
NASA-CR-192176

p_ F3
EXPERT S YS TEM VERIFI CA TIO N

AND
VALIDA T/ON S TUD-Y

WORKSHOP & PRESENTA 770N
MATERIAL

Scott W. French
David Hamilton

International Business Machines Corporation

August 1992

P.4
4)

I " 'J_
U '4"

Z _ O

Cooperative Agreement NCC 9-16

Research Activity No. AI. 16

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

III IIII I

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS} in 1986 to encourage the NASA

Johnson Space Center [JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and Information systems to

serve the needs of the government, Industry. community and academia.

RICIS combines resources of UHCL and Its gateway affiliates to research and

develop materials, prototypes and pubIications on topics of mutual Interest

to Its sponsors and researchers. Within UtICL, the mission Is being

Implemented through interdisciplinary Involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities. and Natural and Applied Sciences.

RICIS also collaborates with industry In a companion program. This program

is focused on serving the research and advanced development needs of

Industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research and education programs, while other research

organizations are involved via the "gateway" concept.

A major role of RICIS then Is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the compu ring and Informa-

tion sciences. RICIS, working Jointly with Its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and Integrates

technical results Into the goals of UHCL, NASA/JSC and Industry.

EXPERT S YS TEM VERIFICA TIO N
AND

VALIDATION STUD Y

WORKSHOP & PRESENTA TION
MATERIAL

Scott W. French

David Hamilton

/nternational Business Machines Corporation

August 1992

Cooperative Agreement NCC 9-16

Research Activity No. AI. 16

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

EXPERT S YS TEM VERIFICA TIO N
AND

VALIDA T/ON STUD Y

WORKSHOP & PRESENTA TION
MATERIAL

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Scott W. French and David Hamilton of the

International Business Machines Corporation. Dr. T. F. Leibfried, Jr. served as

RICIS research coordinator.

Funding was provided by the Information Technology Division, Information Systems

Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between the

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

research coordinator for this activity was Christopher Culbert, Chief, Software

Technology Branch, Information Technology Division, Information Systems

Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

Workshop on
Verification and

Validation of Expert
Systems

Introduction

Authors;

Scott W. French

FRENCHS@HOUVMSCC.VNET.IBM.COM

David Hamilton

HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation

3700 Bay Area Blvd.

Houston, "IX 77058

Welcome

Welcome to the Workshop on Verification
and Validation V&V of Ex ert S stems

This introduction will tell you

• Where we have been with respect to
V&V of ES

• Where we are headed with this

workshop

° What you, the student, will learn

4/28/92
2

Where We Have Been

Significant work has been done in KBS
V&V

• Development of conceptual
approaches

• Proposing various techniques

No significant casestudies or field
demonstrations

• Many conjectures have been made

,>No requirements,

,, Few ES subjected to the same level
of V&V as conventional software

• Many problems discussed

,_ Test Coverage

,, Unpredictability (rule interaction, run-
time performance, etc.)

4/28/92 3

Where We Have Been ...
II

A survey was performed to assess the
state-of-the-practice in ES V&V

° Determine the real issues in V&V of
ES

• Assess the accuracy of the many
conjectures

• Determine the course of future work
in V&V of ES

4/28/92 4

Where We Have Been ...
| I II

60+ projects were asked questions such as

• What V&V activities are done, not
done?

, What issues occur in practice?

• To what extent does V&V play a part
in these issues?

• How satisfied are the users with the

quality and reliability of the ES

,, NOTE: The survey did not attempt to
evaluate the quality of a specific ES

4/28/92 5

Where We Have Been ...

Caveats

• Results are not statistically valid
since responses were voluntary

• Responses were not validated since
they reflected the responder's
opinion

Given these caveats, the survey results
point to recommendations

• Direc r commendations: those
derived directly from survey
responses

• Inferred recommendations: those
supported only by the data (i.e., the
responder did not list it as an issue)

4/28/92 6

Where We Have Been ...

Address the most frequently cited issues
(direct)

• Test coverage determination (63%)

• Knowledge Validation (60%)

• Problem Complexity (40%)

Recommend a Life-Cycle (direct)

• 22% indicated that no life-cycle
model was followed

• 43% indicated that the resulting ES
was taken directly from a prototype
(an operational prototype)

4/28/92

Where We Have Been ...

Develop guidelines for ES V&V (direct)

• Ad-hoc application of techniques

• ES evaluation difficult (27% of
developers vs. 100% of users)

• Expected ES to be at least as
accurate as expert (79% users and
developers)

,, System did not meet expectations
(49% of developers and 100% of
users)

,_ System was less accurate than
expert (44% of developers vs. 80% of
users)

4/28/92

• 57% of operational development
efforts wrote no requirements

• 52% used only one technique

8

Where We Have Been ...

Address understandability and modularity
(inferred)

• 85% indicated test coverage was a
problem

• 83% indicated problem complexity as
a problem

• Yet, modularity and understandability
were not specifically addressed

Investigate potential configuration
management issues (inferred)

• Only 14% cited CM as an issue

• Yet, interviews indicated it was more
of a concern than the numbers
reflected

4/28/92 9

Where We Have Been ...

Investigate analysis tools to aid the expert
(inferred)

• 59% relied on the expert to analyze
knowledge structures

• 61% relied on the expert for
requirements

Develop criteria to classify systems by
intended use (inferred)

• e.g., Expert clone, Expert assistant,
Autonomous, etc.

• Interviews indicated a need for

tailorable guidelines based, not only
on criticality, but on intended use

4/28/92 tO

Where We Are Headed
I

This workshop was developed in response
to the recommendations found in the

survey

The purpose of the workshop is to
positively impact the state-of-the-practice
in ES V&V

• Encourage the systematic application
of V&V techniques and approaches

,, Ease problems in managing ES
projects

)> Reduce re-work

,, Reduce long-term costs (i.e., make
maintenance easier)

• Provide tailorable guidelines

,, Give developers help in being
"systematic"

4/28/92 11

Where We Are Headed...

Day I Basic Concepts

• Morning

,, Introduction

,, Presentation of background on
Verification and Validation (V&V)
concepts

,, Demo

,, Presentation of common
misconceptions concerning both AI
and V&V

• Afternoon

,, Presentation of the Apollo 11
Scenario

,, Presentation covering differences
between ES and procedural systems
and how those differences impact
V&V

,> Demo

6/1/92 12

Where We Are Headed...
I

Day 2 Techniques

• Morning

,, Review of Day I topics

,, Present class discussion problem
and begin team exercises

,, Demo

,, Presentation on the importance of
Planning, Problem Analysis, and Re-
Engineering

• Afternoon

,> Present Verification techniques and
exercises

6/1/92 13

Where We Are Headed...

Day 3 Techniques ...

• Morning

,, Review ,of Day 2 Topics

,, Present more Verification techniques
and exercises

,, Demo

• Afternoon

,, Exchange verification approaches

,, Present Validation techniques and
exercises

6/1/92 14

Where We Are Headed...

Day 4 Guidelines

• Morning

,, Present guidelines for applying V&V
approaches

,, Prepare presentation of exercises

• Afternoon

>,Team presentations of exercise
solutions

6/1/92 15

How We Will G t There

The following student material has been
provided in the notebook at your desk

• Copy of all presentation material

° Introduction (tab)

° Basic Concepts (tab)

• Techniques (tab)

• Guidelines (tab)

11 Handouts (tab)

• Material to be periodically referenced

• Used to support presentation
material

• Contains exercises and some

possible solutions

6/1/92 16

How We Will Get There ...
I

Student materials ...

11 TLC Solutions (tab)

11

11

eli

• Presents different approaches to
building functionally correct
solutions to the class problem

Exercises (tab)

• A collection of problems to be
worked in teams

Worksheets

• Provides quick reference information
and examples for use in applying key
techniques

References

• Collection of optional but suggested
reading

6/1/92 17

How We Will Get There ...
I I

Questions encouraged during lectures

Class discussion questions will be posed
(informal roundtable discussion)

Will be divided into teams for some
exercises

• Results discussed informally for all
but final exercise

• Results of final exercise presented
before class

° Exercises are NOT a test.

questions.

Ask

4/28/92 18

What You Should Learn
i

What is V&V and why it is important.

• Problem Complexity and
Understandability (i.e., Modularity)

• Life-Cycle Issues

• Configuration Management

Differences between conventional and
ES V&V

Conventional and ES V&V techniques

° Test coverage

• Knowledge validation

Some key V&V rules of thumb

How to make V&V easier

• Easing analysis burden for the Expert

A suggested approach to V&V

• Guidelines for ES V&V

4/28/92 x9

Workshop On
Verification and

Validation of Expert
Systems

Basic Concepts

Authors:

Scott W. French

FRENCHS@HOUVMSCC.VNE'F.IBM.COM

David Hamilton

HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation

3700 Bay Area Blvd.
Houston, TX 77058

Validation

Table of Contents

L Introduction
OverviewI-2
Goals... 1.6

The Verification Puzzle .. I-8
Overview of Test Phases -..I-20

EL Testing Phases
System Testing H-2

Unit/Integration Testing II.7
Static Testhlg............... ::=--=-_:=--;:=-:=-:=:-==--__..... I1-16
Life-Cycle Models ... II-22

HI. Common Misperceptiom
Overview ... Ill-2
Software in Geaeral .. .J]I-3

Expert Systems/A/in Parec_r ... rl14

IVo Expert Systems Differmcm
Overview .. IV.2

Expert Systems are Sel_m-e ... =............... _rV-3
ES Implementation Differenc_ _+... IV-4
ES Problem Dift'ermtc_ -......... -........... -=:-+-====+:===--==_==--=...................... ..IV-6

Ve

VL

VIL Smamary of Basic Concepts
Key Points ... VII.2

Common Software]_f_cmplions VII.$
Systems Differences -=- -::-+:...................................... VII.6

Manning for V&V -==::-=::-........ +-:::++:............ __ VII-8
Two Traffic Controller Problems -:::+-=:++-::++-::+--::_++=....... -........... VII-11

IIX. Appendix A: R_erences

06/02/92

Introduction

Overview

Purpose

• Review conventional V&V concepts

• Dispel myths concerning AI and
Software Engineering

• Clarify the difference between ES and
conventional software and how those

differences impact V&V

• In short, justify the need for doing
V&V

4/20/92 1-2

Overview
I !

Self-imposed Constraints

• Discuss concepts independent of a
specific life-cycle model

• Do not assume a particular
development methodology

• Separate the description of V&V from
the similar description of designing a
software system

4/20/92 I-3

Overview ...

Notes

• Our focus will be on V&V, not on how

the system is developed.

• We will not assume a background in
V&V or conventional software

development.

4/20/92 I-4

Overview ...

Key Tenants

° A full understanding of the problem
is never initially possible but must be
developed incrementally along with
the system.

• Correctness can never be practically
proved and a system will always have
errors.

• To develop test cases, one needs to
understand the problem being
solved.

• The earlier an error is discovered, the
more cheaply it can be corrected.

4/20/92 1-5

Goals

To show that V&V should be done

• Verification helps a developer
implement the system more
efficiently and cost-effectively

• Validation ensures the system solves
the customers problem in a reliable,
predictable, and user-friendly
manner.

4/20/92 I-6

Goals ...

To show that V&V works best when

performed as the system is developed

• This will be done as we review the

major V&V tasks.

• For a V&V task, we will look at the
inputs required from a corresponding
development task.

To show that the system can be developed
so as to make V&V easier

• We look to see how V&V might be
done more easily and cheaply by
doing some tasks earlier in the
development process.

4/20/92 I-7

The Verification Puzzl

There are many pieces to The
Verification Puzzle

• Functional Correctness: A correct

response for every stimulus to the
system, during installation and
checkout as well as operational use

• User-Interface Correctness:

Responses intended for human view
are clear; expected stimulus does not
put excessive burden on the user

4/20/92 I-8

The Verification Puzzle ...

Pieces to The Verification Puzzle ...

• Safety Correctness: Will never
generate a response that will cause
harm to anyone or anything

• Resource Consumption Correctness:
No more processor time, storage,
bandwidth, etc. are used than is
allowed

• Utility Correctness: The system
(sufficiently) satisfies the user's
needs.

4/20/92 I-9

The Verification Puzzle

Safety

Resource
Consumption

User
Interface

ty

Functional

04/21/92 I-lO

The Verification Puzzle ...
i

Three aspects to demonstrating
system correctness - consistency,
completeness and termination.

1. Consistency

• The system is both externally and
internally consistent

,> External - correct outputs and
actions (e.g., hitting ESC from any
window produces the same result)

>> Internal- all internal items are
consistent (e.g., integer variables are
only assigned integer values)

04_1D2 1-11

The Verification Puzzle ...

Aspects to demonstrating system
correctness ...

2. Completeness

• The system does all it should

Accepts all required inputs

Performs all required actions

Creates all required outputs

Maintains all required data

• More difficult than checking
consistency

04/21/_2 1-12

The Verification Puzzle ...

Aspects to showing correctness ...

3. Termination

• correct programs produce the right
output for all possible inputs

• consistency and completeness show
that all outputs are correct

• termination shows that output is
always generated

04/21/92 1-13

The Verification Puzzle ...

Demonstrating system correctness
depends on the type of software
system being developed

There are many different types of software

• Large software systems vs. smaller
self-contained problem solvers

• Highly complex vs. less complex
software

• Critical software vs. noncritical
software

• Expert system vs. a traditional
software problem; that can be
conveniently solved using expert
system techniques

04/21/92 1-14

The Verification Puzzle ...

Demonstrating system correctness
also depends on how the system is
represented

Representation relates to type of software

Many kinds of system representations

• text, code, flow charts, etc.

Organization is more important than "kind"

Easiest to V&V when the "what" and "how"

of a system representation are separated

Three views of a system are helpful in

building this kind of representation35

• "Object"/Data View

• Control View

• Function View

4/28/92 1-15

The Verification Puzzle ...

Demonstrating system correctness
also depends on how the system is
represented ...

"Object"/Data View

• View of the domain

• Foundation for the other views

Control View

• "Problem-solving Method"

• How elements of the "object" view
are used to solve the problem

Function View

• Defines methods the "control" view

may use

• Best when linked to elements of the

"object" view

04/21/92 1-16

The Verification Puzzle ...
I

Many V&V techniques have been
developed to address these aspects of
demonstrating system correctness

• Some are more suitable for certain
classes of correctness than others.

• Some are more suitable for certain

types, sizes and/or complexities of
software.

The key to solving the Verification puzzle is
to use the right techniques in the right
situations.

04/21/92 1-17

The Verification Puzzle ...

A systematic approach exists for
applying correctness techniques (i.e.,
solving the Verification Puzzle)

This approach can be broken down into
three parts

• __lLT_.ml_g: Dynamic testing
of all classes of correctness of an

overall software system

• ni ion Tes i : Dynamic
testing of small self-contained pieces
of an overall system, focusing on
certain classes of correctness

04/21/92

• _m_,J.t__: Analysis (desk
checking) of software specifications
(requirements, design) at different
levels of abstraction, focusing on
certain classes of correctness

1-18

The Verification Puzzle ...
I!

Each of these steps (or test phases and will
be discussed separately

• A breakup of these phases into an
ordered sequence of tasks is part of
the development life cycle.

• We will not restrict our discussion to

any specific life-cycle.

04_1_2 1-19

The Verification Puzzle ...
I

There is a testing phase for each major
development phase

• System testing tests overall system
requirements.

• Integration and unit testing test the
units and subsystems created during
system construction

• Static testing can be used to check all
representation s of a system

)> design, code, requirements, etc.

• There is an implied order to these
testing phases

,> has cost implications

implies earlier phases support later
phases

04_1_2 1-20

PhasesofCorrectness

SystemTest

hteg"ationTest

Code L_Test.

St_cTest_

04_1D2 1-21

Overview of Test Phases ...
I

Each phase will be examined based on:

• ._IIEII_I_[__: An overall
description of the test phase

• _: Each phase requires
certain information before it can be

applied.

• /Qu2/J_I_DJ: How the required
inputs can be acquired from other
development or testing phases

04_I_2 1-22

Testing Phases

Characteristics

• Black box: Ignores implementation
details

,, Required and observed behavior

,, Sometimes called the "function" view

S

I

Mm-Ii_
U

LID_
I

R

_ Q iPil_ '_
$

"BlackBox_

\

N
S

H

S

• Behavior:. Described in terms of

stimulus/response pairs

,, Defines an abstract "control" view

,, Maps to detailed internal "control"

• Vafidation: Checks that the system
will satisfy the users' needs

4/21/92 1/-2

System Testing ...

0_-rThere is a difference between
verification and validation

Verification: "Am I building the product
right ?"

• Best when performed during system
development

• Emphasize showing correct
implementation of requirements

Vah'dation: "Am I building the right
product?"

• Best performed when the system is
complete

• Can be partially done early via
prototyping

• Emphasis is on ensuring the
requirements are correct

4/21/92]I-3

System Testing ...

Inputs

• The software system itself.

• Ideally, for each possible stimulus:

,, Description of the required response

,, Indication of criticality (i.e., safety
implications of the response)

,, Indication of response time allowed
(if constrained)

,) Description of user interface for the
stimuIus/response

,, Indication of resources allowed for
generating the response

• In reality, impractical for all possible
stimuli

• Stimulus sequences can further be
described in terms of operational
scenarios

4/21/92 I/-4

System Testing ...

om

Clock
_LC'J

04_1_2]I-5

S tem Testin ...

Implications

• Specify requirements as operational
scenarios (i.e., documenting
expected use)

• Classes of stimulus/response pairs
correspond to self-contained units
"inside" the system

,, Stimuli form classes or groups

,, Classes or groups are units,.

,_ Units have subunits

,, Subunits exhibit the same
characteristic views (object, function
and control)

Overcome system test
impracticalities by testing underlying
units

i This makes testing easier. This can be done regardless of how the system is actually

implemented. For example, the Space Shuttle Hight Software (FSW) is tested by principal function even
though this may not directly correspond to how the FSW is implemented.

4/21/92 II-6

Unit/Inte ration Testin

Characteristics

• Wh__W.b.LLe..B.o_:Does "look inside the
system" to see how it was
implemented

,, Tests exercise internals units

• Behavior: Stimulus history can be
described in terms of internal

software states (e.g., sets of variable
values) and expected transitions
between states.

,, "Control" view becomes more
explicit

• _: Much of the testing may
focus on how well the separately
developed units (subsystems)
interface with each other (i.e., does
the system "hang together").

4/28/92 II-7

Unit/Integration Testing ...

Software can be modeled based on
state

• Any program can be represented as
an automaton

"a machine or control mechanism

designed to follow, automatically, a
predetermined sequence of operations
or respond to encoded
instructions."Webster

• State refers to the behavior of an

automaton at a given point in time as
determined by its environment

,> i.e., a "snapshot" of the system

• State determines the future course
the automaton will take

,, i.e., determines the next state
transition

4/21/92 FI-8

Unit/Integration Testing ...

Inputs

• The software units themselves.

• Stimulus/response behavior for each
unit

• Identification of subsystems
(collections of units) along with their
required behavior

• Scenarios (e.g., operational
scenarios) that indicate how the units
and subsystems will be used

4/21/92 II-9

Unit/Integration Testing ...

Implications

o--_Use of modularity directly benefits
Unit/Integration testing

• Reduces a system complexity

• The "object"/data view of the system

• Aids overall system understanding

,, Design structure becomes explicit

,> "... the designer can spend more time
understanding and deciding (about
the design) - rather than gathering
the information on which to base the

• " "1dec,s,on. 4

4/21/92 II-lO

Unit/Inte ration Testin ...

Implications ...

What are the modules or parts of a

system?

° Modules can be defined in many

ways

,, A program procedure that captures
some common task is an example of
a module

,, The best modules capture, not only a
common task, but common data as
well

4/21/92 II- 11

Unit/Inte rati n Te tin ...

Implications ...

What are the modules or parts of a system
mllll

• Criteria for identifying modules

,) Best choice is to capture state within
a module

,, Capture complicated design
decisions

,, Capture collections of common
"services"

4/21/92 If-12

Unit/Inte ration Testin ...

Implications ...

So, what are the benefits of modularity?

• Separate development and test

,, Provides a framework for reuse

• Framework for information hiding

,, Hiding unimportant implementation
details from module users

• Enforces standard methods of access

(encapsulation)

,, Data access can only happen
through the module interface

• Incremental development(build a
little, test a little).

4/21/92 11-13

Unit/Integration Testing ...

Implications ...

Benefits of Modularity ...

• Reduces re-verification burden

,, Changes are localized to specific
modules

,, Stable interface minimizes impacts to
the outside world

• Eases project management

,, One module = One unit of work

,, One unit of work = One programmer

4/21/92 If-14

Unit/Inte ration Testin ...

Implications ...

Design "bridges the gap"

System testing becomes easier

° Internal units need not be re-tested

However, Exhaustive testing is still
impractical

• Human analysis of design/code can
find many errors relatively cheaply

• Static testing addresses this

4/21/92 11-15

Static Testing

Characteristic

• _: Software is not
dynamically executed; instead it is
analyzed statically (e.g., inspection).

• _: Can take many
different forms but are generally
different from stimulus/response
behavior.

• _: Can be performed on
software, design, requirements, test
cases, etc.

• _: Whereas dynamic
testing is on different sizes of
software (units, subsystems), static
testing is on different levels of
abstraction (requirements through
detailed implementation).

4/28/92 H-16

Complementary to Dynamic Testing

• Dynamic testing is needed because:

,, Humans can not execute software in

their head very fast.

,, Humans have difficulty managing
large numbers of small details.

• Static testing is needed because:

>> Comprehensive dynamic testing is
impossible.

>> Humans can perform more
comprehensive analysis than the
checking of individual
stimulus/response pairs.

>> Humans can analyze abstract
descriptions (unlike computers).

4/21/92 II-17

0---_Abstraction and refinement increases
human effectiveness in finding errors

• Abstraction

,, Simplifies system descriptions

,, Suppresses less important details

,, Only consider important actions

,, Consider similar objects identical

Refinement

,>Is the incremental use of abstraction

,, Creates nested levels of description

,, Eases development and
comprehension of the three system
views

4/28/92 II- 18

 =ttr,._T_e_e_tLng_.

Inputs

• Description of the problem to be
solved (can be very high level)

• Description of requirements (safety,
user interface, etc.)

• Specifications of the item to be
statically tested

Implications

• Can be done hand-in-hand with

development; this decreases cost.

,, Not dependant on specific
representations of the system

• Natural precursor activity for unit /
integration testing.

4/21/92 11-19

Life-C cle Models

• The testing phases are compatible with
many standard, well-defined life-cycle
models,

Example model : DoD 2167

04/21/92 II-20

DoD 2167

Process Model

o4/2_?92 n-21

Life C tie Models ...

Example model: NASA Model

04/'21/92 IJ-22

NASA Life--C_cle Model

i

v

,.,._. _lml_ll
hl

m ._1 t

.._./"

04/21/92 H-23

Life Ccle Models ...

Example model: European Space Agency
Model

04/21/92 n-24

Verify

a
m

In

m

04/21/92 II-25

Common
Misconceptions

Overview

The theoretical foundation of V&V has been
presented

Does this foundation still apply for Expert
Systems?

There are many misconceptions of V&V

• Some for software in general

• Many for Expert Systems

These misconceptions have impacted the
application of V&V

4/28/92 1II-2
I'-_ mml

Software in general:

Misconception: The only important
deliverable of a software project is the
executable version of the program.

Facts:

° Software must be understood by its
users.

• Software must be understood by its
maintainers.

• Software must be re-tested as it is

changed.

• Therefore software should be well-

documented and V&V work products

(e.g., test cases) should be saved1

6/1/92 III-3

Software in general ...

M[_c__tlJ[9.11: Small Prototypes can be
scaled up into full-scale solutions,

Facts'.

• "The heart of the problem is whether
the problem solving method used in a
prototype- which solves only a small
portion of the problem - will scale up

to solve the entire problem"11

• "Building large programs is NOT like
building small ones and software
engineering is different from most

other engineering disciplines,"12

6/1/92 RI-4

Software in qeneral ...

Misconception: Methodical examination of
software is too costly.

Facts:

• Don't confuse rigor with formality

• "... by understanding what would be
involved in constructing a formal
argument, a programmer can do a far
better job constructing a rigorous
informal one"12

Misconception: Software can be proved
correct

Facts:

• One can prove certain properties
about software (e.g., the algorithm
never results in deadlock)

° One can not prove a/! aspects of
correctness.

6/1/92 II1-5

Ex ert S stems/AI in articular:

Misconception: Expert Systems are Magic
(i.e., they are quick and easy to build)

Facts:

• "AI entails massive software
• " gg6engineering. 3

• "Software engineering is harder than
you think: I can not emphasize
strongly enough how true this
statement is."36

6/I/92 m-6

Expert Systems/AI in particular ...

Misconception: All "expert systems" are
expert systems

Facts:

• Just because a program is written in
an "expert system language" does
not make it (fully) an expert system,

• Just because a program is written in
a "conventional language" does not
prevent it from being an expert
system

Misconception: Expert Systems are all
"Expert" Systems.

Facts:

• Most Expert Systems have a
significant amount of conventional
code/function (survey results indicate
at least 45% of the developed system
is conventional16).

6/1/92 1II-7

Expert Systems/AI in particular ...

MJ_g_;_g_[gR: The heuristic nature of
Expert Systems make them inherently
unreliable.

Facts:

• They are still predictable.

• They should be as effective as the
heuristic

• They should be safe (i.e., be relied
upon not to create a hazard)

6/1/92 m-8

Ex ert S stems/AI in articular...

Misconception: Learning an Expert
System shell is all we need to know about
Expert Systems.

Facts"

• Knowledge representation (i.e.,
language) is key to expert systems
and V&V of them

• Knowledge acquisition, reasoning
paradigms, and software engineering
are also needed skills

,, Domain engineer: knowledge
centered

,, System engineer: computer centered

6/1/92 III-9

Expert Systems
Differences

Overview

Common software misconceptions
impacting V&V have been discussed

Having "cleared the air", we can begin to
examine V&V of Expert Systems

There are similarities and differences
between Expert Systems and other kinds of
software

These similarities and differences impact

the V&V approach

To assess this impact, these differences
and similarities need to be understood

• Different implementation languages

• Different problem types

Building a foundation for "ES-specific"
techniques to be discussed later

4/28/92 IV-2

Ex erts s stems are software

Expert systems are:

• Computer programs

• Written using a programming
language

• Executed in a (deterministic)
computer

A program may not be easily classified as
conventional or expert system.

• May include some but not all
characteristics

• May be part expert system, part
conventional

Problems that look expert system may be
easily (or better) solved with a
conventional solution.

4/20/92 IV-3

Ex ert stem Im lementation
Differences

Often uses some type of "AI language",

eg"

• Forward and/or backward chaining
rules

• Frames

• "AI language" characteristics

,> Declarative (what) instead of
imperative (how)

,, Separation of control and data (i.e.,
execution sequence is not obvious)

,, Language semantics unclear or
complex (works by "magic", e.g.,
conflict resolution)

4/20/92 IV..4

Ex ert S stem Irn lementation
Differences ...

Often developed iteratively

• Especially if design by knowledge
acquisition

• Especially if it is unclear whether the
solution will work satisfactorily

No explicit algorithm is used, e.g.,

i i

While... Loop
If...

Then Call...

Exit Loop
End If

End Loop

4/28/92 IV-5

Ex ert S stem Problem Differences

Often solve problems requiring human

expertise

• Solution already exists (in someone's
head) and is translated to a different
form

• e.g., Capturing the "rules of thumb"
of an expert and mechanically
applying them

• Often called "shallow" or "surface

level" reasoning systems

,, As opposed to model-based (or
"deep" reasoning)

,, Sometimes called "design by
knowledge acquisition" as opposed
to "design by analysis"

4/28/92 I'7-6

Ex ert S stem Problem Differences
mma

m

Expert Systems often solve problems that
have been difficult to solve with
conventional software approaches

Sometimes rely on human judgment for
correctness of solutions (i.e., are "fuzzy")

May replace or just augment human expert

4/28/92 IV-7

Two Traffic
Controller
Problems

Overview

A lot has been presented and analyzed

• V&V concepts

• Software misconceptions

• How ES V&V is different

Time to consider an example problem

• Help focus our understanding

Two problems presented

• Simple traffic controller

° "Expert" traffic controller

Later discussion of techniques will refer to
these problems

4/28/92 V-2

A Sim le Traffic Controller Problem

Consider the following problem:

A simple traffic light controller at a four way
intersection has car arrival sensors and

pedestrian crossing buttons. In the absence of
car arrival and pedestrian crossing signals, the
traffic light controller switches the direction of
traffic flow every 2 minutes. With a car or
pedestrian signal to change the direction of traffic
flow, the reaction depends on the status of the
auto and pedestrian signals in the direction of
traffic flow; if auto pedestrian sensors detect no
approaching traffic in the current direction of
traffic flow, the traffic flow will be switched in 15
seconds, if such approaching traffic is detected,
the switch in traffic flow will be delayed 15
seconds with each new detection of continuing
traffic up to a maximum of one minute.

o4_1_2 v-3

• Read the problem description.

m Consider the "testability" of the
description

g Identify key terms from the problem
description

11 Construct a black-box view of this

system

1B Now, compare the "testability" of the
problem description to that of the
"black-box".

11 Predict the number of scenarios

required to comprehensively test the
system. Can this be reduced?

11 Exchange your results with a
neighbor. How "testable" is their view
of the problem?

6/1/92 V-4

Black Box View

Initial black box view of system testing

Time]B.xpireu

No WaitinS or
Approac_agTraffic

w_ Tr_ And
No Approaching Traffic

Waiting Traffic And
APlmmc_ng Traffic

Sw_.h I._h_

Reset TLmer for
Fffteea Secxm_

Reset Tuner for
Minur_

04/21/92 V-5

Refinement

Refine Requirements based on further
understanding of the problem

• State becomes evident

What is the color of the light in a
given direction?

How long has the controller waited to
switch the light?

• State helps identify and classify
stimulus/response histories.

• The state remaining constant might
imply testing one scenario verifies
the other scenario as well.

Continuing this refinement will lead to a
more organized test approach.

• Operational scenarios can be
constructed/selected.

04/21/92 V-6

Testin "Black Box" Scenarios

Test case scenarios can developed by
looking at the "black box"

Consider the following definitions:

switch

approachinq

waitina

traffic light changes

controller detects traffic in

the direction of the green
light

controller detects a

waiting auto or pedestrian

Scenarios are defined as ordered pairs:

(t, event) ordered pair linking
elapsed time, t, and an
event

NOTE: This is one possible representation
of scenarios. Pick one of your own and
stick to it!

06/02/92 V-7

Testin 'B' lack Box" Scenarios ...

The following scenarios can be generated:

• (2 minutes, switch)
(2 minutes, switch)...

1 (t: t < 2 minutes, approaching)
(2 minutes, switch)

i (t: t < 2 minutes, waiting)
(15 seconds, switch)

11 (t: t < 2 minutes, approaching)
(t: t < 2 minutes, waiting)
(15 seconds, switch)

m mmm

List is NOT exhaustive

• Inifinite possibilities

_2 V-8

Classes of Scenarios

The notion of testing "classes" reduces the
number of scenarios

• Different test cases that exhibit
common characteristics

• One test case represents the class

Many options to identifying "classes"

• Based on scenarios

• Based on state

Consider using the scenarios defined

• Each scenario defines a class

• Example: Consider scenario #3

(t: t < 2 minutes, waiting)
(15 seconds, switch)

,> Infinite number of values for t

>,Yet, picking any one should be
sufficient to test them all

06/02/92 V-9

I._:- -==-I

Classes of Scenarios ...

• Car Arrives from
the West

• No North-South
Traffic for 15
seconds following
last signal change

1

I
I

!
/

1
\

• Switch West-East light to
Green

O6/O2/92 V-IO

Identification of State

• Car Arrives from
the West

• No North-South
Traffic for 15

seconds following
last signal change

1

• Pedestrian Arrives
from the West

• No North-South
Traffic for 15

seconds following
last signal change

!
I

I
/

/ \

I
• Switch West-East light to

Green

06/02/92 V-11

I -==-, -_-I

An "Expert" Traffic Controller
Problem

Consider the following problem:

At certain times of the day an intersection
becomes congested, the electronic traffic light
controller becomes inadequate and a

policeman is used to direct the traffic. The
same policeman has been directing traffic at
this intersection for a number of years and
there are much fewer complaints from citizens
about having to wait at this intersection (than
there were several years ago). It is now
desirable to make the electronic system
"smarter" so it can handle the same amount of

flow as the policeman while being as fair as the

policeman (i.e., he doesn't force any one
direction to wait for a longer time than another

direction).

06/02/92 V-12

An "Ex ert" Traffic Controller
Problem ...

The new system will function as before when
traffic is "light" and will switch to "smart mode"
when the traffic becomes heavy, in "smart
mode", the system will look at

• the length of traffic in each direction (new
sensors will be installed to provide this
information)

• the number of people waiting to turn left
as opposed to going straight (new
sensors will be installed to indicate how

many people are waiting in the left turn
lane)

• the speed of traffic going through the
intersection (new sensors will be
installed to provide this information)

06/02/92 V-13

Exercises

I • Read the problem description.

11 What are the differences in the two traffic

controller problems? Predict the impact
to the V&V of the traffic controller.

m

•

Consider the "testability" of the

description

Identify key terms from the problem
description

1 Construct a black-box view of this system

1

•

•

06_2D2

Now, re-consider the "testability" of the

problem description.

Exchange your results with a neighbor.
How "testable" is their view of the

problem?

Compare this description with that of the
first traffic controller? What are the

differences? Were they what you
expected?

V-14

Knowled e Ac uisition Results

Initial knowledge acquisition from the
policeman reveals the following:

• the policeman walks a beat a few
blocks from the intersection and
when he hears several horn honks

close together, he goes to the
intersection to help clear the traffic

• if the line is so long in any direction
that he can't see the end of it then he

lets those directions (including
turning left) go for about three
minutes before changing

• otherwise, he lets each direction go
for about two minutes, except for
turning left which he allows for about
one minute

06102/92 V-15

Knowled e Ac uisition Results

Initial Knowledge Acquisition ...

• He lets the longest direction go about
half a minute longer than the other
directions

• If the line waiting to turn left is small
when compared to the opposing
direction, he will skip them for one
cycle (i.e., let each other direction go
once more)

• If the line waiting to go straight is
small, compared to the perpendicular
direction, let it go for half a minute
less

• If you can notice a car that has been
waiting for three cycles and has not
gone, let that direction go half a
minute longer (that line is just
moving slow; this roughly
corresponds to less than 20 cars per
cycle for 3 cycles).

06/02/92 V-16

Exercise

Analyze these high level results

• Look for conflicting statements

• Identify some test scenarios that will
determine if this solution seems to

satisfy the goals

• Think of some scenarios that this
solution does not seem to cover.

• Discuss whether this is an expert
system problem or not

06/02/92 V-17

Problem Features

Is the solution being created for the first
time or does it already exist in someone's
head ?

Is it a shallow or deep reasoning solution?

Would this be difficult to solve with
conventional software?

Does it rely on human judgment?

Will it replace or augment a human
expert?

06/02/92 V-18

Two Im lementations

Two different traffic controller problems
have been analyzed

Expert System problem differences have
been studied

What about Expert System implementation
differences?

Three implementations of the simple TLC
will highlight these differences

• Two Expert System implementations
using a "pseudo" rule-base language

,_ One is well-structured

,_ One is not

• A procedural implementation in a
"pseudo" procedural language

06/02/92 V-19

Exercises

•

11

11

11

1

Study the procedural implementation
shown in handout #2

• Consider the state diagram of
Handout #1 for this implementation

Study the unstructured implementation
of Handout #3

Study the structured ES
implementation shown in Handout #4

Define an approach for doing V&V on
each solution.

Describe how the implementation
impacted the V&V approach.

06/02/92 V-20

Conventional Im lementation

Case State Is
When $1 and Time Expires =>

State _ $1;
When S1 and (Approaching Or

Light Changes) >=,

State ._ S1;

End Case;
End Loop;

Loop
Case State Is

06/02/92 V-21

_xpert System Implementation

If timeexph_ TI_ switchlight

IfinS and_pmachmgThenstartS1

If in S1andwaitingThenstart$2

06/02_2 v-22

Com arison and V&V Im lications

Expert System approach turned out to be
easier/shorter.

• Production rules directly map to state
transitions

if (old state) then (new state) (and
action)

• Pattern matching simplified the rules

)>(3-4 times the number of "whens" as
rules).

• Procedural approach wound up
implementing a crude inference
engine.

A loop with a big nested case
statement in it.

Therefore V&V should be easier on expert
system implementation, right?

06/02/92 V-23

Comparison and V&V Implications ...

Procedural approach has fewer and simpler
internal interactions.

• Execution order of comparisons in
procedural approach is very explicit

,, whens "executed" exactly once per
"cycle"

,, as opposed to use of priorities to
control execution

• Pure functions (no side effects)

)> Procedure "Change_Light" affects
several rules

• No "garbage collection" concerns

Rule-base implementation must
retract old facts

Therefore, because there are more subtle
things to be tested in the expert system
approach, it should be harder to V&V,
right?

06/02192 V-24

Com arison and V&V Im lications ...

0_x Each implementation approach has
different V&V concerns.

Procedural concerns

• More decisions to test (more code)

• Overall control structures (e.g., loop
termination)

Expert System concerns

• Test correct garbage collection

• Test for invalid rule interactions.

• Must test function side-effects.

• Test that rule patterns are not too
broad

• Test that rules only fire at the right
time

O6/02/92 V-25

Com arison and V&V Im lications ...

Different concems need different test

approaches/techniques

Both must show a correct solution

Emphasis is different

• e.g., ES must demonstrate no
undesirable side-effects

Different view of expert system V&V

• ES failures relate to a different

computation model

Kinds of errors humans make:

• Slips/Lapses:(overlapping rule
sequences)

• New exceptions:(LHS too broad)

• Erroneous beliefs: (bad rules)

06/02/92 V-26

Testing Good and Bad Rule Based Designs

The design of expert systems can greatly
simplify the new testing concerns.

The unstructured version (Handout #3):

• Fewer rules

• More complex rules

• Less modular

• More rule interactions

• Has a subtle problem (can you spot
it ?)

The shorter version is harder to analyze
(and thus to verify).

The longer version can be tested in pieces.

06/02/92 V-27

Cohesion and Cou lin

Cohesion: Connections within a module

Connections between

"Cohesion"

Loose coupling reduces interface problems

Strongly cohesive means modules are
"atomic" or "primitive"

These are the easiest to V&V

6/12/92 V-28

Planning for V& V

Overview

As we will see later, there are many V&V
techniques

Ad-hoc application of techniques will make
correctness more difficult to assess

We need a plan

• Planning directly impacts V&V

• Planning serves as the framework for
the systematic application of V&V
techniques

• Therefore, poor planning increases
the likelihood that V&V will be
ineffective

Before discussing how to plan, let's
consider some issues related to planning

4/20/92 VI-2

Issues in Planninq for V&V

The following issues represent common
pitfalls that can result from poor planning

These issues relate to development of
software in general and to the
misconceptions previously discussed

However, Expert Systems may be more
sensitive to poor planning

• Heavy reliance on experts16

• Problems are often ill-defined4

• So many projects are only viewed as
prototypes (yet, they often become
"operationar')16

4/28/92 VI-3

Issues in Planning for V&V ...

"Operational" prototypes

• This prototype looks so good, why
can't we use it now?

• Unfortunately, small scale solutions
rarely _ to complete solutions

• Need a defensible development plan

Performing V&V at the end of the
development cycle

4/20/92

• Combined BlacWWhite Box testing

• "It is not uncommon to spend 30 to
50 percent of the ... cost ... for the
verification effort when using the

after-the-fact approach"15

• "Testing should be integrated into the

development-application cycle"23

• Case study #2 resulted from this

• Need a plan for doing V&V "as you
go"

VI-4

Issues in Planninq for V&V ...

Unavailability of resources impacting
testing

• e.g., special hardware, simulators,
expert analysts, etc.

• Without a plan, resources are initially
assumed to be available on demand
and affordable

• From experience we know they rarely
are3

• Need a plan for capturing availability
and cost of resources

4/20/92 VI-5

Is ue in Plannin for V&V...

Inconsistent/Incomplete/Missing work

products1

• Estimated 2:1 cost ratio between

development and maintenance5

>>Missing work products must be
re-created (Reverse

Engineering7)

• Documenting the wrong information

• Inconsistent use of information

(conceptual integrity6)

• Planning should focus on building

maintainable systems

,>kinds of work products, format of
products, intended users

4/20/92 VI-6

Issues in Planninq for V&V ...

Implementation approach does not match
the problem

• Makes V&V more difficult

• Problem determines the approach

• "Many problems that occur ... are the
result of ... generating code without

thinking about the design"15

• Plan to follow a logical sequence

Even small design changes result in
significant amounts of re-work

• Typical of non-modular systems

• Want to build similar applications
from existing "verified" ones

• Plan to minimize re-work (maximize
re-use)

4/20/92 VI-7

Issues in Plannin f r V&V ...

Inordinately large costs incurred at the end
of the development cycle

• "Pay me now or pay me later"

• Difficult to predict end cost

• Maintenance costs can also increase

• Plan to:

,, Find and correct errors early

,> Define when to stop testing37

Building the wrong user interface
Wl• ... there is now less excuse than ever

for not involving users early on ..."3

• "The only question is whether _ or
your customer will discover them

(user interface errors)."31

• Plan for early user involvement

6/1/92 VI-$

Issues in Planning, for V&V ...

Ineffective testing

• Even worse, minimal insight into why
testing was ineffective

• Can result from vague system
objectives

• Can result in higher testing costs

• Compounds problem when testing is
left to the very end

• Planning will help focus test
objectives which drive test selection

_ "A comprehensive test-
management approach
recognizes the differences in
objectives and strategies of

different types of testing"39

,_ Define testability40

4/20/92 VI-9

Issues in Plannin f r V&V ...

We have looked at some key issues related
to planning

These issues can help guide us in building
a plan

Any V&V plan should consider the
following

• In theory, every project has sufficient
time and resources to do a

competent level of V&V

• inr_B_rg_._!j_,most projects do not
achieve this level of V&V because
time and resources are constrained

• Planning for V&V can bridge the gap
between reality and theory.

4/20/92 VI- 10

Issues in Plannin for V&V ...

In summary, a good plan needs to satisfy
two goals

• Finding an approach to the problem

,> Representation vs. Problem

,>Situation vs. Technique

,, Technique vs. Representation

• Deciding what' you need to do the job

,>Availability of resources

,, Realistic schedules and cost

,, V&V is part of your job

_>Do not for e maintenance!

With this in mind let's consider a

framework for V&V planning

4/20/92 VI- 11

Framework f r V&V Plannin

Involve user's early in development

• Use prototyping

>,Provide some results early

,, Develops problem understanding

,, Discussed in the "Techniques"
section

• Helps define validation testing

Pick a life-cycle model and follow it

• Include the 3 test phases discussed

• Guides the application of techniques

• Helps decide what "work products"
to generate

4/20/92 VI-12

Framework for V&V Planning ...

Plan for an approach that minimizes re-
work (i.e., maximizes re-use)

• Decide on an approach for applying
modularity

Plan for an approach that matches the
problem

• Remember, the goal is to build
something that correctly solves a
problem

• The goal should never be to build an
Expert System

Define what correctness means

• Vague objectives are satisfied by any
implementation

6/1/92 VI-13

Framework f r V&V Plannin ...

Prioritize the kinds of correctness you wish
to demonstrate

• Many kinds of criteria to consider

,, Complexity, Criticality of the
software system

,, Type of problem to be solved

• Test at the highest levels of priority
and work your way down

,, Framework for applying
resources

4/20/92 VI-14

Framework for V&V Plannin ...

Identify areas of risk and a plan to respond
to those risks

• Many risks in software development

,, Changing requirements

,, Availability of resources

• Assess risks and impacts early

Plan for doing "smarter" testing

• Focus on finding errors early

• Match testing techniques to desired
correctness

,>Will help identify required
resources

• Record the plan

4/20/92 VI-15

• Reconsider the part that planning
played in the Apollo 11 scenario

I Suggest how better planning could
have possibly prevented this situation
from ever happening

11 Develop your own plan for V&V'ing the
Apollo 11 software

i Develop a plan for Verifying and
Validating your team exercise.

6/1/92 VI-16

Summary of Basic
Concepts

• There is a difference between
Verification and Validation

• Verification: building the system
right

• Validation: building the right system

m

11

Three important phases to testing
software

• Static: desk checking/code reviews

• Unit/Integration: testing in pieces

• System: Overall V&V

Test phases have an implied order that
can aid in applying V&V

• Focus on phases that find errors
early

• Pick a life-cycle and follow it

#" tl Jlr'_ VTT_"} p.,,,.=.,,=,_, q

o--.. Key Points ...

i Three main aspects to demonstrating
correctness

• Completeness: Does all it should

• Consistency: Does it correctly

• Termination: Output will always be
generated for any given input

i Using abstraction and refinement aids
in human analysis of software

• Abstraction: Suppress details

• Refinement: Incremental abstraction

,d.l'Tf_ lQ") VII-_

11 Modularity has many positive benefits
for analysis/development of software

• Divide and Conquer

• Simplifies system comprehension

• Aids work-loadmanagement

Common Software Misconce tions

Many misconceptions presented and
analyzed

Two categories

• Software in general

,) Development work products

,, Use of formality and proofs

• AI/Expert Systems in particular

,, Expert Systems are "magic"

), What constitutes and Expert System

,, Heuristics

All have negatively impacted V&V

Should not be a roadblock anymore

a r_ ta'_ VII-5

Ex ert S stems Differences

Many similarities and differences between
Expert Systems and other kinds of
software were presented

Similarities:

• Experts systems are software

• Difficult to classify software as
conventional or expert system.

• Problems that look expert system
may be easily (or better) solved with a
conventional solution

_TTI'__

Ex ert S stems Differences ...

Differences fall into two categories

• Implementation

,, Uses some type of "AI language"

,, Developed iteratively

,, No explicit algorithm

• Problem

,, Often solve problems requiring
human expertise

,, Often solve problems that have been
difficult to solve with other

approaches

,, Often rely on human judgement

,, Focus on replacing or augmenting a
human expert

Plannin for V&V

The need for planning was discussed

• Planning directly impacts V&V

• Planning serves as the framework for
the systematic application of V&V
techniques

• Therefore, poor planning increases
the likelihood that V&V will be
ineffective

Plannin for V&V

Examined many issues that can help focus
our planning

° "Operational" prototypes

• Performing V&V at the end of the
development cycle

• Unavailability of resources impacting
testing

• Inconsistent/Incomplete/Missing

work products1

• Implementation approach does not
match the problem

• Even small design changes result in
significant amounts of re-work

• Inordinately large costs incurred at
the end of the development cycle

• Building the wrong user interface

• Ineffective testing

Planning for V&V

Based on these issues a good plan needs
to satisfy two goals

• Finding an approach to the problem

,, Situation vs. Technique

,, Representation vs. Problem

• Deciding what you need to do the job

,, Availability of resources

,, Realistic schedules and cost

,, V&V is part of your job

,, DO not for_oet maintenance!

Two Traffic Controller Problems
II II !

Two problems presented

• Simple traffic controller

• "Expert" traffic controller

Focus our thoughts on topics discussed

• V&V concepts

• Software misperceptions

° How ES V&V is different

Discussion of techniques will refer to these
problems

Appendix A:
References

References

1. Baxter, I.D.. "Design Maintenance
Communications of the ACM. April 1992.

Systems".

2. Beckman, F.S.. Mathematical Foundations

Programming. Addison-Wesley Publishing, 1980.

of

A complete book that explores the mathematical basis
of programming. Issues such computational

complexity, grammars, effective procedures, Turing
machines, etc. are discussed in some depth.

Recommended reading for someone desiring a better
understanding of the theory behind programming.
This theory helps support many of the approaches to
V&V.

3. Behrendt, W., Lambert, S., and Ringland, G.. "An

Outline Model for Reasoning about KBS Projects and

Development Risks". Heuristics. Volume 4 Number 4, pp.
30-38, Winter 1991.

A short article that lists some interesting things to

consider when planning a KBS project. These
considerations apply to software in general.

_16_2 A-2

References ...
I

4. Bell, M.Z.. "Why Expert Systems Fail". Journal of the

Operational Research Society. Volume 36 Number 7, pp.
613-619, 1985.

5. Boehm, B.. "Industrial Software Metrics Top 10 List".

IEEE Software. Volume 4 Number 5, pp. 84-85, September
1987.

6. Brooks, F., The Mythical Man Month, Addison-

Wesley, 1975

The classic book on software engineering. It is a

collection of personal observations on software
development. Although the book is many years old,
the observations are just as true today as they were 15

years ago. This book is very highly recommended

reading.

7. Chikofsky, E.J., and Cross, J.H.. "Reverse

Engineering and Design Recovery: A Taxonomy". IEEE

Software. Volume 7 Number 1, pp. 13-17, January 1990.

A very good article that explains some

involved with trying reverse engineer
Highly recommended reading.

the issues

a system.

4/16/92 A-3

References ...

8. Davis, J.S.. "Effect of Modularity on Maintainability

of Rule-Based Systems". International Journal of Man-

Machine Studies. pp. 439-447, 1990.

9. Downs, T. "Reliability Problems in Software

Engineering- A Review." 1EEE Software Volume 2 No. 3

pp. 131-147, July 1987.

10. European Space Agency. Software Verification and

Validation. Document No. PSS-05-0 Issue 2 p. 2-22,
February 1991.

Excerpt from a European Space Agency document
outlining their approach to V&V of space software.

Input from the Europeans is good because, in many
respects, they are ahead of the U.S. in applying V&V

approaches.

11. Fox, M.S., "AI and Expert System Myths, Legends,

and Facts", IEEE Expert, Feb. 1990

Contains personal observations by the author that help

explain some causes of ineffective AI applications;
many are due to a misunderstanding of AI technology.

4/28/92 A-4

References ...

12. Guttag, J.V., "Why Programming is Too Hard and

What to Do About It", Research Directions in Computer

Science: An MIT Perspective, MIT Press, 1991

Contains personal observations by the author on the
difficulties in software programs. The author, a

respected professor and researcher in software
development techniques, offers some very candid

opinions in this paper.

13. Hall, A., "Seven Myths

Software, September, 1990

of Formal Methods", IEEE

14. Kamel, R.F.. "Effect of Modularity on System

Evolution". IEEE Software. pp. 48-54, January 1987.

15. Kemmerer, R.A.. "Integrating Formal Methods into

the Development Process". IEEE Software. pp. 37-50,

September 1990.

16. "KBS V&V - State of the Practice and Implications
for V&V Standards"

This paper is included in the references section. It
summarizes a survey that was performed of 60 expert

system projects to determine what techniques were

currently being used to V&V expert systems and what
difficulties were being encountered.

4/16/92 A-5

References ...

17. Laufmann, S.C., DeVaney, D.M., and Whiting, A.. "A

Methodology for Evaluating Potential KBS Applications".

IEEE Expert. pp. 43-62, December 1990.

This paper provides a detailed checklist for evaluating
whether a given application has potential as a KBS.

18. Leveson, N.G.. "Safety." Aerospace Software

Engineering: A Collection of Concepts. Ed. Christine
Anderson and Merlin Dorfman. Volume 136 pp. 319-336,
American Institute of Aeronautics and Astronautics,

Publisher. 1991.

This and other articles by Leveson, et.al, are easy to

read, informative articles discussing, at a high level,
issues in demonstrating safety correctness in software.

19. Linger, R.C., Mills H.D.

Programming: Theory and

Publishing Company 1979.

and Witt, EoI.. Structured

Practice. Addison-Wesley

A text book describing the foundations of structured

programming. This book, not only covers the theory
behind structured programming, but provides the

information needed to apply structured programming.

4/16/92 A-6

References ...

20. Leveson, N.G.. "Software Safety in Embedded

Computer Systems." Communications of the ACM. Volume
34 No. 2, February 1991.

21. Liskov, B. and Guttag, J.. Abstraction and

Specification in Program Development. McGraw-Hill

Book Company 1986.

A complete text book on the use of abstraction and

refinement to help in program development.
Recommended reading for those who want a thorough

understanding of how to use abstraction and
refinement as a tool for specifying program behavior.

22. Maibor, D.S.. "The DoD Life Cycle Model."

Aerospace Software Engineering: A Collection of

Concepts. Ed. Christine Anderson and Merlin Dorfman.

Volume 136 p. 34, American Institute of Aeronautics and
Astronautics, Publisher. 1991.

23. Marcot, Bruce.

Expert, July 1987

"Testing Your Knowledge Base." A/

This article offers some practical advice for testing

knowledge bases by listing some very general

guidelines. It also has a good detailed list of types of
correctness.

4/I6/92 A-7

References ...

24. Miller, L.A.. "Dynamic Testing of Knowledge Based

Systems Using the Heuristic Testing Approach". Expert

Systems with Applications, Volume 1 Number 3, 1990.

A good article that describes the
approach to planning a test approach.

prioritization

25. Mills, H.D.. "Structured Programming: Retrospect

and Prospect." IEEE Software Volume 3 No. 6, November
1986.

The Mills, Myers, and Parnas references provide a
thorough understanding of the use of modularity in

program development. Not only as a tool for easing
development, but also as a foundation for
demonstrating program correctness. These are

classics in the Software Engineering field.

26. Mills, H.D., Linger, R.C. and Hevner, A.R.. "Box

Structured Information Systems." IBM Systems Journal
Volume 26 No. 4, 1987.

27. Mills, H.D., Linger, R.C. and Hevner, A.R..

Principles of Information Systems Analysis and Design.
Academic Press, Inc. 1986.

4/28/92 A-8
i

References ...

28. Myers, G.J.. Software Reliability Principles

Practices. John Wiley & Sons, Publishing 1976.

and

29. Myers, G.J.. Reliable Software Through Composite

Design. Mason/Charter Publishers 1975.

30. Myers, G.J.. Composite�Structured
Educational Publishing 1978.

Design. Litton

31. Nielsen, J.. "Big Paybacks from 'Discount' Usability

Engineering". IEEE Software. Volume 7 Number 3, pp.

107-108, May, 1990.

32. Parnas, D.. Software Engineering Principles.

Department of Computer Science, University of Victoria.

Report No. DCS-29-IR, February 1983.

This reference and others by Parnas represent classic
work done by this respected practitioner of software

engineering. These are highly recommended reading.

33. Parnas, D.. "On the Criteria To Be Used in

Decomposing Systems into Modules." Communications of

the ACM Volume 15 No. 12, pp. 1053-1058, December
1972.

4_8_2 A-9

References ...

34. Pamas, D.L., Clements, P.C., "A Rational Design
Process: How and Why to Fake It", IEEE Transactions on

Software Engineering, Feb. 1986

Describes why one would wish to document a product

as if it were designed according to an idealized
development process/methodology, even if was
developed in a very ad-hoc manner. Also includes

suggestions on what the documentation of a product
should contain.

35. Rumbaugh, J.., Object-Oriented

Design. Prentice-Hall, Inc., 1991.
Modeling and

36. Schank, R.C., "Where's the AI ?", AI Magazine,
Winter 1991

A very readable description of some personal
observations by the author on some difficulties in

developing truly intelligent systems. This article is
highly recommended reading.

37. Sherer, S.A.. "A Cost-Effective Approach to Testing"

IEEE Software. pp. 34-40, March 1991.

4/28/92 A-10

References ...

38. Stevens, W.P. and Myers, G.J. and Constantine, L.L..

"Structured Design". IBM Systems Journal Number 2 pp.
115-139, 1974.

The classic paper on modularity.

39. Wallace, D.R. and Fujii, R.U.. "Software Verification

and Validation." IEEE Software Volume 6 No. 3 pp. 10-17,
May 1989.

A very good article stating high level objectives and

techniques for verifying and validating conventional
software.

40. Voas, J., Morell, L. and Miller, K.. "Predicting Where

Faults Can Hide from Testing". IEEE Software. pp. 41-48,
March 1991.

41. Wilson, W.M.. "NASA Life Cycle Model." Aerospace

Software Engineering: A Collection of Concepts. Ed.
Christine Anderson and Merlin Dorfman. Volume 136 pp.
319-336, American Institute of Aeronautics and

Astronautics, Publisher. 1991.

4/16/92 A-11

Workshop On
Verification and

Validation of Expert
Systems

Techniques

Authors;

Scott W. French

FRENCHS@HOUVMSCC.VNET.IBM.COM

David Hamilton

HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation
3700 Bay Am Blvd.

Houston, TX 77058

Table of Contents

L Imreduction
Overview _-2

1

][_V.

06_2D2

Table of Contents ...

Ve

vI. sumlury
T_miqmm L._

vn. Appmaix A: I_m, em

vm. Appendix B: Tl_miq_s Vs. ltd'm

06/02/_

Introduction

Overview

This section will summarize some key
techniques

° There are others

• Those presented are some of the best

• Applicability to ES and/or
Conventional software addressed

Each technique will be discussed in terms
of

• Over all description

• Implementation

• Error detection capability

° Available tools

• Examples based on the Traffic Light
problem

4/28/92 I-2

Overview ...

Techniques will be grouped by test phases
where they apply

• One exception: some important
techniques are applicable to many
phases

• These are categorized as General
Techniques

System Testing

Ph_0fCaT_

Unit / Integration
Testing

I_0f C0rr_
• ° .i .

BFBli'

__T,_ I

04/21/92 I-3

General
Techniques

General Techniques

Regression Testing

Typically a maintenance activity

Requires some process for capturing and
retrieving test cases

Example: Change the controller so waiting
traffic can wait up to 1.5 minutes

• Scenarios with no waiting traffic for 2
minutes should work as before.

PrototvDina

Develop a working model to test aspects of
requirements or design

E.g., prototyping might reveal the need for
a yellow light.

4/28/92 II-2

General Techniques ...

Com etin Desi n

Define multiple design teams

Each team designs a solution

Select the best or merge solutions

Independent V&V

Pick an independent team to perform V&V
on the software

Independence avoids potential bias

Applicable anywhere in the process

• Commonly applied at System Test

4/28/92 II-3

General Techniques ...

Inspections

Review of work products

Formal/Informal (or walkthrough)

• Follows a set of rules governing
review

• Many roles

Continuous inspections

• Frequent review of smaller items

• Best approach when applying
stepwise refinement

Major advance in the practice of V&V

• Creates "active verification frame of
mind"

• An estimated 60% of errors can be

found during inspection4

04/21/92 H-4

General Techniques ...

Decision Tables

Very popular in the early and mid '70s

Originally considered a complete
development methodology

Really is a specification approach

Very similar to rule-based programming

,, Left side := _ columns

,, Right side := _ columns

,, A row is called a rule

Has some differences from rule-based

programming

,, No pattern matching or unification

,, No chain of inference

4/28/92 I1-5

General Techni ues ...

Decision Tables ...

Completeness checking

• Figure total number of rules

Product of number of possible
entries in each column

• Ensure each rule is considered

Consistency checking similar to rule
consistency checking

• Redundancy, overlapping rules

• Contradictory rules

• etc.

04/21/92 n-6

General Techniques ...

Decision Tables ...

Ex.ample: Complete TLC solution (25"6=192
rules; see handout #1)

Appro-
aching
Vehicle

0

0

Wait-

ing
Vehicle

0

0

2 Min

Timer

Expires
0

o
0

1 Min

Timer

Expires
0

0

0

15 Sec

Timer

Expires
0

0

0

CtuTent

State

i

New

State

3

Change

Light

0

0

0

e**

__gg_: Abstract TLC solution (25*2=64
rules; see handout #1)

Appro-

aching
Vehicle

0

Waib

ing
Vehicle

0

0

2 Min

Timer

Expires
0

0

1 Min

Timer

Expires
0

0

15 Sec

Timer

Expires
0

0

Current

State

New

State
Change

Light

I 0 1

0

6/1/92 I1-7

General Techni ues ...

Decision Tables ...

Practical and effective if used on small
modules

Example: Timer module (23 = 8 rules)

Set for

99999

0

Expired

0

Error

0

0 0

0 1 0

1 1 0

0 0 1

Expires=: Set Time Print
True Message

0 0 0

0 0

I 0 0

? ? ?

0 0 1

000

0 1 1

1 1 1

? ? ?

? ? ?

Class Exercise: Answer the following

What action do you think should be in the
"question mark" rule entries?

• What does the Timer module really
do?

04/21/92 U-8

General Techniques ...

Cause-Effect Graphinq

Technique for selecting tests that exercise
combinations of causes

Highlights interesting cases

Uent_y

Not

Highlights useful abstractions

04/21/92 II-9

General Techni ues ...

State Diagrams

Views a system as state and transitions

States are "nodes" and transitions are
"arcs"

Sin¢_ Traffic Light
State M_

// "', Tme F.R:_es /' ,,,

, Red _- --,,Green,
t

',,,. ' \, ,/

Transitions map to causing conditions

NOTE: Helps analyze abstract system
behavior during system test

04/'21/92 II-lO

General Techniques ...

State Diagrams ...

Translates to a matrix

Place a I at each (Si, Sj) where Si -> Sj

Red

Green

Red Green

0 1

1 0

Highlights interesting system properties

Sensitivi An I sis

Assess system sensitivity to change

"Graphing" techniques are helpful

Primarily an analysis technique as opposed
error finding technique

Supported only by a research tool

Directly benefits classification problems

4/28/92 II- 11

General Techniques ...

Testability Analysis

Estimating the presence of "hidden" faults

• "If the presence of faults in programs
guaranteed program failure, every

program would be highly testable."49

Three main parts to the estimation

• Execution Analysis: Probability a

given component is executed

• Infection Analysis: Probability that a

component is sensitive to errors

• Propagation Analysis: Probability
that an "infected" component will
affect "what the user sees"

Low numbers imply low testability

• Infer larger dynamic test costs

• Static testing would be beneficial

o4/21/92 --12

General Techniques ...

Testability Analysis ...

Approach to Execution analysis

• Run random cases

• Count component executions

• Example: Consider rules
Update_Time and Del_OId_Changes
from Handout #3

>>Update_Time has a ratio of 1

,, Del_OId_Changes has a ratio of 0

,, Which is more "testable"?

4/28/92 II-13

General Techniaues ...

Testability Analysis ...

Approach to Infection analysis

• Build component mutations

• Apply to mutant and non-mutant

• Count # of different results

• _: Consider mutations of
Update_Time and DeLOId_Changes

,, Del_OId_Changes ratio is near 0
(why?)

,, Update_Time ratio is near I (why?)

4/28/92]I-14

General Techniques ...

Testability Analysis ..,.

Approach to Propagation Analysis

• "Break" after component executes

• Change data state and continue

• Look for cases with different results

• Example:

. Set breakpoints after Update_Time
and Del_OId_Changes

,, Perturb the fact list

. What effects would you expect in the
result?

4/28/92 If-15

•

11

11

11

6/1/92

Define the "black box" view for your
team exercise.

Identify key terms from the problem
description.

Which of the following techniques
would you use? Explain your
answer.

Prototyping

Competing Designs

Independent V&V

Inspections

Decision Table

Cause-Effect Graph

State Diagram

If-16

Do a very high level specification for
your system using one of the
following techniques

System Testing
Techniques

II(_J

S stern Testin Techni ues

Realistic Testina

Focus on those functions used the most.

Realistically, more autos wait than
pedestrians.

• Therefore, select scenarios that
involve waiting autos.

Attribute-based Test Case Selection

Choose test cases based on an attributes

• Complexity, Criticality, Reliability, ...

Tests can be chosen according to

• Statistical Record-keeping
• Random

• Error Guessing

Example: More complex scenarios include
both waiting and approaching traffic.

04/21/92 III-2

S stem Testin Techni ues

Boundary-Value Testinq

Identifies cases at the boundaries of each

stimulus/response class

Exa__x___9_,Approaching traffic is detected at
the same instant a timer expires

° Exercises the boundary value of
when the timer should expire

Stress Testing

Choose "off-nominal" tests to test safe

operation in stressful/critical situations.

Examples:

• Pedestrian repeatedly hits the change
signal button?

• Power surge occurs when a car trips
the change signal button?

04/21/92 III-3

S stem Testin Techni ues ...

Active Interface Testina

Test the interface to an external agent (e.g.,
a person)

Examples:

• Auto weight required to trip signal

• Pedestrian signal button sticks

Performance Testina

Choosing tests that "push the envelope"
(speed, accuracy, etc.)

Examples:

• Effect of hardware delays

e.g.,Signal tripped at t0+14.999

04/21/92 m-4

System Testing Techniques ..,.

Knowledqe Acquisition Correctness
Checkina

Looking for inconsistencies and "holes" in
knowledge acquired from the expert.

Similar to analyzing system requirements.

Made easier by representing the knowledge
in a consistently structured form.

Example: How does the expert traffic
controller know when to stop and go back
to conventional mode?

4/28/92 1I/-5

S stem Testin Techni ...

Knowledqe Acquisition Correctness
Checkinq ...

Consider the following approach for
finding inconsistencies and "holes":

• Only do things that "make sense"

• Ensure proper sequence

• Example: Checking both timers
when only one should be checked

Step 1: Verify no conflicting sequences

• Rules, questions, facts, etc.

• Build a matrix mapping these (e.g., a
rule-to-rule matrix)

• Mark possible conflicts with an "X"

,, Checking both timers can result in
changing the light at the wrong time

4/30/92 m-6

S stem Testin Techni ues ...

Knowledge Acquisition Correctness
Checking ...

Step 2: Establish "master"/"subject"
relationships to resolve conflicts

• E.g., determine what should happen
first

• Example: Do not use the short timer
unless traffic is waiting

Step 3: Compare "legal" values of
"master" to "utilized" values of subject

• "Legal" values = all possible values

• "Utilized" values = values used

• "Subject" vs. legal values of "master"

,, A matrix with an "X" for each conflict

Helps build "sequence" expressions

4/30/92 m-7

S stem Testin Techni ues ...

Minimum Competency Testin_o

Certifying the competency of an expert
system

• "Test" as would a human expert

Certification exams exist for many types of
human experts.

• CPA, MD, PE

Assumes the ES will make same errors as

the expert

Expert can be asked to identify abilities of
a novice, advanced beginner, etc.

Similar to statistical testing (exam is a
representative sample)

Discussion: Develop a certification test for
the "expert" traffic controller.

4/30/92 I11-8

S stem Testin Techni ues ...

Disaster Testing

Identify scenarios that indicate potential
disaster (during knowledge acquisition)

• Experts are often good at recognizing
potential disasters

• Many disaster situations are
"common sense"

Generate tests to check that the system
responds to potential disasters

• Use with specification-directed
verification (disaster = specification),

• Example TLC disaster: Light is red in
all directions

4/30/92 III-9

S stem Testin Techni es ...

Expert Review

Some answers can only be judged correct
by the expert.

Experts can check test scenarios/results

Expert may not understand implementation
details

With minimal training, an expert can check

• Acquired knowledge

,, Miscommunication

,, Gaps in the knowledge

• Knowledge base design

,, Correct approach

,_ Correct interpretations

Format the review material so the expert
can easily understand it.

4/30/92 m- 10

S sternTestin Techni ues...

Explicit Modellinq

Different kinds of models:

• Set of equations

• Small scale replica (e.g., toy airplane
model)

• Metaphor (i.e., making analogy)

• Any simplified representation of a
system

"Instead of having no models in a KBS,
there are often a multitude of unexpressed

models;"2

4/30/92 III- 11

S stem Testin T hni ...

Explicit Modellinq ...

Different people may each have a different
model for the same system (but should all
be consistent)

• Client (e.g., traffic control system)

• User (e.g., traffic light switching
system)

• Developer (e.g., state machine)

Helps with V&V by facilitating abstraction

Leads into model-based reasoning50

4/30/92 Ill-12

S stem Testin Techni ues ...

Explicit Modelling ...

The concept of modelling is
straightforward, practice can be difficult

• Identifying a suitable model

• Mapping the model to the system

• Reasoning about the model

However difficult, it is usually worthwhile

• Models are always created14. They
are often implicit (not documented).

• An explicit model can make the
system easier to understand; this
helps all aspects of development and
use.

4/30/92 111-13

S tern Testin Techni ues ...

Explicit Modellinq ...

Example: Timer module

• Timers are countdown clocks with
alarms

• Asserting a timer creates a new clock
which begins to count down to zero

• Alarm goes off when the clock counts
down to zero

F;_CmJtl._: CLIPS inference engine

• There are 2 lists of rules: KB and

agenda.

• There is a list of facts.

• Each cycle, the inference engine
goes through the KB list and the
fact list, picking rules to put on the
agenda.

4/30/92 ITI- 14

Exercises

II

1

==

11

11

11

11

Define I or more "realistic" test cases

for your team exercise

Define some attributes of your
system. Define I or more test cases
based on the attributes you defined.

Define I or more test cases that do

"boundary value" testing.

Define I or more test cases that

"stress" the system.

Define the external interfaces to your
system. Define I or more test cases
to test those interfaces.

Define I or more test cases to test the

system's performance.

For each question, indicate how the
results of each test case will be

analyzed (i.e., how you will know the
answer is correct).

6/1/92 I1]-15

Exercises

11

11

Did the problem description provide
enough detail to adequately perform
the tests from questions 1-6.

Develop a certification test for your
system.

Identify system "disasters" (i.e.,
things that should not happen).
Explain how you will test your system
for these "disasters".

Will your project need the aid of an

expert (provide rationale)? If so,
indicate the kind of expert required
and the type of analysis to be
performed.

Define I or more models to aid in

your understanding of the system.
Document each model.

6/1/92 rll-16

Unit/integ ration
Testing

Techniques

Unit/Inte ration Testin Techni ues

Branch Coverage

Choosing tests that will cover all possible
outcomes of each internal logical decision
(e.g., if-then-else)

No {U

___=
T: cor_ tiB¢

No

t _T* 2 mimBs _ SwitchLight

{1)Y=

..._._ _u=oWaiting0. L_bt
Or

Y= 1_)I
r

Coverage techniques assume a different
meaning for Expert Systems

04/21/92 IV-2

Unlt(.Inte.qration Testina Techniaues...

Path Coveraae

Choosing tests that will cover all possible
combinations of outcomes of each internal

logical decision

w=c-s_ L_t ism_

T .,, ¢umnt dn_

{L23

b,,,=

" ,- _lokmmo_ ,

--,--- _ Waidngon Light
Or

r

•= fro==_r

04_1_2 I'V-3

Unit/Inte ration Testin Techni ues...

Condition Coveracje

Choosing tests that will cover all possible
situations that could lead to an internal

logical decision choice

T: arrcat tb¢

{U,_

No{J3 _}N0

t <T, 2 minutes _ Swilch Light

__Auco W.iting ca Li_
Or

Pal.ram w_m o. L_

•_ Pmc=sm_.dv

04/21/92 IV-4

Unit/Inte ration Testin Techni ues...

InterProcedural Dataflow Testing

Focuses on coverage testing for areas
where units interact

• Look at Global data and Passed
Parameters

Involves Building a Definition/Use Table

• Identifies pairs of statements for each
variable based on definition and use

Can be complex to build without some
automated assistance

06/02/92 IV-5

Unit/Inte ration Testin Techni ues...

InterProceduml Dataflow Testino ...

Assume the following procedure for
handling the timing when traffic is waiting

•

2.
3.
4.

5.
6.
7.

•

1

10.

11.
12.
13.

Procedure Process_Signal(Switch_At) Is

Switch_At :: Clock.Current+15
Time Limit := Clock.Current+60

Begin
While Clock.Current < Switch_At Loop

If Approaching_Signal Then
If Clock.Current+15>Time._Limit
Then

Else
Switch_At :: Time_Limit;

Switch_At :: Clock.Current+15;
End If;

End If;
Clock.Tick;

End Process_Signal;

06/02_2 IV-6

Unit/Inte ration Testin Techni ues...

Step 1: Find interface and global variables

• Clock.Current, Clock.Tick query and
pulse the clock

• A roachin Si nal senses
approaching traffic

• Switch At

Step 2: Build a Definition/Use table for
these items

Definition/Use Table for Process_Signal

Variable

Approaching_Signal

Clock.Tick

Clock.Current

Switch At

Definition

2

Use

6

12

2,3,5,7,9

Step 3: Select test cases that exercise
these statements

06/02/92 IV-7

Unit/Integration Testing Techniques...

Flavor Analysis

Attempts to find errors of omission

Documents:

• expected sequences of actions

• assertions about the effects of a

piece of code

Methods:

• Data Comments: documents
abstractions used in program
construction

• Operator Comments: documents a
legal "ordering" of operators

Goal: Compare actual execution against
expectations

06/U2/92 rV-8

Unit/Inte ration Testin Techni ues...

Mutation Testing

"Seed" a program with errors

Evaluates effectiveness of test cases

__hLi _ is GreenRed

T ._cm_tt time

So

v t _"1',2minet_ _ Switch Li_

___. A_,e Waitingoe Light
Or

Wai_g on Light

'°1
ii

Y

IV-9

Unit/Integration Testing Techniques...

Reliability Testino

Identify structures that could adversely
affect system reliability if they fail

• Are not necessarily error-prone

the system clock.

Prototype Evaluation

Test the user-interface pieces of the
system early

Involves either stubbing out some pieces
of the system or developing a simulation

For example: simulate signal hardware so
the traffic light software can be prototyped.

06/02/92 1V-IO

Unit/Inte ration Testin Techni ues...

Structural Testina

Goal: Comprehensive testing by executing
all parts of a knowledge base

Adaptable to cover any ES representation

Commercial tools available but are not

widely used (e.g., Expert/Measure)

Exercise: generate test cases for modular
TLC solution that cover:

• each rule

• each path from update_time to
timer_expires

• an assertion and a retraction of at
least one instance of each fact

template

06102}92 IV- 11

Exercises

•

1

m

Pick an implementation approach for
your problem. Based on this choice,
would you use:

Coverage techniques

Interprocedural data flow analysis

Provide rationale for your choices. If
you select more than one technique,
then prioritize them in order of
importance to your testing approach.

Identify "parts" of the system that
may impact reliability (HINT: you may
have to define what reliability is),.
Define I or more test cases to test

those "parts".

Document I or more expected
sequences of actions for your
problem.

06/02/92 IV-12

Exercises ...

11

11

Is prototype evaluation appropriate
for your problem? What about
mutation testing? Provide rationale.

Exchange your work with another
team. Study the problem. Ask
yourself the following:

• Does their implementation
approach match the problem?

• Are there any "holes" or
inconsistencies in their descriptions?

• Did they pick the right techniques
for their implementation approach?

06/02/92 IV-13

Static Testing

V-I

Static Testinq Techniques

Anomaly Analysis

• Involves looking at sequences of
events for certain types of
"anomalies".

. Data flow anomalies such as "use-
set" and "set-set-use"

,, Physical units mismatch such as
"length * volume"

° Examples"

,, After a light change, the clock
counter is referenced before it is
reset

,, There is an expression involving
"light color multiplied by time" which
doesn't make sense

4/30/92 V-2

Static Testing Techniques ...

Object-Oriented Analysis

• Object = set of data + associated
operations.

• The set of data has certain "legal"
values.

• Each operator accepts data with only
certain values.

• Analysis involves checking that no
combination of operators will result
in a data item getting an illegal value
or an operator being called with an
illegal input.

• Analysis will assure that the object
can never be put in an "illegal" state.

• Objects can be mapped to classes of
scenarios.

o4_]_2 v-3

Static Testin Te hni ues ...

Object-Oriented Analysis ...

• Example"

,, Time_counter is an object

,, Time counter should never be

negative

,, Reset and decrement are operators
on time counter

,) Reset sets time to 120.

,, Decr.em.ent decrease.s time counter
by I if time counter is gre_er than
zero, otherwtse it does-nothing to
time counter

n

,) Time counter can be shown to be

guaranteed to always be non-
negative

4/30/92 V-.4

Static Testing Techniques ...

Compilation Testing

• For some languages, such as Ada,
the compiler can detect some kinds
of errors in the architecture of
software

Defect Analysis

• Involves identifying kinds of common
errors such as divide by zero

• Checking for instances of these
common errors

04._1_2 V-5

Static Testin l Techniques ...

Axiomatic Analysis

<Pre-Condition>

... code fragment ...
<Post-Condition>

Given the pre-condition is TRUE

• Is post-condition TRUE after
execution of the code fragment

Given a combination of fragments

° Post-condition matches next pre-
condition

Can also be general conditions that apply
to the system as a whole

• E,g., "The traffic light can only be
green in one direction (NS or EW) °'

• Not tied directly to a specific code
fragment

4/30/92 V-6

Static Testing Techniques

Stepwise Refinement

Separating a unit into equivalent
descriptions at varying levels of detail_

Analyze by comparing each level of detail
to the preceeding one,

• Consistency/completeness checks

S mbolic Execu ion

Formal program proving technique

Traces program execution to prove
program properties

• Can help do axiomatic analysis
and/or stepwise refinement

Uses symbols act as placeholders for real
values (similar to classes)

4/30/92 V-7

Static Testin Techni ues ...

Symbolic Execution ...

Consider the following procedure that
determines when to switch the light

Procedure Process_Signal
1

2

3

4

5
6

7

8

9

10

11

12

13
14

TI := Tc + 60;

Ts := Tc+15;

While Tc < Ts Loop

--<*Tc < Ts And "Is <= TI And Tc < TI *>

If Approaching_Traffic Then
If Tc+15 >T!

Then Ts := TI;

Else Ts := Tc+15;

End If;

End If;

--<* "Is <= TI And Tc < "Is *>

Tc := Tc + 1

End Loop;

-<* Tc = Ts And Ts <- TI *>

4/30/92 V-8

Static Testin Techni ues ...

Symbolic Execution ...

Step 1:
proved

Define program properties to be

• Lines 4, 11, and 14

Se_.t___2: Build a graph of program flow

• Helpful to build smaller "sub" graphs

, Easier with pre/post conditions

• Framework for trace

Step 3: Trace program execution, proving
properties "as you go"

• See Handout #6

• Exercise: Fill in the missing parts of
the proof in Handout #6

5/12/92 V-9

Static Te tin Techni ues ...

Hazard Analysis

• Hazard:

,, e.g.,light is green in all directions

• Determine how hazards occur

,, e.g.,hardware failure

• Verify system prevents occurrence

,, e.g.,check hardware status before
switching the light

very undesirable situation

Fault Analysis
w

• _: a potential system error

,, e.g.,failure of the clock

• Identify safety effects due to faults

,, e.g.,lights never change

_30D2 V-IO

Static Testin Techni ues ...

Software Fault Trees

Similar to Cause-Effect graphing

Maps faults to handlers

Maps failures to effects

C_
_ Intersec_n

t
Driver rul_
red

i
Light fals to
turn green

l
_Con_oi Software

ipendts coldon

• \

I

2o,lve,-sente,"I

Cars present in
dr_

o5mI_2 V-11

Static Testin Techni ues ...

Software Fault Trees ...

Helpful in defining when to stop testing

• "... test until the consequences of
failure no longer justify the testing
cost."48

Hazard and Fault analysis identify external
risks

Fault trees map those external risks to
specific modules

Based on external risks, assess (for each
module)

• Consequence of failure during
operation

• Expected number of failures (MTTF)

05/01/92 V-12

Static Test'm Techni ues ...

Rule Consistency Checking

Attempts to find errors by checking for
certain classes of "anomalies".

• Anomaly = a type of relationship
between two or more rules that

"seems wrong", e.g.,

A-> B and C

B-> not C

° Anomalies generally indicate an error

Specific to rule-based implementation
(forward or backward)

Can find all "anomalies" but a human must

analyze anomaly to see if it is a problem.

Many research tools available, no
Significant commercial offerings.

05/01/92 V-13

Static Testing Techniques ...

Rule Consistency Checking ...

Reachability anomalies (non-modular
version)

• Dead-end rules

,, Del_old_changes does not affect any
other rule

,> Fact "signal_changes" should have
been "signal_change"

• Unreachable rules

,> Del_old_changee is also unreachable

,) No rule asserts "signal_changes"

• Cycle Rules

,) Update_time is in a cycle

)) This "anomaly" does not indicate an
error in this case

,, Why?

05/01/92 V-14

Static Testin Techni ues ...

Rule Consistency Checking ..,

Redundant Rules (modular version)

• Setlong_timer:

if lighLchanged or
signal.in_direction green

then

set long_timer
retract medium timer
retract short timer

• Retract medium timer:

if light_changed
then

retract medium timer
retract short timer

05/0U92

• An attempt to retract medium timer
twice if light_changed

V-15

Static Testin Techni ues ...

Rule Consistency Checking ...

Conflicting rules (non-modular version)

• SeLIong_timer:

if light_changed or
signal.in_direction green

then

set long_timer
set medium timer
set short timer

m

• Retract medium timer:
m

if light_changed
then

retract medium timer
retract short timer

m

05/01/92

• Two conflicting actions if
lightchanged (set and retract timer)

V-16

Static Testin Techni ues ...

Rule Consistency Checkina ...

Dead-End Rule (Rule C) Unreachable Rule (Rule C)

Cycle

05/01/92 V-17

Static Testin Techni ues ...

Rule Consistenc Checkin ... (Graphing
Techniques)

Petri-Nets

• Originally used to "trace" dynamic
behavior of discrete event systems
(e.g., role firings)

• Similar to other diagramming
techniques (e.g., state diagrams,
cause-effect diagrams, etc.)

• Network of propositions (e.g., rule
LHS and RHS)

• "Tokens" trace rule firings

)) Completeness and consistency
errors

• Tedious without automated help

,, Modularity helps reduce complexity

o5_I_2 V-18

Static Testin Techni ues ...

Rule Consistency Checking ...

Petri Nets ...

• Consider the TIME module of
Handout #4

F1

F2

Facts

(time (is ?t)

(stop-time ?t)

R1

R2

R_

Rules

Count Time

Stoplt

05/01/92 V-19

Static Testin Techni ues ...

Rule Consistency Checkina ...

Directed Graphs (or Network Flows)

• Rules are converted into a collection
of directed arcs (directed because of
inference)

• First build a list of antecedent and

consequent propositions

• Generate an edge to the graph for
each antecedent/consequent pair

° Many algorithms exist for analyzing
reachability issues

05_1_2 V-20

Static Testing Techniques ...

Rule Consistency Checking ...

Connectivity Graphs

• Different kinds of matrices:

)> facts vs. rules, clauses vs. rules,
clauses vs. facts, etc.

• Matrices can then be represented as
undirected graphs connecting
elements of the matrices

• Can Help to identify the major areas
of correctness

,> e.g., for Rulebases: completeness,
consistency, redundancy, dead-end
rules

• Can also assist in design (e.g.,
identifying modularity)

• Supported by simple matrix
operations (see Handout #5)

05_1_2 V-21

Static Testincj Techniques ...

Data Consistency Checkino

Checking that data use is consistent with
data definition

Checks data/facts

Can find mismatches between data
definition and use

Is supported by some tools (e.g., CRSV)

• E.g.,CRSV could detect "typos" such
as the fact "signal_changes"

05/01/92 V-22

Static Testin Techni ues ...

Specification-Directed Analysis

Checking that implementation matches
specification

• Specification := assertion about a
part of the implementation, like a
"mini requirement"

Useful for all aspects of a knowledge base

Useful for finding any type of
implementation error

Not supported by any commercial tools but
research prototypes exist

05/01/92 V-23

Static Testing Techniques ...

Specificati0n-Directed Analysis ...

E.g., the "Timer" module

• Assertion: timer names are unique

° Analysis of timer_name-conflict rule,
verifies assertion is true

Sometimes called "Formal Methods" (but
can be informal)

Examples of useful types of assertions

• Data value constraints

,, E.g., timer constraint

• Postconditions for rules

,, E.g., timer name-conflict satisfies
postcondiflon "exactly one timer
called ?name will exist"

4/30/92 V-24

Static Testing Techniques ...

Specification-Directed Analysis ...

Some useful types of assertions ...

• Abstract functions

,, E.g., light change action can be
abstractly described as

direction := { NS if direction = EW
EW if direction = NS }

• (precondition, postcondition) pairs

,, e.g., for change-light function

p_[.Q:green-light'= NS or EW

oost: green-light = NS or EW
and

green-light/= green-light'

4/30/92 V-25

Static Testing Techniques ...

Partition Analysis

Coverage techniques use implementation

Using a specification can help find missing
paths

• I.e., does the specification match the
code being tested

A more formal specification is needed

Step 1: Define the inputs for each path
along with the outputs

Step 2: Do the same for the associated
specification

Step 3: Generate intersections of the
results from steps I and 2

Step 4: For each non-empty intersection,
verify that the spec matches the path

06/02/92 V-26

Exercises

•

8

1B

11

Identify and define at least I "object"
in your system (remember, objects
consist of both data and operations
on that data).

Write a pre-condition and a post-
condition for each operation on the
object.

Describe any general properties your
"object" must satisfy. Discuss how
you would analyze your "object"s
implementation to "prove" those
properties are always satisfied.

Pick at least one operation and define
some rules that implement its
specification.

06/02/92 V-27

Exercises ...

11

1B

1B

Select one of the following
techniques for analyzing these rules.
Explain your answer.

Petri Nets

Directed Graphs

Connectivity Matrices

Identify I "hazard" in your system.
Build a fault tree for for that "hazard".

Identify I "fault" in your system.
Build a fault tree for that "fault".

06/02_2 V-2g

Summary

Techniques

There are many more techniques than the
ones discussed.

No technique by itself is sufficient for all
levels of software and all types of faults.

Choosing the right set of techniques is
important but can be difficult (the V&V
puzzle).

Techniques can be selected based on three
types of testing

1.Static Testing

2, Unit/Integration Testing

3.System Testing

06/22192 VI-2

Techniques ...

Each type of testing:

• Focuses on a different size of
software

• Looks at different categories of
errors/faults

• Uses certain techniques

,, Can find errors more cheaply than a
later type of testing

• Can reduce the cost of later types of
testing by providing information (e.g.,
units, interfaces)

• Helps ensure a higher quality system
(e.g., the system doesn't "crash" at
the beginning of the first system test)

0G22_2 VI-3

When to Sto Testin

Stop "when the money runs out" is a bad
approach

Better approach: define a testing objective

• Coverage (e.g., branch coverage)

• Reliability (e.g., Mean Time To
Failure)

• Number of errors found (e.g., 40% of
what was found at code inspection)

Test until objective(s) reached.

May prioritize objectives

• Most important objectives first

• Most critical modules first

• Most critical error types first

06122/92 VI-4

Appendix A:
References

References

1. Becker, S.A. and Medsker, L.. "The Application of
Cleanroom Software Engineering

Expert Systems." Heuristics The

Engineering. Quarterly Journal of

Association of Knowledge Engineers

Number 3 pp. 31-40, Fall 1991.

to the Development of

Journal of Knowledge
the International

(lAKE). Volume 4

2. Bellman, K.L., "The Modelling Issues

Testing and Evaluating Knowledge-Based

Expert Systems with Applications. Vol 1., No. 3

Inherent in

Systems".

3. Bezier, B.. Software Testing Techniques.

Nostrand Reinhold Company, Publisher, 1983.

Van

4. Boehm, B.. "Industrial Software Metrics Top 10 List".

IEEE Software. Volume 4 Number 5, pp. 84-85, September
1987.

5. Boeing Aerospace Company. Software Test

Handbook: Software Test Guidebook. Document No.

RADC-TR-84-53 Volume 2 of 2. Rome Air Development

Center, Griffis Air Force Base, NY 13441, March 1984.

6. Booch, G., Software

Benjamin/Cummings, 1983

Engineering with Ada.,

4/30/92

Chapter 8 discusses type checking in Ada which

is a kind of data consistency checking technique.

A-2

References ...
!

7. Fagan, M.E.. "Design and Code Inspections to Reduce

Errors in Program Development." IBM Systems Journal

Volume 15 No. 3 pp. 182-211, 1976.

8. Fikes, R., Kehler, T., "The Role of Frame-Based

Representation in Reasoning", Communications of the

ACM., Sept., 1985

This is a general discussion of frames and their

use in rule-based programming. It includes some
discussion on necessary and sufficient conditions

for classifying a frame instance as belonging to a

certain class. This type of necessary and
sufficient condition checking ensures a level of
data consistency.

9. Franklin, W.R., Bansal, R., Gilbert, E., Shroff, G.,

"Debugging and Tracing Expert Systems". Proceedings of

the Twenty-first Annual Hawaii International Conference

on System Sciences. 1988

10. Goodenough, J.B. and Gerhart, S.L.. "Toward a

Theory of Test Data Selection". IEEE Transactions on

Software Engineering. pp. 156-173, June 1975.

11. Gries, D.. The Science of Programming. Springer-

Verlag New York, Inc. 1981.

4/30/92 A-3

References ...

12. Hantler, S.L. and King, J.C.. "An Introduction to

Proving the Correctness of Programs." ACM Computing
Reviews. pp.331-353, September 1976.

13. Harrold, M.J. and Sofia L.S.. "Selecting and Using

Data for Integration Testing." IEEE Software Volume 8

Number 2 pp. 58-65 March 1991.

14. Herod, J.M. and Bahill, T.. "Ameliorating the

Pregnant Man Problem: A Verification Tool for Personal

Computer Based Expert Systems". International Journal of

Man-Machine Studies. pp. 789-805, 1991.

15. Hoare, C.A.R. "Introduction to Proving the

Correctness of Programs." A CM Computing Surveys pp.

331-353, September 1976.

16. Howden, W.E.. "Reliability of the Path

Testing Strategy." IEEE Transactions on

Engineering pp. 208-215, September 1976.

Analysis

Software

17. Howden, W.E.. "Symbolic Testing and the DISSECT

Symbolic Evaluation System." IEEE Transactions on

Software Engineering pp. 266-278, July 1977.

4/30/92 A-4

References ...

18. Howden, W.E.. "Comments Analysis and

Programming Errors." IEEE Transactions on Software

Engineering Volume 16 Number 1 pp. 72-81, January
1990.

19. Howden, W.E.. "Weak Mutation Testing and

Completeness of Test Sets." 1EEE Transactions on

Software Engineering Volume SE-8 No. 4, July 1982.

20. Jalote, P.. "Testing the Completeness of

Specifications." IEEE Transactions on Software

Engineering Volume 15 No. 5, May 1989.

21. Korson, T. and McGregor, J.D.. "Understanding

Object-oriented: A Unifying Paradigm." Communications

of the ACM Volume 33 No. 9 pp. 40-60 September 1990.

22. Landauer, C.A.. "Correctness Principles for Rule-

Based Expert Systems." Expert Systems with Applications.
Pergamon Press. Volume 1 Number 3 pp. 291-316, 1990.

23. Leite, J. and Freeman, P.. "Requirements Validation

Through ViewPoint Resolution." IEEE Transactions on

Software Engineering Volume 17 No. 2 pp. 1253-1269,
December 1991.

4/30/92 A-5

References ...

24. Leveson, N.G.. "Safety." Aerospace Software

Engineering: A Collection of Concepts. Ed. Christine
Anderson and Merlin Dorfman. Volume 136 pp. 319-336,
American Institute of Aeronautics and Astronautics,

Publisher. 1991.

25. Leveson, N.G.. "Software Safety in Embedded

Computer Systems." Communications of the ACM Volume
34 No. 2, February 1991.

26. Leveson, N.G., Cha, S.S., and Shimeall, T.J.. "Safety

Verification of Ada Programs Using Software Fault Trees."

IEEE Software. pp. 48-59, July 1991.

27. Linger, R.C., Mills H.D. and Witt,

Programming: Theory and Practice.

Publishing Company 1979.

E.I.. Structured

Addison-Wesley

28. Liskov, B. and Guttag, J.. Abstraction and

Specification in Program Development. McGraw-Hill

Book Company 1986.

29. Liu, N.K. and Dillon, T.. "An Approach Toward the

Verification of Expert Systems Using Numerical Petri

Nets." International Journal of Intelligent Systems.

Volume 6, Number 3, pp. 255-276, June 1991.

4/30/92 A-6

References ...

30. Marcus, S., "SALT, A Knowledge Acquisition Tool

That Checks and Helps Test a Knowledge Base". AAA/

Workshop Notes on Verification, Validation, and Testing of

Knowledge-Based Systems. 1988.

31. McGraw, K.L., Harbison-Briggs, K.. Knowledge

Acquisition Principles and Guidelines. Prentice Hall, 1989

pp. 312-323 includes a discussion of using

experts to aid in review and testing of an expert

system

32. Meyer, B.. Object-oriented Software Construction.
Prentice Hall, Publisher 1988.

33. Miller, L.A., "Dynamic Testing of Knowledge Based

Systems Using the Heuristic Testing Approach". Expert

Systems with Applications. Vol. 1, No. 3, 1990

34. Mills, H.D., Linger, R.C. and Hevner, A.R.. "Box

Structured Information Systems." IBM Systems Journal
Volume 26 No. 4, 1987.

35. Mills, H.D., Linger, R.C. and Hevner, A.R..

Principles of Information Systems Analysis and Design.
Academic Press, Inc. 1986.

4/30/92 A-7

References ...

36. Montalbano,

Associates, 1974

Decision Tables. Science Research

37. Myers, G.J.. The Art of Software Testing. John Wiley
& Sons, Publishing 1979.

38. Myers, G.J.. Software Reliability Principles

Practices. John Wiley & Sons, Publishing 1976.

and

39. Myers, G.J.. Reliable Software Through

Design. Mason/Charter Publishers 1975.

Composite

40. Myers, G.J.. Composite�Structured

Educational Publishing 1978.

Design. Litton

41. NASA/JSC Software Technology

Reference Manual., Voll III, Section 2

Branch, CLIPS

Section 2 is the description of the capabilities of
CRSV

42. Nazereth, D.L.. An Analysis of Techniques for

Verification of Logical Correctness in Rule-Based Systems.

pp. 80-136. Catalog Number 8811167-05150. UMI
Dissertation Service, Ann Arbor, MI 48106, 1988. (Phd.

dissertation, Case Western Reserve University, 1988)

4/30/92 A-8

References...

43. Nguyen, T.A., Perkins, W.A., Laffey, T.J., Pecora, D.,

"Knowledge Base Verification", A/Magazine., Summer,
1987

44. Pamas, D.. "On the Criteria To Be Used in

Decomposing Systems into Modules." Communcaionts of

the ACM Volume 15 No. 12, pp. 1053-1058, December
1972.

45. Richardson, D.J. and

Analysis Method to Increase

Proceedings, Fifth International Conference on

Engineering pp. 244-253, 1981.

Clarke, L.A.. "A Partition

Program Reliability."

Software

46. Rumbaugh, J.. Object-Oriented Modeling and Design.
Prentice-Hall, Inc. 1991.

47. Rushby, J., Crow, J., Evaluation of an Expert system

for Fault Detection, Isolation, and Recovery in the Manned

Maneuvering Unit. Final Report for NASA contract NAS 1-
182226 (NASA/LANGLEY)

4/30/92 A-9

References...

48. Rushby, J.. Quality Measures and Assurance for A1

Software. Prepared for NASA Langley Research Center.

NASA Contracter Report #4187, 1988.

This is the last reference in the references section

of this workshop. Pages 74-79 includes a
discussion of minimum competency testing.

49. Science Applications International Corporation. "Task
1: Review of Conventional Methods." Guidelines for

Verification and Validation of Expert Systems. Document
No. SAIC-91/6660, 1991.

50. Sherer, S.. "A Cost-Effective Approach to

IEEE Software. pp. 34-40, March 1991.

Testing".

51. Voas, J., Morell, L., and Miller, K.. "Predicting

Where Faults Can Hide from Testing". IEEE Software, pp.

41-48, March 1991.

52. Weld, D.S., de Kleer, J., eds. Qualitative Reasoning

about Physical Systems., Morgan Kaufmann, 1990

53. Yourdon, E. and Coad, P.. Object-Oriented Analysis.

Prentice Hall, Inc. Englewood Cliffs, NJ 1990.

4/30/92 A- 10

Appendix B:
Techniques Vs.

References

Techniques Vs. References

Techniques
i

Active Interface Testing

Anomaly Analysis

Attribute-Based Test Case

Selection

Axiomatic Analysis

Boundary Testing

Branch Coverage
i

Cause-Effect Graphing
i i I

Competing Designs

Compilation Testing
i •

Condition Coverage
i

Connectivity Matrices

Data Consistency Checking

Defect Analysis

Disaster Testing

Error Guessing

4/30/92 B-2

References

49

49, 5

49

i

11,20

37-4O

37-40

37-40
i i

23

49

37-40

22,42

6,8,41

49

37-40

Techni ues Vs. References ...

Techniques
i

Explicit Modelling

Expert Review

Fault Analysis
i

Flavor Analysis

Flow Graphs
=l i i i

Hazard Analysis
|

Inspections

InterProcedural Dataflow Testing
i

Knowledge
Correctness

i

Minimum Competency Testing
i

Mutation Testing

Object Oriented Analysis
i i

Partition Analysis
| ii i

Path Coverage
ii

Acquisition

References

2

31
i

24-26

18

42

24-26

7, 37
i

12

30, 14

47, 48

19

53, 37, 21,44

45
i

15, 37-40

4/30/92 B-3

Techniques Vs. References ...

Techniques

Performance Testing

Petri Nets

Pre/Post Condition Testing

Prototyping

Random Testing

Realistic Testing

Regression Testing

Reliability Testing

Rule Consistency Checking

Sensitivity Analysis

Software Fault Trees

Specification-Directed Analysis

State Diagrams

Stepwise Refinement

References

49, 5

1,29, 42

11, 15, 27, 28

3, 49

3, 49

3, 49

3, 49

42, 43

9

26

Case Study #1,47

46

38-40, 34-35

4/30/92 B-4

Techni ues Vs. References ...

Techniques

Structural Testing

Stress Testing
i

Symbolic Execution
i

Testability Analysis
i ii

References

33
i

3, 37
i

16, 17, 12

50, 51

4/30/92 B-5

Works hop on
Verification and

Validation of Expert
Systems

Guidelines
• i

Authors:

Scott W. French

FRENCHS@HOUVMSCC.VNET.IBM.COM

David Ham,ton

HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation

3700 Bay Area Blvd.

Houston, TX 77058

Validation

Table of contents

EL

IV. AppmdixA: R_m'm_s

04_0_2

Introduction

Overview

Goals

1. To understand guidelines on the
application of V&V techniques

11 To understand how to V&V a system
which includes expert system(s)

1D To understand how to tailor V&V based

on specific needs and characteristics

Approach

• Make some inferences about what
should be in a set of expert system
V&V guidelines

• Discuss a set of V&V guidelines

• Discuss tailoring of guidelines

04_0_2 I-2

Implications for
Guidelines

Overview

So far we have:

• Reviewed conventional and expert
system V&V techniques

• Pointed out key V&V ideas (e.g., the
V&V puzzle)

• Studied a sample problem (traffic
light controller)

O4/2O/92 II-2

Overview ...

From this, we can make some inferences
about what should be in a set of ES V&V

standards and guidelines.

From these inferences, we can

° Develop a set of ES V&V guidelines

• Develop some tailoring criteria

Note: Many implications may seem trivial
but they lead to important guidelines.

04/20/92 n-3

Conventional Validation Implications

Validation: "Am I building the right
product?"

• Must be able to know if a product is
right or not

• There must be some known criteria

that the right product will satisfy

O4/20/92 II-4

Conventional Validation Im lications

Verification Puzzle: Different kinds of
correctness

• Must know which kinds of

correctness are important

,> Utility Correctness at a minumum
(satisfies user's needs)

* Must know user's needs

• Should check that the understanding
of problem to be solved is both
complete and consistent

• May tailor V&V based on size,
complexity and criticality

• Must pick the V&V techniques to fit
the puzzle

O4/2O/92]I-5

Conventional Validation

Black Box View: Based on observable
behavior

• Must be able to validate correctness

based on observable response from
known stimulus

,, Can not validate system just by
seeing that correct knowledge went
into it

Operational Scenarios: Stimulus/response
descriptions based on how the system is
expected to be used

• User can describe how he expects to
use the system and developer can
obtain stimulus/response from the
user's description(s)

04/20/92 H-6

Conventional Verification

Prototypinq: Early model of possible
system

• Understanding of the desired system
can be validated before system
development begins

Verification Puzzle: Comprehensive
validation of large complex systems is too
difficult, but system can be "incrementally
validated" by performing separate, static,
unit/integration, and system testing

• Verification greatly reduces the
difficulty of validation

04/20/92 11-7

Conventional Verification

Verification: "Am i building the system
right ?"

• Must know/understand the system
that is being built

• Must know how the system is to be
built (i.e., need design)

Modularity: Structured "divide and
conquer" approach has many benefits

• System should be modularized to
reduce the verification effort

O4/20/92]I-8

Conventional Verification
ii I I

Different Techniques catch different types
of problems and none are comprehensive

• Mutliple V&V techniques must be
used

The earlier an error is found, the more
cheaply it can be fixed.

• Emphasize techniques which can be
applied early •

• Perform verification as early as
practical

O4/20/92 n-9

Conventional Verification

Techniques work at different levels (e.g.,
static analysis vs. statistical testing)

• Verification should be planned so
that techniques are applied when and
where they are appropriate

Static testing techniques work at many
different levels and can be applied early

• These techniques are important

Abstraction, refinement, and proper
documentation ease the application of
static testing techniques

• Design should use abstraction,
refinement, and associated
documentation (e.g., specifications)

04/20/92 II-I0

General Ex ert S stem V&V

Expert systems are software

• Same basic conventional V&V

implications hold for expert systems

Expert Systems may satisfy some, but not
all, implementation and problem
characteristics

• Verification approach must be
tailored for the specific type of expert
system being built

O4/20/92 H-11

Ex ert S stem Validation

May just mechanically apply expert's "rules
of thumb" (as opposed to solving a
problem)

• Validation must rely on comparison
with the expert

May solve a very difficult problem (e.g.,
complex scheduling) where correct
solutions are not known

• Validation may be able to only
address "reasonableness" of

solutions (e.g., feasible schedule)

May solve a problem with only fuzzy or
subjectively correct answers

• Each test result must be checked by
an expert

04/20/92 I"I-12

Expert System Verification

Internal interactions may be unclear and/or
complex

• Manual analysis may be very difficult
(i.e., inspections)

Execution sequence may not be explicit

• Verification of problem solving
method may be very difficult

Expert Systems often built iteratively (in
small chunks)

• Testing should be iterative (to catch
errors early)

• Regression testing will be done often

04/20/92 II-13

Other (Common Sense) Implications

There is no way to know if the system will
meet the user's needs without doing
something that would be called V&V.

• V&V must be done

V&V takes time (and money)

• Development schedule and cost
should account for V&V

The best person to determine correctness
is the expert

• The expert should be involved in V&V

A "fresh look" can often find errors better

• Independent (unbiased) V&V should
be done if practical

04/20/92 I1-14

Guidelines

_l _ I

Overview

The implications for V&V directly lead to
some specific guidelines which will be
discussed first.

Based on the guildelines,
recommendations for how to develop a
V&V approach will be discussed.

Finally, you will have the opportunity to
practice developing a V&V approach on a
case project.

04/20/92 m-2

Pro'ect Mana ement Guidelines

Plan for V&V

• Include V&V in schedule (e.g.,
inspections)

• Include V&V cost in total

development cost (typical V&V cost is
25% of total project cost, spread
throughout the development cycle)

• Allocate resources for V&V (e.g.,
expert's time)

Plan to spend time developing a good
design (so static testing won't be too hard)

04/20/92 m-3

Project Management Guidelines ...

Pick a Life-cycle that includes all 3 test
phases (and follow it).

• Standardizing on a life-cycle aids in
planning and management of V&V.

Tailor V&V approach based on:

1.Expected size and complexity

2.Type of expert system (based on
characteristics)

3.Types of correctness that matter

O4/'20/92 m4

Pro'ect Mana ement Guidelines ...

Use Configuration Management

• Ensure system is correctly integrated

• Ensure testers know what they are
testing (e.g., version control)

• Helps manage the effects of complex
internal interactions

Reserve a significant portion of the
expert's time for helping with V&V (25%).

Prototype for early validation but clearly
separate prototyping from development

Plan to do V&V as the system is iteratively
developed (not all at the end).

04/20/92 m-5

Problem Anal sis Guidelines

Try to narrow the problem domain as much
as possible

• "Knowledge based systems have a
greater likelihood of succeeding -
and, in a sense, of being valid - when
they address a narrowly defined

problem."8

• "If an expert system starts with vague
objectives, some may conclude that it
doesn't matter what the eventual

system does, because anything is

better than nothing."7

04/20/92 I]I-6

Problem Anal sis Guidelines ...

Do not try to pre-determine whether the
solution will be an "expert system" or not.

Expect .the System to work

• Survey results indicated a significant
percentage did not expect the Expert
System to be as accurate as the
expert5

• "The difficulty with low expectations

is that they become self-fulfilling"3

O4/20/92 m-?

Requirements Guidelines

Write Requirements.

• Something is needed to V&V the
system against.

>) "A good programmer understands
what his program is supposed to do
and why he expects his program to
do it"3

Document the following (at a minimum):

• expected behavior

• operational scenarios (how the
system is expected to be used)

04/20t_2 m-8

Re uirements Guidelines ...

Consider each kind of correctness when

writing requirements.

1. Functional

2. Safety

3. User-Interface

4. Resource Consumption

5., Utility

O412O/92 III-9

Desi n Guidelines

Design modular systems

• Modules can be V&V'ed separately

• V&V of many little systems is easier
than V&V of one large system

• Reduces regression testing

Use abstraction and refinement

• Makes static testing easier

* Allows verification during design

Cross reference design to requirements
and code

• Facilitates completeness checking

04/20/92 m-lO

Desi n Guidelines ...

Some design hints

• Pick a design notation and stick with
it across the application (needed to
verify consistency).

• The Level of Formalism is NOT as

important as the consistency of
Formalism

"1will contend that conceptual
integrity is the most important
consideration in system design. It is
better to have a system ... reflect one
set of design ideas, than to have one
that contains many good but
independent and uncoordinated
ideas"- Fred Books6

04_0_2 II1-11

General Guidelines

Consider an independent group for final
V&V, or at least try to include some
independent reviews

• A "fresh look" often finds additional
errors

• Will help determine if system is
adequately documented

Always try to find as many errors as early
as possible

• Errors found early are much cheaper
to correct

Use a mixture of V&V techniques

• There is no single comprehensive
technique

O4/20/92 m-12

V&V Technique.Guidelines

During integration of large systems, test
higher level control and user-interface
functions first (stubbing out lower level
details if necessary)

Perform regression testing at each iteration

• Emphasize modules that changed

• Perform "health test" of overall

system

O4/20/92 m-13

V&V Technique Guidelines ...

Emphasize static testing techniques for
evaluation of detailed functional
correctness

• Based on design notation/formalism,
write design specifications and
perform specification-directed
analysis

• If role-based implementation, perform
rule consistency checking

• Use data-consistency checking,
especially if implementation is frame-
based.

• if developing a classification-type
expert system, perform sensitivity
analysis to evaluate sensitivity of
classes to distiguishing criteria

O4/20/92 m-14

V&V Techni ue Guidelines ...

Use realistic testing for evaluating utility
and user-interface correctness

• Will the system satisfy the user needs
based on how they plan to (would like
to) use the system ?

Selectively choose test cases for testing
functional correctness (do not attempt to
be comprehensive, as in static testing)

• Emphasize critical and complex
functions

• Randomly exercise other functions

04/20/92 In-15

V&V Technique Guidelines ...

Use stress/performance testing to evaluate
resource consumption correctness

After selective testing, measure coverage
and look for major "holes" in coverage
(rules not covered, facts not used etc).

04/20/92 m-16

Recommended A roach

1.Analyze Problem (ongoing activity)

• Identify areas of uncertainty and/or
complexity that may require
prototyping

• Identify areas of high criticality

• Identify available expertise

)) Is problem to be solved by
knowledge acquisition or analysis ?

• Identify/document expected behavior
and operational scenarios

• Identify aspects of problem that
match expert system criteria, but do
not anticipate expert system
implementation.

04_0_2 m-l'/

Recommended A roach ...

2. Do initial planning

• Do not attempt comprehensive up-
front planning.

_) True expert systems are usually
developed in a highly iterative
manner

• Determine objectives for next
iteration.

• Determine criticality of correctness.

• Estimate size and cost (include V&V).

>>If V&V is listed as separate cost, it is
in danger of being "cut"

• Define milestones that follow a life-

cycle.

04t20/92 m-is

Recommended A roach ...

2. Do initial planning ...

• Reserve resources

,, Expert's time

,5 Consider identifying IV&V group

>5 Look for available V&V tools

(especially those that assist an

expertS)

• Ensure:

,5 Problem is not too broadly defined

. Adequate requirements exist / will
exist

04/20/92 Ill-19

Recommended A roach ...

3.Perform design and specification-driven
analysis

• As each module is refined/completed,
verify functional correctness and
completeness.

• Always map back to higher level
design, requirement, prototype, or
problem description.

• Hold periodic inspections and involve
expert(s).

• Based on implementation approach,
use additional static testing
techniques (e.g., rule consistency
checking)

O4/20/92 UI-20

Recommended A roach ...

4.As each increment is completed

• Test overall execution (high level

control) e.g.,

,> Screens/windows look OK

Files opened/closed correctly

,> Functions respond to appropriate
user inputs

Output appears in the right place

Recommended A roach ...

4.As each increment is completed ...

• Perform realistic and/or statistical

testing

• Perform stress testing

• Measure coverage and look for
"holes"

• Regression test unchanged features

• Perform field testing with user's and
experts

04/20/92 II/-22

Exercise

•

11

11

11

1l

Determine whether the recommended

approach fits your problem, Identify
additional issues that need to be
considered.

Generate a detailed development plan
for your problem. Try to include
specific milestones and how they will
be achieved.

Define specific development
increments. Update your plan to reflect
those increments.

Consider the test cases you have
selected so far. Are there any other
kinds of testing you need to do? When
will you know to stop testing?

Build a high-level requirements outline
for your system definition. How well
does the original problem definition
map to your outline?

O6/22/92 m-23

Appendix A:
References

References

1. Pamas, D.L., Clements, P.C., "A Rational

Design Process: How and Why to Fake It", IEEE

Transactions on Software Engineering. Feb., 1986

Describes why one would wish to document a
product as if it were designed according to an
idealized development process/methodology,
even if was developed in a very ad-hoc manner.
Also includes suggestions on what the
documentation of a product should contain.

2. Fox, M.S., "AI and Expert System Myths,
Legends, and Facts", IEEE Expert. Feb., 1990

Contains personal observations by the author
that help expain some causes of ineffective AI
applications; many are due to a
misunderstanding of AI technology.

4/20/92 V-2

References ...

3. Guttag, J.V., "Why Programming is Too Hard
and What to Do About It", Research Directions in

Computer Science: An MIT Perspective, MIT Press,
1991

Contains personal observations by the author on
the difficulties in software programs. The author,

a respected professor and researcher in software

development techniques, offers some very

candid opinions in this paper.

4. Schank, R.C., "Where's the AI ?"

Winter 1991
, AI Magazine,

A very readable description of some personal

observations by the author on some difficulties
in developing truly intelligent systems. This

article is highly recommended reading.

4/20/92 V-3

References ...

5 "KBS V&V - State of the Practice and

Implications for V&V Standards"

This paper is included in the references section.

It summarizes a survey that was performed of 60

expert system projects to determine what

techniques were currently being used to V&V

expert systems and what difficulties were being
encountered.

6. Brooks, F., The Mythical Man Month, Addison-

Wesley, 1975

The classic book on software engineering. It is a
collection of personal observations on software

development. Although the book is many years

old, the observations are just as true today as

they were 15 years ago. This book is very highly
recommended reading.

4/20/92 V-4

References ...

7. Geissman, James R.. "Verification and

Validation for Expert Systems: A Practical
Methodology." Abacus Programming Corporation,
Van Nuys, CA., SOAR Conference, 1990 (???)

8. Marcot, Bruce. "Testing Your Knowledge

Base." AI Expert, July 1987

This article offers some practical advice for
testing knowledge bases by listing some very
general guidelines. It also has a good detailed list
of types of correctness.

9. Hall, A., "Seven Myths of Formal Methods",

IEEE Software, September, 1990

4/20/92 V-5

10. Bundy, Alan. "How to Improve the Reliability

of Expert Systems." Proceedings of Expert Systems

'87: Seventh Annual Technical Conference of the

Pontish Computer Society Specialist Group on

Expert Systems. December 1989, pp. 3-17.

11. Culbert, Chris. "Knowledge-Based Systems

Verification and Validation." The Verification and

Validation of Expert Systems Workshop. Austin, TX,
June 18, 1991.

12. Froscher, Judith N., Jacob, Robert J.K.. "A

Software Engineering Methodology for Rule-Based

Systems." IEEE Transactions on Knowledge

Engineering Volume 2. No. 2, pp. 173-1 g9, June
1990.

13. The Institute of Electrical and Electronics

Engineers (IEEE). "IEEE Standard Glossary of

Software Engineering Terminology." ANSI/IEEE
Std. 729-1983. 345 E. 47th Street, New York, NY,

February 18, 1983.

4/20/92 V-6

14. Waterman, Donald A.. A Guide to Expert

Systems, Addison-Wesley Publishing Company,

1986, pg. 187.

4/'20/92 V-7

l

/

_: A Solution
For The Traffic Controller

Problem Using Terms,
Operators and Productions

Introduction

Case Study number one will provide a detailed example of designing an Expert

System solution to the Traffic Light Controller problem. The example is founded
on work clone by IBM's Houston Scientific Center. This effort (with assistance
from Texas A&M University) combined thb strengths of Production systems,
Term Subsumption Languages and Object-Oriented programming to define a
design language, called TOP (Terms, Operators and Productions), suitable for

building verifiable Expert Systems. For a more thorough discussion of these
different paradigms please refer to the References section of your class
notebook. A complete design for the Traffic Light Problem written using the TOP

design language is provided at the end of this study.

The design approach detailed in this case study represents an approach that
focuses on continually refining the problem definition as understanding of the
problem expands. Fortunately, as in conventional software design, this
approach can be neatly broken into steps. Verification and Validation
techniques, as appropriate, should be applied at each step. This discussion will
address appropriate Verification and Validation approaches aI each step of the

development process.

Step 1: Knowledge-Base Architecture

To ease the verification effort, knowledge should be broken up into different
parts (i.e:, modules)• This analysis should focus on identifying the pdmary ideas
that describe the domain for a given system. In the case of the Traffic Light

problem, this can be done very easily. Be aware that the results of this step are
rarely final. As the problem becomes more cleady understood additional
changes to the architecture of the design will probably be needed.

TOP supports partitioning a knowledge base by allowing the designer to build
Ada-style packages. Each package defines the key ideas associated with a

given unit of knowledge. For example, from the Traffic Light problem, one could
easily identify several different units based on the key objects in the problem
description. These would be sensor, traffic_light and signal. Shown below is the
initial unit definition, using TOP syntax, for the sensor knowledge unit.

package SENSORS is

° • °

end SENSORS:

package body SENSORS is

end SENSORS:

2

Each unit will have a specification and a body. The specification will define the
interface to other units in the design. Each unit of knowledge should be Ioosley
coupled (i.e., it has few, if any, dependencies on other units) and strongly
cohesive (i.e., a given specificiation fully implements the knowledge).

Knowledge in one unit may be required to define another knowledge unit. For
example, the definition of the signal unit depends on the defintion of the sensor
unit. This is true because the indicators that define a signal are received from an

open sensor. To show these relationships in a TOP design, use the WITH (this
syntax is also derived from Ada) clause. For example, the signal unit
specification would appear as follows:

with SENSORS;

package body SIGNALS is

end SIGNALS;

Verification/Validation Approaches:

Verification approaches at this level are very dependant on how well the problem
is understood. This understanding must come from the expert in the field along
with a detailed requirements document that specifies the required behavior of
the expert system. Analysis using these two sources should focus on showing
that the units defined cover the problem space (i.e., nothing was left out) and
that the partitioning of the problem into units is consistent and maintainable.
Visualization techniques such as structure charts, semantic nets, etc. can be

helpful in analysis of the architecture.

Step 2: Define the Knowledge Terms

The next step in developing an Expert system using TOP would be to completely

define each of the knowledge units. As mentioned, each knowledge unit in the
design captures a unique part of the overall knowledge. In TOP, these unique
parts are described using Terms. The technique for identifying these terms is
called conceptualization of the domain.

What are Terms? Terms capture declarative domain knowledge. In other
words, terms are the words used to describe things in the problem domain.

Terms can be either concepts (an idea) or re/ations (something that relates
concepts). A simple method of identifying the highest levels of these terms is to
look for nouns (i.e., concepts) and adjectives (i.e., relations). For example, from
the Traffic Ught Problem, one could define a concept for each of the units

described previously such as signal, sensor, etc.. These particular concepts
represent the highest level idea to be captured by their respective knowledge

units. These are the easiest concepts to identify. Further understanding of the
problem reveals refinements to these high level concepts, such as

Open_Sensor, Received_Signal, etc.. Each of these refinements serve to clarify
the primary idea captured by the knowledge unit and therefore belong in the
same knowledge unit as the highest level concept. Relations are also identified

based on an understanding of the problem. For example, from the Traffic Light
problem, the relation Has_Approaching would serve to relate the concepts of a
Signal and an Indicator (a special kind of number).

In TOP, refinement of high-level concepts and relations is captured by (1) the
specializes keyword and (2) the ability to specify what makes one term a

specialization of another. For example, the idea of an Received_Signal is the
same as that of a Signal except that the Has_Approaching and Has_Waiting
indicators are associated with a Received_Signal (the reverse is not true). There
may be cases where no definition is possible or desired. These terms are
considered primitive.

Verification/Validation Approach:

Conveniently, concepts and relations can be thought of as sets or classes of
things. The members of these sets are called Instances. The definition

associated with a given concept or relation describes when something can be
classified as belonging to that given concept or relation. Clearly, if there are sets
then there are subsets. The specializes keyword serves to identify those terms

that are subsets. For example, instances of the concept Received_Signal are
also instances of Signal, but not necessarily the other way around. Only when
the instances satisfy the Received_Signal definition would they be classified as
both a Signal and a Received_Signal.

The advantage of viewing concepts and relations as sets is that there are lots of

good analysis techniques based on set theory. One simple technique to assist in

analyzing the concepts in a given unit is the Venn Diagram. Each knowledge
unit should capture one major set with all terms defined in that unit being subsets
of that one primary set. For example, from the Traffic Light Problem, all terms in
the unit, Signals, belong to one major set called Signal. If a term in the unit does
not fit quite right into the main set then it should be partitioned into its own
knowledge unit.

S = {Set of all signals}

R={Set of all received

AO = {Set of all received signals that indicate only appraoching traffic}

WO = {Set of all received signals that indicate only waiting traffic}

WA = {Set of all received signals that indicate both waiting and approaching
traffic}

P = {Set of all received and processed signals}

|

The Venn Diagram should help in defining good concepts and relations and help

in finding those things that do not make good sets, but rather define some global
constraint that the system should operate under. As the Venn Diagram is

defined, there will be some parts of the unit definition that are not conveniently
described as sets. These parts describe more general constraints or conditions
on the knowledge. Typically they involve more than one term. TOP designs
include the definition of Global Constraints for the purpose of capturing these

important parts of the knowledge. These parts are best left out of the Venn
Diagram since they are constraints and not sets. However, the Venn Diagram
can help in analyzing the conditions that define each global constraint. Some
examples of these will be shown later as we expand the scope of the solution to
the Traffic Light Problem.

Verifying the terms is the simplestpart of vehiylngthe ES because of their

declarative nature. Just like the first step in this process, showing that the

definitions are correct depends on the requirements and inputs from the expert.
Many of the more difficult aspects of the ES design, such as sequencing, are not
an issue at this early step. However, declarative definitions can become quite
complex (i.e., they involve many conditions). To make the verification process
easier, it is helpful to capture small groupings of conditions into a higher level
condition (i.e., stepwise refinement/abstraction).

For example, from the Traffic Light Problem, an Approaching_Only_Signal is a
Received_But_Not_ Processed_ Signal that indicates that a given signal indicates
that approaching traffic was detected while no traffic was waiting. By capturing
this detailed set of conditions as a concept, a name (or abstraction) can be
associated with those conditions. This means that other portions of the design
can check an instance's membership in the set Approaching_Only_Signal, rather
the specific conditions.

Step 3. Defining Tasks for Knowledge Units

After steps one and two the declarative part of the domain knowledge is
complete. Each knowledge unit captures a collection of terms that define a
piece of domain knowledge. However, nothing has been defined to transition
instances of a given term (or set) to instances of another set. Therefore, the

next simplest step in our design process will be to identify tasks (e.g. object-
oriented programming refers to these as operators) that perform these

transitions. These tasks relate very nicely to the verbs in the problem
description: For example, the unit, Traffic_Light, contains a task (or operator)
called Switch that changes the light.

TOP uses the Method construct to allow designers to define the different tasks in

a given knowledge unit. TOP does not declare a task (or operator) explicitly, but
rather defines it as a collection of its methods. A given task may have many
different methods based on different situations under which they might be used.
For example, the method, Switch, from the Traffic_Light knowledge unit

performs a different function based on whether the light is currently red or the
light is currently green. These differing situations are specifiei:l using the Used
When clause of the Method.

Methods also contain pre and post conditions. Preconditions are specified

using the Requires clause and the post-conditions are specified using the To
Produce clause. For example, the method Open from the unit, Sensors,

requires that a given sensor is not already open. A post-condition specifies the
conditions that must be true when the expressions contained in the Involves
portion of the Method have finished execution. For example, when the method
Open finishes execution, the given sensor should be now classified as an
Open_Sensor. In fact, it is very straightforward to show that the post-condition

6

for this method will always be satisfied, because the method asserts that the
given sensor is now an Open_Sensor.

It is important to recognize the difference between the situation conditions and

the pre-conditons. Pre-conditions express a collection of binding conditions that
must be true for all methods of a given task. Situation conditions, however,
specify a disjoint collection of conditions used to determine which particular
method is selected for execution.

Verification and Validation Approach:

Verification and Validation at this step in the design focuses on showing that the
correct tasks have been identified and that each method of a given task is
correct. Verifying that the correct tasks have been identified is faldy
straightforward. Once again, input from the requirements and an expert are

important is showing the correct tasks have been identified. Another technique
involves using the Venn Diagram approach outlined above. Since all concepts
of the unit are being viewed as sets one can analyze the identifed tasks to see
that these tasks perform all possible transitions (i.e., an instance of one kind of
set can always be transitioned to another kind of set). For example, in the Venn
Diagram that follows, the task Sense is shown to transition any instance of the

set Signalto its subset, Received_Signal. This does give the complete coverage
argument required. How does an instance of Received_Signal become an
instance of Approaching_Only_Signal? This one can be answered directly from
the definition of the concept, Approaching_Only_Signal. How can an instance of
Received_Signal become a Received But_Not_Processed_Signal?. That

happens as a direct result of the task, Sense. How does an instance of
Received- Signal become an instance of Received-And- Processed_ Signal?.
Apparently, given the definition of the Signals unit there is nothing defined to

perform that mapping. Is this a problem? In some cases this might identify
something that has been left out of the design. In this case, maybe not. The
intention is to allow what ever unit that is processing the Received_Signalto
indicate when it has finished processing that signal (hence the concept,
Received_And_Processed_Signal is primitive). Therefore, no problem exists.

The diagram shown does not indicate how the opposite transitions can be made
(e.g., how does an instance of Received_Signal become an instance of just

SignaP.). Take a few moments and figure out how to modify the diagram, based
on the TOP design, to reflect the missing parts.

Having shown that the correct tasks were identified, each task must be shown to
be correct. This is a three part process: verifying the situations, verifying the

pre-conditions and verifying the pest-conditions. Verifying the situation
expression involves showing that the combination of all situation expressions
(i.e., each situation for each particular method of a task) covers all possible
conditions under which the task operates. For example, coverage exists for the
Switch task in the Traffic_Light unit, because a method is defined for each

7

possible state of the light (i.e., red or green). The arguement is easily shown to
be true because an instance of a light can only be a red-light or a green-light.

Verification of pre-conditions involves showing that the Requires condition is a
necessary condition for all methods of a task. Verifying the post-condition
involves showing that the result of executing the Involves portion of the method
will produce the expected results. Showing tha_ both the pre and post conditions
are correct depends a lot on input from the requirements and experts.

S

S = {Set of all signals}

R={Set of all received signals}

AO = {Set of all received signals that indicate only appraoching traffic}

WO = {Set of all received signals that indicate only waiting traffic}

WA = {Set of all received signals that indicate both waiting and approaching

traffic}

P = {Set of all received and processed signals}

Step 4. Specifying Problem Solving Behavior/Tasks

Now that steps one through three have been completed, the basic building
blocks exist for defining the problem solving behavior of the Expert System. To
define this behavior it is beneficial to try and identify the problem solving

behavior by abstracting the specifics of what the system does to a general
approach. For example, using the Traffic Light Problem definition, an abstracted
problem solving approach might be as follows.

A goal exists that some activity should be performed (in this case, the light
should change). In order for this activity to be performed, however, a specific
event must take place (in this case, a period of time must expire). A subgoal,
then, is to watch for this specific event to fake place. This subgoal depends on

.other events (in this case, defining the desired interval of time to wait). Another
subgoal, then, is to watch for completion of these events.

Let's refine this description to be more specific for the Traffic Light Problem. The

desire is for the traffic light to change. What is required for this to happen? A
period of time must expire in order for the light to change. How does a period of
time expire? Clearly a period of timer expires when that exact number of time

units has passed. But, what period of time should expire? There are many
different circumstances under which a period of time is selected for expiration.

These different circumstances map directly to the specific scenarios (i.e.,
stimulus histories) discussed at the black-box view of the problem.

At this point, something interesting happens that was alluded to in step one. At

this point the Traffic Light Problem design has focused on three main units:
Sensors, Signals and Traffic_Light. However, refinement of the problem has
introduced a new unit that was not so apparent when the architecture was
initially defined. This unit, Timer_Unit, focuses on defining the measurement of
time periods to support the goal of periodically changing the traffic light. Should
this happen during design (and it usually will), the appropriate step is to re-work

steps one through three by adding in the new design unit. Venn Diagrams
describing Timer_Unit are shown next.

9

Timer_unit Term Analysis:

T = {Set of all timers}

R = {Set of all running timers}

S = {Set of all short timers}

S' = {Set of all unexpired short timers}

M = {Set of all medium timers}

L = {Set of all long timers}

L'= {Set of all unexpired long timers}

]o

"rimer_Unit Task Anal vsi_

T R

T = {Set of all timers}

R = {Set of all running timers}

S = {Set of all short timers}

S' = {Set of all unexpired short timers}

M = {Set of all medium timers}

L = {Set of all long timers}

L' = {Set of all unexpired long timers}

I •

Having modified the design to accomodate the Timer Unit, the domain
knowledge is complete and sufficient for capturing the problem solving behavior.
TOPcaptures each part of the problem solving behavior as a Production. Each

production has a name that describes the intended action this production will
perform, a condition that must be satisfied in order for the desired action to be
taken, a body that performs the action by invoking tasks and a post-condition

that describes the expected result of performing the actions in the production
body. Given this description let's examine who our description of the problem
solving behavior for the Traffic Light Problem maps to the solution shown at the
back of this study. The unit, Traffic_System, contains the highest level
productions that exhibit the problem solving behavior described.

11

At the highest level of the behavior description is the goal to change the light.
The production, Change_The_Ught, performs this action. As specified in the/f

cond_on of the production, achieving this goal depends on the required pedod
of time expiring; which, of course, matches the problem solving behavior defined
above. Next, let's exahlrneth§ subgoal of causing a pedod of time to expire.
Well, the declarative knowledge explicitly states what causes a period of time to

expire, but how is that state achieved? Clearly, this state is achieved by
reducing the number of seconds until expiration to zero. The production,
Tick_The_Running_Timer, performs this action.

Let's examine our next subgoal and that is selecting a period of time to expire.
The global constraints shown in the unit, Traffic_System, capture the conditions
that guide selection of the appropriate timer based on the requirements (note
that these capture conditions involving more than one term). For example, the
global constraint, Timer_Should_Switch, will flag when a 15 or 60 second

interval should be used instead of the longer 120 second interval. Using these
abstratct conditions, the productions, ReStart_The_Running_ Timer and
Sm'tch_Timer perform the action of selecting the required interval of time to
expire.

Now that the problem solving method has been defined, the specific actions
each production will take must be defined. Typically, this will involve a stepwise
refinement activity involving specification of more abstract tasks that invoke less
abstract tasks. For example, the task, Switch_Ught in unit Traffic_System
invokes the task Switch from unit Traffic_Light to change the light and the tasks
Start and Stop from the unit Timer_Unit to set a new expiration time for the next

change of the light. The other tasks in Traffic_System also reflect this process of
stepwise refinement.

Verification and Validation

Verifying this final step in the process is the most difficult part of the process.
The first step is to show that all necessary productions have been defined to

achieve the problem solving behavior, it is also necessary to show that the
sequencing of these activities is correct. The discussion outlined above is an

informal way to descdbe the problem so that sequencing can be vedfled.
Another way is to use a state-sequence expression. A state-sequence
expression explicitly dictates the expected order of invoking productions. A
simple expression for the Traffic_System unit might be as follows:

[Tick_The_Running_Timer I
ReSta__The_Running_Timer I

Switch_Timer] -> Tick_The_Running_Timer -> Change_The_Light}

This expression simply states that Tick_The-Running_Timer,
ReSta__ The_Running_Timer and Switch_Timer can be fired in a non-

12

deterministic fashion, but 7"/ck_The_Running_ Timer must always precede firing
the ChangeThe_Light production.

Next, all pre and post conditions must be verified as correct. This is a very
detailed process of mapping conditions in the productions to the composition of
conditions from the invoked tasks. For example, the If condition of the
production, Change_The_Light, must match the Requires condition for the
Switch_Light task. In addition, the result of executing Switch_Light must
produce a result that is compatible with the post-condition, if any, of

Change_The_Light. Fortunately, this is easy when post-conditions have been
specified. For this case, simply match the To Produce clause of the
Switch_Lighttask and the To Produce clause of the Change_The_Light
production.

Next, any tasks invoked by higher level tasks need to have their pre and post
conditions matched against the conditions in the invoking task. For example, in
the task, SwitchLight, it follows that the task Stop can be invoked for the timer

that just expired because an Expired_Timer is considered a Running_ Timer and
the passed timer must be a Running_Timerfor Stop to be used. This process is
repeated until all tasks are shown to produce the correct results with respect to
the productions that invoked them.

t3

Specifications

Package Sensors Is

..._t

- Slate Dada

- Model

A sensor is an item that contains (or sends) signals. Other
objects *mad" the sensor to access new signals. A sensor
can be "mad" only after it has been "opened."

Concept Sensor is Primitive;
Concept Open_Sensor Specializes Sensor And Is Primitive;

- Constraints
- N/A

- Initialization

Traffic_Sensor Is_A Sensor;,

- End State Data

- Transitions

Problem Solving Method
- Whenever a signal has not been received and sensor is
- "open" then the sensor should be "read" for new signal
- values
w

Production Open_Sensors Is
If

S IS_A Sensor And
NOT S Is_A Open_Sensor

Then
Perto_ Open(S)

End Production;

- Method Open(S: In Out Sensor)
-- will open a sensor for processing
- End Open;

Method Open(Sn: Sensor);
. e_,

14

- EndTransitions

End Sensors;

With Sensors;

Package Signals Is

m<:*

- State Data

u

H

n

Model

The signals package captures the notion of a signal. A
signal (represented by a 0 or 1) is used to notify the
traffic controller that some external event has happened.
A signal is considered to be "received' when a new indicator
is received from the sensor. A signal is considered to
be "triggered" when the sensed value is a I from a "received"
signal.

Concept Signal Is Primitive;
Concept Indicator Specializes Number And Is Primitive;

Concept On_Indicator Specializes Indicator And Is Defined By
{

An indicator is ON when its value is 1

}
i Such That i Is_A Indicator And i = 1

End Concept;

Concept Off_Indicator Specializes Indicator And Is Defined By
{

An indicator is OFF when its value is 0

}
i Such That i IS_A Indicator And i = 0

End Concept;

Relation Has_Approaching(S: Signal; I: Ind'¢ator) Is Primitive;
Relation Has_Waiting(S: Signal; h Indicator) IS Primitive;

Concept Received_Signal Specializes Signal And Is Defined By
{

A Received But Not_Processed_Signal is a Signal
that Has_Indicator I that has just been received from a
sensor.

}
r Such That r Is.A Signal And

r Has_Approaching il And
r Has_Waiting i2

End Concept;

Concept ReceivedAnd_Processed_Signal Specializes
Received_Signal And Is Primitive;

15

Concept Received_But_Not_Proceased_Signal Specializes
Received_Signal And Is Defined By

.{
If a received signal has not been processed then it is
a "receivedbut_not_processed" signal

}
t Such That t Is._A Received_Signal And

NOT t Is_A Received And_Processed_Signal
End Concept; "_

Conceptwalt_g_Ordy_Sigr_Spec_Zzu
ReceivedBut_Not_Processed_Signal And Is Defined By

S Is_A Waiting_Only_Signal when only the
Walting_S_nal _; Viggered

}
s Such That

s Is_AReceved_But_Not_Pmcessed_SenJ
s HasApproaching il And
il Is A Offlndicator And
s Has_Waiting i2 And
i2 Is_A On_Indicator

EndConcept;

ConceptWa_ngJu_dJ_roach_LS_gr_Spec_iz_
Received_But Not Processed_Signal And Is Defined By
{

S is_A Waiting_And_Approaching_Signal when
both the Wa_ng_Signal and

Approaching_Signal is triggered
}
s Such That

s ts..A Received_But_Not_Processed_Signal
And

s Has_Approaching il And
il Is_A On_Indicator And
s Has_Waiting i2 And
i2 Is_A On_lndcator

End Concept;

CoaceptAW_r._LO__S_ SpeCaliz_
Received_ButNot_Processed_Signal And Is Defined By
{

S Is_A Al:zproaching_Only_Signal when only the

A,oproa_ng_.Sigr,_s tnggered
}
s Such That

s Is_A Received But Not_Processed_Signal
And

s Has_Approaching il And
il Is_A On_Indicator And

s Has_Waiting i2 And
i2 Is_A Off_Indicator

End Concept;

]6

.7

Concept No_Walting_.Or_Approaching_Signal Specializes
Received_But_Not_Processed_Signal And Is Defined By
{

S Is_A Approaching_Only_Signal when only the
Approaching_Signal is triggered

}
s Such That

s Is_A ReceivedBut_Not_Processed_Signal
And

s Has_Approaching il And
il Is_A Off_Indicator And

s Has_Waiting i2 And
i2 Is_A Off_Indicator

End Concept;

- Constraints
- N/A

- Initialization

Traffic_Signal: Signal;

- End State Data

- Transitions

- Whenever a signal has not been received and sensor is
- "open" then the sensor should be "read" for new signal
- values

Production Get_NewSignals Is
If

Traffic_Sensor: Open_Sensor And
NOT Traffic_Signal: Received_Signal

Then
Perlorm Sense(Traffic_Signal, Traffic_Sensor)

End Production;
mt_,

...<*

- Method Sense(s: in signal)
- will retrieve a new indicator from the sensor
- End Sense;

Method Sense(s: Signal; sn: Sensor);
_o>

- Method Reset(s: in received_signal)
- will indicate that the receivedsignal, s, has been
- processed and cannot be processed again until a
- new indicator has been received

17

- End Reset;

Method Reset(s: Signal);

- End Transitions

End Signals;

With Signals;

Package Timer_Unit Is

- State Data

- Model
N

- A Timer is an item that serves to mark the elapse of a given
- period of time. A Timer is considered to by "set" when a
- given period of time is associated with that timer. A "set"
- timer is "expired" when that given pedod of time expires
- (i.e., is 0)

Concept Timer Is Primitive;
Concept Tick Specializes Number And Is Primitive;
Relation Expires_In(T: Timer; CT: Tick) Is Primitive;
Relation Has_Expiration_Value(T: Timer;, CT: T'ck) Is

Primitive;
Relation Has_Secorclary(P: Timer; S: Timer) Is Primitive;

Relation Is_Secondary_To(S: Timer; P: Timer)
Is Defined By

{
P Is_Secondary_To S when S Has_Secactdaw P

}
(s, p) Such That p Is_A Timer And s Is._A Timer And

p Has_Secondaw s
End Relation;

Relation Switches_To(P: T'mler;,S: Timer) Is Primitive;

Concept Running_.T_er Specializes Timer And Is Primitive;

Concept Long_T=rner Specializes Timer And Is Defined By
{

The Long_Timer expires in 120 seconds
}
t Such That t Is_A Timer And

t Has_expiration_value ev And ev = 120
End Concept;

Concept Medium_Timer Specializes Timer And Is Defined By

18

{
The Medium_Timer expires in 60 seconds

)-
t Such That t Is_A Timer And

t Has_ExpirationValue ev And ev = 60
End Concept;

Concept Short_Timer Specializes Timer And Is Defined By
{
The Short_Timer expires in 15 seconds

}
t Such That t Is A Timer And

t Has_Expiration_Value ev And ev = 15
End Concept;

Concept Expired_Timer Specializes Running_Timer And
Is Defined By
{
Only an "running"timer can expire. Expiration occurs
when the seconds remaining before expiration is 0.

}
t Such That t Is_A Running_Timer And

t Expires_in w And w = 0
End Concept;

Concept UnExpired_Short_Running_Timer Specializes
Running_._mer And Is Defined By
{

A short tirner that is running but has not expired
}
t Such That t Is_A Running_T'mler And

t Is_A Sho__T'.'ner And
NOT t Is_#. Expired_Timer

End Concept;

Concept UnExpired_Long_Running_Timer Specializes
Running_Timer And Is Defined By
{

A long timer that is running but has not expired
}
t Such That t Is_A Running_'rimer And

t Is_A Long_Timer And
NOT t Is_A Expired_Timer

End Concept;

- Constraints

Global Constraint
Timer_To_Use_When. None_Are_Ru nning
Specializes Timer And Is Defined BY
{
Use the long timer when no other timers are running

}
t Such That t Is_.A Long_Timer And

NOT t Is_A Running_Timer And
(s Is_A Short_Timer And

19

NOT s Is_A Running_Timer) And
(m Is_A Medium_Timer And

NOT m Is_A Running_Timer)
End Global Constraint;

Initialization

M Is_A T',Tler
That Has_Expiration_ Value 60;

S Is_A T,_er
That Has_Expira'don_Value 15 And

Has_Secondary M;

L Is_A Timer
That Has_Expiration_Value 120 And

Switches_To S;

- End Slate Dala

..,_t

- Tmnsitiorm

- Whenever all timers are not running, start the timer the
- primary timer (in this case. the long timer)

Production Initial_TBne'_$tart b
If

t: T',_er_To_Use_When_None_Are_Running
Then

Perform Start(t)
End Production;
t:)

- Method Stop(t: 13met) Is
- Stop a running timer
- EndStop;

Method Stop(t: Timer);

- Method Start(t: "timer) Is
- Start a timer that is not running
- End Start;

Method Start(t: Timer);

- End Transitions
e>.

2O

End Timer_Unit;

With TimerUnit;

Package Traffic_Light Is

- State Data
u

- Model

- A "light" is an item that controls the flow of traff'¢ in
- a given direction. The control of traffic flow is achieved
- through the use of colors (red and green),

Concept Light Is Primitive;
Concept Red_Light Specializes Light And Is Primitive;
Concept Green_Light Specializes Light And Is Primitive;

- Constraints
-N/A

- Initialization

NS_Light • Red_Light;

- End State Data

N<*

- Transitions
u

- Method Switch(l: light)
- will switch the color of the light in a given direction
- End Switch;

Method Switch(h Light);

- End Transitions

End Tmffic_.Light;

With Traffic_Light;

With TimerUnit;

Package Traffic_System Is

- State Data

21

w

N

M

N

u

Model

Timers fall into certain "categories" based on the traffic
conditions. Timer_Should_Tick, Timer_Should_Switch and
Timer_ShouldBe_ReStarted define the possble categories
for a timer based on traffic conditions.

Constraints
Global Constraint T'wner_Should_Tick(t: Timer, s: Signal)

Is Defined By
{
A Timer_Should_Trek when the no approaching or waiting
traffic is detected

}
t Such That t Is_A Running_Timer And

NOT t IS_A ExpiredTimer And
s Is..A No_Waiting_Or_Approaching_Signal

End Global Constraint;

Global Constraint 11mer_Should_Switch(t: T'aTmr;s: Signal)
Is Defined By
{
A Timer_Should_Switch when the long timer is running
and a waiting signal is rec_ed.

}
t Such That t Is A UnExpiredLong_Running_Timer And

(s Is..A WaiUng_on_LSignalOr
s Is._AWa__And_Approa_ing_S_al)

End Global Constraint;

GlobalConstraim Timer_Should_Be_Restarted(t:Trr_,
S: Signal)

IS Defined By
{
A Timer Should_Be_ReStarted when the running timer
has not exp_ed and the current signal indicates
approaching traffic. When the running timer is a long timer
a waiting signal will take precedence over the approaching
signal.
}
t Such That (t Is_A UnExpired_Short_Running_T'_ner And

(s Is..A Approaching_Only..Signal Or
s Is A Waiting_And_Approaching_Signal))

Or

(t is_A UnExpired_Long_Running_Timer And
s Is_A Approaching_Only_Signal)

End Global Constraint;

Global Constraint Long_Timer_Expired_At(t: T_er; s: Signal)
Is Defined By
{
A Long_Timer_Expired_At when the running timer is

long and it has expired and a new signal has been
received but not processed.

22

}
t Such That t Is._A Long_TimerAnd

t Is_A Expired__mer And
s Is_A Received_But_Not_Processed_Signal

End Global Constraint;

Global Constraint Medium_Timer_Expired_At(t: Timer;
s: Signal)

Is Defined By
{
A Medium_Timer_Expired_At when the running timer is
medium and it has expired and a new signal has been
received but not processed.

}
t Such That t Is_A Medium_Timer And

t Is_A Expired_Timer And
s Is_A Received_But_NotProcessed_Signal

End Global Constraint;

Global Constraint Sh__Timer_Expired_At(t: Timer; s: Signal)
Is Defined By
{
A Short_Timer_Expired_At when the running timer is
short and it has expired and a new signal has been
received but not processed.
}
t Such That t Is_A Short_Timer And

t Is_.A Expired_Timer And
s Is_A Received_But_Not_Processed_Signal

End Global Constraint;

- Initialization

NS..Light :Red_Light;

- End State Data

...<*

- Transitions

_.<t

- Whenever the long timer is running and waiting traffic is
- detected then switch to running the short and medium
- timers

Production Switch_Timer Is
If

Timer t Should_Switch Because of s And
s Is_A ReceivedBut Not Processed_Signal

Then
Perform Switch._Timer(t)
Perform Reset(s)

End Production;

_<-

23

- Whenever no approaching or waiting traffic is detected
- the currently running timer should be pulsed

Production Tk:k_The_Running_'limer is
If

Timer t Should_T'ck Because of s And
s ls_A Received_But_Not_P_Signal

Then

Perform Do_Tick(t)
Perform Reset(s)

End Production;

- Whenever the long timer is running and approaching
- traffic (only) is detected or the short/medium timers are
- running and apl:xoaching traffic is detected ('m_3ardless
- of waiting traffic) the running lJmer should be restarted

Production ReStart_The_Runni,ng_Timer Is
If

Timer t Should_Be_Restarted Because of s And
s Is_A Received_But_Not_Processed_Signal

Then

Perform Re_Start(t)
Perform Reset(s)

End Production;

..<*

- Whenever a running timer expires, the light should change
- and all timers are stopped

Production Change_The_Light is
If

t Is_A Expired_Timer
Then

Perform Switch_Light(NS_Light)
End Production;

..<*

- Method Do_T'ck(t: T'mler) Is
- Decrements the number of seconds until a timer
- expires. In the case where a timer has a secondap]
- timer (i.e., one that runs at the same time), both timers
- are decremented.
- End Do_T'ck;

Method Do_Tick(t: Timer);

...<*

- Method Re_Start(t: Timer) Is
- Stops and Starts the timer at its maximum expiration

24

- time.
- End Re_Start;
N

Method Re_Start(t: Timer);

__<*

- Method Switch._'13mer(t:Timer) Is
- Stops the currently running timer and turns on the
- short/medium timers to measure when light should

- change
- End Swich__mer;

Method Switch_Timer(t: Timer);

._<*

- Method Switch_Light(t: Timer) Is
- Changes the color of the light and stops running timer(s).
- End Switch_Light;

Method Switch_Light(h Light);

- End Transitions

End Traffic_System;

25

Bodies

Package Body Sensors Is

°.<*

- Transitions

-- Method Open(S: In Out Sensor)
- will open a sensor for processing
- End Open;
N

Method Open(Sn: Sensor) Is
RequiNm Sn Is_A Sensor And

NOT Sn Is_A Open_Sensor
Involves Open physical file

Assert Sn Is_A Open_Sensor
To Produce Sn Is...AOpen_Sensor

End Method;

- End Transitions

End Sensors;

Package Body Signals Is

- Transitions

_t

- Method Sense(s: in signal)
- will retrieve a new indicator from the sensor

- End Sense;

Method Sense(s: Signal; sn: Sensor) Is
Requires S Is_A Signal And

sn Is_A Open Sensor
NOT s Is_A Received_Signal

Involves i ,, indicator from Sensor
If sensor finished transmitting Then

halt
End If

Assert i Is..A Indicator
Assert s Has_Approaching i
i - next Indicator from Sensor
If Sensor finished transmitting Then

halt

26

EndIf
Asserti Is_AIndicator
Asserts Has_Waitingi

To Produces Is_.AReceived_SignalAnd
s Is_AReceivedBut Not_Processed_Signal

EndMethod;

- MethodReset(s:in received_signal)
- willindicatethatthereceived_signal,s, hasbeen
- processedandcannotbeprocessedagainuntila
- newindicatorhasbeenreceived
- EndReset;

MethodReset(s:Signal)is
Requiress Is A Received_Signal And

s Is_A Received_And_Processed Signal And
(s Has_Approaching il And

il Is_A Indicator) And
(s Has_Waiting i2) And

i2: Indicator)
Involves Retract il ls_A Indicator

Retract s Has_Approaching il
Retract i2 Is_A Indicator
Retract s Has_Waiting i2
Retract s Is_A Received_Signal

To Produce s Is_A Signal And
NOT s Is_A Received_Signal

End Method;

- End Transitions

End Signals;

Package Body Timer_Unit Is

- Transitions

- Method Stop(t: Timer) Is
- Stop a running timer
- End Stop;

Method Stop(t: Timer) Is
Requires t Is_.A Running_Timer And

t Expires_In e
Involves Retract t Is_A Running_Timer

Retract t Expires_In e

27

To Producet Is_ATimer
EndMethod;

->

...<*

- Method Start(t: Timer) Is
- Start a timer that is not running
- End Start;
m

Method Start(t: Timer) is
Requires t Is_A Timer And

NOT t Is_A Running..T_ner And
t Has_Expiration_Value ev

Involves Assert t Is_A Running_Timer
Assert t Expires_In ev

To Produce t Is_A Running_Timer
End Method;
mr>

w

- End Transitions

End Timer_Unit;

Package Body Tmffic_.Light Is

- Transitions

- Method Switch(l: light)
- will switch the color of the light in a given direction
- (when red switch to green)
- (when green switch to red)
- End Switch;
N

Method Switch(l: Light) is
Used When I Is A Gr__l.ight
Requires NOT I Is_A Red_Light
Involves Retract I Is_A Green_Light

Assert I Is_A Red_Light
To produce I Is_A Red_Ught And

NOT I Is...A Green_Light
End Method;

Method Switch(l: Light) is
Used When I Is_A Red_Ught
Requires NOT I Is_A Green_Light
Involves Retract I Is_A Red_Light

Assert I Is_A Green_Light
To Produce I Is_A Green_Light And

28

End Method;
_->

- End Transitions

End Traffic_Light;

NOT I Is_A Red_Light

Package Body Traffic_System Is

- Transitions

- Method Do_T'ck(t: "r',T1er)is
- Decrements the number of seconds until a timer expires.
- In the case where a timer has a secondary timer (i.e.,
- one that runs at the same time), both timers are
- decremented.
- End Do_T'ck;

Method Do_Tick(t: Timer) Is
Used When t Is_A Long_Timer Or t Is_A Medium_Timer
Requires Timer t Should_T'ck Because of s And

t Expires_In w And
s Is_A Received_But_Not_P__Signal

Involves Retract t Expires_In w
Assert t Expires_In (w-l)
Assert s Is_.AReceived_And_Processed_Signal

•To Produce s Is_A Received_And_Processed_Signal And
t Expires_In (w-l)

End Method;

Method Do_T'mk(t: Timer) Is
Used When t Is_A Short_Timer
Requires Timer t Should_Tick Because of s And

t Has_Secondary m And
t Expires..in w And
s Is_A Received_But_Not_Processed_Signal

Involves Retract t Expires_In w
Assert t Expires_In (w-l)
Perform Do_Tck(m)

To Produce s Is_A Received_And_Processed_Signal And
t Expires_In (w-l)
m Expires_in I tewer seconds

End Method;

-o Method Re_Start(t: Timer) Is
-- Stops and Starts the timer at its maximum expiration
-- time.

29

- End Re_Start;

Method Re_Start(t: "13rner)Is
Requires Timer t Should_Be_ReStarted Because of s

And
s Is_A Received_But_Not_Processed_Signal

Involves Perform Stop(?t)
Perform Start(?t)
Assert s Is..A Received_And_Processed_Signai

To Produce s Is_A Received_And_Processed_Signal
t Has_Expiration_Value wl And
t Expires_In w2 seconds And
wl =w2

End Method;

_t

- Method Switch_Timer(t: Timer) Is
- Stops the currently running timer and starts the
- short/medium timers for measuring light change
- End Switch_Timer;

MethodSwitch_T'=_er(t:Timer)Is
Requires 13rnert Should_Switch Because of s And

t Swimhu_TopriAnd
pd Has_Secondary sec And
s Is_A Received_But_Not_Processed_Signal

Involve= Perform Stop(t)
Perform Start(pn')
Pedorm Start(sec)
Assert s Is_A Received_And_Processed_Signal

To Produce NOT t Is_A Running_Timer And
pd ls_A Running_Timer And
sec Is_A Running_Timer And
s Is_A Received_And_Processed_Signal

End Method;

- Method Switch_Light(t: Timer) Is
- Changes the color of the light and stops running
- timer(s).
- EndSwech Light;
N

MethodSwe_h_ht(l: Light)
Used When Long_Timer t Expired_On s
Requires t Is_A ExpiredTimer And

s Is_A Received_But_Not_Processed_Signal
Involves Perform Switch(I)

Perform Stop(t)
Assert s Is_A Received_And_Processed_Signal

To Produce

NOT s Is_A Received_And_Processed_Signal
End Method;

3O

MethodSwech_L ht(l:Li0ht)IS
Used When Sho__'rimer t Expired_On sig

Requires t Has_secondary s And
t Is_A Expired_Timer And
sig Is_A Received But Not_Processed_Signal

Involves Perform Switch(I)
Perform Stop(t)
Perform Stop(s)
Assert sig Is_A Received_And_Processed_Signal

To Produce NOT t Is_A Running_Timer And
sig Is_A Received_And_Processed_Signal

End Method;

Method Switch_Light(l: Light) Is
Used When Medium_Timer t Expired_On sig
Requires t Is_Secondary_To s And

t Is_A Expired__mer And
sig Is_A Received_But_Not_Processed_Signal

Involves Perform Switch(I)
Perform Stop(t)
Perform Stop(s)
Assert sig Is_A Received_And_Processed_Signal

To Produce NOT t Is_.A Running_Timer And
sig Is._A Received_And_Processed_Signal

End Method;

- End Transitions

End Traffic_System;

31

Cleanroom Approach to the
--Traffic Controiie-r-Probiem _

Authors:

Fred Highland, Brent Komman

IBM Corporation
100 Lake Forest Blvd

Gaithersburg, MD

IThe fo]]owiilg writeup has been edited slightly by Scott French and David Hamilton for inclu_on in the
classroom material

introduotion

Technologies such as Clemuoom Software Engineering (Mills, et. al, 1987) promise to

dramatically improve the quality of software products by allowing their correctness to be

formally verified. In order to use these technologies, the design must be specified in a

design language and verification techniques must be used to prove the design is correct.

Numerous languages and techniques have been developed to specify and verify the

designs for procedural software. However, very little has been done for Knowledge

Based Systems (KBS). The methodologies for designing KBS are poorly understood and
verification and test even less understood.

The purpose of this case study is to discuss a language for the design and verification of

KBS application software. The basic inmitious and requirements for the design language

are discussed FL_ followed by an outline of the design language syntax and semantics.

Next, the characteristics of the language are applied to defined a solution for the waffic

corm'oiler problem.

Basic Concepts

The design language presented here is based on two important inmitious about KBS:

• they are a mixture of procedural and non-procedural programming techniques

• they are not just unorganized collections of rules and frames but are intended to

operate in a specific manner by the developer

The idea that KBS are built fxom a mixture of procedural and non-procedural

programming techniques derives from the fact that many solutions are not strictly

procedural or non-procedural in nature. Rather, solution approaches are composed of a
nmnber of different subprocesses with different ".interactions. Some are depmuteut on the

_sults of other processes and must be organized procedura/ly. Others may be performed

independently or in parallel once the proper context is established. It is this latter type

that KBS technologies, with their implicit control mechani.qn_ are best suited for. But it

requires a mixture of the two forms to produce a complete solution.

The idea that KBS are not unorganized conections of rules and frames is more subtle.

While some useful systems have been built this way, most applications are of such a

complexity that some organization or process must be used to decompose the problem.

This typically takes the form of a set of steps that must be performed or sequences of

events that must occur in order to solve the problem. This may be represented with state

or control variables which determine which rules are applicable at any point in time or it

may be implicit in the changes arid availability of the objects referenced by the rules. In

the latter case, control is provided more by the irLference engine than by the user. But

often the implicit control is not exactly what is desired and meta-level controls or

2

changes to the rules must be used to produce the desired result. In either case, there is

implicit meta knowledge in the problem solving process which is usually present in the

mind of the application builder but often hidden in the implementation.

These two intu/tions suggest that KBS application design could be captured in a language

that. is .based,.in part, on existing procedural software design languages but with

extensions that exploit the characteristics of KB$ programming.

• ",__'_ :'..

Forpractical reasons, the design language must also meet the following _quirements:

• the design should be verifiable with a reasonable amount of effort and without a

deep understanding of the underlying KBS tool

• the design should be easily translatable into the underlying KBS tool's knowledge

representation language

These two _ents are conflicting, in that the language, to be easily vedf_le,

should be a:sprocedural as possible since tecimiques for verifying procedural designs are

mxtexstood. However, for the language to be translatable to a KBS tool's xepresentation

language, it mast exhibit a non-procedural, declarative style, which is inherently difficult

tO verhey.

Design Language Specification

The KBS Design Language (KDL) implements the requirements defined above for a

design language. The following sections summarize KDL's definition in terms of syntax,

semantics and con'ectness conditions.

Syntax

The syntax of the unique components of the KDL is summarized in figure. This design

language is not meant to replace existing procedural design languages but rather to

augment then to deal with. the concepts embodied in KBS programming. The def'mifions

of global_data dc,finirions, local...data_defa'dtions, and actions in WHEN and

WHENEVER statements are left unspecified in this definition so that structures fi'om

other design or implementation languages may be used to specify details. This allows the

use of procedural control stracnue_ in the actions of WHEN and WHENEVER

statements in order to express functions that may be better expressed using procedural

means (e.g. WHILE loops, IF statements, etc.).

KB SEGMENT kb_segrnem_name (arguments)

[segment_intended_function]

• GLOBAL DATA

-globai_dara_d m'aons

LOCAL DATA

-: local._datadef tions

[when_intended_function]

when name'WHEN

[co ' don..e ,re on]

DO INTERRUPTIBLE

[when_action_in__function]

acdons
.--. .°. , . . • . .

END

[whenever_intended_functicm]
whenever name WI1ENEVER

[condition_expression]

DO

[whenever_action_intended funcdon]

END

END KB SEGMENT M___zz__m_z

Figure 1: KB Design Language Syntax

Semantics

The semantics of the design language are defined to accomplish the following goals:

• define the legal operation of the consm_cts

• restrict usage of the constructs to allow verification

• maximize the KBS tool independence of the language

4

_I_ne sem_u_ics of _ of the basic components of the language, KB SEGMENT,

WHEN statements, and WHENEVER statements, are discussed below.

KB S _e_,ments: The KB SEGMENT provides the highest levd of mo,9_lAri_ti_ and

seoping for a knowledge base. It defines a logical unit of wozk that performs a single

[segment,inten__function]. K_S applications may be composed of one or more KB

SEGMENTs tha_ may interact with other KB SEGMENTs or procedural functions.

:p.

A KB SEGMENT is composed of definitions for global and local data, one or more
WHEN statements and zero or more WHENEVER statements. The WHEN statements

completely implement the .'pv.segment_intended_function:epv. of the KB SEGMENT in

a non-detemfinisfic manner. The WHENEVER statements support the WHEN

statements by providing oppommisfic argi data driven functions that can be used to
achieve the fanctions of a WHEN action. WHENEVERs are not active outside of the

context of an active WHEN statement. However, their functionality can be shared by all

WHEN statements.

WHEN Statements: WHEN statements represent a condition under which one or

more actions axe to be performed. Their intent is to explicitly represent meta or control

knowledge in the design of the system and the conditions under which that processing is

approp_ate.

The requirement of non-determinJ.mi of WHEN statements in accomplishing the

[segment_intended_function] allows for the specification of multiple possible solution

scenm'ios while forcing those scenarios to be independent of each other. This specifically

disallows the execution of a sequence of WHEN statements to accomplish the

[segment..intendedfunction] as such would represent an hnplicit intent of control which

would be difficult to verify.

The WHEN statement is composed of a [when "mtended_fimction], a

[condition..expression], and a WHEN action part. The [when_int_ded_function]

specifies the abstract condition under which this WHEN statement is appropriate, and the

effect it will have. The [condition_expression] provides a more concrete specification of

the appropriateness conditions. The WHEN action part specifies a sequence of functions

that implement the [when_action_intended_function]. These functions are specified with

procedural specifications that represent the sequence of processing. They may be

implemented using a mixture of procedural design statements and WHENEVER

statements. When WHENEVER statmnents are used, their intended function is specified

in the WHEN actions so that the WHEN statement can be verified in a seLf-contained

manner. The .'pv.actions:epv. of a WHEN statement may also specify a CALL KB

SEGMENT action whose intent it is to invoke another KB SEGMENT.

Thea_ions,of a WHEN sta_ment allow two foxms of _ec_i___on to _ for

implementation approaches. The DO form specifies that all actions within the structure

are executed sequentially without intemrp_on. This is the normal semantic of pr_

_..o_languages and is appropriate if the implementation is co use either

procedural programming or rule actions without demons.

The DO INTERRUPTIBLE form specifies that WHENEVER stazeme_s apply

between each of the actions. This allows WHENEVER statements co be _plied as soon

as the appropriate condition exists. DO INTERRUPTIBLE blocks may contain DO

blocks to specify that certain groups of aczions are not _'ble. _VHENEVER

statements apply only between individual .-pv.acziom:epv. md DO blocks wizhin a DO

INTERRUFrIBLE block.
• . . "'.

WHENEVER S tements: mmnems oppommi or
dam driven roles or demons that may fire at any time, and m many times as necessary

during the execmion of a DO INTERRUPTIBLE block of a WHEN smtemenz. If more

than one WHENEVER is eligible to fire (i.e. its [condition_e_m_ion] evaluates to

true) the order of firing of the WHENEVER statements can not produce different

remlm. As with WHEN smmmenm, such a required ordering _senm an implick

control that should be explicitly stated in the design.

The components of a WHENEVER smmmem are similar to that of a WHEN providing

a whenever intended_function., a [condition_expression], and a WHEN action. Unlike

the WHEN statement, however, the actions of a WHENEVER s'tazmnenz are performed

sequemiaUy and are not _le by other WHENEVER statements.

Correctness Conditions

A set of con_lness conditions or proof rules for verifying chat a design is con'ect have

been defined. These allow verificmion of the design at vario_ levels of absu'acfion,

• Uowing either top-down or bouom-up verification _:bniques to be used.

Using a top down approach, the verification stages and associated primitives are as
follows:

KB SEGMENT: [$esment_intendedjuncrion} is implemented

by [when_intendedJunc_n]s

WHEN: [when_imended.func_n] is implemented by
WHEN statement

WHEN Action Part:. [when..action_intended.function] is

implemented by WHEN actions

6

-7

WHEN INTERR_LE Actions: WHEN actions are implemented by their

refinement and by applicable WHENEVER

statements

WHEN (unintenuptible) Actions: WHEN actions are implemented by their

refinement

WtiENEVER [whenever_intended..function]isimplemented

by grEIENE_R statement

WHENEVER Action Part: [whenever_action_intended.function] is

implemented by WIIENEVER actions

Correcmessconditions are defined for each construct or set of constructs at each level of

abstraction as mentioned above. The general approach to the correctness conditions is to

verify that the_omponents of the construct implement the function of the consu'nct and

that the components are well behaved with n_'pcct to the restrictions imposed on them by

the semantics of the design language. This involves verifying that improper interactions

do not occur and that the results are deterministic.

The most significant pan of the verification process with this design language is the

verification of the KB SEGMENT. and the WHEN INTERRUIrrIBLE actions. The

verification of other parts of the language follows approaches similar to those used with

procedural programming languages.

The KB SEGMENT is correct if:.

1 For all arguments, does performing all WHENs accomplish

[segment_intended.function]?

2 Axe all[when_intended function]s independent of all other

[when_intendedffunction]s? That is, could the remit of one

[when..intend__function] modify data used in another

[when_intended..fanction]?

The first correctness condition is easily verified by comparison with the

[segment_intended_function] and considexation of the data being processed. Each logical

set of data must meet the conditian of and be properly processed by fl_e

[when_intendedffunction]. The second correctness condition verifies that a WHEN

applies only once to a logical set of dam. If sequences of WHENs are required to

accomplish the intended function, then the,re is implicit control that has not been

specified and has been left for the reviewer to discover. Hence, this restriction not only

makes verification easier but forces control to be explicit.

A WHEN INTERRUPTIBLE Action is correct if, for all arguments:

7

1 Doesperfoxmingtheimpl,_rn_,tAt/onof the WHEN action and applicable

WHENEVERs accomplish the action

2 Does the execution of applicable WHENEVERs terminate?

3 Does the execution of applicable WEIENEVERs produce the same results

regardless of order (i.e. is the result of the execution detennin_c)?

These verification rules intcraot to verify that a set of WHENEVERs accomplish the

intended function of a WHEN action. These rules allow latitude on the part of the

designer in using WHENEVERs, but this must be balanced with verifiability. The first

rule requires that all _ in a KB SEGMENT be examined to determine if

then" applicability is appropriate. The second rule allows multiple WHENEVERs to be

used to accomplish a f'unc_on but requires that their termination must be verifiable. The

third rule n_/res that the results of execution of multiple WHENEVERs be

detennin c and_thatimplicit .scqumcesarenotpresent.Verificationof WHEN
INTERRUFrIBLE actions is potenfialIy difficult because of the _ in predicting

the sequence of WIIENEVER applicatic_ However, the structure of the design

language encourages isolation of function to smatl sets of WHENEVERs that are more

easily verified.

Discussion

The KDL provides a mctm'e that di_ngni_es control and opportunistic knowledge in

the design of a KBS. The explicit representation of control knowledge is important

because it provides a means to speci_Cy the abstract control flow the knowledge base was

designed to use. As knowledge bases are typically data dr/yen, this type of information

is often encoded in rules along with other infoxmation using state variables, priorities, or

the conflict resolution scheme of the underlying system. This makes the control _rategies

implicit and difficult to find, inhfldl_ "andM_a_ling, debugging, and verification. By

providing a mechanism to mtnsent control, the intentions of the designer are made

explicit and its conectness can be more easily verified. This does not restrict the

implementation fi'om using traditional techniques, such as state variables or priorities, but

specifies the effect that must be acheived for the implementation to be correct.

While the explicit repre_ntmioa of control knowledge is important, the representation of

dam driven and opportmnstic knowledge is a key feature of the KBS approach. This is

also represented in the Lmguage in the form of WHENEVER statements. As these are

pattern driven procedural statements, they can be used to representany processing that

should be .W-,'formed under a given set of conditions. They can also be used to represent

demons triggered by various actions that occur against data in the KBS making this

representation useful for mixed K.BS and Object Oriented paradigms.

The work done on TOP (Terms, Operators, and Productions described in the fits't

solution to the Traffic Controller problem) embodies many similar concepts to the work

8

presentedhere.TOP Operatorshave similarcharacttaisticstoWHEN statenaentsand

TOP Productionshave similarchaxa_c_cs to WIIENEVER statcanents.TOP Terms

provide a much more formal definitionof knowledge base objectsand tlmirsemantics

than is specified in the KDL. In general, the TOP language is a precise KBS

development language that can be used to specify designs and be automatically translated

into a particular KBS tool langauge. The KDL is a much more flexible extension to

existing design languages. Additionally, the verification arguments for TOP have only

been informally defined and the language does not contain the semantic restrictions that

simplify verification. The K.DL provides restrictions on the use of langnage constructs,

defines of the relationship between the constructs, and provides formal conecme_

conditions to allow verification to occur. However, the similarities of the two efforts

should allow some of the verification characteristics of KDL to be applied to TOP.

A more general approach'to knowledge base verification involving the use of relational

verification techniques has been proposed. However, these teclmiques are difficult to

use, making them currently impractical for use on real problems. The KDL attempts to

avoid this problem by separating control and oppommistic knowledge and providing

mechanisms for defining the function of groups of opporranistic rules to limit the need

for relational vexificafion to small, easily managed sets of rules.

The KDL is being used in the development of the Automated Problem Resolution (AIR)

prototype. The APR prototype is an aircraft flight replanning system being developed as

part of a study for future upgrsdes the the U.S. Federal Aviation Adminimmion's Air

Traffic Control system. The system requires the generation of multiple aircraft

maneuvers in a multiple problem environment and is a non-trivial problem in terms of

representation, problem solving approaches, and perfonnauce.

Our experience with the design language to date has been very positive, h provides a

vehicle to represent the designs that we are _.cifying for the APR project. Itallows us to

specify the types of processing we expected to do in with KBS tools CHRS in this case)

with a minimum of restrictions. It also provides a good mechanism to abstract the design

at various levels allowing tbe use of top-down stepwise refinement techniques. Becanse

of the issue of verifying the scope of applicabiliiy for WHENEVER processing, it

sometimes forces the structuring of the design into multiple KB segments each with their

own control and opportunistic sections. While this mggests the use of sub-KBs or

similar restrictive scoping mechanisms, this is not required by the design as long as the

semantics are the same. Hence, we expect that many of the KB Segments will be

implemented as guarded sets of rules rather than sub-KBs. The verification rules for the

design language are usable, allowing verification to occur quickly with minimal

consideration of complex situations. The only problems occur with the use of

WHENEVERs. The language allows WHENEVERs to be used in arbitrarily complex

sequences. While this effectively allows the use of KBS programming techniques, it can

be difficult to verify in complex cases. The need for verification of the design often

encourages simp "hfication of the design in these cases. Most importantly, the use of the

design language allows us to verify the correctness of the designs and utilize Cleartroom

Software Engineering effectively in the development of AIR.

9

Summary and Conclusions

A design language for KBS has been described along with a brief description of the

verification approach that is to be used with the language. The language is an extension

of existing procedural design languages with stzuctures for specifying control and

opportunistic components of K.BS designs. The language supports the development of

KBS software using top down development and Cleanroom Software Engineering
techniques in a practical manner.

The. design language is being used in the development of the APR aircraft flight

replanner prototype. Based on our experience to date, the language seems to provide

sufficient representational power to specify the types of processing expected in a K.BS

while providing a practical mechanism for verifying the correctness of those designs.

While the language provides a good starfiug point for the use of design language and

verification techniques with KBS, there are a number of areas sull to be invesdgamd. The

language has only been used on a single project to date. While this project is relatively

large (1500+ rules) and utilizes a number of differem problem solving techniques, there

is potential benefit from using this language in the development of other projects

different charactecJ_cs. It has also been suggested that this language would be useful for

mixed KBS and object oriented paradigms, but this has not been invesfigatecL Concepts

such as formal descriptions of data and their semantics, such as that provided in TOP, are

not cun-enfly part of the language and extension of the language to use data descriptions

should be poss/ble and beneficial. F'mally, the use of the language to represent problems

solved using backward chaining reasoning needs to be ¢0qfloted.

KDL Solution to the Traffic Controller Problem

A simple traffic light conn'oller at a four way intersection has car arrival sensors and

pedestrian crossing button_ In the absence of car an-ival and pedestrian crossing signals,
the traffic light controller switches the direction Of _ flow every 2 minutes. With a

car or pedem-_ signal to change the _ of u'af_ flow, the reaction depends on

the stares of the auto and pedesu'ian signals in the _ of traffic flow; if auto
pedestrian sensors detect no approaching traffic in the cummt direction of tra_c flow,

the traffic flow will be switched in 15 seconds, ff such approaching traffic is detected, the

switch in traffic flow will be delayed 15 seconds with each new detection of continuing
traffic up to a maximum of one minute.

Observations

The problem is inherently a realtime asynchronous processing problem. Such problems

are not easily solved or understood. In that the intent is to provide a simple example, the

problem wKl be formulated as a synchronous problem.

I0

Assumptions

The following assumptions represent an interpretation of the requirements in areas that

were potentially ambiguous:

I°

.

Traffic flow in the direction of the signal has no impact on the changing of the

signal when no traffic is waiting in the opposite direction. The wording of the

requirements seems to indicate that the 15 second time extension applies only

when traffic is wa.i_g (It is possible to a_ly this 15 second extension to the 2

minute defanlt when no traffic is waiting. Some franc controllers do work this

way as it minimizes impacts on traffic flow that are not necessary.)

The solution must allow for momentary action pedestrian crossing signals.

While an auto sensor _ generally be on once an anto is waiting to cross the

signal, pedestr/an crossing signals tend to be push-buttons that are only on

momentarily. The solution w'Rl assume that once such a button is pushed. The

pedestrian remains in the "waiting m cross" state until the signal changes. If this

assumption were changed to use sample/hold circuitry in the sensors, the use of

the traffic_waiting variable would not be required.

. The pedestrian and auto waiting signals are "ored" together for a given direction

of travel. This simplifies the processing of sensors as only one needs to be read

for a direction.

. The delay of u-affic flow switch is interpreted to mean that a delay of 15 seconds

from the time of detection is to be applied. Other interpretations, such as adding

an additional 15 seconds to the current delay, axe also possible. However, most

traffic controllers seen to work in the manner assumed here.

Solution Approach

The solution utilizes a polling approach that polls the sensors and performs switching on

a I second cycle, t'Note that this is a simplification of the more general event driven

approach with asynchronous timers that would probably be used to implement real traffic

light controllers.)

On each cycle, the system wm increment the intemai timers, read the sensors and update

the traffic light ff necessary. This forms the basis for the control logic of the system that

is represented in the WHEN statement.

Two timers are maintained. The "time" timer represents current time anti is used in

conjunction with the switch_time variable to determine when it is necessary to switch the

traffic flow. The wait_time represents the number of seconds traffic or pedestrians have

been waiting to pass. Only two timers are needed for this problem because there are only

11

two directions of travel and the uses of the timer are mutually exclusive. If the problem

were more complex, e.g. a three way intersection, more timers would be required.

The usage of the timers is as follows:

I. The time is incremented on every cycle of the system.

2. The wait_time timer is incremented whenever there is someone or something

waiting.

Whenever a vehicle or pedestrian is Fast detected in the stopped direction, the

switcl__fime is setto time + 15 seconds.

Whenever a vehicle or .pede.A'_an." is detected in the flowing direction and a

.

.

vehicle 0r pedestri_ is w'_g in the stopped direction the switch_time is (re)set
to time + 15 seconds.

5. Whenever the time = switch_time, the traffic lights are switched, the

switch_time is set to time + 2 minutes and the wait_time set to 0.

6. Whenever the wait_time timer reaches 1 minute, the traffic lights are switched,

the switch_time is set to time + 2 minutes and the wait_time set to 0.

Notational Conventions

. We have adopted the notational convention that if there is only one When and

the Segment intended function is the same as the When intended function then
the intended fancti_ of the When can be omitted.

. We have adopted the notational convention that TRUE -> I (the identity

function in conditionals) is assumed if no alternative is given.

. We have adopted the notational convention that frame instances or classes can

be refeatred to in the design using their type/class name. This is used in the

Crossing_traffic whenever.

Proof

. When Intende_l Function imvlements SeLnnent Intended Function:

Since they are the same, this is obvious.

2. When St__,yment imv!ements When Intended Function:

12

TheWhenstatementconditionis alwaystrue. The When statement action

consists of _rtlti_llz/ng variables to indicate that the light has just switched traffic

flow to initial_flowdirection and and changing traffic flow for every second in

time per the When Intended function. Hence, the two are equivalent.

o Wh_ Strident lnlri_liTe Lrnplement_ it'_ Intcn_led Function:

Using the correctness conditions for K.DL, the statement verifies if its

implementation and all applicable Whenever statements implement the intended

function. In this case, the implementation implements the intended function, and

it can._ seen fzom inspe_'oti that no Whenever's are applicable since they all

utilize a state variable that does not cun'ently have a value.

o When For Statement itt_plement$ it's l_tended Function:

By the correcmess conditions for For statement verification, the statement

verifies if the composition of its body intended function for each iteration

implements the For statement intended function.

While the For appears to be infinite, making verification impossible, it is

actually not. Since wait time is incremented if traffic is waiting, the wait time

condition will eventually be reached. If traffic is not waiting, the third intended

function will do nothing until the switch time is reached (which will evetwaally

happen since time is incremented by the For loop). It is therefore suJY_ent to

verify that the composition of the For body for all sequences up until the

switch/wait time condition is met is correct in order to verify conecmess of the

For.

The verification of the For loop requires that the alternatives of the For's

intended function be implemented. These are:

1. If no traffic is waiting to cross, change traffic flow in 120 seconds.

2. If traffic is waiting to cross and there is no traffic in the cmxent direction

of flow, change traffic flow in 15 seconds.

o If traffic is waiting to cross and there is traffic in the current direction of

flow, change traffic flow in 15 seconds, but not more than 60 seconds

total wait.

13

Verification of Condition 1: If no traffic is waiting to cross, time will be

incremented by the for loop until the switch time is reached. When the switch

rime is reached, traffic flow will be switched and the switch time reset. As time

is set to 120 initially and is set to time+120 on each switching, traffic will be

switched every 120 seconds if no traffic is waiting.

Verification of Condition 2: If traffic is waiting and no traffic is detected in the

direction of flow, thz_h'd intended function will set traffic switch time to

time+t5 seconds, and indicatethattrafficiswaiting. The md_ waiting

indicator will prevent the time from being reset if no other events occur. As time

iS _entedon each cycle, traffic will be switched in 15 seconds if no other

events occur.
.... - .-e_--_ • i_ : ""

Verification of Condition 3: If traffic is already waiting and traffic is detected

in the direction of flow, the second intended function will reset _ switch

time for time+15 seconds. If tra_c is currently (sensor input) waiting, the

switch time is reset to 15 seconds regardless of whether there is traffic in the

current flow direction or not. In addition, the first intended function will

increment wait time whenever traffic is already waiting. The "switch time"

intenddi hmction win switch traffic flow whenever the switch time reaches 0 or

the wait time reaches 60. Therefore, the condition is implemented by the

composition of the imend_ Rmctions.

. Sens¢r _ Intended Function implementation:

By the correctness conditions for DO INTERRUPTIBLE intended functions,

the function is correct if its immediate actions and applicab/e whenevem

implement the intended function in a deterministic way.

The immediate actions consist only of read operation which is assumed to be

correct. By inspection it can be seen that no whenevers are applicable as the

value of state is not set.

6. UPDATE WAlT _ Intended Function implementation:

14

-7

The immediate actions consist only of an assignment to the state variable. The

only whenever applicable as a result of this state variable assignment is

Update_Wait_Time whose intended function is identical to the intended function

of the statement here with the addition of the check for wait time update

.While.this" is a u'i_'vial example, it indicates the use of state variables to isolate the

function of whenevers and the use of whenevers to implement conditional logic.

° Swit_ch tlme/Wait time Intended Function:

The immediate action contains only an assignment to the state variable. By

inspection of the whenevezs, k can be seen that only the Switch_u'affic and

Crossing..waffic whenevers are applicable. From their intended functions, it can

be seen that they each implement one alternative of the original intended

function. Since they both indicate that traffic flow change is not required as part

of their actions, they will be mutually exclusive.

. Update Wait Time Whenever:.

The condition and action of the whenever match the intended function of the

whenever. By inspection, it can be seen that no other whenevers are effected.

. Switch traffic Whenever:.

The condition and action of the whenever match the intended funclion of the

whenever. By inspection, it can be seen that no other whenevers are effecmd

since they action of this whenever changes the state such that other whe_evers

are not _plicable.

10. Crossing traffic Whenever:

The condition and action of the whenever match the intended function of the

whenever. By inspection, it can be seen that no other whenevers are effected

since the action of this whenever changes the state such that other whenevers are

not applicable.

15

°

KDL Solution for the Traffic Controller Problem

KB SEGMENT traffic_light_controller fIN: sensor..suemn, initial_flow_direction)

[Given a tra_c light just switched to inUnal.flow_direction,

For every second in time:

No traffic waiting to cross ->

change traffic flow 120 seconds after last change

/ no traj_ic in current direction offlow -->

change traffic flow 15 seconds after

detecting traffic waiting to cross

I change trafficflow 15 seconds after

detecting traff'w in current direction of flow

but not more than 60 seconds after

detecting traffic waiting to cross]

LOCAL DATA

Parameter Switch_time:

Type: Integer
end

Parameter Flow_direction:

Type:

(EASTWEST_ORTHSOUTH)

end

Parameter Wait_time:

Type: Integer
end

Parmneter Traffic_waiting:

Type: Boolean
end

Parameter Tune:

Type: Integer
end

Parameter State:

Type: (UPDATE_WAIT_TIME,

SWITCH_TRAF_C_LL)
end

Frame Type How_sensor.

Direction: Type:

(EASTWF.ST,NORTHSOUTH);
Traffic_detected: Boolean;

end

Frame Ea_we__larte:

Direction: _

end

Frame Nonhsouth lane:

Direction: NORTHSOUTH

end

16

WHEN

tnlc

DO INTERRUPTIBLE

[Flow_direction,Switch_time, Waittime,Traffic_waiting :=

initial.flow_direction,120,O ,FALSE]

now_direction := initial_flow_direction

Switch_time := 120

Wait_time := 0

Traffic_waiting := FALSE
State := NULL

[For every second in time:

No traffic waiting to cross -->

change traffic flow 120 seconds after last change

/ no traffic in current direction offlow-->

change traffic flow 15 seconds after

detecting traffic waiting to cross

/ change traffic flow 15 seconds after

detecting traffic in current direction of flow

but not more than 60 seconds after

detecting traffic waiting to cross]

FOR time := 0 to forever

[Read traffic direction sensors]

Read(Sensor__,

_est_lane.traffie_deteeted,

Northsouth lane.tr'affie._detected)

[Traffic_.waiting -> Wait_time := Wait.._me + 1]

state := UPDATE_WAlT_TIME

[time = switchtime [wait time = 60 ->

change traffic flow;

switch_time,wait_time,traffcwaiting := time+120,O,FAJ.SE

/ ((sensors detect traffic waiting & not traffic..waiting) !

(traffic_waiting &

sensors detect traffic in current direction of flow)) -->

switc htime,traffc..waiting = time+ 15 ,TR UE]

state := SWITCHTRAFFIC

END WHILE

END

17

[Wait time update required & Traffic_waiting -->

Wait time := Wait time + 1]

Updat_Wait_Time- WHENEVER

state = UPDATE_WAIT TIME and

traffic_waiting

DO

waR_time := wait_time + I

END

[traffic flow change required &

(ame = switch_time I wait_time = 60) -->

change traffc flow;
switch_time,wait_time,traffc_waiting := time+120_,FALSE;

indicate that traffic flow change is not required]
Switch traffic: WHENEVER

state = SWH'CH__C and

(time = _fime or waiLtime = 60)

DO

[Switch_time,Wait_time_Flow_direcn'on,Traffic_waiting :=

time + ! 20,O ,not Flowdirection,FALSE]

Swh__time := time+120

Wait_time := 0

Flow direc_on := not Flow_direction

Tnt_c.._ := FALSE

state .-= NUI_

END

18

[traffic flow change required &

not (time = switch time / wait time = 60) &
m

((sensors detect traffic waiting & not traffic_waiting) [

(traffic__waiting &

sensors detect traffic in current direction of flow))->

switch time,traffc._waitin g = time +15 ,TR UE ;

indicate that traffic flow change is not required]

Crossingtraffic: WHENEVER

state = SWITCHTRAFFIC and

not (time = switch_time or wait_time = 60) and

((flow_sensor.traffic_detected = TRUE and

flowsensor.direction o Flow_direcuon and

traffic_waiting = FALSE) or

(traffic_waiting = TRUE and

flow_sensor.wa_c_detected = TRUE and

flow_sensor.direction = Flow_direction))

DO

[Traffic_waiting_witch..time := TRUE_ime+15]

Traffic_waiting := TRUE

Switch_time := time+15

state "-- NTdLL

END

19

Launch Seauencing

Purpose and Background

l_'w_ mou_ tot azo=, -,',,'_n_;_=od _o re=ms. "1'bespa_ veJ0_=leis a mw tyl_ the Ires n_ea- be.=
flown befme.. Became ti_ pte-lmm_ miv/tim and clagks must be pufm:uad _ __ _ m
lam_h, ah_m can __ _ _ _:/s n_.4m tha__ is no _ _ _ _
d_job.

Functions

The fancdemm bepedozmedaxe

1. Pedorm nominal launchsequence funclions(NLSFs). Each NI.SF has a
commandwhid_wa pedonn 1he_ and a s_ of _ aboutwhen
must be met before Ihe o:,rlmland can be issued. Each NLSF also has other
_ on when it can_'x._ be performeddepencingon _ _ to
oe_, NLSFs. Rnany,each N_F is judgedto have been _i d_en_
on tl'mtru_ of e.,_t_ The NLSFsm docun'NmtedmTable I.

2. Moni_" error conc[l_as. Enor conc_rts are corr_xtsensible inthat 'd'teyare
mon_ored undm'om,'tamcond_:_s. The _ _ and when _'_y
shouldbe _ am documentedinTable _

3. Respondto errom.An error ccndd_ o_ars when a check (Le., monitor)fa_s,a
hJnclion_s to complete,or it has been determinedthat func_ns can not be
issuedat the righttimesto achievemain engine ignitionat MET=O.Oseconds.
The sped_ enor recove_j aclions are documentedinTable 3.

Table 1: Nominal Launch Sequence Functions

Table 2: Monitoring Conditiona

Eepaecomammm r-_

]Sq_e l:ai]m'e

_zc ij_ma _,se

_N_e C.emmandWoeJ _ 1
aotmm =ix: -x:ilx

Mmz ad_-Te c_ of 100

wJ_l_ 4 mc ofam_g -,,a am

_ each.1 mc

chm_zll_h _md _

Table $: Error Recover

Co_ Consideratimm

vActions

COL_m(_T

II IaotmsE _two

_ clmmmmds.

RIR:OVERY AC'n(_

Lmmdzbold.

]aaa_b=kL

_mWl

ddal; =owm adn_

Al_heugh _l_ lam_ Inu_us_ sys_m has no _ u_ mm_ua, throe/s a n_l w _ _ _

Hlnts

i

File Mana0ernent Interface

Background/Purpose

Th_ is a _le/ile numagement sy_em that aCCel_ a _e_i_,m-,',,4in a _:/fic _ _ _ _
in_-Jt_4 open,ion. 1:_rexample, the user can type "COFY filel file2" toxxq_y file1/rim file2. The
_ of this new pmgr_a is to provide a namnd langease _ to the file mamSeme_ symm
t'x.e., m top of the exis_g command line _)_ 'I'ae new program wm a_ a _ _ _

lange_ mmmand like "_ file1 at the md of t_..2" and w',31fig=e out the o_mct t_le _
,:._.._.,.,4 to _ h'_ "copy/ile1:51e2/APPEND'.

Functions

The commandsar.o=pc=dby tl= til= _ sy=== =_
COPY t_el file2/APPEND/REPLACE/NOPROMPT

(ncorompt opUon is used w,h the ml_ace and rno_ op'a:m;, the user _;
not pmmpt_ Jf nk_ =ready ex_s)

RENAME tgel file2/NOPROMPT

(U_enowomptopUondoesnotprompttheuserif fie2 alreadyexists)
DELETE tile1/NOPROMPT

(1he nopmmpt opUon cloes not prompt 1he user if fie1 does not exist)
USE file1 _ _ IN lilen

(_ command inputs f_ appearing before the word IN to the program
spedr_ Jn_m)

UST pa#ern
(h'ds¢ommar¢l sea_es for files matching the paJtem and ists them;
h_e patlmn allows an astedsk to appear as a _ for one or more
¢=-actem)

The allowed namxal]anguq_/=pmz should/=rJud= tl_ useof air=reaveverbssuch= m_ _ _
e=u¢, discan_ thn)w away, e====_/=vok=, e¢. The input seutmces should =bo be allowed to occur;,,
m_, namnd order su_ as "zeplace me2 with file1".

Hints

"l"uisabout saJt_, zobusme_ md bow mudz the s_i=m sbo=_ "guess"_ _ _ _ _ m _.
"/'niakalx_ the Ix_ek re= _ tlat might be needed fer _ _ and almmttv_ m
rumple= _,vemse. AI_, yee can ammne the exi_m_ of a _ online in _ madal/e (rod
===zchabl=)fuunlL

Car Won't Start Diaanosis

This is a standardly used sW_le car d/agnosis prot/em. I¢_quires little omside knowled_ of bow cam
work. The purpose of this program is to query the use: f_/nf_maboa about sTmptmw _ _
,-,,,,_;,,* the best guess of why the car will not start.

Functions

Objects

The zelev_t I.ms of the ¢=r =ze:
BA'I"i'ERY
STARTER MOTOR
STARTER SOLENOID
SPARK PLUGS
DISTRIBUTOR
CARBURETOR
GAS TANK
FUEL PUMP

The funcdon of this progzam is to _,_._,,-;,,- which of the above _ is the most IDgdy reasm_ for the

'Ilae easiest things to check m the ps tank and the banery. If the gas prise _ _ _ _ _

tram over then the mc_t _y cause is the gas tank Js empty. If the bu,dlights don't _ _ _
the mg/_z does not turn over tlaa tlz most 19:ely _use is the bata_.

/fbothme gas tank and hmtuy _ r,,_ and the engine does not mm over then tlm moa _ _ _
eitha" the starter or the staz_ sohaxdd. H you cm heara "clickingsound"whm you u-ytostnrtiL_ iz

/s wobab_ the suuu=, else _, is probably the so]m(_

Iftheengine does not ,-1,,,own'thin the h_ly place is somewbeze in the ignition sysamt (span plugs m-
). (:king thee/s a I/irk tricky fm the novice but can be do_. The rust _ m _ _ w
check spa:k get_g to each pkag. Tim can be done by minor/rig _ _ w _ _g __ k _
w the plug (so the me_ pie_ im_ the wire/s _ cio_ to thJ plug). H_ _ _ a _ _
uying to startthe en#m tb_ the _ is ok mi ttz l_gs am the _ ptot/m, e._ _
disinter is _ i_'7 pz_tm. Wlm_this_ _t__of,_
but no¢hannful, sh_k which canbe ave/dedby wea_ heavy rabb_ #ores (_ _ _ _
_ by _w _h abeanma_raim).

Finally, if the engine rams over and rims f:m.a lit_ while (even if_ _ _ _ a _ _ _ _

me is/n the fu sysmn, e/th_ th_ _ _ thz fred pump. The f,_l pump _ _ _ _
nnnoving the fine fnxn ttz fnel pump to the cabutmor axt the= ve_ bde_ _ m _ _ _ 5
Sas _ squire out farm the lira tbm tlm fuel pump is tim and tim li]ml_ came is in the mrtxnetm.
Note ttm tt_ L_t pmmdm is _ dmgettm and _mid omy be antatpmtW _ __ _ (_
a mectm_) ami oaty wlma tim et_i_ it c_d.

Hints

Tzy mlgani_ the d/agnos/s/n__/n such a way that _u can idmt/_ what the _st cases _

-ove_ Also _,,v aboutwl=t ate mitml, not aitimL _y. =_,_,y. mdnot mmlat_ mquimmmm

Wakun Call Processina

Purpose and Background

A gn)up ofhot_ got togefl_ and d_ided to paxa_ an anuanas_ wabnzp cttl sysmn f=r me by an of
thmn.In the _ d/scussion m__,_,m_ these was a lot of (kba_ ov¢=the "peakload time"issue.
At peak load t/me (anmnd7AM), tim_ aremanymote wakup calls d3antlaesy_tm_ can handk at
so the =us m,_ be _odt/z_. Akr mgh d_m andccmuttiug _ otxuato_ a pt/odt/zatim

Functions

A.. Prioritization

Wa_ap =n _ wm t_ _tmed on tin coa of the n)cm. All high dass zoom (_ _
ezpmsi_) get tim priory, ibm _ cl_ m_ ml fim_ low dm m_. Calls m funt_
pzimi_ zo0atinz m w_:h cans wae seqaemd finz -,.4 aa:ontinS m bow L_ a _ _ _
is becaning. 'Fae Lmoms is gi_vensiz times tin weistz asthe _ of the mpe_ _ umsq_ ff
watap czU A was mquemd oae hoarbefate wstmp caUS bat wakupcaU B is _ _ _
lainthen wakupcall B has a higlm'_ (60 for A vs. 66 for B).

A call cm be givm a higherpt/ad_ ;,, two w-os.

1. it is more thantwen(yndnuteslain
2.aisgivm"sped priory"(e sBnotdet by systembutL

If ei_r _otity-_ m,_u/_ _tds, am _U w_be g/vm __o_ w/tt_ *morn _ If
both coadixiom hold xh_ ttz ca/l wish be fp_,zahiztm.pxiosiW ow= all _m _

C.. ai

Dm_:s_times of the day tl_z m known robe pesk loadl calls c_mbe _i'veu in _dvmze of tlz
_j_ed _ae (m uy m avoid _uing behi_. F.or_ cans m be givm em:ty,tt_ psimisiz_m_

_. h_h classcan be card up to S ,rdnum eady
2. _ dass csn be called up to 10 rr_mtss e_ly
_ k)w _ss can be cakd up= 20 m_um eady
4. if 1hespedaf pdon_y/tagis set 1henthe taft can be made upto 20 mkmtes_

"rne_ a_ two addi_oml ¢am_Im,_m. Tb_ lust is that ah_ _n alwa_ has pt_ity _ m _ _
Tl_esecond is t_ ff two c_mm'ecans iw_ the sa_e ptiodty tbmsthe _ is adgna_.

Hints

_ _ _ o_tbiss_m_ _ d= m_xm m d_m_d_ md _:h _ B m

would t_ influmze you rest approach? Aze tlaeteany _ aspects tlbazdeserve mm'eatmmionfinn
oCb_? Couldthe sysmm moaitm'itself to see ifit wae ¢paati_ ctmzc_ ?

I II

Description of Monkeys and Bananas Problem

This v=sion of the Foblun desc_don is due m Peter Ladm=amx (IBM).

Monkeys and Bananas

Characteristics of objects and actions

1. It lma_

2. It is locam_ on top d _ (t_ floor or anotb_, o_-t).

3. It may be holding mxo_e_

An obje_ has the followiu8 _'a=e_:

I.Ithasa_

2. It L5_ on top of somuJxing (the floor or anotbgr obj_z), or iz is _',,_ to the _

3. It has a wei_ (eith= li_ or hmvy).

In addition, an obj_ has th= following d_u_= ifix is ache=:

1. It mntaim maother Obie=.q

z It is_ bymoe.=obi_(atW).
The monkey may ms an obie= under the following conditio_

1. Thm_ _zisu; a l_l to mz thg ol_jam

2. _ n_k-y ishoke__ obje_.
The mm_i=y may hokl an o_ undu _he fonowin8 conditio_

1. The_ ezim a pal to hold the objec:.

3. The obie_ is attach_ to the u_in8 and the monkey is on u_p ofthe ladder, u or _ _ _
and the objec_a_e(3=top of _hesameplace (either the floor or anotJu=object).

4. The .=.key is hokengnoe_n_

s. "n= _ oft_ obj_ is _b_.

1. T'h_ e_xs a Seal m move to the 1_

2. The monkey is on the floor.

. Editor's note: Presumably this should be "itmay contain another objecz."

t2 Editor's note: and the ladde_ as a_ _e same location.

l. Th_ _=i=s a 8:_1 to climb omo the o_

3. TI= _ is az tl= sa_ kxmkm asdxeobjecL

4. Both d= mank_ and ti= object m_ on top of tl= sm_ pla_

InWal Conditions

T_ iZ_t is to m2 tJ= Imnms.J"

Tb: imz_ _ az_:

Table1. ini_l_mlitiom. Em_tTmzm_imliametl_dx_mm'bmdommxapfWtotbeobjea.

monk

couch

mdmu_

md dzmt

blue col_

bl_

i_ee= dxmt

ioadm

",.5-7

t.5-7

t2-2

t2-2

t2-2

tg-g

t7-7

ts-g

tl-3

mmpd

floor

floor

mtmu_

9oor

myms

floor

Mu

mmmhm

Actions
t

The mm_k_ mw jmnp _m tin 9mr un_ en folknv_ _

1. Tlm_ mira a gml to jump Ohm the floor.

7. Tin monkw is not oa tl:z _or (see jumpiq up msd dram).

Th_ moni_ m_ drop m objm uad_r "_ _ _

1. Thm_ m_m a ptl to drop tl_ objem.

I

u Edism.'soom: Prom iookiaz m sheprol_m, i_appems Umze,_ rmaimimsis not _ -- m _ _ _ _ _
this rmu'iaem is inmm_ bemm_ it woutd prevent the mou_ from dimb_ We tutdm",m_hthe key (_ _
eUmxmumin_ em bmmms).

N Editor's note: The Igoalts for the monkey to mt the banmum.

u The orilOnaldmaripeoa mired out me f_

• "rt_ redkey iso_ topof thefloor.

No_ zb¢ obje¢_ may be _ ekh¢r onto the floor or zh¢ pbce the monkey is o_

The monkey may unlock a ¢h_ under the fonowins ¢ondiZion_

I. There ¢_zs a pal to uuIock the chcs_

3. Tb_ _._ __ _.

4. TI_ _ _ _ tt_ _ loc_m _ tl_ d_-

5. Bo_ the monk_ and tb¢ ch_ m'e on _p of the same phc¢.

No¢¢: when a chest is uulockc& the object iz concai_ is placm:loncop of the

Commentary

._,.bo_izdz _ Zo_Zott_ WobZ_h for d_ =_zk_ to e_t__ e=:hort_ _s =z_ a_
be_Ze _"_ rzomdz _ _L 'Z'b__ _ sZzou_be_ zo_ d_ SozZrzom_
the bananas to waIki_ to a ¢zuzain locmion or unlocki_ a certain ¢hesL The soluzion zze_ not suppo_

muZci_ iuid_ZsoaZ_

7Z_word"Zo_" _ u=d zbxousho_zb. p_obU=nsu_cum_suZSes_=SZh=_ wob_n shoed b¢so_ed
us_ s_s. _ _ me_o_q_ ,-,y be md to sobe the _"
TI_ pro_ _, should be solv_ in a way th_ a kno_ m_'=_h_ be cq_ to solw _:_

prob_uz_Knowt_ _ shou_ not be _ for spmdwh=zsoPhS zheprob_=.

The benchum_ should be abk to run _ zwo mod_ One mo¢i¢ should run the benchnm_ pzinzi_ an
b¢===s uuduzaZmby_ _, _=q_ zh¢_ mcae shou_ o_y p¢_ a =umzS¢w_= _ _
has ¢aum '.he _ Two scpmm_ vmiom of _e bcnchmm:k or a m_ swiu:h in a sin_ vm'sion of',.h¢
bcuchum_ arc suitable _o prov_ "d_is_.

Is Editor's emphasis.

Handout #1: State Diagram for the Simple
Traffic Controller

A state diagram is helpful in analyzing a procedural solution to the simple traffic light problem.
This also reduces the implementation approach (see handout #2) to a simple process of checking
the most recent state and the current state to determine a new state. The procedure in handout
#2 implements the state diagram of figure 1. The speci_ states in that diagram are defined as
follows:

$1: 2M_Timer := Clock+2 Minutes

NS-Light := Green

2: 2M_T.nerIsUnchanged
NS-Ught:=Green
Ckck Updatedby_ second

S3: 1M__mer := Clock+l Minute

15S_T'm_er := Clock+15 Seconds
NS-Ught := Green

$4: NS-Light:=Green
1M__mer Unchanged
lss__mor _
OockUpdatedby1second

$5: NS-Light:- Green
1M_'l-=mer Unchanged
1,SS_T'Blner:, Clock+15 Seconds

$6: NS-LJght := Red

2M 1-aner := Clock+2 Minutes

1 Handout #1

S3 4

T1,1

T5,5
2,1

T1

$2

Figure 1

The maldx of figure 2 presenls an altemale view of the state diagram in figure 1. Even lhough
this stale diagran eases the implenentajon of a procedural (or rule-base) _rb, it can be
complicated to use in denning test cases because of its level of detail. To address lhis
complexity, define an abstract view of U_e state diagram in figure 1. Figure 3 shows an absUact

2 Handout #1

state diagram that relates to the diagram of figure I (see figure 4 for the associated transition
matrix). The abstraclk_ considers the "essence" of what is taking place in the system. That
essence is the process of deciding which the period of time to expire before changing the light
(the" in the b'artsilk_ matrix of figure 4 indicates that the light will change as a "side-effect" of the
state transition). It is important, however, to maintain a clear mapping between the abstraction
and its refinement In this example, the mapping is dear by examirdng the matrix of figure __
Notice how the state transitions tend to fall _o two cistJnctgroups (the upper left and lower right
comers of the matrix). These relate directly to the two abstract states shown in figure 3.
Testing the system, then, is reduced to testing either view of the system. The premise for this
approach is based on the correctness of the state diagram itself. Ifthe state diagram is correct
and the lransitions between states have been implemented correctly then it would be reasonable
to predict that the implementation is correct. Testing is now much simpler (espedally when using
the abstract state clagram) because the number of scenarios has been reduced. For example,
using the state diagram of figure 3 them are only 4 transitions to consider (as opposed to a
pofenllagy infinite mmtber of scenarios). Tes_ng, then, will test the bans_ns. This is
somat_'nes refen'ed to as "conformance" testing (i.e., showing that the implementa',_n conforms
to theabsUactview).

3 Handout #1

T(i,j)

sl

s2

s3

s4

ss

ss

Sl

NS
Approach_g

andno
waiting traffic

NS

andno

not_ "l-mnN."

e_q_inKl

arKmm)

an<l_

wa_ng and
n_ PJ_ Tm_er

exp_d

EWW,_g

W_ng

r_ PJ_ITwner

ex_

s4

No

N_158
Timer

_A,d
Not 1M Trier
_And

No

Approachm

No

and Not 1M
"rimer

Expired

SS

_proadlm

Ap_
And Not 15S

Timer

_And
Not 1M _mer

F__red

Approad_.g
AndlM
Timer

Exited

SS

(1M Timer
_Or

(Not1M
11mer

_And
15S 11met

1M Timer

Ex_red

Figure 2

4 Handout#1

Abstract State Diagram

F_um 3

T2,2

(No waiting) Or (2 Minutes
expired and No
approaching')

(1 Minute expired since
swnchfromSl")Or(lS

Seconds expired since last
a_Jng')

I

WaJUn9

Approaching

Figure4

5 Handout #1

Handout #2: Procedural Implementation

Procedure Traffic_Controller Is

-- The Traffic controller uses the notion of a Timer to determine

-- when to change the flow of traffic. Each timer represents
-- a window in time beginning at the current clock time plus some
-- some delta.

2M_'l'imer, 1M_Timer, 15S_Timer : Timer;

-- Returns TRUE when traffic is approaching in the current direction
- of traffic flow at the current clock time

- ELSE -> FALSE

Function Approaching_Traffic Return (True, False);

-Retums TRUE when traffic (auto or pedestrian) requests a
- change in the light at the current clock time
- ELSE -> FALSE

Function Wait_Signal_.Received Retum (True, False);

,,,_Q

- Returns the current time

Function Clock Return Time;

- Returns TRUE when the current clock time exceeds the time

- specified by the Timer
- ELSE-> FALSE

Function Expired(T: In Timer) Return (True, False);

-- Switch from the current direction of traffic flow to the opposite

Procedure Switch(L: In Out Light);

1 Handout#2

State" Current State of the Traffic Controller

Possible states the

$1:

S2:

S3:

S4:

S5:

S6:

Traffic Controller can be in are:

2M_Timer := Clock+2 Minutes

NS-I.ight := Green

2M_'l'imer Is Unchanged

NS-Light := Green
Clock Updated by I second

1M__mer := Clock+l Minute

15S_Timer := Clock+15 Seconds
NS-Light := Green

NS-Light := Green

1M_Timer Unchanged
15S_Timer Unchanged
Clock Updated by I second

NS-Light := Green

1M_Timer Unchanged
15S__mer :- Clock+l 5 Seconds

NS-Light := Red

2M_Timer := Clock+2 Minutes

State := S 1;

Loop
Case State Is

When in $1 => perform S 1 transitions

When in S2 => perform S2 transitions

End Case;

When in Sn => perform S n transitions

Update Clock;
End Loop;
End Traffic_Controller;

2 Handout#2

-- S1 Transitions
ol

- Decision Table:

- , Waiting
-- T
- T
- F
-- F

Approaching
T

F
T
F

<* 1.1 *> When $1 And (Approaching_Traffic And

NOT Waiting_Traffic) =>
State := $1;

<* 1.2 *> When S 1 And (NOT Approaching_Traffic And

NOT Waiting..Traffic And =>
State := $2;

<* 1.3 *> When S 1 And (Waiting_Traffic) =>

State := $3;

.,..<*

- End $1 Transitions

Satisfied By:

1.3
1.3
1.1
1.2

3 Handout#2

S2 Transitions

Assumptions" Once waiting traffic is detected detection of
oncoming traffic is irrelevant

Expired
T
T
T
T
F
F
F
F

- Decision Table:

-- Waiting
-- T
-- T
-- F
-- F
- T
- T
-- F
- F

Approaching
T
F
T
F
T
F
T
F

<* 2.1 *> When S2 And (NOT Approaching_Traffic And

NOT Waiting_Traffic And
NOT Expired(2M_Timer)) =>
State := $2;

<* 2.2 *> When S2 And (NOT Waiting_Traff'¢ And

NOT Expired(2M_Timer) And
Approaching_Traffic)) =>

State := $2;
<* 2.3 *> When S2 And (Expired(2M Timer)) =>

State := $6;
<° 2.4 *> when S2 And (Waiting_Traffic And

NOT Expired(2M_Timer)) =>
State := $3;

...<*

- End S2 Transitions

Satisfied By
2.3
2.3
2.3
2.3
2.4
2.4
2.2
2.1

4 Handout#2

- S3 Transitions

Assumptions "Detecting additional waiting traffic does
not effect state transition

Decision Table:

Approaching
T
F

Satisfied By
3.1
3.2

<* 3.1 *> When S3 And (Approaching_Traffic) =>

State := $5;

<* 3.2 *> When S3 And (NOT Approaching_Traffic)

State := $4;

- End S3 Transitions

-->

5 Handout#2

u

n

mo

u

N

u

u<*

-- S4 Transitions

.m Assumptions- Once waiting traffic is detected detection of
oncoming traffic is irrelevant

Decision Table:

Approaching

T
T
F
F
T
T
F
F

15S_Timer
Ex

T
F
T
F
T
F
T
F

1M Timer Ex

T
T
T
T
F
F
F
F

What happens when the oncoming traffic is detected at the
exact same time that the timer expires?

<* 4.1 *> When S4 And (NOT Expired(15S._Timer) And

NOT Expired(1M_Timer) And
NOT Approaching_Traffic)) =>
State := $4;

<* 4.2 *> When $4 And (NOT Expired(1 M_Timer) And

Expired(15S_Timer)) =>

State := $6;

<* 4.3 "> When S4 And (Approaching_Traffic And

NOT Expired(1 M_Timer) And
NOT Expired(15S_Timer)) =>
State := $5;

<* 4.4 *> When S4 And (Expired(1M_Timer)) =>

State := S6;

- End S4 Transitions

Satisfied By

4.4
4.4
4.4

4.4
4.2
4.3
4.2
4.1

6 Handout#2

_g

go

m_

g_

_g

g_

_g

go

g_

_g

S5 Transitions

Assumptions • Physically impossible for the 15S_Timer to
expire at the same time it is set

Approaching
T

T
F
F

1M Timer Exp
T
F
T
F

Decision Table:

_--><* 5.1 *> When S5 And (Expired(1 M_Timer))

State := $6;

<* 5.2 *> When S5 And (Approaching__Traffic And

NOT Expired(1M_Timer)) =>

State := $5;

<* 5.3 *> When S5 And (NOT Approaching_Traffic And

NOT Expired(1 M_Timer)) =>

State := $4;

- End State_5 Transitions

Satisfied By
5.1
5.2
5.1
5.3

7 Handout#2

Handout #3: First Rule Base

Implementation

NOTE: To aid in understanding the syntax used for the rule-base
that follows, consider the following. Each fact in the
knowledge base is of the form (x) where x is a string of text.
Variables are identified as names preceded by a "?'.
Variables are assigned during evaluation of a rule's LHS
condition. This evaluation determines truth by pattern
matching against facts. For example, pattern matching the
expression, (green ?direction), given the existance of the
fact (green NS) would assign the value NS to the variable
?direction.

Initial Facts is

(green NS 0)
(time 1)
(signal NS car 370)
(signal EW car 400)
(signal NS car 420)
(signal EW car 425)
(signal EW car 450)
(signal NS car 460)
(signal NS car 470)
(signal NS car 480)
(signal NS car 490)
(signal NS car 500)
(end 600)

End Initial Facts;

Rule Update_Time With Priority -1 Is
If (time ?t)

Then

Retract (time .'It)
Assert (time .'It + 1)

End Rule;

1 Handout#3

Rule Trigger_SignaLChange Is
If (green ?direction ?) And

(time ?t) And
(signal ?other_direction ? ?t) And
?direction/= ?other_direction

Then

Assert (signal-change ?t))
End Rule;

Rule DeLOId_Changes Is

If (signal-changes ?dt) And
(time ?t) And
(?t -?dt) • 120

Then

Retract (signal-changes ?dt)
End Rule;

Rule Trigger_SignaLDelay Is
If (green ?direction ?) And

(time ?t) And
(signal ?direction ? ?t)

Then

Assert (signal-delay ?t)
End Rule;

Rule DeLOId_Delays Is
If (signal-delay ?dr) And

(time ?t) And
(?t- ?dt) • 15

Then

Retract (signal-delay ?dt)
End Rule;

2 Handout#3

Rule Change_No_Signal Is
If (green ?direction ?last_changed)

(time ?t) And
?t >= (?last_changed + 120 And

not (signal-delay ?) And
not (signal-change ?)

Then

Retract (green ?direction ?last_changed)
If ?direction = NS

Then ?other_direction = EW
Else ?other_direction = NS

End If;

Assert (green ?other_direction ?t)
Wdte "green" ?other_direction "(no signal) at" ?t crlf

End Rule;

Rule Change__No_Delay Is
If (green ?direction ?lastchanged) And

(time ?t) And
(signal-change ?sg) And
not (signal-delay ?) And

.'It >= ?sg + 15
Then

Retract (green ?direction ?last_changed)
Retract (signal-change ?sg)
If ?direction = NS

Then ?other_direction = EW
Else ?other_direction = NS

End If;

Assert (green ?other_direction ?t)
Write "green" ?other_direction "(no delay) at" ?t crlf

End Rule;

3 Handout #3

Rule Change_Delay Is

If (green ?direction ?last_changed) And
(time ?t) And
(signal-change ?sg) And

(signal-delay ?sd) And
?t >= ?sg + 60

Then

Retract (green ?direction ?last changed)
Retract (signal-change ?sg)
Retract (signal-delay ?sd)
If ?direction = NS

Then ?other direction = EW
Else ?other_direction = NS

End if;
Assert (green ?other_direction ?t))
Write "green" ?other_direction" (delay) at" ?t crlf

End Rule;

Rule Stoplt Is
If (time ?t) And

(end?t2)And
?t >= ?t2

Then
Terminate ES execution

End Rule;

4 Handout#3

Del_Qd_C_anSes Tri_ser.._Sisnal_Delay

U_e._Trne

Trigger_Sig.al _e Del_OId_Delays

Fioure 1" Diagram of Rule Relationships

5 Handout #3

Handout #4: Second Rule Base

Implementation

/*

Simulated Solution to Traffic Light Controller Problem

Problem Solvino Method

Time is simulated with a one second timer. This program cycles
once each second. At the beginning of each cycle, certain
definitions are set, then decisions are made about whether or not

to change the traffic lights, and then at the end of each cycle,
certain facts are reset (retracted).

Priorities: -2 : for updating the timer
-1 : for things reset at the end of each cycle
0 : figuring out if the lights need to be changed

TIME module

Update time count at end of each cycle

*/
State Data

Fact Time is (time (is .'It)) Where .Olmust be a NUMBER;

Initial Facts Is

(time (is 0))
(stop-time 600)

End Initial Facts;

1 Handout#4

/*
Transitions

*/

< update time at the end of each cycle >
<* time := time + 1 *>

Rule Count_Time With Priority -2 Is
If (time (is ?t))
Then

Retract (time (is ?t)
Assert (time (is ?t+l))

End Rule;

/*

*/
< halt when stop time reached >

Stoplt Is

If (stop-time ?t) And
(time (is ?t))

Then
Terminate ES execution

End Rule;

2 Handout #4

/*

*/

TIMER module

Allow timers to be asserted and figure out when they expire.

_: Assert a time called some name and set for some time.
When that time has elapsed, the timer will have the
expires_at field set to true.

State Data

Model: Timer is a countdown timer that counts down with time

Fact timer Is (timer (called ?n)
(seLfor .'It)
(has_expired ?f)
(expires_at ?e))

Where ?n must be a variable
.'It must be a NUMBER
.91must be TRUE or FALSE with a default

of FALSE
?et must be a NUMBER with a default of

99999

End Fact;

Timer_Error Is
If (timer (called ?name) (set_for ?sf)) And

?sf <= 0
Then

Write "TIMER_ERROR: "?name crlf

End Rule;

3 Handout#4

/*

*/

Gonstraint: only one timer of a given name. This is resolved be

deleting oldest timer.

Rule Timer_Name-Conflict Is
if (timer (called ?name) (expires_at ?ea-1)) And

(timer (called ?name) (expires_at ?ea-2)) And
?ea-1 < ?ea-2

Then

Retract (timer (called ?name) (expires_at ?ea-1))
End Rule;

/*

*/
In_: expiras_at :-- time + set_for

Rule Initialize_Expires_At Is
If (timer (expires at 99999) (set_for ?sf)) And

(time (is "It))
Then

Retract (timer (expires_at 99999))
Assert (timer (expires_at ?sf + ?t))

End Rule;

/*

*/
< indicate timer has expired >

Rule Timer_Expired Is
If (timer (expires_at ?ea) (has_expired FALSE)) And

(time (is ?t)) And
?ea <= ?t

Then

Retract (timer (has_expired TRUE))
Assert (timer (has_expired FALSE))

End Rule;

4 Handout#4

/*

Sianal Controller Module

Simulate car and pedestrian arrival sensors.

r

*/

r

/.

./
 ate Data

Initial Facts Is

(signaLdata NS car 370)
(signal_data EW car 400)

(signal_data NS car 420)
(signaLdata EW car 425)
(signaLdata EW car 450)

(signaLdata NS car 460)
(signaLdata NS car 470)
(signaLdata NS car 480)
(signaLdata NS car 490)
(signaLdata NS car 500)

End Initial Facts;

Model: SignaLdata is a list of signaLnames and times where the
time indicates when the signal will be simulated

Fact signal Is (signal (in_direction ?d) (signalled_by ?sb))
Where ?d is either NS or EW

?sb is either car or
End Fact;

Constraint: none

I.._: none

5 Handout#4

/*

Transitions

*/
< assert signal >

Assert_Signal Is
If (signaLdata ?direction ?type ?time) And

(time (is ?time))
Then

Assert (signal (in_direction ?direction)
(signalled_by ?type))

End Rule;

/*

*/
< retract signal at end of cycle >

Rule Retract_Signal W'dh Priority -1 Is
if (signal (in_direction ?direction) (signalled_by ?type))
Then

Retract (signal (in_direction ?direction)
(signalled_by ?type))

End Rule;

6 Handout #4

r

Traffic LiohtModule

State Data

In ial:
*/

Global Variable ?green-light - NS;
Global Variable ?red-light = EW;

r

*/
Transitions

Procedure change-light 0 Is
Assert (light-changed)
If ?green-light = NS
Then

?green-light- EW
?red-light = NS

Else

?green-light = NS
?red-light = EW

End if;
End Procedure;

r

*/
;< reset light-changed fact at end of cycle >

Rule Retract-Ught-Changed With Priority -1 Is
If (light-changed)
Then

Retract (light-changed)
End Rule;

7 Handout #4

/*

Traffic Light Controller: Module

*/

Problem Solving Method

_O_VEB._J_: Each cycle, figure out how long to wait to change
lights, switching the light if it is time to do so.

A collection of timers are used to figure out when to change the

lights. There is a long (2 min.) timer for *no signal" mode, a short
timer (15 sec.) for "signal to change" mode, a medium timer (1
min.) for "signal to change but waiting on a car" mode.

The long timer is set when the light changes or there is a signal in
the same direction.

The short and medium timers are set when there is a signal to

change the light.

The short timer- is reset each time approaching traffic is detected

(and are waiting based on a signal to change the light).

The light is changed when any timer expires.

Global Constant ?long-time = 120;
Global Constant ?medium-time = 60;

Global Constant ?short-time = 15;

8 Handout#4

/*

*/

Inital Facts Is

(timer (called long) (seLfor ?long-time))
End Initial Facts;

/*
Transitions

*/
< light-changed or approaching traffic -> set long timer >

Set-Long-Timer Is
If (light-changed) Or

((signal (in._direction ?direction) And
?direction = ?green-light)

Then

Assert (timer (called long) (set_for ?long-time))
End Rule;

/*

*/
< signal to change the light -> set medium and short timers •

Rule Set-Medium-Timer Is
If (signal (in_direction ?direction)) And

?direction = ?red-light
Then

Assert (timer (called short) (seLfor ?short-time))
Assert (timer (called medium) (seLfor ?medium-time))

End Rule;

9 Handout#4

/*

*/

< approaching traffic detected and medium timer exists
-> reset short timer >

Rule Reset-Short-Timer Is

If (signal (in_direction ?direction)) And
?direction = ?green-light And
(timer (called medium))

Then

Assert (timer (called short) (set_for ?short-time))
End Rule;

/*

*/
;< timer expires -> change light >

Rule Timer_Expires Is
If (timer (has_expired TRUE)) And

(time (is 'It))
Then

C=t (ch_-t_ht)
Write "change light at" ?t "" ?green-light crlf

End Rule;

r

;< light changed -> retract medium and short timers •
*/

Rule Retract-Medium-Timer Is

If (light-changed) And
(timer (called medium)) And
(timer (called short))

Then

Retract (timer (called medium))
Retract (timer (called short))

End Rule;

10 Handout#4

Count T_

T _Expred Assert Signal

S¢ _Long Trncr

Sct_Mectu__Trncr

Rcset_Shc_t.__Trncr

Timer_Expires

Figure 1: Diagram of Rule Relationships

11 Handout #4

Handout #5: Analyzing the Rule Base
Implementations

Introduction

The purpose of this handout is to examine the benefits of applying connectivity graph analysis to the two CLIPS
rule-bases generated for the traffic controller problem. Please refer to Landuaer (reference 21 inthe
'Techniques" section of the Presentation Material) for more complete descriptions of this approach. Nazareth

• (reference 41 in the "Techniques" section of the Presentation Material) also provides some of the more theoretical
foundations for similar work in directed graphs (i.e., network flow). The first step in applying connectivity graphing
techniques is to generate a complete listof rules and facts (this handout will only consider facts; other items such
as clauses could be considered). Tables I and 2 show these lists from the first rule-base implementation of the
traffic controller problem.

Tables 3 and 4 show the lists of rules and facts from the second rule-base implementation of the traffic controller

problem. In general, whether building these connectivity graphs or not, generating a list of facts and rules can be
very helpful in avoiding redundancies.

Identifier

R1

R2

R3

R4

R5

R6

R7

R8

R9

Table 1: List

Rule-Name

Update_Time

Trigger_Signal_Change

Del Old_Changes

Trigger_Signal_Delay

Del_OId_Delays

Change_No_Signal

ChangeNo_Delay

ChangeDelay

.Stoplt

of Rules from the Non-Modular rule-base implementation

1 Handout#5

Identifier

F1

F2

F3

F4

F5

Fe

e7

Facts

time "It

green ?direction ?

signal ?other-direction ? ?t

signal_changes ?dt

signaLchange ?t

signal_delay ?(:It

end ?t

Table2: Facts from the non-Modular rule-base implementation

Identifier Rule Names

R1 Count_Time

R2 Stoplt

R3 Timer_Error

R4 Timer_Name_Conflict

R5 Initialize_Expires_At

R6 Timer_Expired

R7 Aesert_Signal

R8 Retract_Signal

R9 Retract_Ught_Changed

R10 Set_Long_Timer

Rll Set_Medium_Timer

R12 Reset_Short_Timer

R13 Timer_Expires

R14 RetractMedlum Timer

List of Rules from Modular role-base implementationTable 3:

2 Handout#5

Identifier

F1

F2

F3

F4

F5

F6

Table 4:

i

Facts
i • i

time (is ?t)

stoptime ?t

timer (called ?) (set_for ?) (has_expired ?)

signal (in_direction ?) (signalled_by ?)

light_changed

signal_data ? ? ?

List of Facts from Modular rule-base implementation

Generating Connectivity Graphs

Based on these tables, connectivity matrices can be generated. These matrices are good for examining a
knowledge base to see how "interrelated" things are. Tables 5 and 6 show connectivity matrices derived from the
fact and rule lists. These matrices are built by placing a 1 in each slot where a given fact is used on either the
right or left hand side of the rule. A 0 in a given slot indicates that a particular rule does not reference the related
fact. The equations of interest for tables 5 and 6 are:

• (RF TR) * (RF)

• (RF) * (RF TR)

where (RF) is the initial Rule\Fact matrix and (RF TR) is the transpose of that matrix (i.e.,
creating a matrix by making the rows into columns and vice versa)

The first equation shown generates a matrix that shows, given an ordered pair of facts (fi, fj), whether a particular

rule references both facts fi and fj (i.e., facts fi and fj have commonality). A graph can be generated based on
this matrix where facts serve as the vertices of the graph and rules serve as the edges that connect these The

second equation generates a similar matrix that shows, given any ordered pair of rules, (ri, rj), whether a

particular fact is common to rules ri and rj. An undirected graph can also be generated from this matrix where the
rules serve as vertices and the facts as edges.

Analyzing Connectivity Graphs

What can be learned about the two implementations of the traffic controller problem from these matrices? As it
turns out, these matrices provide some important clues that can be used to assess the design of the two different

3 Handout #5

implementations. To see these clues begin by considering the matrix generated from the non-modular rule-base
implementation (see Table 7). As stated earlier, an undirected graph can be drawn based on the generated
matrix where rules act as the vertices. Drawing a graph from the matrix in Table 7 generates, as expected, a
very complex series of interactions. In fact, there is at least one edge between every rule and every other rule.
This means that every rule has one or more facts in common with all other rules. Cleady, this would be a more
difficult rule-base to analyze because of all these interactions.

What can be learned using the matrix generated from the modular rule-base implementation? The matrix should
show that this implementation is easier to analyze. In fact, the matrix of Table 8 clearly shows a simpler
connectivity structure as evidenced by the number of zeroes in the matrix (i.e., there are fewer edges in the
graph), in addition, the matrix of Table 8 highlights the modules defined in the design (i.e., areas where higher
numbers are clustered; e.g., the boxes in the inner portion of the matrix in Table 8). To prove this, compare the
matrix of Table 8 to the modular rule-base design found in handout number five.

An interesting side-benefit to this is that, for the modular approach, one can assess, using the matrix of Table 8,
the amount of coupling and cohesion that exists for each module. Every module should be strongly cohesive
(i.e., the module is completely defined without any extraneous data or operations) and very loosely coupled (i.e.,
each module should have few, if any, dependencies on other modules) In the case of Table 8 one could make
the arguement, for example, that the signal and timer modules should be combined to form one module due to
the indications of coupling found in the middle box of Table 8. The loose coupling is evident by examining areas
of the matrix in Table 8 that are not highlighted. The frequency of zeroes indicates that little or no coupling
between modules exists.

4 Handout#5

Rules\ Facts

R1

T_Je_:

Rules \ Facts

T_IPL6:

R2

R3

R4

R5

R6

R7

R8

R9

RIO

Rli

R12

R13

R14

F1 F2 F3 F4 F5 F6...__

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

1 0 0 1 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 1 1 0

0 0 1 1 0 0

0 0 1 1 0 0

1 0 I 0 0 0

0 0 1 0 1 0

Connectivity Matrix for the Modular rule-base

implementation

F1

R1

R2

R3

R4

R5

RS

R7

R8

R9

F2 F3 F4 F5 F6 F7

1 0 0 0 0 0 0

1 1 I 0 1 0 0

1 0 0 1 0 0 0

1 1 0 1 0 0 0

1 0 0 0 0 I 0

1 1 0 0 1 1 0

1 1 0 0 1 1 0

1 1 0 0 1 1 0

1 0 0 0 0 0 1

Connectivity Matrix for non-modular rule-base
implementation

5 Handout #5

Rules \ Rules

Table 7:

R1

R1 1

R2 1

R3 1

R4 1

R5 1

Re 1

R7 1

R6 1

R9 1

R2 R3 R4 R5 1:16 R7 R8 R9
ii i i

1 1 1 1 1 1 1 1

4 1 2 1 3 3 3 1

1 2 2 1 1 1 1 1

2 2 3 1 2 2 2 1

1 1 1 2 2 2 2 1

3 1 2 2 4 4 4 1

3 1 2 2 4 4 4 1

3 1 2 2 4 4 4 1

1 1 1 1 1 1 1 2

Connectivity Mapping between Rules (RF * RFTR) for the non-
modular rule-base implementation

Rules/Rules

R1

R2

R3

R4

Re

Re

R7

Re

Re

RIO

Rll

R12

R13

R14

T_le e:

R1 R2

1 1

1 2
i

0 0

0 0

1 1

1 1

1 1

0 0

0 0

0 0

0 0

0 0

1 1

0 0

R3 R4 R5 Re R7

0 0 1 1 1

0 0 1 1 1

1 1 1 1 0

1 1 1 1 0

1 1 2 2 1

1 1 2 2 1

0 0 1 1 3

0 0 0 0 1

0 0 0 0 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 2 2 1

1 1 1 1 0

Re Re RIO

0 0 0

0 0 0

0 0 1

0 0 1

0 0 1

0 0 1

1 0 1

1 0 1

0 1 1

1 1 3

1 0 2

1 0 2

0 0 1

0 1 2

Rll R12 R13 R14
i

0 0 1 0

0 0 1 0

1 1 1 1

1 1 1 1

1 1 2 1

1 1 2 1

1 1 1 0

1 1 0 0

0 0 0 1

2 2 1 2

2 2 1 1

2 2 1 1

1 1 2 1

1 1 1 2
I ii i .i

Connectivity Mapping between Rules (RF" RFTR) for the Modular rule-base
implementation

6 Handout #5

Generating Read/Write Matrices

Additional graph techniques exist for analyzing correctness criteria in a rule-base. One of these techniques works
with matrices generated by examining the read/write relationships between facts and rules.This particular
technique will be explored from the perspective of reachability (i.e., "can I get there from here?'). For example,
Tables 9 and 10 show matrices that map rules to facts based on whether the fact appears on the right or left hand
side of the rule for the non-modular rule-base implementation. Tables 11 and 12 show the analagous matrices for
the modular rule-base implementation. Each of these matrices are built following a similar technique to the other
connectivity matrices. A 1 is placed in each slot where a rule and fact are "connected." Zeroes indicate that
there is no relationship between a given fact and rule.

Once these matrices have been built, two different equations can be used to analyze "reachability" issues within
the knowledge base. The first equation below generates a matrix that matches facts against other facts (see
Tables 13 and 19). The second equation matches rules against other rules (see Tables 14 and 20).

• (Rd TR) * (Wr)

• (Wr)* (Rd TR)

where (Rd) is the initial Rule\Fact read matrix and (RdTR) is the transpose of that matrix

Identifying Anamolies

Tables 13 and 19 show the fact to fact connectivity relationships for the non-modular and modular rule-base
implementations respectively. What useful information does this matrix provide? These matrices indicate, for a

given order pair of facts (fi and fj), whether a rule exists that reads fi and writes fj. Following this line of reasoning
for the ad-hoc implementation, some anomalies in the rule-base are apparent. Anamolies, remember, do not
necessarily indicate an error exists, but rather indicate that the possibility for an error exists. For example,
consider the first column of the matrix. This column indicates that one rule reads fl and writes fl, but no other

rules write fl- Is this a problem? Looking at the rule-base this can be explained. The rule Update_Time (this is

the rule that both reads and writes fact fl) is intended to update the time at the end of each cycle in order to

simulate a clock. A salience value was added to the rule (i.e., this rule will not fire until a state is reached where
no other rules at a higher salience can fire) to guarantee, among other things, that this rule is the only rule than
can update the time (i.e., fact fl). Therefore, this is not a problem.

Are there any other anamolies? Yes. Look at column three of the matrix in Table 13. The column contains all
zeroes. This indicates that no rules write fact f3 (this is also seen in the write matrix of Table 10). Yet, Table 9

indicates there are rules that read fact f3. This is clearly an anomaly. Once again, though, this is not an error.

As it turns out, all variations of fact f3 have been defined within a deffacts structure (see page 1 of Handout #2).

A similar line of reasoning can be used to explain the anomaly that the last column of the matrix (fact fT) is also
all zeroes.

What about the matrix for the modular implementation? Does this provide any useful information? There are two
columns in this matrix that contain all zeroes. The column for fact f2 can be explained using the line of reasoning

7 Handout #5

from the previous paragraph. A deffact structure was used to do the write for fact f2. The purpose of the rule

that reads f2 (which is rule R2) is to terminate the rule-base. Therefore, should rule R 2 tire, the knowledge base
terminates and no more "writes" are performed. The same arguements follow for fact f6 which also has all
zeroes in its column. One process, then, for demonstrating correctness using these matrices is to look for
anomalies and then provide arguements that these, in fact, are correct.

Anomalies also exist in the matrices of Tables 14 and 20. These matrices show rules that are related because

they read and write the same facts. For example, the rules R4 and R 5 are connected because they each read

and write the fact f6. One of the most curious anomalies in the matrix of Table 14 relates directly to the error

discovered in Handout #3. Examine the row and column for rule R3. Rule R3 (Del_OId_Changes) is connected

with itself, but is not connected via facts to any other rule. This indicates two things. First, R 3 is a dead-end rule.

In other words, rule R3 does not influence the firing of any other rules. Second, R3 will, in fact, never fire

because there are no other rules that write fact f4. This is also evident in the inital reed and write matrices, but is

probably easier to analyze using one matrix than by trying to visually combine the results of two matrices.

Testing Reachability

Nazareth points out that for a connectivity matrix A, the equation An will generate a matrix showing whether a
given rule, for example, can be reached from another rule across n edges (based on a graph that can be
generated based on the connectivity matrix) of a directed graph. Using the matrices generated so far, the
definition would look something like this:

Ai,j := (1 iff rulei -> rulej}

This equation states that the matrix A will contain a I whenever the result of firing rulei influences the firing of rulej

to fire. The matrix generated from A2 , then, can be defined as follows:

Ai, k :- {1 iff rulei -> rulej -> rulek}

This definition can be carried forward to show elements of reachebility (i.e., can a given rule be influenced by
another rule). In the framework of the matrices worked with in these examples, this connectivity is done, when
working with rules, by facts. In other words, a given rule "writes" a fact and that influences the firing of other rules
that also change facts that influence other rules and so on. Following Nazareth's approach generates a narrow
result that allows one to focus on specific rules. For the examples here a more general reachability result was
desired. To achieve this more general result, the following equation was used:

A+ A2+ A3+... +An

This equation adds all of the An matrices (each value greater than 0 was converted to one since the concern was
to show whether or not a rule was reachable from another rule not necessarily how many edges in a graph were

required to achieve that reachability). Tables 15 through 18 show the results of applying this equation to the non-
modular rule-base implementation. Tables 15, 16 and 17 show successive implementations while Tab4e 19

shows the cumulative results of applying this equation to A9. Tables 21 through 24 show the results as apoiied to
the modular rule-base implementation. Tables 21,22, and 23 show successive approximations while Tabie 24

8 Handout#5

showstheresultupto A5. TheexamplesstoppedatA5becausethematricesgeneratedfollowingthatupto A14
wereall identicaltoA5.

Theprimaryresultfrom applying this approach is that the anomalies mentioned earlier become more
pronounced.These results become more pronounced because as the equation is carried out more slots become

filled with one's until at some point the matrices begin to repeat. For the example, the row for R3 never changes

because as was already discovered this rule has essentially no bearing on the rest of the rule-base. The anomaly
associated with rule R 1 also is still apparent because its column remained the same throughout.

The results of this equation when applied to the modular approach also provide interesting results. These results
can be summarized by recognizing that there are fewer anomalies to consider for the modular case than for the
ad-hoc case. This certainly supports the notion that designing modular knowledge bases results in easier
analysis. While it is a positive thing that techniques such as these find anomalies, is it not better to design a
system so that anomalies are avoided? Designing a system in this matter reduces the analysis of these matrices
to confirmation that the system will perform as designed.

Landauer presents formulas for building other interesting matrices that can be used to analyze a rule-base.
Nazareth also points to some interesting results that can be obtained by representing a rule-base as a directed
graph and then applying elements of graph theory to do network flow analysis. These other techniques will not be
considered here. However, the student is encouraged to examine these other techniques because of similar
benefits they provide in analyzing a rule-base.

Table 9:

Rules \ Facts
i i

R1

R2

R3

R4

R5

RS

R7

R8

R9

F1 F2 F3 F4 F5 F6 F7

1 0 0 0 0 0 0

1 1 1 0 1 0 0

1 0 0 1 0 0 0

1 1 0 1 0 0 0

1 0 0 0 0 1 0

1 1 0 0 1 1 0

I 1 0 0 1 1 0

1 1 0 0 1 1 0

1 0 0 0 0 0 1

Read Matrix for non-modular rule-base implementation

9 Handout #5

Rules\ Facts

Table 10:

R1

R2

R3

R4

R5

R6

R7

R8

R9

F1 F2 F3 F4 F5 F6 F7

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 1 0 0 1 0 0

0 1 0 0 1 1 0

0 0 0 0 0 0 0

Write Matrix for non-modular rule.base implementation

Rules \ Facts

R1

R2

R3

R4

RS

Re

R7

Re

R9

RIO

Rll

R12

R13

R14

F1 F2 F3 F4 F5 F6

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

1 0 0 0 0 1

0 0 0 I 0 0

0 0 0 0 1 0

0 0 0 1 1 0

0 0 0 1 0 0

0 0 I 1 0 0

1 0 1 0 0 0

0 0 1 0 1 0

Table_: Read matrix for Modular rule-base implementation

10 Handout #5

Rules\ Facts
mmlm.mmmmmml

R1

R2

R3

R4

R5

R6

R7

"8

RIO

Rll

R12

R13

R14

F1 F2 F3 F4 F5 F6

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

IabJg..l_: Write Matrix for Modular rule-base implementation

Facts \ Facts F1

F1 1

F2 0

F3 0

F4 0

F2 F3 F4 F5

3 0 1 3

3 0 0 3

0 0 0 1

0 0 1 0

F5 0

F6 0

F7 0

3 0 0 2

3 0 0 2

0 0 0 0

F6 F7

3 0

2 0

1 0

0 0

1 0

2 0

0 0

Connectivity Mapping between Facts (RdTR * Wr) for the non-
modular rule-base implementation

11 Handout #5

Rules\ Rules

TabJe 14:

R1

R2

R3

R4

R5

R6

"7

Re

Rg

R1 R2 R3 "4 115 R6 R7 R8 R9

1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1 0

0 1 0 1 0 1 1 1 0

0 1 0 1 0 2 2 2 0

0 1 0 1 1 3 3 3 0

0 0 .0 0 0 0 0 0 0

Connectivity Mapping between Rules (Wr * RdTR) for the non-modular
rule-base implementation

Rules _Rules

TabI_ 15-

R1

R2

R3

R4

R5

Re

R7

Re

R9

R1 R2 R3 R4 R5 R6 R7 R8 R9

1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1 0

0 0 1 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0

Reachability Matrix (Rules\Rules) Step 2 (A+A2)

12 Handout#5

Rules\ Rules

R1

R2

R3

R4

R5

R6

R7

R8

R9

R1 R2 R3 R4 R5 R6 R7 R8 R,_,,_99

1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1 0

0 0 1 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 1 0 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0

Reachability Matrix (Rules\Rules) Step 3 (A+A2+A 3)

Rules \ Rules R1

R1 1

R2 0

R3 0

R4 o

R5 0

Ws o

R7 0

R8 0

R9 0

R2 R3 R4 R5 R6 R7 R8 R9

1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0

0 1 0 0 0 0 0 0

1 0 1 1 1 1 1 0

1 0 1 1 1 1 1 0

1 0 1 1 1 1 ,1 0

1 0 1 1 1 1 1 0

1 0 1 1 1 1 1 0

0 0 0 0 0 0 0 0

Reachability Matrix (Rules\Rules) Step 4 (A+A2+A3+A 4)

13 Handout #5

Rules\ Rules

T_ie 18:

R1

R1 1

R2 0

R3 0

R4 0

R5 0

Re o

R7 0

R8 0

R9 0

Table 19"

R2 R3 R4 R5 R6 R7 R8 R9

1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0

0 I 0 0 0 0 0 0

1 0 1 1 I 1 1 0

1 0 1 1 1 1 I 0

1 0 1 1 1 1 1 0

1 0 1 1 1 1 1 0

1 0 1 1 1 I 1 0

0 0 0 0 0 0 0 0

Reachability Matrix (Rules\Rules) Step 9 (A+A2+ ... +A9)

F1

F1 2

F2 0

F3 1

F4 0

F5 0

F6 0

Facts \ Facts F2 F3 F4 F5 FS

0 2 1 1 0

0 0 0 0 0

0 5 0 1 0

0 3 1 0 0

0 2 0 1 0

0 0 1 0 O"

Connectivity Mapping between Facts (RdTR * Wr)
for the Modular rule-base implementation

14 Handout #5

Ru_s\Rules

R1

R2

R3

R4

R5

RS

R7

R8

R9

R10

Rll

R12

R13

R14

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Rll R12 R13 R14

1 1 0 0 1 1 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 1 1 1

1 1 1 1 2 2 1 0 0 0 0 1 2 1

0 0 1 1 1 1 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 0 1 1 1 0 0

0 0 0 0 0 0 0 1 0 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 1

0 0 1 1 1 1 0 0 0 0 0 1 1 1

0 0 1 1 1 1 0 0 0 0 0 1 1 1

0 0 1 1 1 1 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 0 0 0 1

0 0 1 1 1 1 0 0 0 0 0 1 1 1

Connectivity Mapping between Rules (Wr ° RdTR) for the Modular rule-base

implementation

15 Handout #5

Ru_s\Rules

Table 21:

R1

R2

R3

R4

R5

R7

R9

R10

Rll

R12

R13

R14

R1 R2 R3 R4 R5 I=6 R7 R8

1 1 0 0 1 1 I 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

1 1 1 1 2 2 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 I I 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

Reachability Matrix (Rules\Rules) Step 2 (A+A2)

R9 R10 Rli R12 R13 R14

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 1

0 0 0 1 2 1

0 0 0 1 1 1

0 I 1 I 0 0

0 I 1 I 0 0

1 1 0 0 0 1

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

I 1 0 0 0 1

0 0 0 1 1 1

I

16 Handout#5

Rules\ Rules

R1

R2

R3

R4

R5

R6

R7

R8

R9

RIO

Rll

R12

R13

R14

R1 R2 R3 R4 R5 R6 R7 R8

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 0

0 0 1 1 1 1 0 1

0 0 1 1 1 1 0 1

0 0 1 1 1 1 0 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 1 0 0

0 1 1 1 1 1 1 0

Reachability Matrix (Rules\Rules) Step 3 (A+A2+A 3)

R9 RIO Rll R12 R13 R14

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

1 1 0 1 1 1

1 I 1 1 1 1

1 1 0 1 I 1

0 1 1 1 1 1

0 1 1 1 1 1

1 1 0 1 1 1

1 1 0 1 1 1

1 1 0 1 1 1

1 1 0 1 1 1

1 1 0 1 1 1

1 1 0 1 1 1

17 Handout #5

Rules \ Rules

Table 23:

R1

R2

R3

R4

R5

Re

R7

R8

R9

RIO

Rll

R12

R13

R14

R1 R2 R3 R4 R5 R6 R7 R8 R9

1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

Reachability Matrix (Rules\Rules) Step 4(A+A2+A3+A 4)

RIO Rll R12 R13 R14

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 I I 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 I 1 1

1 1 1 1 I

1 1 1 1 I

1 1 1 I 1

18 Handout #5

Rules \ Rules

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Rll

R12

R13

R14

R1 R2 R3 R4 R5 R6 R7

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

R8 R9 R10 Rll

1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Reachability Matrix (Rules\Rules) Step 5 (A+A2+ ... +A5)

R12 R13 R14

1 1 1

0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

19 Handout #5

Handout #6: Formal and Informal Proofs of
Correctness

Introduction

It is important to argue the correctness of programs. Clearly, this is much easier when program
specifications exist. One formal technique for analyzing a piece of software to determine if
program specifications have been implemented correctly is called Symbolic Execution. There are
three steps to doing symbolic execution. The first step, which is really a design step, defines
specifications about program behavior. The next step graphs the program's flow of control (or
execution). This graph is the framework for "tracing" a program's execution against its
specifications. The last step traces execution of the program using symbols 1to formally prove
satisfaction of program specifications defined in the first step of this technique. This handout will
demonstrate both a formal (based on symbolic execution) and informal proof of correctness style.

Formal "Proof of Correctness" Using Symbolic
Execution

This section will outline the application of the three steps of the Symbolic Execution technique to
the procedure, called Process_Signal, shown in figure 1. Process_Signal determines when the
traffic light should change the flow of traffic after waiting traffic has been detected. Three
variables are used to accomplish this task. These are:

tc : the current time

ts : the time to switch

t I • the maximum time traffic must wait before a light change

A function, called Approaching_Signal, is used to indicate whether traffic is detected in the current
direction of traffic flow (i.e., returns the value TRUE when traffic is detected). For this demonstration one
can assume that the function Approaching_Signal works correctly (i.e., there will be no additional proof of
the correctness of this function).

1Symbols represent a "class" of values that a variable in the software may assume. This eases the trace
of execution by eliminating the need to focus on specific data values.

1 Handout#6

ProcedureProcess_SignalIs

1 tI :=tc + 60

2 ts :=tc + 15

3 while tc < ts loop

4 --<* tc < tI and tc < ts and ts <= t I

5 if approaching_signal then

6 if tc + 15 < tlthen

ts :=tc+ 15

7 else

ts := tI

8 end if

9 end if

10 -<* tc < ts and ts <= t I *>

11 tc :=tc+ 1

12 end loop

13 -<* tc=t sandt s<=t I *>

End Process_Signal

Figure 1: The procedure Process_Signal

*>

Step 1: Defining Specifications

As stated eadier, the objective of symbolic execution is to demonstrate that program specifications are
correct. Line 4, 11, and 14 of figure I show the specifications that are to be proved correct for the
procedure Process_Signal. The specifications shown are special kinds of specifications known as pre
and post conditions. Preconditions appear define the required "state" of the program prior to executing a
given program fragment. Post-conditions define the required "state" of the program when that specific
program fragment completes execution. For example, Line 4 is a pre-condition for the If-then-else of line
5 and line 11 is the post-condition for that same if-then-else. Symbolic execution works best when using
pre and post condition specifications.

Symbolic execution will prove that each of these pre and post conditions are satisfied by tracing the
execution of the procedure Process_Signal. Based on the steps of the technique described earlier, step
one is complete. These conditions are drawn directly from the statement of the problem. The desire is

to, once waiting traffic has been identified, find the time when the light must change (when tc = ts). This

time is determined by the amount of traffic in the direction of traffic flow. Regardless of this traffic flow,
the light must change within at least one minute (tl).

2 Handout#6

Step 2: Building a Graph

The second step is to generate graphs that allow for tracing procedure execution. There are two
scenarios to consider when graphing the execution of a procedure. The first scenario involves
procedures that have no loops (i.e., the graph shows be a single path of finite length). These are the
simplest to trace and are done by examining each statement in sequence from beginning to end. The
other scenario involves procedures that do have loops (i.e., the graph has an infinte number of paths with
infinite lengths). For these scenarios, the infinite graph describing the loop can be analyzed as though it
were finite by using mathematical induction2.

Graph assuming no loop iterations

Figure 2: Trace graphs for Process_Signal

Graph with loop iterations

Often times, whether there are loops or not, the graphs can become unwieldy. The best way to handle
this is to break the graph into many smaller graphs (or "cuts'). The procedure can be shown to be
correct by demonstrating each smaller graph is correct. This is a good technique for procedures with
loops. For example, one might to prove the procedure works when (1) the loop never iterates and (2) the
loop iterates one or more times. Figure 2 show this kind of separation for the procedure Process_Signal.
It is worth noting that breaking a large graph into smaller ones can be difficult control structures are

2Induction for these cases involves demonstrating that if the loop executes correctly on the kth iteration

then it executes correctly on the k+l th iteration.

3 Handout#6

missingpreandpostconditions.Theseconditions form natural boundaries that allow easier separation
of a large graph into many small ones. For example, the precondition at line 4 of F_gure 1 allows for a
clean "cut" of a large graph (not pictured) into the two smaller graphs shown in figure 2.

Step 3: Tracing Program Execution

Now consider the final step of the symbolic execution technique. Each graph is traced using
mathematical symbols to determine whether pre/post conditions are satisfied. It is worth noting that this
technique is also very good at identifying things that are missing from a pre/post condition. In other
words, the combination of a precondition and the trace may not provide enough information to prove that
the post condition holds. Using the graphs from figure 2, begin with the simplest graph (i.e., the graph
that assumes no loop iterations). Even though edge 3a depicts a condition where no iterations of the
loop occur, by examination of lines 1 and 2 it is clear that under no circumstances will the loop at line 3
not iterate. For this reason this leg of the graph can be ignored (i.e., not traced). The edge 3b depicts
the case where the loop will iterate any multiple of times. Proving this is simply the case of tracing lines
1,2, and 3 and then showing that the resulting values match the precondition shown at line 4. This step
gets repeated as a part of tracing the more complicated graph, so specific trace results will be left to
discussion of that graph.

The second, more complicated graph from figure 2 describes the true actions of the procedure
Process_Signal. A simple way to trace the procedure is to build a matrix with a column for each value
being traced. This eases the analysis burden by allowing the analyst to easily find which symbols map to
which variables. The matrix of figure 3 shows the results of tracing the iteration graph of figure 2.

Initially, the symbol 6 represents values for the variable tc,. the symbol p represents values for the

variable ts, and the symbol e represents values for the variable tI. These symbols, then, replace

occurrences of these variables in the proof arguments that follow. The results of tracing lines I and 2
demonstrate this. For example, after executing line 1 the value of t I, which initially is e, is now 8+60

(replacing t I with _ and tc with 8 in the equation tI := tc + 60). A similar result is attained after executing

line 2 by following the same replacement strategy. The next line in the trace is line 4. Line 4 is a pre-
condition statement. Therefore, the pre-condition must be shown, using the symbols, to be satisfied. To
do this, tc < ts and tc < t I and ts <= t I must be shown to be true. By substituting the symbol values for the

variables, these expressions become 8<8+15 and 8<8+60 and 8+15<=8+60. These are all obv=ously
true. A less formal arguement would contend that (1) the while-loop condition guarantees that tc < ts at

line 4, (2) since the value of t I never changes and ts is never assigned a value larger than tI inside the

loop then ts <= tI and tc < t I.

4 Handout#6

Une8

1

2

4

5b

11

12

3b

3a

15

4

to:6 tl: a ts: p Arguements

6+60

13+15

Prove: tc < t I and ts <= tl and tc < ts

TRUE • substitution of values for tc and ts

yields the following:

6+15 <= 6+60 and B < 6+60 and 8 < 6+15

Approaching_Signal is FALSE

Prove: ts <= t I and tc < ts

TRUE : values for these variables have not

changed since line 4 therefore, the same
arguements apply

B+l

tc >= ts

tc < ts

Prove: tc = ts and ts <= t I

TRUE : if, after substituting symboLs,B < p
(line 11) and 8+1 >= p (line 3b) then 8=p

Also, since p <= o at line 11 and the values p
and o have not changed, then ts <= t I still

hok¢s

tc < ts and tc < tI and ts <= t I

TRUE :tc < ts holds from line 3a

ts <= tI holds since values for ts and t I have

not changed since line 11

Since ts <= t I and tc < ts are both true then tc

< t I

Figure 3: Results of tracing the iteration graph from figure 2

Continuing with the trace, consider line 5. Line 5 is an If-then-else test on the condition that the function
Approaching_Signal has detected traffic in the current direction of traffic flow. For simplicity, the trace of
figure 3 follows the path that results from detecting no oncoming traffic (i.e., Approaching_Signal =
FALSE). Tracing the opposite path (following edge 5b) will be lelt as an exercise for the reader. The

5 Handout #6

nextlinetoconsideralongthechosenpathis line11. Line11is thepost-conditionafterexecutionofthe
If-then-elseof line5. Therefore,thepropertiestc < ts andts <=ti mustbeshownto be true. By

examining the matrix of figure 3 it is evident that the values fort c, ts, and t I have not changed since line

4. The proof for line 4 showed that tc < ts and ts <= tI. Therefore, these must still be true at line 11.

Line 12 is an assignment statement. Therefore, the original value, 8, for tc is now changed to (3+1. This
is the last statement of the loop. From there the loop either iterates again (edge 3b) or exits the loop
(edge 3a). Consider the case where the loop will iterate again. For this case, the properties of the line 4
must be shown to still hold true given new values calculated inside the loop (this is the induction step).
The proof is straightforward. As in the first consideration of line 4, tc < ts is true because of the condition

on the while-loop. Since the values for ts and tl have not changed since line 11 when ts <= tI was shown

to be true, ts <= tI must still be true. Given the truth of these conditions, the expression tc < t I must also
be true. Therefore, line 4 holds for iteration.

Now consider the case when the loop does not iterate again. For this case the post-condition of line 14,

tc = ts and ts <- t I, must be true. Once again, this is fairly simple. Given the condition of the while-loop

required to prevent iteration of the loop, the condition tc >= ts must be true. The trace at line 11 indicates

that (using the symbols) 8 < p. Line 14 indicates, once again by substituting symbols for variables, that
8+1 >= p. For these conditions to both be true, 13= p at line 14. The other condition, ts <= tI, must be

true because the same condition was true at line 11 and the values for ts and t I have not changed.

Informal "Proof of Correctness"

This concludes a formal (partial) proof of the procedure Process_Signal. It is reasonable to argue
that this formalism can be difficult to carry out when the program is ve_7 large. Yet, the essence of
the formalism can be captured as an informal proof that is also correct. Informal proof of correctness
seeks to informally argue the correctness of each program specification. For example, consider the
informal proof of correctness for line 14.

Initially tc < ts and tc < t I and ts < tI (by lines 1 and 2). Based on the intemais of the loop, tc is

incremented with each iteration of the loop. Therefore, the proof for line 14 must demonstrate
that there is an upper bound for tc which is ts. This also means there must be an upper bound

for ts since its value also increases inside the loop (i.e., if there is no upper bound for ts, then tc

can not have an upper bound that is ts). Lines 7 and 8 are the only places where the value of

ts is changed. Based on the condition of line 6 it is clear that ts can never exceed tI (which is

constant throughout the loop). Therefore ts has an upper bound and is guaranteed to

eventually reach that upper bound. Therefore, tc is guaranteed to reach an upper bound based

on increments of 1 inside the loop. This means that when the upper bound of ts is reached, ts

= tc (since ts and tc are integers).

Figure 4: Informal arguement for the correctness of Procass_Signai

6 Handout#6

The proof shown is as correct as the proof generated by Symbolic Execution. However, the informal
proof of figure 4 is probably simpler to read and is certainly simpler to generate. The conclusion, then, is
that the procedure ProcessSignal was simple enough that doing an informal proof was probably the
better, more efficient choice for proving correctness. However, following a formal approach is very good
when dealing with complicated parts of programs that depend on the rigor of a formal method for

ensuring important details are not overlooked.

7 Handout #6

Handout #7: Exercises on General Techniques

1. Define the "black box" view for your system.

1 Handout#7

2. Identify key terms from the problem clescdption.

. Which of the following techniques would you use? Explain your answer.

• Prototyping

• Competing Designs

Independent V&V

Inspections

2 Handout #7

.

techniques:

Do a very high level specification for your system using one of the following

Decision Table

Cause-Effect Graph

State Diagram

3 Handout#7

Handout #8: Exercises on System Test
Techniques

1. Define 1 or more "realistic" test cases for your team exercise.

o Define some attributes of your system. Define I or more test cases based on

those attributes.

1 Handout#8

3. Define 1 or more test cases that do "boundary value" testing.

4. Define 1 or more test cases that "stress" test the system.

2 Handout #8

J Define the external interfaces to your system. Define I or more test cases to
test those interfaces.

6. Define 1 or more test cases to test the system's performance.

3 Handout #8

. For each question, indicate how the results of each test case will be analyzed
(i.e., how you will know the answer is correct).

. Did the problem description provide enough detail to adequately perform the
tests from questions 1-6?

4 Handout#8

9. Develop a "certification" test for your system.

10. Identify system "disasters" (i.e., things that should not happen). Explain how you

will test your system for these "disasters'.

5 Handout#8

11. Will your project need the aid of an expert (provide rationale)? If so, indicate the
kind of expert required and the type of analysis to be performed.

12. Define 1 or more models to aid in your understanding of the system. Document
each model.

6 Handout #8

Handout #9: Exercises on Unit/Integration Test
Techniques

° Pick an implementation approach for your problem.

you use:

° Coverage techniques

• Interprocedural data-flow analysis

Based on this choice, would

. Identify "part" of the system that may impact reliability (HINT: you may have to

define what reliability is). Define 1 or more test cases to test those "parts".

1 Handout#9

3. Document 1 or more expected sequences of actions for your system.

o Is "prototype evaluation" appropriate for your problem? What about mutation
testing? Provide rationale.

2 Handout#9

° Exchange your work with another team.
following:

Study the problem. Ask yourself the

Does their implementation match the problem?

Are there any "holes" or inconsistencies in their descriptions?

Did they pick the right techniques for their implementation approach?

3 Handout#9
r

Handout #10: Exercises on Static Test

Techniques

. Identify and define at least 1 "object" in your system (remember, objects consist
of both data and operations on that data).

1 Handout #10

2. Write a pre-condition and a post-condition for each operation on the object.

2 Handout #10

. Describe any general properties your "object" must satisfy. Discuss how you
would analyze your "object"'s implementation to "prove" those properties are

always satisfied.

o Pick at least one operation and defined some rules that implement its

specificiation.

3 Handout #10

o Select one of the following techniques for analyzing these rules.
answer.

• Petri Nets

• Directed Graphs

• Connectivity Matrices

Explain your

6. Identify 1 "hazard" in your system. Build a fault tree for that "hazard".

4 Handout #10

7. Identity 1 "fault" in your system. Build a fault tree for that "fault".

5 Handout #10

Handout #11: Exercises on Guidelines

o Determine whether the recommended approach fits your problem. Identify
additional issues that need to be considered.

t Generate a detailed development plan for your problem. Try to include specific
milestones and how they will be achieved.

1 Handout #11

. Define specific development increments. Update your plan to reflectthose
increments.

de Consider the test cases you have selected so far. Are there any other kinds of
testing you need to do? When will you know when to stop testing?

2 Handout #11

St Build a high-level requirements outline for your system. How well does the

original problem definition map to your outline?

Handout #113
f

Handout #12: Alarm 1201!: A History Lesson in
Some Important Aspects of Verification and

Validation

Introduction

On July 20, 1969, Astronauts Neil/u'm_ong and Buzz Alddn were prspadng their spacecratt for the
programmed descent toward the first landing on the moon. Armstrong gave a command to the guidance
computer, instructing it to switch to descent mode. A few minutes later, he fired the descent engine. As
they descended behind the moon, Aldrin gave another command which was due to a last minute change
in the crew procedure; he insbucted the guidance computer to begin autotrack mode for the rendezvous
radar. The radar began interacting with the guidance computer to maintain lock on the command module
in case of an abort back to tbe commar¢l module. This increased the worldoad on the computer. Just as
Armstrong was gaffing to where he could see the lancing Iocalion, Aldrin reported "Alarm ! 1201 1201 1"
([6]) The guidance computer was overloaded and beginning to shed less criUceJprocesses. Back in
Houston, guidance officer Stephen Bales, who was unaware of the ac_vatlon of the radar since it
occurred behind the moon, quickly analyzed the computer ovedoad situation. He saw that the descent
profile was nominal and nothing appeared to be going _wong (1::odunately,the rendezvous radar, which
wasnot neededyet anyway, wastheonly procese low enough in pdority not to be run.). However, the
alarms continued to go off, causing "grave ¢orcem" ([I]) about the mission. As predous time was being
spent dealing with the computer problem instead of _ out the window to pinpoint the landing site,
Armstrong was unaware that he was headed toward a crater about the size of a football field that was full
of boulders. Bales, fearful that if the computer ovedoad continued then it would reject all its programs,
instructed the crew to stop monitoring the landing radar data and leave thai _uncllon to the ground. This
reduced the load on the guidance computer, ceasing the ¢istu_ alarms. Armstrong looked out the
window and noticed the lancing site was bad, quickly took over manual control and guided the vehicle to
a safe landing with only seconds of fuel to spare.

The computer ovefloed was later called the most serious problem of the Apollo 11 flight by mission
analysis and was the center of the post-flight analysis. One's first reaction might be to blame the crew or
mission planners for puffing 1he rendezvous radar in autotrack. However, as they testified to aftenmards,
they were completaly unaware that this action could lead to computer overload or any other problem.
Although designer's of the guidance system had suspected such an aclion could cause a computer
overload, they were unable to confirm this in simulations. In any case, it shouldn't be a problem because
they had designed the system to handle overloads by shedding less critical processes. From their point
of view, it could be said that there was no computer ow_load "problem'; the system funclJoned pedectly.
Unfortunately, the guidance system was also designed to annmmce the problem by a vague alarm which
d'KInot convey the lack of seriousness of the situation. Ground contmSem, though they quiddy handled
the situation and prevented a mission abort, could be blamed for not ¢iagnosing the cause of the
overload. However, they had no data on which to base such a diagnosis. They were not even able to
see that the radar had been commanded to autotrack since this aclion occurred behind the moon.

What does this have to do with verification and validation (V&V) of expert systems? Certainly none of
these groups can singly be blamed for this problem, it could all be classified as a pore accident due to
several contributing factors. However, more complete vedrmation and validation (V&V) could have
prevented this problem from occurring. And, although no expert systems were involved in this s'duation,
several intelrK3entagents that today could involve expert systems played a key role in the problem. We
will use this Apollo 11 scenario to demonstrate several key points about V&V of expert systems by

1 Handout #12

considering how V&V could have avoided this problem, even if one or more of the indigent agents really
involved an expert system.

Importance of Requirements and V&V of Knowledge

Obviously, the crew would not have putthe rendezvous radar in autolrack if it had not been called for in
the crew procedures. The mission plannem would not have put this action in the crew procedures if they
had been aware of its potential to cause a problem. We could say that _e mission planners should have
asked the design engineers if any procedure changes could potenlially cause problems. If the crew
procedures were designed by an expert system (ES), there would have to be a requirement for the ES to
consult des_n engineers about potential problems caused by changes, especialy last minute changes, in
the procedures. So, more comlPleM documentation of funclional requirements, inducting the requimmeflt
to ask about potential problems of last minute changes, could have prevented the problem. However,
this might not be realistic, especiaUy for an ES. Instead, it might be more realistic to have documented
poss,_ proUems_ w_ typesof chaees. Forexam_, a s_q_en_estaUngthataddmona,y
aclivalod processes (e.g., lhe one aclivamd dudng autotrack) add additional load on the computer _
with a rule _ said that the oomputm"was already expected tobe dose to Its 90% _g design
limit dudng descent would be enough _ for the ESto be ak, tad to the problem of adding
autotrack ac_mlJon to the crow Wocadure¢ This is an examf)le of the need to V&V knowledge that goes
into an ES.

Importance of Ststic Analysis

Guidmceck_n engmem suspeo_Jsucha prob_moouldwise; thispotan_ ixoUm hadbeen
r_i_,_l _cl u_ _, tbe anginears were unable to aocuratoly simulme Ihe
_ of the _ radw and the ixocusing k)ad on _ oomputor e_at would be required to
K_p tl'_ mdK Ioc_d onto I_ oommand moclule. Y_ lhoy w_re _y able to m_S, zo I_ ullim_
c_jse c_ the oompuler ove_ prol_m and compleWly undon_ood how lhe w_ion _ _
mode could lead to the problmn. _ to one engineer, allhough tbe ovedoad had bean an
acknowledge possibility, when the warning rights came on it "really brought us up out of our seats" ([1]).
Though they could have predicted it, it was slilla smpdse whan it aclualy happerted. This iUustrates that
certain kinds of problems can be mW to find using static analysis (Le., manual analysis) and can be
difficult if not intpcssi]_ to find (or ¢mtfmn) using dynamic analysis (i.e., computer sirmiMlion). This
holds true for ESs as well as convongond _.

Importance of Expllclt Documentation of Design Constraints

Similarly, the guiclance Wstem design_ had no _ to tell the misdon planrmr= that _m m a
possibility of a computor ovwt0=¢l problem if the mndezvmJs mclar was in autotrad_ This is an example
of one intelligent agent (or pad of the overall system) having knowledge about a oonedraintbut this
knowledge is not explicit so _ other inteligant agents (Le., miseion plannem) could see that they were
violaUngthe_mtrak¢ Ifboezminionplanningandguidancedesignweredonebyan ES,thiswouldbe
an example of a implidt consnint. Consistency of the guidance cleldgnwith mission planci_ could not
be verified because the constraint(s) was implicit, i.e., known but hidden. For verification purposes, all

should be made explicit.

Importance of V&V'ing Even the Smallest Changes

The change to the crow wocedurm to put the rendezvous radar in autoVack dudng descent had been a
last rninute change and this may have contributed to the potantJalproblem not being discussed _
before the flight. Because ESs am changed frequently, many ES modifications am really last minute

2 Handout #12

changes. As with the Apollo 11 planning, there may be a tendency not to V&V these last ndnute changes
because they are small minor enhancements, But, as can be seen with this example, even small minor
changes can have drastic consequences. All changes, no matter how minor, need to be V&V'ed.

Correctness of System Responses Can be Difficult to Judge

Although this example problem has often been used as an example of a computer software bug, it is
really a very complex and subtle problem that can not accurately be dassted as a software bug. In fact,
it is very cifficult to identify the spedfic fault or error that caused the problem. It is even debatable as to
whether any problem occurred at all; the system d¢l operate coneclly. As with many complex problems,
correctly classifying a system response as an error may require expert judgement;, this is especially tnJe
of ESs.

Importance of Different Kinds of Correctness

:p.One reason this example problem is difficult to analyze is that, with any system, there are really many
different Idnds of cormctnoes to be considered. For example, to the des_n engineers, the system was
correct but to others, the system hed a severe problem.

Functional Correctness

To the designengineerswhowere mostconcernedaboutfunclionaloo_ctne_ the systemwas correct.
That is becauseit correctlyimplementedall the functionsthat they thoughtit should. Forall inpuls, the
system produced exactly the output they expected.

Performance Correctness

Performance correclnees, whether the system can perform all manclato_/requests with
resources, was a key issue in this example problem. Andthe system was conuct from a performanoe
pofnt of view. it did harclleall mandatory requests; onfy rendezvous redarprocesalng, which was not
mandatory, was not handled. However, a key point illustrated by INs example problem is the clfr.:uity in
analyzingperfo_ conecCness. The designengineerswereunableIo predictwhenthe computer
might be overloaded; it would depend on a lot of variables that they could not analyze with certainty. This
is especially true of ESs, which often must deal with vlm/ing situ_ons and whose computation (or
inference) times can vary depencfng on the combination of requests it is trying to satisfy.

User-interface Correctness

To the crew; whose understanding of the system is primarily due to lights, alarms, and cisplays
information produced by the system; the system was less correct than they would have liked. That is, the
system had a user-interface problem. They had no way of knowing what the 1201 alarm really meant
and howsedous ll'm problem was, Arrnstrong, when asked about the seriousness of the 1201 alarm
during a press conference, said "... as soon as program computer alarms manifest themselves, you
realize that you have a pOSSi"Dleabort situation to contend with" ([4]). In other words, all he knew was
that an alarm had sounded; this was a problem that had to either be resolved or the mission must be
aborted. So although the system was functionally correct, from a user-interface point of view it was
incorrect.

3 Handout #12

Safety Correctness

The most i_type of _in mcet systemsis safety-'Above ag, do no harm." When one
looksatthe alarmissuedbythe guidarm _ froma user-interfaceand safetypointof view, one
must condude that it was definiteJynot correct. The issuance of the alarm actually created a safety
problem where none had existed before. Them was no problem unlg the crew and Ihe Found began
analyzing the 1201 alarm, waslbg precious lime while the _ehicle heeded toward an unsah) landing are_
Yet, from a functional point of view, the same alarm was conred. It correcUy indcated U_atthe computer
was indeed ovedoa:l_ So it really is important to look at things from ddferent _ points of
view.

Expert Systems are Software, Only Different

When looking at many statements made about the guidance computer, one can get 1he impression that
the system was truly inteligent. One exp_ of what the computer was do_g was "The computer in
effect slerted to tall the crew lhat it was being asked to work beyond ils ¢apadty. It advised that
interrogations from the rendozvous radar shodd cease becatnm they were of Iow_ pdodty- ([1]). This
explanalion really makes it sound like the computer "u_ what it was doing. Ak_n's descdpl_
was a little more technically correct but d implied some more intelligence that might be due. He said
the computer % continually goes through a wait list 04one item after another. This list was beginning to
a up andthe programalarm came up"G4]). Inredty, this20 yeer old machinelanguageprogram
ne_'ler explained its aclions nor looked at its list d inUuc£ons and figured out thai it was _ _ it
couldsafely handle. Mostusersere not realy aware d how"_mtelliganr'the programsihat they use _.
For all Ihey know, many of them could already be ESs. In olher words, when looked at as a black box
thai dces something, one dcesn't really care whelher the box hasan ES in it or not it is just softwere.

However, bed the guidance compu_ acttmlly (xmlabed m ES besed on knowledge _n_rnm expert and
inn_o_mamdman _tm_rmd nOn-lmX_ _guage (e.g., a _ symm), v&v wou_ have
been done d_m_. Nwobab_ world havesoMxJa mo_ comp_x proUemthans_p_ =_u_
guidance dm and p=dng it to d_mmt devine (e4., the randezvousfader). I probaUywould have
rnade the derision ofwbeU_'or notb put the randezvo_ radar in auto-track And instNd d analyzing
lhe correctness of a crew or mission planner derision, lhe coneOIness of the p_ computer
decision wodd have been done. It also muld haw been a coleclk)n of ndes, some of which processed
thingsfor the randezvousredaras wd = o(her_ngL If so, I_e analysisrequiredtongum out th= the
radar being in autolmck was _e cmJBe of _e proMem wodd have been more difficult _ _ _
compaex_ermingrmg of _ proce.ing wnholher pmce=ing. On _e otherhand, the hand,rigof
requests to the guidance computer could ikoly be handled by a far simpler and smaller rule-based
program than the odginal machine language program. And smaler simpler programs are usually easier
to analyze and test. Expert systems are software but they are a tnJlydifferent kind of software.

Summary

Using the Apollo 11 computer overload scenario, the following key points have been illustrated.

1. Importance of complete V&V

2. Importance of requirements

Importance of knowledge V&V

Importance of explicit documentation of oonstmin_

4 Handout #12

5

6

7

8

Importanoe of V&V'ing all changes, no matter how small

Subjeclive nature of correctness, in some cases

Importance of looking at all the many citferent kinds of corredness

Expect systems are software but a different Idnd of so#ware

NASA/JSC's workshop on Verilicalion and Validation explains all of these points in more detail and
provides specific recommendations for how to handle all the different issues in V&V of ESs. By attending
this workshop, you may be able to avoid one of your user's from expenencing an "Alarm 1201 !" situation.

5 Handout #12

[1]

[2]

[4]

[s]

[6]

References

"Computer Overload Laid to Radar Mode', Aviafion Week and,Space Technology, Aug. 4, 1969

"Annstrong_JPiloting Reflexes Avert Rodsy Lancing for Eagle', AviafJon Week and Space
Technology, July 28, 1969

Beyond the limits book (ful referenoe needed)

NASApressrevi_, document(lullreferenceneeded)

NASA Apollo 11 anomaJy summary document (full reference needed)

Book about Apollo 11 (full reference needed)

6 Handout #12

Worksheet #1: State Diagrams

When To Use This Technique:

System Test, Un_lntegration Test, and Static Test

Who Uses This Techniaue:

Anyone interested in analyzing the system (e.g., users, developers, independent
verifiers, etc.)

Why Is This Te_hniqueUsed:

Generation of test cases, Design, Requirements definition, Coweolne_ analysis

How To Use This Technlaue:

Automaton

Event

Event Class

Function

Module

Output

Scenano

State

State Diagram

Key Terms

A machine or control mechanism designed to follow automatically a
predetermined sequence of operations or respond to encoded
instnJctior_ Sometimes called a "state machine'.

An external _muIus that either by itself or, in conjunction with other
events,ca.ses an objectto c_nge stets

An abstract name describing a colec_n of common events.

A one-to-one mapping that has no states.

A "piece" of the system that, in its most cormaon form, captures a
unique p_ece of data and operatio_ on that data. S,pw_.wus _th

Externally visible (to the module)resultsdue to side effectsof a state
transitions.

A sequence of events that occur during one parlJcularexecution of a
state maddrle

A complete description of the state machine at a particular instant in
time

A network of states and events where transition from the current
state to the next state depends both on the current state and the
occurrence of a specir¢ event.

1 Worksheet #1

StateTransition Whenthecurrentstatechanges (or transi_ns) to the next state.
State transitions appear as the "arcs" between states in a state
diagram. A state transition can occur automatically or as a result of
a single event or event class. Arcs that represent transitions that
happen automatically are not labeled.

For each module:

1.

.

4.

e

Method

Iderd_ inputs and output for the state machine

a. IderflJfystimuli and assooated responses. If each event by itself leads
to an output then a state machine is probably not appropdate. Usea
funclion instead.

b. Identify internal states and lhe events that cause transtons from one
state to another

Identify initial and final "states"

Build a state transiS_ matrix that maps states against stain

• Given n stales, the rnatdx will be n x n

Dmw a slate nnsilion diagram

• States alppew as drdes

• For each (Si. Sj) in the _ maffix lhat equals "1", draw an arc from

• Label each arc with the q)edr¢ events that cause the state transition

Helpful Hints

Uedoss the systom in exlmmoJy simple, do not 8nomp(to b_M a statecJagramthat

describes the entire system.

Focus on i:,Jildmgstm diagrams centered on spedr¢ objects (or mod,les) and analyze
a_om h:ivid,aly.

To enhance _rdy, begin w_h high-level "abslmct" slate dmgrams and then
refine 1hem into more detailed dmgrams as b'te need for adddional detail arises. A
module tha_ is in one state for the "abstract" state crmgrammust also be in one state Ior
the reded state dmgram.

The results of steps 4 and 5 are corceptually the same. They are simply represented
dd'fe,rently. Iris hell_uI to do both, but certakW not neeessaw.

2 Worksheet #1

Example

Consider, for example, the following description.

A simple traffic lightcontroller at a four way intersection has car arrival
sensors and pedestrian crossing buttons. In the absence of car arrival
and pedesffian crossing signals, the traffic light controller switches the
direction of traffic flow every two minutes. W'dh a pedestrian signal to
change the direction of traffic flow, the reaction depends on the status of
the auto and pedestrian signals in the direction of traffic flow; if auto
pedestrian sensors detect no approaching traffic in the ctaxent direction of
traffic flow, the traffic fiowwill be switched in 15 seconds, if such
approaching traffic is detected, the switch in traffic flow will be delayed 15
seconds with each new de(ection of continuing traffic up to a maximum of
one minute.

Some (there are others) possible scenarios that cause the traffic light to change are:

No approachingtrafficfor a twominuteperiodshouldchange_ light

Waiting b-affic is detected arKI no approaching traffic is detected for the next 15
seconds

Waiting traffic is detected and approaching traffic is detected each second
Ihereaffer for at least one full minute.

From the highest level of abstradJon it is clear that when a period of time (hereafter
referred to as a timer) expires the traffic light changes. Rgure I shows a stale diagram
modeling this abstraction. A simple slate transition maldx that mirrors the state diagram
is also included in figure 1. Even though, from a high level, this is an adequate
description of the traffic conlmiler, there are many details not represented. For example,
the state diagram of figure I alludes to _ use of a timer, yet detags concendng Ihe
operation of timers is hidden. Also, from the scenarios, it is dear that traffic flow impacts
when the light will change. Yet, this informalion is also hidden from the abstraction in
figure 1.

The state diagram of figure 2 shows a reFa_ment of the state diagram shown in figure 1
that describes what a timer should do within the traffic controller system. Notice that
details regarding the impact of traffic flow am now captured. This is because the traffic
impacts the operation of the lJrnerswhich in tum impact the operation of the light.
Therefore, details regarding traffic flow are a needed part of the diagram in figure 2 in
order to describehowthetimersshouldwod¢. Despitethe addilionaldetail,_e mapping
from one diagram to the other is relatively straightforward. Each transition that is caused
by an expiration of time (as opposed to a txansition caused by approaching or waiting
traffic) maps to a change in the light.

3 Worksheet #1

Simple Traffic Light

State Machine

n Expir_ _

GRIn

RED GREEN

0 1

1 0

F_gure 1

4 Worksheet #1

T_r State Di_jram

_j_t _ tr_ oR ,4k_t_m_ trdf_

Timer when
no wa_ng

traffic

Timer when
u.affic is

waiting

Timer when Timr when
no waiting traffic is

waiting

1 1

1 1

Rgure 2

5 Wod_sheet #1

Worksheet #2: Decision Tables

When To U_;e This Technique:

System Test, Unit_lntegration Test, and Static Test

Who Use_ This Techniaue;

Anyone interested in analyzing 1he system (e.g., users, developers, independent
verit"x)rs,etc.)

Why Is This Technlaue Used:

Generation of test cases, Design, Requirements definition, Correctness analysis

HQw TO Use Thls Technlaue:

Ac_on

ConWkm

Dedsk_ Table

Funclion

Module

Rule

Scenario

Key Terms

Results caused by success of conWk)ns (i.e., the right-hand side of
a rule)

SlJmuIusthat, when satisfied, contributes toward one or more
actions(e.g., part of the lelt-hand side of a rule)

A matrix that has one column for each possi_e condilion and one
column for each po6sible acbon. Concibon columns appear as far to
the left in the matrix as pos_'bk). AclJoncolumns appear as far to
the right as possible. Values appear in the columns to convey
specific inf--. Two kinds of information are conveyed:

Binary (1 or O) e.g., Condition occurred or not, action
performedornot

Multi-value e.g., column contains a value for a variable

A one-to.one mapping that has no states.

A "piece" of the system Ihat, in its most common form, captures a
unique piece of data and operalJons on that data. Synonymous with
all "object'.

Each row of a decision table is called a "rule'. Rules are of the form:

If <left-hand side> Then perform <right-hand side>

A sequence of one or more rules in the dedsk)n table

1 Worksheet #2

Foreachmodule:

1.

2.

Method

Identifyallpossibleconditionsandactonsalongwithallpossiblevaluesforeach.
Besttostartbyident_yingandanalyzJ_stimulus/responsehistories.

Buildamalrixwhererowswillservetomapconddionsagainstactions

• Forbinarydecisiontables,givennconditions and m actions, the matrix

will have 2n rows and (n+m) cotumns. Malrix dimensions wgl vary for
non-binary (e.g., multi-value) derision tables.

• Condition columns appear to Ihe left (C 1, C2, .. Cn) and action columns

appear to the dght (A1, A2 An).

c2 ... Cn A1 A2 ...

. Fill inthe condilk3noolumns with all possade combination of l's and 0's (l's
indicate that _ specific (x)nddkm is true, O's irdcate the opposite)

cl c2 ... Cn

1 1 ... 1

0 1 1

1 0 1

^1 % -.-

o

°

Examine each row and determine the actions Ulat should occur as a result of the
conddfi)ns. Placea I in the column lor each acUon that shouIdoccurandaOin
those that should not oocur. For cases, where it is not dear whether a s_
action resulls from a set of ¢onddions, place a ".?"(or any other speciaJcharacter
of your choice) in the colunm for that acl_on.

C1 C2 ... Cn A1 A2 ... An

1 1 ... 1 1 0 ... 0

0 1 1 0 0 1

1 0 1 0 1 0

Work with users, experts, etc. to resolve spec_Uy m_ed columns.

2 Worksheet #2

Helpful Hints

The size of decision tables suffer from combinatodc explosion if they are used to
describe an entire system (even a relatively simple one). Decision tables work much
better at a unit or module level.

Decision tables are complementary to other techniques such as state diagrams and
cause-effect graphing.

Decision tables t'ansiate fairly easily to rule-based languages.

Make sure all "slots"in the matrix are resolved before proceecing. Doing this guarantees
that all possible condilJonsand their corresponding results have been considered.

Very good for analyzing con'ec_ess/completeness of a system, building test cases, and
performing system design.

ExamDle

Consider, for example, the follow_g descdplion.

A simple Vaffic Ught controller at a four way intecsecSon has car arrival
sensors and pedestrian crossing bu#m_ In the absence of car ardval
and I:x_:lesffiana'ossh_ signals, the traffic light conb'oiler switd'_
dnc_n of Iraf_c flow every two _ Wdh a pedestrian signal to
change the direction of traffic tlow, the _ depends on the status of
the auto and pedestrian signais in Itm _ of traffic tlow; if auto
pedestrian sensors detect no appmachi_ bafr¢ in the currant direction of
traffic flow, the trafSc flow will be switched in 15 seconds, il such

approaching traffic is detected, the switch in baltic flow wUl be delayed 15
seconds with each new detedkm of oontJnuing traffic up to a maximum of
one minute.

Some (1hereare oCmrs) possible scenarios that cause/he Va_c light to change are:

No approach_ Irafr¢ for a two minute period shou_ change the light

Wailing tmff'¢ is detected and no approaching traffic is detected for the next 15
seconds

Waiting '¢affic is detected and approaching traffic is detected each second
thereafter for at least one full minute.

At the h_st _v_ ofabstractk_, _ tra_ con_o_ changesthe _ I_ht when a
specified period of time (hereafter referred to as a timer) expires. Therefore, there is only
one condition to consider;,whether a IJrnerhas expired or not. There is only one action
that occurs based on this condition; the light changes. The decision table of figure 1
illustrates the simple decision table _at results.

3 Worksheet #2

"i3rnerExpires ChangeUoht

0

Rgure 1

Obviously, from both the problem description and the scenarios, Ihere are
co,x_,ionsthatindire_ impactwhenthe,ghtchangesbecausetheyimpacthowthe
timer works. Therefore, the table of figu,re I can be'relined'to a rnore descdplive
decision table that captures those hidden details. Figure 2 nluslratN this refined deds_
table. The following conditions are considered in this table:

Traffic is approaching in the cummt direclion of _ Ilow

Tramc_ wa_egfortheI_htto_

2 minute times has exp_ed

sse=.x.asex_

Tramc h_ been wailing for1 minute

use. These adions are:

• Wait for 2 minutes

• Wait for 15 seconds

• Wait for I

A parlmJlyMled in tal_ is shown in figure ?_ The Med in values rel_ direc_ back to
the _ identirwd N the introduction to Ibis ex_nqple. For example, the f_t Bled in
row of lhe table in figure 2 indlca_s thst when tmmc is deb_ed in the cummt ¢Ireclion
of traff¢ flow and no traflk: is currently wardng for the ight to change then the 2 _
timer is used (i.e., the controller will begin waiting for a 2 minute period. The second
nlled in row incrc_u Ihat when wailing traffic is dete¢_ and lhe ¢onlrohr b _ _
2 rninutes to expire, Ihe conlroler should begin looking for either 15 _ to expire or
1 minute (depending on the presenceof appmad'a_tndr¢). There are many more rows

(25 rows to be exact). Many of these rows will result in imposm'ldescenarios or "don't
care'scenado¢ The impcClant thing is that alscelwioshavebeencoreddwe_ The
lable of figure 2 could be relalively easily _ to the table of figure I by adding
another action ttat indx_es whether or not the controler needs to be signaled that, due
to actions related to the timer, the light stx)uld change.

4 Worksheet #2

App Wait 2M 15S 1M Wait Wait Wait
F_.xpExp Exp 2M _5S _U

1 0 1 0 0 1 0 0

0 1 1 0 0 0 1 1

Figure 2

5 Worksheet #2

Worksheet #3: Cause-Effect Graphing

When TQ Use This Technique:

System Test, Un_lntegration Test, and Static Test

Who Use-_ This Technlaue:

Anyone interested in analyzing the system (e.g., users, developers, independent
verifiers, etc.)

Wh v Is Thi_; T(pchnlaue Used:

Generation of test cases, Des_n, Requirements definition, Correctness analysis

How To Use This Technioue:

Abstraction

Key Terms

A higher Jevel, equivalent desoriptk_ thai hides unnecessay

Cause A sl_ulus B_ _ _wan_ one or more responses.

Cause-Effect CmraphAgraph where all causes appear to the left and all effects appear to
the dght. Arcsare drawn from causes to effecls. Arcs eilher go
direct_ from one cause roan effect or, via boolean opera_ors (see
figure 1), combine with arcs from other causes to go to an effect.

1 Worksheet #3

UsingOperators in
ff¢ct Graplt

w¢OR°e

eq_ee

"NOT°

Effect

F-_uro 1

A r_pon_ _ I_ oombina_ of _mui.

A "piece° of the system _ kt its most common form, captures a
unquepieeeofdm andoperationsonthatdatL Synonymouswith
an "obj..

A pa_ .rough _ c=m-eee= gra_

For each module:

1.

.

3.

4.

Method

Iden_ all pouible ¢ausu and elfecls. This can be done at varying levets o!
abstraction.Thebe._I_¢e totort isby_ sunni andres_nNs.

Place all causes to the left side o_the graph.

Place all effects to Ifle right =_le c_the graph.

Map causes to effects.

a. Look at cr_lerentcom_ of causes to determine if those
coee_c,=tk_am poesib_

b. Try to generate interim nodes in the graph as a way to capture
abstra_ons.

2 Wodcsheet #3

Helpful Hints

The size of cause-effect graphs suffer from combinatoric explosion if they are used to
describe an entire system (even a relatively simple one). Cause-effect graphs work
much better at a unit or module level.

Cause-effect graphs are comp_rnentaty to other techniques such as state diagrams and
dec_on tables.

Cause-effect graphs translate fairly easily to rule-based languages (e.g., each path is an
if-then-else rule).

Very good for analyzing correcthess/completeness of a system, building test cases, and
performing system design.

Exam Die

_r, for example, the following description.

A simple traffic light controller at a tour way intemecSon has car arrival
sensom and pedestrian crossing buttons. In the absence of car arrival
and pedesffian crossing signals, the traffic fight controller switches the
direction of traffic flow every two minutes. W'dh a pedestrian signal to
change _e ch'ectk_ of _affic flow, the reaction depends on _e status of
the auto and pedestrian signals in the d_mllen of traffic flow; if auto
pedestrian sensors detect no approaching traffic in the current _ of
traffic flow, the traffic flow will be switched in 15 seconds, if such
approaching traffic is detected, the switch in txafficflow will be delayed 15
seconds with each new detection of continuing tr'afF¢up to a maximum of
one minute.

Some (there are others) _ scenarios that cause the traffic light to change are:

Waiting traffic is detected and no approaching traffic is detected for the next 15
seconds

Waiting traffic is detected and approaching traffic is detected each second
thereafter for at least one full minute.

At the highest level of abstraction, the txafficcontroller changes the traff'¢ light when a
specified period of time (hereafter referred to as a timer) expires. Therefore, the
expiration of a timer is considered a cause that contributes to the effect of changing the
light. The current status is another cause that effects the final status of the light. The
cause-effect graph of figure 2 lilustrates these results.

3 Worksheet #3

Causes Effects

A

F_ure 2

Obviously, from both the problem description and the scenarios, there are other
conditions that indirectly impact when the light changes because they impact how the
timer works Therefore, the table of figure 2 can be "refined" to a more descriptive
cause-effect graph that captures those hidden details. Figure 3 illustrates this refined
cause-effect graph The following causes are considered:

• Traffic is approaching in the current direction of traffic flow

• An auto is waiting for the light to change

• A pedestrian is waiting for the light to change

• 2 minute times has expired

• 15 seconds has expired

• Traffic has been waiting for 1 minute

The following timer effects result from combinations of the causes defined.

• Wait for 2 minutes

• Wait for 15 seconds

• Wait for I minute

4 Worksheet #3

Causes Effects

F_ure 3

Note that the graph of figure 3 has interim nodes lhai are neither direct causes or direct
effects. These are convenient abstmc_ons that are heiplul bolh in building and analyzing
the generated graph. For example, the abstraclion _ _ is used to determine a
direct effect of the system (Wait for 2 Minutes). This absbac_n captures that either a
pedeslfian or auto could have caused the system to detect wai_ng traff'¢. In terms of the
rect result, however, this level of detail is not re. The only thing 1he system
needs to know is that baltic is waiting, not the IdrKIof traff¢ that is waJ_g.

The graph of figure 3 is not complete. Completion of the graph will be left as an exercise
for the reader.

5 Worksheet #3

Worksheet #4: Program Proving (Axiomatic Analysis Using

Symbolic Execution)

When TO Use This Technlaue:

Unit�Integration and Sta_c Test

Who Uses This Technlaue:

Anyone interested in analyzing detailed descriptions of the system (e.g., developers,
independent verifiers, etc.). Users would probably not be interested in this technique.

Why Is This Technlaue Used:

Good for proving correctness of spedficafi_s. It readily highlights de6dencies in
spec_catJons. It also helplul in applying stepwise relinernenL

HOw TO Use This Technlaue:

Key Terms

Code Fragment A "piece" of code. Can be as simple as one construct (e.g., If-Then-
Else) or as complex as an entire module. Should be surrounded by a
prs-co_Uon _ and a post..concSUonsp_:_on.

i

... code_aomant ...

< post-concition>

MathemalJcal Induction A proof process that involves demonstrating that if something is

true for ilh case, then it must be true for the i+llh case. Inthe

case of loops, this means lhat by showing the first iterWJon
works and that the pre-(x)n¢i_n is satisfied at the start of
another iteralon, add_ it_ _11also work,

Pre-CondilJon A specification that states the properlJasthat must be true for the code
fragment that follows it to be correct.

Post-Condition A specification that states the properties that must be true after
execution of the code fragment that precedes it.

1 Worksheet #4

,

°

,

.

Method

Define program prope¢_ to be proved. To get the most benefit from this
technique, insert "pro"and "post"conditions around code fragments.

Build a graph of the program flow.

a. Rather than build a large graph for the enSm program, build several
smaller ones. Use the "pre" and "post" conditions as boundaries for

b. When loops are involved, two cases must be considered: no iteralions
and at least one iteration. Since one can not exhaustiv_ prove al
it_ use _ induc_ _ to demonslmte correctness of
looping oonditions of the latter case.

Assign symbots as values for each variable of interest (variables of interest are
those that w_l "prove" program properties).

Trace program execut_ by substituling symbols for variable¢ Prove pmpedies
as they are _ in the throe.

a. Build a maldx wilh one column lot each variable of intemst and one row

for each line of the program to be traced

Helpful Hints

Formal ixogram proving works best on U_emost critical parts of the _. Infonmal
proofs am morn _ for Ihe leu cdtkJ parts of the code. Regardlms of wheBter
lhe proof is formal or infommL the goal is the s,wne: prove _e _ of

When doing fom_ proving, kx_s on the "interesting" parts of symm. Proa4s can
become long and umJldy if _ (e.g., al program variables) !s considered.
Often, only a small subset ofthings areot interest. For example, if a program hasten
vadabies and the loop you want to prove uses only three of tram, then tailor the pcoof_
ana zeonlythosemree.

2 Worksheet #4

Example

Consider, for example, the following description.

A simple traffic light controller at a four way intersecUon has car arrival
sensors and pedestrian crossing buttons. In the absence of car arrival
and pedestrian crossing signals, the traffic light controller switches the
direction of Iraffi¢ flow every two minutes. W'dh a pedestrian signal to
change the direction of traffic flow, the reaction depends on the status of
the auto and pedestrian signals in the direction of baltic flow; if auto
pedestrian sensors detect no approaching traffic in the current direction of
traf_ fiow, ttm traffic flow will be switched in 15 seconds, if such
approaching traffic is detected, the switch in traffic flow w111be delayed 15
seconds with each new detection of continuing traffic up to a maximum of
one minute.

Given this simple, consider the procedure shown in figure 1. This procedure when
executeddeterminestheappropriatetimeatwhichthelightshouldchange once waiting
traffichas been detected.

ProcedureProce _S nal
1

2

3

4

5
6

7

8

9
10
11

12

13
14

T I := T c + 60;

Ts := Tc + 15;

While Tc < Ts Loop

< Tc < Ts And Ts <= TI And Tc < TI >

If Approaching_Traffic Then
If Tc+ lS > TiThen

T s :=,TI;

Else T s := Tc + 15;
End If;

End If;

< Ts <= TiAnd Tc < Ts >

TC := TC*I;

End Loop;
< Tc = Ts And Ts <= TI >

Figure I

Based on the procedure shown in figure 1, the first step of the method is oomplete.
Lines 4, 11, and 14 are the conddJonsthat the symbolic execulion will prove. Unes 4 and
14 are the "pre" and "post" conditions, respectively for the loop of line 3. Lines 4 and 11
arethe"pre" and "post" conditions, respecitively, for the if-Then-Elseat line 5.

3 Worksheet #4

Nowthaisystempropedtieshavebeendefined,a graphisbuilttosupporttracingofthe
proceduresexecution.Ratherthanbuildingonelargegraphthatdocumentstheentire
procedureflow,twosmallergraphsarebuilt. Amottwr reason for doing this is because
there is a loop. Whenever them is a loop, behavior must be examined for two cases:
the loop iterates at least once and the loop does not brats. Rgures 2 illustrates this
reasoning by showing two graphs built by "cuffing" the execution at line 4.

NoLoopItmrat_rls ^t LeastOneLoop#mt_

/

.o°-_,

,7;

/ 4

'5

',.),.,'

.,t

¢'

/

/

p-

; 6 ;

,, ',

I 8 i
",.,__.4"

/

t

(.11 !........ i

'3i

(4i ;14i

F_ure 2

No proof is neoessmy for the graph showing no loop iteralions (however, it would be worthwhile
to d_r_:mtrm thepare_hroughbrand_(3b)s cormS)b,causehs _ and2 s_Dw,_* _e k_
wi alwaysiterate.Themore_ graphcoversthecasewherethe loopitmatesat least
once. Forthiscmeamaffixisoo_to_thetraoe. Symbols are assigned to
each vadabie of interest and traced in a unique column of the mate Every tkne the trace
e_ountwJ a "i_" or "post"corcition, argots are Wovid_ intermsof the symbols, asto
how that _ is satL_ Rgure3_a__pcoof forthe graph _ at
least one loop it_a_on.

4 Worksheet #4

Un_

1

2

4

51=

11

12

31)

3a

15

4

Figure 3:

tc: 8
I I I

8+1

tF ts:P

8+15

Arguements

P_w: tc< _and_ <:. and_:<ts

TRUE" subst_ution of values for tc and ts

yields the following:

8+15 <= 8+60 and 8 < 8+60 and 8 < 8+15

Approa_ing__gnal is FALSE

P_ve: ts<=tlandtc<ts

TRUE : values for these variables have not
changed since line 4 therefore, the same
arguementsapply

tc>= ts

tc<ts

Pm_: tc-ts andS<=tl
TRUE : if. after substituting symbols.8 < p
(line 11) and 8+1 >- p (line 3b) then 8,=p

Also, since IJ<- o at line 11 and the values p
and • have not changed, then ts <= tI still
holds

tc < ts and tc < tl and ts <= t I

TRUE :tc < ts holds trom line 3a

ts <- tI holds since values for ts and tI have

not changed since line 11

Sincets<=tlandtc<tsarebothtruethentc
<tl

Results of tracing the iteration graph from figure 2

5 Work,sheet #4

Worksheet #5: Hazard and Fault Analysis Using Fault Trees

When To use Thiq;Techniau,e;

Static Test

Who Uses This Technlaue:

Anyone interested in anaJ_ng the safety correctness of software (e.g., developers,
independent ver_rs, users). Users am induded because they will need to help define
the hazards that the software must account for along with what the software's response
to those hazan:ls should be.

Why Is This Technlaue Used:

From a testing perspective, ident_/ing hazards and faults and their relaSonship to the
software heros the process of bulk:lingtest ca6es for the6e concEUons. From a design
perspedive, this technique can (1) ddve the design of a solution that hancBesfaults and
hazards and (2) aid in demonslm_g that the software never does anything "unsafe" due
to the identified hazards and faults.

How To Use This Technlaue:

Fault

Fault Tree

Hazard

Key Terms

An error within that occum wflt_ the software itself that could

potentialycausea hazarcL

A graph (similar to a Cause-Effect graph) that, in the case of fault
driven analysis, graphs from a given fault (or concrdion)to an end
result or, in the case of hazard _ graphs horn a given end
res_ badcwan_ to its cause (Le., hazards am roots and faults are
leaves in the tree).

An undesirable external event that oould potent_ly be caused by the
software.

°

2.

Identify hazards and faults.

Build a tree.

Method

1 Worksheet #5

ao

b°

For fault analysis, begin with a specific fault and work from the bottom of
the tree to the top to determine what "results'.

For hazard anaiysis, assume the result is a hazardous situalJon and then
work down the tree to decide what con_ must happen to cause the
hazard.

Helpful Hints

Ve_, similar technique to cause-effect graphing. Since these techniques are similar you
might be tempted to create a Sklgle cause-effect graph that captures both. However, it is
probaidy better to analyze each kind of con'eclness separately. Fault trees tor safety
co.ectness and cause-effect graphing for functional correctness.

Best when dene on a module besis. That could either be the module itself or when

anaiyzing the where the modub is used.

Oonsider,for exam, the kdowingdescril_ion.

A s_mpletraffic light conlroller at a lout way intemection hu cm' arrivai
sensomand _ _ boUons, ththe absencaof car ardvai
and _ _ _, t_ n_c ,_ht _ _:hes em
d,rec_n of Iratlic flow every two _ WUha _ s_nJ to
chan_ the d, rection of taY, c now, the reaction depends on the sis/us of
the auto and pedeslrian signais in the direcl:ionof lraff_ 'S0w; if auto
pedesUisnsensorsdetKl no approachingtnd'r_cin the cummtdimc/ionof
Iraf_ flow, the traffic flow win be swilched in 15 seconds, if such
appmaddng traffic is detected, the switch in traffic ltow will be delayed 15
seconde with each new deteclk_ of conlinuing trMfic up to a maximum of
one minute.

The firststopin_ thisprol2eminvolveslistinghazardsand faults. Some
examplesof hazardsare:

• There is a collision in the interse_on (auto/auto, auto/pedestrian)

• Tra_ is stopped in ;ill cirections

Some examplesof faultsare:

• The conVollc's internal dock fails

• The sensors detecling oncoming traffic fail

Once a complete set of hazards and faults have been defined a fault tree can be built.
Figure I illustrates a fault tree for analyzing a hazard. Conditions that could contribute to

2 Worksheet #5

thishazardappearinsideboxesandarenodesinthetree. Sincemultipleconditionsmay
contributeto anyparticularhazard(ormulliplefaultsmaycontributea singlehazard),
booleanoperators(and,or,not)to"connect"theseconditions.

er

I Li_t fals to Driver runs
t Control Software

turn green

I I

! i iSoftware turin 2 Drives enter
both _hts _een

Carspresent
crrections

ii

Figure I

3 Worksheet #5

Worksheet #6: Inspections

When To Use ThlS Technlaue:

System Test, Unit/Integration Test, and Static Test

Who Uses ThlS Technl0ue:

The list of who parlicipates in a parlk;ular inspection varies depending on where this
technique is applied and to what work product it is applied. However, from an overall
perspective anyone (user, developer, etc.) associated with the project will participate in
an inspection at some point during the process.

Why IS Thi_ Techniaue Used:

inspections are estimated to catch approximately 60% of all en'ors. It is THE most
effective technique for analyzing a work product for errors.

How T_o_Use This Technlaue:

Forrn_ Inspectk_

form inspection

Waikthrough

Key Terms

A formal _ requires a meeting where all required
inspectors must parl_ and all rules must be followed

An inspecUon that cloesnot necessarily require a meetS. All
required inspectors may or may not _te and some rules
may be relaxed pending agreement from _e moderator

Synonomous with a formal inspeciion

o

2.

3.

Method

Define the kinds of inspecl_ns and what they will inspect

a. At a minimum, there should be one inspection per "phase"

Determine who should pad_paie in each inspedJon

Assign specific roles to the participants

a. Focus is on keeping the inspection ordedy and effident

1 Worksheet #6

, Define 1he "rules" governing the inspedion

& Focus is on preventing uninspected work products from being delivered
to the user.

Helpful Hints

Do not review an entire system at one tJrne. Rather, review incrementally. These
incmmenls naturally map to the modules of the work product.

Keep track of all inspeclion "results"that speak to 1he ralionale behind 1hefinal form of
thework product. This is helptul should the work product ever (1) needtobem-
designed or (2) expedence an en'or related to what was inspecte<L

The main focus of an inspection is idenffiying errors. Discussions regarding solutions to
those errors should be done outside the inspedion.

Ezemi

1. What Should Be Inspected?

There are many lecb of work predicts Ihat should be inspectecL Some _ are
req_rementsdocuments,daa_d dedgn,code.kno,_ document¢tut ca_¢ te_
results, et_. In general, any product Ixoduced dudng 1he development process Iltat wUl
either be used outside the _ org_zWion or wil be used in molher pehse of the
deve4opme_processst_uJdbeU_ected. Theteen"odg_a,ngocw_Jwon"_
me org_ tha act.alhjdm_)ped b_eixo(bd condderedfor_

2, 3. Who Should Participate In The Inspection And What Should
They Do?

At a minimum, a moderator, developer, badwp, _ analy_ and verifier should
_ inani_. HopeUy. b_eo_ _ B s.ch thatdmerent
poo_o un oa,:_ of u_eso ro_. Each o_._m _spo_ _ pe,tornns.',o
k,w ro_ inthe inspecUm:

Moderator The role of lhe moderator is to oonducl lhe inspection
process in a intoner that assures Ihe integrity oflhe
process. To this end, 1he moderator ensures thai the
specuonteamb prepared,hasther _
mate_, and comldetes all _ ac6ons. Idealy,
1he _ should be someone outside both the

development and test organizations.

Developer The role of lhe developer is to be able to provide
ralimWe for the implementation approach used on 1he
work product.

2 Worksheet #6

Backup

RequirementsAnalyst

independentVerifier

Thebackupisa memberofthedevelopmentteam,but
isnotdirectlyinvolvedintheimplementationbeing
inspected.However,thebackupdoeshaveageneral
understandingoftheworkproduct.Theroleofthe
backupisto beanother*setof eyes"fromasimilar
perspectiveasthedeveloper.

Theroleoftherequirementsanalyst(thiscouldbe the
rotefor the expert) is to ensure that the inspected work
product complies wflh stated requirements.

Assuming an independent verification team exists, they
assume the role of examining the work product for
testability.

4. What Are The Rules?

W'dh these roles deSned, the next step is to define some rules to govern the inspactkm
process. For example,

No inspection is complete unbl the moderator vedfies that all issues related to the
Vspactionhavebeensa actonlydose

Each inspector must complete an error log for the work product being inspected.
The inspector will classify issues as either a major error (the work product is
incolTed as written), minor error (e.g., standards violation), or suggestion (an
anemet eapproach).Suggest nsare majorand errors
must be co_cted.

No work product can be released untilall inspactions on that work proCk_ are
complete.

The work product inspection package must include the work product itself and an
oven_iew of what is to be inspactod, and any other support materiaJthet would
aid the inspector.

Inspectors must be given sufficient lead time (e.g., 4 days) to prepare for the

The results of the inspection are to be "filed"by a project 5brarian for future
reference.

Work products may only be reviewed informally when they are small.

An inspection shall not be longer than 2 hours in length.

3 Worksheet #6

Worksheet #7: Testability Analysis

WhQn To Use This TechniquQ:

System Test, Unit/Integration Test, and Static Test

Who Uses This Technioue:

Primarily testers and developers.

Why Is This Techniaue Used:

A significant goal of any development project is to avoid implementations that are hard to
test. This technique is helpful in assessing the testability of a particular implementation.

How To Use This Techniaue:

Execution Analysis

Infection Analysis

Mutation Testing

Propagation Analysis

Key Terms

Probability that a given component is executed. A component
here refers to a single implementation entity (e.g., a module, a
line of code, etc.). Lower probabilities imply lower testability
(i.e., harder to test).

Probability that a component is sensitive to errors. Lower
probabilities imply lower testability (i.e., harder to test).

Intentionally seeding a "correct" program with errors. The goal is
to identify test cases that can not distinguish between a correct
program and one that is not correct,

Probability that once a component is infected, it will affect the
execution results (e.g., "what the user sees'). Lower
probabilities imply lower testability (i.e., harder to test).

o Perform execution analysis

a.

b.

C.

Method

Select random samples of test cases

Run those test cases

Generate a ratio between the number of times a component executK)n
versus the number of opportunities.

1 Worksheet #7

.

.

Perform infection analysis

a. Do mutation testing

b. Trap the "state" of the output immediately after the mutated component
executes

c. Generate a ratio between the number of "states" that were infected (i.e.,
wrong) versus the number of opportunities

Perform propagation analysis

a. Set breakpoints following the target component

b. Intentionally modify the "state" of the at the breakpoint

c. Generate a ratio between the number of modified "states" that affected
execution output versus the number of opportunities

Helpful Hints

Without automated help (e.g., tracing when a component executes, random samples of
test cases, setting breakpoints, modifying program variables at the breakpoint, etc.), this
technique is very difficult to use. However, it does provide a nice breakdown of
categories to consider when static analyzing a component to determine its testability.

.Examal

Consider the following simple rule base where A and B are initially TRUE and D is initially
FALSE.

If A and B Then
assert C

If C and D Then
print "rule base complete"
exit

The second rule shown is a dead-end rule (since nothing asserts D then the rule's LHS
will never be true). Now, consider the testability of the second rule. Since it is a dead-
end rule we would expect its testability to be low. This is obviously true since, for all
possible test cases executions of this rule-base, the second rule will never fire.
Therefore, its execution ratio is 0. Now, consider infection analysis. For this case, let's
say a mutant is any unique condition involving C and D. Based on this definition, only
one mutant will behave differently than the original program (If C or D Then will fire
and produce output). Therefore, infection analysis shows a number near zero for the
second rule. Last, consider propagation analysis. This number will also be low for
similar reasons to infection analysis. Since the rule never rims, them is no way to perturb
the "state" after it fires (or, in other words, no output is ever produced). Therefore, the
testability is low. Given these factors, we can conclude the obvious. The second rule is
not testable.

2 Worksheet #7

Worksheet #8: Mutation Testing

WhQn Tq Use This Technique:

Unit/Integration Test

Who U_,es This Technique:

Testers

Why Is This Technique Used:

This technique aids in the analysis the effectiveness of a given test case. A test case is
not very effective if it can not differentiate between a correct program and an incorrect
mutant of that same program. In other words, if the output generated for a test case is
the same when running both the correct and the mutant program, then that test case is
not very effective at finding errors and should not be used.

HOW To Use This Technique:

°

2.

3.

.

Method

Generate a suite of test cases for the program being tested.

"Seed" the program with one or more errors

For each test case from the desired suite of test cases:

a. Apply test case to the "seeded" program

b. Apply test case to the un-'seeded" program

c. Compare results generated

d. If the results are identical, then the test case is should not be used (i.e.,
either modify it to make it effective or remove it from the test suite)

Steps 1 through 3 can be repeated for many different mutations of the program
being tested.

Helpful Hints

Make sure the correct version of the program is kept separate from the mutant programs.
This should help avoid accidental delivery of a mutant to the user.

1 Worksheet #8

To offset the considerable effort required to build and manage mutant programs, this
technique could also be done statically (i.e., no mutant programs are built). In this case,
test cases would be analyzed to predict their sensitivity to the correctness of the
program.

E_zama

Consider, for example, the following description.

A simple traffic light controller at a four way intersection has car arrival
sensors and pedestrian crossing buttons. In the absence of car arrival
and pedestrian crossing signals, the traffic light controller switches the
direction of traffic flow every two minutes. With a pedestrian signal to
change the direction of traffic flow, the reaction depends on the status of
the auto and pedestrian signals in the direction of traffic flow; if auto
pedestrian sensors detect no approaching traffic in the current direction of
traffic flow, the traffic flow will be switched in 15 seconds, if such
approaching traffic is detected, the switch in traffic flow will be delayed 15
seconds with each new detection of continuing traffic up to a maximum of
one minute.

Some (them are others) possible scenarios that cause the traffic light to change are:

No approaching traffic for a two minute period should change the light

Waiting traffic is detected and no approaching traffic is detected for the next 15
seconds

Waiting traffic is detected and approaching traffic is detected each second
thereafter for at least one full minute.

With this in mind, now consider the procedure of figure 1. This procedure performs the
necessary actions to determine when the traffic light should change. Using this an
example, then, examine the use of the mutation testing technique.

2 Worksheet #8

ProcedureProcess_Signal
1
2
3
4
5
6

7

8

9
10
11

12

13
14

T I := Tc + 60;

T s := Tc + 15;

While Tc < T s Loop

<T c< T sand T s <= TIAndT c < TI >

If Approaching__TrafficThen
If Tc + 15 > T I Then

T s := TI;

Else T s := T c + 15;
End If;

End If;
<T s <= T land Tc <T s >

Tc := To .1;

End Loop;
< T c= T sand T s <= T I >

Figure 1

The first step in the process is to build a suite of test cases. These test cases can be
derived directly from the scenarios discussed earlier. The next step is to generate a
mutant program. The procedure in figure 2 is an example of a mutant. Mutants are
generated by modifying one or more lines in the a program (compare versions of line 6 in
figures 1 and 2). The idea is to make subtle modifications so that the mutants are "close"
to correct, but incorrect just the same.

Procedure Process_Signal
1

2

3

4

5
6

7

8

9
10
11

12

13
14

TI := Tc + 60;

Ts := Tc + 15;

While Tc < T s Loop

<T c < Tsand T s<= TIAndT c<T i•

If Approaching_Traffic Then
If T c + 15/= T I Then

T s := Ti;

Else Ts := Tc + 15;

End If;
End If;

< Ts<= TiAnd Tc< Ts >

Tc := Tc+l;

End Loop;
< Tc = Tsand T s <= T I >

F'_ure 2

The final step is to execute each test case against both the mutant and the non-mutant
programs. If the results are the same, then the test case considered is not effective in

3 Worksheet #8

findingerrors in the mutated area of the code. For example, scenarios that involve no
approaching traffic once a waiting signal has been received will not execute line 6 at all.
Therefore, output for this test case will be the same for both versions of the procedure.
However, a test case that involves repeated detection of oncoming traffic (e.g., oncoming
traffic is detected every 2 seconds) once the waiting signal has been received will work
differently for both versions. Therefore, that test case should isolate this kind of error.
However, not all scenarios involving oncoming traffic after a waiting signal has been
received will produce cause different results to be generated for the two versions of the
procedure. Can you see why? Therefore, mutation testing can help isolate those that
are most effective in exercising the mutated area of code.

4 Wod_sheet #8

Worksheet #9 : Planning for V&V

When To Use This Technique:

Planning starts at the earliest stages of development and con_nues throughout the
development and maintenance of the system. No other development activities shouk:l
begin until a workable plan is in place. A workable plan is not necessadly a complete
plan. It is probably not possible to define a complete plan this early. A workable plan is
one that contains enough of the right kind of information to properly guide development

Who Uses This Technlaue:

Everyone associated with the development of a system has a part to plan in planning for
V&V.

Why I_ Thls Technlaue Used:

There are many masons for doing good V&V planning. Failure to do planning often
results in expensive and in-effeclive testing and poor use of resources. These can easily
cause your project to fail. Good Planning, on the other hand, increases the likelihood of
success by focusing on two things: what you need to do the job (resources) and how
you will do the job (implementation).

Hgw To Use This Technlaue:

• What is the problem to be solved?

• Who are the "users'? Do they need to be involved? If so, when?

• Are there existing experts? How can they be used?

• What resources will be needed and when _II they be needed?

• How much time/effort will be involved?

• W_IIprototyping be used? If so, what goal will the prototyping achieve?

• What increments

• What work products will be produced?

• What life-cycle will be followed?

• What implementation approaches should be considered and why?.

1 Worksheet #9

HOW TQ Use This Technlaue (cQnt'd):

• What kinds of correctness apPlY to your system and why? Assign a priority to
each kind of correctness

• Identify areas of potenSal risk

• uent.y testtechnk_)s

2 Worksheet #9

VALUE AND COST EFFECTIVENESS OF V&V

Robert J. Boring
Ewel H. Hughes

Entergy Operations, Inc.
P.O. Box 756

Port Gibson, MS 39150

VALUE AND COST EFFECTIVENESS OF V&V

ABSTRACT

Thispaperdescribesastudyof V&V costs for a small Software Engineering project at the Grand
Gulf Nuclear Power Station by the plant staff. The development applied IEEE standards for soft-

ware V&V and classical development methods that also complied with IEEE standards. The study

examined value returned by the software V&V costs and describes the specific criteria that relate

to value in the circumstances of a Nuclear Power Plant. V&V costs are summarized by phase of

development, defect removal rate and cost per defect. Extrapolation from the data is made to evalu-
ate ahematives for reduction of V&V methods.

2-1

VALUE AND COST EFFECTIVENESS OF V&V

INTRODUCTION

Verification and Validation is used to improve the overall reliability of software and control the in-

tegrity of the software delivered and to ensure that the product fulfills the purpose that was originally

intended. It is desirable to control the expenses of software V&V and if possible utilize it to control
delivery of value with the product. We define value as perceived return against costs of development

and maintenance. There exist several constraints on value for systems intended to support Nuclear

Power plant operation. First among these is the potential for abandonment of a system that may fall

itspurchasespecificationsbutnotbeconsideredreliableenough fortheimportanttasksthatthestaff

wants the system to provide. Second is abandonment of the system horn defects that frustrate the
userswhen they attempt complex tasks using the system. Third, systems can be functional and in

place but the much of the work is performed manually due to incomplete support of the actual tasks
of the use_. Manual work--arounds actually force maintenance of the system and simultaneous

staff-rag to perform the work that the systemwas to provide. Finally the costof symem maintenm_e

can exceed reasonable resource requirements and cost due to a corrective maintenance effort.

At GGNS we have completed a small project, less than 10,000 lines, and monitored the costs of de-
velopment, testing and installation. The costs due to V&V are separable and will illustrate this

unique situation. The overall behavior and proportion of tbese costs may be useful to similar situa-

tions. The small project represents the worst case for software V&V costs. Any fixed costs will

show proportionally higher and variable costs will certainly have little economy of scale. In this

project, we estimate the technical risk was high due to the following factors:

- Real-time requirements were present in the system

- 35% of the system was to be done using a real-time kemel for operating system services

- Integration with unf_ third party object code was required

- The system was distributed and used network corranunication as an underlying prew, ise for

development

- Work was done at system level or embedded system level exclusively - no applications level
work was done

To meet these difficulties, two teams were established. The more experienced team was assigned

to the Data Server Subsystem where the real--time requirements dominated. The other team built

the Man-Machine Interface Subsystem.

2-2

VALUE AND COST EFFECTIVENESS OF V&V

I.

U.

Value is a function of what is returned.

The value of software is related to the benefits returned by the use of that soft-ware. More effi-

cient work performance, error reduction, better planning or communication are all net posi-
tive returns that software can provide.

Constraints can limit the potential renan of sof_are. Soft'ware can limit the amount of work

performed or increase the potential for errors. Maintenance costs for software can be high

which reduces the net benefit. Possible consequences of too many defects include high main-
tenance costs, shortened system life, portions of the system abandoned or worked around, or

system rejection at installation.

V&V Program

Many items were designed to be configurable items so that the software could be reused to

support multiple functions so that the size of system could be as small as possible. These con-
figuration items decrease V&V costs as well as futme maintenance costs. Configuration

items include expert system rule sets, database, screen displays, and reports.

Standards were adopted to insure conformance and decrease future maintenance costs.

Standards used were taken from industry and developed in house. Standards used were:

- C Language Only

- Coding Standasd

- Interface Standard

- Network Standard

- CASE Tool Enforced Design Documentation Standard

- Procedural Method for Development

The method used to develop the project was a modified waterfall development cycle. It is

proceduralized and follows many IEEE Standards for V&V as well as development tasks.
The method includes six phases of development:

- Software Requirements

- Functional Design

- Detailed Design

- Implementation

- Integration

- System Test and Installation

2-3

VALUE AND COST EFFECTIVENESS OF V&V (CONT'D)

II. V&V Program (Cont'd)

The V&V program used throughout the project was based on IEEE 1012-1986, Standard for
Verification and Validation Plans and IEEE 1028-1988 Standard for Software Reviews and

Audits. A list ofIEEE V&V tasks performed can be found in Appendix A. V&V tasks were

combined and grouped to be more efficient. The V&V task groups were:

- Software Requirements Speciftcation (SRS) Review

- Software Functional Design Specification (SDDS) Review

- Detailed Design Review

- Peer Code Review

- Unit Testing

- Integration Testing

- System Testing

Ill. Cost of V&V

The cost of the V&V program implemented was monitored by tracking the resources utilized

in each V&V task. Cost is presented in terms of effort (man--days) and schedule (duration).

Fifty--two percent (52%) of project effort was V&V tasks versus 48% non-V&V.

Fifxy-seven percent (57%) project duration was V&V tasks versus 43% non-V&V tasks.

Seventy--4hree percent (73%) of our V&V effort was spent in testing. Figure 3-I, Percentage

of Project Effort on V&V Tasks, shows the relative effort of each V&V task performed.

Figure 3-2, Percentage of Project Duration for V&V tasks, shows the relative duration of each
V&V task.

Figure 3-3, Percentage of Project Duration by phase, illustrates the relative duration of V&V

tasks and non-V&V tasks in the project.

Figure 3-4. Percentage of Project Effort by Phase, illustrates the relative effort of V&V and

non-V& V tasks in the project.

IV. Costsof Defects Removed

A record of defects removed by each V&V task was kept and is illustrated in Figure 4-1, Total

Defects Removed by Phase. Defects that are removed in early phases are not propagated into

the next phase where they are potentially more difficult to remove. Figure 4--2, Defects re-

moved by Subsystem. illustrates the defect removal for each team.

2-4

>.
f-
0

E

w

.a

it.

i

_aog_I3oafoad_o %

Oi

2-5

ii'

i

0 Lf_ tf_e

uo!_JnCI _:_rmd jo %

2-6

uo.nemG%

2-7

!

2-8

f-

I

2-9

m

t',4
m

g

2-10

VALUE AND COST EFFECTIVENESS OF V&V (CONT'D)

V. Cost of Defects Not Inserted

The data collected demonstrates that defects are more difficult to remove in latter phases.

Figure 5-1, Cost in Man-days to Remove Defect by Phase, illustrates our cost per defect at

each phase. The fact that testing is amore costly means of removing defects and the fact that

defects not removed in the earlier phases would propagate to the testing phases emphasizes

the cost effectiveness of early V&V implementation. This data suggests that delaying defect

removal until testing has an oppommiry cost of up to two orders of magnitude greater.

2-11

I

t...

t/"_ ee', f',l

2-12

VALUE AND COST EFFECTIVENESS OF V&V (CONT'D)

V].

VII.

Value Returned

The system produced has been installed and in the hands of end users for seven months. De-
fects and comments have been recorded with favorable results. There have been two defects

found, the first defect was isolated to an operating system error from the computer vendor,
the other was a defect in third party display generation software detected with a new release
of that software and did not reach the field.

No defects have been detected in the software produced in the project. Operator acceptance

is high and requests have been made asking for other functions to be incorporated into this

system.

We feel that these requests ate a vote of confidence from the users and reflect their satisfaction

with the new system.

Conclusion

The V&V methods used in project and the metrics kept for the V&V tasks allow us to make

a educated estimate that there are less than five undetected errors in the system. The fact that

no defects have been detected in seven months of operation seems to indicate that the

remaining defects ate benign. User perception is that reliability and utility of the system is

much higher than previous systems.

In comparing the V&V methods used in the project with this group's past performance, the

defect rate prior to the project was greater than 5 defects per thouumd lines of code and for

the project was less than 0.5 defects per thousand lines of code. The rate of removal of defects

prior to the project was esumated at 9 man-days per defect for corrective maintenance. In

comparison, the system test defect removal rate with V&V is approximately 40 man-days per
defect for system testing. It should be noted that there were approximately 200 known

discrepancies in the previous system.

Commercial systems available for comparison exceed the three defects per thousand lines

typical of the average software package. I Our estimate is that those systems in use at GGNS

exceed five defects per thousand lines. At 1.1 miUion lines of supported software defects
would total in excess of 5000. At a defect removal rate of 40 man--days per defect that is great-

er than 800 man-years of corrective maintenance.

All phases of the development process contribute to defect insertion. Figure 7-1, Insertion

Points of Defects Removed in Testing, illustrates the number of defects removed in each

phase of testing and where those defects originated, design or coding.

2-13

VALUE AND COST EFFECTIVENESS OF V&V (CONT'D)

VII. Conclusion (Cont'd)

Testing can be costly way of removing defects. In terms of resources testing is inefficient be-

cause of the time requited to go back through the steps leading up to a defect detection. In

terms of schedule testing is difficult to work in any parallel fashion in the integration and sys-

tem testing phases. This means that you cannot apply all resom-ces to make things go faster.
The result is that testing is less manageable in terms of schedule. Figure 7-2, Merit of V&V

Tasks Normalized to System Testing, illustr_es the relative efficiency of defect removal for

each phase. This data suggests that V &V in the design phase is much more cost effective than

testing in defect removal and manageable schedules.

Figure 7-3, Cost of Defects by Phase if not Removed, illusuates the cost in man-days to re-

move all defects for all previous phases. If all defects had to be removed at system testing,
that phase alone would have taken more than eight mm_yeats to remove all defects.

A V&V program reduces the large cost of corrective maintemm_ by delivering fewer defects

to the production system. User acceptance is enhanced by getting their f'h-Stimpressions on

a more correct, less defect ridden system. The potential of user rejection or lack of confidence
is reduced by providing a more reliable system.

The potential for user rejection of a system can be described in terms of the number of defects

and the importance of the system. Figure 7--4, User Rejection Potential, represents the charac-
teristic behavior observed in our experience. The figure illustrates a lower threshold of de-

fects for more impomu_ or critical software.

Figure 7-5, User Frustration Potential, illustrates a similar relationship when the function of
software is to support a user task. The more complex the task that software supports, the less
tolerant the user is of defects.

Recommendation for Cost Effective V&V

- Use V&V and tune the V&V tasks based on perceived complexity and perceived importance

of the application.

- Manage using V&V by setting criteria to advance from a phase using review or testing.

- Emphasize early phase V&V tasks to remove persistent defects 2 and minimize exposure to

uncontrollable and expensive defect removal by testing.

- Maintain records of results of evolutionary improvements in V&V and the development

process. Refine V&V efforts as needs change and the organization matures.

2-14

p_suI _o_I

o

2-15

!

m _ N ,ml

0

0

0

Z

L-

0

:3

o_

2-16

i ' l

Innnmamnnm
!

NNNnnnn
I

n

I

i

I

I
,I J

as'_ld 3xoN m. po:aas'uI _:_oJaCI .lo 1so3

("4

o

t,tm
o

I

.*u

2-17

Rejection
Potential

High Importance

Less Importance

Defects

Figure 7--4.User Rejection Potential

2-18

User
Frustration

Anger, Rejection

Ill "

Acceptance, Dependen

Number of Defects

Figure 7-5. User Frustration Potential

2-19

VALUE AND COST EFFECTIVENESS OF V&V

RE_CES

1. Quantitative Aspects of Software Validation, Raymond J. Rubey, Joseph A. Dana and
Peter W. Ritche' (IEEE Transactions on Software Engineering. June 1975 pp150-155)

2. Persistent Software Errors, Robert L. Glass (March, 1981 IEEE, Transactions on Software

2-20

V_IFICATIOB AID TALIDATIO| FOR _ _fSTEM5:
• PRACTICAL _TKODOLOG!

by

James R. Ceiasman

Abacus Programming Corporation
Van Nuys, California

i

IF_ODUCTION

F.xpert system: will only be used in critical applications if they are carefully verified and
validated according to a product assurance methodology. The methodology should apply through the
expert system's entire lifecycle, from conception through design, programming and testing, and
should be based on objective verifiable standards. This paper advocates basing the nethodolog7 on
prototyping for requirement development, design baaed on formally-defined knowledge processing
paradigms, ceritifed inference engines, structured denies-for-testing, knowledge base verifica-
tion, and formal validation testing. A development organization or project can develop a product
assurance plan to operationalise the methodology for any specific environment.

OF YaW

First," some brief definltioa8. Verification means ensuring that an expert system has been

developed in the correct manner and does not contain techalcal errors. Validation is ensuring
that the expert system satisfies its users' needs, or that it solves the right problem.Ill

Verification and validation have clear meaning in the world of non-AI software engineering.
Verification is a deternAnatloa that software has been developed 4- a "formally correct" manner,

in accordance with • specified noftvare engineer£ng nathodology. In practice this means deaon-
strsting that each stage in software development is a correct napping of the requirements esta-
blished in the previous higher-level stage. To do this, one examines both the process and the
outcome. Was a sound methodology was followed, such a8 Structured Analysis or a design language
with a pro-processor? Is the design reasonable and traceable? Are alI the elements determined at
8tage_ covered at stage n+;..._?

Validation means demonstrating that the completed progrsa perform8 the functions in the
requirements specification and i8 usable for the intended purposes. Just chat This entails de-
pends on what the z_quiraaent8 specify and hoe detailed they are. Very detailed requirements are
usually possible for applications like a boiler controller; for an expert system, however, the
limit8 of the possible, the potential, the essential, and an acceptable compromise nay be fuzzy
and continually evolving. The m:rs existence of an expert system V&V methodology _ help to give
order to expert system requirements by encouraging the early formalization of those concepts.

,a_ vFo__!

Up to this time, WaY have not been commonly associated with ezpert systems for a number of
reasons re_ated to the way La' whtch expert system seen to go beyond the assumptions of procedural
software engineering. A number of specific problems seen to inhabit V&V for expert system8:

o If an expert systsn project starts with with vague objectives, some na_ conclude that it
doesn't matter vhat the eventual system does, because anything is better than nothing.

o Green and Keyns[2] cite a "vicious circle," where nobody requirem expert aystem V&V, so no-

body does it. Since nobody knows hoe to do it, nobody requires it.

o Testable requirements are hard tO find. Sometimes, attempts to write requirements for 8
procedursI program may a_reedy have failed, leading to the expert system project in the first
place. Even if there is a definition, it nay be as vague as, "Build a machine that will do
'1use what Charlie doas"[_] or, "Build a aac_Lne that will sake moat of the hard underwrit-
ing decisions as yell as an experienced underwriter."

o Expert systems and AI started within the scientific research comaunicty rather than engineer-
ing production. Prom this came an emphasis on evaluation of systems with a view to determin-
ing the current state-of-thee-art (which is assumed to be continually advancing). Free the

research perspective, systems' pluses and minuses are important for what we can learn from
thee to improve the next systeasLTJ- - The engineering view, by contrast, is norm interested
in each system for itself, and V&¥ is performed to determine whether contractural require-
meats have been met and a 8yatem is 8ale to deploy.

o Common non-procedural architectures For expert systems do not result in code that bears any
resemblance to the execution sequence. Hence, techniques for tracing execution Flow from an
examination of the code do not apply (although they nay well apply to the inference engine
itself). ?he declarative knowledge can be examined at fmoe value, but how the ayste= will
work can only be predicted with knowledge of how the inference engine operates.

0 A modularised, top-down hierarchically decomposed design aa_ be hard to achieve in 80ne

expert system architectures. In a backward-chaining rule-baaed decision-tree system, For
example, the progressive decomposition of goals eventually arriving at specific questions
that can be resolved in terms of obtainable data ie generaliy an achievable design strategy.
In other more fluid architectures, however, side-effects amy be froquent and a continua2
chain-reaction can result 8o that order is observed only at a micro-level (e.g., a Frame-

baaed system with procedural attachments where the procedures are user-written and do not
follow the basic paradise).

0 Expert 8ystesm (especially those that operate under uncertainty or with incomplete data) nay
have so many possible states as to make exhaustive tes¢in6 infeasible.

o Zxpert system enviroomenta or shell8 tend to have complex user interfaces where inputs are

inpreclse and hard to reproduce, such as pointing to s place on a picture with s mouse. ?his

nasa•Flea the potential solution space.

SOL_YXO|: • SXX-STEP AMf'ROA,CH

The V&Y methodology described here has aspects of classical software engineering, especially
top-dove decomposition. Zt is baaed on a four-stage development methodology going from problem
definition to initial prototype to expanded prototype (iteratlvely enhanced) to delivery system.
Each stabs results in VaV artifacts.

One-. Develop Xaitial Prototype Resulting in TRtable _uizlmeata

According to the definition8 above, Y&Y of an_ computer program i8 not possible unless there
are requirements vlth which the program can be compared. There La soae controversy whether

requlreaenta can even be established for artlflclal Intelligence programs, and some authors argue
that there are fundamental problems vlth the applleatlon8 nest llke human thanking such as natural
language proceselng[4]. However, expert systems dli_er I_ rome ether AI applications in that

they are acre problem-arleated rather than process-orlented, and allow the specification of the

attributes o£ an acceptable or correct solution. Even, "Do _ust what Charlie does" ie the
beginning of requirements; the problem is _o refine it into a series of testable statements. Th:Ls
V_¥ methodo2o&7 provideo m nesns of dn_ _ust that.

345

PRE@EO'tNG P.__._E _LANK NO;" FILMEL;

Requirements can be developed from the iterative prototyping methodology, similar to the
spiral model of software development. Initially, the problem definition stake results in sons

':ely "Charlies." The next stake _8 to quickly build a prototype of a mean£n6ful subset of the

•,blem, followed by a stake of lteratively enhancing the prototype to deal vith norm and more of
the problem. The initial and enhanced prototypes ar_ folloved by the deliver 7 system, for vhich
the requirements are developed. In this methodoloK7, the prototypes serve an the basin for vrit-
_ug requirements. Even vhere the prototypes are incomplete or go slightly astray, developing them
gives a clear insight J_to the problem fro..._n a knovledge engineering perspective. This insight
enables clear and testable statements .about the expert system An tern8 of what it v_l actually do
(even at a detailed internal level).

T,o: in Ten= of rwti

A crucial step in building s testable system iS to e]_uro that the code-level artifacts are
structured in order to be analysed in a meaningful way. This is part of the deeLKn For testing
principle.

To take an analogy from procedural softvare, consider checking a program by examining the
code. If the code is sin61eoentry, sin_le-extt, structured and vell-doetunented, a desk-check or
valkthru can result in a level of confidence in the program's correctnen. With self-_wdifying
"apashetti" code that shares global data vlth other processes runnin 4 in parallel, even a minute
code-level examination does not lead to con_idence in the progren, because there _8 no wey to tell
what state the code rill be in vhen it runs.

In expert systems, "structured denies" can mesa the Folloving:

o Formally define knovledp processin6 paradigms. These _an L_olude inheritance netvork8,
backvard- and forvaz_d-chaini_ production systems, and Boalodriven loKic (e.g., PROLOG), all
of vhich are among the =nat straishtfurvard of the commonly-used paradigms. Because these
paradips represent discrete event networks rather than the equivalent of "spat_settl," the
Future state of the sT,,tmn can be expressed as a function of the J_Ltial state and a number
of transitions, and tools can be built to analyze the logical oonsiatancy of a knowledge base
expressed in terns of one of the psradL4_ss. Stachouitx has described EVA--the Expert Systems
Validation _ouiate--an autolated tool for checking certain paradii_J that fellers this

o Vhere reasonable, design uein_ the limited set of certified paradigms. This is Procrustean
and might be li_tti_ at FAreS, but effort directed to specifying and checking out new p_ra-
dl_ns viii pay off over tame.

Independently perform V4V on any escapee to procedural code. These nay introduce problems,
especially if they result in modifications to the problem space (for example, chanKin_ york-

memory in a production system, or nodify_ng the value of an item in an inheritance net-
vor_).

=ree: Cm'¢i In_or_en _n_lnen

Certif_r_ng an in£erenee en_inemoans testing it to deteratne vhether it An fact carries out
one or more o£ the knov_.edp prooeanini| parad_4ns specified in step two. 1£ this can be proved,
then a certa4n amount of knovlodKo base vez_LficatLon can be achieved by code inspection of the
knovledKe bane.

Vithout a verified Lnferenoe engine, the only sort of YaV passible is black box testinK, or,
4_Y_n_ the expert systa a sot of problems and semis4 vhat it does. Altho_/h black box testing is
a necessary part of Yav, it is not feasible to test a nonotrlvLal expert system exhaustively in
this ray.

]46

Certification of inference engines a_ght involve the following steps:

o Formal definition of an inferencing paradi_ in a relatively abstract representation (an
"ANSI standard').

o Specification of how a given inferenci_ paradip is represented in terms of a given expert
system tool.

o Development of test suites f6r the paradip in an abstract representation.

o Translation of the test suites to the language of the particular tool.

o Performance of certification tests for particular peradidBs.

o Checkin6 that all debugging or explanatory information provided by the _nference engine

(e.g., current agenda, contents of working memory), is _n fact correct and can be relied upon

in later ver_fication stages. Ma_7 expert system sh_lla have very powerful graphic-baaed

explanation facilities, and these can help the developer and tester Measurebly. It is

necessary, however, to confirm that they do what they seem to do.

Inductive knowledge acquisition tools are adjuncta to inference ensines, and may be verified
similarly. Where a well-understood techr_tque is followed, the tool can be checked asainat stan-

dard benchmark cases. For example, quinlan's ID_ algorithaNor something sia£1arNseems to be

incorporated in several coalercial products that derive decision tress from case h_story matrices
o[criterion data and resultant classifications.

A potential source of problems is where standard techniques are "improved" by new methods

that _emain proprietary and are not disclosed for commercial reasons. For example, one inductive

knowledge acquisition tool seems to be followLug the ID} algorithm, but the documentation su_ests

the tool is somehow better than standard techniques yet nowhere statem how it works. The documen-

tation associated with several expert system shells and _nductive knowledge acquisition tools uses

asa/-nystteal tersJ that leave a skeptical reader in some doubt, and £n not au_lented by a techni-
calappendAx that spells out details.

Step l_our: _ for Vori£1catioa '

Initial deslSn centers around s high-level statement of what knowledge v_ll be used, where it

will come from, and what the knowledge will look like (how it will he represented). Verification

at this level consists of determining that the design covers each of the requirements. If the

requirements and prototype are not 8ufticiently advanced to permit the development of a high-level
design, this is a sign that they require more work.

The principal elements of an expert system hi&h-level desi_ ere statements of the following:

o Hoe each _ndiv_dual requirement will be dealt with.

o The kno_led_ processing peradts_(s) to be followed.

supported by certified inference engines.

These should be selscted fro_ those

o The principal factual knowledge that the proceuin_ relies on.

o The way in which the overall solution Is broken _nto aubproble_, the transitions from one

suhproblem to the next, communication het_een eubprobleas and how th_a etr_cturs is repre-
sented (e.g., the tree of goals _u a backward-chaLuin_ system; blackboarding protocols).

o All in_ersctions _th the outside world, includin_ hov needed data will he obtained (e.S.,

asking the user, readin¢ devices or querying a database system).

347

o What ba•ic a•s.mptions underly the •olution and what are the limits of validity or boundary
conditions. This information correspond• to the asaer_ion8 of invariant• that help prove the

correctness of procedural programs. Examples •re the range of conditions or inputs under

which the an•lyrical assumption8 are valid.

o The way the current state of the problem or state of the world within the expert system viii

be represented, in general terms.

Five: _ Knovledge BaH

After the high-level design is completed, development (and verification) may go to • lover-

level design with more detail, or it nay go directly to the code. Because expert system languages

and shell• are sore expressive than so•t procedural language•, it is often not necessary to do s

detailed design step, and the next V_V activity is to verify the knowledge base. Verification

should be done statically, with the code alone, as veil a8 dynauically by observing the behavior

of the system.

Operationally, one goes over the knowledge base to see if it matches the high-level design,
and check• each individual rule/fact/object/procedural attaches•t/goal for correct•ewe. This

checking should be done by person8 other than the developers. (See the article by _arcot for some
suggestion•.) The following are •one specific thinK8 to check:

0 Confirm that the knowledge base confor_ to one of the certified parmdt_. (This i8 moat

easily accomplished by writing the knowledge base in the abstract paradi_ definition form in

the first place and mechanically translating it to the tool'8 input form.)

C Verify •ubproblem •t_c_ure and verify each •ubproblem independently. This means confirming

that a solution to the •ubproblens is • solution to the larger problem and that the boun-

daries of the eubproblm subsume the whole problem space.

o Co•Firm that the knowledge i• correct or at least re•seeable in a st•tic and individual

sense. This means confirntng the "fact•", the relationships expressed in rules or other

rays. the limits or boundary co•dittos• and the overriding he•riett_ or •eta-rules that
guide the system'• operation.

o Identify the portions of the knowledge base that are not element• of the paradip, such as

escapes to C or calla to a database By•ten. These can be individually verified in the normal
• of•ware engineering nan•at.

o Embed additional demons to •lgnal Failure of the boundary conditions (rules that fire vhe•

the system gate place• it should never be).

The •tops up to this point should be repeated whenever • now level of Functionality is _tro-
due•d, for exanple vhen a prototy_ is expanded to deal vith a new problem or vhen the initial

prototype is throvn awsy and a replaced vith a new knowledge repre•entation scheme, according _o

the spiral model.

Sttp SIx: Perform Formal Validation

Even if each step along the vat ha8 been checked out, it t8 neeesnss-y to test the behavior of
the integrated system, both to discover errors that only appear at this point, and to check

against the user's "real need•."

The 8tepa in validation, borrowing From procedural VaV, are as £ollo_m:

o Determine validation criteria. This see_ like a• obvious Fires step, but it is frequently

overlooked. Karcot proposes the following criteria: accuracy, adapt, ability, adequacy,

appeal, availability, breadth, depth, face validity, generality, precision, realise, relAe_-

ility, resolution, rebus•me••, sensitivity, technical and operational validity, Turlng tees.
usefuln,,,. [plain] vaU_ty, and vholeneas[6].

348

O'Keefe, hlci and SmithC1] suggest more formal statistical testing, which i8 especially

appropriate for a classification system where cases vith known properties can be provided and

the outcome can be scored as right, vrong or somevhere between. For a system that performs a
different kind of function, such as Rt that configures VAXe8 or EXCABL that cables Space

Shuttle payloads, a number of possible solutionm might be right or "good enough," which com-
plicates scoring. Caschnig, et. al. suggest a number of other evaluation standards[7].

One interesting criterion i8 that an expert system should "act like an expert" and demonstra-

te deep knowledge, rather than the shallow recipe knowledge generally associated with then.
see[e3 [93for a fullerdisc sion of it to an"e rt.

For any specific system, the criteria viii be derived frol the intersection of the criteria
mentioned above with the system's particular requirements, as described In the requirements

document and/or overall concept document.

o Determine objective metrics for the selected criteria• This is a difficult step, and some

appealing criteria may have to be dropped because of difficulty in coming up vith a meaning-

ful ob_ective measure or surrogate.

o Specify the realms or aeta of input data that the expert system aumt correctly handle.

0 Develop a library of test cases and scenarios specific to the problem and perform regression
testing vhen the knowledge base is modified. As with any softvare tenting, testers should
attempt to demonstrate the system's proper retponle to normal situations, and also attempt to

induce system errors. (A good teat is one that finds an error.) The test cases should

include a mixture of obviou8 ones, more subtle yet still "average" cases, boundary condi-

tions, meaningless combinations of valid and invalid data, load testing, and obvious error

conditions outside the system's scope of validity. Specific cameo are derived from the

requirements, the design, and knoen quirks of the implementation environment. The results of
these tests should be evaluated according to the criteria and metrics described above.

• Develop teat harneaans and drivers to administer the tests automatically. Zf possible, have

the results, in terms of the metrics, automatically registered in a database that ia part of

the development system, where they will be associated with the specific software changes they
correspend to. As part of the testa, have system performance re-validated by the domain

expert(e) involved in the development.

• Have system performance validated by an independent panel of experts not connected vlth the

system develo_ent effort.

• Use the expert system in parallel vith existing systems and non-automated methods for a

period of time and compare results.

o Start the validation teasing early, even when it ia clear that only a subset of the functions

have been implemented, and continue to perform regression testing a8 the system ie elabo-
rated.

o K_tntaLu detailed infer=aries on system perfonmnce as the knovledge base Is elaborated,
because Interactlou in working memory can cause substantial degradations in performance v1_

seemingly inmignlflcant increases in complexity. If performance As severely affected, a

hlgh-level redesign such as a revised subpreblen structure to lisle the focus at any one :ins

nay be called for. Where the requirmments demand, perfo=u load testing with reallatlc rates

of inputs,

349

FrOG Here to There......_: ¥o___ Yet To Be Done

The methodology argued here As not yet ready to use; some research and specification has to
done, includ£ng the follov*ng:

o Fcrnal defAnitlon of paradips. This has already been done at least in tern8 of 8peciflca.

times for developing inference engines for such paradi6n8 as forvard- and bachvard-chalninw.,
PROLOG, frames and inheritance netvork8. Other more versatile concepts like objects need t_
be defined in a way that link8 them to these. An con:unity-vide body would be approprlat.
for this task.

o Certification of inference engines. This is like certifying a compiler. Inference encase.
that follow the most strai_htfcrvsrd paradAgas (e.g., backvard-chaiaAng such as many or basl,,

forvard-chaining production system such as OPt, OPSS_ or CLIPS) are the nest likely candl.

dates. Potentially, =ultl-paradign tools like HEXPERT or ART could be incrementally certl.
lied for the different paradi6ns.

A systematic specification of parsdism vould resolve some issues influencing system perfor.

mance that are currently rather muddy, especially among PC-based shells. For example, con-

sider hey undefined variables are treated in searching; Consider a backvard-chainlng ehelJ

that is programmed to perform s classification or interpretation problem (such as, evaluatlr,_:

household characterls:ica to decide whether to grant an insurance policy). Some connon]y
used shells _bst could do this include Insight 2+ (1=![],) and Personal Consultant. Different
shelli are likely to perfore differently in the face of unknown data: some system ask th.

user for the value, whereas others nay avoid branches including unknovns and search Other

regions of the decision space, if possible. Among those that query the user, there nay b_,
dAffereacas in the order in vhlch facts are collected. These matters are certainly not

spelled out in the documentation of most systems the author is familiar vtth, but can
influence rem=lta.

,CO_CLt_SZ01

Fornal YaY Is necessary For acoeptaaca of ezport systems into critical areas. YaV is .

stralght£orvsrd activity that parallels easy ef the steps undertaken in development and fltn
especially easily into an iteretive prototyplag development methodology. The recommended spproucj,

to expert system V_V centers on well-defined paradigm and certified £nfeFenee engines, which
pernAt both 8tatlc and dynamic verification to be undertaken with confidence.

nEYRDCES

[I] O'Xeefe. R.M., O. Balci and E.P. SmASh, "Validating Expert System Perfornance," IEEE Exp.er_,
¥1ater 19_7.

[2] Crees, C., and n. Keyes, "Verification and ValldatAoa of Expert System," Vorksbop on Knov°

lsd6_ Based Systas Verification, _ASA/Anas, April, 1987.

[_] Culbert, C., G. Riley and R,T. Savely, "Approaches to the Verification of Rule-Baasd Export
Systems," SOAR Conference. NASA/JSC, August 1987.

[4] Partridge,)., and T. ¥ilk8, "Doe8 AX Have A Hethodology Different from Softvare Engi-
neering?" Ccaputing Reseaz_:h Lab, Hew)texAco State UnAverslty, 198_.

[5] Stachovlts, R., et. al., "Building Validation Tools for Mnovledge-Based System," SOAR Con.

ferenca, KASA/JSC, August 1987.

[6] Mercer, B., "Testing Your Knowledge Base," A__X_pert, July, _987.

35O

[7] Gaschnig, J., P. Klahr, H. Pople, E. Shortli[fe, and A. Terry, "Evaluation o[E_ert 3ystems:
Issues and Case Studies," in F. Hayes-Roth, D. Waterman and D. Lenat, eds., Buildln_

STstems , Reading, Mass: Addison-Wesley, 1983.

[8] Berger, P., and T. Luckmann, The Social Construction of Reality, Garden City, N_: Doubleday,

1967.

[9] Svartout, W.R., and S.R. $moliar, "On Making Expert Systems More Like Experts," Exper_

3ystems, Ausust, 198'7.

351

VERIFICATION ISSUES FOR RULE-BASED
SYSTEMS

Chris Culbert, Gary Riley, Robert T. Savely
Artificial Intelligence Section - FM72

NASA/Johnson Space Center
Houston, TX 77058

ABSTRACT

EXPERT

Expert systems are a highly useful spinoff of the artificial intelligence research
efforts. One major stumbling block to extended use of expert systems is the lack of
well-defined verification and validation (V&V) methodologies. Since expert systems
are computer programs, the definitions of "verification" and "validation" from con-
ventional software are applicable. The pdmary difficulty with expert systems is the use
ofdevelopment methodologies which don't support effective V&V. If proper techniques
are used to document requirements, V&V of rule-based expert systems is possible,
and may be easier than. with conventional code. For NASA applications, the flight
technique panels used in previous programs should provide an excellent way of
verifying the rules used in expert systems..There are, however, some inherent
differences in expert systems that will affect V&V considerations.

INTRODUCTION

Expert systems represent one important by-product of Artificial Intelligence
research efforts. They have been under development for many years and have
reached commercial viability in the last three to four years. However, despit e their
apparent utility and the growing number of application_ being developed, notlali ex-
pert systems reach the point of operational use. One reasoh for this is the lack;of well
understood techniques for V&V of expert systems.

Developers of computer software for use in mission or safety critical applications
have always relied upon extensive V&V to ensure that safety and/or missior_ goals

were not compromised by software problems. Expert system applicatiohs are
computer programs and the same definitions for V&V apply to expert sy_stems.
Consequently, expert systems require the same assurance of correctness as
conventional software.

Despite the clear need for V&V, considerable confusion exists over how to
accomplish V&V of an expert system. There are even those who question whether or
not it can be done. This confusion must be resolved if expert systems are to succeed.
As with conventional software, the key to effective V&V is through the proper use of a
development methodology which both supports and encourages the development of
verifiable software.

THE COMMON EXPERT SYSTEM DEVELOPMENT METHODOLOGY

Most existing expert systems are based upon relatively new software techniques
which were developed to describe human heuristics and to provide a better model of
complex systems. In expert system terminology, these techniques are l called
knowledge representation. Although numerous knowledge representation techniques

are currently in use (rules, objects, frames, etc) they all share some common

characteristics. One shared characteristic is the ability to provide a very higl_ level of
abstraction. Another is the explicit separation of the knowledge which describes how
to solve problems from the data which describes the current state of the world. J

!

Each of the available representations have strengths and weaknesses. With the
current state-of-the-art, it is not always obvious which representation is most
appropriate for solving a problem. Therefore, most expert system develol_ment is
commonly done by rapid prototyping. The primary purpose of the initial prototype is to
demonstrate the feasibility of a particular knowledge representation. It is not unusual
for entire prototypes to be discarded if the representation doesn't provide the proper
reasoning flexibility.

Another common characteristic of expert system development is that relatively
few requirements are initially specified. Typically, a rather vague, very general
requirement is suggested, e.g., "We want a program to do just what Charlie does'.

Development of the expert system starts with an interview during which the knowledge
engineer tries to discover both what it is that Charlie does and how he does it. Often
there are no requirements written down except the initial goal of "doing what Charlie
does'. All the remaining system requirements are formulated by the knowledge
engineer during development. Sometimes, the eventual users of the system are
neither consulted nor even specified until late in the development phase, iAs with
conventional code, failure to consult the intended users early in the development
phase results in significant additional costs later in the program.

So where does all this lead? The knowledge engSneer is developing one =,ormore
prototypes which attempt to demonstrate the knowledge engineer's understanding of
Charlie's expertise. However, solid requirements written down in a clear,
understandable, easy to test manner generally don't exist. This is why most expert
systems are difficult to verify and validate; not because they are implicitly different from
other computer applications, but because they are commonly developed in a!manner
which makes them very difficult or impossible to test. !

I

NEW APPROACHES TO DEVELOPMENT METHODOLOGIES

From the preceding section, it should be clear that the problem is the use of
development methodologies which generally do not generate requirements which can
be tested. Therefore, the obvious solution is to use a methodology which will produce
written requirements which can be referred to throughout development to verify
correctness of approach and which can be tested at the end of development to
validate the final program.

Unfortunately, it's not that simple. Some expert systems can probably be
developed by using conventional software engineering techniques to create software
requirements and design specifications at the beginning of the design phase [!]. How-
ever, the type of knowledge used in other expert systems doesn't lend itsei=f to this
approach. It is best obtained through iterative refinement of a prototype which allows
the expert to spot errors in the expert system reasoning before he can clearly specify
the correct rules.

The goal of any software development methodology is to produce reliable code
that is both maintainable and verifiable. A software development methodology for
expert systems must serve a similar purpose as one for conventional soft_,are.
However, there are some differences between expert systems and conventional
software which will affect the development methodology. Development methodol(bgies
for expert systems are discussed in more detail in another paper by the authors [2].
Suffice to say here that some kind of development methodology must be chosen and
applied to support effective V&V.

o

MAKING THE REQUIREMENTS WORK

Once we accept that requirements and specifications must be written and a
methodology for how and when to write them has been adopted, the actual work of
verifying and validating the program must be done. A very appropriate technique
would be a direct derivative of the methods used to develop procedures, flight rules,
and flight software for the Apollo and Shuttle programs, This technique consists of
Flight Technique Panels which regularly review both the procedures for resolving a
problem and the analysis techniques used to develop those procedures.

If expertise is not readily available from past experience, the analysis efforts
typically use high fidelity simulations based on system models to derive and evaluate
control parameters. If expertise is available, the knowledge is reviewed by the panel
and placed in the appropriate context. The panels consist of system users,
independent domain experts, system developers, and managers to ensure ade_iuate
coverage of all areas of concern. In previous programs, the typical output of such a
panel was a set of flight rules describing the operational requirements for a system.

Sometimes these flight rules were translated into computer programs (typically as
decision trees) and embedded in the onboard or ground computers. An additional
ve,-ification step was needed to guarantee that the flight rules approved by the panel
were properly coded. More often, computer limitations caused the flight rules to remain
in document form used directly by flight controllers and mission crews.

i

For future programs, many of the flight rules which come from the ',Flight
Technique Panels can be coded directly into expert systems. Expert systems
developed in this manner will have undergone extensive verification through the panel
review. They should also prove easier to verify in code form because the rule
language will allow the program to closely resemble the original flight rule.

Programs of the complexity and size with which NASA regularly deals make this
approach mandatory. Smaller programs generally will not require the resources or
effort involved in verifying a system to this extent. The size of the panel and the Jength
of the review process can be scaled down to something appropriate for the complexity
and size of the application. For some applications, the panel approach could look very
similar to independent code review techniques.

Exhaustive testing through simulation remains the most effective method

available for final validation. However, for any system of reasonable complexity,
exhaustive testing is both prohibitively expensive and time consuming. Space Shuttle
applications typically used extensive testing with data sets representative of the

anticipated problems or failure modes. This method is not guaranteed to eliminate all

software bugs, but it can prevent the anticipated problems. If used projperly,
representative testing can eliminate enough problems to make the so|tware
acceptable for mission and safety critical applications. !

The panel approach to verification discussed above is very effective at en_udng
that the knowledge in the expert system is both correct and complete. Verification of
conventional software also covers feasibility, maintainability, and testability. These
verification efforts are generally done early in the design phase and should also be
done for an expert system. The coded rules must also be examined to ensure that the
consistency and completeness of the design is properly incorporated in the software.

Some of this work can be done automatically. Testing a rule language for
completeness and consistency may actually be easier than testing conventional
programs. The explicit separation of knowledge elements from control and data
elements may allow relatively straightforward analysis of the rules by automated tools
[3]. If automated methods are not used, other standard methods such as code reviews
and manual examination of the rules may also be comparatively easy, again due to
the independent nature of the knowledge elements. They can be done by the whole
panel, or more likely, small teams of people drawn from the whole panel.

Feasibility of knowledge representation is usually fully tested in the early
prototypes, but the feasibility of other elements of the expert system, such as
performance, user interfaces, data interfaces, etc. must also be verified. The use of
rapid prototyping can be extended from testing representation to testing some of:these
areas as well. Iterative development can go a long way to ensuring that the final
system truly meets the user needs in these kind of areas.

Finally, the requirements must be examined to ensure that they are able',to be
tested. They should be specific, unambiguous and quantitative where possible.
Objective requirements will aid in the development of rigorous test cases for final
validation. A test plan should be wdtten which discusses how the final expert system
will be tested.

OTHER ISSUES FOR EXPERT SYSTEM V&V
?

There are other differences between between conventional software and expert
systems, and those differences will affect V&V efforts. Some of the differences are
discussed in reference [4] and summarized below.

Verifying the Correctness of Reasoning

Verifying that an expert system solves a problem for the right reasons is
sometimes as important as getting the dght answer. For a rule-based expert system,
identifying all possible paths to a solution is very difficult. Therefore, it is important to
ensure that the expert system has gotten the right answer for the right reasons.

t

_." ,"

,o,,

i-

Verifying the Inference Engine !
The inference engine in a rule-based expert systems is a completely separate

piece of code anc can be fully verified independently from the rest of the ekpert
system.

Verifying the Expert
6

This question is automatically resolved as long as the expert system is validated.
The panel approach discussed in this paper provides continual feedback on the
correctness of the experts knowledge.

Real-Time Performance

Most conventional programs provide performance "guarantees" through
extensive simulation of the expected performance environment. Expert systems can
provide the same kind of performance "guarantees'. Some kinds of conventional
programs are analyzed at the machine instruction level to specifically determine the
amount of time required to process a given data set. Achieving the same kind of
capability in a rule-based expert system is more difficult, but can be done for a given
data set entered in a specific sequence.

Complex Problems with Multiple Experts

The panel review method already discussed here is clearly the appropriate
method for resolving a problem of this type. The review process used by the panel will
allow inputs from any number of domain experts and will also establish the methods of
validating system responses. ..

Traceability of Requirements

Tracing requirements after they have been coded in rules may be more difficult
than for conventional code, particularly when hybrid representation techniques are
used, i.e. when both rules and objects are used to satisfy the program's requirements.
This is an area that needs further consideration.

Verifying the Boundaries of the Expert System Domain

V&V of an expert system must be carefully aimed at identifying the boundaries of
a problem since the experts sometimes can not readily do so. V&V must also ensure
that the expert system fails gracefully in these circumstances.

There are additional issues not discussed in reference [4]. These are discussed

more fully below.

Reasoning under Uncertainty

Some expert system applications deal with incomplete, inconsistent, or uncertain
information. Humans do a very good job of reasoning under uncertainty, but it can be
very difficult to develop consistent models which exactly duplicate this process.
Numerous methods have been developed to allow expert systems to deal with this
type of information, such as fuzzy logic, probability methods like Bayes theorem,
Dempster-Schafer theory, certainty factors, etc. The nature of how humans use this
type of information makes it very difficult to verify in an expert system. Different people

°Q
• i

I
v'

}

may give different answers when presented with the exact same information. V&V

efforts must focus on two things; (1) verifying that the answers suggested in uncertain
situations are 'acceptable' answers. The definition of 'acceptable' may I_e problem
dependent, and (2) if uncertain information is combined, the method used tp provide a
certainty factor to the result must be consistent.

I

"Maintaining a verifiable system

Long-term maintenance of an expert system is a poorly unders}ood topic,
primarily because there is little actual experience in this area. Soloway, et al. [5]
discuss some of the difficulties in maintaining XCON, one of the largest and oldest
expert systems in use today. They point out that XCON is a very dynamic system, with
extensive changes occurring regularly. As with conventional software, most expert
systems will change and V&V must be performed each time the modified system is
released. The nature of almost all rule-based languages makes true modularization of
code more difficult than with conventional software. Therefore, rule-based systems
presently require complete retesting with every releasa, using a library of test cases.
Good programming practices such as using explicit control features and simple rules
are important aids, but may not be sufficient to prevent extensive retesting. This area
will be better understood when more applications reach maintenance stages.

CONCLUSIONS

Verification and validation of expert systems is very important for_ the future
success of this technology. Software will never be used in non-trivial applications
unless the program developers can assure both users and managers that the software
is reliable and generally free from error. Therefore, V&V of expert systems must be
done. Although there are issues inherent to expert systems which introduce new
complexities to the process, verification and validation can be done. The primary
hindrance to effective V&V is the use of methodologies which do not produc:e testable
requirements. Without requirements, V&V are meaningless concepts. An extension of
the flight technique panels used in previous NASA programs should provide both
documented requirements and very high levels of verification for expert systems.

r"-

;

,/

L.

REFERENCES

[q

[2]

[3]

I4)

Bochsler, D.C. and Goodwin, M.A., "Software Engineering Techniques Used to
Develop an Expert System for Automated Space Vehicle Rendezvous",
Proceeding of the Second Annual Workshop on Robotics and Expert Systems,
Instrument Society of America, Research Triangle Park, NC., June 1986,

Culbert, C.J., Riley, G., and Savely, R.T., "An Expert System Development
Methodology Which Supports Verification and Validation", to be published.

Stachowitz, R.A. and Combs, J.B., "Validation of Expert Systems", Proceedings
Hawaii International Conference on Systems Sciences, Kona, Hawaii, January 6-
9, 1987.

Culbert, C.J., Riley, G., and Savely, R.T., "Approaches to the Verification of Rule-
based Expert Systems", Proceedings of SOAR'87: Space Operations-
Automation and Robotics Conference, Houston, TX., August 1987.

Soloway, E., Bachant, J., and Jensen, K., "Assessing the Maintainability of XCON-
in RIME: Coping with the Problems of a VERY large Rule-Base', Proceedings of
AAAI-87, Sixth National Conference on Artificial Intelligence, Seattle, WA., July
1987.

KBS V& V- State-of-the-Practice and Implications for V& V Standards'
t

David Hamilton, Keith Kelley & Scott French

IBM Federal Sector Division

3700 Bay Area Boulevard

Houston, Texas 77058

Chris Culbert

NASA/Johnson Space Center

Software Technology Branch/PT4

Houston, Texas 77058

Abstract

The majority of the work in knowledge-based system ver-

ification and validation (KBS V&V) has focused on

developing techniques and concepts for performing V&V

on expert _'ysterns. Little information ix available on

what V& V practices are currently in use by expert system

developers and how current KBS practices compare to

what ix typfi:ally required on large systems. This paper

summarizes the results of a survey whose purpose wax to

begin documenting some of the experiences and problems

KBS developers have encountered. It also summarizes

the resuJtx of analyzing the V&V requirements for a spe-

cific program (Space Station Freedom). The results of

the survey suggest that current practices can be improved

while the results of analyzing Space Station F'&V

requirements show that the conventional software state-

of-the-practice it not completely applicable to KBS

V&V. The reszdts have implications for many large pro-

grams and for KBS V& V research.

Introduction

Knowledge-based systems'(KBS) 2 are in general use in a
wide variety of domains. As reliance on these types of

systems grows, the need to assess their quality and

validity reaches critical importance. As with any soft-

ware, the reliability of a KBS can be directly attributed

to the application of disciplined programming and
testing practices throughout the life-c3"de. However,

there are essential differences between coniventional soR-

ware and knowledge-based systems, both in construction
and use. The identification of how these differences

affect the verification and validation (V'&'v_ process and

the development of techniques to handle them is the
basis of work in this field.

Much of the work in KBS V&V has focused on devel-

oping conceptual approaches and postulating different

techniques for performing some or all aspects of V&V

on various types of KBS or expert systems (ES) [5].

Very little work in this field has demonstrated the useful-

hess of proposed techniques on operational KBS. Even
more importantly, since effective V&V must be applied

throughout the life-cycle, there has been almost no case

study work in applying disciplined sol,rare V&V prin_-

1 Elements of this paper ha_ already been published in [9].

2 Or expert systems. Although there is a gro_ing acceptance of-different del'mitJons for knowledge.based systems and expert systems,
we will use the terms interchangeably in this paper. The differences between KBS and expert systems do not sigmficantly affect the

V&V process.

• o "

pies throughout the development of an operational KBS.

The long term goal of our work is to develop guidelines,

standards, tools, and techniques for V&V of all KBS

applications which many be used in the Space Station

Freedom Program (SSFP). As a precursor to deter-

mining the applicability or usefulness of many of the

proposed KBS V&V techniques, it is important to

develop an undersUmding of what V&V practices are

commonly in use today and how proposed techniques

can improve upon those practices.

It has been widely claimed that few expert systems are
subjected to the same level of V&V that conventional

software routinely undergoes [4]. However, this prac-

tice has not been _ documented. More important for
our purposes, tittle documentation_ exists which describe

the problems associated with KBS V&V from the devel-

oper or user's point of view. The specific purpose of

our survey was to begin docum(mting the experiences

and problems KBS developers bate encountered in per-

forming V&V on their systems and relate those prob-
lems to the kinds of issues KBS V&V rese_rcheCs

consider importanL The overall strategy for determining

the state-of-the-practice was to determine how well each

of the potential expert system V&V issues are being
addressed and to what extent they have impacted the

development of exlpmrt systems. Our approach was to

develop a set of survey questions for both KBS devel-
opers and users and then to follow that survey with
selected inte,-vi_.

Because our ultimate goal is to develop guidelines,etc..

for SSFP, we compared the resultsof our survey to the

existingSSFP V&V requirements. We also analyzed all

the SSFP V&V requirements to determine theirgeneral

applicability to KBS V&V.

In this paper, we rust summarize the resultsof this

survey4 and then we summarize the resultsof analyzing

SSFP V&V requiremente.

Survey Results

A toUd of 70 people, 93% of which were developers,

responded to the survey concerning a variety of

knowledge-based systems. Seventy percent of these

systems were operational and the remainder were con-

sidered prototypes (although some of these "prototypes"

had users). These .systems covered a range of

crificalities and sizes, requiring as little as one person-

!

month of development effort to as much _ two hundred

person-month-, of developmenL Most!(75%) of the

systems were concerned with diagnosis, primarily in the
aerospace field (73%).

Questionnaire Results

Much of the results can be derived by simply calculating

the fraction of respondents that answered a question in a
certain way. The follo_g is a short summary of each

type of information gatheredS.

Performance Criteria:

Thirty-nine percent estimated that the expert system per-

formed with an actual accuracy of less than 90% and

54% estimated an accuracy of less than 95%. Most

(50%) estimated the problem space coverage between
60% and 95%. In comparing the accuracy of the

expert, and the .expert system, most (79%) expected the

expert system to at least as accurate as the expert. Yet,

the actual systems were ol_en (75'/,) entire,a, ted to be less

accurate than expected and also (62%)_ less accurate
than the expert. Users, more often than developers, esti-

mated the expert system as being less accurate than

expected and less accurate than the expert.

Requirements Definit/on:

Setenty4ite percent indicated that expert consu/tation

was a basis for determining the behavior ;of the system.

More revealing is that for 52% of the systems surveyed,

there were no documented requirements_ Forty-three
percent indicated that prototypes or simaar tools were
used for requirements. Forty percent had'medium diffi-

culty in generating requirements, 35% said the require-

inents were hard to develop, 25% said the requirements

were easy to develop. Fifty-eight percent of developers

had a high level of contact with experts during develop-
menu

Development Information:

The most frequent (40%) life-c)'cle model used is the

Cyclic Model (repetition of Requirements, Design, Rule

Generation, and Prototyping until done). However,

22% of the respondents stated that no model was fol-

lowed. Most development was done with an expert

An exception is documented in [8]. "

' A more complete _on of the survey results appears in [9].

s Unless otherwise noted, the percentages shown are the percentage for all the responses, both des_eloperand user combined.

system shell (CLIPS and others), and the predominant
Interface Code was C and LISP. Applications were rea-

sonably large, requiring an average of 23 person-months

to develop. Developed systems were not reported to be

particularly sensitive to change (77% said changes only

occasionally caused an unexpected behavior).

V &V Activities Performed:

Most V&V activities retied on comparison with expected

results and checking by the expert. Sixty-six percent

used functional testing and 44% used structural testing.

Fifty-nine percent had the domain expert check the

knowledge base. On average, 24% of the development

was spent on V&V. While all (100%) of the users rated

V&V of expert systems as hard, the response from

developers varied. Thirty-four percent of the developers
said the V&V effort was of medium difficulty while 27%

said it was hard and 33% said it was easy, 5% said it

was impossible. SigniiicanUy, each V&V technique was
used as the sole V&V technique in at least one project.

Also, in general, there were wide ranging uses of V&V

techniques; each _,dmique was used by many projects.

V&V Issues Encountered:

The known issues most often cited as problems were:

test coverage determination (63%), knowledge validation

(60%), reai-time performance analysis (33%), and

problem complexity (40%). Other problems cited were:

modularity (27%), configuration management (20%),

certification (11%), and understandability (10%). The

least cited problem was analysis of certainty factors

(only seven .respondents indicated that certainty factors
were used). Every known issue was cited by at least one

respondent. The expected system use varied widely
0-2000), while acaml system use was relatively good.
However, less than half of the respondents provided

information, suggesting that actual use was much lower

than reported. Of those who responded with an

opinion, 96% felt that their expert system was at least as

reliable as a typical conventional software system, and

51% felt it was more refiable.

Interview Results

In addition to acquiring wriuen responses to the survey

questions, interviews were performed to gather addi-
tional data and to clarify questions concerning the

written responses. Additional information from these

interviews are summarized in this section.

Structural Testing: i

Based on me survey results, a commonly used evalu-

ation approach was the use of structural testing. This

was surprising because the common perception among
KBS researchers is that many common forms of s_uc-

rural testing are relatively difficult to apply to expert

systems. From the interviews, we learned that although

some projects did attempt to measure the actual test

coverage (i.e., percentage of rules executed during

testing) many others did not actually measure the cov-
erage. Instead, they attempted to develop test cases that

would cover all of the knowledge base (or at least the

h'nportant parts) but made no attempt to measure how

well the knowledge base was actually covered. Also,

there appeared to be no attempt to cover interactions
between knowledge base elements (e.g., rule inter-

actions). Generally, each element was tested as if it

were an independent piece of the knowledge base.

Some knowledge base developers felt that more formal
structural testing would be too much effort and would

hinder the development process too much. The inter-

view results surest that although structural testing was

used, it was a very weak form of strucu_ai testing (at

least compared to, say, branch coverage!in procedural

software tes_n_

Experts Developing Expert Systems: !;

It appeared that the expert was heavily _'elied upon to

aid in evaluation of the knowledge base; this subject was

probed more deeply during the interviews. The devel-

opers felt that a dose interaction between the expert and

the knowledge base developer was mandatory to suc-

cessfully develop an expert system. Th_ is not a sur-

prising result and it has been discussed aI length in the
literature Ill. Many KBS developers f_el this inter-

action is so important that they think the best approach

is simply to have the expert develop the system. Though

it is important for a knowledge engineer :to understand
the problem domain and to thoroughly represent that

domain [6], it is generally accepted that the domain

expert should not be the sole developer of an expert

system 6. There are many problems associated with the

development of an expert system by a domain expert.
Experts o/ten use knowledge that is so highly compiled

and impficit that they have difficulty definiilg that know-

ledge explicitly (so a machine can use it). !Furthermore,

collection of domain knowledge from "introspection" is

generally held in doubt by psychologists [3"]: that is,

experts often don't solve a problem the _,vay that they
think they do. Finally, building expert systems often

involves building highly complex soft_'are systems,

systems that require skills and training_ that domain

experts seldom have. Some of these issues were recog-
nized by at least one interviewee who felt that when his

group begins to tackle more sophisticated problems, they

would need developers with better-developed software
and knowledge engineering skills.

Requirements Writing and the ConventJonal Software
Life-Cycl_

We anticipated that expert systems were being developed

using a much more iterafive and less structured lLre-cycle

than the conventional waterfall model. Although the

subject or life-cycle modeLs was not intentionally

addressed during the interviews, it oRem came up when
discussing requ_-emems. Itseems that several respond-

eats associated "requirements" with the co.nventional

waterfall model. They fdt very strongly that the conven-

tional approaches to software development, such as the
waterfall model, wece much too formal and slruclured

for expert systems development. Some _,en suggested it

would be disastrous to apply than to expert systems.
For many, this feeling extended to documenting require-

menU, othe--'s simply used a dUrerem approach to

requirements. For example, in some cases, require-

meats were not wrimm because itwas feltthat a require-
merits document was a formally written paper document

that needed to be "approved" bet'ore development could

proceed. In other eases, an iterative prototyping devel-
opment e/Tort took place and was followed by docu-

meriting sysmn requinmmm. These requirements were
then used to test the system to ensure that it worked as

everyone thought it should.

Real-Time Performance Analysis:]
J

In our surv_-, we intended "real-time performance anal-

ysis" to refer to the ability to predict the response rime

for an expert system. That is, the ability to analyze the
time performance of the system. However, from the

interviews we learned that many interpreted "real-time

performance analysis" to mean the ability to get the

system to run as fast as desired/necessary. While this is
important, it is unclear from the survey and the inter-

views just how many Cd" any) of the respondents had

quantifiable, rigid needs for expert systems which could

generate • response in a guaranteed time frame. Cer-

UmIly few of the system developers had formally ana-

lyzed or documented any "hard" real-timeconstraints.

Issues Independent of A System Being an Expert
System

An imi/ortant' but difficult' aspect of analyzing expert

system development methodology is distinguishing prop-
erties of expert systems that are sisnJficanUy dUTerent

from properties of conventional software [2]. This is

also an important aspect of the analysis of this sur_-ey of
V&V issues. Several comments appeared W be due

more to factors other than the/act that the system being
developed was an "expert system." The interviews

helped elari_y this issue, and the important, ones are dis-
cussed in this section.

Prototypes vs. OperaUom# Systems:

Although we asked respondents to state that th,_,r system
was either "a prototype" or "operational," we received
indi_iom that this distinction was often dimcult to

make. For example, responses included "it is both a

prototype and operational," or "it is an operational

prototype," or "it is just a prototype but we have many

users." It seems that some systems are originally
intended to be a prototype but are used operationally.

Some intontiomWy approach the dev_opment el" an

operational system by £urst developing • "prototype" and

once the prototype is "certified," it is comidered "opera-
tiomd." Others acknowledge there is a danger that a

prototype will be used as if it were operational. They

have taken steps to ensure that • prototype system that

is not accidentally relied upon in an operational s_ng:

Extensive Use of Protob/ping and Rapid Development:

The conventional wate_all [i/'e-eycle model has proven

to be ineffective for conventional software development.
There/ore, it is no surprise that developers do not want

to use it/'or expert system development. !A more iccra-

live model (e.g., the spiral mode_) that in_ludes the use

of rapid prototyping is being perceived as a betteralter-
native to the waterfall model. "Cohventional" software

development projects o/ten include the Use of proto-

typing for activities fike developing better user interfaces

and having developers better understand the problem

domain. These kind of issues are not unique to expert
system development, but did come up often in the

survey, particularly during the inte_'iews.

Small/SimpM vs. Large�Complex Systems:.

Although some of the systems surveyed are fairly hlrge

(e.g., 200 person-months), they are generally much

smaller than dedicated software development projects

6 This is described in more detail in [7], p.! _ as the Knowledge Engineering Paradox: "The more competent domain experts
become, the less able they are to desc_be the knowledge the use tosolve problems." r

(e.g.,Shutde mission control center (MCC), Shuttle flight
software, etc.). The systems surveyed seem to be iso-

lated efforts to develop off-line applications for niches

for which expert system technology was felt to be very

suitable. They were generally systems that were not part

of a larger so/_ware system, though they are often used

in conjunction with a large data processing system (e.g.,

they receive real-time data from a large data processing

system). This allowed the expert system developers to

work without many of the constraints imposed on larger
systems (e.g., tightly controlled configuration manage-

merit).

Addressing a Knowledge Engineer Instead of a
Programmer:.

Pdthough we did not intend to gather information on the

experience and background of individual expert system

developers, we did learn that several respondents

involved in developing expert systems are expem in a
problem domain without significant programming expe-

rience. This fact was important when formulating the

detailed recommendationsL

Issue Summary:.

It may be the case that the above issues are indeed

typical of expert system development projects and that"

they should be addressed when addressing V&V of

expert system problems. However, it should be recog-
nized that they age somewhat different than the other

issues that are true of all expert systems regardless of

their size and who is developing them. This may point

to a need to tailor suggestions for V&V of expert
systems to considerations such as the size of the expert

system, the experience of the developer, whether the

system is embedded in a much larger software system,
etC..

Recommendations Based on the Survey

The major goal of this survey was to discover and docu-

ment the current state of the practice in V&V of expert

systems. Based on the survey results, it appears that

much can be done to improve the practice. As a

starting point, recommendations for improving KBS
V&V were drawn from the survey and interview results.

These recommendations are separated into two catego-

ries: direct recommendations which are directly sup-

ported by the survey results and inferred

recommendations which can be inferred from the survey

results by analyzing relationships among the responses.

Direct recommendatiom include:

• Develo._ Fequirements for expert syst,em verification
and validation

• Address most often encountered issues

• Recommend a llfe-cycle for expert s)_stems develop-
ment

Inferred recommendations include:

• Address readability and modularity issues
• Address configuration management issue

• Develop criteria to classify expert systems
intended use

• Investigate applicability of analysis tools

by

Survey Conclusions

The original goal of our survey was to gather data and
document the current state-of-the-practice in KBS V&V.

The surv¢ 7 and follow-up interviews have given us con-

siderable insight into the kinds of problems that devel-

opers have really encountered in developing and

verifying expert systems. Many of these: problems will

require additional work be/ore solutions will be read;ly
available. The analysis of the survey and interviews and

the subsequent recommendations can serve as valuable

• reference for directing future KBS V&V research into
those a_as which are of the most value _o KBS devel--

opers and users. In addition, managers of KBS devel-

opment projects can learn from these results to structure

life-cycle approaches for KBS development which are

more likely to lead to high quality application soltware.

Space Station Freedom Program V&V Requirements
Anaiyshs

Overview

There are several software V&V requirc_nents for the

Space Station Freedom Program (SSFP)I that are con-
rained in SSFP documents. KBS V&V issues were not

considered when these requirements were defined so it
was felt that they might not be appropriate for the V&V

of KBSs. To understand the scope of thi s problem and

how it might be resolved, we defined a task s to:

• Identify all SSFP V&V rcquirements :
• Analyze the applicability of the requirements to

KBSs

• Make recommendations so that all V&V require-

ments would apply to KBSs. A recommendation

7 The detailed recornmendacions are discussed in [9].

could be to change an existing V&V" requirement or
to develop a KBS V&V technique that could be
used to satisfy a requirement.

the generation of such detailed requirlments. For

example, therr, is an SSFP requirement t& verify quality
requiremenl_ yet there is no well-understood way of.
measuring the quality ofa KBS.

Analysis

From several SSFP documents, we initially identified 93
SSFP V&V requirements whicl_ were specific to the
technical work of software V&V. That is, we did not

consider hardware requirements, general documentation
requirements, or logistical requirements such as
reporting procedures. Grouping similar requirements
togethes" and eliminating some minor duplication
resulted in 50 distinct requirements.

We analyzed each of the 50 requirements to answer the
following questions:

• What is the intent of this requirement ?
• Does this requirement make seine for a KBS ?
• Is this requirement currently satisfied in the current

stat_of-the-pra_ice ?
• If it is not in the current state-of-the-practice, is

there any inherent reason it could not be satisfied ?
• If there is no inherent reason it can not be satisfied,

what is it about [r_B5 development that makes this
requirementdifficulttosmisfy?

Results

Twenty-seven of the requiranents are defined either at a
level of generality or at a point in the life-cycle where
specific software attributes are indistinguishable and can
be applied equally to beth KB and conventional soft-
ware systems. Seven of these requirements'can be

applied to KBSs using existingprocesses. Thus, 16

requirements remained that wexe uniquely difficult or
impossible to satisfy for KBSs.

We learned that many requirements that would be diffi-

cult to satisfy for KBSs wece due to two major factors:
"life-cyalemodel" (four requirements) and "sysmn
requiremmts" (five requirements). The "life-cycle
model" factor existed because a general waterfall-type of
life-cycle model was assumed to be used for system
development. For example, the SSFP configuration
management requirements would be difficult to apply to
an highly iterative fife-cycle by having a high overhead
to docum_mt and release changes to the s)_tem. The
"system requirements" issue existed because many of the
requirements relied on the existence of a detailed set of
requirements that identified many considerations; the
general state-of-the-practice definitely does not include

The remaining V&V requirements that would be a
problem for KBSs are:

• Identification of modules (There is no clear way of
identifying "chunks" of knowledge as a module,
e.g., a rule grouping.)

• Verifying maintainability (It is not clear what makes
an expert system maintainable.)

• Requirements to code mapping (Can not be
mapped to modules unless modules can be identi-
fled; mapping to individual roles/frames is too dim-
cult.)

• Performance analysis (It is difficult to analyze the

response time of non-procedural programs.)

• • Path coverage (Paths in the conventional sense do

not apply to non-procedural, programs, paths in a
broader sense are much more di/]]cu_ to identi_y in
non-procedural programs.)

• IV&V (Because of the heavy reliance on experts to
aid in verification, independent verification [without

the expert or using a different expert] may not be
fea_ble.)

• Verifying off4he-shelf-components O'here are not

standards in KBS languages as there is in the
standard procedural language, Aria.)

Implication to Other Programs !

Most existing pro_'ams have V&V standakds and guide-
lines that are _ to the SSFP V'&V _ requirements
and were generated with conventional procedural soft-
ware in mind. An analysis similar to th_ one summa-
rized here would be necessary to adapt the existing
program standards and guidelines so they could be
applied to KBS$. This approach would be preferable to
generating a separate set of standards and' guidelines for
KBSs. As with SSFP, it is likely that the majority of
sumdards and guidelines could be appfied to KBSs
without any difficulty so.there would not tie much dupli-
cation. Also, in practice, it may not be clear where in
the system a KBS ends and conventional software

begins. It may even be the case that a system that starts
out being a KBS might end up being implemented as

conventional software or visa versa. So having separate
KBS and conventional software V&V standards and
guidefines would create many difficulties. :

s A more detailedd/scussionofthisworkisdiscussedinC[0]. i

Summary

From the survey that we have performed, we have deter-

mined that there are some issues with respect to the

state-of-the-practice in V&V of KBSs. We have also

learned about common practice as well as problems.

From the analysis of SSFP V&V requirements, we have
learned that conventional V&V standards and guidelines

are not completely applicable to V&V of KBSs. We

have also learned that the state-of-the practice in con-

ventional software V&V (as represented by standards

and guidelines) is significantly different than the state-of-
the-practice in KBS V&V.

References

[11 Bell, M.Z. (1985). Why Expert Systems Fail.

Journal of Operationar Research Society. 36 (7)-

1"2] Culbert, C., Riley, G., Savely, R.T. (1987). An

Expert System Development Methodology Which

Supports Verification and Validation. In Pro-

ceedings of ISA 88. Houston, TX: Instrument

Society of America.

!

1"3] Ericson, K.A., Simon,H.A. (19t4). Protocol

Analysis..MIT Press. J

1-4] O'Keefe, R..M., Lee, S. (1990). 'An Integrative

Model of Expert System Verification and Vali-

dation. Expert Systems with Applications 1 (3).

[5] Rushby, J. (1988). Quality Measures and

Assurance for AI Software. NASA Contractor

Report No. 4187.

I'6] Slagle, J.R., Gardiner, D.A. (1990). Knowledge

Specification of an Expert System. 1EEE Expert. 5

C5).

1'7] Waterman,DA., (1986) A Guide to Expert

Systems. Addison-Wesley.

['83 Comtantine,bl.M, Ylvila. W.W. (1990). Testing

Knogtedge-Based Systems: The State of the Prac-

tice and suggestions for lmprovemenL Expert

Systems with Applications 1 (3).

1-9] Hamilton,D., Kelley, K., CulberkC. State-of-

the-Practice in Knowledge-Based System Verifica-

tion and Validation. To appear in Expert Systems

with Applications.

[10] Expert System Verification and Validation

Study, RICIS Contract #069. Phase 2 - Requixe-
men', Identification, Delivery 2 - Current Require-

meDts Applicability, University of HOuston / Clear
Lake.

Proposed Requirements Content

Copyright, 1986

Robert C. Angier

IBM Federal Systems. Division

ES V&V Workshop

E5 V'LiVWorkshop

Contents

SoftwareRequirementsSpedficatien I
Document Content 2

Sectionl -Introduction 2

Section2 -ApplicableDocuments 3

Section3 -EnvironmentalSpecification4

Section 4 - Interface Requirements 6
Section5 - DetailedFunctionalRequizements

Section 6 - Performance Requirements 12

Section 7 - Adaptation Requirements 13
Section 8 - Qualification Requirements 14

Section 9 - Support Requirements 15
Section l0- Requirements Traceability 16
Section l I - Notes 17

Appendixes 17
Application by Product Type 17

Contents ii

ES VIV Workshop

Software Requirements Specification

The followingisan annotatedoutlinefora proposeddetailedSoftware"RequirementsSpecification(SRS) for

softwaresupporttools.

Goals: The objectives of this document arc to:

* provide a standard for detailed software requirements

• address the infon'nation needs of both users and developers

• allow for orderly expansion from user to devdoper requi_ments

• provide requirements content "checklist" that is complete enough to avoid surprims later

• include requirements related to softwa.m reusabLlity

• simplify reqtRrcments maintenance by partitioning its content into independent sections (to the degree

possible)

• provide a requLmments model that supports a range of product sizes, from a simple, stand-alone tool to

a lm-ge system of tools.

Sources: Sources used in developing this document include:

• DOD-STD 2167 Software Development Standards, 04 Jun 85

• DraftFSD Software Rcquixcments Specification (SRS) Practice and Bulllctins, SEB Spec. Development

Working Group (SDWG), Nov. 85 and Jan. 86.

• Proposed Standard for SPF Transaction Requirements, Oct 83.

Use of Standards: Much of the information ztqucstcd in each section could be defined once, as a standard,
and referenced by individual specifications. This method is preferred, since it results in greater compatibility
between products. It would also reduce the amount of work required to write a detailed spocification, with
no loss of content.

Document Variations: Since this document has been designed to support boSe-scalesoRware systems,it is
acknowledged at the outset that some of its provisions will not be nect_ for simple tools. Specific variation
by section are summarized in "Application by Product Type" on page 17.

Terminology: The terms "item" and "software element" have been used intcrchangeably in the remainder of
this document. Both refer to the software product which is specified by the re_luirements document.

Software Requirements Specification l

ES V2V Workshop

Document Content

Section 1 - Introduction

This section provides generalorientation material related to the software element and its specification.

1.1 - Document Description

A standard section that stuzlma.H.zes:

• the purpose of this document
• the contents of this document (by major section)

1.2 - Item Identification

Identifies the software element specified by this document, including its ID (if any) and full name.

1.3 - Item Purpose

Briefdescriptionofpurpose ofthesoftwaredement (i.e.,itsintendeduse).

If the item is part of a larger system, then the following subsections should be used:

1.3.1 - System Membership: The identity of the systemor systemsthat the softwaze clement isa part
of.

1.3.2 - System Puqmam: Real-world purpose of the system that the software element is a part of.

1.3.3 - Item Role: role of the specked software element within the system (i.e., what it is responsible
for within the system)

1.4 - Item Scope

Summary of the softwareclen_ent's scope:

1.4.1 - Major Functions: Stunmary of major functions (actions) performed by the software element (i.e,
scopeof its functionalresponsibilities).

1.4.2-Application:Identifiesthesoftwareelement'sexpectedrangeofapplication(scopeofitstarget
domain).

1.5 - Item Classification

Identificationofthetypeofsoftwareclementspecified(e.g.,stand-alonetool,systemcomponent, reusable
softwarecomponent)

Ifthisitemisreusable,thefollowingsubsectionsapply':

1.5.1-ItemType: Identifiesthecategoryofthisitemwithinadesignatedreusablesoftwaretaxonomy.

1.5.2-ItemCharacteristics:Identifieskey distinguishingfeaturesofthisitemwhich aidinits
selection.

SoftwareRequirements Specification 2

ES V3V Workshop

Section 2 - Applicable Documents

This sectioncontains a summary list of other documents that form a part of thisspecification,consolidated

from other parts of this document. It identifies the exact versions of documents that apply.

2.1 - Specifications

Related specifications that affect the software product, including:

• Higher-level specifications (e.g., of the system that this element is a part of.

• Interfacespecificationsof relatedsoftwareand hardware elements.

2.2 - Standards

Standards that apply to the software product, or the process by which it is produced.

2.3 - Other Publications

• Drawings
• Manuals

• Regulations
• Handbooks

• Bulletins

• etc.

SoRware RequirementsSpecification 3

ES V4V Workshop

Section 3 - Environmental Specification

This section is intended to make assumptions or requirements about the software element's surroundings
explicit and visible. This is to avoid "surprises" later, when the product, is delivered.

There a._ three partsto thissection:

• the operationalenvironment in which the softwaJm el_ncnt isused,

• the targetexecution environment inwhich itruns,and

• the implementation environment in which itisproducexl and supported.

This organizationrecognizesthatsoftwa_ IS a tmnsforn_tion of tlm ta.,'_t"machine" to an Ol:_'rationally

useful one. Software is also t.ran_onned form its implementation form to the target machine form. These

relationshipsarc shown in Figu_ I.

Operational (3.1)
Environment

I iApplications I/_

Hardware

Execution (3.2)
Environment

T_ (3.3)

Impl ementati on

People

(use_/oper)

Man/n_chine
Interface

Software _ Other I
Element Software

Target Machine

Resources

Target
Execution

Environment

lmlmntatn

Environment

Compile, Linkedit

& Logistic Support

Figure 1. Relationships of a Software Element to Its Environment

3.1 - Operational Environment

section is a genez_ characterization of (1) how the specif_ software element is intended to be used,

and (2) the people that will use it.

3.1.1 - Operational Objectives: Dcsc_be what the system's end usersare tryingto acl_eve, in terms of

usefulresults.Also describegenerallyhow the softwaJm element contributesto the user'sreal-worldobjec-

tives.

3.1.2 - Operational Constraints: Identify rexl-wofld co_ts that 1Lrmthow the system can be used.

(For example, sharingof terminalsby sc_'al users,or limitedtime to get the work done).

3.1.3 - Item Users: Description of the softwaze dement's users. Where the software element supports more

than one kind of user (e.g.,an "author"and "reviewer'),these groups should be identifiedhere,and charac-

terizedseparately.

3.1.3.x - (Name X) User Group: For each distinctuser role, identify:

Software Requirements SpecUication 4

ES VSV Workshop

3.1.3.x. 1 - Tasks

• theuser'sjob objectiveorresponsibility
• tasksthatmake use ofthissoftwareelement

3.1.3.x.2-User Characteristics:Describethisgroupofusers,intermsofassumed (orrequired)knowledge,

skilllevels,and training.

3.2 - Target Execution Environment(s)

This section defines the hardware/software environment (or environments) in which the softwa.,e element is
to be operated.

3.2.1 - Target Machine Environment: Identifies the target programmable hardware in which this software
elementwilloperate.Hardware devicesthatitdirectlyinterfaceswith,includingterminalsand workstations,

shouldbe identified.Where hardwareconfigurationsarerestricted,thoseconstraintsshouldalsobe noted
here.

3.2.2 - Target Software Environment: Identifies the operating system and other common software packages
that make up the target operating environment (e.g., MVS, IMS, and ADF II). Only include those items on
which the specified software element must depend. Include minimum release numbers if applicable.

3.3 - Implementation Environment

This section describes features of the software devdopment environment that are significant to implementa-

tion of this software dement. Its subsections describe the implementation hardware, software, languages,
and process.

3.3.1 - Implementation Hardware Environment: The machine envixonment in which the software element
is to be developed and supported should be described. If it is the same as the target execution machine, then
simply reference that section.

3.3.2 - Implementation Software Environment: The software implementation emrLmmnent includesidentiti-

cation of the implementation operating system, compiler(s), assemblers, linkage editors, and other tools that
affect development of the software product.

3.3.3 - Programming Languages: Specifiesthe allowable pmgranmdng language(s) in which the software
dement is to be implemented. Identify standard laaguage variants if used (e.g., the project-specific part of
the Ads language).

3.3.4 - Implementation Process Standards: Identify standard methodologies that are to be used in imple-
mentation of the software product, in order to control its content and quality.

3.3.5 - Software Product Standards: Identify standazds to be met by deliverable products of the software
implementation process, including design documentation, source code, and test procedures.

SoftwareRequirements Specification 5

FS V6V Workshop

Section 4 - Interface Requirements

4.1 - Summary of Interfaces

This section defines the interface requirements that affect the software element interactions with other system
elements:

4.1.1 - Interface RelaUonships: A summary of fim_ona] and physicalinterfacesbetween the software

element and hardware or other software elements. This isusuallysatisfiedby a block diagram with labelled
arrows.

4.1.2. Interface Identification and Documentation: Proper identification of each interfacing hardware or

software element, and identification of associateddocuments containing interface requirements. For unique
interfaces, the appropriate section of this document should be cited.

This section can be satisfied by an Interface Identification Table, such as the one shown in Figure 2.

Interface

Name

term if

graf if

mous if

Interfacing El_ment

Mode] XYZ Terminal

Graphic Display Subsys

gHITE-2300 Mouse

Doc o

Num.

xyz-OO14;

This Doc

This Doc

Document
Name

Program. I/F

Sect• 4.2.5

Sect. 4.3.1

Figure 2. Sample Interface Identification Table

4.3 - Unique Software Interfaces

This subsection describes detailed interface rcqu_ents for software interfaces described above, which are
not defined in separate specifications.

If any software interfaces me uniquely defined for this item, they should be documented here in separate
subsections:

4.3.x - (Name X) Interface This subsection specifies the "X" softwaze interface by name, discusses its

purpose, its partitioning of functional responsibilities, and provides a summary of information commu-

nicated via the interface. The summary may be provided by an Interface Summaxy Table, as in
Figure 3 on page 7.

Software Requirements Specification 6

ES V7V Workshop

Interface

Name

term if A

H'_I> SW

term if B

SW ==> HW

Information

Description

Data Ready

Sync

Mode Select

Initiation

Condition

Buffer Full

Receive Sync

Mode Change

Expected

Response

Clear

none

Status

Sync Startup Sync

Status Request Cyclic 1.0 Hz Status

Figure 3. Sample Interface Summary Table

Interface spekificadom should include:

• Identification of which d_cnt transmits data, and which receives h.

• The conditions for,initiating each data t.,-ansfcr. If cyclic, specify the rate.

• The transfer protocol used for the intcrfac_ (e.g., blocking, message switching, handshaking).

• The priority Ievel of the interface and cach signal, ff applicable.

• Format and content of the data being transferred. Include units of measure, scaling, and represen-

tation conventions, where applicable.

• The expected response to each data transfer, including the maximum time allowed for the receiving

el_aent to acquire the data, and respond, ff applicable. Also include the effects of not responding,

if any.

• Identify whether the interfacing element executes concurrently or sequentially with the software

demur being specified. If concurrent, the method of inter-task synchronization should also be

4.4- Unique Hardware Interfaces

This subsection describes detailed interface requirements for hardware int_-_rf_es cl_sc_T_x:Labove which arc

not defined in separate spec_cadons.

If any hardware interfaces are uniquely defined for this it_n, they should be documented here in separate
subsections:

4.4.y - (Name Y) Interface This subsection specifies the *Y" hardwaz_ interface, in the same manner as

for "4.3 - Unique Software Interfaces" on page 6.

Software RequirementsSpecification "]

ES VSV Workshop

Section 5 - Detailed Functional Requirements

This section specifies what the software element must do (not how it must do it). The software element's

externally visible behavior should be described as though it was a "black box". This approach provides the
developer with enough fle:dbility to choose the best design, while giving the requirements engineers the
ability to define what "best"means for this item.

5.1 - Functions

The functions (actions) performed by the software element are defined here. A simple tool can be com-

pletely described in one section. For complex systems, the behavior is often described by a model, consisting
of simple functions that are linked together by data flow.

The subsections which follow describe a functional model for a large system.

5.1.1 - Functional Overview: A summary diagram, such as a Functional Black Diagram, or Level 1 Data
Flow Diagram, should be used when more than one function is described. This provides a frame of refer-

ence, or "big picture*, in which the individual functions can be understood. (This section may be omitted
for a simple tool).

If there are any req_ents that apply in common for all functions, then subsectionscan be used, as in
"5.1.x - (Name X) Function."

5.1.x - (Name X) Function: The X Function is identified and briefly described. For interactive tools, each
transaction should be described as a separate function. The subsections below provide a detailed functional
specification:

5. l.x. 1 - Activation: Describes how you get here. Specific considerations to be addressedare:

Activation Conditions: Descn"beswhen to perf6rm this function, how it is invoked (either manu_y
and/or by other software), and what must be done prior to to its activation.

Termination Conditions: Desc_bes when tim function may be exited, how, and what must be done
prior to its termination.

Restart Conditions: Describes the conditions under which operation of this function is re-started (if
any).

Checkpoint/Recovery: De_cs reqliurcmentsfor checkpointi_ current state, and recovering that state
(if any).

5.1.x.2 - Displays: TbJs subsectiondesm'bes the human intcd'ace to the function, as pexc_ved by the user.
It can include the following, in order of increasingly detailed specification:

Information Content: Identifies the information items to be displayed. Static items should be da'f_-_-
tinted from those which may change.

Presentation Form:

data format

organization

The form in which the information is to be displayed is defined:

descdbeshow each data item is to be represented

describes the arrangement of the display as a whole, either in general terms, or m
detail (e.g., a direct image of the intended display). Rules by which this organ-

ization can be adapted to different de_ces (e.g., vAth different display sizes)
should also be given.

Software Requirements Specification 8

ES V9V Workshop

_or

highlighting

symbol use

rules for the use of colors, or direct assignment of colors to display elements.

use of spedal features such as overbright, reverse, and blinking.

rules for the use of special symbols on displays

Initialization: defines how the display should be pre-set when activated.

Other Human Inputs: Use of bells, alarms, or other devices that are intended for the user.

5. f.x.3 - Controls: This subsection describes the human interface by which this function is controlled.

Typical means of controlarc by menu selection,data fieldentry,PF Keys, and command entry. Itisdesir-

able to separatethe mechanism used from the actionproduced, sincetheseassignments arc f_quenfly device-

dependent, or axe subjectto customization. A Functional Control Summary Table, as in Figure 4,may be

used to provide an overview of the controlsavailable.AdditionalActivationcolumns may be needed for

specificdevices(e.g.,an IBM 327x terminalhas dilIerentPF Keys than a 3270-PC).

Type of ,Control Control

Control Name Description

back Return to previous level

Exit

from Return to "home" display

Display home (main menu)

Invoke Call "help" facility to

Another help explain this display

Display

Function

Control

add Add or Update a record

del Delete a record

crank

recrd

Calculate current results

Display
Content

Control

Specify a record for display

frwd scroll forward to next recd

hex tranlate to hexidecimal

Means of
Activation

PF Key-3

PF Key-2

CMO=home

PF Key-1

itemc_=A

itemcmd-O

CMD=run

CMD=RecID

PF Key-8

enter

Figure 4. Sample Functional Control Summary Table

Specification of each control may include the following:

Control Activation: describes the means of activating this control (if a table is not used).

Control Inputs: Identify the i_,fformation items that define the control's action, and their effects.

Contraints: Defines any restrictions on the use of this control, and the system response when these
are not satisfied.

Actions: Identifies the action(s) performed when this control is used. (These are further defined in

"5. l.x.5 - Actions" on page 10).

Software Requirements Specification 9

ESVlOVWorkshop

5. f.x.4 - Inputs: _ subsection describes the data input requirements of the function. For interactive

systems, this corresponds to manual data entry of d}mamic fields. For other applications, files or records
may be specified.

Typicalinputspecificationsincludethefollowing:

Input Source: Identifiesthe source or sourcesof required data.

Input Organization: Define the arrangement of input data (e.g., record layout, sort order) if it imot
pre-defmed elsewhere (e.g., by interface specifications or display definition).

Input Constraints: Defines any restrict.ionson the value of an input, and the system responsewhen
these are not satisfied.

Conversions: Defines the tran_ormations to be made to the input to put h in in a form which is
uasble by this function.

5. l.x.5 - Actions: This subsection defines what the function does. Actions that may be performed include

data transformation, generation or detection of events, commanding devices, or performing mode transitions.

The principal objective of this part of the specification is to be as clear and concise as possible in describing

the required action. A variety of means of expression are possible, including:

• mathematicalformulation

• structuredEnglishdescription
• decision tables or trees

• data flow diagrams
• etc.

Choose methods which are appropriate to the function being defined (For example, decision tables are useful

for expressing complex logical conditions).

5.1.x.6 - Outputs: This subsection defines the outputs that are produced by this function, including theh-
destination functions, or external software or hardware dements.

5.2 - Modes or States

This subsectiondefines the major changes in functionthat result in characteristically different software

element behavior. For example, if a tool provides both a "browse" and an "edit" capability on the same file,
the way it operates is different in each case. Controls may be different, or have different effects; displays may
vary;allowableoperationsin one casemay be illegalor non-sensicalintheother.The conceptof a mode is

generallymore extensiveinlargesystems,where modes or statesareoftendirectlyxelatedto theoperational
task.

5.2.1 - Operating Modes: The possible operating modes of the software element are de_ntxt incfiv/dually. If
there axe seven/types of modes involved, it may be useful to arrange them into related groups. For each
mode, its name, description,and main characteristicsshouldbe stated.

5.2.2 - Events: System events that can affect its operating mode (e.g., the failure ofa hardware device) are
described here. A name and definition should be given for each event.

5.2.3 - Mode Transitions: The ways in which system operation changesfrom one mode to another are
defined:

Initial Modes

Identifies the system modes that are present at initiation of this software element.

.f.r_,x,_rl- R_u;_-.,en.e_)e (:,_,,.,-;_e_,t;^. | I'_

ES V11V Workshop

Legal Mode Tr=msistions

Defines the set of allowable changes in modes. This infomation can be prodded in a
mode-to-mode transition matrix, or by a state transition diagram. If several types of

modes exist, they should be grouped into conn_ct_ sets.

Mode Transistion Rules

Defines the conditions or events that determine when each leagal mode transition can
OCCLIT.

5.2.4 - Relationship to Functions: Defines the effect of systemmodes on the software element's functions.
This can generally be shown by a table that indicates which functions are valid in each operating mode.

5.2.5 - Relationship to Objects: Defines the effect of systemmodes on the h_formation objects on which
thefunctionsoperate.A tableshowingwhich obj.'isarevalidineachstatecan be used.

5.3 - Information Requirements

This subsection defines the major information objects that are used or produced by the software element.

5.3.1 - External Objects: The data which describe real-world objects to the systemarc defined.

An information processing system relics on information models of real world objects. For example, a person
may be represented by a name, SS#, and department. Similarly, a hardware device may be represented to
the system by its device type, model#, path, and I/O rate. Definitions should be grouped by the obje_'t to
which they refer.

5.3.1 - Internal Objects: Where ne_ry, the represenmfonofinternalinformationobjectsisdefined(e.g.,

I/O blocks,records,files,ordam bases).Thismay be neededwhom pre-existinginterfacesmust be satisfied,

as in hardware device interfaces, or interfaces to existing software systems. Where ever possible, reference

source requLrcments for these definitions, ratherthat repeat them.

Software Requirements Specification I l

ES V12V Workshop

Section 6 - Performance Requirements

This sectiondefineshow wellthesoftwareelementmust satisfyitsfunctionalrequktm_ents.Performance

considerations are often the most significant determining factor in softvtare design, and in user acceptance of

the software product. It is therfore essential that these factors be explicitly defined at the outset of develop-
ment.

It is particularly important that performance requirements be testable; in each case, the means of determining
that therequkement has been satisfied should be stated.

6.1 - Availability Requirements

Describe the required probability that the software dement is in readiness to perform its function. This
figure should define real availability to the end user, which takes into account terminals, lines, controllers,

intermediate processors, host machines, and necessary software elements (e.g., a specific OS and DBMS).

Availabilty figures should be derived form operational user need; it may be desirable to relate them to system
capabilities.

6.2 - Timing Requirements

Timing constraints on the software element's operation are defined. Timing factors that may be specified
include:

responsetime

maximum allowable time from occummce of a system stimulus to the system'sresponse.
Response time is usually expressed in terms of its probability distribution, rather than a single
value (e.g., 95% of responses occur in less than 1 second). For batch processes, response times
refer to the allowable time from initiation to completion of a task.

frequency

cyclic rate of occurrence, usually expressed in cycles/second (Hz).

jitter
allowable variation in cyclic rate (eg. +/- 200 msec).

currency
age of the information used or produced (a.k.a. data staleness)

time homogeneity

requirement that specific data samples be coindd.ent in time.

The conditions under which these are to be measured should also be identified.

6.3 - Accuracy Requirements

Specify the required accuracy and precision of the software element's outputs. This usthally applies to
numerical software products, but may be needed in other areas as well.

6.4 - Capacity Requirements

6.4.1 - System Capacities: Defines the capacity of capabilities prmided by.the software element. It specifies
required sizes of objects that are supported by the software element (e.g., table sizes, number of devices,

concurrent users, etc.).

6.4.2 - System Resources: Defines the capacity of system resources utilized _" the software element. It
specifies required CPU powx,r, disk storage, I/0 Band_vidth, or other resources that are necessary for the

software element to meet its performance requirements.

Software Requirements Specification 12

ES VI3V Workshop

Section 7 - Adaptation Requirements

This sectiondefineshow the softwareproduct can be adapted to the varietyof itsactualuse.

possibleconfig_u'ations,customization,tuning, and futuregrowth of th0 software clement.

7.1 - Configuration Requirements

This sectiondefinesthe varietyof configurationsthatthe soRwarc product must take:

7.1.1 - Target System Configurations

Itincludes

7.1.2 - Required Subsets

7.2 - Customization Requirements

7.2.1 - Application Tailoring

7.2.2 - Installation Tailoring

7.2.3 - User Tailoring

7.3 - System Tuning

7.3.1 - Instrumentation Requirements

7.3.2 - System Parameters

7.4 - Provisions for Future Growth

SoRware RequirementsSpecification13

ES VI4V Workshop

Section 8- Qualification Requirements

This section specifiesthe qualification methods to be used to ensure that each of the requirements has been
satisfied. Major methods of qualification include:

Inspeetioa visual examination of the product
Demonstration relies on observable functional operation
Test relies on instnunented operation and analysis of the results

Analysis engineering assessment, involving interpretation or extrapolation of accumulated data

Other qualification methods may also be defined for unique purposes.

SoftwareRequirementsSpecification 14

ES VI 5V Workshop

Section 9 - Support Requirements

9.1 - Product Delivery and Installation

9.1,1 - Preparation for Delivery: T'_ section specifies the form and medium of del;vez'y, lal:clmg, pack-

aging, and handling.

9.1.2 - Product Distribution

9.1.3- Installation Requirements

9.2 - Logistic Support Requirements

9.2.1 - Product Update

9.2.2- Data Maintenance

9.3 - Training Requirements

(:^rt O_,.'._to ¢.A,_r...t;^. |

ES V16V Workshop

Section 10- Requirements Traceability

Tlds section demonstrates that all ullocatexl higher-level system requirements that have been allocated to this
software element are satisfied.

Software Requirements Specification 16

ESVI?VWorkshop

Section 11 - Notes

Gt_eral information that aids in understanding of this specification (e.g., background information, glossary,

formula derivations). This section does not contain r¢quircmeats. •

Appendixes

Supplemm_taI information which is ttftrtnced m the body of the doctm_cm, bm is,scpaxate for case of docu-

ment ma_tenamc¢.

Application by Product Type

t

Software Requirements Specification 17

