TRANSPORTABLE APPLICATIONS ENVIRONMENT (TAE) PLUS
aNASA tool for Building and Managing Graphical User Interfaces

Martha R. Szczur Tey

NASA/Goddard Space Flight Center N 9 3 - 2 2 {5 O

™~ Greenbelt, MD 20771 USA S T
mszczur@postman.gsfc.nasa.gov

301 286-8609 /)~ /&

ABSTRACT

The Transportable Applications Environment (TAE ) Plus, developed at NASA's Goddard Space Flight Center, is an
advanced portable user interface development environment which simplifies the process of creating and managing
complex application graphical user interfaces (GUIs). TAE Plus supports the rapid prototyping of GUIs and allows
applications to be ported easily between different platforms. This paper will discuss the capabilities of the TAE Plus
tool, and how it makes the job of designing and developing GUIs easier for application developers. TAE Plus is
being applied to many types of applications, and this paper discusses how it has been used both within and outside
NASA.

BACKGROUND

With the emergence of low-cost graphic workstations and the subsequent demands for highly interactive
systems, the design and develop of the user interface software has become more complex and difficult. With high
resolution workstations, the user interface designer has to be cognizant of multiple window displays and
asynchronous events from users and windowing systems, the use of color, graphical interaction objects and
icons, and various user selection techniques (e.g., mouse, trackball, tablets).

To make user interfaces easier to create, many different types of tools have been developed. The X Window
System™[2] has had a major impact on the user interface software in the UNIX and VMS-based workstation
environments, and "X" has become the standard windowing system across these platforms. To make the task of
programming the user interface using the X Window System easier, toolkits have evolve, which provide higher
level services to the programmer along with a set of interaction objects (e.g., menus, buttons, scroll bars).
Using the toolkit services, programmers can configure the objects to their specification. The most common
toolkit in the UNIX and VMS workstation environment is the Open Software Foundation's Motif™ toolkit.
Although X and Motif provide programmatic tools to aid the programmer, they are very complex to learn and do
not offer any productivity advaniages.

The tools that hold the most promise of dramatic productivity gains for user interface developers are What-You-
Sce-Is-What-You-Get (WYSIWYG) user interface design and management tools. These tools allow you to
directly layout your user interface, rehearse the graphical user interface (GUT), and even generate the source code,
which will manage your application's user interface during operation.

During the evolution of the various GUI technologies, the Data Systems Technology Division at Goddard Space
Flight Center built a user interface development environment, called the Transportable Applications
Environment (TAE) Plus. This software tool has been built with the objective of providing a stable
environment to support our on-going and diverse development efforts. Our two primary objectives were (1) to
improve productivity of application user interface development and (2) to provide a buffer from technology
changes.

To improve productivity we defined the following goals:

« support WYSIWYG design of the GUI objects

» support evolution from rapid prototype to baseline operational system
» provide reusable software components

« provide less complex set of application services

» support uscr interface experts, who may not be programmers

To protect our investments in the development of large-scale space applications that have a long "lifespan”, we
wanted to provide a mechanism that would allow GUI technology changes to be integrated into the systems with

3 -
PRPOEDING PAGE BLAMK NOT FILMED mmwwsam&uw»



minimal impact on the application-specific software. To provide this “change” buffer, we defined the following
goals:

= separate the GUI definition from the application
* provide application programs with toolkit-independent runtime services
* support portability of applications across workstations (¢.g., UNIX, VMS)

Elements of these goals werc addressed in the early 1980's when GSFC recognized that most large-scale space
applications, regardless of function, required software to support human-computer interactions and application
management. This lead to the design and implementation of the Transportable Applications Executive (now,
referred o as TAE Classic), which abstracts a common core of system service routines and user dialog
techniques used by all applications [1]. Over the years, TAE Classic matured into a powerful tool for quickly
and easily building and managing consistent, portable uscr interfaces, but only for the standard alphanumcric
terminal.

We took advantage of the lessons leamned in the TAE Classic development when we decided to support the GUI
environment. By utilizing some of the intemnal data structures and features of the original TAE software, we
developed a set of tools which support the building and management of graphical uscr interfaces. This advanced
version of TAE is called TAE Plus (i.e., TAE plus graphics support).

WHAT DOES TAE PLUS PROVIDE?

To meet the defined goals, services and tools were developed for creating and managing window-oricnted user
interfaces. It became apparent, due to the flexibility and complexity of graphical user interfaces, that the design
of the user interface should be considered a separate activity from the application program design. The interface
designer can then incorporate human factors and graphic art techniques into the user interface desi gn. The
application programmer only necds to be concemned about what results are returned by the user interaction and
not the look of the user interface.

In support of the user interface designer, an interactive WorkBench application was implemented for
manipulating interaction objects ranging from simple buttons to complex multi-object pancls. As illustrated in
Figure 1, after designing the screen display, the WorkBench saves the specification of the user interface in
resource files, which can then be accessed by application programmers through a set of runtime services,
Window Programming Tools (WPTs). Guided by the information in the resource files, the routines handle all
user interactions. The WPTs utilize Open Software Foundation's Motif™ and the standard MIT X Window
System™ to communicate with the graphic workstations.[2] As a further aid to the Ul developer, the
WorkBench provides an option to generate the source code (C, C++ or Ada) which will display and managc the
designed user interface during runtime. This gives the programmer a working template into which application-
specific code can be added.

INTERACTION OBJECTS AS BUILDING BLOCKS

The basic building blocks for developing an application’s GUI are a set of interaction objects. All visually
distinct elements of a display that arc created and managed using TAE Plus are considered 1o be interaction
objects and they fall into three categories: selection objects, text objects, and data-driven objects. Selection
objects are mechanisms by which an application can acquire directives from the end user. They include menu bar
with cascading menus, radio buttons, check boxes, scrolling sclection list, icon button, option menu, scale
(slider) pulldown menus and push buttons. Text objects are used by an application to request text information
or to instruct or to notify the user. They include keyin, optimized dynamic text object that is updated
dynamically by the application, label, multi-line edit and text displays (c.g., message, status, help). Data-driven
objects are vector-drawn graphic objects which are linked to an application data variable; elements of their view
change as the data values change. Examplcs are dials, thermometers, and strip charts. When creating user
dialogues, any of these objects can be grouped and arranged within panels (i.e., windows) in the WorkBench.
There is also support for a X Workspace into which applications can write dircctly using X Window services.
Refer to Figure 2 for a sample of the TAE Plus interaction objects.



TAE Plus

Interface

Designer
WorkBench

Generation
(C, C++, Ada)

Application

OSF/Motit

Figure 1: TAE Plus Structure

-]
witle,

Figure 2: TAE Plus Interaction Objects



TAE PLUS WORKBENCH

The WorkBench provides an intuitive environment for defining, testing, and communicating the look and feel of
an application system. Functionally, the WorkBench allows an application designer to dynamically lay out an
application screen, defining its static and dynamic areas. The tool provides the designer with a choice of pre-
designed interaction objects and allows for tailoring, combining and rearranging of the objects. To begin the
session, the designer needs to create the base panel (i.e., window) into which interaction objects will be
specified. The designer specifies presentation information, such as the title, font, color, and optional on-line
help for the panel being created. The designer defines both the presentation information and the context
information of all interaction items to reside in the panel by using the item specification window (refer to
Figure 3). For icon support, the WorkBench has an icon editor, within which an icon can be drawn, edited and
saved. As the Ul designer moves, resizes, and alters any of the item's attributes, the changes are dynamically
reflected on the display screen.

AResourve File: samplexes

WorkBanch Mode:
4 Move/Recize/Edit O Define Connections

© BetPanel Default > SetItem Defaul E" Team _oaTed]
Current Salection 1 item (ch 1) in panel (monitor)
Aux Help

[Hme |

fView

:] Tittes [Beloat Chanmeli : valus - 20

Pressntation Categery
Data Driven Objest

]

The designer also has the option of retrieving palettes of previously created items. The ability to reuse
interaction objects saves programming time, facilitates experimenting with different combinations of items in
the prototyping process, and contributes to standardization of the application’s look and feel. If an application
system manager wants to ensure consistency and uniformity across an entire application's UI, all developers
could be instructed to use only items from the application’s palette of common items.

When creating a data-driven object, the designer goes through a similar process by setting the associated
attributes (e.g., color thresholds, maximum, minimum, update delta) in the specification panels. To create the
associated graphics drawing, the WorkBench provides a drawing tool within which the static background and
dynamic foregrounds of a data-driven object can be drawn, edited, and saved.

Most often an application's Ul will be made up of a number of related panels, sequenced in a meaningful
fashion. Through the WorkBench, the designer defines the interface connections. These links determine what
happens when the user selects a button or a menu entry. The designer attaches events to interaction items and

6



thereby designates what panel appears and/or what action executes when an event is triggered. Events are
triggered by user-controlled I/O peripherals (e.g., point and click devices or keyboard input).

Having designed the layout of panels and their atiendant items and having threaded the panel and items according
1o their interaction scenario, the designer is able to preview (i.e., rehearse) the interface's operation from the
WorkBench. With this potential to test drive an interface, to make changes, and to test again, iterative design
becomes part of the prototyping process. With the rehearsal feature, the designer can evaluate and refine both
the functionality and the aesthetics of a proposed interface. After the rehearsal, control is returned to wherever
the designer left off in the WorkBench and the designer can either continue with the design process or save the
defined UI in a resource file.

As a further aid to the application developer, the WorkBench has a “generatc” feature, which produces a fully
annotated and operational body of code which will display and manage the entire WorkBench-designed UL
Currently, source code generation of C, C++, Ada and the TAE Command Language (TCL) (an interpreted
prototyping language) are supported. Providing this code template helps in establishing uniform programming
method and style across large applications or within a family of interrelated software applications.

WINDOW PROGRAMMING TOOLS (WPTS)

The Window Programming Tools (WPTs) are a package of application program callable subroutincs used to
control an application's user interface. Using these routines, applications can define, display, reccive
information from, update and/or delete TAE Plus panels and interaction objects. The WPT package utilizes the
the MIT X Window System, as its standard windowing system and the Motif toolkit and window manager.

The WPTs provide a buffer between the application program and the Motif toolkit. For instance, to display a
WorkBench-designed panel, an application makes a single call to Wpt_NewPanel (using the pancl name
specified in the WorkBench). This single call translates into a function that can make as many as 50 calls to
Motif library routines. For the majority of applications, the WPT services and objects supported by the
WorkBench provide the necessary user interface tools and save the programmer from having to learn the
complexities of programming directly with Motif and X. This can be a significant advantage, especially when
considering the learning curve differential between 40 WPT routines versus over 400 X Toolkit intrinsics and
over 200 Xlib services. Refer to Figure 4 for a sample list of the WPTs.

Wpt_AddEvent Add other sources for input/output/exception
Wpt_BeginWait Display busy indicator cursor
Wpt_Closeltems Close !tems on a Panel

Wpt_ConvertName Get the X Id of a named window
Wpt_Endwait Stop displaying busy indicator cursor
Wpt_Init Initializes interface to X Window System
Wpt_ltemWindow Gets the window Id of the window containing a parameter
Wpt_MissingVal Indicates if any vailues are missing

Wpt_New Panel Displays a user interface panel
Wpt_NextEvent Gets next panel-related svent
Wpt_PanelErase Erases the displayed panel from the screen
Wpt_PanelMessage Displays message in "Bother Box"
Wpt_PanelReset Resets object values to initial values

Wpt_PaneiTopWindow Gets panei’s parent shell window id
Wpt_PaneiWidgetld Reaturn the Widget Id of a Wpt Panei Widget
Wpt_PanelWindow Returns the X ki of a panel

Wpt_ParmReject Generates a rejection message for a given value
Wpt_ParmUpdate Updates the displayed values of an object
Wpt_Pending Check if a WptEvent is pending from X, Parm or file.
Wpt_RemoveEvent Remove a previously registered event
Wpt_SetTimeOut Set/Cancel timeout for gathering Wpt svents.
Wpt_ViewUpdate Updates the view of a parameter on a displayed panel

Figure 4: Sample List of Window Programming Tools (WPTs)

IMPLEMENTATION

The TAE Plus architecture is based on a separation of the user intcraction management from the application-
specific software. The current implementation is a result of having gone through scveral prototyped and beta

7



versions of a WorkBench and user interface support services during the 1986-89 period, as well as building on
the TAE Classic structure,

The "Classic” portion of the TAE Plus code is implemented in the C programming language. In sclecting a
language for the WorkBench and the WPT runtime services, we fclt a "true” object-oriented language would
provide us with the optimum environment for implementing the TAE Plus graphical user interface capabilitics.
(See Chapter 9 of Cox [4] for a discussion on the suitability of object-oriented languages for graphical user
interfaces.) We selected C++ [5] as our implementation language for several reasons [6]. One of the reasons
was the availability of existing, public domain C++ object class librarics. Delivered with the X Window
System is the InterViews C++ class library and a drawing utility, idraw, both of which werc developed at
Stanford University [7]. The idraw utility is a drawing editor which we integrated into the WorkBench to
support creating, editing and saving the graphical data-driven interaction objects. This reuse of existing software
cnabled the addition of a major new function without the significant cost and time of implementing a drawing
editor from scraich.

TAE PLUS AS A PRODUCTIVITY TOOL

There are several ways that TAE Plus can contribute to improving software productivity. It provides a
development tool that aids in prototyping; gets the best from people; makes steps more efficient; and supports
the reuse of software components.

Prototyping

Most organizations now recognize the importance of prototyping and getting the end-user involved in the desi gn
process. However, prototyping is not usually thought of as a way to improve productivity. In fact, the
prototyping step is frequently avoided or only carried out in a half-hcarted manner because of the fear that the
end-user will want numerous changes and thereby slow down the design process. This “ostrich head in the
ground” syndrome frequently ends in an unpleasant confrontation when the application is delivered to the end-
user and the UI fails o meet user expectations. The resultant retrocoding and correcting is often difficult and has
to be absorbed as a maintenance cost. Creating a prototype, which allows casy changes and iterative rchearsing
of the UL, improves the efficiency of the design and development phase and reduces the likelihood of serious Ul
changes in the delivered system.

Prototyping fosters a dialog between the developers and the user that can solidify the real system requircments
and specifications. As a tool that enables rapid prototypes to be built quickly and easily, TAE Plus can be used
to design more effective and user-accepted applications.

in from 1
To get the maximum productivity from cach member of a development tcam individuals should be utilized in
the areas that they have an expertise. Too often the people designing application user interfaces are the
programmers, who frequently do not have any training in human factors or graphic art techniques. This tends to
be an ineffective use of the programmer's expertise, and ofien results in a less than optimum user interface. The
WorkBench was designed to climinate this problem by giving the user interface design experts a tool that is casy
to usc (i.e., does not require programming skills), while frecing up the programmer to concentrate on the
application specific code.

Making steps more efficient

Another productivity option [8] is to automate a previous manual step, thus climinating the step entirely. In
several of the existing user interface development tools (c.g., Telesoft's TeleUSE™, Visual Edge's UIMX™)
including TAE Plus, there is the capability to automatically generate the application code that manages the
designed UL This climinates the process of the application programmer having to manually generate and key in
this code, thus reducing the likelihood of keyboard errors or incorrect function calls. Particularly in cases where
the application is heavily interactive, this automatic code generation can account for the majority of the
application code and significantly improve productivity of the development process.

Reusin mponen

Another way to reduce the amount of source code written for an application, thereby reducing the development
cost, is to reuse existing software. In TAE Plus, the WPT runtime services offload all of the display and
management of the Ul from the application code. This approach enables the application programmer to

8



concentrate fully on the application-specific functions, and not be concerned with the Ul code. Also, TAE Plus
itself reuses existing windowing software (e.g., MIT’s X Window System, OSF/Motif, Stanford’s Interview
object classes), thus improving the productivity of its own development.

TAE PLUS USERS' EXPERIENCES

One way to measure how effective TAE Plus is as a productivity tool is to develop the same application twice,
one time using TAE Plus and another time not using TAE Plus. While most users feel certain that TAE Plus
is saving them development time, they are on tight development schedules and do not have the interest in
building parallel Uls. However, a few case studies in which the same user interface was developed with and
without TAE Plus give evidence that the productivity gain can be impressive.

In Case 1, a programmer from General Electric developed a simple screen copy utility which gathers information
through radio buttons, action icons, and text input. Then, it sends the information to an HP printer, as well as
updating a text widget on the screen. When he did not use TAE Plus and wrote the Ul code directly within the
application code, it took him 80 hours to develop an operational application. When he used the TAE Plus
WorkBench to develop the same operational application, it took him 4 hours. This productivity gain of 95% is
illustrated in Figure 5. However, it should be noted that the gain does not take into account the unmeasured
factor that "it is always easier the second time around.”

Figure 6 illustrates Case 2. A programmer at NASA with no TAE Plus experience, but with X Window
System experience, was tasked to write a simple application and account for the time spent on developing it
with and without TAE Plus. The application has two panels, a few action icons, a radio button bank, and a
dynamic mover object that moves along a static background when the associated data value changes. Including
the time it took to learn how to use the WorkBench to the completion of the operational application, it took
him 9 hours. (Note: an experienced TAE Plus user did the same application in 1.5 hours.) The application
developed without TAE Plus (thus, making direct calls to the X Window System) took him 52 hours, and this
implementation was still a “bit buggy.” Even as a beginner TAE Plus user, it took him over four times longer
10 devclop the application without TAE Plus. In the case of the experienced TAE Plus user, the productivity
gain was even more dramalic, with a 96% increase in development of the application. A year later we had
another programmer wrile this application with and without using TAE Plus. He was experienced with using
the Motif toolkit and he developed the application in 17 hours making direct calls to the Motif toolkit. Using
the WorkBench (which he had never used before) it took him 5 hours. Even with an expericnced Motif
programmer there was a 70% improvement in development time when using TAE Plus for the first time.

Although these case studies certainly do not provide enough statistical data to allow any grandiose conclusions
to be made, they do demonstrate real cases in which using a GUI development tool, in this case TAE Plus, has
significantly decreased the time it takes to develop the application. In general, TAE Plus reduces the time it
takes a developer to create, test and deliver a software system.

52+
Hours - L
50 7 Itnll’:hcd
Hours :
80
s0 - w o0 <+
60 \ 30
40 - § 20 4= 17
20 - \
5
o N PRI 1.5
X b/ TAE + Xlib TAE + Motif TAE+
Xray Novice Exper. Novice Exper. Experienced
Figure 5: Case Study 1 Figure 6: Case Study 2



AVAILABILITY AND MAINTENANCE

In December 1992 the latest version of TAE Plus (V5.2) became available from COSMIC, the NASA's
software distribution center located at the University of Georgia. TAE Plus may be licensed by the public for a
nominal fee and it is available on a variety of platforms: Sun workstations, Vaxstation II , Decstation 3100,
HP9000, Masscomp, Silicon Graphics Iris and IBM RISC 6000. It is also available on the Vaxstation II under
VMS and the NEC company has ported it onto their NEC EWS 4800/220 workstation for use by their
customers.

Maintenance of a software system is a key factor in its success, and while every system is maintainable, how
easy it is to maintain is the real issue. We knew when we began development that TAE Plus was targeted for
wide application utilization and for different machines, so ease of maintenance has always been important. By
providing the application-callable WPTs, applications are isolated from the windowing system. Thus, when the
latest release or next generation windowing system shows up, only the WPTs will require updating or rewriting;
the application code will not be affected.

User support is another facet of maintainability. Since the first release of TAE Classic in 1981, we have
provided user support through a fully staffed Support Office. Users receive answers to technical questions,
report problems, and make suggestions for improvements. In turn, the Support Office keeps users up-to-date on
new releases, provides a newsletter, and sponsors user workshops and conferences. This exchange of
information enables the Project Office to keep the TAE software and documentation "in working order” and,
perhaps most importantly, take advantage of user feedback to help direct our future development.

APPLICATIONS USING TAE PLUS

Since 1982 over 900 installation sites have received TAE Classic and/or TAE Plus. Just over the past year,
COSMIC has issued licenses to over 300 customer sites. The applications built or being built with TAE
perform a variety of different functions. TAE Classic usage was primarily used for building and managing large
scientific data analysis and data base systems (¢.g., NASA's Land Analysis System (LAS), Atmospheric and
Oceanographic Information Processing System (AOIPS), and JPL's Multimission Image Processing Laboratory
(MIPL) system.) Within the NASA community, TAE Plus is also used for scientific analysis applications,
but the heaviest concentration of user applications has shifted to support of realtime control and processing
applications. This includes supporting satellite data capture and processing, monitor and control of spacecraft
and science instruments, prototyping user interface of the Space Station Freedom crew workstations and
supporting diagnostic display windows for realtime control systems in ground operations. For these types of
applications, TAE Plus is principally used to design and manage the user interface, which is made up of a
combination of user entry and data-driven interaction objects. TAE Plus becomes a part of the development life
cycle as projects use TAE Plus to prototype the initial user interface design and have this designed user interface
evolve into the operational Ul.

Outside the NASA community, TAE Plus is being used by an assortment of other government agencies (13%),
universities (15%), and private industries (40%). Within thc government sector, users range from the National
Center for Atmospheric Rescarch, National Oceanographic and Atmospheric Administration, U.S. Geological
and EROS Data Center, who are developing scientific analysis, image mapping and data distribution systems,

t0 numerous Department of Defense laboratories, who are building command-and-control systems. Universities
represented among the TAE community include Cornell, Georgia Tech, MIT, Stanford, University of Maryland
and University of Colorado. Applications being developed by University of Colorado include the Operations and
Science Instrument Support System(OASIS), which monitors and controls spacecraft and science instruments
and a robotics testbed for research into the problems of construction and assembly in spacc. [9] Private industry
has been a large consumer of the TAE technology and a sample of the companies that have reccived TAE Plus
include Loral Aerospace, Martin Marietta, Computer Sciences Corp., TRW, Lockheed, IBM, Northern Telecom,
Mitre Corp., General Dynamics and GTE Government Systems. These companies are using TAE Plus for an
assortment of applications, ranging from a front-end for a corporate database to advanced network control center.
Northern Telecom, used TAE Plus to develop a technical assistance service application which enables users
easily access a variety of applications residing on a network of heterogeneous host computers.[10] General
Software Corporation uses TAE in their commercial product, METPRO, a meteorological information
processing system, which has been distributed in seven countries. Another company, Global Imaging, Inc. has
cmbedded TAE into their commercial image processing system. Because of the high cost associated with
programming and software-development, more and more software development groups arc looking for casy-to-

10



use productivity tools, and TAE Plus has become recognized as a viable tool for developing an application's user
interface.

NEXT STEPS

The current TAE Plus provides a useful ool within the user interface development environment -- from the
initial design phases of a highly interactive prototype to the fully operational application package. However,
there are many enhancements and new capabilities that will be added 1o TAE Plus in future releases.

In the near term, the emphasis will be on enhancements and extensions to the WorkBench. All the requested
enhancements are user-driven, based on actual experience using TAE Plus, or requirement-driven based on an
application's design. For example, on the enhancements list are extensions to the interaction objects, (..,
graph data-driven object, form fill-in), support for importing foreign graphics, and extensions to the dialog
connections feature (e.g., graphic representation of the connection mapping, item-to-item connections).

Future advancements include expanding the scope of TAE Plus to include new tools and technologies. For
instance, the introduction of hypermedia technology and the integration of expert system technology to aid in
making user interface design decisions are targeted for investigation and prototyping.

CONCLUSION

With the emergence of sophisticated graphic workstations and the subsequent demands for highly interactive
systems, the user interface becomes more complex and includes multiple window displays, the use of color,
graphical objects and icons, and various selection techniques. Software tools, such as TAE Plus, are providing
ways to make user interface developer's tasks easier and improve the overall productivity of the development
process. This includes supporting prototyping of different user interface designs, as well as development and
management of Lhe operational application's user interface.

TAE Plus is an evolving system, and its development will continue to be guided by user-defined requirements.
To date, each phase of TAE Plus's evolution has taken into account advances in windowing systems, human

factors research, standardization efforts and software portability. With TAE Plus's flexibility and functionality,
it is providing a useful productivity tool for building and managing graphical user interfaces.

ACKNOWLEDGEMENTS

TAE Plus is a NASA software product being developed by the NASA/Goddard Space Flight Center with prime
contract support by Century Computing, Inc. The work is sponsored by the NASA Office of Space Operations.

TAE is a registered trademark of National Aeronautics and Space Administration (NASA). It is distributed
through NASA's distribution center, COSMIC, (706) 542-3265. For further information, contact COSMIC
and/or the TAE Support Office at GSFC, (301) 286-6034.

REFERENCES
1. Perkins, D.C., Howell, DR, Szczur, M.R., "The Transportable Applications Executive -- an interactive
design-to-production development system,” Digital Image Processing In Remote Sensing, edited by J-P Muller,
Taylor & Francis Publishers, London, 1988.

2. Scheifler, Robert W., Gettys, Jim., "The X Window System,” MIT Laboratory for Computer Science,
Cambridge, MA, October 1986.

3. Open Software Foundation, Inc., OSF/Motif™ Programmer’s Reference Manual, Revision 1.1, 1990

4. Cox, Brad J., Object Oriented Programming, An Evolutionary Approach, Addison-Wesley Publishing
Company, Reading, MA, 1986.

11



5. Stroustrup, Bjame, The C++ Programming Language, Addison-Wesley Publishing Company, Reading,
MA, 1987.

6. Szczur, Martha R., Miller, Philip, "Transportable Applications Environment (TAE) Plus: Experiences in
'Object'ively Modemizing a User Interface Environment," Proceedings of the OOPSLA Conference, September
1988.

7. Linton, Mark A., Vlissides, John M., Calder, Paul R., "Composing User Interfaces with Interviews, "IEEE
Computer, February, 1989.

8. Boehm, Barry, "Improving Software Productivity", [EEE Computer, September, 1987, pp. 43-57

9. Klemp, Marjorie, "TAE Plus in a Command and Control Environment”, Proceedings of the TAE Eighth
Users’ Conference, June, 1990

10. Sharma, Alok, et al., "The TAS Workcenter: An Application Created with TAE", Proceedings of the TAE
Eighth Users' Conference, June, 1990

12



