JAPANESE PLAN FOR SSF UTILIZATION

Toshio Mizuno
National Space Development Agency of Japan

ABSTRACT

The JEM program has made significant progress. The JEM PDR was completed in July 1992; construction of JEM operation facilities has begun; and the micro-G airplane, drop shaft, and micro-G experiment rocket are all operational. The national policy for JEM utilization was also established. The Space Experiment Laboratory (SEL) opened in June '92 and will function as a user support center. Eight JEM multiuser facilities are in phase B, and scientific requirements are being defined for 17 candidate multiuser facilities. The National Joint Research Program is about to start. Precursor missions and early Space Station utilization activities are being defined.
Japanese Plan for SSF Utilization

T. Mizuno
August 4, 1992
Huntsville Alabama
CONTENTS

1. JEM Program Budget Status
2. JEM Utilization Policy Status
3. JEM Development Status
4. JEM Operations Capability Development Status
5. Status of Ground Research to Develop Generic Experiment Support Technology
6. Status of User Support Center Construction
7. Multiluser Facility Development Status
8. Organization National Joint Research Using Space Environments
9. Status of Precursor Mission and JEM Early Utilization Definition
10. Other Topics
1. JEM Program Budget Status (JFY1992)

1.1. JEM Development

(JEM EM, JEM multiuser experiment facility, TR-1A, etc.)

¥33.7B (~262M$)*

¥24.6B (~190M$)

1.2. JEM Operations Preparation

(JEM Operations facility, Crew training facility, etc)

¥4.2B (~32M$)*

¥3.0B (~23M$)

@1Dollar=129yen

* multiyear government guarantee for appropriation

2. JEM Utilization Policy

2.1. Report by SAC SS panel was issued in April 1992.

2.2. Report addresses the following:

(1) Need of national research program for promoting JEM Utilization.

(2) Importance of developing multiuser facilities Identification of facility list and development policy.

(3) Cost sharing by users consistent with JEM and multiuser facility verification/operation phase.

(4) Identification of AO issues and experiment selection timing and frequency.

(5) Importance of precursor missions.
AO. Experiment Selection, PUP/COUP/TOP

TIME (year)

X''-5 X''-4 X''-3 X''-2 X''-1 X''

X''PUP X''COUP TOP

Reference Mission Set Selected Mission Set (Baseline Mission)

Screened Experiments Group Ground Research & Precursor Flight Experiment

3. JEM Development Status

3.1. JEM PDR

Contractor PDR January to March 1992
System PDR June to July 1992

3.2. Technology Development Test

JEM Maintenance and Repair simulation using MSFC WETF in Nov. 1991

3.3. Engineering Model (EM) and Proto–Flight Model (PFM)

EM Contracts started in March 1991
PFM budget request is being prepared

3.4. Construction of JEM Test Facility at TKSC

Construction starts in summer 1992
4. JEM Operations Capability Development Status

4.1. Design of JEM Operations System

PRR March 1991
System Review Oct. 1993

4.2. Crew Recruiting
- MS candidate was selected in April 1992
- SS/SO will be recruited every two years

4.3. Construction of JEM Operations Facility
- Weightless Environment Test Facility construction started in March 1992
- Astronaut Training Facility Construction will start in summer 1993
- Construction of SS Operations Facility (Regional Operation Center for JEM) will start in summer 1993
4.4. Development of JEM Operations Planning system
 - Strategic/Tactical planning software and database are being defined

4.5. JFD (JEM Flight Demonstration)
 - JEM Manipulator servicing capability demonstration test will be held in 1996 using STS

5. Status of Ground Research to Develop Generic Experiment Support Technology (GEST)

5.1. Drop Shaft/Drop Tube
 - JAMIC Facility (10 sec. μ–G) has been operational since 1991
 - MGLAB Facility (4.5 sec. μ–G) will be operational in 1993

5.2. GEST Development using μ–G Airplane (MU–300 Business Jet)
 - Routine 6 month/year parabolic flight since Sep. 1990

5.3. GEST Development using TR–1A Rocket
 - Successful first flight in Sep. 1991
 - Next flight in Aug. 1992
<table>
<thead>
<tr>
<th>Experiment Module</th>
<th>TR-IA No.1 September 16, 1991</th>
<th>TR-IA No.2 August-September, 1992</th>
<th>TR-IA No.3 August-September, 1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module for Experiment Observation Technologies</td>
<td>Field observation of boundary and environment phase in crystal growth</td>
<td>Marangoni convection generation and control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Katsuo Tsukamoto (Tohoku U), Kazuhiko Kuribayashi (ISAS), Tsutomu Sawada (NIRIM)</td>
<td>Hisao Azuma (NAL), Akira Hirata (Waseda U), Keiichi Kuwahara (IHI)</td>
<td></td>
</tr>
<tr>
<td>Module for Measuring Basic Physical Properties of Fluids (FTX)</td>
<td></td>
<td>Bubble generation, growth and movement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yoshiyuki Abe (Electrotechnical Lab), Masamichi Ishikawa (MRI), Shinya Ishii (MHI)</td>
<td></td>
</tr>
<tr>
<td>Module for Experimenting Environment Maintaining Technologies (BDH)</td>
<td></td>
<td></td>
<td>Ceramic material composition Osamu Odawara (TIT)</td>
</tr>
<tr>
<td>General-purpose Furnace (ITF)</td>
<td>Melting and solidification of particle-dispersed alloy Yujl Muramatsu (NRIM)</td>
<td>(Not applicable)</td>
<td></td>
</tr>
<tr>
<td>Temperature-gradient Furnace (TGF)</td>
<td>(Not applicable)</td>
<td>Semiconductor liquid growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tatsuo Nishinaga (Tokyo U)</td>
<td></td>
</tr>
<tr>
<td>High-temperature Furnace (HTF)</td>
<td>Melting and solidification of high-temperature oxide superconductor Kazuma Togono (NRIM)</td>
<td>Melting and solidification of vitreous material Junji Hayakawa (GIRIO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TR-IA MISSION PROFILE

- **Beginning of the experiment**: 110 km - t=80 sec
- **End of the experiment**: t+441 sec
- **Rate Control**
- **Payload Sep., Burn out**
- **Parachute Dep.**
- **Telemetry**
- **NASDA TNSC**

Image credit: NASA

6.1. NASDA Space Experiment Laboratory (SEL) at TKSC
 - SEL plays an integral role for Japanese USCs
 - SEL became operational in June 1992

6.2. Discipline USCs Concept
 - Major National Institutes are expected to function as discipline-oriented User Support Center
 E.G. NAL for Fluid physics
 NIRIM for Inorganic Materials
 NRIM for Metals
 ISAS for Astronomical Observations

6.3. Telesclence Technology Application
 - Telesclence technology will be applied to link NASDA SEL and Discipline Centers
7. Onboard Multi-User Facility (MUF) Development Status

7.1. Selection of MUF

- MUF Candidate List was completed by Pre-AO survey
 List includes three categories, a definitive one, one which needs to
 be coordinated among international partners, and one which needs
 to reflect each year's AO

- JEM EM system/MUF verification test

- JEM traffic model study identifies early stage of MUF
7.2. Technology Development Status
- 5 MUF technology development will continue until early 1993

7.3. Requirements Update by User Advisory Group
- 9 Advisory groups were established
- Requirement update will be completed by summer 1992

7.4. Coordination among International Partners
- Multilateral (MUWG)
- Bilateral

8. Organized National Joint Research using Space Environments

8.1. Significance of the Joint Research
- Enhance research by coordinating/complementing research among national institutes, universities, private sectors
- Easy to accommodate experiments in SS

8.2. Joint Research Plan
- STA authorizes the Joint Research (Core Research)
- NASDA develops experiment technology and offers space flight chance
- Assigned Institute for Core Research conducts the research management
 E.G. NAL, NIRIM, NRIM
- JSUP supports general management of the Joint Research
- The plan will be implemented in mid 1992 and will evolve step-by-step
9. Status of Precursor Mission and JEM Early Utilization of Definition

9.1. Space Experiment Status

(1) TR-1A sounding rocket
 #1 Sep. 1991, #2 Aug. 1992, #3 Summer 1993
 follow-on flights are under study

(2) IML-1
 Jan. 22, 1992, 2 NASDA Experiments

(3) FUWATT '92 (SL-J/FMPT)
 Sep. 1992, 34 Japanese Experiments

(4) SFU Feb.–June 1994

(5) IML-2 July 1994, 12 Japanese Experiments
9.2. Definition of follow-on Precursor Mission
(1) Preliminary study of Follow-on TR-1A flight, E1 participation, Spacehab Utilization
(2) Dialogue with international partners for potential cooperation

9.3. Definition of Early Utilization of the Space Station
(1) Traffic model study of JEM early utilization
(2) Dialogue with international partners for potential cooperation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIS / SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Flyer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work shop</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Proba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airplane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XU-300</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sounding Rocket</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulator Facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Experiment Lab.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N_SD/ JFY Space Station ST5/Flyer User Support Airplane XU-300 Sounding Rocket TR-1A Data Base Simulator Facility Space Experiment Lab.
Double Rack View

1. Storage container
2. Storage container
3. Blank panel
4. Thermoelectric radiator (TBR-1/7)
5. Free flow electronic unit (FEDS)
6. Infrared sensor (IRIS)
7. Light imputate controller (ILC)
8. Data interface unit (DRI)
9. Power distribution box (PDB)
10. Thermoelectric regulator (TBR-1/7)
11. Vertical fan panel exhaust unit (VPEU)
12. Access panel (*)
13. Exhaust power switching panel (PSP) (*)

Note (*) Provided by NASA
JEM Early Utilization Traffic Model (as is June. 1992)

<table>
<thead>
<tr>
<th>Experiment Equip.</th>
<th>1998</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB12 (JEM#1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>GHF</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>ZMF</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>PCF</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>LSE</td>
<td>Image processor</td>
<td>Refrigerator ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Freezer ↑</td>
</tr>
<tr>
<td>UP mass</td>
<td>~2.5DRE</td>
<td>~0.75DRE</td>
</tr>
<tr>
<td>(Except Specimen)</td>
<td>~0.5DRE</td>
<td>~1DRE</td>
</tr>
<tr>
<td></td>
<td>~1DRE</td>
<td>~0.75DRE</td>
</tr>
<tr>
<td></td>
<td>~2EEU</td>
<td>~0.625DRE</td>
</tr>
<tr>
<td>MB15 (JEM#2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISCS</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>SECS</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>EPF</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>SAHF</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>TES</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>SPSS</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>FPEF</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>(high Temp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGF</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

IF: Isothermal Furnace
SGF: Solution Growth Facility
PCEF: Physics and Chemistry Experiment Facility
CCF: Cell Culture Facility
GHF: Gradient Heating Furnace
ISCS: Intersatellite Communication System
TES: Teleoparation Experiment System
EOT: Earth Observation TEST
SAHF: Small Animal Holding Facility
ZMF: Zone Melting Furnace
PCF: Protein Crystallization Facility
FPEF: Fluid Physics Experiment Facility
LF: Levitation Furnace
PSAS: Physiological Signal Acquisition System
SEMS: Space Environment Measurement System
SPSS: Small Payload Support System
SCF: Separation Centrifuge Facility
EPF: Electrophoresis Facility
VGF: Vapor Growth Facility

JEM PM Experiment Rack Installation Model

![Diagram of JEM PM Experiment Rack Installation Model](image)
10. Other Topics

(1) Space Experiment Data Base Development Status
 - Data Base in Japanese became operational in June 1992
 - Data Base in English will be operational in mid 1993

(2) Telescience Test Bed
 - Telescience Test Bed was installed in NASDA SEL in June 1992
 - Telescience Demonstration Test for JEM MTC operation will be in Nov. 1992