2.2 National Launch System
Structures and Materials –
Jack O. Bunting, Martin Marietta
Astronautics Group

Dr. Bunting stressed that Al-Li should be
incorporated as a major structural material
in space transportation vehicles. The
National Launch System, as a joint NASA /
Air Force program, provides an opportunity
to realize the potential of Al-Li. Advanced
structures can reduce weights by 5-40% as
well as relax propulsion system performance
specifications and reduce requirements for
labor and materials. The effect on costs will
be substantial. For example, a redesigned
external tank fabricated from Al-Li would
weigh 8 klb less than existing ET’s and, as a
result, reduce effective launch costs by $800
per pound of payload.

Advanced assembly and process control
technologies also offer the potential for
greatly reduced labor during the
manufacturing and inspection processes.
Current practices are very labor-intensive
and, as a result, labor costs far outweigh
material costs for operational space
transportation systems.

The technological readiness of new
structural materials depends on their
commercial availability, producibility and
materials properties. Martin Marietta is
vigorously pursuing the development of its
Weldalite™ 049 Al-Li alloys in each of these
areas. Al-Li alloys are now commercially
available, they have been used in high quality
welds, and they perform as expected in
terms of yield strength and ultimate
strength. Martin Marietta tests have
demonstrated satisfactory welds using a
variety of techniques in test articles
composed entirely of Al-Li and in joining
Al-Li to aluminum. Preliminary
demonstrations of producibility based on the
design of the Space Shuttle external tank
have also been successful, and more complex
tests are continuing.

Martin Marietta is also preparing to test an
automated work cell concept that it has
developed using discrete event simulation.
One of the goals of this effort is to develop a
manufacturing process that features
continuous inspection of welded joints as
they are created and thereby eliminate the
time consuming practice of inspecting welds
after the fact as a separate step of the
fabrication process. Martin Marietta is
currently procuring tooling for initial
demonstrations.
Baseline Vehicles

1.5 STAGE
TITAN IV 86 ft SHROUD NEW ADAPTER UPPER STAGE OPTION
SUSTAINER STMEs

COMMON CORE
FORWARD INTERSTAGE
FORWARD SKIRT TANKAGE / INTERTANK
- STD SIZE / MATERIALS
- BEEFUP FOR 1.5 STG APPLICATION
AVIONICS THRUST STRUCTURE / PROPULSION
- INFLIGHT SEP. SYSTEMS STMEs STRUCTURE / PROPULSION FOR 2 CENTER STMEs AFT SKIRT - VEHICLE HOLDDOWN

HLLV
TITAN IV 86 ft SHROUD OPTIONAL SHROUD FOR STS PAYLOADS (40' STRONG-BACK) CTV ASRM

Existing Launch Vehicles

Structures Technology
- Aluminum Alloys 2219, 2014
- Fabrication Techniques
 - Machine, Stretch Form
 - Chem Mill to Tight Tolerances
- Manual Inspection

Assembly & Process Control Technology
- Manual Material Handling
- Manual Part Set-Up
- Manual Part Weld Prep
- Manual Part Fit-Up
- Point Design Weld Processes
- Manual Inspection

Advanced Technology

Structures Technology
- Reduce Weight (5 - 40%)
- Reduce Direct Labor/Material
- Reduce Support Labor
- Reduce Propulsion Requirements

Assembly & Process Control Technology
- Reduce Direct Assembly Labor (30%)
- Reduce Major Weld Labor (34%)
- Reduce Inspection Labor (33%)
Delta Payload vs Stretch for Weldalite™ 049 Substitution

- LH₂ Tank Stretch + Weldalite™ 049 Use
- LH₂ Tank Stretch
- Weldalite™ 049 Resizing
- NLS 1.5 Stage LH₂ Tank Baseline

Weldalite™ 049 and The External Tank (ET)

- Redesign of the ET Using Weldalite™ 049 Can Result in A Weight Savings of Approximately 8000 lb
- This Equates to a Savings of Cost to Orbit of about $800/lb
Al-Li Alloys

Success Criteria

- Demonstrated Production Capability
- Demonstrated Cost Advantage through Higher Strength
- Adequate Fracture Toughness
- Adequate Stress Corrosion Resistance
- Demonstrated Manufacturability

Technology Readiness of Al-Li Alloys

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Present Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Availability</td>
<td>Alloys Are Currently Available</td>
</tr>
<tr>
<td>Producibility</td>
<td></td>
</tr>
<tr>
<td>- Forming</td>
<td>Full Scale External Tank Gores and Extruded Chords Have Been Produced. All Meet Design Tolerances</td>
</tr>
<tr>
<td>- Chem-milling</td>
<td>Chem-milled Gores Meet Design Requirements</td>
</tr>
<tr>
<td>- Machining</td>
<td>Extruded Chords Have Been Machined and Meet Design Requirements</td>
</tr>
</tbody>
</table>
Technology Readiness of Al-Li Alloys (Concl.)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Present Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding</td>
<td>High Quality Welds Have Been Produced by All Conventional Processes Including VPPA. Backside Shielding Concepts Have Been Demonstrated</td>
</tr>
<tr>
<td>Design Allowables</td>
<td>All Product Forms of Weldalite™ 049 Have Been Shown to Meet the Specified Yield Strength of 85 ksl and the 90 ksl Ultimate Strength Goal. Reynolds Will Begin the "S" Basis Allowables Program in Late 1991</td>
</tr>
</tbody>
</table>

Advanced Cryotank Program - ADP 3106
Weldalite™ 049 Development

- Concurrent Engineering Team Formed
 - Martin Marietta
 - Reynolds Metals Co.
 - Universities
 - Government Agencies
- Laboratory Production at RMC
- Lab Scale Properties Exceed Other Tankage Alloys

1988
- Weldalite™ 049-T6
 - 2090-T61
 - 2219-T97

1989
- Full Scale Production at RMC
 - 13,000 lb Ingots Produced
 - Plate and Sheet Material Characterized
 - Typical Properties
 - Ftu = 100 ksi
 - Fty = 90 ksi
- Small Scale Net Shaped Products Manufactured
 - Hook Forgings
 - Domes (18" Dia)
 - Extrusions
 - Weldability Demonstrated

Weld Properties
- STGTA
- STGTA-VP
- VPPA
- VPPA (2219)
Advanced Cryotank Program - ADP 3106
Weldalite™ 049 Development

1990
- Large Products Produced
 - Extruded External Tank (ET) Chord
 - ET Gore Panels
 - Domes (42" Dia)
 - Extruded Barrel Panels (18" Width)
 - Roll Forged Ring (34" Dia)

42" Dome Properties

1991
- In Progress:
 - Integrally Stiffened Extruded Tube Producing 105" Wide x 360" Length Barrel Panel
 - 120" Dia Dome Spin Forming
 - Weld Process Optimization

STATUS:
- Alloy - Lab to Production In 3 Years
- Net Shapes Demonstrated
- Exceeded Mechanical Property Goals

1992-93
- Components for 14' Dia Tank Manufactured
- Fabricate Tank
- Test Tank at Cryogenic Temperatures

![Diagram showing cryotank components and properties](image-url)