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SUMMARY

The mathematical relations between the measured velocity fields for the same compressor rotor flow

field resolved by two fringe type laser anemometers at different observational locations are developed in

this report. The relations allow the two sets of velocity measurements to be combined to produce a total

velocity vector field for the compressor rotor. This report presents the derivation of the mathematical

relations, beginning with the specification of the coordinate systems and the velocity projections in those

coordinate systems. The vector projections are then transformed into a common coordinate system. The

transformed vector coordinates are then combined to determine the total velocity vector. A numerical

example showing the solution procedure is included.

INTRODUCTION

The laser anemometer, in it's various forms, has been used for over 15 years to nonintrusively measure

flow in turbomachinery. This ability has made the laser anemometer ideal for measuring fluid velocities in

the rotating components of turbomachines. Typically, the systems used can measure a maximum of two

absolute velocity components; these, normally, are the axial throughflow component and the tangential

component (fig. 1).

Since the third velocity component, the radial component: is small with respect to the two measured

components, it has commonly been ignored. However, improved blade manufacturing techniques, improved

computational analysis capabilities, and an increased emphasis on secondary flow losses have generated a

greater interest in the radial velocity component.

As a result, the Army Propulsion Directorate has been engaged in an experimental program to measure
the radial velocities in a typical axial flow compressor rotor. The experimental phase of this program has

been completed, and the data are currently being reduced and processed for future publication. This report

presents the mathematical derivation of the equations used to calculate all three components of the total

velocity vector. To obtain the required information, the flow was observed from two different locations,

and the compressor system geometry and both laser anemometer measurement system geometries were used.
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SYMBOLS

coefficients describing plane defined by _-' unit vector and measured radial velocity projection

coefficients describing plane defined by ]'-" unit vector and the measured conventional velocity

projection

vector projection of unit vector ]-' onto the 0-axis

vector projection of unit vector ]" into the R-0 plane
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distance along the axis of optical rotation from the R-0 plane to the radial velocity system

reflecting mirror

primary coordinate system unit vectors

unit vector in the direction of velocity vector

equation of plane

radial distance from compressor axis of rotation

line of intersection between R-0 plane and plane specified by axis of optical rotation and the

probe volume

conventional velocity vector projection

radial velocity vector projection

radial velocity laser system bisecting line

angle between the measured conventional velocity projection and the 0"-axis

angle between tangential velocity and total velocity

angle of rotation about the Z-axis of the conventional laser anemometer system; offset angle

- 90*

angle between the measured radial velocity projection and the #'-axis

dot product of N t and l-

direction cosines of the radial coordinate system in the primary system

angle formed by line perpendicular to the axis of compressor rotation through the probe volume

and line R F

angle between h and X

angle between the total velocity vector and

Subscripts

c conventional

op radial velocity laser anemometer axis of optical rotation

pv probe volume

R,0,Z specifiers for R,0,Z components of the appropriate coordinate system

t total

Superscripts

' radial laser anemometer coordinate system

* conventional laser anemometer coordinate system

LASER ANEMOMETER THEORY

The theory underlying the optical operation of a laser anemometer system is relatively straight-

forward, and many previous publications have presented excellent descriptions (refs. 1 to 3). Therefore,
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this report will review only those features which are pertinent to the derivation of the total velocity
vector.

The laser anemometer system used by the Propulsion Directorate is a single-channel, fringe type

system. In this type of system, a laser beam is divided into two parallel beams which are then focused to

a volume in space. A measurement volume, ellipsoidal in shape, is created by the intersection of the two

laser beams (fig. 2(a)). In this measurement volume or "probe volume, _ an interference pattern is generated

(fig. 2(b)). The fluid velocity component perpendicular to the interference pattern can be calculated by
measuring the frequency of light reflected or emitted by a particle immersed in the fluid that enters the

probe volume (fig. 2(c)).

Normally, two velocity components can be measured from one physical location with respect to the

compressor passage of the focusing lens. This is accomplished by rotating the probe volume about a line

that bisects the angle between the two intersecting laser beams (fig. 2(d)), thereby reorienting the inter-

ference pattern. This bisecting line runs through the center of the focusing lens of the system. It should be

noted that the velocity component measured is determined by the orientation of the interference pattern

and, thus, the location of the focusing lens. However, the light reflected from the particles can be

observed from any physical location. Obviously, two additional velocity measurements can be made by

moving the focusing lens and observing, from another position, the same physical location in the compressor.

This was the approach used in the Propulsion Directorate experiments.

EXPERIMENTAL PROCEDURE

The experimental program was intended to measure the total velocity field inside an isolated tran-

sonic compressor rotor operating subsonically. The compressor rotor was designed at the Lewis Research

Center as a transonic axial inlet stage. Anemometry data were acquired between September 1987 and May

1990 with a single component laser anemometer of the fringe type. Two sets of two velocities were measured

at a given probe volume axial/radial location in the compressor rotor. The two sets were taken from two

different physical locations of the focusing lens, thereby resulting in two different orientations of the

probe volume and, thus, in the measurement of two different sets of velocity components. The first com-

ponent measured consisted of velocities in the axial and the circumferential (tangential) direction. This is
the conventional laser anemometer orientation. The focusing lens was located outside the rotor casing and

radially over the compressor rotor (fig. 3(a)). The second measured component consisted of velocities

nearly in the radial direction, and a component that was a combination of the axial-tangential velocity.
The focusing lens of this radial-flow laser anemometer system was located upstream of the rotor and

outside the rotor casing. The two beams entered the flow passage through a window positioned so that

the bisecting line was oriented in approximately the same direction as the blade mean camber line (fig. 1).

A schematic of the radial laser anemometer optical orientations, showing the relation of the focusing lens

to the compressor rotor and the velocity measurement volume (probe volume), appears in figure 3(b).

The result of the experimental phase of this program was a pair of data sets, each consisting of a dif-

ferent measured velocity field. The successful combination of these two fields resolves the total velocity

vector field. Currently, the data are being reduced in preparation for publication.



DERIVATION OF THE TOTAL VELOCITY VECTOR

Background

For each pair of data sets, the data acquisition software provides a velocity magnitude and an angle

from the appropriate coordinate system axis; these are used for the resolution of the total velocity vector.

The geometry of the compressor system and each laser system were also known.

Since a laser anemometer system measures a fluid particle's velocity component perpendicular to the

interference pattern, it is measuring the particle velocity component in a plane perpendicular to a line

bisecting the angle between the two laser beams that create the probe volume. Thus the observed velocity

can be considered to be a projection of the total velocity vector onto an %bservation plane" perpendicu-

lar to the bisecting line, as shown in figure 4.

It can be seen from figure 5 that the total velocity vector lies in a plane described by the bisecting line

and the velocity projection on the observation plane. If the same velocity vector is observed from two dif-

ferent locations, it follows that the total velocity vector must lie along a line that defines the intersection

of the two velocity planes.

Coordinate Systems

This section will define three coordinate systems that are convenient for describing the two measured
velocity projections and the resolved total velocity components.

There are three coordinate systems used for this derivation. They are (1) the primary coordinate sys-

tem, in which the total velocity vector is described (fig. 6(a)); (2) the conventional coordinate system, in

which the data acquired from the conventional laser anemometer system are described (fig. 6(b)); and

(3) the radial coordinate system, in which the data from the radial-flow laser anemometer system are
described (fig. 6(c)). For the purposes of this derivation, the two probe volumes are assumed to be

collocated in space. Thus, the origins of all three coordinate systems are at the same position in space.

Primary coordinate system.--The primary coordinate system (fig. 6(a)) uses the turbomachine geometry

to aid in it's specification. The R-axis Or-) is defined as positive and being radially outward along a line
defined by the probe volume position and the axis of compressor rotation. The 0-axis (]-) is specified as a

line in a plane defined as perpendicular to the axis of compressor rotation and perpendicular to the R-axis.

Further, it is defined as positive in the direction of compressor rotation (clockwise viewed looking down-

stream). The third axis, the Z-axis (_--), is defined as parallel to the axis of compressor rotation and is

positive in the direction of primary fluid flow.

Conventional coordinate system.--The conventional data coordinate system and its relationship to the

primary coordinate system are shown in figure 6(b). Since a laser anemometer can only resolve a velocity
component that is perpendicular to its bisecting line (line-of-sight), it is convenient to define the bisecting

line as an axis of the conventional coordinate system. This results in the observed velocity vector being in

a plane specified by the other two axes of the coordinate system.

The conventional laser anemometer system used for this program was capable of altering the line-of-

sight only in a plane defined as perpendicular to the axis of compressor rotation. Therefore, the bisecting
line for the conventional laser anemometer system is defined to lie in a plane that is perpendicular to the

axis of compressor rotation, although it does not necessarily lie along a line radially outward from the



axisof compressor rotation. The R"-axis (l-") is defined as lying along the bisecting line and is positive

in the direction opposite the observation direction.

The conventional coordinate system has it's Z"-axis (_") defined as parallel to the axis of compressor
rotation. Therefore, the R"- and 0"-axes lie in the same plane as the R and 0 of the primary coordinate

system (fig. 6(b)). The Z"-axis is defined as positive in the direction of the primary fluid flow. For a

right handed coordinate system, the 0"-axis (T") is positive in the direction of compressor rotation.

Radial coordinate system.--The radial velocity coordinate system and its relationship to the com-

pressor geometry and primary coordinate system are shown in figure 6(c). The Z'-axis (_") is defined

along the radial flow system bisecting line. This axis is defined as positive in the direction of a vector

from the center of the focusing lens towards the probe volume.

The radial flow laser anemometer system was designed so that it positioned the probe volume by

rotating about an axis that was outside of the compressor casing, but parallel to the compressor axis of

rotation. A coordinate axis, 0' (]"), was defined to lie in the plane specified by this axis of optical rota-

tion and the probe volume. This axis is perpendicular to the bisecting line and is positive in the approxi-

mate direction of compressor rotation. Notice in figure 6(c) that, for any _ other than 0 °, 0' is not in

the R-0 plane. Thus, the radial coordinate system has its 0'- and Z'-axes in a plane specified by the axis

of optical rotation of the radial flow laser anemometer system and the location of the probe volume.

The third axis, R' (P), is perpendicular to both the 0'- and Z'-axes and positive in an outward
radial direction.

Description of the Measured Velocity Vectors in the Primary Coordinate System

To determine the total velocity vector, we must define the two observed velocity vectors in the same

coordinate system, in this case, the primary coordinate system. Initially, the measured velocity vectors

are referenced in their original coordinate systems. Then they are transformed into the primary coordi-

nate system by coordinate transformation.

Transformation of the radial coordinate system velocity vector.--As shown in figure 6(c), the Z'-axis

lies along the bisecting line and in a plane described by the center of the probe volume and the axis of

optical rotation. For the purposes of data analysis, it was assumed that the probe volume is a point in
space• The axis of optical rotation, a line that is parallel to the axis of compressor rotation, is a distance

of R F from the axis of compressor rotation and intersects the bisecting line. The optical system is rotated
about this axis to vary the distance between the probe volume and the center of compressor rotation. The

lengths of all three sides of the triangle (R_, R , and R ) are known from the compressor geometry and• J_ pv op
the optical geometry, as shown m figure 7. Therefore, applying the law of cosines

R2 R2 1
=cos-Z pv ÷g- op

2RFRpv

(i)

where R is the distance from the probe volume to the center of the compressor, and R is the distancepv op
from the probe volume to the axis of rotation of the radial velocity laser anemometer. Subtracting r/2 gives
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Figure 8 shows the plane defined by the axis of optical rotation (h) and the probe volume. From this

figure

h = R F cot q) (3)

is defined relative to the primary coordinate system as

X = (-R F sin e)i -{-(-R F cos e)j -{-(RF cot ¢)_ (4)

The unit vector _' is defined to be in the same direction as the :_ vector, and relative to the primary

coordinate system, it is

_' = (-sin ¢ sin ,)_ + (-sin # cos ,)j + (cos#)_ (5)

In figure 8, the projection of]-', a unit vector along the 0'-axis, onto the R-0 plane along R F has a
magnitude of

IgJ= cos

and g"can be describedin the primary coordinatesystem as

= (cos_ sin _)T+ (cos¢ cos _)

The magnitude of the projection of _-' onto the Z-axis in the primary coordinate system is

(6)

(z)

lel -- sin _ (8)

From equations (7) and (8), the unit vector ]-' in the primary coordinate system is

j' = (cos¢ sin _)_+ (cos_ cos dJ + (sin¢)_ (9)

The third unit vector, relative to the primary coordinate system [", can be obtained simply by taking

the crossproduct of j-' and _':

r'= (cos_)r + (-sin dJ + (o)_ (I0)

Thus, the transformation from the radial flow coordinate system to the primary coordinate system is

defined by equations (10), (9), and (5) as

P= (cos_)_+ (-sin dJ + (0)_
j' = (cos@ sin E)] + (cos¢ cos _)j+ (sin<b)_
[' = (-sin ¢ sin e)i + (-sin ¢ cose)j + (cos@)_
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In theseequations,both _ and 6 can be calculatedfrom the compressor and opticalsystem geometries.

The nine coefficients shown in the preceding equations are the direction cosines of the radial flow

coordinate system with respect to the primary coordinate system. Thus,

A 1 = (COS 6)

A2 = (-sin 6)

A3:0

#1 = (cos _ sin e)

_2 = (cos _ cos 6)

#3 = (sin q_)

uI "- (-sin _ sin e)

vz = (-sin 6 cos e)

"3= (cos#)

(11)

Therefore,any vectordefinedinthe radialflowcoordinatesystem can be transformed intothe pri-

mary coordinatesystem by usingthe followingrelationships(ref.4):

R = AIR' + //10'Jr-//iZ'

O = AzR' + _zS' + uzZ'

Z = A3R' + jz30'+ u3Z'

(12)

Figure 9 shows the projectionofthe velocityvectorthatwas measured by the radialflow laserane-

mometer. The measured projectionof the velocityvectorin the radialflow coordinatesystem is

VR = ]VRl[(sin ,_);' + (cos _¢)_"+ (0)P] (13)

where K is the angle between the 0'-axis and the velocity vector projection. Normalizing the vector V R

and substituting the calculated direction cosines from equation (12) gives

]g_' = (_1 sin g q- D1 COS g)_ -_ (_2 sin g + pz cos t¢)_ + (A3 sin _ + P3 cos _)1_ (14)

where _' is a unit vector in the primary coordinate system with the same direction as the projection of

the total velocity vector in the radial flow coordinate system. The measured projection of the velocity

vector is the product of _' and the measured velocity magnitude IVRI.

Transformation of the conventional coordinate system velocity vector.--The same procedure is used

to transform the velocity projection measured in the conventional coordinate system to the primary coor-

dinate system. The transformation is simplified because the Z- and Z"-axes are congruent. This equality
exists because the optical system for this research always has the bisecting line in the R-0 plane of the

primary system. Therefore in figure 6, which shows the conventional coordinate system and the primary

coordinate system,

l_"= ]_ (15)

From figure 6(b)

;" = (cos 6)i + (sin 6)j
(16)



and

i" = (-sin 6)r + (cos6)i 07)

Thus, by using equations (16), (17), and (15), the conventional coordinate system can be described in

the primary coordinate system as

;" = (cos 6); + (sin 6)j + (0)1_
3" = C-sin 6); + (cos6)_+ (0)_
_"= (0); + (0)j + (1)_

As in the radial velocity coordinate system, a velocity vector projection in the conventional coordinate

system is described as

V c = [Vcl [(cos 7)]'" + (sin 7)_] (18)

where 7 is the angle between the velocity vector projection and the 0"-axis (fig. 10). By substituting

equation (17) into equation (18) and normalizing, we obtain a unit vector in the direction of the velocity
vector projection, relative to the primary coordinate system:

N" = C-sin 6 cos 7); + (cos 6 cos 7)]" + (sin 7)1_ (19)

Resolution of the Total Velocity Vector

For either the conventional laser anemometer coordinate system or the radial flow coordinate system,

the projection of the total velocity vector lies in a plane described by the bisecting line and the velocity

projection for that system (fig. 5). Therefore the total velocity vector must lie along a line that is the

intersection of the two planes (fig. 5). To determine the total velocity vector, the two planes must be
defined and the intersection calculated.

Description of the velocity vector projection planes.--The velocity vector projection planes can be
described by taking the crossproduct of two unit vectors. One of these is in the direction of the bisecting

line, and the other is the appropriate velocity unit vector. For the radial flow coordinate system, the two

unit vectors are the _' vector from equation (5):

_' = (-sin ¢ sin _)[ + (-sin _ cos e)5 + (cos _)1_ (5)

and the _" vector from equation (14):

N' = (A 1 sin t: + #1 cos _); + (A2 sin t_ + #2 cos _)_ + (A3 sin t_ + #3 cos _)_ (14)

The crossproduct of [' and ]q" yields an equation describing the plane:



PR=A_+ B_+ CI_ (20)

where

A : -{(sin _ cos e)(A3 sin • + #3 cos _)
B = +{(sin V sin _)(_3 sin _ + "3 cos _)
C = -((sin _ sin 6)(A2 sin _ + #2 cos _)

÷ (cos ¢)(_2 sin _; ÷ #2 cos K)}
÷ (cos _) ()_1 sin _ + _1 cos K)}
- (sin V cos _)(_1 sin _ + _1 cos _)}

(21)

For this derivation, this plane is defined as passing through the origins of all three coordinate systems,

which are collocated in space. The equation of the plane becomes

0 = AR + B0 ÷ CZ (22)

Similarly, for the conventional velocity coordinate system, where the bisecting line unit vector from

equation (16) is

-_" = (-cos _)[ + (-sin _)]
(16)

and the unit vector in the direction of the velocity vector projection from equation (19) is

N- = (-sin 6 cos _)i + (cos _ cos _)j + (sin _)_ (19)

the crossproduct of r" and ]_" yields an equation describing the plane:

Pc = ER + FS+ GZ

where

E-- sin 6sin 7

F -----cos 6sin 7

G ---- cos "_

(23)

(24)

Next, Pc is set to zero for reasons similar to those used for setting PR to zero in equation (22).

Definition of the intersection line of the velocity vector projection planes.--The two planes in which

the total velocity vector lies were described in the preceding section. To determine the line of intersection

of the two planes, two points that lie in both planes must be identified. One of the two points is defined by

the origins of both coordinate systems; it lies at the center of the probe volumes of both optical systems.

For the second point, a value of 8 --- 1 was selected for one of the coordinate unknowns. Substituting

this value into equation (23), which describes the conventional plane, gives

0=ER+F+GZ (25)

9



or

(26)

Substituting equation (26) into the radial flow plane equation (eq.(22)) yields

(27)

Solving equation (27) for Z, and substituting Z into equation (26) and solving for R results in

0=1 (2s)

and

Z = (BE- AF)
(AN - CE)

R=- + (--_

(29)

(30)

A unit vector in the direction of the total velocity (the line of intersection of the planes) then is

]_t = -[F(AG - CE) + G(BE - AF)]_+ E(AG - CE)j+ E(BE - AF)]_

_/iF(AG - CE) + G(BE - AF)] 2 + E2(AG - CE) 2 + E2(BE - AF) 2

(31)

The magnitude of the total velocity vector is determined by taking the dot product of the axial velocity

unit vector, _, and Wt" The _ vector• was selected because this velocity component is directly and com-

pletely resolved by the conventional laser anemometer system. Solving for the angle between these two

vectors gives

COS _d -----__

l_]lN'tl
(32)

10



so

E(BE- AF)

CE) + G(BE - AF)]2 + E2(AG _ CE)2 + E2(BE _ AF)2

The magnitude of the axial velocity is calculated with the following equation:

V z = V¢ sin

(33)

(34)

And the magnitude of the total velocity vector is

Vz [sin"/]V t - _ V c
cos_ _co-'_--_j

(35)

The dot product of the other axes with the appropriate unit vectors will yield the magnitudes of the

other velocity components. To calculate the tangential velocity, the dot product of the tangential direc-

tion unit vector and the total velocity unit vector, equation (31), is used; this gives the angle between the

tangential velocity and the total velocity as

E(AG - CE)

I[F(AG - CE) + G(BE - AF)] 2 + E2(AG - CE) 2 + E2(BE - AF) 2

(36)

Thus the tangential velocity is

(37)

The dot product of N t and [" gives

A=cos-l[. -[F(AG- CE) +G(BE-AF)] ]
I[F(AG - CE) + G(BE - AF)] 2 + E2(AG - CE) 2 + E2(BE - AF)"

and the radial velocity then is

vrF, O: AF)+

(38)

(39)
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Thus, the total average velocity vector can be resolved from information provided by observing the

flow, from two different physical locations, and measuring it with a single component laser anemometer

system.

A NUMERICAL EXAMPLE

In the research program to resolve the radial velocity vector in a compressor rotor, two independent
sets of laser anemometer flow measurements were made. These two data sets measured the flow at seven axial

locations in an average rotor passage, from -5 percent chord to 105 percent chord, and at a constant axial

inlet location. At each chord location, measurements were taken at 10 span locations varying from 5 percent

to 90 percent span from the hub. At each of these axial/radial locations, measurements were taken at 50

circumferential locations spanning an average blade passage. Additional measurements at axial/radial
locations were taken with the radial velocity laser anemometer system. The final resolved velocity field

will contain calculated total velocity vectors at over 3500 spatial locations. A detailed explanation of the

data acquisition system, the data acquisition and reduction protocol, the conventional laser anemometer

system, and the test compressor is presented in reference 5.

The following example uses preliminary data taken at 50 percent chord, 80 percent span from the

hub, and approximately 10 percent pitch from the suction surface. The location was chosen because pre-

liminary data processing indicated the measurements were of excellent quality.

This section demonstrates the calculation procedures for resolving the total velocity vector. The

results given are preliminary and are provided principally to show the procedure. The order of solution is
as follows:

(1) Solve equations (1) and (2) for e

(2) Solve equations (11) for the radial system direction cosines

(3) Solve equations (23) and (28) for the constants that describe the radial and conventional plane

(4) Solve equation (37) for w

(5) Solve equations (38) to (41) for the magnitudes of the velocity components.

The conventional laser anemometer system acquired data at 6 = -3.00 °. The resolved velocity vector

was 152.04 m/s, and 7 was 63.01 °. The measured radial laser anemometer geometry inputs were

IXt = 41.429 cm and il_ = 58.10 °. This resolved radial velocity vector was 137.3 m/s and n was -3.707 °.

The radial location at which data were acquired was 23.5660 cm, RF was 35.1714 cm, and Rop was
37.3460 cm.

Using equation (1) to find _ gives

2 2 2
os_1123.566 + 35.1714 - 37.346 /

= c [ 232--_.566)(35.----_17--_43 J

12



or _= 76.119 °•. Therefore, • ---- -13.881 °. Using equations (11) to calculate the direction cosines gives

21 -- +cos e = 0.97080

A2 = -sin • = 0.23991

)_3=0

#1 = cos¢ sin • = -0.12678

/_2 = cos ¢ cos • -- 0.51301

#3 = sin ¢ = 0.84897

With this information and 6, the offset angle of the conventional system, coefficients for both laser

anemometer system planes can be calculated by using equations (23) and (28). The radial plane coefficients

are

A = -0.96057

B = -0.27257

C -- 0.05489

Similarly, for the conventional system

E = -0.04664

F = -0.88983

G --- 0.45391

Equation (37), which calculates the angle between the total velocity vector and the axial velocity com-

ponent, gives w -- 29.231 °. The total and component velocity magnitudes from equations (38) to (41) are

V t = 155.25 m/s

V z = 135.48 m/s

V 0 = 70.55 m/s

V R = 27.76 m/s

This radial velocity component is the correct order of magnitude for this location in the flow field.

However, at this location, a negative radial velocity was anticipated. Preliminary calculations of the
blade-to-blade radial velocity field across the passage at this axial/radial location indicate this outward

velocity may be a tip clearance effect. Further work remains to be done to resolve this issue.

SUMMARY OF RESULTS

The total velocity vector field in a compressor rotor can be determined from information provided by

a laser anemometer system that observes the same velocity field from two different locations. The

equations to calculate the velocity components from the geometry and measured velocity projections have

been developed in this paper.

13
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Figure 3.--Laser anemometer system orientations with respect to
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Figure 6..--Coordinate systems.
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