MATERIALS DISPERSION AND BIODYNAMICS
PROJECT RESEARCH

Presented by Marian L. Lewis, Ph.D.
Consortium for Materials Development in Space
The University of Alabama in Huntsville

ABSTRACT

The Materials Dispersion and Biodynamics Project (MDBP) focuses on dispersion and mixing of various biological materials and the dynamics of cell-to-cell communication and intracellular molecular trafficking in microgravity. Research activities encompass biomedical applications, basic cell biology, biotechnology (products from cells), protein crystal development, ecological life support systems (involving algae and bacteria), drug delivery (microencapsulation), biofilm deposition by living organisms and hardware development to support living cells on Space Station Freedom (SSF).

Project goals are to expand the existing microgravity science database through experiments on sounding rockets, the Shuttle and COMET program orbiters and to evolve, through current database acquisition and feasibility testing, to more mature and larger-scale commercial operations on SSF. Maximized utilization of SSF for these science applications will mean that service companies will have a role in providing equipment for use by a number of different customers. An example of a potential forerunner of such a service for SSF is the Materials Dispersion Apparatus (MDA) "minilab" of Instrumentation Technology Associates, Inc. (ITA) in use on the Shuttle for the Commercial MDAITA Experiments (CMIX) Project. The MDA wells provide the capability for a number of investigators to perform mixing and bioprocessing experiments in space. In the area of human adaptation to microgravity, a significant database has been obtained over the past three decades. Some low-g effects are similar to Earth-based disorders (anemia, osteoporosis, neuromuscular diseases and immune system disorders). Spending in the area of Earth-based biopharmaceuticals is increasing and is projected to be in the range of $60 billion by the end of this decade, 50 times greater than it is now (Burill, G.S. and Lee, K.B. 1991. Biotech 91: A Changing Environment, Ernst and Young, San Francisco, CA). As new information targets potential profit-making processes, services and products from microgravity, commercial space ventures are expected to expand accordingly. Cooperative CCDS research in the above mentioned areas is essential for maturing SSF biotechnology and to ensure U.S. leadership in space technology.

Currently, the MDBP conducts collaborative research with investigators at the Rockefeller University, National Cancer Institute, and the Universities of California, Arizona and Alabama in Birmingham. The growing database from these collaborations provides fundamental information applicable to development of cell products, manipulation of immune cell response, bone cell growth and mineralization and other processes altered by low-gravity. Contacts with biotechnology and biopharmaceutical companies are being increased to reach uninformed potential SSF users, provide access through the CMDS to interested users for feasibility studies and to continue active involvement of current participants. We encourage and actively seek participation of private sector companies, and university and government researchers interested in biopharmaceuticals, hardware development and fundamental research in microgravity. The project has two industry participants at present. These are Instrumentation Technology Associates, Inc. (ITA), Exton PA (hardware provider) and RANTEK, a biomedical R & D company with headquarters in Florida and offices in Huntsville.
The challenge of new ventures such as SSF, man’s presence on the Moon, Mars and beyond, can be met enthusiastically with the philosophy stated by Werher von Buaun: “The value of discovery becomes clear only in the wake of the discovery itself. No one can imagine what may accrue to mankind from the space program any more than Isabella could imagine what would come of Columbus’ voyages.” The development of bio-processes and biopharmaceuticals in space leading to enhanced quality of life on Earth, ameliorating undesirable space effects and contributing to US leadership in the world economy is a reasonable expectation.
MATERIALS DISPERSION AND BIODYNAMICS PROJECT RESEARCH

Presented by
Marian L. Lewis, Ph.D.
Consortium for Materials Development in Space
University of Alabama in Huntsville

MATERIALS DISPERSION AND BIODYNAMICS

PROJECT FOCUS

0 Materials dispersion and mixing in microgravity
 o Fluids and particles
 o Liquid/liquid

0 Dynamics of biological systems
 o Cell-to-cell communication
 o Intracellular molecular trafficking
ACTIVITIES

ACTIVITIES ENCOMPASS SEVERAL BROAD DISCIPLINES.

- Biomedical
- Basic cell biology
- Biotechnology (products from cells)
- Protein crystal development
- Life support (algae and bacteria)
- Drug delivery (microencapsulation)
- Hardware development for cellular life support

PROJECT OBJECTIVES

To create private sector awareness of R & D potential in the space environment.

To facilitate private sector company growth in the areas of:

- Services: hardware for low-g research
- Products: (cells, cell products, crystals)
- Processes: (ways to achieve products from low-g research)
THE COMMERCIAL MDA ITA EXPERIMENTS (CMIX) PROGRAM

OVERVIEW

0 Created by - Agreement between NASA, Office of Commercial Programs and UAH.

0 Purpose - To provide additional research opportunities on the Space Shuttle for NASA's 17 CCDS's.

0 Program managed by the UAH CMDS

0 Duration of Agreement - 5-year period or until 5 flights are accomplished.

0 First flight scheduled for September 1992
MDA HARDWARE

DESCRIPTION

MDA CONFIGURATION COMPARISON

Standard MDA

"Battleship" MDA
THE MDA MINILAB HARDWARE

MDA BLOCK CONFIGURATIONS FOR FLUIDS MIXING (Type 3 wells)

1. Launch position

2. Electrically position

3. Re-entry position

PRINCIPLE OF OPERATION

- Two blocks of inert material
- Compatible number of wells in upper and lower half
- Held together in lightweight aluminum housing
- Wells are misaligned prior to launch (materials are separate)
- In microgravity, blocks aligned allowing materials to contact
- In type 3 wells, blocks move again prior to re-entry
IT COMMERCIAL MPS RACK FOR SPACE STATION

CONTROL PANEL FOR MDA AND LMA UNITS

REAL TIME VIDEO OF MPS SAMPLE

TYPICAL 6 MDA UNITS IN TEMPERATURE CONTROLLED C-RIM
PROJECT GOALS

0 To expand the knowledge gained in the past three decades of microgravity research.

- Historic - effects of low-gravity on human physiology
- Recent and ongoing - low-gravity effects on single cells

0 To apply this information to develop SSF experiments and utilization in the areas of:

- Commercialization
- Basic science
EFFECTS OF LOW-GRAVITY ON HUMAN PHYSIOLOGY

<table>
<thead>
<tr>
<th>SOME LOW-G EFFECTS</th>
<th>CORRESPONDING EARTH-BASED DISORDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone demineralization</td>
<td>Osteoporosis due to aging</td>
</tr>
<tr>
<td>Immune response blunted</td>
<td>Immune deficiency, leukemias</td>
</tr>
<tr>
<td>Cardiac deconditioning</td>
<td>Hypertension, heart failure</td>
</tr>
<tr>
<td>Muscle deconditioning</td>
<td>Muscle wasting diseases</td>
</tr>
<tr>
<td>Decreased red blood cell count</td>
<td>Anemia</td>
</tr>
</tbody>
</table>

To ensure safety and maximize productivity of humans in space, continuous research is needed in the following areas:

- Cellular differentiation (i.e. stem cells to RBC's)
- Interactions of cells with drugs and medications in microgravity
- Remediation of bone mineral loss and reduced bone cell growth
- Mechanisms of reduced immune cell response and selective immunotherapy
- Mechanisms of virus infectivity in microgravity (cell receptors/cell mediated immunity)
- Nerve cell responses to stimuli (intracellular mechanisms)
MICROGRAVITY EFFECTS AT THE CELLULAR LEVEL

<table>
<thead>
<tr>
<th>PROCESS ALTERED</th>
<th>EFFECT OF SPACEFLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene expression</td>
<td>Suppression of some types</td>
</tr>
<tr>
<td>Cellular metabolism</td>
<td>Glucose use rate lowered</td>
</tr>
<tr>
<td>Secretory processes</td>
<td>Decreased or increased - cell type</td>
</tr>
<tr>
<td>T-lymphocytes</td>
<td>Reactivity suppressed</td>
</tr>
<tr>
<td>Plant cell metabolism</td>
<td>Fatty acid content shifts</td>
</tr>
</tbody>
</table>
MEDICAL/BIOLOGICAL UTILIZATION OF SSF

SSF long-term, continuous 1wo-g environment can provide research capability to determine

- Cellular mechanisms
- Develop remedies

Resulting in

- Spinning off new technologies
- Development of new biopharmaceuticals
- Advanced knowledge of fundamental biological processes.
POTENTIAL AREAS OF MEDICAL COMMERCIAL APPLICATION

<table>
<thead>
<tr>
<th>Potential Markets</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Companies producing natural cell products</td>
<td>Infectious disease,</td>
</tr>
<tr>
<td>cancer</td>
<td>Transplantation</td>
</tr>
<tr>
<td>Institutions supplying cells</td>
<td>Cellular and tissue development</td>
</tr>
<tr>
<td>Biodynamic cell culture</td>
<td>Osteoporosis/bone regeneration</td>
</tr>
<tr>
<td>Biodeposition (mammalian cells)</td>
<td>Liposome and drug delivery technology</td>
</tr>
<tr>
<td>Pharmaceutical</td>
<td>Protein crystals, drug design</td>
</tr>
<tr>
<td>Pharmaceutical</td>
<td></td>
</tr>
</tbody>
</table>

BENEFITS FROM SSF RESEARCH

IMPROVED QUALITY OF LIFE ON EARTH RESULTING FROM LONG-TERM RESEARCH CAPABILITY ON SSF

ENSURE SAFETY AND MAXIMIZE PRODUCTIVITY OF HUMANS IN SPACE

NON-TERRESTRIAL ENVIRONMENT REQUIRES DEVELOPMENT OF NEW MATERIALS AND TECHNOLOGIES TRANSFERABLE TO PRIVATE SECTOR INDUSTRIES

KNOWLEDGE GAINED ON FUNDAMENTAL PROCESSES APPLICABLE TO EARTH-BASED PROCESSING AND TECHNOLOGY
SOME STRATEGIES TO FACILITATE COMMERCIAL SPACE

- Increase private sector awareness of potential areas for commercialization
- Continued contact with private sector companies
- Collaborative research with university researchers
- Dissemination of knowledge gained to scientific community by publications, conferences, seminars, displays.

Education

- Involvement of students at the intermediate and high school and university levels

PROSPECTS FOR THE FUTURE

Commercial space ventures are expected to increase as the database targets potential profit-making processes and products from microgravity technology development.

- Spending in the area of biopharmaceuticals is increasing.
 - Earth-based spending for biopharmaceuticals by the end of this decade is projected to be in the range of $60 billion, 50 times greater than it is now.

- Cooperative CCDS research in the above mentioned areas is essential for maturing SSF biotechnology

- New technologies are expected to develop and to ensure U.S. leadership in space technology.