
A NEW TECHNOLOGY FOR MANUFACTURING SCHEDULING

DERIVED FROM SPACE SYSTEM OPERATIONS

R.S. Horastein

Office of Space Communkalions

NASA Headquarters

Washington, DC, USA

J.K. Willoughby
President

Avyx, Inc.

Englewood, CO, USA

q*

1

ABSTRACT

A new technology for producing finite capacity schedules has been developed in response to complex requirements for

operating space systems such as the Space Shuttle, the Space Station, and the Deep Space Network for telecommunications.

This technology has proven its effectiveness in manufacturing environments where popular scheduling techniques

associated with Materials Resources Planning (MRP ID and with factory simulation are not adequate for shop-floor work

planning and control.

The technology has three components. The r_t is a set of data structures that accommodate an extremely genea,al

description of a factory's resources, its manufacturing activities, and the constraints imposed by the environment. The

second component is a language and set of software utilities that enable a rapid synthesis of functional capabilities. The

third component is an algorithmic architecture called the Five Ruleset Model which accommodates the unique needs of

each factory.

Using the new technology, systems can model activities that generate, consume, and/or obligate resources. This allows

work-in-tm3cess (WIP) robe generated and used; it permits constraints to be imposed on intermediate as well as finished
goods inventories. It is also possible to match as closely as possible both the current factory state and future conditions

such as promise dates. Schedule revisions can be accommodated without impacting the entire production schedule.

Applications have been successful in both discrete and process manufacturing environments. The availability of a high-

quality finite capacity production planning capability enhances the data manasement capabilities of MRP II systems.

These schedules can he integrated with shop-floor data collection systems and accounting systems. Using the new

technology, semi-custom systems can he developed at costs)hat are comparable to products that do not have equivalent
functional capabilities and/or extensibility.

BACKGROUND

The operations of a space system such as the Space Shuttle, the Space Station, or a telecommunications satellite network

have surprising similarities to running a manufacturing facility. Both space systems and manufacturing plants use scarce

and expensive resources to satisfy objectives as efficiently as possible. Both must revise their expected activities when

equipment malfunctions. Both must respond to opportunities that present themselves unexpectedly. In the realm of space

systems operations, the resomces may be satellites, antennae, or astronauts; whereas in a factory the resources are

production lines, machines, and skilled laborers. A target of opportunity such as a solar flare, the creation of a distant

black hole, or an Atlantic Ocean hurricane are to space operations what special orders or unforecasted sales demands are

to manufacturing. In both domains, the goal is to get as much from the limited resources as possible, and to do so in a

manner that responds to a changing environment.

Recently, the needs for "'Finite Capacity Planning" and "Finite Capacity Scheduling" have been recognized by the

447

(1).manufimmring community _ Although scheduling has long been a partof manufacturing supporx software such as an
MRP II system, the logic used in those systems does not adequately model the limitations thatexist hour-by-hour on the
shop floor. These limitations rewesent the f'mitecapacity that must be modeled accurately and updated frequently in
order to plan and replan the woducfion activities.

The f'mitecapecity of space systems has been thedriver for developing a new technology for scheduling and rescheduling
operational activities. This technology has been applied successfully to several complex manufacturing environments.
Very few requirements from manufacturing environments have subbed the generality and completeness of the
tedmology that has emerged from the space q3erations domain. Therefore, manufacturers can benefit by inheriting the
capabilities embodied in the new technology with minimum costs for customization.

There are sevezal components to the scheduling technology that has emerged from space operations. The single greatest
designdriv_ for all of these components has been the need to adapt easily from one application toanotber. Intbe 1960s
and 1970s, each new space system required a start-from-scratch design of the software systems needed to support
operations. Itwas generally concedeA thatthe approaches used for the Apollo (Moon Landing) Program would not work
well for operating the new Space Station Freedom, or that planning the communications with satellites using orbiting
relay satellites would require different software than that used to plan thecommunications with ground-based antennae.
The costs foreach new application were very high. As a result, NASA sought ways to abstract theplaning and scheduling
Woblem, i.e., to f'mda generic way to describe and solve these problems that could be applied to any new space program.

The analogy to manufacturing is again apparent. Analysts have regarded the differences among production environments
to be sufficient to justify custom development of finite capacity shop floor planning and scheduling systems. For
example, the details of an aircral_brake manufactnring plant were not seen as similar to the im3cesses for im3ducing soups
and canned vegetables. The search for generalizations and descriptive abstractions was not seen as a feasible task.

DESCRIPTIVE ELEMENTS

In Table I, elements of a descriptive vocabulary me shown which are domain independent. The Table is not a complete
wesentation of all possible des_ptive elements, but gives some examples from both manufacturing and the space
operations worl_ The authors have been involved in the development and the application of planning and scheduling
techniques to several space and manufaclaring systems. Although the use of one single system for all of these
envin3mnents is not (yet) possible, thedegree of reusability of concepts, datastructures, system architectures, algorithmic
components, and software modules is remarkably high, and still increasing rapidly. Knowledge gained from one
application suggests an approach that can be generalized; the result is that each successive application benefits from a
rapid accumulation of reusable software features and modules.

GgNIgRIC DgSCRIPHVIg RLgMgNT

guemx _eo_d)

gXAMPLIg IqtOM SPACE OPERATIONS

Pl_pel_lt

Eieark,l _

RXAMPLg ImOM MANUIgAC'ITriuNG

Labor Skills

Wmk-ia-Weceu (WIP) B_e Brmd

_ t-md/vid_) (_-wPenoe Min_ M_Ziae
Ammm Pumace Crme

TapeReomd_

pt,_.k bom_ _b__x
c._ staw sstp_od_x

Stud Cemmmd _ Pedom Prevmtive Maiatma_e

_ytiOt o_y t_ntssia o_y
Almame Orbim Net oa Weekm_

Eva'y 3 Emit DaD

Tempo_ lt._miem Retard Before PMytml Rmiap
Em'cim Befem _ PM m Lemt Every 3 Days

Table 1: Analogies l_twem Space Operatiom and Manufac'tm'iall

448

The accumulation of generic insights has produced a set of descriptive data structures that are inherently hierarchic and
asymmetric. For example, the generalized description of an activity to bescheduled, whether it be in space operations
or manufacturing, can be captured in the datastructureshown in Figure 1. Experience has shown thatdifferent application
domains will require more or less information at any level in this tree-like structure, but will not require new levels in
the data structure. Some applications will have activities that result in broadbushy activity trees; others will use narrow
or sparce structures. Note that the number of branches and levels in some parts of the data structure are not the same as
those in other parts. Hence, the observation that the data structures areasymmeCic. This characteristic makes scheduling
datadifficult to manipulate in traditional tables or matrices which are the fundamental data structures of modern relational
database systems. We have found repeatedly thatalthough relational data base systems are very appropriate for storing,
retrieving, and reporting the inputs and outputs from a schedufing process, they are inappropriate for sutvorting the
computational process of generating or revising a schedule.

ACTIVITY

' END MINIMUM

Figure 1: Hierarchic Asymmetrk Structure of Activities to be Scheduled

Information about resource limitations (f'mitecapacity descriptions) and timing OR sequencing constraints are also easily
represented by asymmetric hierarchic data smJctares. Some of these structures are shown generically in Figures 2a and
2b. As a result, the descriptive mechanisms that have
proven to be the most wansportable, i.e., the easiest
to apply in a very broad range of application domains
are these hierarchic tree-like structures. These

s0_ctures fit well with theconcepts of object-oriented
software development.

The generic descriptive framework provided by these
data structures provides several advantages
specifically for manufacturingenvironments. Among
them is the generality of the resource modeling.
Most manufacturing support software makes
distinctions among different types of resourcesthat
the generic data su'uctures do not. There need not be
modeling differences between inventories, machines,

power, raw materials, supplies, work-in-process
(WIP), or labor using the generic resourcedata

TION

START:END .z. :. :_ • START:EP4) ID VALUE

Figure 2a: Hierarchic Asymmetric Structure
of Temporal Constraint Data

449

model. Since any resomce can be obligated, generated, consumed, or have its attributes transformed, the modeling

flexibility is enormous. For example, one step in a manufacturing process can create a new resource which a suly'_luent
step can consume. This allows modeling of flexible routings without complex sequence relationships. In applications
of genetic resource dammodels, the anthors have found signifw.ant efficiencies that could not have been possible if fixed
foulings had been imposed by the limitations of a scheduling system.

Figure 2b: Hierarchic Asymmetric Structure of Resource and Temporal Constraint Data

Another example of the resource data model flexibility is the use of generic descriptors with any resource. These
descriptors can cause a partof any order to be a-acked fnJmone "location" to another or from one state of"completion"
to another. The location and/or completion descriptm_ axe simply attached to the resource. Any number of such
descriptors can be used on any resource.

A LANGUAGE AND UTILITY LIBRARY

The solution to planning and scheduling problems in either space operations or manufacturing requires themanipulation
of these tree-like data structmes. Goal-directed research in the 1970s and 1980s along with field testing and revision led
to a simple realiz._:at_on.If the output of a scheduling Im3cess, i.e., a schedule, was a hierarchic asymmetric data structure
that looked a lot like the input data structures, then the scheduling process should be describable as a systematic

manipulation of input data slructures into output data structures. The concept is illustrated in Figure 3.

REQUESTS SCHEDULE

NING ACTIVITIES

/ \ FROM THE REQUESTTREE

TO THE SCHEDULETREE

.Figure 3: Scheduling as Tree Manipulation

450

Our premise has become the following:

Scheduling can be described as the systematic manipulation of tree-like data
structures in such a way that objectives are met and constraints are satisfied.

A software programming language that was idealized for manipulating these tree-like structures was devised in order
to test lids premise. Over twenty scheduling applications have been developed using this language (2) with the result

that theaverage size and development time for applications have been reduced by a factor of approximately twenty when
compared to custom-built systems from the 1970s and 1980s. This language has now evolved to be a set of data-strucl__re
manipulators written in C++ (3). Scheduling systems are currently under development using these tree-manipulation
capabilities in C++ for both space operations and manufacturing applications.

ALGORITHMIC ARCHITECTURE

To complement the data manipulation capabilities, a set of scheduling utilities has also been developed. These utilities
are software modules that Fredfrequent use in all scheduling applications. These reusable modules perform constraint
checking, interval and set algebra, and data management operations thatare independent of any application domain. The
names of these modules are shown in Table 2. The module names suggest their functionality.

Schedufing Routines

FindEarliestTime

FindLatestTime

ScheduleActivity

UnscheduleActivity

Resource Management Routines

AddResource Assignment

AssignResourc_s

DetermineConsumableAvailability

DetermineReusableAvailability

FreeResource

UpdateResourceAvailability

UpdateResourceStates

Interval Algebra Routines

Collapselntervals

ComplementInterval

ComputelntervalDuration

Intersecflntervals

UnionIntervals

Miscellaneous Routines

GetForestVersion

Activity Management Routines

InverlRelations

OrderByRelations

Constraint Enforcement Routines

EnforceRelations

EnforceConditions

EnforceResources

Profile Management R_utines

AddProfile

CollapseProfile

ComplementProfile

ComputeProfdeEnd

ComputeSegmentArea

ComputeSlope

GetSegmentTime

GetSegmentQuantity

IntersectProfileSegments

IntersectProfiles

SetProfile

SubtractProfde

UnionProfdes

Table 2: Contents of a Scheduling Utility Library

451

C START ._

-I

l I ..ou,:,c,.,I I 'rl

I ©I y ._

NO . I YES

Figure 4: The Five Ruleset Model Architecture

In addition to the descriptive data structures and the language for application building already described, a third

component of the technology is an algorithmic architecture called the Five Ruleset Model. This Model is a framework

for describing the decision-making processes used in a broad range of scheduling algorithms. As shown in Figure 4, the

Five Ruleset Model decomposes the solution logic of an algorithm into five nearly-decoupled sets of decisions called

rulesets. The concept is that once each

of these rulesets is specified, a unique
algorithm is completely specified. All

of the non-decision-making software

can be pre-built and available as

reusable code. The majority of most

scheduling applications has proven to

be in constraint checking and book-

keeping of the obligations of the

resources. These portions of the

scheduling algorithm can be pre-built

using the data structures, the language,
and the utility library approach

previously described. The remaining

tasks in implementing a system for a

new environment are the specification

and implementation of the unique

decision-making rule,sets for the Five

Rulese_Model. Oncede_rmined, these
rulesets can be inserted into the

architecture as shown in Figure 5.

L/ [/
_RULESET C _]

RULESETS
T&R

Figure 5: Reuse of the Five Ruleset Model for Different Applications

452

