The characterstics roots have the same sign? : %9.4f \n’, an_w)

fprintf(\i\n The object is an ELLIPSOID \i\n')

end

end

end

end

if rho_3==3
if tho_4=—4
if s_d_EE==1
if an_w==0

fprintf(\n\n  The object is a HYPERBOLOID OF ONE SHEET \n\n’)

end
end
end
end
if rho_3==3
if rho_4=—4

if s_d_EE==-1

if an_w==0

fprintf("\n\n  The object is a HYPERBOLOID OF TWO SHEETS \n’)

end
end
end
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end

if rho_3=3

if tho_4==3

if an_w=0

fprintf("\n\n  The object is a REAL QUADRIC CONE \n’)
end

end

end

if rho_3==2

if rho_4=4

if s_d_EE==-1

if an_w==0

fprintf("n\n The object is an ELLIPTIC PARABOLOID \n’)
end

end

end

end

if rho_3==2

if tho_4==4

if s_d_EE==1

if an_w==0

fprintf(\n\n  The object is a HYPERBOLIC PARABOLOID \n’)
end

end

end

end

if rho_3==2

if rho_4=3

if an_w==1

fprintf(\n\n The object is an ELLIPTIC CYLINDER W)
end

end

end

if rho_3==2

if tho_4==3

if an_w==0

fprintf("\o\n  The object is a HYPERBOLIC CYLINDER \n")
end

end

end

if rho_3==1

if rho_4==3

fprintf(\n\n The object is a PARABOLIC CYLINDER \n’)
end

end

diary off
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