FY 1992 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner
Management Operations Office

October 1992
FY 1992 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by Joyce E. Turner

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

National Aeronautics and Space Administration
Washington, DC 20546

Prepared by Management Operations Office, Human Resources and Administrative Support

Unclassified — Unlimited

ABSTRACT (Maximum 200 words)

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY92. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.
FOREWORD

In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Baltimore, Maryland, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. The N number should be cited when ordering.
GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama

FY 1992 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>14</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>19</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>20</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>30</td>
</tr>
</tbody>
</table>
This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January–June 1991. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

This report presents a summary of selected atmospheric conditions observed near space shuttle STS-37 launch time on April 5, 1991, at Kennedy Space Center, FL. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-37 vehicle ascent has been constructed. The STS-37 ascent atmospheric data tape has been constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-37 vehicle.

This report summarizes observations made by MSFC Structures and Dynamics Laboratory engineers during their participation in the space shuttle main engine (SSME) low-pressure fuel turbopump discharge duct flex joint tripod failure investigation. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. Finally, the report concludes by recommending the continuation of low-pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed (TTB) SSME testing.

Alloy 718 type compositions were studied to characterize the effect of boron content on their weld HAZ cracking. Alloy compositions studied were a combined subset of specimens from General Electric and University of Alabama at Birmingham studies. Microcrack data were available for all specimens used in this study. Differential thermal analyses, Gleeble thermal analysis, scanning auger microscopy, and microstructural evaluations were performed on all alloy compositions to investigate intergranular liquid formation and segregation behavior effects of boron.

Four alloy 718 type compositions were cast within the MSFC Materials and Processes Laboratory. Varestraint (weldability) testing was performed in an attempt to quantifying the effect of boron on their hot cracking susceptibility.

Boron was found to increase microfissuring behavior in alloy 718 type compositions by its potency as a Laves former and by the resultant long solidification range that Laves-forming alloys have. It was found that carbon in large concentrations in these type alloys can significantly alter their solidification behavior and completely reverse the effect of a Laves former like boron.

Inconel 718 weldments were repaired 3, 6, 9, and 13 times using the gas tungsten arc welding process. The welded panels were machined into mechanical test specimens, postweld heat treated, and nondestructively inspected. Tensile properties
and high-cycle fatigue life were evaluated and the results compared to unrepaired weld properties. Mechanical property data were analyzed using the statistical methods of difference in means for tensile properties and difference in log means and Weibull analysis for high-cycle fatigue properties.

Statistical analysis performed on the data did not show a significant decrease in tensile or high-cycle fatigue properties due to the repeated repairs. Some degradation was observed in all properties; however, it was minimal.

TM-103560
June 1992

This document contains preliminary cycle 1 loads for the National Launch System NLS 1 and NLS 2 vehicles. The loads provided and recommended as design loads represent the maximum loads expected during prelaunch and flight regimes, i.e., limit loads, except that propellant tank ullage pressure has not been included. Ullage pressure should be added to the loads book values for cases where the addition results in higher loads. The loads must be multiplied by the appropriate factors of safety to determine the ultimate loads for which the structure must be capable.

TM-103561
December 1991

This report describes the results of an experimental program which investigated the performance of various no-vent fill techniques for tank-to-tank liquid transfer. The tests were performed using a cryogen simulant (Freon-114) and a test-bed consisting of a multiple tank/plumbing network that enabled investigations of a variety of different inlet flow and active mixing regimes. Several results and conclusions were drawn from the 26 transfer experiments comprising the program. Most notable was the significant improvement in fill performance (i.e., minimized fill time and maximized fill fraction) with increased agitation of the liquid surface. Another was the close correlation between measured condensation rates and those predicted by recent theories which express condensation as a function of turbulent eddy effects on the liquid surface. In most cases, test data exhibited strong agreement with an analytical model which accounts for tank heat transfer and thermodynamics in a 1-g environment.

TM-103562
December 1991

Nine lunar mission scenarios were developed to show the transfer vehicle performance benefits of aerobraking into low-Earth orbit (LEO) upon Earth return as opposed to an all-propulsive maneuver. The initial mass in LEO (IMLEO) of the lunar transfer vehicle is considered the measure of vehicle performance. Four types of mission profiles in conjunction with two vehicle concepts were used to construct the scenarios. These nine scenarios were designed to represent a broad range of possible lunar missions so that a general knowledge base of aerobraking and lunar transfer vehicle performance levels could be obtained. Also discussed in this study are the mass sensitivities of each transfer vehicle to changes in the selected design parameters: ISP, crew module mass, payload to surface, and aerobrake mass fraction.

A parametric study was performed on two of the mission scenarios to help quantify the performance benefits by adding a set of drop tanks to the vehicle. The parametric study also provides partial derivatives which show the sensitivities of IMLEO to the four design parameters listed above. The last section of this report is a ranking of the mission scenarios based on vehicle performance.

The intent of this report is to present vehicle performance levels only. No consideration is given to the Earth-to-orbit vehicle, cost, or operational complexities such as rendezvous, aerobrake guidance, or contingencies.

TM-103563
December 1991

Differential thermal analysis of lunar soil simulant known as "Minnesota Lunar Simulant-1" (MLS-1) was performed. The MLS-1 was tested in the as-received form, in glass form, and with additional silica. The silica addition was seen to depress nucleation events which leads to a better glass former.
A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a predevelopment water recovery system. Potable, hygiene, and urine reclamation systems were integrated with end-use equipment items and successfully operated in open and partially closed-loop modes, with man-in-the-loop, for a total of 28 days. Several significant subsystem physical anomalies were encountered during testing. Reclaimed potable and hygiene water generally met the current Space Station Freedom (S.S. Freedom) water quality specifications for inorganic and microbiological constituents, but exceeded the maximum allowable concentrations for total organic carbon (TOC). This report summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.

This report compares five single plate penetration equations for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed for the Apollo project (Rockwell and Johnson Space Center (JSC)), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide range of projectile diameters at a given velocity. Thus, it is very difficult to choose the "right" prediction equation. The thickness of the single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, and especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.

This document lists the significant publications and presentations of the Space Science Laboratory during the period January 1–December 31, 1991. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an appendix (arranged by report number) listing preprints issued by the Laboratory during this reporting period. Some of the preprints have not yet been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in refereed professional journals, books, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this report should be directed to Ms. T. Moorehead (ES01; 544-7581) or to one of the authors. The organizational code of the cognizant SSL branch or office is given at the end of each entry.

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY91. It also includes papers of MSFC contractors.
After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

TM-103568 January 1992

Thermal Analysis Workbook. Edited by J.W. Owen. Structures and Dynamics Laboratory.

This workbook is intended to allow the user to gain a better understanding of thermal analysis, problem-solving techniques, and interpretation of results. Many simple and complex engineering problems are presented and solved. These are solved using state-of-the-art thermal analysis codes, closed form solutions (which are used as “sanity checks" for the codes), and many different numerical techniques with explanations of the methods and assumptions used in solving the problems. Physical phenomena which are considered include conduction, convection, radiation, change of phase, compressible and incompressible flow, N-dimensional branching networks, conjugate thermal/hydraulic analysis, Joule-Thompson heating, analysis of gas mixture concentrations, venting, ablation, and related subjects. Some codes discussed include SINDA, TRASYS, ANSYS, PATRAN, and other job specific codes.

TM-103569 November 1991

BUGS System Clock Distributor. T.M. Dietrich. Space Science Laboratory.

A printed circuit board which will provide external clocks and precisely measure the time at which events take place has been designed for the Bristol University Gas Spectrometer (BUGS). The board, which has been designed to interface both mechanically and electrically to the CAMAC system, has been named the BUGS system clock board. This document describes the board's design and how to use it.

TM-103570 January 1992

This report describes the development of a computer program to predict the degradation of the insulating capabilities of the multilayer insulation (MLI) blanket of Space Station Freedom due to a hypervelocity impact with a space debris particle. A finite difference scheme is used for the calculations. The computer program was written in Microsoft BASIC. This report also describes a test program that was undertaken to validate the numerical model. Twelve MLI specimens were impacted at hypervelocities with simulated debris particles using a light gas gun at Marshall Space Flight Center. The impact-damaged MLI specimens were then tested for insulating capability in the space environment of the Sunspot thermal vacuum chamber at MSFC. Two undamaged MLI specimens were also tested for comparison with the test results of the damaged specimens. The numerical model was found to adequately predict the behavior of the MLI specimens in the Sunspot chamber. A parameter, called diameter ratio, was developed to relate the nominal MLI impact damage to the apparent (for thermal analysis purposes) impact damage based on the hypervelocity impact conditions of a specimen.

TM-103571 January 1992

Optical Synthesizer for a Large Quadrant-Array CCD Camera—Center Director's Discretionary Fund Final Report (Project Number 90-11). M.J. Hagyard. Space Science Laboratory.

This document constitutes the final report for MSFC Center Director's Discretionary Fund Project Number 90-11. The objective of this program was to design and develop an optical device, an optical synthesizer, that focuses four contiguous quadrants of a solar image on four spatially separated CCD arrays that are part of a unique CCD camera system. This camera and the optical synthesizer will be part of the new MSFC Experimental Vector Magnetograph, an instrument developed to measure the Sun's magnetic field as accurately as present technology allows. This report outlines the tasks undertaken in the program and presents the final detailed optical design.

TM-103572 January 1992

N92-18383

N92-70379

N92-20371

N92-19001

N92-19542
This report is a sensitivity analysis of the benefits and drawbacks associated with a proposed Earth-to-orbit vehicle architecture. The architecture represents a fleet of six vehicles (two existing, four proposed) that would be responsible for performing various missions as mandated by NASA and USAF. Each vehicle has a prescribed flight rate per year for a period of 31 years.

By exposing this fleet of vehicles to a probabilistic environment where the fleet experiences failures, downtimes, setbacks, etc., the analysis involves determining the resiliency and costs associated with the fleet of specific vehicle/subsystem reliabilities.

The resources required were actual observed data on the failures and downtimes associated with existing vehicles, data based on engineering judgment for proposed vehicles, and the development of a sensitivity analysis program.

This report presents a summary of selected atmospheric conditions observed near space shuttle Atlantis STS-39 launch time on April 28, 1991, at Kennedy Space Center, FL. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-39 vehicle ascent has been constructed. The STS-39 ascent atmospheric data tape has been constructed by Marshall Space Flight Center’s Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-39 vehicle.

This report compares the performance of three real-time estimation filters with current LKF implementation. An extended Kalman filter and a second-order Kalman filter are developed to account for the system nonlinearities, while a linear Kalman filter implementation assumes that the nonlinearities are negligible. The performance of each of the four estimation filters are compared with respect to accuracy, stability, settling time, robustness, and computational requirements. It is shown that, for the current IPS pointing requirements, the linear Kalman filter provides improved robustness over the LKF with less computational requirements than the two real-time nonlinear estimation filters.
presented in MSFC SSF/DEV/EL91-008, "Space Station Freedom (S.S. Freedom) Seal Flaw Study With Delta Pressure Leak Rate Comparison Test Report."

TM-103577 March 1992

This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during July–December 1991. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

TM-103578 April 1992

Solar power is a preeminent alternative to conventional aircraft propulsion. Previously, relatively small solar-powered aircraft with limited usefulness have flown for short durations. With continued advances in solar cells, fuel cells, and composite materials technology, the solar-powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration.

A high-altitude solar-powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communications link. In large farming areas, a HASPP could perform remote sensing of crops.

The impact of a HASPP in continuous flight for 1 year on an agriculture monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellent resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency.

A design for a HASPP for the foregoing mission is presented. In the design, power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

TM-103579 April 1992

NASA is developing a water recovery system (WRS) for Space Station Freedom to reclaim human waste water for reuse by astronauts as hygiene or potable water. A water recovery test (WRT) currently in progress investigates the performance of a prototype of the WRS. Analysis of biofilm accumulation, the potential for microbially influenced corrosion (MIC) in the WRT, and studies of iodine disinfection of biofilm are reported.

Analysis of WRT components indicated the presence of organic deposits and biofilms in selected tubing. Water samples for the WRT contained acid-producing and sulfate-reducing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples; however, stainless steel corrosion rates were not accelerated.

Biofilm iodine sensitivity tests using an experimental laboratory-scale recycled water system containing a microbial check valve (MCV) demonstrated that an iodine concentration of 1 to 2 mg/L was ineffective in eliminating microbial biofilm. For complete disinfection, an initial concentration of 16 mg/L was required which was gradually reduced by the MCV over 4 to 8 hours to 1 to 2 mg/L. This treatment may be useful in controlling biofilm formation.

TM-103580 March 1992

The feasibility of electrochemical impedance spectroscopy as a method for analyzing battery state of health and state of charge was investigated. Porous silver, zinc, nickel, and cadmium electrodes as well as silver/zinc cells were studied. State of charge could be correlated with impedance data for all but the nickel electrodes. State of health was correlated with impedance data for two silver/zinc cells, one apparently good and the other dead. The experimental data were fit to equivalent circuit models.
TM-103581 May 1992
Coupled Loads Analysis for Space Shuttle Payloads. J. Eldridge. Structures and Dynamics Laboratory. N92-24708

This report describes a method for determining the transient response of, and the resultant loads in, a system exposed to predicted external forces. In this case, the system consists of four racks mounted on the inside of a space station resource node module (SSRNMO) which is mounted in the payload bay of the space shuttle. The predicted external forces are forcing functions which envelop worst case forces applied to the shuttle during lift-off and landing. This analysis, called a coupled loads analysis, is used to: (a) couple the payload and shuttle models together, (b) determine the transient response of the system; and then (c) recover payload loads, payload accelerations, and payload to shuttle interface forces.

TM-103582 April 1992

Thermal control tape flown on the long duration exposure facility (LDEF) experiment AO171 has shown to be effective in protecting epoxy fiberglass composites from atomic oxygen and ultraviolet (UV) degradation. The tape adhesive performed well. The aluminum, however, appeared to have become embrittled by the 5.8 years of space exposure.

TM-103583 June 1992
Report for Neutral Buoyancy Simulations of Transfer Orbit Stage Contingency Extravehicular Activities. J.D. Sexton. Mission Operations Laboratory. N92-26268

The transfer orbit stage (TOS) will propel the advanced communications technology satellite (ACTS) from the space shuttle to an Earth geosynchronous transfer orbit. Two neutral buoyancy test series were conducted at MSFC to validate the extravehicular activities (EVA) contingency operations for the ACTS/TOS mission. This report delineates the results of the neutral buoyancy tests and gives a brief history of the TOS EVA program. Test numbers are: NBS-TOS-90.1 and NBS-TOS-91.1.

TM-103584 June 1992
Microbiology Report for Phase III Stage A Water Recovery Test. M.C. Roman and S.A. Minton. Structures and Dynamics Laboratory. X92-10382

The Environmental Control and Life Support System (ECLSS) test program at NASA/ Marshall Space Flight Center (MSFC) developed a physical/chemical treatment system to reclaim wastewater for reuse aboard Space Station Freedom (S.S. Freedom). This report provides microbiological data gathered during phase III testing of the water recovery test (WRT) which was conducted from May through July, 1990. Phase III testing was conducted in the Core Module Integration Facility (CMIF) located in building 4755 at MSFC. The CMIF included a core module simulator (CMS) containing separate potable and hygiene water reclamation hardware integrated with the End-Use Equipment Facility (EEF) which included exercise equipment, shower, handwasher, clotheswasher, and dishwasher. With the participation of human test subjects, wastewater and metabolic condensate were produced.

TM-103585 June 1992

This report presents a summary of selected atmospheric conditions observed near Space Shuttle Columbia (STS-40) launch time on June 5, 1991, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-40 vehicle ascent has been constructed. The STS-40 ascent atmospheric data tape has been constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-40 vehicle.
A two-phase effort was conducted to assess the capabilities and limitations of the DataGlove, a lightweight glove input device that can output signals in real-time based on hand shape, orientation, and movement. The first phase was a period for system integration, checkout, and familiarization in a virtual environment. The second phase was a formal experiment using the DataGlove as an input device to control the protoflight manipulator arm (PFMA)—a large telerobotic arm with an 8-ft reach. The first phase was used to explore and understand how the DataGlove functions in a virtual environment, build a virtual PFMA, and consider and select a reasonable teleoperation control methodology. Twelve volunteers (six males and six females) participated in a 2x3 (x 2) full-factorial formal experiment using the DataGlove to control the PFMA in a simple retraction, slewing, and insertion task. Two within-subjects variables, time delay (0, 1, and 2 seconds) and PFMA wrist flexibility (rigid/flexible), were manipulated. Gender served as a blocking variable. A main effect of time delay was found for slewing and total task times. Correlations among questionnaire responses, and between questionnaire responses and session mean scores and gender, were computed. The experimental data were also compared with data collected in another study that used a six degree-of-freedom hand controller to control the PFMA in the same task. It was concluded that the DataGlove is a legitimate teleoperations input device that provides a natural, intuitive user interface. From an operational point of view, it compares favorably with other “standard” telerobotic input devices and should be considered in future trades in teleoperation systems' designs.
trajectories is illustrated, and results are given for the reduction of the channel geometric factor as a function of particle energy due to the deviation of trajectories from simple straight lines. Several configurations of channel aspect ratio and detector locations are considered. The effect is important only at very low energies with small dimensions.

TM-103590 July 1992

A practical real-time guidance algorithm has been developed for guiding aerobraking vehicles in such a way that the maximum heating rate, the maximum structural loads, and the post-aerobraking delta-V requirement (for post-aerobrass orbit insertion) are all minimized. The algorithm is general and reusable in the sense that a minimum of assumptions are made, thus minimizing the number of gains and mission-dependent parameters that must be laboriously determined prior to a particular mission. A particularly interesting feature is that inplane guidance performance is tuned by simply adjusting one mission-dependent parameter, the bank margin; similarly, the out-of-plane guidance performance is tuned by simply adjusting a plane controller time constant. Other objectives in the algorithm development are simplicity, efficiency, and ease of use. The algorithm is developed for, but not necessarily restricted to, a single pass mission and a trimmed vehicle with bank angle modulation as the method of trajectory control. Guidance performance is demonstrated via results obtained using this algorithm integrated into an aerobraking test-bed program. Comparisons are made with numerical results from a version of the aerobraking guidance algorithm that was to be flown onboard NASA’s aeroassist flight experiment (AFE) vehicle. Promising results are obtained with a minimum of development effort.

TM-103591 July 1992

This primer is intended to remove the “blackbox” perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous “rules of thumb” are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design, are given. Griffith’s criterion for crack extension, Irwin’s elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensity factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.

TM-103592 July 1992

Two methods, the 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) method and the direct viable counting method (DVC), were tested and compared for their efficacy for the determination of the viability of bacterial populations. Use of the INT method results in the formation of a dark spot within each respiring cell. The DVC method results in elongation or swelling of growing cells that are rendered incapable of cell division. Although both methods are subjective and can result in false positive results, the DVC method is better suited to analysis of waters in which the number of different types of organisms present in the sample is assumed to be small, such as processed waters. The advantages and disadvantages of each method are discussed.

TM-103593 July 1992

Airborne microbiological and particulate contamination generated aboard Spacelab modules is a potential safety hazard. In order to shed light on the characteristics of these contaminants, microbial and chemical/particulate analyses were performed on debris vacuumed from cabin and avionics air filters in the Space Life Sciences-1 (SLS-1) module of the Space Transportation System 40 (STS-40) mission 1 month after landing. The debris was sorted into categories (e.g., metal, nonmetal, hair/fur, synthetic fibers, food particles, insect fragments, etc.). Elemental analysis of particles was done by energy dispersive analysis of x rays (metals) and Fourier
transform infrared spectroscopy (nonmetals). Scanning electron micrographs were done of most particles. Microbiological samples were grown on R2A culture medium and identified. Clothing fibers dominated the debris by volume. Other particles, all attributed to the crew, resulted from abrasions and impacts during mission operations (e.g., paint chips, plastic, electronic scraps, clothing fibers). All bacterial species identified are commonly found in the atmosphere or on the human body. *Bacillus* sp. was the most frequently seen bacterium. One of the bacterial species, *Enterobacter agglomerans*, could cause illness in crew members with depressed immune systems.

TM-103594

July 1992

A Reduced Gravity Fiber Pulling Apparatus.
D.S. Tucker. Materials and Processes Laboratory.
N92-30971

A reduced gravity fiber pulling apparatus (FPA) has been constructed in order to study the effects of gravity on glass fiber formation. The apparatus was specifically designed and built for use on NASA's KC-135 aircraft. Four flights have been completed to date during which E-glass fiber was successfully produced in simulated lunar gravity.

TM-103595

August 1992

N92-30902

The development of pure phase 123 and Bi-based 2223 superconductors has been optimized. The preheat processing appears to be a very important parameter in achieving optimal physical properties. The synthesis of pure phases in the Bi-based system involves effects due to oxygen partial pressure, time, and temperature. Orientation/melt-sintering effects include the extreme c-axis orientation of Yttrium 123 and the Bismuth 2223, 2212, and 2201 phases. This orientation is conducive to increasing critical currents. A procedure was established to substitute Sr for Ba in Y-123 single crystals.

TM-103596

July 1992

Wear Mechanisms Found in Angular Contact Ball Bearings of the SSME's Lox Turbopumps.
T.J. Chase. Propulsion Laboratory.

Extensive experimental investigation has been carried out on used flight bearings of the phase II high-pressure oxygen turbopump (HPOTP) of the space shuttle main engine (SSME) in order to determine the wear mechanisms, dominant wear modes, and their extent and causes. The report shows methodology, surface analysis techniques used, results, and discussion. The mode largely responsible for heavy bearing wear in lox has been identified as adhesive/shear peeling of the upper layers of bearing balls and rings. The mode relies on the mechanisms of scale formation, breakdown, and removal, all of which are greatly enhanced by the heavy oxidation environment of the HPOTP. Major causes of the high wear in bearings appear to be lubrication and cooling, both inadequate for the imposed conditions of operation. Numerous illustrations and evidence are given.

TM-103597

August 1992

N92-32478

This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January–June 1992. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

TM-103598

August 1992

Development of Static System Procedures to Study Aquatic Biofilms and Their Responses to Disinfection and Invading Species. G.A. Smithers. Materials and Processes Laboratory.

The microbial ecology facility in the Analytical and Physical Chemistry Branch at Marshall Space Flight Center is tasked with anticipation of potential microbial problems (and opportunities to exploit microorganisms) which may occur in partially closed systems such as space stations/vehicles/habitats and in water reclamation systems therein, with particular emphasis on the degradation of materials. Within this context, procedures for microbial biofilm research are being developed. Reported here is the development of static system procedures to study aquatic biofilms and their responses to disinfection and invading species. Preliminary investigations have been completed. As procedures are refined, it will be possible to focus
more closely on the elucidation of biofilm phenomena.

TM-103600 August 1992

This report describes a technique for fabricating superconducting weak link devices with micron-sized geometries etched in laser ablated Y$_1$Ba$_2$Cu$_3$O$_x$ (YBCO) thin films. Careful placement of the weak link over naturally occurring grain boundaries exhibited in some YBCO thin films produces Superconducting Quantum Interference Devices (SQUID's) operating at 77 K.

TM-103601 August 1992
A Comparison of High Cycle Fatigue Methodologies. D.A. Herda. Structures and Dynamics Laboratory.

To evaluate alternate turbopump development (ATD) high cycle fatigue (HCF) methodology, a comparison was made with the space shuttle main engine (SSME) methodology. This report documents the comparison and evaluates ATD's HCF system.

TM-103602 September 1992
The Effect of Weld Porosity on the Cryogenic Fatigue Strength of ELI Grade Ti-5Al-2.5Sn. P.R. Rogers, R.C. Lambdin, and D.E. Fox. Materials and Processes Laboratory.

The effect of weld porosity on the fatigue strength of ELI grade Ti-5Al-2.5Sn at cryogenic temperature was determined. A series of high cycle fatigue (HCF) and tensile tests were performed at $-320 \, ^\circ F$ on specimens made from welded sheets of the material. All specimens were tested with weld beads intact and some amount of weld offset. Specimens containing porosity and control specimens containing no porosity were tested. Results indicate that for the weld configuration tested, the fatigue life of the material is not affected by the presence of spherical embedded pores.

TM-103603 September 1992

This report presents a summary of selected atmospheric conditions observed near Space Shuttle Atlantis (STS-43) launch time on August 2, 1991, at Kennedy Space Center, FL. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric profile, which consists of wind and thermodynamic parameters versus altitude, for STS-43 vehicle ascent has been constructed. The STS-43 ascent atmospheric data profile has been constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-43 vehicle.

TM-103604 August 1992
Space Station Freedom Seal Leakage Rate Analysis and Testing Summary: Air Leaks in Ambient Pressure Versus Vacuum Exit Conditions. P.I. Rodriguez and R. Markovitch. Structures and Dynamics Laboratory.

This report is intended to reveal the apparent relationship of air seal leakage rates between 2 atmospheres (atm) to 1 atm and 1 atm to vacuum conditions. Gas dynamic analysis is provided as well as data summarizing MSFC test report, "Space Station Freedom (S.S. Freedom) Seal Flaw Study With Delta Pressure Leak Rate Comparison Test Report," SSF/DEV/ED91-008.

TM-108373 April 1992

The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and $-100 \, ^\circ C$. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during
the dark (cold) portion of an orbit was evaluated by
performing a cold-roll test using one module.

TM-108374

An impact investigation was performed on segments of a transfer-to-orbit stage (TOS) Kevlar/epoxy pressure vessel to assist in the evaluation of the damage sustained by a TOS-2 motor case during a handling accident. The impact conditions were replicated using an instrumented drop weight tower with a modified impactor. No. 10 bolts were used as impact tups to better simulate the accident. The similarities of the surface damage between the specimens and the actual case were observed before the specimens were cross-sectionally cut and examined. The results showed that, while no significant subsurface damage was observed in the test specimens, the damage was subtle and could not be predicted by visual examination of the external surface or by available NDE methods.

TM-4340

In support of Space Station Freedom phase C/D environmental control and life support systems (ECLSS) regenerative systems development, comparative testing was performed on predevelopment hardware of competing technologies for each regenerative function. This testing was conducted by the Boeing Aerospace and Electronics Company (BAE) at Marshall Space Flight Center (MSFC) from late 1989 through early 1990. The purpose of the test program was to collect data on latest generation hardware in order to make final technology selections for each subassembly in the oxygen recovery and water reclamation strings. This report discusses the testing performed, test results, and evaluation of these results relative to subsystem selections for CO₂ reduction, O₂ generation, potable water processing, hygiene water processing, and urine processing.

TM-4350

This document describes scientific objectives and instrument characteristics of a calibrated optical lightning imaging sensor (LIS) for the Earth observing system (EOS) and the tropical rainfall measuring mission (TRMM) designed to acquire and investigate the distribution and variability of total lightning on a global basis. The LIS is an EOS instrument, whose lineage can be traced to a lightning mapper sensor planned for flight on the GOES series of operational meteorological satellites. The LIS is conceptually a simple device, consisting of a staring imager optimized to detect and locate lightning. The LIS will detect and locate lightning with storm scale resolution (i.e., 5 to 10 km) over a large region of the Earth's surface along the orbital track of the satellite, mark the time of occurrence of the lightning, and measure the radiant energy. The LIS will have a nearly uniform 90-percent detection efficiency within the area viewed by the sensor, and will detect intracloud and cloud-to-ground discharges during day and night conditions. In addition, the LIS will monitor individual storms and storm systems long enough (i.e., 2 min) to obtain a measure of the lightning flashing rate in these storms when they are within the field of view of the LIS. The LIS attributes include low cost, low weight and power (15 kg, 30 W), low data rate (6 kb/s), and important science. The LIS will contribute to studies of the hydrological cycle, general circulation and sea-surface temperature variations, investigations of the electrical coupling of thunderstorms with the ionosphere and magnetosphere, and observations and modeling of the global electric circuit. It will provide a global lightning climatology from which changes, caused perhaps by subtle temperature variations, will be readily detected.

TM-4353
First International Microgravity Laboratory Experiment Descriptions—First Edition. T.Y. Miller, Editor. Space Science Laboratory.

This document contains brief descriptions of the experiments for the first international microgravity laboratory (IML–1) which is scheduled for launch from the Kennedy Space Center aboard the orbiter Discovery in early 1992.
Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. An SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCF's and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor, (2) a high-end scalar multiprocessor workstation, (3) a file server, (4) a few medium- to high-end visualization workstations, and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented.
Low-velocity instrumented impact testing was utilized to examine the effects of an outer lamina of ultra-high molecular-weight polyethylene (Spectra) on the damage tolerance of carbon/epoxy composites. Four types of 16-ply quasi-isotropic panels, \((0, +45, 90, -45)_{s2}\) were tested. Some panels contained no Spectra, while others had a lamina of Spectra bonded to the top (impacted side), bottom, or both surfaces of the composite plates. The specimens were impacted with energies up to 8.5 J. Force-time plots and maximum force versus impact energy graphs were generated for comparison purposes. Specimens were also subjected to cross-sectional analysis and compression-after-impact tests. The results show that while the Spectra improved the maximum load that the panels could withstand before fiber breakage, the Spectra seemingly reduced the residual strength of the composites.

Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical Power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.
TP-3178 December 1991
A Nonlinear Estimator for Reconstructing the Angular Velocity of a Spacecraft Without Rate Gyros. M.E. Polites and W.D. Lightsey. Structures and Dynamics Laboratory. N92-13343

This paper presents a new scheme for estimating the angular velocity of a spacecraft without rate gyros. It is based upon a nonlinear estimator whose inputs are measured inertial vectors and their calculated time-derivatives relative to vehicle axes. It works for all spacecraft attitudes and requires no knowledge of attitude. It can use measurements from a variety of onboard sensors like Sun sensors, star trackers, or magnetometers, and in concert. It can also use look angle measurements from onboard tracking antennas for tracking and data relay satellites or global positioning system satellites. In this paper, it is applied to a Sun point scheme on the Hubble space telescope assuming all or most of its onboard rate gyros have failed. Simulation results are presented which verify it.

TP-3179 December 1991

A statistical comparison of the compression strengths of specimens that were fabricated by either a platen press or an autoclave were performed on IM6/3501-6 carbon/epoxy composites of 16-ply (0,+45,90,-45)s2 lay-up configuration. The samples were cured with the same parameters and processing materials. It was found that the autoclaved panels were thicker than the platen press-cured samples. Two hundred samples of each type of cure process were compression tested. The autoclaved samples had an average strength of 450 MPa (65.5 ksi), while the press-cured samples had an average strength of 370 MPa (54.0 ksi). A Weibull analysis of the data showed that there is only a 30-percent probability that the two types of cure systems yield specimens that can be considered from the same family.

TP-3181 December 1991

High-performance turbomachinery is susceptible to a wide variety of vibration problems. Some of these problems are rotor unbalance vibration, dynamic instability, and subharmonic response to unbalance excitation. Understanding these problems is complicated when nonlinearities are present, as they almost always are in actual hardware. For example, dynamic instabilities may manifest themselves as limit cycle vibrations. In some cases, the vibration levels are so high that the distinction between a divergent instability and a limit cycle is meaningless. This is because the machinery would be destroyed in either case. In other cases, the limit cycle may appear at relatively small levels. These cases may appear to be benign; however, the presence of the limit cycle may be an indication of an impending divergent instability. This matter is complicated by the fact that the frequency of the limit cycle instability is frequently near one-half of the unbalance excitation synchronous frequency. This makes it difficult to distinguish between the limit cycle and a subharmonic response.

The focus of this work is an examination of rotodynamic systems which are simultaneously susceptible to limit cycle instability and subharmonic response. Characteristics of each phenomenon are determined as well as their interrelationship. A normalized, single mass rotor model is examined as well as a complex model of the high-pressure fuel turbopump (HPFTP) of the space shuttle main engine (SSME). Entrainment of limit cycle instability by subharmonic response is demonstrated for both models. The nonuniqueness of the solution is also demonstrated.

TP-3203 February 1992
 Structural Deterministic Safety Factors Selection Criteria and Verification. V. Verderaime. Structures and Dynamics Laboratory. N92-19355

Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors—a standard deviation multiplier of the applied stress distribution, a K-factor for the A- or B-basis material ultimate stress, and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio
of ultimate to yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. Bases for selecting safety factors are presented, and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.

TP-3213
March 1992

The Role of Failure/Problems in Engineering: A Commentary on Failures Experienced—Lessons Learned. R.S. Ryan. Structures and Dynamics Laboratory.
N92-22235

This report presents the written version of a series of seminars given to several aerospace companies and three National Aeronautics and Space Administration (NASA) Centers. The results are lessons learned through a study of the problems experienced in 35 years of engineering. The basic conclusion is that the primary cause of problems has not been missing technologies, as important as technology is, but the neglect of basic principles. Undergirding this is the lack of a systems focus from determining requirements through design, verification, and operations phases. Many of the concepts discussed are fundamental to total quality management (TQM) and can be used to augment this product enhancement philosophy. Fourteen principles are addressed in this report with problems experienced used as examples. Included is a discussion of the implication of constraints, poorly defined requirements, and schedules. Design guidelines, lessons learned, and future tasks are listed. Two additional sections are included that deal with personal lessons learned and thoughts on future thrusts (TQM). A separate report, to be published later, will contain synopses of the problems experienced. They will be documented by project and cause. Approximately 175 problems have been treated to date.

TP-3215
March 1992

N92-20492

This report presents a new signal analysis technique called the modified Wigner distribution (MWD). The MWD has been developed for the Structures and Dynamics Laboratory at MSFC by Dr. Jen-Yi Jong of Wyle Laboratories. The new signal processing tool has proven very successful in determining time-frequency representations of highly nonstationary multicomponent signals in both simulation and trials involving actual space shuttle main engine high-frequency data. The MWD departs from the classic Wigner distribution (WD) in that it effectively eliminates the cross coupling among positive frequency components in a multiple component signal. This attribute of the MWD, which prevents the generation of "phantom" spectral peaks, will undoubtedly increase the utility of the WD for real-world signal analysis applications which more often than not involve multicomponent signals.

TP-3218
April 1992

N92-21457

When a substructure model is reduced by the Craig-Bampton method, a number of degrees-of-freedom (DOF's) are retained as physical DOF's to provide interface to other substructures. When more DOF's are retained in this interface than are actually required, the model is said to be over constrained. The result of this, when using the displacement method, is typically an inaccurate distribution of boundary forces. This inaccuracy also occurs when there are justifiably many interface DOF's which result in an indeterminate interface. When the acceleration method is used, this inaccuracy is overcome. However, many people do not fully understand this method and the many ways of implementing it, and so its implementation is sometimes haphazard.

This study describes the acceleration and displacement methods for use in the recovery of coupled system boundary forces. A simple 2-DOF system has been used for illustration. The effect of the choice of method for use with indeterminate or over-constrained boundaries has been investigated. It has specifically looked at results from a simple two-dimensional beam problem using both methods.

In the space shuttle payload community, there has been an increase in the use of over-constrained payload models. This has been, mainly, to afford easy recovery of relative deflection data between the payload and the shuttle. While there has also been an increase in the use of the acceleration method for the recovery of payload displacements and forces, the displacement method remains the method used for recovering system displacements and forces. Much
work has been done on the effects of Craig-Bampton modal truncation on system displacements and forces; however, little work has been done on system modal truncation (i.e., modes across the boundary). The findings of this study indicate the effect of this system level truncation is significant. This may be particularly true for the 35-Hz system cutoff frequency that is required by the space shuttle. From this study’s findings, recommendations for areas of study with space shuttle payload systems are made.

TP-3220
Technique to Eliminate Computational Instability in Multibody Simulations Employing the Lagrange Multiplier. G. Watts. Structures and Dynamics Laboratory. N92-23436

This paper presents a programming technique to eliminate computational instability in multibody simulations that use the Lagrange multiplier. The computational instability occurs when the attached bodies drift apart and violate the constraints. The programming technique uses the constraint equation, instead of integration, to determine the coordinates that are not independent. Although the equations of motion are unchanged, a complete derivation of the incorporation of the Lagrange multiplier into the equation of motion for two bodies is presented. A listing of a digital computer program which uses the programming technique to eliminate computational instability is also presented. The computer program simulates a solid rocket booster and parachute connected by a frictionless swivel.

TP-3248
Effect of Type of Load on Stress Analysis of Thin-Walled Ducts. J.B. Min and P.K. Aggarwal. Structures and Dynamics Laboratory. N92-26669

The standard procedure for qualifying the design of duct (pipe) systems in the space shuttle main engine (SSME) has been fairly well defined. However, since pipe elbows are quite common and important in the SSME duct systems, a clear understanding of the detailed stress profile of the components is necessary for accurate structural and life assessments. This study was initiated to predict the stress profile at/near the tangent point along the cross section of the duct under various types of loads. Also, this study was further extended to understand the stiffening effect on stresses due to pressure at the tangent point. The intention of this study was to identify the importance of selecting proper locations for mounting strain gauges and to utilize the obtained results to anchor dynamic models for accurate structural and life assessments of the SSME ducts under dynamic environment. The finite element method was utilized in this study.

TP-3249
June 1992
Definition and Design of an Experiment to Test Raster Scanning With Rotating Unbalanced-Mass Devices on Gimbaled Payloads. W.D. Lightsey, D.C. Alhorn, and M.E. Polites. Structures and Dynamics Laboratory. N92-29677

This paper describes an experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. In this paper, the servos used in scanning are defined, the electronic hardware is specified, and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

TP-3275
August 1992

Silicon carbide (Si-C) and silicon nitride (Si3-N4) are considered for application as structural materials and coating in advanced propulsion systems including nuclear thermal. Three-dimensional Gibbs free energy surfaces were constructed for reactions involving these materials in H2 and H2/H2-O. Free energy plots are functions of temperature and pressure. Calculations used the definition of Gibbs free energy where the spontaneity of reactions is calculated as a function of temperature and pressure.

Silicon carbide decomposes to Si and CH4 in pure H2 and forms a Si-O2 scale in a wet atmosphere. Silicon nitride remains stable under all conditions. There was no apparent difference in reaction thermodynamics between ideal and Van der Waals treatment of gaseous species.

A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.

Reconfiguring the RUM Experiment to Test Circular Scanning With Rotating Unbalanced-Mass Devices on Gimbaled Payloads. M.E. Polites and D.C. Alhorn. Structures and Dynamics Laboratory.

This paper describes a ground-based experiment designed to prove the concept of circular scanning a gimbaled payload with rotating unbalanced-mass (RUM) devices. The experiment is a modified version of a similar experiment which demonstrates line and raster scanning with RUM's. In this paper, a description of the experiment hardware is presented, and a detailed design of the servos used in scanning is given. A computer simulation model of the entire system is discussed, and simulation results are included. These verify the servo designs and show the RUM's to be an extremely power-efficient method for circular scanning.

The Earth's first artificial satellite, Sputnik I, slowly tumbled in orbit. The first U.S. satellite, Explorer I, also tumbled out of control. Now, as we launch the Mars observer and the Cassini spacecraft, stability and control have become a higher priority. This paper reviews the flight control system design selection process using as an example a geostationary communication satellite which is to have a life expectancy from 10 to 14 years.

Disturbance torques including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques are assessed to quantify the disturbance environment so that the required compensating torques can be determined. Then control torque options including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, nutation dampers, inertia augmentation techniques, three-axis control, reaction control system (RCS), and RCS sizing are considered. A flight control system design is then selected, and preliminary stability criteria met by the control gains selection.

A preloading device was used to examine the effects of compressive prestress on the compression-after-impact (CAI) strength of 16-ply, quasi-isotropic carbon epoxy test coupons. T300/934 material was evaluated at preloads from 200 to 4,000 lb at impact energies from 1 to 9 joules. IM7/8551-7 material was evaluated at preloads from 4,000 to 10,000 lb at impact energies from 4 to 16 joules. Advanced design of experiments methodology was used to design and evaluate the test matrices. The results showed that no statistically significant change in CAI strength could be attributed to the amount of compressive preload-applied to the specimen.
CP-3139 February 1992
Third Conference on NDE for Aerospace Requirements. K.W. Woodis and G.L. Workman, Compilers.
X92-10319

CP-3140 February 1992
N92-22740

CP-3163 June 1992
Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion. R.W. Williams, Compiler.

CP-

CP-

CP-
<table>
<thead>
<tr>
<th>Report Number</th>
<th>Date</th>
<th>Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-184215</td>
<td>February 1990</td>
<td>Modifications to the Rapid Melt/Rapid Quench and Transparent Polymer Video Furnaces for the KC-135. NAS8-36955. The University of Alabama in Huntsville.</td>
<td></td>
</tr>
<tr>
<td>CR-184218</td>
<td>August 1990</td>
<td>Polarization Effects (Tasks 1 and 2), Final Draft. NAS8-36955. The University of Alabama in Huntsville.</td>
<td></td>
</tr>
<tr>
<td>CR-184228</td>
<td>June 1990</td>
<td>PC Programs for the Prediction of the Linear Stability Behavior of Liquid Propellant Propulsion Systems and Application to Current</td>
<td></td>
</tr>
</tbody>
</table>
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

MSFC Rocket Engine Test Program, Volume 1. NAS8-36955. The University of Alabama in Huntsville. N92-10042

CR-184229
May 1990

CR-184230
August 1990
Glass Sample Characterization, Final Draft. NAS8-36955. The University of Alabama in Huntsville. N92-10088

CR-184231
December 1990

CR-184232
May 1990

CR-184233
October 1991

CR-184234
March 1990

CR-184235
February 1991

CR-184236
December 1990

CR-184237
January 1991

CR-184238
October 1990

CR-184239
March 1991

CR-184240
April 1990
Two-Color Holography Concept (T-Chi), Final Technical Report. NAS8-38078. The University of Alabama in Huntsville. N92-10183

CR-184241
January 1991

CR-184242
January 1991

CR-184243
October 1991

CR-184244
February 1991
Advanced X-Ray Astrophysics Facility Expendable Launch Vehicle, Final Report. NAS8-37710. TRW. X92-10004

CR-184245
September 1991
MLITEMP—A Computer Program to Predict the Thermal Effects Associated With Hypervelocity Impact Damage to Space Station M1.I. NAS8-38555. The University of Alabama, Tuscaloosa. N92-11079

CR-184246
February 1991

21
CR-184247 September 1991

CR-184248 September 1991

CR-184249 September 1991
Volume III Appendices B Through F. NAS8-38781. SRS Technologies. N92-14592

CR-184250 September 1991

CR-184251 September 1991
Volume V, Appendix H, Task 8 Report, Clean Room Survey and Assessment. NAS8-38781. SRS Technologies. N92-14594

CR-184252 June 1991

CR-184253 October 1991

CR-184254 August 1991

CR-184255 September 1991

CR-184256 September 1991

CR-184257 October 1991
Optical Studies in the Holographic Ground Station, Final Report. NAS8-36955. The University of Alabama in Huntsville. N92-12239

CR-184258 July 1991

CR-184259 June 1991
The Variable Polarity Plasma Arc Welding Process: Characteristics and Performance. NAS8-36955. The University of Alabama in Huntsville. N92-12279

CR-184260 November 1991

CR-184261 September 1991

CR-184262 October 1991

CR-184263 February 1991
Nonlinear Rotordynamics Analysis. NAS8-37465. Texas A&M University. N92-14344

CR-184264 February 1990

CR-184265 December 1990
NASA CONTRACTOR REPORTS
(abstracts for these reports may be obtained from STAR)

CR-184266 May 1991
Bondline Work Package 4.0, Annual Report—
1990, Solid Propulsion Integrity Program
(SPIP), NAS8-37802. Science Applications
International Corp.
X92-10231

CR-184267 September 1989
NASA/MSFC Solid Propulsion Test Beds
Assessment and Recommended Future
Directions, Final Report. NAS8-37801. Hercules
Aerospace Co.
X92-10096

CR-184268 June 1991
Time Lag Thermocouple Compensation Based
on Installed Time Constant Measurement, Final
Report. NAS8-37801. Hercules Aerospace Co./
Lockheed Missiles and Space Co. X92-10202

CR-184269 October 1991
X-Ray Microscope Assembly and Alignment
Support and Advanced X-Ray Microscope
Design and Analysis, Final Report, May 10,
University of Alabama at Birmingham
N92-15752

CR-184270 February 1991
Rover Nuclear Rocket Engine Program
Overview of Rover Engine Tests, Final Report.
NAS8-37814. Sverdrup Corp. N92-15117

CR-184271 December 1991
Containerless High Temperature Property
Measurements, Final Technical Report Contract
Intersonics, Inc.
N92-15196

CR-184272 December 1991
Transpiration Cooled Throat for Hydrocarbon
Rocket Engines, Final Report. NAS8-36952.
GenCorp Aerojet.
N92-17495

CR-184273 August 1991
The Solid Propellant Rocket Motor Performance
Computer Program (SPP) Version 7.0 Volume
VII: Alternate Grain Design and Ballistics
Analysis, Final Report October 1988 to August
Associates, Inc.
X92-10287

CR-184274 October 1991
Chemical Hazards Database and Detection
System for Microgravity and Materials
Processing Facility (MMPF), Final Report.
NAS8-37746. FWG Associates, Inc.
N92-18927

CR-184275 September 1991
Pultrusion Process Characterization, Final
Report. NAS8-37193. The University of
Mississippi.
N92-19167

CR-184276 November 1991
NAS8-36820. Rockwell International Corp.
N92-14391

CR-184277 June 1991
Hard X-Ray Imaging Graphics Development
and Literature Search, Final Report June 1990
Through June 1991. NAS8-36955. The Univer-
sity of Alabama in Huntsville.
N92-25953

CR-184278 November 1991
Process Modeling for KC-135 Aircraft. NAS8-
36955. The University of Alabama in Huntsville.
N92-18347

CR-184279 September 1991
Engine Data Interpretation System (EDIS)
(Phase II) Final Report, Period of Performance
October 30, 1990, to July 29, 1991. NAS8-
36955. The University of Alabama in Huntsville.
N92-15123

CR-184280 November 1991
Materials Processing in Low Gravity, Final
Report. NAS8-36955. The University of
Alabama in Huntsville.
N92-20198

CR-184281 November 1991
Spectroscopy and Multivariate Analyses
Applications Related to Solid Rocket Nozzle
Bondline, Final Report. NAS8-36955. The Univer-
sity of Alabama in Huntsville.
N92-14134

CR-184282 January 1992
Frequency Response Measurements in Battery
Electrodes, Final Report. NAS8-36955. The Univer-
sity of Alabama in Huntsville.
N92-18466

CR-184283 December 1991
Propellant Variability Assessment, Final Report.
NAS8-36955. The University of Alabama in
Huntsville.
N92-18264
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-184284 July 1991
Model Studies on the Role of Moist Convention as a Mechanism for Interaction Between the Mesoscales, Final Project Report. NAS8-37141. Meso, Inc. N92-20670

CR-184285 July 1991

CR-184286 June 1990

CR-184287 October 1990
Evaluation of RSRM Case Hardware Fretting Concerns. NAS8-30490. Thiokol Corp. N92-20243

CR-184288 November 1990

CR-184289 October 1990
Similarity Analysis for the Use of the 1U50228-47 O-Ring in the S&A Assembly. NAS8-30490. Thiokol Corp. N92-20244

CR-184290 February 1992

CR-184291 December 1991

CR-184292 December 1991

CR-184293 December 1991

CR-184294 March 1992
Flexible Body Control Using Neural Networks. NAS8-36955. The University of Alabama in Huntsville. N92-20275

CR-184295 February 1991

CR-184296 February 1991

CR-184297 January 1992
Experimental Uncertainty Survey and Assessment. NAS8-38609. The University of Alabama in Huntsville. N92-20443

CR-184298 February 1992

CR-184299 January 1992

CR-184300 January 1992

CR-184301 December 1991

CR-184302 March 1992
Space Contamination Studies, Interim Annual
X92-10294

CR-184303
March 1992
X-Ray Astronomy Research, Final Report
Research Association.
N92-90929

CR-184304
January 1992
Wind Profiler Signal Detection Improvements,
Inc.
N92-16990

CR-184305
July 1991
Quarterly Management Review (Final Report)
Solid Propulsion Integrity Program Nozzle
Workpackage. NAS8-37801. Hercules Industry
Team.
X92-10292

CR-184306
July 1989
Advanced NSTS Propulsion System Verification
Study, Final Report. NAS8-36700. Rockwell
International.
N92-24665

CR-184307
July 1991
Thermal Analysis of the Ultraviolet Imager
Camera and Electronics. H-10857D. Southwest
Research Institute.

CR-184308
July 1991
Image and Manufacturing Data Analysis Work-
station Detail System Design for Subtask
3.3.2.2, Final Report. NAS8-37801. Hercules.
X92-10315

CR-184309
February 1992
Space Transfer Concepts and Analyses for
Exploration Missions, Final Report. NAS8-
37857. Boeing Defense and Space Group.
N92-24048

CR-184310
October 1991
Spiral Model Pilot Project Information Model.
NAS8-37680. Nichols Research Corp.
N92-25139

CR-184311
September 1991
Contamination Analyses of Technology Mirror
Assembly Optical Surfaces. H-11289D.
McCron Associates, Inc.
N92-24203

CR-184312
March 1992
Advanced Flow-Polishing and Surface
Metrology of the S056 X-Ray Telescope, Final
Consulting.
N92-20515

CR-184313
December 1991
Bearing Tester Data Compilation, Analysis, and
Reporting and Bearing Math Modeling Study
Annual Progress Report for January–December
X92-10379

CR-184314
March 1992
Bearing Tester Data Compilation, Analysis, and
Reporting and Bearing Math Modeling Study,
Volume I. NAS8-37350. SRS Technologies.
X92-10371

CR-184315
March 1992
Bearing Tester Data Compilation, Analysis, and
Reporting and Bearing Math Modeling Study,
Volume II. NAS8-37350. SRS Technologies.
X92-10370

CR-184316
March 1992
Bearing Tester Data Compilation, Analysis, and
Reporting and Bearing Math Modeling Study,
Volume III. NAS8-37350. SRS Technologies.
X92-10373

CR-184317
April 1992
Advanced Electric Motor-Flux Mapping. NAS8-
36955. The University of Alabama in
Huntsville.
N92-24047

CR-184318
December 1991
Welding Space Vacuum Technology, Final
Report. NAS8-36955. The University of
Alabama in Huntsville.
N92-25255

CR-184319
February 1992
Integration Mockup and Process Material
Management System, Final Report. NAS8-
36412. Micro Craft, Inc.
N92-30754

CR-184320
February 1992
Holographic Flow Diagnostics for the Space
Shuttle Main Engine, Final Report. NAS8-
38608. MetroLaser.
N92-22490

CR-184321
February 1992
Study Report Recommendations for the Next
Generation Range Safety System (RSS)

CR-184322 March 1992

CR-184323 February 1992

CR-184324 April 1992
Final Report for P.O. H07966D. The University of Alabama in Huntsville. X92-10398

CR-184325 April 1992

CR-184326 April 1992

CR-184327 March 1992
Computational Fluid Dynamics for Propulsion Technology, Final October 20, 1990, to April 1, 1992. NAS8-36955. The University of Alabama in Huntsville. N92-23568

CR-184328 April 1992

CR-184329 April 1992

CR-184330 February 1992

CR-184331 February 1992

CR-184332 November 1989

CR-184333 August 1990

CR-184334 June 1991

CR-184335 May 1991

CR-184336 May 1991

CR-184337 May 1991

CR-184338 June 1991

CR-184339 April 1992
Investigation of Solar Active Regions at High Resolution by Balloon Flights of the Solar Optical Universal Polarimeter, Final Report.
<table>
<thead>
<tr>
<th>Contract</th>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
<th>Reports</th>
</tr>
</thead>
</table>
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-184358 October 1990

CR-184359 May 1992

CR-184360 October 1990

CR-184361 April 1992

CR-184362 August 1992

CR-184363 November 1991

CR-185364 February 1992

CR-184365 September 1990
Space Station Long Term Lubrication Analysis Phase I Preliminary Tribological Survey. NAS8-36655. Battelle.

CR-184366 December 1989
Risk Analysis of Space Transportation During the Space Station Era. NAS8-38076. L. Systems, Inc.

CR-184367 September 1991

CR-184368 December 1990

CR-184369 December 1990

CR-184370 December 1990

CR-184371 December 1990

CR-184372 December 1990

CR-184373 July 1992

CR-184374 May 1992

CR-184375 December 1991

CR-184376 January 1991
CR-184377 February 1991
Carbon Phenolic Characterization, Part II
Mechanical Properties Measurements Final

CR-184378 November 1991
Nozzle Flowfield and Thermal Analysis
Workshop Final Report. NAS8-37801. Hercules
Aerospace Co.

CR-184379 November 1991
Fiber Optic Strain Gauge Concept Downselect
Process Final Report. NAS8-37801. Hercules
Aerospace Co.

CR-184380 July 1992
Final Report of Work Performed Under NAS8-
36955—Earth Science Data Study. NAS8-
36955. The University of Alabama in
Huntsville.

CR-184381 July 1992
Final Report of Work Performed Under NAS8-
36955—Earth Science and Application. NAS8-
36955. The University of Alabama in
Huntsville.

CR-184382 August 1992
Rocket-Based Combined Cycle (RBCC)
Propulsion Technology Workshop Proceedings
Executive Summary, Volume I. NAS8-38609.
The University of Alabama in Huntsville.

CR-184383 August 1992
Rocket-Based Combined Cycle (RBCC)
Propulsion Workshop Proceedings Final Report,
Volume II. NAS8-38609. The University of
Alabama in Huntsville.

CR-184384 August 1992
High Temperature Aircraft Research Furnace
Facilities, Final Report. NAS8-36955. The
University of Alabama in Huntsville.

CR-184385 July 1992
Radioactive 7Be Materials Flown on LDEF,
Final Report for September 13, 1991, to July 10,
1992. NAS8-38609. The University of Alabama
in Huntsville.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

ABBAS, M.M. ES55
TRAUB, W.
CHANCE, K.

ABBAS, M.M. ES55
TRAUB, W. (Harvard University)
CHANCE, K.V.

ABRAHAM, R.N. KA30

ADAMS, A.M. PT41

AGGARWAL, M.D. (Alabama A&M University)
WANG, W.S.
SHIELDS, A.W.
PENN, B.G.
FRAZIER, D.O.

ALBRITTON, L.M. EP63
REDMON, J.R.
TYLER, T.R.

ALEXANDER, D.W. EB12
EDGE, T.M.
WILLOWBY, D.J.

ARNOLDY, R.L. (University of New Hampshire)
LYNCH, K.A.
KINTNER, P.M. (Cornell University)
VAGO, J.
CHESNEY, S.
MOORE, T.
PO旅游资源, C.
Bursts of Transverse Ion Acceleration at Rocket Altitudes. For publication in Geophysical Research Letter, Washington, DC.

AUSTIN, R.A. ES65
RAMSEY, B.D.

AVANS, S. MS03
PEARSON, S.
ESPY, P.
BREWER, D.
CAMP, D.

BACCHUS, D.L. ED33
HENGEL, J.E.
WOODS, G.H. (Remtech)
KNOX, E.D.
POND, J.E.

BACCHUS, D.L. ED33
HILL, O.E.
WHITESIDES, R.H.

30
BAILEY, J. (UAH)
KOSHAK, W.J.
CHRISTIAN, H.J.

BAILEY, J.
MACH, D.M.
CHRISTIAN, H.J.

BARRET, C. ED13

BASTIAS, P.C. (Vanderbilt University)
HAHN, G.T.
NUNES, A.C. EH42
KIM, K.Y.
RUBIN, C.A.

BENNER, J. ED10
SINHA, S.C.
WIENS, G.
Modal Testing of a Flexible Multibody System. For presentation at the Third Pan American Conference of Applied Mechanics, PACAM3, Sao Paulo, Brazil, January 4–8, 1993.

BERGSTROM, J.W. ES43
JACKSON, J.W.
SIMMONS, D.E.
CHRISTIAN, H.

BHAT, P.N. ES62
FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
BROCK, M.N.
PACIESAS, W.S. (UAH)
Sub-millisecond Structure in a Gamma Ray Burst Observed by BATSE. For publication in Nature, Washington, DC.

BHAT, P.N. (NRC)
KOUVELIOTOU, C.
FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
PACIESAS, W.S.
MATTESON, J. (UCSD)
SCHAEFER, B. (GSFC)
TEEGARDEN, B.
CLINE, T.
Spectral Study of a Subset of Gamma Ray Bursts Detected by the BATSE/GRO Experiment. For presentation at the 179th Meeting of the American Astronomical Society, Atlanta, GA, January 12–16, 1992, and for publication in the Proceedings of the meeting.

BILBRO, J.W. EB23
KAVAYA, M.J.
Wind Measurements From Space. For presentation at OPTCON '91, OSA Annual Meeting, San Jose, CA, November 4–8, 1991.

BOARDSEN, S.A. ES53
GALLAGHER, D.L.
GURNETT, D.A.
PETerson, W.K.
GREEN, J.L.
Funnel Shaped Low Frequency Equatorial Waves. For publication in JGR, Washington, DC.

BOECK, W.L. ES43
VAUGHAN, O.H., JR.
BLAKESLEE, R.
VONNEGUT, B.
BROOK, M.
Lightning Induced Brightening in the Airglow Layer. For publication in Geophysical Research Letters, Washington, DC.
BOWDLE, D.A. (UAH)
ROTHERMEL, J. ES43
ARNOLD, J.E.

BRAINERD, J.J. ES65

BRAINERD, J.J. ES65

BRAINERD, J.J. ES65

BREWER, J.C. EB12
WHITT, T.H.

BROCK, M.N. ES62
MEEGAN, C.A.
FISHMAN, G.J.
WILSON, R.B.
ROBERTS, F.E.
PACIESAS, W.S. (UAH)
PENDLETON, G.M. (UAH)

BROWN, N.E. FA31

BROWN, N. PP03
PATEL, S.

BROWN, N.S. PS02
JOHNSON, C.L.

BRYAN, T. EB24
ROE, F.
COKER, C.

BUCHANAN, H. EE84
National Launch System Overview With Focus on CTV. For presentation at the AIAA Space Programs and Technology Conference and Exhibits, Huntsville, AL, March 24, 1992.

BUCHANAN, H.J., JR. EE84

BUECHLER, D.E. (UAH)
BLAKESLEE, R.J. ES43
CHRISTIAN, H.J.

BUECHLER, D. ES43
BLAKESLEE, R.
Cloud-to-Ground Lightning Observations Used to Simulate Observations From a Low Earth Orbiting Lightning Sensor. For presentation at the Ninth International Conference on Atmospheric Electricity, St. Petersburg, Russia, June 15–19, 1992.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

BUKLEY, A.P. ED12
JONES, V.L.

BUKLEY, A.P. ED12
JONES, V.L.

BUKLEY, A.P. ED12
JONES, V.L.

BUKLEY, A.P. ED12
SHARKEY, J.P.
WAITES, H.B.
DAVIS, J.M.

BURDINE, R.V. AB35
PENDERGRAFT, B.K.

BURNS, J.O. (New Mexico State University)
SULKANEN, M. ES65
GISLER, G.R.
PERLEY, R.A.
Where Have All the Cluster Halos Gone? For publication in the Astrophysical Journal Letters, Chicago, IL.

CAMPBELL, J. ES52

CAMPINS, H. (University of Florida)
JEWITT, D. (University of Hawaii)
TELESCO, C. ES63
Preliminary Results From Simultaneous Visible and Thermal-Infrared Observations of Object 2060 Chiron. For presentation at IAU Circular, Cambridge, MA.

CARDELINO, B.H. (Spelman College)
MOORE, C.E.
PALEY, M.S.
FRAZIER, D.O.
Static Third-Order Polarizability Calculations for Large Molecular Systems; A Study of Pyrryl Diacetylene Derivatives. For publication in the Journal of Physical Chemistry, Austin, TX.

CARDELO, A.M. EB42
NOLA, C.L.
FAULKNER, M.
BOUNDS, R.
An Evaluation of the Application Generator (AG) as a Software Development Environment for Payloads. For presentation at the Payload Data Services Workshop, Huntsville, AL, August 3–6, 1992.

CARROLL, T.J. (Textron) SA61
THURSTON, G.S.
RUDOLPH, J.W.

CARRUTH, M.R., JR. EH12
VAUGHN, J.
HOLT, J.M.
WERP, R.
SUDDEUTH, R.D.

CARRUTH, M.R., JR. EH12
VAUGHN, J.A.
Experimental Studies on Spacecraft Arcing and Current Closure Paths. For presentation at the AIAA 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6–9, 1992.
CARTER, D.L. ED62
AKSE, J.R. (Umpqua Research Co.)
THOMPSON, J.
JOLLY, C.D.

CARTER, D.L. ED62
COLE, H. (Boeing)
HABERCOM, M.
GRiffith, G. (Sverdrup)
SLIVON, L. (Battelle)

CHANG, H.-P. (Sverdrup)
FRENCH, R.A. EL58

CHAPMAN, J.S. SA61
NIX, M.B.

CHAPPELL, C.R. DS01
KATZENBERGER, J.

CHASSAY, R.P. JA82

CHEN, P.S. (IIT Research)
VESELY, E.J., JR.
PANDA, B.
HAMILTON, W.D. EH22
PARR, R.A.
The LCF Behavior of the Ni-Base Superalloy PWA 1489 in Hydrogen. For presentation at the Seventh International Symposium on Superalloys, Seven Springs Mt. Resort, Champion, PA, September 20–24, 1992.

CHEN, P.S. EH23 (IIT Research)
VESELY, E.
PANDA, B.
HAMILTON, W.D.
PARR, R.A.

CHENG, A.K. (Sverdrup)
REWINKEL, D.A.
OWENS, S.F. (CFD Research)
SEYMOUR, D.C. EP73

CHENG, A.K. (Sverdrup)
MARSH, M.W. EP62

CHOU, S.-J. ES42

CHOW, A.S. EP55
CHRISTIAN, H.J. ES43
GOODMAN, S.J.
Global Observations of Lightning From Space. For presentation at the Ninth International Conference on Atmospheric Electricity, St. Petersburg, Russia, June 15–19, 1992.

CHRISTIAN, P.M. ED12
RAKOCZY, J.
MSFC Computational Controls Workstation. For presentation at the NASA/NSF/DoD Workshop on Aerospace Computational Control, Santa Barbara, CA, August 17–19, 1992.

COHEN, C. ES42
The Effects of the Hydrostatic Assumption and of Horizontal Grid Size on Numerical Simulations of Low-Level Mass Convergence. For publication in the Journal of the Atmospheric Sciences, Boston, MA.

COOK, S. PD24
HUETER, U.

COOPER, A.E. EB22
POWERS, W.T.
WALLACE, T.L.

CORNETT, K.G. EO33

COSTES, N.C. ES42
TURE, S.
McTIGUE, D.

COWAN, J.R. EP64
MYERS, W.N.

CRAMER, J.M. EP53

CRAVEN, P.D. ES53
Comparison of a Physical Plasmaspheric Model (FLIP) With Measured Ionospheric/Plasmaspheric Plasma Composition and Temperature. For presentation at the Third Huntsville Workshop on Magnetosphere/Ionosphere Plasma Models, Guntersville, AL, October 5–8, 1992.

CURREI, P.A. ES75
RAMACHANDRAN, N.
JONES, J.C.
DOWNEY, J.P.
Experimental Results and Numerical Modeling of Solidification During Aircraft High-g Arcs. For presentation at the AIAA 30th Aerospace Science Meeting, Reno, NV, January 6–9, 1992.

CURREI, P.A. ES75
RAMACHANDRAN, N.
DOWNEY, J.P.
JONES, J.C.
Numerical Modeling of Melt Velocity and Thermal Distributions During Aircraft High-gravity Arcs. For publication in the Journal of Crystal Growth, Amsterdam, Netherlands.

CUTTEN, D.R. (UAH)
PEUSCHEL, R. (Ames)
ROTHERMEL, J. ES43
CLARKE, A.D. (University of Hawaii)
BOWDLE, D.A. (UAH)

DABNEY, R.W. ED13
Application of Neural Networks to Autonomous Rendezvous and Docking of Space Vehicles. For presentation at the AIAA Space Programs and Technology Conference, Huntsville, AL, March 25, 1992.
DALINS, I.
KARIMI, M.
ILA, D.

DALLEK, S.
DEITE, S.
KAYSER, E.
AUGL, J.M.
SEIDEN, N.

DAURO, V.A., SR.

DAVIS, D.J.
DILL, K.M.
TARWATER, R.
REWINDEL, D.A.

DAVIS, H.W.
BUKLEY, A.P.

DAVIS, J.M.

DEAN, D.L.
SEMMEL, M.L.
LITTLE, R.L.
Chemical Basis for an Inert Propellant Exhibiting Good Bondline Characteristics Developed for the Bondlines Task of the NAS Solid Propulsion Integrity Program (SPIP). For presentation at the JANNAF Propellant Development and Characterization Subcommittee Meeting, KSC, FL, April 7–9, 1992.

DECHER, R.
PETERS, P.N.
SISK, R.C.
URBAN, E.W.
VLASSE, M.
RAO, D.K.
High Temperature Superconducting Bearing for Rocket Engine Turbo Pumps. For presentation at the World Congress on Superconductivity, Munich, Germany, September 14–18, 1992.

DELCOURT, D.C.
MOORE, T.E.
SAUVAUD, J.A.
Non-Adiabatic Transport Features in the Upper Cleft Region. For publication in JGR, Washington, DC.

DEMOULIN, P.
VAN DRIEL-GESZTELYI, L.
(Sterrekundig Instituut)
SCHMIEDER, B.
(Heliophysical Observatory)
HENOUX, J.C.
(Centre d'Etudes Spatiales de la Defense)
CSEPURA, G.
(Heliophysical Observatory)
HAGYARD, M.

DERRICKSON, J.H.
BENTON, E.V.
HEINRICH, W.
PARNELL, T.A.
ARMSTRONG, T.W.
ET AL.
AUSTIN, R.W.
SELIG, W.J.
GREGORY, J.C.

Desanctis, C.

Desanctis, C.E.
Dabbs, J.R.
Johnson, C.L.
Roberts, W.T.

Dietz, K.L.
Ramsey, B.D.
Weisskopf, M.C.

Ding, R.J.

Downey, J.
Static and Dynamic Scaling Properties of Single, Self-Avoiding Polymer Chains in Two-Dimensions Via the Bond Fluctuation Method of Monte Carlo Simulation. For publication in Macromolecules, Murray Hill, NJ.

Dugal-Whitehead, N.
Johnson, Y.B.

Edwards, D.L.
Semmel, C.
Sims, J.
McDonald, K.
Wertz, G.
McCain, M.
Zwiener, J.

Elfer, N.
Roberts, B.
Olsen, G.

Elfer, N.C.
Bailiff, F.
Robinson, J.
ED52

Elrod, S.E.
KA40
A Policy of Standardization for Satellite Retrieval Systems. For presentation at the Space Assembly and Servicing Working Group Interface Standards Meeting and Exhibition, Houston, TX, November 13–14, 1991.

Elser, R.F.
O'Dell, S.L.
EMRICH, W.J., JR.
YOUNG, A.C.
MULQUEEN, J.A.

FAWCETT, S.C.
DOW, T.A.

FAWCETT, S.C.
DOW, T.A.
Analysis of the Wheel Speed Effects in Precision Contour Grinding. For presentation at the American Society for Precision Engineering, Santa Fe, NM, October 17, 1991.

FAY, J.F.
KUMAR, G.N.
SEAFORD, C.M.

FEARS, S.D.
GIBSON, H.G.

FINESCHI, S.
DEGL'INNOCENTI, E.L.

FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
PACIESAS, W.S.
PENDLETON, G.N.
HARMON, B.A.
HORACK, J.M.
BROCK, M.N.
KOUVELIOTOU, C.
FINGER, M.
Overview of Observations From BATSE on the Compton Observatory. For publication in Astronomy and Astrophysics, Meudon, France.

FISHMAN, G.J.

FISHMAN, G.J.

FISHMAN, G.J.
Observations From the BATSE Experiment on the Compton Observatory. For presentation at the Spring Meeting of The American Physical Society, Washington, DC, April 1992.

FISHMAN, G.J.

FISHMAN, G.J.
Gamma-Ray Burst Observations From the Gamma Ray Observatory: Capabilities and Early Results. For presentation at the Colloquium University of Toronto, Toronto Ontario, Canada, November 7–8, 1991.

FISHMAN, G.J.
Initial Observations From the BATSE Experiment on the Compton Gamma Ray Observatory. For presentation at the 179th Meeting of the American Astrophysical Society, Atlanta, GA, January 12–16, 1992.
FOGLE, F.R. EL56
WOODRUFF, L.D.

FONTENALIA, J.M. ES52
RABIN, D.
HATHAWAY, D.H.
MOORE, R.L.

FOUNTAIN, J.A. PS01

FOX, T. ED14

FRANCK, C.G. ED25

FREHLICH, R. EB23

GALLAGHER, D.L. ES53
Core Plasma in the Magnetosphere. For presentation at the Third Huntsville Workshop on Magnetosphere/Ionosphere Plasma Models, Guntersville, AL, December 5–8, 1992.

GAMWELL, W.R. EH23
KURUVILLA, A.K.

GARCIA, R. ED32
McConnaughey, P.
EASTLAND, A.

GARCIA, R. ED32
JACKSON, E.
SCHUTZENHOFER, L.A.
A Summary of the Activities of the NASA/MSFC Pump Stage Technology Team. For presentation at the Fourth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, April 5–8, 1992.

GARY, G.A. ES52
POLETTO, G.
MACHADO, M.E.
Interacting Confined-Eruptive Flare Sites Within a Magnetic Active Region Complex. For presentation at the AAS/Solar Physics Annual Meeting, Columbus, OH, June 7–11, 1992.

GILES, B.L. ES53
CHAPPELL, C.R.
MOORE, T.E.
COMFORT, R.H. (UAH)
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

GILLEY, S.D. (Sverdrup)
KNOX, J.C. ED62
Performance Predictions of Space Station Freedom ECLSS Cabin Air Handling Subsystems for the Man Tended Configuration. For presentation at the International Conference on Life Support and Biospherics, Huntsville, AL, February 18–20, 1992.

GOGGIN, D.G. (Sverdrup)
DARDEN, J.M. ED14

GOLBEN, J. (Science and Technology Corp.)
VLASSEE, M. ES74
Melt-Sintering Process Optimization at Temperatures Below 1,100 °C for YBa2Cu3O7 and Bulk Samples. For publication in Superconductivity Science and Technology, Bristol, UK.

GOLBEN, J. (Science and Technology Corp.)
VLASSEE, M. ES74
Study of Bulk and Single Crystal YBa2-xSrxCu3O7o Superconducting Materials. For publication in Superconductor Science and Technology, United Kingdom.

GOLDBERG, B.E. COOK, J.R. EP54

GOLDBERG, B.E. WILEY, D. (General Dynamics)
ESTEY, P. (American Rocket)

GOODMAN, H.M. ES44
Science Data Processing in the Mission to Planet Earth Era. For presentation at the AIAA Space Programs and Technologies Conference, Huntsville, AL, March 25, 1992.

GREGORY, J.C. (UAH)
PETERS, P.N. ES64

GREGORY, J.
DEWBERRY, B.
GUILLEBEAU, M.
TROY, J.
LANFEAR, T.
MCKINNEY, K.

GRIFFIN, L.W. ED32
HUBER, F.W. (Pratt and Whitney)
BACHE, G. (Aerojet)

GRIFFIN, L.
ROWEY, R.J. ED32

GRINER, C. LEWIS, C. SMITH, K.
GRINER, C. EO01

GROFF, M.B. (Teledyne Brown) EJ22
MUSICK, B.Q. EL64
WRIGHT, M.E.

GUILLORY, A. ES43
JEDLOVEC, G.
FUELBERG, H.E.

HAGYARD, M.J. ES52
MACHADO, M.E.
SCHMIEDE, B.
DEMOULIN, P.
GUOXIANG, A.
QIJUN, F.
XIANG, S.L.
KAI, I.Z.
KALMAN, B.

HAGYARD, M.J. ES52
WEST, E.A.
SMITH, J.E.

HALE, J.P., II EO23

HALE, J.P., II EO23

HALE, J.P. EO23

HAMMER, R. ES52
MOORE, R.L.

HAMMOND, W.E. (Sverdrup) EL56
JONES, W.G.

HANSON, J.M. EL58
SHRADE, M.W.
CHANG, H.P. (Sverdrup)
FREEMAN, S.

HANSON, J.M. EL58
Mars Parking Orbit Selection. For publication in the Journal of the Astronautical Sciences, Springfield, VA.

HARMON, B.A. ES62
WILSON, R.B.
FINGER, M.H.
PACIESAS, W.S.
RUBIN, B.C.
FISHMAN, G.J.

HARMON, B.A. ES62
PACIESAS, W.S.
RUBIN, B.
FINGER, M.H.
FISHMAN, G.J.
WILSON, R.B.
MEEGAN, C.A.
Galactic Center. For publication in the Central Bureau for Astronomical Telegrams, International Astronomical Union, Cambridge, MA.

Early Results From Occultation Analysis of BATSE/GRO Data. For presentation at the 179th AAS Meeting, Atlanta, GA, January 13–16, 1992.

HARMON, B.A. ES62
FISHMAN, G.J.
PARNELL, T.A.
BENTON, E.V.
FRANK, A.L.

HARRISON, J.K. FA34
RUPP, C.C. PS04

HATHAWAY, D.H. ES52

HAWARDEN, T.G. ES63
CUMMINGS, R.O.

TELESCO, C.M.

HE, X.M. ES76
CARTER, D.C.

HE, X.M. ES76

HEAMAN, J.P. ED35
Experiences With A High-Pressure Scanning System. For presentation at the 77th Semiannual Meeting of the Supersonic Wind Tunnel Association, Notre Dame, IN, April 10–15, 1992.

HELMICKI, A.J. ED14
VALLELY, D.P.
KUO, F.Y.

HERREN, B.J. JA84

HERRMANN, M.C. PD24
JOHNSON, C.L. PS02

HIGGINS, G.R. EO44

HILL, S.A. ED52
HERTEL, E.S. (Sandia National Laboratory)
CHHABILDAS, L.C.

HILL, S.A. ED52
HERTEL, E.S. (Sandia National Laboratory)
CHHABILDAS, L.C.

HINMAN, E.M. EB24

HOLDER, D.W. ED62
BAGDIGIAN, R.M.

HOOD, R.E. ES43
SPENCER, R.W.
LAFONTAINE, F.J.
Precipitation Remote Sensing Using the Advanced Microwave Precipitation Radiometer. For presentation at the 11th International Conference on Clouds and Precipitation, Montreal, Canada, August 16–22, 1992.

HOOVER, R. ES52

HOOVER, R.B. ES52

HOOVER, R.B. ES52
HOOVER, R.B. ES52
FINESCHI, S.

HOPPE, D.T. EH01

HORACK, J.M. ES62
HAKKI,A. J. (Mankato State University)
FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
PACIESAS, W.S. (UAH)
PENDLETON, G.N.
BROCK, M.N.
KOVELIOTOU, C. (Univ. of Athens, Greece)
BRIGGS, M.S. (UAH)
Preliminary Angular Correlation Analyses of Gamma-Ray Bursts Detected by BATSE. For presentation at Compton Observatory Symposium, St. Louis, MO, October 15–17, 1992.

HORACK, J.M. ES62
HARMON, B.A.
FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
PACIESAS, W.S. (UAH)
PENDLETON, G.N.
KOVELIOTOU, C. (Univ. of Athens, Greece)

HORACK, J.M. ES62
KOSHUT, T.M. (UAH)
MALLOZZI, R.S.
STOLLBERG, M.
STOREY, S.D.
FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
PACIESAS, W.S. (UAH)

HORACK, J.M. ES62
MEEGAN, C.A.
FISHMAN, G.J.
WILSON, R.B.
PACIESAS, W.S.
EMSIE, A.G.
Effects of Location Uncertainties on the Observed Distribution of Bursts Detected by BATSE. For presentation at Compton Observatory Symposium, St. Louis, MO, October 15–17, 1992.

HOWARD, R.T. EB24
BOOK, M.L.

HOWARD, S. ES62
PENDLETON, G.
Current Status of GRO/BATSE Correlation Between BATSE GRB's and H II Regions. For presentation at the 23rd Meeting of Division on Dynamical Astronomy (DDA)/HAD AAS, Chicago, IL, June 3–6, 1992.

HOWARD, S. ES62

HUBER, W.G. PA01
Space Transportation Requirements/Systems. For presentation at the Ninth Symposium on

HUFF, T.L. (Sverdrup)
OBENHUBER, D.C.
RODGERS, E.B.
SMITHERS, G.A.

HUMPHRIES, W.R.
ED61
Interdisciplinary Analysis From the Spacecraft Thermal Analyst’s Viewpoint. For presentation at the International Conference for Environmental Sciences (ICES), Seattle, WA, July 1992.

HUMPHRIES, W.R.
ED61

HUNG, R.J.
PAN, H.L.
LEE, C.C.
LESLIE, F.W.

HUNG, R.J.
PAN, H.L.
LESLIE, F.W.

Slosh-Wave-Excited Asymmetric Spacecraft Fluid Propellant Viscous Stress and Moment. For publication in the Journal of Propulsion and Power, Washington, DC.

HUNG, R.J.
PAN, H.L.
LESLIE, F.W.

Asymmetric Gravity Jitter Excited Slosh Waves and Spacecraft Moment and Angular Momentum Fluctuations. For publication in the Journal of Guidance, Control, and Dynamics, Washington, DC.

HUNG, R.J.
LEE, C.C.

LESLEY, F.W.
ES42

HUNG, R.J.
LEE, C.C.

LESLEY, F.W.
ES42
Gravity Probe-B Spacecraft Attitude Control Based on the Dynamics of Slosh Wave-Induced Fluid Stresses Distribution on Rotating Dewar Container of Cryogenic Propellant. For publication in Acta Astronautica, Paris, France.

IRWIN, R.D.
ED12
FRAZIER, W.G.
MITCHELL, J.R.
MEDINA, E.A.
BUKLEY, A.P.

ISHAM, M.A.
EH34

JACOBS, R.
EH23
VESELY, E.J., JR.

JARZEMBSKI, M.A.
ES43
SRIVASTAVA, V.

Pressure Dependence of Laser-Induced Breakdown of Water Droplets. For publication in Optics Letters, Washington, DC.
JAYATIRI-H, N.N.
HENDERSON, D.O.
BURGER, A.
VOLZ, M.P.

JOHNSON, C.L.
DIETZ, K.L.
ARMSTRONG, T.W.
COLBORN, B.L.

JOHNSON, D.L.
HILL, C.K.
BATT'S, G.W.
BROWN, S.C.

JOHNSON, D.L.
EHRENBERGER, J.
NASP Natural Environment Support and Atmospheric Modeling—Status. For presentation at NASP, Mid-Term Technology Review, Monterey, CA, April 21–24, 1992.

JOHNSON, R.B.
FENG, C.
ETHRIDGE, E.C.
Reluctant Glass Formers and Their Applications in Lens Design. For publication in the Proceedings of SPIE's 36th Annual Symposium, Bellingham, WA.

JOHNSON, Y.B.
McDALL, K.E.

JONES, C.S.

JONES, C.S.
HOFFMAN, D.S.
LAWLESS, K.G.

JUNG, Y.-D.

JUNG, Y.-D.
GOULD, R.J.

JUNG, Y.-D.

JUNG, Y.-D.

JUSTUS, C.G. (Georgia Institute of Technology)
JAMES, B.F.

KAHL, M.S. (Boeing)
STOKES, J.

KAMENETZKY, R.R.
WHITAKER, A.F.

KELLER, V. PS02
BERANEK, R.
HERRMANN, M.
KOCZOR, R.

KELLER, V.W. PS02

KIM, S. (Sverdrup)
TRINH, H.P. EP55

KINTNER, P.M. (Cornell University)
VAGO, J.
ARNOLDY, R.
POLLOCK, C. ES53
MOORE, T.

KNOX, J. ED62

KOLODZIEJCZAK, J.J. ES62
O’DELL, S.L.
ELSNER, R.F.
WEISSKOPF, M.C.

KOUVELIOTOU, C. ES62
PACIESAS, W.S. (UAH)
FISHMAN, G.J. ES62
MEEGAN, C.A. ES62
WILSON, R.B. ES62
Gamma-Ray Burst Color-Color Diagrams. For publication in Astronomy and Astrophysics, Meudon, France.

KOUVELIOTOU, C. (USRA)
FINGER, M.H. (Computer Sciences Corp.)
FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
PACIESAS, W.S. (UAH)
Circular No. 5576—Quasi-Periodic Oscillations in Soft X-Ray Flux From Cygnus X-1. For publication in IAU Circular, Cambridge, MA.

KOUVELIOTOU, C. ES62
FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
PACIESAS, W.S.
BROCK, M.N.
Soft Gamma Repeater (SGR). For publication in IAU Circular, Cambridge, MA.

KOUVELIOTOU, C. ES62
FINGER, M.H.
FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
PACIESAS, W.S.
KOSHUT, T.M.
HORACK, J.M.
Study of Precursor Activity Related to Gamma-Ray Bursts Observed With the BATSE/GRO

47
Experiment. For presentation at the 179th Meeting of AAS, Atlanta, GA, January 12–16, 1991, and for publication in the proceedings.

KUSUNOSE, M. ES65
MINESHIGE, S.

LACKEY, J.D. EP64
MYERS, W.N.

LAMBING, S.J. EO44
REYNOLDS, S.J. (Boeing)

LANGER, S. (Sverdrup) EP64
TYGIELSKI, P.

LAPENDA, C.C. ES44
The Function of the Earth Observing System Data Information System (EOSDIS) Distributed Active Archive Centers. For presentation at the AIAA Space Programs and Technology Conference, Huntsville, AL, March 26, 1992.

LAROSA, T.N. ES52
MOORE, R.L.

LEE, T.J. DA01

LEHOCZKY, S.L. ES75
SZOFRAN, F.R.

LESTER, D.F. EP63
GAFFNEY, N.I.
TELESCPO, C.M.

LIAW, G.S. (Alabama A&M University) ED33
MO, J.D. (Memphis State University)

LIGHTSEY, W.D. ED12/EB24
ALHORN, D.C.
POLITES, M.E.

LINTON, R.C. EH12
LIVINGSTON, J.M. CT21

LOHR, J.C. EP55
TRINH, H.P.
Mixing Characteristics of Injector Elements in Liquid Rocket Engines: A Computational Study. For presentation at the AIAA/SAE/ASME 28th
LOLLAR, L.F.

LORANC, M.
POLLOCK, C.J.

LORANC, M.
COLEY, W.R.
HEELIS, R.A. (University of Texas)
HAIRSTON, M.R.

LU, G. (Rice University)
REIFF, P.H.
MOORE, T.E.
HEELIS, R.A. (University of Texas)
Upflowing Ionospheric Ions in the Auroral Region. For publication in the Journal of Geophysical Research, Washington, DC.

LUVALL, J.C.
KAY, J.
SCHNEIDER, E.

LUVALL, J.
SCHNEIDER, E.
KAY, J.
Thermal Remote Sensing as a Tool for Categorizing Landscapes in Terms of Their Ecological Development. For presentation at the Seventh Annual U.S. Landscape Ecology Symposium, Corvallis, OR, April 8–12, 1992.

LUVALL, J.
HOLBO, R.
KAY, J.
SCHNEIDER, E.

McCONNAUGHEY, H.V.
LEOPARD, J.L.
LIGHTFOOT, R.M.

McCONNAUGHEY, P.K.
SCHUTZENHOFER, L.A.

McDANIELS, D.
SNELLGROVE, L.
Liquid Propulsion Turbomachinery Model Testing at MSFC. For publication in Aerospace Engineering, USA.

McDANIELS, D.
SNELLGROVE, L.

MCKEMIE, R.L.
McPHERSON, W.B. EH23

McPHERSON, W.B. EH23

MACH, D.M. ES43
BAILEY, J.C.
CHRISTIAN, H.J.

MAGNANI, L. (University of Georgia)
LA ROSA, T.N. ES52
SHORE, S.N. GSFC
The Observation of Correlated Velocity Structures in a Translucent Molecular Cloud and Implications for Turbulence. For publication in Astrophysical Journal Letters, Chicago, IL.

MANNEBACH, S. EH23
VESELY, E.J., JR.
Statistically Designed Experiments as Applied to Alloy Development. For presentation at the American Society for Quality Control, Rochester, NY, March 31, 1992.

MARMANN, R. JA01
CRAFT, H., JR.

MARTIN, J.J. EP53

MARTINEZ, L.F. (University of Texas)
McCLURE, J.C.
NUNES, A.C., JR. EH42

MARTINEZ, L.F. (University of Texas)
MARQUES, R.E.
McCLURE, J.C.
NUNES, A.C., JR. EH42

MEEGAN, C.A. ES62
FISHMAN, G.J.
WILSON, R.B.
PACIESAS, W.S.
PENDLETON, G.N.
HORACK, J.M.
BROCK, N.N.
KOUVEILOTOU, C.

MEEGAN, C.A. ES62
FISHMAN, G.J.
WILSON, R.B.
PACIESAS, W.S.
PENDLETON, G.N.
KOUVEILOTOU, C. (Univ. of Athens, Greece)
The Spatial Distribution of Gamma-Ray Bursts Observed by BATSE. For presentation at the Compton Observatory Symposium, St. Louis, MO, October 15–17, 1992.

MEEGAN, C.A. ES62
FISHMAN, G.J.
WILSON, R.B.
PACIESAS, W.S.
BROCK, M.N.
PENDLETON, G.N.
KOUVEILOTOU, C.
Gamma-Ray Bursts. For publication in Central Bureau for Astronomical Telegrams International Astronomical Union, Cambridge, MA.
PENDLETON, G.N.
KOUELIOUTOI, C.
Gamma-Ray Bursts. For publication in IAU Circular, Cambridge, MA.

MEEGAN, C.A
FISHMAN, G.J.
WILSON, R.B.
BROCK, M.
PACIESAS, W.S.
PENDLETON, G.
KOUELIOUTOI, C. (USRA)
Intensity Distribution of Gamma-Ray Bursts Observed by BATSE. For presentation at the 179th AAS Meeting, Atlanta, GA, January 13–16, 1992.

MELENDEZ-ALVIRA, D.J.
TORR, D.G. (UAH)
TORR, M.R.
FENNELLY, J.A. (UAH)
MORGAN, M.F. (UAH)
OWENS, J.K.

MELENDEZ-ALVIRA, D.J.
BURNSIDE, R.G.
WALKER, J.C.G.

MILLER, T.

MILLER, T.Y.
HE, X.
CARTER, D.C.

MITCHELL, R.E.
SA61

MITCHELL, R.E.
SA61

MO, J.D. (Memphis State University)
CHOU, L.C. ED33

MO, J.D. (Memphis State University)
CHOU, L.C. ED33

MONTGOMERY, E.E.
PS04

MOORE, G. (MICOM)
SUTANTO, S.
HELLER, R.P.
DUGAL-WHITEHEAD, N. EB12

MOORE, R.L.
ESS2
HAMMER, R.
MUSIELAK, Z.E.
SUSS, S.T.
AN, C.-H.

MOORE, R.L.
ESS2
HAMMER, R.
MUSIELAK, Z.E.
SUESS, S.T.
AN, C.-H.

MOORE, R.L.
MUSIELAK, Z.E.
AN, C.-H.
ROSNER, R.
SUESS, S.T.
Why the Winds From Late-Type Giants and Supergiants Are Cool. For publication in Bulletin American Astronomical Society, Washington, DC.

MOORE, T.E.
DELCOURT, D.C.

MOORE, T.E.
POLLOCK, C.J.
KINTNER, P.M.
ARNOLDY, R.L.

MOORE, T.E.
DELCOURT, D.C.

MOORE, T.E.
DELCOURT, D.C.
Mantle Plasma as the Source of the Plasma Sheet. For publication in GRL, Washington, DC.

MOYLAN, B.
(Sverdrup)
SULYMA, P.

MULLINS, L.D.
The State Transition Matrix in Newtonian and Hamiltonian Form and a Closed Form Lambert Solution for the Clohessy-Wiltshire Equations. For publication in The Journal of the Astronautical Sciences, Springfield, VA.

NAUMANN, R.J.
BAUGHER, C.

NEIN, M.
DAVIS, B.G.
HILCHEY, J.

NERNEY, S.
SUESS, S.T.
SCHMAHL, E.J.

NETTLES, A.

NOEVER, D.A.

NOEVER, D.
MATSOS, H.
LOOGER, L.
Bioconvective Indicators in Tetrahymena: Nickel and Copper Protection From Cadmium Poisoning. For publication in the Journal of Environmental Health Science, Baton Rouge, LA.
NOEVER, D.A. ES76
Statistical Crystallography of Surface Micelle Spacing. For publication in Langmuir, Washington, DC.

NOEVER, D.A. ES76

NOEVER, D.A. ES76
Fractal Dynamics of Bioconvective Patterns. For publication in Journal of Physical Society of Japan, Tokyo, Japan.

NOEVER, D.A. ES76
Oligomeric Baroeffect and Gas Aggregation States. For publication in Physical Review A15, Ridge, NY.

NOEVER, D.A. ES76

NOEVER, D.A. ES76
Stability Limits for Bioconvective Fractals: Microgravity Prospects. For publication in Microgravity Science and Technology, Munich, Germany.

NOLA, C.L. EB42

NOLA, C.L. EB42

NOLEN, A.M. ED52
OLSEN, G.D.

NONEMAN, S. EO02

NURRE, G.S. ED12
SHARKEY, J.P.
BEALS, G.
NELSON, J.

OBENHUBER, D.C. (Sverdrup)
HUFF, T.L.
SMITHERS, G.A.
RODGERS, E.B.
Aquatic Biofilms—Their Response to Disinfection and Invading Species, and Their On-Line Monitoring. For presentation at the International Conference on Life Support and Biospherics, Huntsville, AL, February 1992.

OBENHUBER, D.C. (Sverdrup)
RODGERS, E.B. EH32

O'DELL, S.L. ES65
ELSNER, R.F.

OSHEROVICH, V.A. (GSFC)
GARCIA, H.A. (NOAA)
HAGYARD, M.J. ES52

OWENS, J.K. ES51
TORR, D.G. (UAH)
TORR, M.R. ES51
FENNELLY, J.A. (UAH)
RICHARDS, P.G.
MORGAN, M.F.
BALDRIDGE, T.W.
ET AL.
Mesospheric Nightflow Spectral Survey Taken by the ISO Spectral Imager on ATLAS-1. For publication in Geophysical Research Letters, Washington, DC.

OWENS, J.K. ES55
TORR, M.R.
BALDRIDGE, T.W.
TORR, D.G.
FENNELLY, J.A.
MORGAN, M.F.

PACIESAS, W.S. (UAH)
HARMON, B.A. ES62
PENDLETON, G.N. (UAH)
FINGER, M.H. (Compton Observatory Science Support Center)
FISHMAN, G.J. ES62
MEEGAN, C.A. ES62
RUBIN, B.C. ES62
WILSON, R.B. ES62
Studies of Hard X-Ray Source Variability Using BATSE. For publication in Astronomy and Astrophysics, Meudon, France.

PACIESAS, W.S. ES62
PENDLETON, G.N.
KOSHUT, T.M.
MALLOZZI, R.S.
KOUVELITOU, C.
FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
LESTRADE, J.P.
A Search for Distinct Spatial Distributions of Gamma-Ray Bursts Based on Spectral Classification. For presentation at the 179th Meeting of the AAS, Atlanta, GA, January 13–16, 1992.

PENG, S.T.J. (JPL) ER41

PERKINS, L.A. ED25
CZEKALSKI, B.E.

PETERS, P.N. ES64
GREGORY, J.C. (UAH)
Attitude Stability of LDEF: Refinement of Results From the Silver Pinhole Camera. For presentation at the Second LDEF Symposium, San Diego, CA, June 1–5, 1992.

PETERS, P.N. ES63
ZWEINER, J.M.
GREGORY, J.C. (UAH)
RAIKAR, G.
WILKES, D.R. (AZ Technology)
Changes in Chemical and Optical Properties of Thin Film Metal Mirrors on LDEF. For

POLETTO, G.
GARY, G.A.
MACHADO, M.E. (UAH)
Interactive Flare Sites Within an Active Region Complex. For publication in Solar Physics, The Netherlands.

POLITES, M.E.
LIGHTSEY, W.D.
A Nonlinear Estimator for Reconstructing the Angular Velocity of a Spacecraft Without Rate Gyros. For publication in the Journal of Guidance Control and Dynamics, Washington, DC.

POLLOCK, C.J.
CHAPPELL, C.R.
MOORE, T.E.
GURNETT, D.A. (University of Iowa)
The Effect of Upstream IMF and Plasma Conditions on Dayside Upwelling Ion Flux. For presentation at the Third Huntsville Workshop on Magnetosphere/Ionosphere Plasma Models, Guntersville, AL, October 5–8, 1992.

POWERS, W.T.
COOPER, A.E.
WALLACE, T.W.

PREECE, R.D.
KOUVELIOTOU, C.
FISHMAN, G.J.
MEEGAN, C.A.
WILSON, R.B.
BROCK, M.N.
PACIESAS, W.S.
PENDLETON, G.N.
TEEGARDEN, B.
CLINE, T.

PRESTWICH, A.
JOY, M.
SULKANEN, M.
LUGINBUHL, C. (USNO)
NEWBERRY, M. (Steward O.)

PRINCE, A.
HAMAKER, J.

RABIN, D.
DOWDY, J.F., JR.
Pervasive Variability in the Quiet Solar Transition Region. For publication in the Astrophysical Journal, Chicago, IL.

RAIKAR, G.N. (UAH)
GREGORY, J.C.
CHRISTLI, L.C.
PETERS, P.N.
Interaction of Atomic Oxygen With Thin Film and Bulk Cooper: An XPS, AES, XRD, and Profilometer Study. For presentation at the Second LDEF Symposium, San Diego, CA, June 1–5, 1992.

RAKOCZY, J.M.
BUTLER, M.L.
CHRISTIAN, P.M.
TOBBE, P.A.

RAMACHANDRAN, N.
JONES, J.
CURRERI, P.
DOWNEY, J.

RAMACHANDRAN, N. (USRA)
SMITH, A. ED35
HEAMAN, J.

RAMIREZ, J.A. ES42
CHOU, S.-H.

RAMSEY, B.D. ES65

RAO, S.M. (Alabama A&M University)
LOO, B.H. (UAH)
METZER, R.M. (UA)
SHIELDS, A.S. ES74
PENN, G.B.
FRAZIER, D.O.
New Polymorph of 2-Methyl-4-Nitroaniline—An Efficient Nonlinear Optical Material. For publication in the Journal of Applied Physics, Argonne, IL.

REDMON, J.W., JR. ED54

RHODES, P. ES71
Snyder, R.S.
ROBERTS, G.O.
BAYGENTS, J.C.

RICHARDS, J.S. HA31

RINCON, C. (University of Texas) EH42
NUNES, A.C., JR.
McCLURE, J. C.
ARROWOOD, R.

ROBERTS, F.E., III EH34
Control System Application of a Diamond Nucleation and Growth Model to Diamond Torch Film Deposition. For presentation at the 23rd Annual Pittsburgh Conference on Modeling and Simulation, Pittsburgh, PA, April 30–May 1, 1992.

ROBERTSON, F. ES42
BARRON, E.
GOODMAN, S.
FITZJARRALD, D.
CHRISTY, J.
THOMPSON, S.

ROBINSON, J.H. ED52
MOG, R.A. (Science Applications International)

ROBINSON, J.H. ED52
The Effectiveness of Multi-layer Insulation as Meteoroid and Orbital Debris Shielding. For presentation at the AIAA Space Programs and Technologies Conference, Huntsville, AL, March 24–27, 1992.
RODGERS, E.B.
SMITHERS, G.A.
OBENHUGER, D.C.
HUFF, T.L.
Aquatic Biofilms and Their Responses to Disinfection and Invading Species. For presentation at the International Conference on Environmental Systems, Seattle, WA, July 1992.

ROLIN, T.D.
KAUKLER, W.F.
ANDERSON, E.E.
ETHRIDGE, E.
Glass Formation in the Bi-Sr-CA-Cu-O System. For presentation at the Indianapolis Meeting of the American Physical Society, Indianapolis, IN, March 16–20, 1992.

RUSSELL, S.S.
McNEILL, S.R.

RUSSELL, S.S.

SAFIE, F.M.

SAKURAI, H.
RAMSEY, B.D.

SAMBAMURTHI, J.
TAYLOR, J.

SANDERS, J.H.
PANDA, B.
BHAT, B.
MATSON, D.M.
The Influence of Chromium Content on the High-Temperature Oxidation Behavior of Fe-Ni Based Superalloys in Air. For presentation at the Seventh International Symposium on Superalloys, Seven Springs Mt. Resort, Champion, PA, September 20–24, 1992.

SCHMIDT, G.R.
CHUNG, T.J.

SINHA, S.C.
BENNER, J.W.
WIENS, G.J.

SPENCER, R.W. Principal Scientific Uncertainties Related to Global Climate Change. For presentation at the Pittsburgh Coal Conference, Pittsburgh, PA, October 12–16, 1992.

presentation at the AIAA Space Programs and Technologies Conference, Huntsville, AL, March 26, 1992.

SUSS, S.T. ES52
NERNEY, S. (NRC-NAS)

SUSS, S.T. ES52

SUSS, S.T. ES52
McCOMAS, D.J.
HOEKSEMA, J.T.

SUSS, S.T. ES52

SULKANEN, M.E. ES65
WANG, J.C.L. (CITA)
LOVELACE, R.V.E. (Cornell University)

SUSS, R.M. ED24

SULLIVAN, R.M. ED24
SALAMON, N.J.

SUMRALL, J.P. PT41
HUBER, W.G.
PRIEST, C.

SUSS, R.M. ES44

TELESCO, C.M. ES63
GEZARI, D.Y.
High-Resolution 12.4 μm Images of the Starburst Region in M82. For publication in the Astrophysical Journal Letters, Cambridge, MA.

THOMAS, L.D. EJ13

TINKER, M.L. ED22
ADMIRE, J.R.
IVEY, E.W.

TORR, M.R. ES51

TORR, M.R. ES51
TORR, D.G. (UAH)
CHANG, T.
RICHARDS, P.G.
BALDRIDGE, T.W.
OWENS, J.K.
DOUGANI, H. (UAH)
ET AL.
The First Negative Bands of N2+ in the Dayglow From the ATLAS-1 Shuttle Mission. For publication in the Geophysical Research Letters, Washington, DC.

TORR, M.R. ES51
TORR, D.G. (UAH)
RICHARDS, P.G.

TORR, M.R. ES51
The Scientific Objectives of the ATLAS-1 Shuttle Mission. For publication in the Geophysical Research Letters, Washington, DC.

TORR, M.R. ES51
TORR, D.G. (UAH)

TORR, M.R. ES51

TORR, M.R. ES51
TORR, D.G.
RICHARDS, P.G.

HLADKY, K.J.

TORR, M.R. ES51
Early Results From the ATLAS-1 Shuttle Mission of Relevance to STEP. For presentation at the 1991 STEP Symposium, COSPAR Colloquium No. 5, Laurel, MD, August 24–28, 1992.

TORR, M.R. ES51
SULLIVAN, K.
The Atmospheric Laboratory for Applications and Science–1: A Shuttle Mission. For publication in EOS, Washington, DC.

TUCKER, P.K. ED32
CROTEAU-GILLESPIE, M.

TYGIELSKI, K.S. EP62

UPADHYAY, T. (Mayflower Communications)
COTTERILL, S. (Mayflower Communications)
DEATON, A.W. EL58

VARNAVAS, K. EB32
WEDDENDORF, B.
Wheelchair Stair Lift. For publication in Design News, Newton, MA.

VAUGHN, J.A. EH12
CARRUTH, M.R., JR.
Extrapolation of Electrical Breakdown Currents From the Laboratory to Space Station. For publication in the Journal of Spacecraft and Rockets, Washington, DC.
VESSOT, R.F.C. (Smithsonian)
MATTISON, E.M.
NYSTROM, G.U.
DECHER, R.

VLASSE, M.
GOLBEN, J.
DECHER, R.
Process Optimization for 123 and Bi-Based Superconductors. For presentation at the Third International Conference and Exhibit, World Congress on Superconductivity, Munich, Germany, September 14–18, 1992.

WALKER, A.B.C., JR.
HOOVER, R.B.

WALKER, S.T.

WANG, A.-H. (UAH)
WU, S.T.
SUSS, S.T.
POLETTO, G.

SUSS, S.T.
POLETTO, G.
A Two-Dimensional MHD Global Coronal Model: Steady-State Streamers. For publication in the Proceedings of the Solar Wind Seven, Goslar, Germany.

WANG, J.C.L.
SULKANEN, M.E.
LOVELACE, R.V.E.

WANG, T.S.
LUONG, V.

WANG, T.S.
CHYU, M.K.
Effects of Turning Configuration on Flow and Heat Transfer in Blade Internal Cooling Passage. For presentation at the Fourth International Symposium on Transport Phenomena of Rotating Machinery, Honolulu, HI, April 5–8, 1992.

WATWOOD, M.
BOND, R.
VESSELY, E.J., JR.

WEGRICHT, R.D.

WEISSKOPF, M.C.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

WEISSKOPF, M.C. TA01
HUMPHREYS, J.T.
BILBRO, J.W.
VAN SPEYBROECK, L.

WEST, E.A. ES52

WEST, E. ES52
WILKINS, N. (UAH)

WEST, M.E. ED12
RAKOCZY, J.M.

WESTRA, D.G. ED63

WHITAKER, A.F. EH11
KAMENETZKY, R.R.
FINCKENOR, M.M.
NORWOOD, J.K.

WHITAKER, A.F. EH11
FINCKENOR, M.
KAMENETZKY, R.
Property Changes Induced by the Space Environment in Polymeric Materials on LDEF. For presentation at the AIAA 30th Aerospace Science Meeting, Reno, NV, January 6–9, 1992.

WIENS, G.J. (Auburn University) ED12
TSAI, H.

WILHELM, J.M. ED24

WILKINSON, L.K. ES52
EMSLIE, A.G.
GARY, G.A.
On Neutralized Currents in the Solar Corona. For publication in the Astrophysical Journal, Chicago, IL.

WILLIAMSEN, J.E. ED52
JOLLEY, W.H.

WILLIAMSEN, J.E. ED52
JOLLEY, W.H.

WILLAMSEN, J.E. ED52
HOOMANI, J.C.
MOG, R.A.

WILLIAMSEN, J.E. ED52
A Dynamic Stochastic Simulation of Space Debris/Meteoroid Impacts for Space Station Freedom. For presentation at the AIAA Space Programs Conference, Huntsville, AL, March 24, 1992.
WILSON, G.S. ES41
HUNTRESS, W.T.
Mission to Planet Earth (MTPE). For presentation at the 42nd Congress of the International Astronautical Federation (IAF), Montreal, Canada, October 6–10, 1991.

WILSON, R.B. ES62
FINGER, M.H.
FISHMAN, G.J.
MEEGAN, C.A.
PACIESAS, W.S.
IAU Circular No. 5429 (PSR 1509-58). For publication in the International Astronomical Union Circular, Cambridge, MA.

WILSON, R.B. ES62
HARMON, B.A.
FISHMAN, G.J.
MEEGAN, C.A.
PACIESAS, W.S.
PRINCE, J.A.
CHAKRABARTY, D.
IAU Circular No. 5454 (EXO 2030+375). For publication in the International Astronomical Union Circular, Cambridge, MA.

WILSON, R.B. ES62
BATSE/CGRO Observations of Isolated Pulsar(s). For presentation at the Los Alamos National Laboratory’s Workshop on Isolated Pulsar(s), Taos, NM, February 23–28, 1992.

WILSON, R.B. ES62

WILSON, R.B. ES62
FISHMAN, G.J.
MEEGAN, C.A.
PACIESAS, W.S.
(CSC)
PACIESAS, W.S.
(UAH)
BATSE Pulsed Source Observations—Preliminary Results. For presentation at the 179th AAS Meeting, Atlanta, GA, January 13–16, 1992.

WILSON, R.M. ES52
On the Variation of the Sun’s X-Ray Background Flux and Its Relations to the Sun’s Flaring Rate, Energetic Event Rate, and the Solar Cycle. For publication in the Journal of Geophysical Research, Washington, DC.

WILSON, R.M. ES52

WILSON, R.M. ES52
On the Variation of the Nimbus-7 Total Solar Irradiance. For publication in Solar Physics, The Netherlands.

WILSON, R.M. ES52

WORKMAN, G. (UAH)
WANG, M.
BRYSON, C.C. EH13
COOK, M.B.

WORLUND, A.L. EE81
MONK, J.C.
BACHTHEL, F.D.

WORLUND, A.L. EE81

WRIGHT, M. CN22

WRIGHT, M. CN22
Slide Presentation Highlighting History of Rocketry, NASA, MSFC. For Presentation at Project LASER, a presentation at various schools and civic groups.

WRIGHT, P.D. (USRA)
GOODMAN, S.J. ES44

WU, K. ES65
WICKRAMASINGHE, D.T.

WU, K. ES65
WICKRAMASINGHE, D.T.

WU, K. ES65
CHANMUGAM, G.

WU, K. ES65
WICKRAMASINGHE, D.T.
Accretion Onto AM Herculis Binaries With a Multipole Magnetic Field. For publication in Astronomical Society of the Pacific, San Francisco, CA.

WU, K. ES65
WICKRAMASINGHE, D.T.

WU, K. ES65
WICKRAMASINGHE, D.T.
(Australian National University)

WU, K. ES65
CHANMUGAM, G.
SHAVIV, G.
Properties of QPO’s in Accreting Magnetic White Dwarfs. For publication in Astrophysical Journal, Chicago, IL.

YANG, H.Q. (CFD)
PRZEKWAS, A.J.
NUNES, A.C., JR. EH42
A Mathematical Model for Weld Undercutting Caused by Oxygen Contamination. For publication in Welding Journal, Miami, FL.

YOUNG, A.C. PD32
MULQUEEN, J.A.
EMRICH, W.J.
Mars Transportation System Synthesis. For presentation at the 29th Space Congress, Cocoa Beach, FL, April 21–24, 1992.

ZHAO, J.-H. (University of New Mexico)
COMFORT, R.H.
MUSIELAK, Z.
MOORE, T.E. ES53
GALLAGHER, D.L.
GREEN, J.L. (GSFC)
Propagation Characteristics of Pc3 Compressional Waves Generated at the Dayside Magnetopause. For publication in Journal of Geophysical Research, Washington, DC.

ZHANG, X. (UAH) ES53
COMFORT, R.H.
MUSIELAK, Z.
MOORE, T.E. ES53
GALLAGHER, D.L.
GREEN, J.L. (GSFC)
Propagation Characteristics of Pc3 Compressional Waves Generated at the Dayside Magnetopause. For publication in Journal of Geophysical Research, Washington, DC.

ZH AO, J.-H. (University of New Mexico)
COMFORT, R.H.
MUSIELAK, Z.
MOORE, T.E. ES53
GALLAGHER, D.L.
GREEN, J.L. (GSFC)
Propagation Characteristics of Pc3 Compressional Waves Generated at the Dayside Magnetopause. For publication in Journal of Geophysical Research, Washington, DC.

ZIMMERMAN, F. EH42
McKECHNIE, T.N. (Rockwell)
POORMAN, R. EH42
LIAW, Y. (Rockwell)

ZIMMERMAN, F.R. EH42
BRYANT, M.A.
McKECHNIE, T.N. (Rockwell)
ZISSA, D.E.

ZWIENER, J.
HERREN, K.
MOUNT, A.

ZWIENER, J.M.
MELL, R.J.
PETERS, P.N.
WILKES, D.R.
MILLER, E.R.
GREGORY, J.C.
(Arizona Tech)
(Fluorescence Measurements of the Thermal Control Coatings on LDEF Experiments S0069 and A0114. For presentation at the Second LDEF Postretrieval Symposium, San Diego, CA, June 1–5, 1992.)
APPROVAL

FY 1992 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

C.D. BEAN
Director
Human Resources and Administrative Support

* U.S. GOVERNMENT PRINTING OFFICE 1993–733-050L80031