[3
o ®

1995 /51
DL =)

A NEW TECHNOLOGY FOR MANUFACTURING SCHEDULING
DERIVED FROM SPACE SYSTEM OPERATIONS <o -

,/"

e

R.S. Hornstein
Office of Space Communications -
NASA Headquarters

Washington, DC, USA y& 7

JK. Willoughby
President
Avyx, Inc.

Englewood, CO, USA

ABSTRACT

A new technology for producing finite capacity schedules has been developed in response to complex requirements for
operating space systems such as the Space Shuttle, the Space Station, and the Deep Space Network for telecommunications.
This technology has proven its effectiveness in manufacturing environments where popular scheduling techniques
associated with Materials Resources Planning (MRP IT) and with factory simulation are not adequate for shop-floor work
planning and control.

The technology has three components. The first is a set of data structures that accommodate an extremely general
description of a factory’s resources, its manufacturing activities, and the constraints imposed by the environment. The
second component is a language and set of software utilities that enable a rapid synthesis of functional capabilities. The
third component is an algorithmic architecture called the Five Ruleset Model which accommodates the unique needs of
each factory.

Using the new technology, systems can model activities that generate, consume, and/or obligate resources. This allows
work-in-process (WIP) to be generated and used; it permits constraints 1o be imposed on intermediate as well as finished
goods inventories. It is also possible to maich as closely as possible both the current factory state and future conditions
such as promise dates. Schedule revisions can be accommodated without impacting the entire production schedule.

Applications have been successful in both discrete and process manufacturing environments. The availability of ahigh-
quality finite capacity production planning capability enhances the data management capabilities of MRP II systems.
These schedules can be integrated with shop-floor data collection systems and accounting systems. Using the new
technology, semi-custom systems can be developed at costs that are comparable to products that do not have equivalent
functional capabilities and/or extensibility.

BACKGROUND

The operations of a space system such as the Space Shuttle, the Space Station, or a telecommunications satellite network
have surprising similarities to running a manufacturing facility. Both space systems and manufacturing plants use scarce
and expensive resources to satisfy objectives as efficiently as possible. Both must revise their expected activities when
equipment malfunctions. Both mustrespond to opportunities that present themselves unexpectedly. In the realm of space
systems operations, the resources may be satellites, antennae, or astronauts; whereas in a factory the resources are
production lines, machines, and skilled laborers. A target of opportunity such as a solar flare, the creation of a distant
black hole, or an Atlantic Ocean hurricane are to space operations what special orders or unforecasted sales demands are
to manufacturing. In both domains, the goal is to get as much from the limited resources as possible, and to do so in a
manner that responds to a changing environment.

Recently, the needs for “Finite Capacity Planning™ and “Finite Capacity Scheduling” have been recognized by the

447

N %@7'1 2219

¥y

T | L/L/,(‘O,,MF:EHIIONREKE HoARY

manufacturing community), Although scheduling has long been a part of manufacturing support software such as an
MRP II system, the logic used in those systems does not adequately model the limitations that exist hour-by-hour on the
shop floor. These limitations represent the finite capacity that must be modeled accurately and updated frequently in
order to plan and replan the production activities.

The finite capacity of space systems has been the driver for developing a new technology for scheduling and rescheduling
operational activities. This technology has been applied successfully to several complex manufacturing environments.
Very few requirements from manufacturing environments have stretched the generality and completeness of the
technology that has emerged from the space operations domain. Therefore, manufacturers can benefit by inheriting the
capabilities embodied in the new technology with minimum costs for customization.

There are several components to the scheduling technology that has emerged from space operations. The single greatest
design driver for all of these components has been the need to adapt easily from one application to another. In the 1960s
and 1970s, each new space system required a start-from-scratch design of the software systems needed to support
operations. It was generally conceded that the approaches used for the Apollo (Moon Landing) Program would not work
well for operating the new Space Station Freedom, or that planning the communications with satellites using orbiting
relay satellites would require different software than that used to plan the communications with ground-based antennae.
The costs for each new application were very high. Asaresult, NASA sought ways (o abstract the planing and scheduling
problem, i.e., to find a generic way to describe and solve these problems that could be applied to any new space program.

The analogy to manufacturing is again apparent. Analystshave regarded the differences among production environments
to be sufficient 1o justify custom development of finite capacity shop floor planning and scheduling systems. For
example, the details of an aircraft brake manufacturing plant were not seen as similar to the processes for producing soups
and canned vegetables. The search for generalizations and descriptive abstractions was not seen as a feasible task.

DESCRIPTIVE ELEMENTS

In Table 1, elements of a descriptive vocabulary are shown which are domain independent. The Table is not a complete
presentation of all possible descriptive elements, but gives some examples from both manufacturing and the space
operations world. The authors have been involved in the development and the application of planning and scheduling
techniques to several space and manufacturing systems. Although the use of one single system for all of these
environmentsis not (yet) possible, the degree of reusability of concepts, data structures, system architectures, algorithmic
components, and software modules is remarkably high, and still increasing rapidly. Knowledge gained from one
application suggests an approach that can be generalized; the result is that each successive application benefits from a
rapid accumulation of reusable software features and modules.

GENERIC DESCRIPTIVE ELEMENT EXAMPLE FROM SPACE OPERATIONS EXAMPLE FROM MANUFACTURING
Resource (Pooled) Propellant Labor Skills
Bandwidth Chemicals
Electrical Power Work-in-process (WIP) Base Brand
Resource (Individual) Crew Person Milling Machine
Antenna Furnace Crane
Tape Recorder
Activiey Playback Recorder Make Subassembly X
Crews Sleep Ship Product X
Send Command Sequence Perform Preventive Maintenance
Coadition Daylight Only First Shift Only
Alternate Orbits Not on Weekends
Every 3 Barth Days
Temporal Relations Record Before Playbeck Routings
Exercise Before Eating PM at Least Every 3 Days

Table 1: Analogies Between Space Operations and Manufacturing

448

The accumulation of generic insights has produced a set of descriptive data structures that are inherently hierarchic and
asymmetric. For example, the generalized description of an activity to be scheduled, whether it be in space operations
or manufacturing, can be captured in the data structure shown inFigure 1. Experience has shown that differentapplication
domains will require more or less information at any level in this tree-like structure, but will not require new levels in
the data structure. Some applications will have activities that result in broad bushy activity trees; others will use narrow
or sparce structures. Note that the number of branches and levels in some parts of the data structure are not the same as
those in other parts. Hence, the observation that the data structures are asymmetric. This characteristic makes scheduling
datadifficult to manipulate in traditional tables or matrices which are the fundamental data structures of modemn relational
data base systems. We have found repeatedly that although relational data base systems are very appropriate for storing,
retrieving, and reporting the inputs and outputs from a scheduling process, they are inappropriate for supporting the
computational process of generating or revising a schedule.

ACTVITY
bnet -
WINDOW DURATION GROUP BESOURCE TEMPORAL_RELATION
START END MINIMUM GROUP FLAG INDIVIDUAL POOLED
value value value - 8:D lype ® oo type® o
name © name L name v
START END START END QUANTITY
value value value value value

Figure 1: Hierarchic Asymmetric Structure of Activities to be Scheduled

Information about resource limitations (finite capacity descriptions) and timing OR sequencing constraints are also easily
represented by asymmetric hierarchic data structures. Some of these structures are shown generically in Figures 2a and
2b. Asaresult, the descriptive mechanisms that have
proven to be the most transportable, i.., the easiest
1o apply in a very broad range of application domains
are these hierarchic tree-like structures. These
structures fit well with the concepts of object-oriented
software development.

The generic descriptive framework provided by these
data structures provides several advantages
specifically for manufacturing environments. Among
them is the generality of the resource modeling.
Most manufacturing support software makes
distinctions among different types of resources that
the generic data structures do not. There need not be

modelingdifferencesbetweeninvcmmies,machinw. _ START:END <=:=>= START:END D VALUE
power, raw materials, supplies, work-in-process Figure 2a: Hierarchic Asymmetric Structure
(WIP), or labor using the generic resource data of Temporal Constraint Data

449

model. Since any resource can be obligated, generated, consumed, or have its attributes transformed, the modeling
flexibility isenormous. For example, one step in a manufacturing process can create a new resource which a subsequent
step can consume. This allows modeling of flexible routings without complex sequence relationships. In applications
of generic resource data models, the authors have found significant efficiencies that could not have been possible if fixed
routings had been imposed by the limitations of a scheduling system.

BESOURCE
POOLED INDIVIDUAL
TYPE e TYPE o
AME - NAME o
ITIAL_PROFILE ASBIGNMENT ASBIGNMENT

STARTPEND P QUANTITY START P END Y QUANTI ACTMVITY_ID STARTP END ¥ ACTIVITY_ID

value value value value value value] value value id

Figure 2b: Hierarchic Asymmetric Structure of Resource and Temporal Constraint Data

Another example of the resource data model flexibility is the use of generic descriptors with any resource. These
descriptors can cause a part of any order to be tracked from one “location” to another or from one state of “completion”
to another. The location and/or completion descriptors are simply attached to the resource. Any number of such
descriptors can be used on any resource.

A LANGUAGE AND UTILITY LIBRARY

The solution to planning and scheduling problems in either space operations or manufacturing requires the manipulation
of these tree-like data structures. Goal-directed research in the 1970s and 1980s along with field testing and revision led
to a simple realization. If the output of a scheduling process, i.e., a schedule, was a hierarchic asymmetric data structure
that looked a lot like the input data structures, then the scheduling process should be describable as a systematic
manipulation of input data structures into output data structures. The concept is illustrated in Figure 3.

REQUESTS SCHEDULE

SCHEDULING I$;

= PRUNING ACTIVITIES
FROM THE REQUEST TREE
AND

- GRAFTING THEM ON
TO THE SCHEDULE TREE

Figure 3: Scheduling as Tree Manipulation

450

Our premise has become the following:

Scheduling can be described as the systematic manipulation of tree-like data
structures in such a way that objectives are met and constraints are satisfied.

A software programming language that was idealized for manipulating these tree-like structures was devised in order
to test this premise. Over twenty scheduling applications have been developed using this language (2 with the result
that the average size and development time for applications have been reduced by a factor of approximately twenty when
compared to custom-built systems from the 1970s and 1980s. This language has now evolved to be a set of data-structure
manipulators written in C++ (3). scheduling systems are currently under development using these tree-manipulation
capabilities in C++ for both space operations and manufacturing applications.

ALGORITHMIC ARCHITECTURE

To complement the data manipulation capabilities, a set of scheduling utilities has also been developed. These utilities
are software modules that find frequent use in all scheduling applications. These reusable modules perform constraint
checking, interval and set algebra, and data management operations that are independent of any application domain. The
names of these modules are shown in Table 2. The module names suggest their functionality.

Scheduling Routines Activity Management Routines
FindEarliestTime InvertRelations
FindLatestTime OrderByRelations
ScheduleActivity Constraint Enforcement Routines
UnscheduleActivity EnforceRelations

Resource Management Routines EnforceConditions
AddResource Assignment EnforceResources
AssignResources Profile Management R~utines
DetermineConsumableAvailability AddProfile
DetermineReusable Availability CollapseProfile
FreeResource ComplementProfile
UpdateResourceAvailability ComputeProfileEnd
UpdateResourceStates ComputeSegmentArea

Interval Algebra Routines ComputeSlope
Collapselntervals GetSegmentTime
ComplementInterval GetSegmentQuantity
ComputelntervalDuration IntersectProfileSegments
IntersectIntervals IntersectProfiles
UnionlIntervals SetProfile

Miscellaneous Routines SubtractProfile
GetForestVersion UnionProfiles

Table 2: Contents of a Scheduling Utility Library

o] CONSTRUCT ACTIVITIES
.
SELECT ACTIVITY P et

DENTIFY A |..> Y

AVAILABLE oS- SELECT START TIME
RESOURCES T

SELECT RESOURCES |——p»] _UPDATE

R ASSIGNMENTS
|
ALL
UNSCHEDULE ACTIVITIES CONSIDERED?
]
l NO
YES

STOP

Figure 4: The Five Ruleset Model Architecture

In addition to the descriptive data structures and the language for application building already described, a third
component of the technology is an algorithmic architecture called the Five Ruleset Model. This Model is a framework
for describing the decision-making processes used in a broad range of scheduling algorithms. As shown in Figure 4, the
Five Ruleset Model decomposes the solution logic of an algorithm into five nearly-decoupled sets of decisions called
rulesets. The concept is that once each
of these rulesets is specified, a unique
algorithm is completely specified. All
of the non-decision-making software RULESET]
can be pre-built and available as P
reusable code. The majority of most
scheduling applications has proven to
be in constraint checking and book-
keeping of the obligat?ons of the RULESETS
resources. These portions of the T&R
scheduling algorithm can be pre-built
using the data structures, the language, Core Scheduling
and the utility library approach RULESET Module
previously described. The remaining A
tasks in implementing a system for a
new environment are the specification
and implementation of the unique
decision-making rulesets for the Five
Ruleset Model. Once determined, these RULESETC
rulesets can be inserted into the
architecture as shown in Figure 5.

Figure 5: Reuse of the Five Ruleset Model for Different Applications

452

