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NAVIER-STOKES ANALYSIS OF AIRFOILS WITH LEADING EDGE ICE ACCRETIONS
Mark G. Potapczuk

University of Akron
Akron, Ohio 44325

ABSTRACT

A numerical analysis of the flowfield characteristics and the performance degradation
of an airfoil with leading edge ice accretions was performed. The important fluid dynamic
processes were identified and calculated. Among these were the leading edge separation hubble
at low angles of attack, complete separation on the low pressure surface resulting in premature
stall, drag rise due to the ice shape, and the effects of angle of attack on the separated flow
field. Comparisons to experimental results were conducted to confirm these calculations.

A computer code which solves the Navier-Stokes equations in two dimensions.
ARC2D, was used to perform the calculations. A Modificd Mixing Length turbulence model
was developed to improve capabilities in calculating the separated flow phenomena. A grid
generation code, GRAPE, was used to produce grids for several ice shape and airfoil
combinations.

Results indicate that the ability to predict overall performance characterisities, sach
as lift and drag, at low angles of attack is excellent. Transition location is imporfant for
accurately determining separation bubble shape. Details of the flowfield in and downstream of
the separated regions requires some modifications. Calculations for the stalled airfoil indicate
periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged
pressure values produce results which compare favorably with experimental information. A

turbulence model which accounts for the history effects in the flow may be justificd.
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CHAPTER 1

INTRODUCTION

This work details the investigation of the aerodynamics of an airfoil with leading edge
ice accretions. A computational approach is employed for the prediction of the fluid dynamics
and performance characteristics of such an airfoil. The method presented is based on the
numerical solution of the Navier-Stokes equations in a body-fitted coordinate system. A
previously existing airfoil code, along with a new turbulence model developed for this study,
was adapted to incorporate the physics of a leading edge separation bubble and to account for
the completely separated flow at high angles of attack. This code was used to examine the
structure of the separation bubble, the development of the turbulent boundary layer aft of the
bubble, and examine the effects of angle of attack on the stalled airfoil flowfield. In addition,
the code was used to determine the changes to maximum lift, angle of attack at stall, and drag
as a result of the presence of ice on the leading edge.

Comparisons to experimental results, for several airfoils with artificial leading edge
ice shapes, are presented to verify the method and to illustrate its predictive capability.
Capabilities for the quantitative analysis of airfoil performance degradation due to icing were
previously limited to experimental correlations and potential flow analysis of relatively
aerodynamic ice accretions. Evaluation of less benign ice shapes requires the ability to calculate
separated flow regions and the resulting changes in lift, drag, and moment forces. This can be
accomplished by the use of either an interactive boundary-layer approach or the solution of the
Navier-Stokes equations. The former method is under evaluation by Cebeci [1]. The

investigation of the use of a Navier-Stokes code thus seems justified in order to examine the
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relative merits of each approach.  Optimum design of ice protection systems generates the
need for such computational capabilities. If the performance of an iced airfoil can be
accurately predicted, then more meaningful design parameters can be considered in the
development of ice protection systems. Further, if the aerodynamics of the iced airfoil are
known then other analysis methods can be used to predict the ice buildup on the airfoil. This

should serve to decrease the need for actual wind tunnel testing.

1.1 Description of Problem

Aircraft icing occurs when an aircraft passes through a cloud of supercooled water
droplets and droplet impingement combined with heat transfer processes result in accretion of
an ice mass which may cause significant performance loss to the aircraft. The severity of the
icing encounter is dependant on meteorological conditions, flight co‘nditions, aircraft gecometry,
pilot performance, and anti/de-icing measures employed. Prediction of aircraft capabilities
under icing conditions is determined by the first three of these factors.

Meteorological conditions determine the charcterisitics of the ice itself. Typically the
types of ice identified for these purposes are rime, glaze, and mixed. Temperature is the major
influence on determining the type of icing encountered. At temperatures just below freezing, a
clear granular ice, termed glaze ice, tends to form which can produce very non-aerodynamic
shapes on the airfoil leading edge. At very cold temperatures, an opaque relatively smooth ice,
termed rime ice, forms which has a more aerodynamic shape than glaze. At some intermediate
temperatures, a mixture of these conditions occurs usually with a glaze ice core surrounded by
a shell of rime. These ice types combined with flight conditions, length of icing encounter,
and aircraft geometry determine the final ice shape and resulting aerodynamic degradation

characteristics.



The presence of ice on the leading edge surfaces of an aircraft can lead to seévere
degradation of the aircraft performance as a result of several influences. The weight of the ice
itself can require additional lift to maintain the desired altitude. At the same time, the ability
of the lifting surfaces to provide that lift is reduced. Additionally, the ice accretions increase
the drag forces on the aircraft resulting in increased thrust requirements. Any one of these
influences can be enough to ﬁrohibit operation of an aircraft in an icing environment.
Evaluation of the performance degradation due to these influences is important for specification
of appropriate ice protection measures.

The weight of the ice can be accounted for as an additional payload. Thus, it should
be within the scope of present design techniques to determine this influence. The increased
drag and decreased lift due to the ice accretion are not so easily determined. Drag calculations
require an ability to evaluate both pressure drag and skin friction. This means being able to
determine the appropriate pressure distribution on a highly irregular geometry and to
accurately determine the influence of the turbulent boundary layer on that surface. Lift
calculations also require the ability to accurately determine pressure on the surface. These
capabilities are available in existing codes only for attached flows on normal airfoil shapes.

Airfoils with leading edge ice shapes pose greater difficulties for computation due to
the flow characteristics associated with the non-aerodynamic geometry of the ice accretion.
The ice shape produces a leading edge separation bubble which at low angles of attack
reattaches to the surface. The size of this region and the flowfield inside it are difficult to
model due to the limitations of the method of modeling turbulence previuosly employed in
most computer codes. The location of the reattachment point is also affected by the
turbulence model, which in turn can influence the development of the reattached boundary
layer downstream of the bubble. At high angles of attack, this bubble detaches from the

surface and results in an unsteady flowfield characterized by periodic vortex shedding. This
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leading edge separation results in premature stall of the airfoil. Accurate modelling of these
phenomena is essential for determination of the performance characteristics of the airfoil during

an icing encounter.

1.2 Icing Analysis Plan

The development of an iced airfoil analysis code is part of a national icing analysis
effort coordinated by NASA and the FAA. In this effort, the goal is to be able to calculate the
growth of ice on an airfoil and determine the aerodynamic performance degradation due to
that ice. Additionally, it is desired to be able to model various de-icing and anti-icing systems
in order to limit expensive icing tunnel tests. This approach requires the development of
several types of codes and ultimately the tying together of these codes in an overall analysis
scheme. The codes used for icing analysis are employed in a computational loop whiclh starts
with evaluation of the flowfield for a clean airfoil, moves to a calculation of the water droplet
trajectories, calculates the ice buildup from those particles which impinge on the surface, and
evaluates the performance degradation due to this ice growth. The new shape is then used to
re-evaluate the flowfield and go through the loop again. This process would be repeated until
the ice buildup reached some critical level, most likely the stall point. The computational
approach developed in this study would be used for calculation of the flowfield at the start of
the loop and for performance evaluation at the end of the loop.

For the overall icing analysis plan, it is essential, to be able to perform the
calculations of the type reported in this work. The methods employed up to the present have
either been unsuccessful or successful over a limited range of conditions. The use of a Navier-
Stokes code with an appropriate turbulence model holds the promise of achieving this critical

capability for icing analysis research.



CHAPTER 2
ICED AIRFOIL PERFORMANCE ANALYSIS : STATE OF THE ART

The ability to predict the performance degradation of an airfoil due to ice deposition
is not presently available to the a;erospafce;’ community. Several empirical studies have been
completed over the years, but no well-developed method has been produced to determine the
lossm iift and increase in draé as;oéiated with this phenomena. The advent of high speed
computers and development of efficient numerical schemes for solving partial differential
equations has provided the opportunity for further development of prediction methods for iced
airfoil aerodynamic analysis. It is the objective of this investigation to utilize these recent
advances in computational ability and to examine their strengths and weaknesses in relation to
the icing problem. This chapter presents a brief examination of the state of the art in icing

analysis up to the present. The development of computational methods in the codes employed

during this investigation is also discussed.

2.1 Historical Backgrbund

The current method of ice protection, hot air bleed, was first developed in the 1940’s
as a result of an experimental program conducted by NACA [2]. This program consisted of
numerous wind tunnel tests of iced airfoils, in an attempt to develop correlations for the
associated drag rise. The correlations of Gray [3] were developed during this period and have
served as the basis for predicting drag rise up until the present. Gray’s correlation is known to
be a very approximate method and is considered inadequate for the design of ice protection of

modern general aviation aircraft and rotorcraft.




During the past five to ten years, work in the area of correlation development has
been re-examined in an attempt to improve upon Gray’s results. In 1982, Bragg [4] developed
a method which accounted separately for the effects of changes in leading edge geometry and of
surface roughness for rime ice profiles. He states that this method is limited to small ice
accretions at low angles of attack. In 1983, another empirically based approach was attempted
by Miller, Korkan, and Shaw [5]. Their conclusion was that further work was required for the
development of a more general drag rise correlation. Additionally, these methods are used
strictly for the prediction of global characteristics of the iced airfoil flow field. Detailed
evaluation of the velocities, pressures, temperatures, or other important parameters, is not
provided by the use of correlations. However, this type of information is necessary input to
any method designed to predict ice accretion and growtl, as envisioned for a comprchensive
icing analysis program.

Analytical methods for predicting drag rise due to icing were evaluated by Pctcrsoﬁ
and Dadone [6] in 1980. Their conclusion was that then current methods u.ndcrprcdict,cd drag
rise. Later, in 1982, Bragg, Gregorek, and Shaw [7] used the airfoil code of Eppler [8] to
successfully predict the maximum lift coefficient (CL m“) for a rime ice profile. In 1984,
Bragg [9] investigated the aerodynamic characteristics of airfoils with rime and glaze ice
accretions. He compared several computer codes, eventually settling on the Dvorak CLMAX
code [10]. His results for rime ice were encouraging, but several difficultics were found in
calculation of drag and in prediction of leading edge separation on glaze ice profiles. Bragg
also used the Bristow potential flow code [11] and measured separation bubble geometry Lo
predict Cp values on a glaze ice shape. This approach does not, of course, allow evaluation of
viscous effects.

As mentioned previously, either an interactive boundary layer method or solution of

the Navier-Stokes equations is necessary to produce the desired results. The interactive



boundary layer approach currently being used by Cebeci [l], shows promising preliminary
results, especially for angles of attack below stall. However, some details of the flowfield, such
as the reverse flow region of the separation bubble, are not predicted properly. Further, the
massive separation which occurs at and above stall angles is not capable of being predicted by
this method. Hence, it seems justiﬁed to employ an alternate approach, in an effort to
complement the interactive boundary layer method, for situations which require the additional
physical modeling provided by the Navier-Stokes equations. Thus, it may be envisioned that
the less computationally expensive in?.eractive boundary layer approach would be employed for
small angles of attack and the Navier-Stokes solver would be used for the evaluation of stall.
Additionally, the Navier-Stokes solver could be employed for evaluation of velocities within the

separation bubble region. It was with these goals in mind that this work was undertaken.

2.2 Background of Numerical Procedures

The literature on grid generation, Navier-Stokes analysis, and turbulence modeling is
quite extensive. Thus, any presentation of the sources which cover these topics will be
necessarily abridged. This section is a survey of some, but by no means all, of the relevant
literature regarding these topics. This material is mentioned in order to provide a context
within which the methods employed are expected to operate. It is necessary to understand the
limits of present analysis techniques in order to have realistic expectations for the use of those
techniques in a given application. In this spirit, the following material was examined prior to
and during the course of this investigation.

Grid generation codes are employed to provide a convenient means of reprgsenting a
complex geometrical shape in a way which can be modeled in a rectangular finite-difference
grid. These cddes typically transform the standard Cartesian coordinate system, which

represents physical space, into a body-fitted curvilinear coordinate system, which represents the
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computatuional space within which the governing equations are solved. Typically these
methods result in the x-y coordinates corresponding to the grid points in the curvilinear
coordinate system. The methods differ in the form of the transformation equation which must
be solved and therefore in the boundary conditions which must be specified. Initial efforts at
employing body-fitted coordinate systems were conducted by Winslow [12] in 1966 and Chu
[13] in 1971. Both evaluated the Laplace equation as a means of transforming the coordinates
from one system to the other. In 1973, Amsden and Hirt [14] used the same equations to
provide a method of generating géneral curvilinear grids. Thompson, Thames, and Mastin
[15-17] expanded this approach, during 1974-77, to include any number of bodies in the
computational space. Their methods have been used quite extensively. In 1979, Steger and
Sorenson [18] provided for angle and distance control of the grid lines at the inner boundary.
In the following year, Sorenson [19] extended this method to control angles and spacing at the
outer boundary. This method is employed in the so-called GRAPE code which is used for this
investigation and will be described later.

Other grid generation methods employ solutions of hyperbolic and parabolic partial
differential equations and geometric techniques. Barth, Pulliam, and Buning [20] employed a
hyperbolic grid generator, in 1985, to examine ‘exotic’ airfoils, including a glaze ice shape
provided by the author. In 1978, Gibeling, Shamroth, and Eiseman [21] developed a geometric
grid generation technique, refined by Eiseman [22] which was used by Shamroth [23] in 1985 to
evaluate steady and unsteady airfoil flow fields.

Early efforts at evaluation of the Navier-Stokes equations considered incompressible
laminar flow. Examples are those of Mehta and Lavan [24] and Lugt and Haussling [25], both
from 1975. Mehta and Lavan solved these equations with a stream function-vorticity
formulation to examine flow about an impulsively started airfoil. Lugt and Haussling also

used a stream function-vorticity approach to examine flow about an abruptly started cylinder.



In an alternate approach, during 1977 Reddy and Thompson [26] applied an integro-
differential formulation to the problem of incompressible flow in a doubly connected region.
This was used to evaluate symmetric airfoils at zero angle of atfack with a Reynolds number of
less than 10°. Similarly, during the mid-1970’s, Wu and Sampath [27] and Wu, Sampath, and
Sankar [28] applied an integro-differential formulation [29] to both an impulsively started
airfoil and an osciilating airfoil. Finally, in 1980, Sugavanarm and Wu [30] attempted to use a
two equation k-¢ turbulence m(;del with a vorticity-velocity formulation.

The primitive variable approach has also been employed for the evaluation of
incompressible laminar flows. Harlow and Welch [31] employed the Marker And Cell (MAC)
method to investigrate time dependent flow of a fluid with a free surface. v This approach was
developed further by Hirt and Harlow [32]. Later, Hodge [33] and Hodge and Stone [34]
employed a successive over relaxation (SOR) iteration approach in a body fitted curvilinear

coordinate system. The alternating direction implicit (ADI) approach was used by Ghia,

Hankey, and Hodge [35] to calculate incompressible driven flow in a square cavity for Reynolds

numbers under 1000.

Compressible flow over airfoils has been and continues to be examined by a large
number of investigators. Verhoff [36] applied MacCormack’s fully explicit method [37] to this
problem but was restricted by small time steps in order to maintain numerical stability.

Deiwert [38] also used this method to examine transonic flow.

Implicit methods have been employed for the laminar compressible Navier-Stokes
equations in an effort to avoid the stability limitations present in explicit schemes. Gibeling,
Shamroth, and Eiseman [21] applied the Briley-McDonald [39] formulation to examine

dynamic stall. Sankar and Tassa [40] used a similar approach to examine an oscillating airfoil

in a low Reynolds number flow.
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The examination of turbulent compressible flows presents an additional degree of
complexity to the calculation of airfoil flow fields. The various investigators have generally
employed either a zero-equation algebraic eddy viscosity model or a two-equation k-¢ model,
where an n-equation model refers to the n-number of additional partial differential equations to
be solved. Recently, there has also been considerable interest in the single ordinary differential
equation model of Johnson and King [41]. All of these types of models have been compared by
Coakley [42] for cases of shock induced separation, and the Johnson-King model was considered
to have performed favorably. A k-¢ model that has been used by several invetigators (e.g. [23]
and [43]) is described by Launder and Spalding [44]. The algebraic models most commonly
used are those of Cebeci and Smith [45] and Baldwin and Lomax [46]. These models have been
used sucessfully over a wide range of airfoil configurations for conditions below stall. At higher
angles of attack, there have been some difficulties observed however. The models tend to
overpredict the turbulence level and damp out some of the vorticity generation ocurring under
these conditions. This is of particular concern for the iced airfoil condition due to the presencc
of the stationary separation bubble and its subsequent shedding at higher angles of attack.
These considerations will be discussed in more detail in later chapters.

Early investigation of the turbulent airfoil problem was performed in 197:9 by
Shamroth and Gibeling [47]). The method described therein employed a mixing length type
turbulence model and was used to examine airfoils at low angles of attack. This approach was
employed again during the following year by Shamroth and Gibeling [48] to examine airfoils in
stall and again in 1981 by Shamroth [49] to examine airfoils pitching at low incidence. Tassa
and Sankar [50] in 1981 and Sankar and Tang [51] in 1985 used an algebrai'c mixing length
model to study dynamic stall. A k-¢ model was employed in 1985 by Shamroth [23] to

investigate steady flow over a NACA0012 airfoil at low angles of attack. The basis for the
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code employed in this investigation was developed by Steger [52] in 1978, who used the
numerical scheme of Beam and Warming [53] and the Baldwin-Lomi;x turbulence model.

The code developed at the Ames Research Center by Steger, ARC2D, has been
further enhanced by Pulliam [54). Pulliam introduced a diagonalization of the blocktridiagonal
inversion for the implicit operators which resulted in a computationally more efficient set of
scalar tridiagonal inversions along with a series of 4x4 multiplications. Additionally, he
vectorized the code to take advantage of the capabilities of CRAY type computer architecture.
This code has been used to evaluate a large number of airfoils over a large range of Reynolds
number and Mach number conditions [55]. ARC2D and GRAPE will be the basic numerical

tools used to examine the iced airfoil flowfield and will thus be described more fully in the next

chapter.
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CHAPTER 3
DESCRIPTION OF COMPUTER CODES

Solution of the Navier-Stokes equations with a finite difference method for a highly
irregular geometry requires the use of two separate codes. One is used for the transformation
of the physical space, which holds the object of interest, into a rectangular computational
space, which is more suitable for the use of a finite difference code. The other is the actual
Navier-Stokes solver. Both codes in this study were supplied by the NASA Ames Research
Center. The grid transformation code is called GRAPE> and was written by Sorenson [19].
GRAPE is an acronym for GRid transformatior‘l Algorithm for solution of the DPoisson
Equation. The Navier-Stokes solvef is called ARC2D and was originally written by Steger [52]
and later modified by Pulliam [54].

The following sections give a description of the basic equations being solved by the
two codes used in this study. The form of the equations, as implemented in the codes, is also
developed from these basic equations. Much of the development presented can be found in the
references cited. Inclusion of this development is for the sake of familiarizing the reader with
the specific mathematical formulation of the physical systems being modeled.  This
presentation is thorough enough to give the flavor of the éalculation methods employed, while

not purporting to be an exhaustive examination of work which has been described previously.
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3.1 GRAPE Code Description
The GRAPE code is based on a transformation of the physical x-y coordinate system to a

body-fitted &-n coordinate system through the use of a Poisson equation. The equations to be

solved are,

Exx + &yy =P (3.1a)

mxx + nyy = Q (3.1b)

where P and Q are constants which can be manipulated to control spacing and skewness of the
resulting grid. Subscripts indicate differentiation with respect to the given coordinate.

If the new coordinates are defined as functions of x and y then,

£ = &(xy) (3.2a)
and,

n = n(x,y) (3.2b)

It is desired to obtain the x and y coordinates of the rectangular £-n computational
grid. Thus, expressing (3.1) in terms of differentials of x and y with respect to £ and 7 is
necessary. The resulting partial differential equations are then solved using a computational
technique described below.

The relationship between (3.1) and differentials of x and y with respect to £ and 7 is

obtained by employing the Jacobian of the transformation from one coordinate system to the

other,

_0(xy)
T= & (3:3)
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or,

J:xfy,’—x,)ys

Equation (3.4) can be rearranged to yield the following expressions,

€x = vyp/d
&y = —xp/J
nx = =Y/
ny = X¢/

Applying equations (3.5-3.8) to (3.1) yields,
axee = 2ﬂx£n + Xy = -—.12(P)(6 + Qxp)
ayee = 28vep + 1yny = =3Py, + Qyy)
where,
a = xnz + yn2

p= Xfxn + Y£Y7)
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y=xg 4y (3.12)

In the GRAPE code, P, Q, and values of x and y are specified as input. The x and y
values are input as a discrete set of ;;oints which can be used as is or redistributed using a
curve-fit routine and a pre-defined distribution function. The boundary values correspond to
Athe surface of the object being considered and an artificial boundary at some distance away
from the object. The distance to the outer bondary is set at some value that is considered to
be sufficient for free-stream conditions to prevail. The outer boundary can be specified as a C
or O type grid. Equation (3.6) is solved by an iterative method employing a successive line
over-relaxation sé]ution procedure. The solution proceeds along lines that run in the ¢
direction. Convergence is obtained when the absolute value of the largest correction in x and y
is below some desired level. Normally the convergence criteria is set as a drop in this
correction value of six orders of magnitude. If convergence is not obtained, several relaxation
parameters can be changed in an effort to improve the results. Also, the point distribution at
the surface can be altered in an attempt to avoid regions of high curvature. The former
approach is preferred, as this does not require alteration of the input geometry specification.
Further explanation of the theory underlying the GRAPE code may be found in reference [19].

GRAPE has been used successfully to produce grids for many complex geometries,
including ice shapes, as seen in figure 1. The output of this code is the x and y locations of the
grid points from the uniform rectangular £-n computational coordinate system. These
locations are then used as input for the ARC2D code, specifying the locations at which the
Navier-Stokes equations are to be solved.

The ability of a particular grid to provide appropriate spatial resolution for a given

flow-field is a question of much debate. Some of the influential factors are: the spacing of grid

16

VONNLC 1 ———— 0



Figure 1(a) Grid for rime ice leading edge

|

Figure 1(b) Grid for glaze ice leading edge

17



points near a solid surface in the_normal direction, the spacing of grid points in the streamwise
direction, the digtipfe» from the sqlridr_surface to the free—st;eam boundary, and the skewness of
grid lines in regions of high curvature. Presently, the onl;;[ measure of a grid quality is the
degree to which the grid genergtipn rcode has converged. Certainly, this allows for evaluation
of how well the transformation eduation ha$ Been modeled.  However, the degree of
convergence does not give an indicatriron of whether the grid spacing is appropriate for
resolution of the importaqt flow ?}rl(izrggrﬁvena. Thesé coﬁcérﬁs, important as they are for any
computational ﬂllld dyna;ni;s-'probi;iﬁ; 'é'rgfr'xotr the majbr emphasis of this research. As such,
they will only be discus;ed in conjunction with specific problems that developed during the
course of the reséarch.

The grids used in this work were similar, in degrée of spatial resolution, to those
employed for analysis of viscous flow over a clean airfoil (see, for example, Pulliam [54]). The
spacing between thé inper and outer boundaries was on the order of ten chord lengths. This is
consideredr ai)propfi;te to provide free-stream conditi(;ns at the outer bouﬁdary [65). The
spacing of the ﬁrsi grid point off of the airfoil surface was on the order of .00002 of a chord
length. This is sufficient spacing to provide approximately twenty grid points in the airfoil
boundary layer. Grid spacing arc;und the ‘sﬁrface was coﬁcentrated near the leading edge in
order to resolve the geometry of the ice shape. This is accomplished by providing a greater
number of input points in this re%iéh a:nd érltéring' the point distribuﬁon function mentioned
earlier. The high curvature of the ice shape results in significant skewing of the grid in this
region. Concentration of points near the leading edge also results in scar.city of grid lines in the

wake region. This can result in improper representation of the wake and must be considered

carefully when creating a grid.
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3.2 ARC2D Code Description

The code selected for solving the Navier-Stokes equations, ARC2D, was originally
developed at the NASA Ames Research Center, as mentioned previously. This code can be
configured to solve the thin-layer Navier-Stokes equations or it can additionally include the
explicit € and cross derivative terms.

The full equations are shown below in Cartesian coordinates.

Qq + Ex + Fy = Re”'(Evy + Fy ) (3.13)
where,
p pu pv
pu pu? + P puv
Q= , E= , F= ) , (3.14)
pv puv pve + P
e u(e + P) v(e + P) J
and,
0 [0
T T
Ev=| |, Fv=| Y[,  (3.15)
Txy Tyy '
€4 ] fy
with,
Txx = ‘,‘3‘1 (4UX t 2Vy) (3.16&)
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Txy = #(uy + vx) (3.16b)

Tyy = g (—2ux + 4vy) (3.16¢)
e, =uTxy + Vixy T # Pri(y — 1)'1(a2)x (3.16d)
fg =urxy + vryy + 4 Pri(y — 1)'l(az)y (8.16e)
P=(y— 1)(e — Lo+ v”)) (3.16f)

These equations are then transformed to the body-fitted coordinate system
established by the grid points taken from the GRAPE code output. According to the
development presented by Vinokur [56], the strong conservation law form of (3.2) can be

maintained for new independent variables of the form,

£ =E(xyt)y, n=axyt), 7=t

Retaining strong conservation law form is important in that it is possible to
difference the equations by a variety of stable schemes, each of which can be chosen so as to
conserve mass, momentum, and energy for the total flow region. The time dependence is
shown for these transformations and was not included in the GRAPE code formulation. Since
only the x-y positions of the §-7 grid are transferred from GRAPE to ARC2D, this dependence
is not necessary for the GRAPE code. ARC2D uses the x-y coordinate information to form the

metrics again internal to the code. The roles of the independent variables are reversed for the

ARC2D code and hence the Jacobian has the form,
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.Tl:xE Yp = Xp¥¢ (3.17)

The contravariant velocities are defined along the £ and 7 coordinates as,

U=§& + &u+ &yv (3.18)

V =mn + nxu + nyv (3.19)

where the metrics are formed by considering the differentials of the independent variables of
the two coordinate systems. The metrics describe the following relationships between the two

coordinate systems.

E&x =Jyg, &= —Jxy, &= —x7éx — ¥réy

(3.20)

nx =I¥es My = —Ixe, M= —Xrx - yrly

Applying these transformations to the governing equations (3.2} results in the

following form,

Qr + Ef + F’) = Re'l(fivf + f‘vn) (3.21)
where,
p pU pvV
. pu . pull + &xP . puV + nxP
G=1" L BE=J o0, F=a o, 622
pv pvU + &yP pvV + nyP
e u(e + P) — &P vie + P) — nP
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and,
Bv = I'{(Evéy + Fvey), Fv=1"(Evny + Fvny) (3.23)

The thin-layer form of the equations is obtained by neglecting gradients of the
viscous terms in the streamwise direction (i.e. the ¢ direction). This is similar to a boundary
layer type assumption, however, unlike the boundary layer equations, the cross-stream pressure
gradient is retained. This allows evaluation of regions with recirculation.

Selection of full or thin-layer equations is dependent on the phenomena being
modeled and the suitability of the grid. If the grid does not have sufficiently fine spacing in
the streamwise direction, then use of the full Navier-Stokes equations may not be warranted.
For airfoils with attached boundary layers, the increased run times required for the full
equations are not justified by a significant increase in accuracy. This may not be the case for a
separated flow field. Therefore, due to the leading edge separation which can occur with an

iced airfoil geometry, the solution of the full Navier-Stokes equations should be examined. The

thin layer equations have the form,
Qr + F]E + Fp = Re'fvy (3.24)

Employing equations (3.15) and (3.23), the right hand side of (3.24) can be rewritten

in the following form,

Re'lf*’v,’ = Re™ (J'I(Evnx + Fvﬂy))n (3.25)
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or,
0

. TxxMx + Txy?"
Re’vaT] = Re'l J7! v
Txylx + Tyyly

e4Mx + f4my

(3.26)

where 7xx, Txy, Tyy, €4, and f; are given in (3.16). The shear stress terms can be rewritten

with the u and v derivatives expanded by the chain rule,
Txx = (A + 2#)(§xu£ + nxup) + ’\(ny€+ Myvy)
Txy = I‘((fyu£ + nyup) + (fx"f + TIan))
Tyy = (A +20)(Eyve + nyvp) + Méxug+ mxuy)
and the transformed e, and f; terms become,
eg = urxx + Vrxy + pPri(y — 1)_1(fx5632+0x6qa2)
f4 = urxy + vryy + uPr(y — 1)7'(€y0,a" +nydya’)
Substituting (3.27-29) into (3.26) yields the following relations,

Re’lJ'l(Evnx + Fvny),7 = Re'lsn
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where,

p(nx® + lez)‘lr; + (1/3)nx(nxuy + nyvy)

2 2
§=j u(ng® + ny>uy + (#/3)0x(nxuy + nyvy) (3.33)

kP (7 — 1) (2 ny D an) 2 H(w/2)(nx” + 1y *)(® + v¥)y

+ (l‘/s)(’?xz(“z)n + 'Iyz(vz)r) + 2'7x’ly(“")n)

Finally (3.24) and (3.25) are rewritten in a more compact form,
Qr + E€ + Fp = Re 'Sy (3.34)

This form of the Navier-Stokes equations can now be solved by forming an equivalent
finite difference representation. Applying the implicit three point time differencing scheme of

Beam and Warming [53] yields an expression of the form,

AQ" = L85 (aQ"), + 1AL5(a), + g 8Q™)
(3.35)

+0[ (0—%—¢)At2+At3}

where AQ™ = Qn_H — Q" and Qn = Q(nAt). The values of # and ¢ are chosen to provide

either first or second order accuracy in time. Typically, when the code is run in a time
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accurate mode for unsteady calculations ¢ is set to 1 and ¢ is set to 0. This results in sccond
order time accuracy for these calculations. For steady-state calculations, a spatially varying
time step is employed to speed convergence. In these cases, the values of § and ¢ arc set to 1
and 0.5 respectively. This yields only first order accuracy in time. ‘This is acceptable as long
as there is convergence to a steady-state solution.

The equations are further modified by employing a local time linearization as

described by Pulliam [54]. The equations then take the delta form of the algorithin,

e (A (3)y - met (i), far

(3.36)

- —h [(E“)f + (5"), - Re'l(én)n]

where A = 0E/8Q, B = 0F/0Q, and M = 85/8Q. The right hand side of (3.36) is the
explicit part and the left hand side of (3.36) is the implicit part of the algorithm. '

The form presented in (3.36) is for the thin-layer Navier-Stokes eqruatiions. As noted
before', ARC2D has the capability to include the streamwise and cross-term derivatives as an
alternative to the thin-layer approximation. This is accomplished by retaining the explicit
portions of Ev in the algorithm. The use of these terms was examined with respect to the iced
airfoil flow-field and found to have no influence on -results for the grid system!s used.

| The spatial differencing employecrlr by ARC2D is second order c-entral differencing.
Upwinding is also included as an optional approach but is generally used only for resolution of
shocks. The matrix resulting from application of the central‘ differencing is a
(Jrﬁax * Kmax * 4) x (Jmax * Kmax #4) square bandea matrix.. This form- is sparsec imt very

computationally expensive. In order to decrease the run times, the solution process is

simplified by an approximate factorization [53] of the two dimensional operator (3.36) into two
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one-dimensional operators of the form,

[I th (’A‘n)g] [‘ + h,(Bn)" —h Re'IJ‘bl(Mn)n:] AQD

(3.37)

= = b [(B) + () - (5"

The solution algorithfn ﬁoﬁ consists of two implvicit operators each of which is block
tridiagonal. The pl;ogram flow now consists of two one-dimensional sweeps, one in the £-
direction and one in the 7-direction. The }esulting procedure is more economical both in terms
of run time and computer storage [54].

Artificial dissipation is added to the algorithm to ensure stability, especially for
transonic flow with shocks. This is required because, in high Reynolds number viscous flows,
scales of motion exist which cannot be resolved by the numerical scheme. In the actual
physical problem, these high frequency waves are brought about by the interaction of the
convective terms in the momentum equations. This is normally accounted for by viscous
dissipation but, since the scales are not resolved by the code there is no mechanism for
removing this energy from the solution.

) ARCZD employs two fechniqués for introductioﬂ of artiﬁcialrdissipation. Since
ARC2D can be run as either a steady-state or unsteady code, two forms of time differehcing
are used as mentioned earlier. For the unsteady time-accurate mode, explicit fourth order and
implicit second order smoothing with constant coefficients is included. Typically the fourth
order explicit dissipation is set to zero for finc grids, such as those used in this investigation.
In steady-state calculations, nonlinear artificial dissipation of mixed second and fourth order is
employed. This dissipation model is based on the work of Jameson et al. [57]. A more

detailed description of these models and their effect on convergence is provided by Pulliam [54].
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3.3 The Baldwin-Lomax Turbulence Model

Theoretically, the Navier-Stokes equations fully describe the dynamics of a viscous
flow, whether laminar or turbulent. In practice however, it is not feasible to evaluate the
finite-difference equations on a grid fine enough to resolve all the details of the turbulent
structures. This implies the need for some form of turbulence model. Typically, algebraic and
two-equation models are presently being employed in aerodynamic codes. ARC2D employs an
algebraic model developed by Baldwin and Lomax [46]. This model is a variation of the model
developed by Cebeci and Smith [45] for boundary layer analysis. The Baldwin-Lomax model
was developed to avoid the need for determination of the displacement thickness, which is a
natural diagnostic of the Cebeci-Smith method but difficult to evaluate with a Navier-Stokes
code such as ARC2D. This is due to the difficulty in defining the local free-stream velocity on
a non-rectangular grid.

The Baldwin-Lomax model divides the turbulent boundary layer into an inner and
outer region. The eddy viscosity, p,, is then evaluated by examination of the vorticity level in
each region. The inner region encompasses the laminar sublayer and the buffer region. The
outer region is the wake-like region of the boundary layer and hence is modeled by a locally
constant length scale and a velocity scale dependent on the vorticity.

The form of the eddy viscosity equation in the inner region is, by dimensional
reasoning, proportional to the density times a typical length scale times a typical velocity

scale.

Bt =P € Vinner (338)
The length scale is given by,

(=ky [:1 - exp(—y+/A+):| (3.39)
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where & is the von Karman constant, y is the normal distance from the wall, AT is the van

Driest damping constant and,

yt=y ¥ i | (3.40)
The velocity scale is taken to be v,,,,.., = £ |w], hence
Be=p e |wl (3.41)
In the outer region, the eddy viscosi'ty is given by,
B =K Cep p Fuaie Flclerb(Y) (3.42)

where K is the so called Clauser constant, Ccp is an additional empirical constant usced by
Baldwin-Lomax, F,,,(y) is a factor which tries to account for intermittancy and will be

described later. F,,;, is a function defined by Baldwin and Lomax as,

Ymazx Fmaz

Fyare = Min { (3.43)
(ka Udiff2 ymar)/Fmaz '

where Fuaz is the maximum value of the function,
Fiy) =y |l [1 - exp(—y+/A+)] (3.44)

along a grid line in the n-direction. The y-value at which F(y) reaches this maximum is
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designated as ymaz. The value of Uy, is given by,

DO
I

Ugigy = (v2 + v2 ) mar — (v + ¥ i (3.45)
This formulation results in the length scale being determined by the distribution of vorticity
along a normal to the surface.

The inner region model extends outward until the value of p, obtained with this
model equals the jz, value obtained with the outer region model. The interface value is then
taken as the average of the two model values at this point. The outer region extends from the
point of equality with the inner region to a distance at which the velocity is equal to the local
free stream value, which is taken to be the value at the outer boundary of the solution domain.

The effect of intermittency has been modeled by incorporation of a variation of the
Klebanoff intermittency factor. This term is given by,

—1

6
C
Foo(y) = |14 5.5 (T’cj;%) (3.46)

where C,;,= 0.3. The value of F;,, is essentially unity for small values of y and drops to
almost zero for large values. The transition from unity to zero occurs rapidly at y values close
t0 Ymaz.

The Baldwin-Lomax model works very well for attached boundary layers and for
small separated regions. Large separated regions can cause some difficulties for thc model
which results in improper representation of the turbulence in the region. In an attempt to
rectify this problem, an alternate turbulence model has been developed which employs an
approach similar to the Baldwin-Lomax model but which tries to avoid some of the difficulties

encountered in the large separation regions. This is also a Modified Mixing Length (MML)
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model, which bases the determination of the mixing length on the wall shear and the distance
from the wall until some maximum is reached. The value of this maximum length scale is
determined by evaluation of an attached boundary layer in a parametric study. The velocity
scale is determined by the vorticity level and the mixing length at each point in the flow. This
approach avoids the problem of trying to determine which of the local maxima of the Baldwin-
Lomax F-function should be used to evaluate the viscous region on the iced airfoil. In the

following chapters, the MML model will be described and compared to the Baldwin-Lomax

model, especially in regard to calculation of cases at and above stall.
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CHAPTER 4
MODIFICATIONS FOR ICING ANALYSIS

This chapter details the changes made to the ARC2D code in order to enhance its
ability to calculate the iced airfoil flowfield. Specifically, the approach to modeling
turbulence was replaced by a simple but workable model in an attempt to provide a more
realistic distribution of turbulent viscosity throughout the separated flowfield that develops
behind the horns of the ice shape. The modifications were made in order to calculate the
separated flow aft of the horns and to allow evaluation of the premature stall of the iced
airfoil.

Navier-Stokes codes have been used to evaluate separated flowfields (e.g. Mehta and
Lavan [24]), but successful attempts have been confined to cases with moderate Reynolds
numbers. For higher Reynolds numbers, typical of a turbulent flow, the ability to predict the
maximum lift has not been demonstrated. This indicates that some attention to the
turbulence model is necessary for determination of stall in an airfoil under normal operating
conditions. The special circumstances of an airfoil with a leading edge ice accretion allows
definite identification of the stall mechanism. An attached recirculation region aft of the
horns breaks away from the surface which results in massive separation z.md stall. This
eliminates one of the difficulties experienced in evaluation of stall on a clean airfoil. Thus,
turbulence model alterations can be directed toward better evaluation of a specific flow rather

than for employment in a more general and therefore more widely varying flowfield.
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4.1 The Baldwin-Lomax model examined

The turbulence model originally employed in the ARC2D code is an algebraic eddy
viscosity model developed by Baldwin and Lomax [46] and was described in some detail in
the previous chapter. Calculations using this model for an attached boundary layer have
been very successful [54]. However, the use of this model in separated boundary layers has
previously resulted in some difficulties, as described by Degani and Schiff [58]. In their case,
evaluation of cross-flow separatlon on a pomted cylinder at high angle of attack, the model
suppressed secondary vortices when used as originally implemented. The difficulties

experienced were attributed to the evaluation of the maximum of the F-function, described in

| Eq. (3.44).

The presence of multiple maxima in the F-function led to excessively large eddy
viscosity values. This in turn damped out the smaller flow structures, including the
seéondary vortices, and resulted in the center of the main vortex being displaced from the
surface. Degani and Schiff modified the Baldwin-Lomax model by essentially deciding a
priori which maxima was the more significant for their calculation. Their results indicated a
significant improvement in determining the details of the flow separation for the geometry
being considered.

Similar problems were experienced in this study during evaluation of the iced airfoil
at high angles of attack. Iﬁ this case,r thé F-function devéloped a thir;i peak, as shown in
ﬁgure 2. ThlS t,ype of profile was due to the ]arge value of the vortlmty at the wall and the
smaller, although s1gmﬁcant vorticity levels in the vortex being shed from the surface of the
airfoil. Due to the transient nature of the flow field, this type of profile moves along the
surface with the vorteg, further complicating the selection of the appropriate value of Fmaz.

As a result, the turbulence levels in the flow on the upper surface have steep

gradients and change along with passage of the vortex. This is shown in figures 3 and 4,
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Figure 2 F-function profiles for attached and separated flow conditions
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which indicate the pressure distribution, stream function contours, and eddy viscosity levels
at different points in time for an iced airfoil at an angle of attack above stall. As shown in
the figures, the eddy viscosity levels increase and decrease abruptly in regions of high vorticity
associated with the vortex travelling along the airfoil surface. Also apparent is the fact that
the eddy viscosity levels are tied to the motion of this vortex and that points outside this
region have little, if any, turbulent dissipation. It would seem more appropriate that some
turbulence would remain in the regioné between vbrtiéés and that the sharp gradients seen in
the figures would not be present in an actual turbulent flow.

The distribution and overall level of the eddy vfscosity can result in signiﬁcanf
changes in the size and shape of vortex patterns in the flowfield, as indicated by the
experience of Degani and Schiff. The size and shape of the vortices and their shedding
frequency all contribute to the time-averaged pressure distribution experienced by the stalled
airfoil. Thus, it is reasonable to assume that by altering the development of this vortex
shedding mechanism, the pressure distribution and hence the lift of the airfoil can be
adjusted. If this adjustment is approached in a rational manner, then perhaps the lift of the
stalled airfoil can be determined with a higher degree of accuracy than with the present
turbulence model.

With the complications of the Baldwin-Lomax model in mind and the goal of a
more attractive model for separated flows, an alternate turbulence model was developed for
evaluation of the iced airfoil. When selecting a new turbulence model it is appropriate to
consider the degee of detail required of the model, the complexity of the model, the difficulty
in implementing the model, and the resulting benefits of employing a given model. For
aerodynamic codes the nature of ARC2D, the choice seems to lie between algebraic models
and two equation models. Presently an effort is underway [59] to incorporate both a two

equation model, that of Gorski [60], and the ordinary differential equation model of Johnson
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and King [41] into the ARC2D code for evaluation of separated flows. Thus, in order to
avoid an overlap of effort and to respond to the special circumstances of the iced airfoil
conditions, an alternate approach was employed in this investigation. The model developed is
essentially a mixing length model which seeks to avoid selection of the appropriate length

scale based on the local maxima of an ad hoc function.

4.2 The Modified Mixing Length Model

The Modified Mixing Length (MML) model is a zero equation model based on the
Prandtl mixing length hypothesis. That is to say that there are scales of motion for a
turbulent flow associated with the transport of momentum much the same as the mean free
path of kinetic theory characterizes the motion of gas molecules. These scales, if they can be
determined, can be used to characterize the time averaged or mean flow motion of the fluid.
The difficulty, of course, lies in the determination of the appropriate scales.

The MML model was developed in an attempt to model the appropr-iate scales of
motion for a flowfield which is alternatively separated from and attached to an arbitrary
geometric surface. Observation of the motion produced by this surface, as shown in figures 3
and 4, leads to some assumptions as to how the turbulence may be generated and transported
in the flowfield. These assessments of the nature of the turbulent flowfield are then
translated into a numerical mechanism for the introduction of turbulent viscosity into the
calculation. This process requires some prior evaluation of the flowfield of interest as well as
some reference to the work of other investigators which may be relevant. As such, some
background for the development of this model will be presented next.

The MML model tries to address the problem of distribution of turbulent
dissipation throughout a separated flowfield. In so 'doing, it is necessary to have some

indication of the character of the flowfield being examined. An iced airfoil is typified by
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regions of flow separation aft of the protruding horns (see Figure 1b). These regions increase
and decrease in size with varying angle of attack (AOA). The upper surface separation region
increases with increasing AOA, while the lower surface region decreases in size. The opposite
occurs with decreasing AOA. At some critical AOA, the bubble no longer reattaches to the
surface and a large unsteady vortex shedding pattern develops. These two different flow
patterns are shown in figures 5a and 5b, respectively.

The closed separation bubble of figure 5a is modeled adequately by the Baldwin-
Lomax model, as will be discussed in the next chapter. The unsteady flow pattern of figure 5b
is the flow which resulted in the difficulties discussed in section 4.1. Therefore, the special
circumstances of this flow were examined and modeled during the development of the MML

model.

The MML model is based on the expression associated with the Prandtl mixing-

length theory [61]. Basically the turbulent viscosity is taken to be,

pe = pwl (4.1)

The question is what to use for the evaluation of the mixing-length, £. The mixing-
length is dependent on distance from the wall. In an attached boundary layer therc are

typically three regions;

¢~y yT <10 (4.2)
+
¢~ Ky 1<yt <100 (4.3)
¢ = const. y¥ > 100 (4.4)
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(b)

Figure 5 Stream function contours for an airfoil with ice accretion. a) Pre-stall condition,

AOA =5 b) Post-stall condition, AOA = 7"
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where,

y+ — Y;lr (45)
and
% .
uy = (4.6)
and
Tw = U g—‘—; (4.7)

w

The flowfields which seem to develop on the iced airfoil above stall have three
distinct regions. Very near the wall is a region of low velocity and high vorticity,
distinguished from conventional attached boundary layers only by the far field boundary
condition (i.e. the vortex structures in the separated region). Further out is the moderate
velocity, moderate vorticity recirculation regions of the main separated flow. Above this is
the high velocity, low vorticity region of the outer flow. It would seem then that the
vorticity is generated at the horns and along the surface of the airfoil. This observation is in

line with the expression for development of vorticity in a Newtonian fluid given by,

|

%—tz(Q-V)U+vX(—ZPE)+VX[%—VX(MQ)Jrv((%)uv-UH (4.8)

which is obtained by taking the curl of both sides of the equation of motion in vector form.

In this expression, { is the vorticity vector, U is the velocity vector, P is the pressure, p is
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the fluid density, u is the absolute viscosity, and I% is the substantial derivative. The first
term in this equation indicates the change in vorticity in the flowfield due to strain rate. The
second term is a source of vorticity due to the pressure force. The final term is the diffusion
of vorticity by viscosity. In a two-dimensional flow the first term disappears and ounly the
source and diffusion terms remain.

As a solid body passes through a viscous fluid with initially no vorticity, the
pressure gradient at the surface produces vorticity tangential to the surface. This vorticity is
then spread through the flow due to the viscous dissipation. The linkage between this
generation and diffusion of vorticity and the level of turbulence is provided by (4.1). Thus, if
the vorticity is generated near the surface, it may be reasonable to assume that the value of
i, is associated with the flow near the surface. Also, as the vorticity is spread through the
flowfield, the turbulence level develops along with it, hence the dependence of p, on jw].

Equation (4.8) indicates that there is no vorticity production in the separated region
due to the absence of a significant source term. Therefore, it is reasonable to conclude that
there is no further enhancement of the turbulent viscosity. This is embodied in Prandtl’s
observation that the length scale very far from the surface is a constant, Eq. (4.4). This
allows the turbulent viscosity to diminish along with the vorticity as would be expected from
equation (4.8).

The MML model is based on the idea that the length scale is dependent on
conditions near the surface and that its level remains constant in the separated region. The
length scales are thus established by conditions at the surface and are then transported into
the separated flow regions along with the mean flow. The ultimate level of the turbulent
viscosity in these regions is established by the length scale and the level of vorticity. This
leads to a two layer type model as employed by Cebeci-Smith and Baldwin-Lomax, with the

cross over point being established by conditions near the surface.
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The inner region of the MML model encompasses the laminar sublayer and the
logarithmic buffer layer. There are several empirical formulas available which are used to

evaluate this region. In this case, the van Driest formulation is used and is given by,
+ .+
-y [A
i{y) = ry (l - e( '/ )) (4.9)

The outer region is based on the observation that the length scale in an attached
boundary layer saturates at a level of about 0.106, as shown in figure 6 taken from reference
[62). For a separated flow, there is no definite boundary layer thickness, hence the length

scale in this region is defined with respect to the value of y* where,

, v
y* = (4.10)
Irl/p ‘
w
The length scale is simply,
¢ = const. x y* (4.11)

with the constant to be defined empirically.

The two regions are blended into each other through a function of the form,

C . C:
@6

where C,y* is the distance above the surface at which ¢ saturates and C, controls the

curvature of the blending region. The form of the mixing length profile as a function of

distance from the surface is shown in figure 7. Note the similarity to the € curve in figure 6.
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The MML model is thus defined by the following relations,
+ + o4+
+ Cy . ¥ \Co (y /A7)
<C Uy) =k = I — (1 -+ 1 —e 4.13
yt<o W=rghy ( (1-%) ) ( (1.13)

and,
Cy ..
yT>c )=rgy (4.14)
2
where y+ can be rewritten as,

yt=2% (4.15)
From (4.14) we see that the constant in (4.11) is given by,

const. = K g—; » {4.16)
where the values of C; and C, can be varied to match empirical results.

This model is dependent on the value of 7y and thus will in general enhance the
level of turbulent viscosity near regions of separation and reattachment. On the other hand,
the value of ry in the backflow region of a separated flow is relatively large, resulting in
lower values of the turbulent viscosity. This agrees with a number of the observations of
Simpson et.al. [63] regarding two-dimensional separated flows. These are that the separating
shear layer behaves progressively more like a free shear mixing layer and that the part of the

backflow adjacent to the surface has little Reynolds shear stress effects. There are some
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observations which are not incorporated however, but these appear to be more characteristic

of a closed separation bubble than of the massive separation being considered here.

As a result of the use of Ty near regions of separation and reattachment, there is a

possibility of the mixing length becoming excessively large. This is seen in figure 8a which

W=

shows |Tyw ) , hence the values of y* and ¢, near such a region. This problem is avoided by
g

the use of a local average for Tw. In the model used for this investigation, the 7 is filtered

spatially using the expression,

il = 0'1Ti-2,1 + O'QTi-l,l + 0'4Ti,1 (4.17)

+ 0.17.

+0.27 i+2,1

+1,1
where the subscripts indicate grid points in the £ and 7 directions respectively. The 7-
direction subscript is set at one to indicate values at the surface.

This spatial filtering assures the use of a non-zero value in the denominator of y* by
converting a profile similar to figure 8a to one more like 8b. The use of this averaging also
reflects the fact that separation and reattachment are processes extending over a certain

region rather than an isolated event. Hence, it is expected that the MML model will capture

the physical characteristics of these processes.

4.3 Evaluation of the MML model

The MML model was developed to address some of the discrepencies resulting from
use of the Baldwin-Lomax model with separated flows. The new model should also perform
reasonably for attached flows, since it incorporates all the elements of mixing-length models

used for attached flows. In order to evaluate this model, a number of comparisons were made
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Figure 8 Distribution of y* for a separated flow condition. AOA=10" a) No spatial
: averaging. b) Spatially averaged.
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between results from ARC2D using the Baldwin-Lomax model and the MML model for
attached and separated flows on a NACAQ012 airfoil with no ice shape. Comparisons to
experimental results are also made when the latter are available.

The cases examined are 0° AOA and 15° AOA for a Mach number of 0.12 and a
Reynolds number of 1.41x108. The grid used is shown in figure 9. There are 253 nodes in
the £-direction and 64 nodes in the 5-direction. There are ;12 points along the wake cut and
thus 211 points along the surface of the airfoil. The spacing of the first grid point normal to
the airfoil surface is 2x107° chord lengths. This grid is similar in size and spacing to the

grids used for the iced airfoil.

0° AOA-Attached flow

The attached flow at this angle of incidence is a steady flow condition and thus the
code can use the form of the algorithm designed for such flows. The time step used is thus a
spatially varying value which results in the optimum convergence at each point in the grid.
The value of the time step input to the code is thus a parameter used in an expression such

as,

1
At (1 " Jj) (4.18)

where At is the input time step and is normally chosen to be O(1). For the cases run here,
the value of At, was set at 0.9.

In evaluating the MML model, the values of C; and C, can be manipulated in order
to produce results which agree with experimental information. By employing this process for
the clean airfoil it is expected that the model will then be ’tuned’ and ready for use with the

iced airfoil. The MML model was thus used with several values of C; and C, and compared
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to the Baldwin-Lomax results and to experimental information. The values used for the
MML model are selected such that they produce length scales similar to those near the region
of transition from inner layer to outer layer as shown in Bradshaw [64]. Variation of the C,
parameter produced overall effects similar to those of varying the C; parameter and results
can therefore be reported for the C, parameter alone. The results of this comparison for drag

values are shown in Table 1.

These results indicéte that tHe MML model can have significant variations in drag
as a result of varying C;. Howeyer, _the Baldwin-Lomax model produces drag values closer to
experimental results. This discrepancy is Vexamined further by looking at velocity gradients at
the surface of the airfoil. The results for the Baldwin-Lomax model and the MML model,

with the same C, values used previously, are compared in Table 2.

|
|

Evaluation Method C, c, Cp
Baldwin-Lomax NA NA 0.014
MML 300 5.0 0.019
MML 1000 5.0 0.020
MML 8000 5.0 0.016 :
Experiment NA NA 0.009 %
; Table 1 Force coefficients for several values of turbulence model parameters
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Turbulence Model (ON é %
Baldwin-Lomax NA 0.6 2.08x10°
MML 300 0.6 3.67 x—IO;
MML 1000 0.6 3.67x10°
MML 8000 0.6 3.78x10°
Table 2 Velocity gradients at the surface as calculated using the Baldwin-Lomax

and MML turbulence models

This table indicates that the velocity gradients

approximately twice as large as the values from the Baldwin-Lomax model.

for

MML model are

Il the total

velocity profile at a given location is examined, it is found that the differences are relatively

minor, the relative error based on uy being 0.01. Thus it can be seen that the values of the

velocities very near the surface must be determined accurately to produce the correct drag.

This is seen directly by examining the equation used to determine the frictional component of

the drag. That is,

where,
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The value of u at the wall is essentially the molecular viscosity. The geometric
values are the same for both calculations as are the free stream fluid properties. The only
difference between the two calculations is due to the velocity gradients. Since the wall
velocity gradients are calculated by using the first two grid points off the surface, the
evaluation of these points is critical. These points correspond to a height of 7x107% chord
lengths above the surface. Determining how the overall turbulence level affects the velocity
gradient at the wall will require further study. Even in the case of the Baldwin-Lomax model
the results differ from experiment by 52 percent. Abandonment of the MML model is not
warranted strictly on the basis of these results. Indeed, as later results reveal, a strong case

can be made for the adoption of the MML model.

15° AOA - Separated flow

The MML mo&el was developed with this case in mind. At 15° AOA, the
NACA0012 airfoil is near CL mas and under certain conditions, stall will occur. The
NACAO0012 airfoil has two possible modes for stall at this angle of attack. Gregory and
O’Reilly [65] state that this airfoil stalls either from collapse of a short leading edge laminar
separation bubble or from the rapid advance toward the leading edge of a trailing edge
separation. The question of the conditions under which either mechanism occurs is not
resolved by their experiment nor was it addressed in the work of Bragg [66].

As far as the calculations with ARC2D are concerned, there is no evidence of a short
leading edge bubble using either turbulence model. There are differences, however, in the two
calculations. The MML model produces a relatively large separation region near the trailing
edge, while the Baldwin-Lomax model shows a much smaller separation region. This is shown
in figures 10a and 10b, which show stream function contours for the Baldwin-Lomax model

and MML model respectively. The difference between these two calculations is due to the
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a) Baldwin-Lomax model, b) MML model



distribution of turbulent viscosity near the trailing edge, as seen in figures 11a and 11b. The
Baldwin-Lomax model develops a large region of high g, values which tend to suppress the
development of the trailing edge separation. On the other hand, the MML model has high
values of s, only near the separation point, allowing the reverse flow region to develop
downstream of this location.

Figure 12 shows the pressure coefficients from these two calculations compared to
the experimental values of Bragg [66]. As seen, the MML model captures the alteration of
the pressure development at the trailing edge much better than the Baldwin-Lomax model.
This is reflected in the Cp values obtained with the two models. The Baldwin-Lomax model
gives a Cp value of 1.4 while the MML model gives a C; of 1.2. The experimental value is
1.2. Thus, while the issue of the actual mechanism for stall is not settled, it can be seen that
the MML model produces a more reasonable representation of the airfoil flowfield than the

Baldwin-Lomax model for high angles of attack.

Further testing

Since the MML model was able to produce results which more closely model the
ax:tuél ﬂowt{eid for the stall condition, it was necessz;ry to déterrﬂine therérppropriat_‘e values of
C, a-nd C, to employ. A series of cases near stall were run with different C, and C, values.
The caseé evalua&d are indicated in Table 3. The values selected as the most appropriate
from this examirnfation will then be compared to similar results from an examination of the

iced airfoil at stall.
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(b)

Figure 11 Eddy viscosity contours for NACA0012 airfoil. AOA=15".

a) Baldwin-Lomax model, b) MML model
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Figure 12

Pressure coefficient profiles for 15" AOA. ARC2D with either the B-L model

or the MML model versus experimental results of Bragg.
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Run Number AOA C, C,
1 14 1000 5
2 15 1000 5
3 16 1000 5
4 14 2000 5
5 15 2000 5
6 16 2000 5
Table 3 Evaluation of variation in C; on MML model results at several AOA

values near stall

These cases were all run in the time accurate mode. Thus, the lift histories can be
examined to determine if there is some unsteadiness in the flow. The lift histories for runs I-
3 are shown in figures 13-15 respectively. These results indicate unsteady behavior starting at
15° AOA. The time-averaged lift value is lower than the steady value at 14° and thus stall of
the airfoil is indicated. The lift histories for runs 4-6 are shown in figures 16-18 respectively.
These results indicate steady flow behavior and thus no stall of the airfoil. The resulting lift
values indicate a progressive increase with AOA.

The Cp vs. AOA curve for a NACAO0012 airfoil is shown in figure 19, taken from
NACA TR-446 [67]. Stall of the airfoil is indicated at an AOA just above 16°. The CL mar

value is 1.52 and the CL value drops off to 1.16 at 18°. These results indicate that runs 4-6
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Lift history for run 1 : AOA 14°, C; = 1000, C, = 5.
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Figure 14 Lift history for run 2 : AOA 157, C; = 1000, C, = 5.
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Figure 15 Lift history for run 3 : AOA 16°, C, = 1000, C, = 5.
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Lift history for run 4 : AOA 147, C, = 2000, C, = 5.
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Lift history for run 5 : AOA 157, C, = 2000, C; = 5.
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Figure 18 Lift history for run 6 : AOA 167, C, = 2000, C, = 5.
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are a more accurate representation of the flowfield behavior. The value of C; will be set to
2000 due to better correlation with the experimental values. The C, value can be altered in a
similar manner, with the additional effect that the velocity profiles will be altered. At this
point, it is not an objective to match the velocity profiles exactly and the C, value will be left
at 5. The velocity profiles will be discussed later along with considerations of transition
location and grid refinement.

The ARC2D code was nexi used to evaluate the NACA0012 airfoil at 18" AOA.
This should be an unsteady result with significant vortex shedding. This unsteady behavior is
manifested in the lower CL value shown in figure 19. The code was run employing the
Baldwin-Lomax model, the MML model, and in an all laminar mode. The MML model used
values of C, = 2000 and C, = 5, as prescribed above. The results examined are the Lift
histories, stream function contours, and eddy viscosity contours. Additionally the CL and
Cp values are compared to the experimental information from NACA TR 446 [67] in Table

4. The CL and CD values are found by time averaging over several periods of the shedding

process.
Evaluation Method CL Cp Sy
Baldwin-Lomax 1.65 ' 0.056 NA
MML 1.35 0.093 0.03
Laminar Flow 1.08 0.223 0.16
Experiment 1.16 0.19 NA
Table 4 Evaluation of turbulence modeling on post-stall performace prediction
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Table 4 indicates that the MML model is better able to determine the Cy values for
this post-stall behavior than the Baldwin-Lomax model. The MML model and the all
laminar case results show reasonable differences from the experimental value, with the
laminar case underpredicting and the MML model overpredicting the experimental value.
The arag values show similar results. The Baldwin-Lomax model underpredicts drag
significantly due to the attached flow behavior predicted using this model. The MML model
underbredicts drag by an amount similar to the overprediction resulting from the laminar
flow calculation. The laminar flow calculation results in a larger drag value due to the
- greater frequency of vorte); shedding. It seems clear that the MML model performs better
than the Baldwin-Lomax model for this case, but perhaps not any better than the use of no
~ turbulence model altogether. The determining factor may be the evaluation of the unsteady
vortex shedding phenomena.

The lift histories are shown in figures 20-22. The vortex shedding is indicated by the
periodic behavior of these curves. The shedding process can be characterized by the Strouhal

number, S,;, which is defined as,

__f & sin(a)

S =~ (4.21)

where f is the shedding frequency, £ is the characterisitic length, o is the airfoil angle of
attack, and Ua is the freestream velocity. For this case the characteristic length is the
airfoil chord. The Strouhal numbers obtained from these lift histories are also shown in
Table 4.

The Strouhal numbers shown correspond to behavior that has been observed
experimentally. The 0.16 value of the laminar flow case is approximately the value seen

during bluft-body shedding. The 0.03 value of the MML model case has been documented in
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the work of Zaman and McKinzie [68]. The result obtained from the Baldwin-Lomax model
seems to miss the unsteady stall behavior at this AOA entirely. The question of what is
appropriate for use in further icing calculations is unclear at this point. A study of this
behavior for an iced airfoil geometry is currently underway [69]. Results of that study could

shed some light on whether the MML model is operating properly.

Concluding Remarks

The results of the examination of the clean NACAO0012 airfoil with the two
turbulence models suggests that each model has desirable characteristics. The
Baldwin-Lomax model apparently produces drag values somewhat closer to experimental
results for 1ow values of AOA. The MML model however, allows modeling of the separated
flow characteristic of a stalled airfoil. Certainly, it seems that further comparisons of the two
models wiu be necessary. Evaluation of alternate weil-documented airfoil shapes should help
to indicate further the strengths ;'md weaknesses of the two models. Particularly, the
interactioq of turbulence model and velocity gradient at the wall should be exaﬁined further.
This would require extensive comparisons of the two models to measured values of velocity
gradients, pressure coefficient distributions, and integrated force coefficents.

This, however, is not the subject of ?he present study. For purposes of evaluation of
iced airfoil performance, the pressing need is to determine the degradation of airfoil
performance and to identify prerﬁature stall for a given ice shape profile. These needs
translate into two requirements for the computational results. The code must be able to
capture the main characteristics of the pre and post stall behavior for the iced airfoil. The
pre-stall behavior includes determination of the size and shape of the attached separation
bubble ai;t of the horns and the velocity gradients in that bubble. Additionally, the code

must be able to determine the increase in drag and decrease in lift which can result from the
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presence of the ice shape and the attached separation bubble. The code must also be able to
determine the angle of attack at which the separation bubble detaches from ‘t,he airfoil and
the unsteady shedding process commences. The calculation of the value of C;  also
requires the code to predict the correct size, strength, andr shedding frequency of the vortex
which develops at the ice shape horn.

Thus, the choice of turbulence model is still not clear at this point and the necd for
further testing is indicated. The ability of the MML model to Vcapture the proper unsteady
behavior near stall suggests that it may be possible to predict C;  using this model. The
MML model also does not require selection of a maximum or minimum value of some
variable from the mean flow field. This prevents the ambiguities found in the Baldwin-
Lomax model for separated flow. The independence of this model from the solution
procedure or grid structure should also allow easy transport of this model to alternate flow
codes, including unstructured grid methods. The use of these two models will be further

examined by using several iced airfoil geometries and will be discussed in the next chapter.
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CHAPTER 5

ICED AIRFOIL PERFORMANCE EVALUATION

The tools described and developed in thre previous chapters have been used to evalute
the perfofr;lénce characteristics of seve;al airfoil and ice shépe éombir;;tions. The airfoils
e:xaminéd were chosen due to the availabi]iﬁy pf experimental data for verification purposes.
The results for lift g,nd drag coefficients using these airfoils have been calculated qsing both the
Baldwin-Loméx model and MML model. Results indicate that a Na;'ier-Stékes code coupled
withrthe MML model can be used effectively to evaluate airfoil performance degradation due to
lcmg Calculations at angles of attack below stall indicate steady flow behavior with a
recirculation bubble aft of the horns, when these are present in an ice accretion. At higher
AOA values, the bubble separates completely and an unsteady vortex shedding process occurs.
The MML model allows this process to develop and hence enables calculation of post-stall
behavior. Comparisons between the Baldwin-Lomax and MML model for both pre and post
stall behavior will be presented. The unsteady post-stall behavior, predicted using the MML
model, will be examined in some detail.

Tﬁe needs of the icing community in regard to an evaluation of iced airfoil flowfields
are twofold. Performance information is needed to evaluate the effects of ice accretion. This
requires global integrated results such as lift, drag, and moment coefficients. Additionally, the
particle trajectory codes and ice accretion codes require information on local velocities and
pressures in the iced airfoil flowfields. These local results are also used to gain a greater

understanding of the characteristics of iced airfoil aerodynamics. In that regard, stream
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function contours, equi-vorticity contours, and eddy viscosity contours are also useful for
understanding the aerodynamic phenomena. The results have therefore been organized into the
above two categories. For each airfoil/ice shape studied, both the global and local results will
be examined in an effort to further understand the modeling capability of the code.

The global results are the most prominent indication of the performance loss due to
icing. The experimental results of Bragg, shown in figures 23 and 24, indicate the dramatic
loss in lift and increase in drag produced by a glaze ice shape. Examination of these figures
indicates that the lift diverges from the clean airfoil values only as the AOA approaches stall.
The drag coefficient on the other hand is affected at all values of AOA. This points out the
dual effect that ice accretions have on airfoil performance. Both the prcssurc.in(]ucod forces
and the frictional forces are altered by the presence of the ice accretions. 'Fhe relative
importance of each effect is dependent on the ice shape and the AOA. At low angles of attack,
the pressure distribution is affected due to the separation bubbles, however the resulting
changes to lift and moment are not significant. The changes to drag values ax;e significant and
can be attributed to both pressure and frictional forces. At high angles of attack, the
alteration to the pressure distribution is significant and leads to large changes in both
quantities.

These integrated force and moment coefficients are obtained by evaluating pressures
and friction forces at each grid point on the surface of the airfoil. Both of these surface force
values are then resolved into normal and tangential forces which in turn are transformed into
lift and drag coefficients based on AOA. Monitoring of the development, with respect rto
iteration number, of these coefficients is one indication of convergence of the solution. These
time histories of the force coefficients are also used to indicate whether a given solution is
steady or unsteady. In the case of unsteady behavior, time-averaging of the pressure

distribution is used to calculate the resulting forces on the airfoil surface.
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Figure 23 Lift coefficient vs. AOA for a NACA0012 airfoil with artificial glaze ice shape.

Experimental results, taken from Bragg [66].

74



I | I
NACA 0012 R, = 1.5 x 10° M =0.12
0.12 -
0.10 O Experiment, Clean-—
O Ice-Upper Horn
0.08 vV Ice-Lower Horn -
C4
QO olsen, Ref. 74
0.06 .
0.04 .
K
0.0q] -
C
1 i 1
0 S 10 15

ANGLE OF ATTACK, deg.

Figure 24 Drag coefficient vs. AOA for a NACAO0012 airfoil with artificial glaze ice shape.

Experimental results, taken from Bragg [66].
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The flowfield associated with large glaze ice conditions, such as those shown in figures
26 and 27, is characterized by a sizable disturbance to the flow just aft of the horns. This
disturbance may or may not cause a significant alteration to the performance of the airfoil
depending on the size of the accretion and the AOA of the airfoil. This is demonstrated most
noticeably by the larger drop in C; reported by Bragg for the glaze ice profiles. Below the
threshold at which stall begins, the alteration of the flow is restricted to the region
immediately surrounding the ice accretion. This results in only minor changes to the lift as
compared to the clean airfoil. The correct representation of the flowfield at these AOA’s is
important however from the standpoint of ice shape prediction and accurate determination of
the drag.

In order to provide code validation information for these lower AOA conditions,
velocity and pressure measurements were taken by Bragg [66] for the NACAO0012 airfoil and a
glaie ice shape described below. The' pressure measurements consisted of a densely packed
series of pressure taps along the chord of the model, including the ice shape region and the
entire upper and lower surfaces. This allowed very accurate evaluation of the Cp distribution
on the airfoil and of the pressure component of the force coefficients. The velocity
measurements were taken with a split-film probe which was oriented in such a way as to allow
determination of the magnitude and direction of the x-component of velocity. This was
essential in evaluating the characteristics of the recirculating flow within the separation bubble
aft of the gléze ice horns.

Discussion of the flowfield characteristics at large values of AOA requires the
definition of several terms which will be used frequently. The terms used will correspond to
the definitions used by Mehta [24]). An attached separation bubble is a region bounded by a
stream function contour of zero and the surface. The bifurcation point of the zero stream

function contour is the separation point. The point of unification with the surface is the
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reattachment point. A separation bubble is open or burst if it is not completely enclosed by a
zero stream function contour and there is a closed contour within the region. A vortex is a
region which is enclosed within equi-vorticity lines. Vortex shedding is the process of
detachment of a vortex from the surface and subsequent convection into the free stream.

The unsteady flowfield behavior at large AOA’s is the cause of the stall hehavior
reflected in the CL maz value and in the divergence of the CD curve. The three modes of stall;
leading edge stall, trailing edge stall, and mixed leading-trailing edge stall; are described by
Chang [69]. In the results described below, all three forms of stall have been observed. The
ability of the code to indicate the type of stall and its ability to calculate correct force
coefficients for these conditions, is evaluated thoroughly for the airfoil/ice shape combinations
being considered in this study. A rime ice shape and two glaze ice shapes with two airfoil

geometries are evaluated using ARC2D and the two turbulence models.

5.1 Ice shape geometries

The methods developed to evaluate iced airfoil performance must be independent of
both the airfoil and ice shape geometry. This suggests that more than just one combination of
airfoil and ice shape should be examined in order to increase confidence in the computational
results. Unfortunately, there is not a large database of iced airfoil acrodynamic measurements
available. The most complete information to date is that of Bragg [66] for the NACA0012
airfoil. Bragg, Zaguli, and Gregorek [70] also measured the performance characteristics of a
NACA63A-415 airfoil with rime and glaze ice shapes. The data from these two studies will be
used to make comparisons with the computational results.

The data available for the NACA63A-415 airfoll consists of pressure coefficient
distributions at several angles of attack along with lift, drag, and moment coefficients for these

same AOA’s. There was no investigation of the velocity profiles along the surface or in the
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wake. The data available for the NACA0012 airfoil consists of both types of information just
mentioned in addition to normal Reynolds stress (u_”) profiles at several locations. The force
coefficient values for the NACA0012 airfoil are available for AOA’s well past stall, while those
for the NACA63A-415 are not. Thus, the global results will be presented for all three

airfoil/ice-shape geometries while the local results will be concentrated on comparisons using

the NACA0012 airfoil.

Rime ice shape for the NACA63A—415

The rime ice shape selected for use with the code corresponds to the RT7 ice shape,
described by Brégg et al. [70], andris shown in figure 25. This shape was selected for analysis
because it appeared to have the profile least altered by the ice accretion. Indeed, at high
AOA’s, this shape increased the lift of the airfoil over the range measured. This shape actually
seemed to act as a leading edge flap. It was thus felt that this shape would provide an

interesting test for the computational method.

Glaze ice shape for the NACA63A-4I5

The glaze ice shape selected for use with the code corresponds to the G3 ice shape,
described by Bragg et al. [70], and is shown in figure 26. This shape was selected as a test for
both the GRAPE code and the ARC2D code. The large concave region provided a critical test
for the grid generation code. If this shape can be modeled accurately, then it is expected that
the GRAPE code will be sufficient for the evaluation of most ice shapes. The large stagnation
region between the horns and the rapid acceleration around these structures should also provide

an important test of the ARC2D code.
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(a)

(b)

Figure 25 Rime ice shape for the NACA63 A~ 415 airfoil. (a) Close-up of leading edge.

(b) Overall profile.

79



(2)

(b)

Figure 26 Glaze ice shape for the NACA63 , - 415 airfoil. (a) Close-up of leading edge.

(b) Overall profile.
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Glaze ice shape for the NACA0012

This shape is the only ice geometry employed in Bragg’s later study [66] and
represents a 5-minute glaze ice accretion. In this case, the geometry was a simulated ice shape
and is shown in figure 27. Thiss shape will be referred to as the G1 ice shape. The well-defined
geometry, consisting of circular arcs and line segments, facillitates modeling in performance
codes and allows for incorporation of the geometric detail deemed appropriate by the analyst.
This geometry is the result of a céordination of effort between experimentalist and analyst

typical of the icing program at NASA.

5.2 Evaluation of Iced Airfoil Calculations

This section examines the results of the ARC2D calculations for the ice shape
geometries just defined. Comparisons are made to experimental information where available.
The two turbulence models are compared in order to determine if there is any advantage

obtained by use of the MML model for separated flow calculations.

NACA63A-415, R7 ice shape

This shape was tested in the NASA IRT wind tunnel and was run at a nominal
Reynolds number of 5x10% and a nominal Mach number of 0.14. The data were taken up to
an AOA of 14.6 degrees. Comparisons between data and computations for CL and Cpy are
shown in figures 28 and 29 respectively. Computed results are shown for both the Baldwin-
Lomax and MML turbulence models.

The lift calculations agree remarkably well with the experimental results up to an
AOA of approximately 12.5°. The value of CL mag Was not determined experimentally for this
shape. As seen in figure 28, the measured lift continues to increase over all AOA’s evaluated,

with the exception of the value at 13.6° AOA. Examination of the pressure coefficient

81



(a)

< —

(b)

Figure 27 Glaze ice shape for the NACA0012 airfoil. (a) Close-up of leading edge.

(b) Overall profile.
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Figure 28 Lift coefficient vs. AOA for NACAG63 A- 415 airfoil with R7 ice shape.
Comparison of ARC2D results using both turbulence models to

experimental results of Bragg.

83



° 1 0 [~
o — Bragg, [70]
— A — ARC2D, MML model
0 — ARC2D, B-L model
.08 |
° 0 6
CD —
° O 5
° 0 2 B
| 1 i
.00 5 5 5 10 15
AOA

Figure 29 Drag coefficient vs. AOA for NACA63 , - 415 airfoil with R7 ice shape.

Comparison of ARC2D results using both turbulence models to

experimental results of Bragg.
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distributions for this airfoil at AOA values near 13.6°, as seen in figures 30-32, does not
indicate a collapse of the pressure peak near the leading edge nor is a trailing edge separation
indicated. It is suspected that some error in the evaluation of the data has resulted in this low
CL value. As a consequence of this experimental behavior, the ARC2D calculations were
performed in the steady-state mode for AOA values up to 13°.

If, however, the value of CL mar WEre desired, a time-accurate calculation at larger
AOA would be required. This was attempted using both models and resulted in the upper part
of the C; curves shown in figure 28. As seen, the Baldwin-Lomax model Vproduces aCy
of 18° AOA while the MML model yields a value of 14°. It would be interesting to determine
which prediction produces a more accurate CL maz value. In any case, this is a first attempt
at prediction of iced airfoil performance prior to experiment.

The drag values shown in figure 29 indicate good agreement betv&;ecn calculation and
experiment. The two turbulence models agree well except at large AOA values where the
MML model appears to give higher values. This is due to earlier separation predicted by the
MML model. The CD values at low AQA’s are slightly underpredicted by both calculations.
Poor resolution of the near-wall behavior is most likely at fault. Use of a smaller grid spacing
near the wall is suggested. It is anticipated that alteration of the C, value in equation (4.13)
of the MML model may also affect the velocity gradient since this value alters the rate at
which the mixing length approaches its limiting value. Future studies of these effects are
suggested in order to verify this speculation.

The type of stall that occurs for this airfoil and ice shape is indicated by examination
of the Cp distribution and stream function contours for results past CL s The pressure
distribution shows no drop- in the pressure peak near the leading edge, as seen in figure 33.
There is however a significant bulging of the Cp, values near the trailing edge. Thus, a trailing

edge separation is indicated. In fact, examination of the stream function contours, figure 34,
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Figure 30 Pressure coefficient distribution for NACA63 , - 415 airfoil with R7 ice shape.

Mo = 0.14, Re = 5.0x10%, AOA = 12.6°. Bragg [70]
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Figure 31 Pressure coefficient distribution for NACA63 , - 415 airfoil with R7 ice shape.

Mo = 0.14, Re = 5.0x10%, AOA = 13.6°. Bragg [70]
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Figure 32 Pressure coefficient distribution for NACA63, - 415 airfoil with R7 ice shape.

Mo, = 0.14, Re = 5.0x10°, AOA = 14.6". Bragg [70]
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Figure 33 Pressure coefficient distribution for NACA63 A 415 airfoil with R7 ice shape.

Mo = 0.14, Re = 5.0x105, AOA = 16".
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Figure 34 Stream function contours for the NACA63 5 - 415 airfoil with R7 ice shape.

AOA = 16°.
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plainly indicates the existance of a reverse flow region at the trailing edge. This behavior is
evident with either turbulence model. However, the Baldwin-Lomax model suppresses this
behavior until 18° AOA, while the MML model indicates separation at a lower AOA.

The contours of eddy viscosity at these AOA’s indicate why this occurs. The
Baldwin-Lomax model produces (p,/)maz values of approximately 2000, as seen in figure
35(a), with the largest values being centered inside the reverse flow region. The MML model
produces (ft,/p)ma= values of approximately 1000, as seen in figure 35(b), with the largest
values being centerd at the separation region. The larger values of the Baldwin-Lomax model
tend to suppress the development of these separation regions and results in delayed prediction
of stall. The relaxation of eddy viscosity values aft of the separation point, as found with use
of the MML model, allows for development of the reverse flow region. This in turn, results in

prediction of the physically correct lower stall angle.

NACA63A-415, G3 ice shape

This shape was also tested in the NASA IRT wind tunne! with nominal Reynolds and
Mach numbers of 5x10% and 0.14 respectively. The data was taken for AOA values up to
11.6°. The experimental drag values are only available for AOA values up to 7.6", due to
limitations in the test procedure. Comparisons between data and computations for CL and
CD are shown in figures 36 and 37 respectively with computed results for both the Baldwin-
Lomax and MML models included.

The lift coefficents do not agree well with the experiment for this shape. Both
models predict lower CL values than experiment for AOA values from 6° to 12°. The Baldwin-
Lomax model starts to yield values of CL higher than the experimental value at 12° AOA.
The computed results indicate separation at this AOA. As in the case of the R7 ice shape, the

two turbulence models yield significantly different flowfields. The Baldwin-Lomax model
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(b)

Figure 35 Eddy viscosity contours for the NACAG3 , - 415 airfoil with R7 ice shape,

AOA = 16°, (a) Baldwin-Lomax model, (b) MML model.
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Figure 36 Lift coefficient vs. AOA for NACA63 , - 415 airfoil with G3 ice shape.

Comparison of ARC2D results using both turbulence models to

experimental results of Bragg.
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produces a much smaller separation region than the MML model. This is again due to the
differences in magnitude and distribution of eddy viscosity values as calculated by the alternate
models. The p, values determine the size of the boundary layer, which in turn influences the
pressure distribution on the airfoil and hence the force coefficient values for these flow
conditions. Additionally, these dissimilar turbulent viscosities produce different values of Cf,
which can result in further differences of the force coefficients.

The computational results, using both turbuience models for AOA at CL mag? aT€

compared to experiment in Table 5.

CL ma= AOA
Experiment 1.2 8.6
Baldwin - Lomax 1.25 18.0
MML Model 0.94 12.0

Table 5 Calculated stall conditions using either turbulence model.

* Comparison to experimental conditions.

As these values indicate, the stall angle is more accurately evaluated by use of the MML
model. The value of CL maz is found by the Baldwin-Lomax model but this would seem to be
fortuitous, since it is at the wrong angle of attack. The reason for this result is somewhat

different than for the previous case. The maximum values of pu, obtained with the MML
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model are approximately 2500 and are distributed throughout the flowfield, as seen in figure
38(b). The Baldwin-Lomax model, on the other hand, produces values which are close to 10 in
some regions (i.e. near the leading and trailing edges) and close to 10,000 in other regions (i.e.
at mid-chord locations), as seen in figure 38(a). This large variation in p, values corresponds
to the motion of the separation bubble over the surface. The small values are due to selection
of Fmar at a very small y value, while the large u, values are due to selection of Fmaz at a
very large y value. The MML model, on the other hand, tends to correctly concentrate g,
values in regions of high vorticity. This results in a more realistic distribution of g,
throughout the flowfield. A similar g, distribution is seen in the results of Majumdar and

Rodi [71] for circular cylinders.

Interestingly, calculations using either tu;bulence model indicate the same mode of
stall behavior. This is seen in figure 39(a) which shows the stream function contours for 8°
AOA, that is, just prior to stall. The figure shows two separation regions on the airfoil at both
the leading and trailing edge. Thisrcorresponds to the Cé distribution obtained by Bragg, as
shown in figure 40. As the AOA increases, the size of both these regions increases. Finally, at
10°-12° AOA, the two recirculation regions join and stall occurs, as shown in figures 39 (b) and
(c). These results are from the use of the MML model. The Baldwin-Lomax model produces
similar results, except at higher AOA values. |

The Cp distribution obtained using the MML model at 8° AOA is also shown in
figure 40. As secen, the pressure distributions indicate that the calculated leading edge
separation bubble is smaller than the measured bubble. This in turn alters the pressure
distribution downstream of the leading edge. Evidently this leads to a larger calculated
separation region at the trailing edge than actually occurs. Also, the influence of the trailing
edgé separation appears to alter the lower surface pressure distribution in that region. All of

these differences lead to a much lower value of lift than measurements indicate.
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(a)

(b)

Figure 38 Eddy viscosity contours for the NACA63A— 415 airfoil with G3 ice shape,

AOA = 10°, (a) Baldwin-Lomax model, (b) MML model.
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Figure 40 Pressure coefficient distribution for NACA63A— 415 airfoil with G3 ice shape.

Moo = 0.14, Re = 5.0x10°, AOA = 8"
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The inaccuracy of the Cp values near the leading edge may be produced by a lack of
grid resolution in the separation bubble region. The complex nature of the flowfield in this
region requires a significant number of points in both the streamwise and transverse directions.
The measured pressure values imply a local edge velocity somewhat lower than for an attached
flow case. The calculated values do not reflect this behavior and indicate that the local edge
velocities are close to those for attached flow. Yet, the stream function contours in figure 39(a)
plainly indicate that a separation region has been calculated. The measured results also imply
that the velocity gradient is close to zero in this region. The calculated results indicate a large
value for the velocity gradient and thus a strong reverse flow region is suspected. Comparisons
of velocities in this region are not available for this airfoil, but they were measured for the next

case and will be discuésed further in the next section.

Despite the differences shown in the lift values, the drag results show a remarkable
degre’é of agreement. At the largest AOA’s, the Baldwin-Lomax model produces drag values
higher than the measured values. This is due to the large values of y, calculated by this
model. Tile pressure drag is not a major factor for the Baldwin-Lomax calculations since the
flow has not separated at the AOA values shown in the figure. The lower values of the MML
model are a result of lower p, values and seem to reproduce the measured values very well.
The inaccuracies in modeling the separation bubble may be the reason for disagreement
between the MML model and experiment at these lower AOA values. At higher AOA values,
the flow separates and the CD values are dominated by pressure forces. Experimental drag
values were not obtained at these higher angle of attack conditions and thus no comparisons
could be made.

The results of this section indicate that the difficulties in modeling separated flow
behavior may lie in the grid resolution in those regions where separation occurs, such as the

leading edge horn, and in the turbulence modeling. More detailed information on the velocities
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in these regions could help in diagnosing the problems in the calculations. A more detailed
dataset was obtained in the test by Bragg [66] on a NACA 0012 airfoil. Results of the ARC2D

calculations will be compared to Bragg’s data in the next section.

NACA0012, G1 ice shape

This artificial ice shape was tested by Bragg [66] at the Ohio State subsonic wind
tunnel. His tests were conducted at a nominal Reynolds number of 1.4x10°% and a nominal
Mach number of 0.12. The results of this experimental program included lift and drag data as
well as pressure distributions and velocity profiles. The lift values were obtained by
integration of the pressure data over the surface of the airfoil. The drag data was obtained
from a total pressure survey made in the airfoil wake. Comparisons between the experimental
Cpand Cp, values and the computed results are shown in Figs. 41 and 42. Both the Baldwin-
Lomax and MML models were used.

The lift results indicate the differences between the two turbulence models. The
Baldwin-Lomax model predicts continued increase of the lift past the experimental CL nas
value. At 8 AOA, the MML model predicts unsteady vortex shedding while the Baldwin-
Lomax model predicts a large attached recirculation bubble resulting in the higher Cy, value.
At 10° AOA, both models predict unsteady behavior but with different Cy, and Cyy values.
This is due to the large value of the pressure peak associated with the recirculation region
being shed from the upper surface. The pressure peak predicted by the MML model is smallet
and when integrated with respect to time produces more reasonable lift and drag values for the
ice shape/airfoil combination.

The size of the recirculation region can be altered by changing the values of C, and

C, in the MML model, as shown in the study of the clean NACA0012 airfoil. This indicates
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Figure 41 Lift coefficient vs. AOA for NACA0012 airfoil with G1 ice shape.

Comparison of ARC2D results using both turbulence models to

experimental results of Bragg.
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Figure 42 Drag coefficient vs. AOA for NACA0012 airfoil with G1 ice shape.
Comparison of ARC2D results using both turbulence models to

experimental results of Bragg.
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that correct determination of the vortex size and shedding frequency may lead to a better
evaluation of the performance characteristics of the iced airfoil near stall conditions.

In an effort to evaluate this effect, the C, values of 1000 and 2000 were uscd for
several AOA’s near stall. The results for 8 AOA are shown in figures 43-16, which indicate
pressure coefficients and lift histories for the two C, values. The lower C; value resulls in a
larger vortex, as seen in a comparison of figures 43 and 45. The shedding frequencies are
indicated in figures 44 and 46. These results show that the C, value of 1000 yields a time
averaged lift coefficient of 0.46 and a C, value of 2000 yiclds a time averaged lift coefficient of
0.47. The experimental value, taken from Bragg [66] for this AOA, was found to be 0.54.
Thus, this term does not seem to influence the magnitude of the Iift at this angle of attack.

However, examination of the lift histories reveals some differences due to C; values.
These plots indicate a periodic behavior of the lift. Contour plots of the stream function,
figure 47, show the devefopment of a large recirculation region criginating at the leading edge,
moving along the upper surface of the airfoil and eventually shedding off the trailing edge of
the airfoil. The shedding frequency is characterized by the Strouhal number and was found to
be 0.0100 and 0.0088 for each C; valué, respectively. The work of Zaman and McKinzie [68]
indicates that there is a low frequency oscillation in the flow over an airfoil at conditions ncar
stall. They speculate that this oscillation is due to the periodic formation and breakdown of a
large separation bubble. The frequency of the oscillation resulted in a Strouhal number of
0.02, which is an order of magnitude lower than the normal value associated with bluff-body
shedding, but surprisingly close to the values mentioned above. They state, that at higher
incidence angles they are able to produce the more conventional bluff-body shedding frequency.
Their results suggest another area of potential computational investigation, that is, the higher

frequency shedding at larger AOA’s.
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Figure 43 Pressure coefficient distribution for NACA0012 airfoil with G1 ice shape.

Mo = 0.12, Re = 1.4x10%, AOA = 8. C, = 1000
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Figure 44 Lift history for NACA0012 airfoil with G1 ice shape.

Mo = 0.12, Re = 1.4x10%, AOA = 8". C, = 1000
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Figure 45 Pressure coefficient distribution for NACA0012 airfoil with G1 ice shape.

Mo = 0.12, Re = 1.4x10°, AOA = 8. C, = 2000
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Figure 46 Lift history for NACA0012 airfoil with G1 ice shape.

Mo = 0.12, Re = 1.4x10°, AOA = 8°. C, = 2000
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The computational results for the iced airfoil correspond to the description given by
Zaman and McKinzie. Thus, the Strouhal number may be used to adjust the C, and C,
values for a given airfoil geometry. The criterion is that at AOA values near stall the Strouhal
number should be approximately 0.02 and at higher values of AOA the Stroulial number
should be approximately 0.2. The point at which to switch from requiring a value of 0.02 to a
value of 0.2 is not readily apparent. This is an area requiring further investigation both from
the computational and experimental viewpoints.

The behavior at higher AOA values was examined in order to obtain some insight
into this problem. At 10° AOA, the Strouhal numbers resﬁlting from usc of C; values of 1000
and 2000 are 0.016 and 0.017 respectively. These appear to be in the range associated with the
low frequency shedding phenomena. It is not clear, from these results, which C; value is
preferredv. The time-averaged lift values for these two cases are 0.576 and 0.460 respectively.
The lift measured by Bragg was 0.479 at 9° AOA with the slope of the lift versus alpha curve
being negative. Thus it would seem thgt for this case the C, value of 2000 is preferred.

These results indicate that the vortex shedding is essentially an inviscid phenomena
which is modified by the presence of viscosity in the flowfield. Referring back to the equation
for vorticity generation (i.e. Eq. 4.8), these results suggest that the mechanism for vorticity
generation must be the severe pressure grédient near the horn. The resulting recirculating
region which develops enhances the turbulence levels, which in turn leads to increased
dissipation of thé enetgy in that region. If the increase in y, is too large then the development
of the recirculation region is impaired. This leads to the alteration in Strouhal number
indicated above. Similarly, if the viscous dissipation is too low, then the recirculation region
grows too rapidly and the resulting force coefficients are larger than expected, as indicated in

the 10° AOA case. The questions then are: how well does the MML model predict stall
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behavior and what values of C, and C, are appropriate? A study of these effects is being

planned and will serve as the basis for continuing work on this problem [72].

" Local Results - Pre Stall Conditions

Pressure coefficient distributions for 0°, 2°, and 4° AOA are shown in figures 48-50.
Comparisons between computed and experimental results indicate substantial agreement, with
the exception of the region near the glaze ice horn. The computed results have a large pressure
spike in this region which is not found in the experimental results. The pressure taps in the
experiment are spaced at every one percent chord starting at the tip of the horn. Thus, it is
unlikely that the spike is there and is not being measured. Examination of the computational
grid indicates that the tip of the horn is represented by three grid points in a triangular
arrangement. The fluid is thus forced to turn a corner which has an angle greater than 180,
which is not the case for the actual ice shape. This suggests that further grid refinement may
be required to eliminate this pressure spike. An alternate grid code is presently being
evaluated for this purpose, but was unavailable for use in this investigation.

The experimental results show a flat pressure profile corresponding to the
recirculation region. This means that the flowfield is adjusting to the concave region aft of the
horn by filling it with low-velocity recirculating fluid. The shear layer which lies on top of this
stagnant region is thus flowing over a virtual surface which is more aerodynamic than the
actual iced airfoil geometry. The computer code captures this recirculation region but does not
adjust the pressure field appropriately.

The code does allow variation of the pressure in the direction normal to the surface,
however, it does not seem to capture this feature of the flow. This is indicated in figure 51,
which shows the static pressure contours in the recirculation region. The low pressure levels

found near the horn do not extend into the recirculation region as the experimental results
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Figure 48 Pressure coefficient distribution for NACA0012 airfoil with G1 ice shape.

Mo = 0.12, Re = 1.4x10%, AOA = 0°. (a - upper surface, b - lower surface)
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Figure 49 Pressure coefficient distribution for NACA0012 airfoil with G1 ice shape.

Mo = 0.12, Re = 1.4x10%, AOA = 2". (a - upper surface, b - lower surface)
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Figure 50 Pressure coefficient distribution for NACA0012 airfoil with G1 ice shape.

Mo = 0.12, Re = 1.4x10%, AOA = 4". (a- upper surface, b - lower surface)
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Figure 51 Static pressure contours in the recirculation region behind the horn

for 4° AOA.
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would suggest. The experimental results do imply that the pressure gradient in the 7-direction
may be as important as the £-direction gradient. Hence the viscous terms in the £-direction,
especially the v, terms, may also be of some importance. These terms are neglected in the
thin-layer form of the Navier-Stokes equations. 7TherARC‘2D code has the capability to include
the explicit portion of these terms. When this option is employed, there is no significant
difference to the solution. This suggests again that the grid rtesolution in this region is

insufficient. It is expected that an alternate grid will resolve this problem along with the

pressure spike at the tip of the horn.

The velocity profiles also suggest a need for greater grid resolution in the recirculation
region. The velocity profiles obtained using ARC2D are compared to experimental values in
figures 52-54. These figures show the velocity profiles within the recirculation region for AOA
values of 0°, 2°, and 4° respectively. Notice the differences in height of the zero-velocity point
and in location of reattachment. The height of the reverse flow region, deﬁ;icd as the distance
from the surface to the zero-velocity line, can be as large as 2-3 percent chord. The grid
resolution in this region is not as fine as it is near the surface. This is true for resolution in
both the 5 and ¢ directions. The results presented in figures 52-54 were obtained using the
Baldwin-Lomax model. The turbulence model selection does not seem to play as important a
role as either the transition location or the grid resolution. Further investigation of the
turbulence model role in the development of the attached bubble is required.

The free shear layer, extending from the separation point to the reattachment point,
should have the same grid resolution as the boundary layer. The fact that it does not means
that certain aspects of the flow physics are not being modeled correctly. This is also reflected
in figures 52-54, by examining the velocity gradients near the upper edge of the reverse flow

regions. The code tends to underpredict the velocity gradient along with the distance of the
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Figure 52 Velocity profiles in the recirculation region aft of the horn
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Figure 54  Velocity profiles in the recirculation region aft of the horn
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free shear layer from the surface. This inability to capture the shear layer behavior is
consistent with the overprediction of the pressure spike mentioned previously.

Correct repreeentation of the flow in these recirculation regions also requires
specification of the transition region. Presently, the ARC2D code has a very rudimentary
single-location transition specification. As described by Mehta [73], *the process of transition
from laminar to turbulent flow is not a well-defined problem because of the sensitivity to
poorly def;med initiating disturbances" He goes on to state that the main requirements for
numerical solution to the compressible Navier-Stokes equations in regard to the transition
process are ’that (1) the discretization errors do not contaminete physical phenomena such as
instabilities, that is, the finest scales in the transition process are adequately resolved in space
and time; and (2) the introduction of artificial boundaries owing to the limited size of the
computational domain does not interfere with the physical upstream influence, the ellipticity of
the Navier-Stokes equations.’

From these eomments, it is apparent that appropriate representation of transition is
necessary for correct modeling of the recirculation region aft of the glaze horns. Since the code
presently does not have a'sophistica.ted transition model, the effect of transition specification
was examined by simply altering the location and noting the changes in the velocity profiles.
This was done for the 0 AOA case by moving the transition location from the tip of the horn,
as was the case in figures 52-54, to a point approximately in thercenter of the sepaljation
bubble. The results are shown in figure 55.

Moving the transition location further aft has two effects on the separation bubble.
The modeling of the shear layer velocity gradient is improved and the magnitudes of the
reverse flow velocities are overpredicted. The improvement to the shear layer velocity gradient
can be attributed to a more realistic representation of the dissipation in that region. The use

of the downstream transition location more accurately represents the free shear behavior, as
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described by Mehta. The overprediction of the reverse flow velocities is due to the approach
used by ARC2D in defining laminar and turbulent regions.

The code first calculates turbulent viscosities for all constant-£ lines from the leading
edge to the trailing edge. The transition points on the upper and lower surfaces are then
identified and all turbulent viscosity values from the leading edge to these transition points are
reset to zero. If the transition location is in the center of a separation bubble then turbulent
fluid re-laminarizes as it flow toward the forward portion of the Bubble in the reverse flow
region. This decrease in dissipation ]eadrs‘to an inqpbropriate enhancement of the velocities in
that region.

| The behavior described by Simpson et al. [63] for a two-dimensional turbulent
separated flow seems more realistic. He indicates that the mean backflow in the detachment
region of the separation burbblAe i-s a result of incursions of turbulent fluid from the overlying
shear layer. The use of a laminar flow region in this part of the bubble is inappropriate. Also,
the use of a turbulence model based on thermean flow velocity profiles seems precluded by this
description. Thus, at this time no readily avaiiqb]e method will adequately describe the
detachment region. The lack of such a model requires the selection of some transition location
which produces the most acceptable results f;om the standpoint of performance evaluation. It
seems that a transifion location halfway through the separation region produces a better shear
layer evaluation and reattachment point prediction. Thrus, selection of this point for transition
location is recommended at this time. Future work could be directed at improvcmént of the

model with respect to the type of intermittant behavior described by Simpson.

Local Results - Post Stall Behavior

The ice accretion geometry and angle of attack play a critical role in altering the

maximum lift and inducing the onset of stall. The results of flow visualization studies
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indicate, for the NACA0012 airfoil and G1 ice shape, that the separation bubble near the horns
grows with increasing incidence until at approximately 6° — 7° AOA the entire upper surface
exhibits alternating forward and reverse flow. Results from the computations also indicate a
significant change at 6° — 7° AOA. As mentioned earlier, the MML model predicts unsteady
flow at 6° AOA while the Baldwin-Lomax model predicts the onset of unsteady flow at 10°
AOA. Therefore, the MML model will be used exclusively for evaluation of the post stall
behavior described in this section.

At lower AOA’s, the separation bubble size is a function of AOA but it exhibits an
essentially steady size and shape. At 6° AOA, the bubble grows to encompass the entire
surface and continues growing in strength until it is swept from the surface by the main flow.
This flow is periodic in nature with new bubbles being generated at the leading edge to replace
those being shed at the trailing edge. This shedding process is present for a large range of
AOAs above stall. This sequence is captured in figures 56-74, for a 10° AOA case. The lift
history for this process is shown in figure 75.

These figures show the development of the bubble at various stages of growth and
subsequent shedding over several cycles. The figures shown are the stream function and equi-
vorticity contours at selected time points in the computation. Initially, the separated flow
region encompasses the entire upper surface of the airfoil, as seen in figure 56. The equi-
vorticity contours, on the other hand appear more concentrated near the horn. This is the
point in the process just after one shedding cycle and just prior to the next cycle. At this
point, the lift of the airfoil is just past its ma.xirﬂum. The zero stream function contour has
Jjust separated from the surface and the lift is starting to decrease. A small region of counter-
clockwise (i.e. positive) rotating fluid is seen at the trailing edge. The high lift value is due to
the large amount of circulation within the larger, negative vortex which is still present on the

upper surface.
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(b)

Figure 56 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA =87,

t=ty; (a) stream function contours, (b) equi-vorticity contours
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(a)

(b)

Figure 57 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t;+300At; (a) stream function contours, (b) equi-vorticity contours
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Figure 58 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t, + 600At ; (a) strcam function contours, (b) cqui-vorticity contours
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(a)

(b)

Figure 59 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=§",

t=ty + 900At ; (a) stream function contours, (b) equi-vorticity contours
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(a)

(b)

Figure 60 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t,+1200At; (a)strcam function contours, (b)equi-vorticity contours
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(a)

(b)

Figure 61 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t, + 1500At ; (a) stream function contours, (b) equi-vorticity contours
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(a)

(b)

Figure 62 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t, + 1600At ; (a) strcam function contours, (b) equi-vorticity contours
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(b)

Figure 63 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=ty+1700At; (a) stream function contours, (b) equi-vorticity contours
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(b)

Figure 64 Vortex development on the NACAO0012 airfoil with G1 ice shape; AOA=8",

t=to+1800At; (a) stream function contours, (b) equi-vorticity contours
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(b)

Figure 65 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t;+1900At; (a) stream function contours, (b) equi-vorticity contours
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(b)
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Figure 66 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t,+2000At; (a) strecam function contours, (b) equi-vorticity contours
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(a)

(b)

Figure 67 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=ty+2100At; (a) stream function contours, (b) equi-vorticity contours
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(b)

Figure 68 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t,+2200At; (a) stream function contours, (b) equi-vorticity contours
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(b)

Figure 69 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t,+2300At; (a) stream function contours, (b) equi-vorticity contours
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Figure 70 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t,+2400At; (a) streamn function contours, (b) equi-vorticity contours
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Figure 71 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t,+2500At; (a) stream function contours, (b) equi-vorticity contours
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Figure 72 Vortex development and shedding on the NACA0012 airfoil with G1 ice shape;

t=ty + 2600At ; (a) stream function contours, (b) equi-vorticity contours
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(b)

Figure 73 Vortex development and shedding on the NACA0012 airfoil with G1 ice shape;

t=ty + 2700At ; (a) stream function contours, (b) equi-vorticity contours
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(b)

Figure 74 Vortex development on the NACA0012 airfoil with G1 ice shape; AOA=8",

t=t,+2800At; (a) stream function contours, (b) equi-vorticity contours
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Figure 75 Lift history during vortex shedding process on NACA 0012 airfoil

with G1 ice shape
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The next figure in the sequence has two significant features. The leading edge region
exhibits a pinching off of the separation bubble and a gradual movement of the vortex center
downstream and away from the surface. This coincides with a distinct shedding of vorticity
from the surface toward the free stream. Also, the small bubble near the trailing cdge has
merged with the larger bubble and the resulting bubble has reattached to the surface. This
second phenomenon is a residual adjustment to the previously shed vortex.

The bifurcation of the leading edge separation region can be attributed to the
convection of vorticity away from the horn, where it is initially developed. As the process
starts, a vortex is present just past the ice shape region. This vortex moves away, as time
progresses, due to entrainment by the shear layer. Tt is replaced by vorticity which is
constantly being generated at the horn itself. This last point is indicated by the constant
vorticity level found at the horn, even as vorticity is being convected away. This is scen in
figures 76-85, which show equi-vorticity contours near the horn. Thus, as one separation
bubble moves along the airfoil surface another is being created at the horn to take its place.
The timing of these two processes determines the amplitude and frequency of the lift and drag
oscillations.

The reattachment of the bubble at the trailing edge keeps the separation bubble on
the airfoil. This prevents the lift loss from being more severe. The vortex associated with this
bubble can be clearly seen in figure 57. The drop in lift of the airfoil can be associated with
the movement of this vortex away from the surface and into the wake, shown in figures 57-59.
These figures show the growth of the negative and positive separation bubbles at the leading
and trailing edges, respectively. These bubbles grow in strength and force the larger bubble to
first separate from the surface (fig. 58) and then to flow into the wake (fig. 59). This vortex
sustains lower pressures on the upper surface and when it leaves the surfacc these pressures

increase. This collapse of the pressure peak produces the drop in lift.
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Figure 76 Equi-vorticity contours near the leading edge of the NACA0012 airfoil

with G1 ice shape; AOA=8", t=t, + 1500At

145



Figure 77 Equi-vorticity contours near the leading edge of the NACA0012 airfoil

with G1 ice shape; AOA=8", t=t, + 1600At
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Figure 78 Equi-vorticity contours near the leading edge of the NACA0012 airfoil

with G1 ice shape; AOA=8", t=t, + 1T00At
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Figure 79 Equi-vorticity contours ncar the leading edge of the NACA0012 airfoil

with G1 ice shape; AOA=8", t=t;, + 1800At
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Figure 80 Equi-vorticity contours near the leading edge of the NACA0012 airfoil

with G1 ice shape; AOA=8", t=t, + 1900At
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Figure 81 Equi-vorticity contours near the Icading edge of the NACA0012 airfoil

with G1 ice shape; AOA=8", t=t, + 2000At
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Figure 82 Equi-vorticity contours near the leading edge of the NACA0012 airfoil

with G1 ice shape; AOA=8", t=t, + 2100At
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Figure 83 Equi-vorticity contours ncar the leading edge of the NACAO0012 airfoil

with G1 ice shape; AOA=8", t=t, + 2200At
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Figure 84 Equi-vorticity contours near the leading edge of the NACA0012 airfoil

with G1 ice shape; AOA=8", t=t; + 2300At
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Figure 85 Equi-vorticity contours near the leading edge of the NACA0012 airfoil

with G1 ice shape; AOA=8", t=t, + 2400At
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There are two other interesting features of this shedding process. The vorticity on
the lower surface remains undisturbed by the activity on the upper surface. The vorticity
levels here are established by the airfoil/ice shape geometry and the angle of attack.
Additionally, the leading edge stagnation point remains at the same location throughout the
process. The stagnation region appears to be well isolated from the unsteady flow by the horn
of the ice shape. This last point has significant consequences for the modeling of the ice
accretion process itself. It appears that extreme accuracy in modeling of the flowfield
downstream of the ice shape is not necessary for correct representation of the incoming flow.
Some accounting for separation may be necessary, however, for establishing the correct limits
of water droplet impingement. Certainly, further examination of the flow near the separation
region should be undertaken in order to confirm this assertion.

Figure 60 indicates that the vorticity generated at the horn has again grown to
encompass the entire upper surface of the airfoil. This occurs as a result of the movement of
the previous bubble off the airfoil surface. The flowfield pattern is now similar to that of
figure 56, however, there are significant differences which result in a slightly altered shedding
sequence for this bubble. In this case, the bulge in the separation bubble is centered more
toward the trailing edge. This would suggest a shorter shedding period, as the bubble is
already further along the surface. Indeed, figures 61-65 show that half the bubble has moved
into the wake before the positive bubble develops at the trailing edge. This produces a
somewhat different shedding behavior and consequent changes in lift and drag.

During this shedding period, the large negative bubble is not shed completely but is
pinched off by the positive bubble. Figures 65-67 show how the negative bubble is essentially
cut in two with some fluid moving into the wake and some being forced back onto the airfoil

surface. As a result, the circulation on the surface is restored as indicated by the reattachment
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of the bubble seen in figure 68. This causes the decrease in lift to stop at a C; value of
approximately 0.3 as compared to the minimum CL value of -0.1 from the previous shedding
cycle.

Examination of figures 76-83 indicates that during this time a new negative vortex
has developed at the horn. This vortex grows in size and strength until, during the interval
from t = to+1800At until t = to+2200At, the vortex separates from the horn and moves
further back along the airfoil surface. This event corresponds to tlhrc detachment of the
separation bubble from the horn. The vorticity level at the horn itself remains essentially
constant, apparently independent of the shedding process occurring downstream. The vorticity
level at the horn appears to be established by the horn gecometry, the angle of attack, and the
freestream conditions. Consequently, modeling the flow in this region is extremely ilﬁportant
for (;stablishing the correct size, strength, and timing of the vortex shedding process. How
much detail of the horn geometry is required, what grid size and spacing is appropriate, and
what type of flow modeling is appropriate are all pertinent questions when trying to capture
the details of this process.

Figures 68-74 show the movement of the separation bubble along the airfoil surface
and its subsequent shedding into the wake. This case is more like the first shedding event, in
that the separation bubble is almost completely off the surface by the time the positive bubble
develops. It is interesting to note the changes occuring to the separalion bubble, as it moves
along the airfoil surface. More fluid appears to enter the bubble as indicated by the larger
number of stream function contours. At the same time, the vorticity levels do not scem to
change considerably, thus indicating no significant change in the amount of circulation
associated with this bubble. The lift increase must, thercfore, be due to the vorticity being
generated at the horn. When the bubble finally bursts (fig. 72), the drop in circulation is

much greater than the amount being generated at the horn and hence the lift decreases rapidly.
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The positive vorticity which develops at the trailing edge is seen to remain on the
airfoil upper surface (i.e. figure 74). This further reduces the lift such that, at to+2800At, it is
negative. This region of positive vorticity eventually merges with the leading edge vortex, as
was the case in figures 59 and 60. This merging of the two regions and the continuing creation
of negative vorticity at the leading edge leads to an eventual restoration of the lift, until the
entire cycle repeats.

The turbulence model can have a significant impact on the development of the
separation bubbles associated with this shedding process. As seen in the previous éllaptcr, the
Baldwin-Lomax model has some difficulties with separated flow due to the specification of the
Fmar parameter. The behavior of the MML model during the vortex shedding is seen in
figures 86-91. The regions of highest turbulent dissipation correspond to locations of
separation and reattachment. This insures that velocity levels in these regions remain low,
consistent with expectations. These regions move along the surface, following the motion of
the separation bubbles. As the bubble moves along the surface, the turbulence level decreases
reflecting the lower mean flow velocities within these regions.

The other interesting feature of the turbulence model behavior during this sequence is
the development of the leading edge region. The eddy viscosity levels just aft of the
upper-surface horn remain consistently high throughout the shedding cycle. Thus, as vorticity
is constantly generated at the horn the turbulence level remains correspondingly high. These
p#, levels can in turn influence the growth rate of the vorticity and some type of feedback
mechanism is thus established. Accurate prediction of turbulence levels near the horn is
therefore essential to the correct prediction of the vortex shedding time scales and hence of the
integrated force coefficient values for this post-stall behavior.

Finally, examination of the lower-surface indicates steady flow behavior with

associated constant eddy viscosity values. The vorticity generation rate at this horn must be
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(b)

Figure 86 Turbulence model behavior during vortex shedding process; AOA=8",

t=ty+2400At; (a) strcam function contours, (b) eddy-viscosity contours
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Figure 87 Turbulence model behavior during vortex shedding process; AOA=8",

t=t,+2500At; (a) stream function contours, (b) eddy-viscosity contours
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(b)

Figure 88 Turbulence model behavior during vortex shedding process; AOA=8",

t=t,+2600A¢; (a) sircam function contours, (b) eddy-viscosity contours
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(b)

Figure 89 Turbulence model behavior during vortex shedding process; AOA=8",

t=t,+2700At; (a) stream function contours, (b) eddy-viscosity contours
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(b)

Figure 90 Turbulence model behavior during vortex shedding process; AOA=8",

t=ty+2800At; (a) strcam function contours, (b) eddy-viscosity contours
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(b)

Figure 91 Turbulence model behavior during vortex shedding process; AOA=8",

t=ty + 2900At; (a) stream function contours, (b) eddy-viscosity contours
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lower than for the upper-surface and can be easily convected along the airfoil. This lower
generation rate precludes the development of large regions of vorticity and hence the lower-
surface does not experience the unsteady behavior secen on the upper-surface. The turbulence
levels on this surface are substantially lower than those of the upper-surface. This is consistent
with the near laminar behavior on the pressure surface of a clean airfoil. The favorable
pressure gradient on the lower-surface does not promote the development of a large amount of
vorticity away from the surface. This lower vorticity level in turn produces a lower eddy
viscosity level. In fact, the turbulence on this surface appears to develop at the lower-surface
horn and is then distributed along the airfoil.

As stated previously, the difference in time scales of vorticity generation and
convection lead to alteration in frequency and amplitude of the force coefficient fluctuation.
Since the eddy viscosity level can affect both of these time scales, the turbulence model can
influence the temporal development of the lift, drag, and pitching moment.  Correct
representation of the turbulence level is therefore essential to the modeling of the post-stall
behavior of an airfoil, either clean or with leading edge ice. While the MML model may not
provide completely accurate predictions of turbulence level for a stalled airfoil, it can provide
information on the appropriate turbulence levels and distributions for modeling of such
behavior.

Further irrrl;erstigations will be required to determine the sensitivity of the MML model
to different geometries and grid resolutions. Airfoil geometries can resnlt in several types of
stall behavior; leading-edge stall, trailing-edge stall, and combined leading and trailing edge
stall. 'The ability of codes éuch as ARC2D to calculate stall behavior may also depend on
which stall mechanism occurs. For the iced airfoil, the mechanism is more apparent than in
most clean airfoil stalls. The iced airfoil case may result in a greater degree of two

dimensionality due to the highly structured behavior near the horn. If this is the case, the iced
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airfoil computations may be a truer representation of the actual physics. This is discussed, for
the clean airfoil, by Zaman and McKinzie [68].

Grid sensitivity studies must be performed in order to determine requirements for
capturing of the vortex shedding. Preliminary results have indicated a dependence of
integrated force coefficients on the spacing near the surface and around the horn. It is
necessary to determine the magnitude of this dependence and how fine a grid is required.
Methods are presently being developed for adapting grids to the characteristics of the particular
flowfield being studied. These may be required for unsteady flows such as those being studied
here. Also, unstructured grids have the potential to provide a better representation of irregular
geometries, such as the iced airfoil. These and other developments show great promise in

providing better methods for iced airfoil analysis in the future.
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CHAPTER 6

SUMMARY

Evaluation of the acrodynamic performance changes to an airfoil duce to leading cdge
ice accretions has been performed using a 2D unsteady Navier-Stokes computer code.  This
code, along with appropriate grid generator and turbulence model, has provided considerable
information on the aerodynamics of these highly complex geometries. Comparisons o

experimental data have provided insight into the capabilities and limitations of thix modeling

method. Calculations indicate a high degree of confidence in the results for integrated foree
coefficients at pre-stall conditions. Discrepencics were noted in the separation bubble at pre-
stall conditions and in the unsteady flowfield at post-stall conditions. A new turbulence niodel

formulation was employed in order to address these difficulties and met with some degree of

success. Further use of this turbulence model along with finer grids may help in evaluation of

these conditions.
The MML turbulence model employed for this study is a zero-equation, eddy

viscosity model with a Modified Mixing Length formulation which does not incorporate the I

[

function of the Baldwin-Lomax model and does not require the calculation of the displacement
thickness. In this model, the mixing length is based on the local value of y* and the velocity
B scale is based on the mixing length and the local value of the vorticity. Tn this way, the
feedback existing between the wall shear and the turbulence level is not dependent on the
distribution of the vorticity in the far ficld but rather on its value near the wall. ‘This prevents

large scale structures, which have essentially inviscid behavior, from unduly influencing the
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turbulence level throughout the flowfield. In this model, the level of the turbulence is
established by the fluid behavior near the wall, where vorticity generation takes place, and its
distribution throughout the fluid is determined by the vorticity in the far field. This allows
the development of the large vortices seen in the post-stall conditions examined and yet docs
not over-predict their size due to unrealistically low turbulent viscosity levels.

The use of the MML model was examined by evaluation of flow behavior on a clean
airfoil.  Calculations were performed for a clean NACA 0012 airfoil under attached and
separated flow conditions. The attached flow res.ults indicated that the Baldwin-Lomax model
resulted in a more accurate representation of the drag. This was the result of Dbetter
representation of near-wall behavior. The lift values were quite accurate for both models and
did not have any impact on evaluation of their relative performance. The higher angle of
attack calculations indicated qualitative differences between the two models. The MMIL model
calculation indicated an unsteady flowfield with periodic vortex shedding. The Baldwin-Lomax
model, on the other hand, indicated a steady, attached flow with a C; value much higher than
experiment. Additionally, a laminar flow calculation was performed and the unsteady flow
behavior was again observed, albeit with a different shedding frequency. The MML model and
laminar flow calculations had shedding frequencies both of which have been observed in
experiment. Which one is appropriate, for this airfoil and under these flow conditions, will
require further investigation.

The ability of the code, using either turbulence model, to predict the force coefficients
for the iced airfoils is very good at angles of attack below stall. A rime condition and two
glaze conditions were evaluated, with lift and drag values agreeing very well with experiment.
Pressure distributions also indicated good agreement with the exception of the region in the
immediate vicinity of the separation bubble aft of the glaze ice horn. Results in the separation
bubble indicated an overprediction of the pressure peak in the forward part of the bubble and a

lack of the constant pressure profile through the aft section of the bubble. This inablility to
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capture the correct pressure profile resulted in poor representation of the velocity distribution
within the bubble. Both turbulence models had difficulties in resolving this region and in fact
the IBL approach of Cebeci [1] has also indicated similar difficulties. |

The role of transition location was examined and found to significantly alter the
velocity profiles. Setting transition at the midpoint of the bubble resulted in better prediction
of the bubble height and reattachment location but also resulted in overprediction of the
reverse flow velocities in the forward part of the bubble. Such limitations in the present
implementation of the turbulence models prevented further investigation along these lines and
further work is required. The role of grid spacing in modeling of the separation bubble is also
being investigated. It is quite likely that the resolution in the shear layer, above the separation
bubble, is not sufficient to capture the details of that flow, which could play a major role in
prediction of reattachment location. Also, the streamwise resolution may not be sufficient to
resolve the details of the separation and reattachment processes. This is presently being
addressed by implementation of an unstructured grid scheme which would be more casily
adapted to the irregular geometry of the iced airfoil.

At flow conditions near stall, the ability of the code to correctly predict ]if-t‘ and drag
values is not as robust. There can be considerable differences in prediction of stall conditions
and the AOA at which stall occurs. Several factors influence these calculations; grid spacing
near the ice shape, transition location, and turbulence modeling all play a major role. The
results indicate thét the MML model appears to predict the C;  ~values and stall angles
better than the Baldwin-Lomax model. This is due to the lower y, values obtained with the
MML model. These lower eddy viscosity values allow development of the vortex shedding
process and yet alter the shedding frequency from the laminar-flow vahlies. The frequencies
obtained using the MML model correspond to the low frequency shedding observed by Zaman
and McKinzie in experiments on another airfoil shape. Further examination of this unsteady

behavior is presently underway in a joint computational and experimental study [72].
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In summary, the approach of examining the performance degradation of an iced
airfoil using a Navier-Stokes code has been shown to be feasible. Reasonably accurate results
have been obtained for pre-stall conditions. Determination of the angle of attack of stall can
be predicted using the MML turbulence model. The accurate calculation of post-stall behavior
requires further>development. The MML turbulence model was developed and tested for
calculation of this post-stall behavior with positive results. Further refinement of this
modeling procedure is required and recommendations for continued activities in this area are

outlined below.

6.1 Future Activities

The need for accurate evaluation of the aerodynamics associated with iced airfoils is
twofold. A representation of the velocity field 'surrounding the iced airfoil is important for use
in conjunction with ice accretion prediction codes. The velocity field can impact particle
trajectories and heat transfer calculations, which in turn affect the prediction of ice shape
development. The use of a code such as this also allows the prediction of performance
degradation and the onset of premature stall. These requirements serve as justification for
futher research into the development of the correct methods for predicting the complex
aerodynamics associated with iced airfoils. The present study has shown areas requiring
further investigation which shall now be summarized.

i) A grid refinement study is required to determine the sensitivity of force
coefficient calculations to the number and distribution of grid nodes. This
study should examine the attached separation bubble at low angles of attack
and the region of vortex shedding activity at angles of attack past stall. The
use of an unstructured and adaptive grid method may be appropriate.
Additionally, grid refinement near the ice shape itself may improve pressure

distribution and heat transfer calculations in these regions.
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ii) The effects of transition location and the modcling of the transition process
itself should be examined with regard to modeling of the attached separation
bubble. Some method of allowing the code to determine the transition location
should be examined. The method of Michel [75], presently used in many codes,
was developed for attached flow transition and may require modification for the

shear layer associated with the separation bubble.

iii) A reformulation of the turbulence model to account for the low flow conditions
in the separation bubble and still provide for turbulent flow in the overlaying
shear layer should be developed. This would allow for transition to turbulent
flow in the shear layer without resulting in a relaminarization of the reverse

flow region in the bubble.  This should be coupled to experimental

investigations of the turbulence characterisitics within the bubble which are

presently underway [76]

iv) Further examination of the unsteady behavior predicted at high angles of attack

is required utilizing the results of the investigations just described.

- Comparisons to experiment, especially the unstcady components such as

shedding frequencies and amplitudes, can be used to provide insight on the

applicability of the grid, of the turbulence modeling, and of the flowlield code

| L

itself. Such information can be used to further refine the implementation of

4

these components for the iced airfoil geometry.

v)  Implementation of a method for representing surface roughness will be required
for investigation of its relative importance. Possibilities include an adjustiment

to the turbulence model to account for equivalent sand grain roughness or
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vi)

implementation of a discrete roughness element model. The former requires a
method of representing icing roughnéss by equivalent sand grain roughhcss and
the latter requires the characterization of icing roughness heights, siz;zs, and
spacing. Both approaches would require .a correlation of the roughness to the

environmental conditions prevalent during the accretion process.

Future analysis activities will require the evaluation of icing effects on multi-
element airfoils, swept wings, stability and control parameters, and total
aircraft configurations. This means that an ability to predict 3D effects will be
important. Thus, the ektension of present methods to 3D codes must be
pursued while acknowledging the considerable amount of work still required in
less complicated 2D analysis. The use of a zero-equation turbulence mode] will
be all the more important for 3D analysis due to its simplicity and low

computational overhead.
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Appendix 1

Nomenclature

OE/0Q

van Driest damping constant = 26

angle of attack

speed of sound

AF 10Q

airfoil chord length

MML turbulence model constant; controls mixing length saturation level
MML turbulence model constant; controls blending region curvature
Baldwin-Lomax turbulence model constant = 1.6

coefficient of drag = D/(0.50U %)

friction coefficient = Tw/(0.5pU002)

Klebanoff intermittancy factor conétant = 0.3

coefficient of lift = L/(0.5pU_ %)

pressure coefficient = (P-P_)/(0.5pU %)

Baldwin-Lomax turbulence model outer region constant = 0.25
drag force

substantial derivative

convection terms in Navier-Stokes equations; Cartesian coordinates (Eq. 3.14)

convection terms in Navier-Stokes equations; curvilinear coordinates (Eq. 3.22)

viscous terms in Navier-Stokes equations; Cartesian coordinates (Eq. 3.15)
viscous terms in Navier-Stokes equations; curvilinear coordinates (Eq. 3.23)

total energy
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e, = viscous term in Ev matrix of energy equation

F = convection terms in Navier-Stokes equations; Cartesian coordinates (Eq. 3.1-1)
F = convection terms in Navier-Stokes equations; curvilinear coordinates (Eq. 3.22)
Fly) = vy |w|[l - exp(-y+/A+)} in Baldwin-Lomax turbulence model

Fiiep = Klebanoff intermittancy factor

Fv = viscous terms in Navier-Stokes equations; Cartesian coordinates (Fq. 3.15)
Fv = viscous terms in Navier-Stokes equations; curvilinear coordinates (Fq. 3.23)

F o ake length x velocity scale in outer region of Baldwin-Lomax turbulence model

f = vortex shedding frequency

fy = viscous term in Fv matrix of energy equation

h = At

I = identity matrix

J = Jacobian of the coordinate transformation

K = Clauser constant = 0.0168

L = Lift force

L = characteristic length

£ = turbulence model length scale

M = 85/9Q

P = pressure

P = constant in Poisson equation used in GRAPE code

Pr = Prandtl number

independent variables in Navier-Stokes equations; Cartesian coordinates

O
i

independent variables in Navier-Stokes equations; curvilinear coordinates

O O
I 11

constant in Poisson equation used in GRAPE code
Re = Reynolds number

S = viscous terms in thin-layer form of Navier-Stokes equations (Eq. 3.33)




Strouhal number

time

contravarient velocity in curvilinear coordinate system
velocity vector

term in F parameter of Baldwin-Lomax turbulence model (Eq. 3.45)

wake
freestream velocity

velocity in x-direction

wall shear velocity (Eq. 4.6)

contravarient velocity in curvilinear coordinate system

velocity in y-direction

velocity scale in turbulence models

Cartesian coordinate

Cartesian coordinate

boundary layer coordinate; Baldwin-Lomax - Eq. 3.40; MML - Eq. 4.5
wall shear length scale (Eq. 4.10)

angle of attack

ratio of specific heats = 1.4

boundary layer thickness

curvilinear coordinate (nominally normal to body surface)

constant in implicit time-differencing scheme

von Karman constant = 0.4
-2,

viscosity

turbulent viscosity

kinematic viscosity; p/p

curvilinear coordinate (nominally in streamwise direction)
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i

P = density

T = shear stress; time in curvilinear coordinate system
¢ = constant in implicit time-differencing scheme
Q = vorticity vector
w = vorticity
Subscripts
i = grid index in {-direction
t = differentiation with respect to t
w = at the wall
X = differentiation with respect to x
y = differentiation with respect to y
n = differentiation with respect to 7
£ = differentiation with respect to £
T = differentiation with respect to 7
00 = freestream conditions
Superscripts
n = iteration number
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Appendix 2

MML Turbulence Model Code Listing
The subroutine listed on the following pages calculates the turbulent viscosity level

for the flowfield obtained from the ARC2D calculation on a user-specified two-dimensional grid
system. The subroutine uses the velocities and grid coordinates to determine length and
velocity scales according to the equations described in Chapter 4. These length and velocity
scales are then used to find p,, which is then used in the subsequent iteration of the velocity
calculation procedure. The pertinant variable names are described below in order to clarify the
relationship of the code to the actual MML model equations.

APLUS = Van Driest damping factor; 26

C2B = Temperature ratio for Sutherland law = —,—r——

C2BP = 1.+ C2B

DELTA(J) = Array of YSTAR values on the airfoil surface

FMUtmp(K) = Viscosity value at a K location

GAMMA = Ratio of specific heats; v

189



J = Index in £-direction

JMAX = Maximum J value in grid

Il

JTAIL1

First J grid line on airfoil surface

JTAIL2 = Last J grid line on airfoil surface

JTRANLO = ] grid line location for transition on lower surface

JTRANUP = J grid line location for transition on upper surface

K = Index in 7-direction

KMAX = Maximum K value in grid

MXLNGTH = Mixing length; £

NUMITER = TIteration number

PRESS = Pressure; GAMIx(Q(4) - 0.5+(Q(2)%+2+Q(3)+*2)/Q(1))

QI KM) = Q; Conservative variables: M=1 =p

M=2 =pu

M=3 =pv

M=4 =e
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RA = 1/y”

RE = Reynolds number

SNOR, = Distance normal to surface

TAU = Vorticity at the surface; wly

TURMU = g,

VORT = Vorticity at a grid location

WMU = puy

X = x location of grid point

XY(J,K,M) = Metrics of transformation: M=1 ={y
M=2 =>€y
M=3 =7y

M=4 ﬁny
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XYJ(J,K) = Jacobian

YSTAR = y*

YPLUS = yt
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C*************************************************}k***************************

Ok koo ki TURBULENT VISCOSITY *t sk rssiikibhikkihkitk

CRrkriiokk ok ok kbR R Rk Rk ook ok ok
SUBROUTINE MUTURJDIM,KDIM,Q,PRESS,VORT,TURMU X,Y, XY XYJ)
PARAMETER(MAXJ=260)

COMMON/BASE/
1 JMAX, KMAX, JM, KM, JBEGIN, JEND,
1 KBEGIN, KEND, jplus(999), jminus(999), jlow, jup,
1 KLOW, KUP, JMAXOLD, PERIODIC, NP, DT,
1 FSMACH, ALPHA, GAMMA, GAMI, PI,
1 IOPERXY, DIS2X, DIS2Y, DIS4X, DIS4Y,
1 SMU, SMUIM, PHIDT, THETADT, METH,
1 jacdt, DTRATE, nsuper, maxres(2), maxdq(2),
1 RESID, RESIDMX, STRTIT, BCAIRF,
1 CPUTIME, RESTART, STORE, IREAD, IPRINT,
1 JTAIL1, JTAILZ2, dswall, sobmax, CIRCUL,
1 SHARP, CUSP, totime,
1 numiter, istart, ISPEC, re, VISCOUS,
1 IVIS, TURBULNT, VISXI, VISETA, VISCROSS,
1 TRANSUP, TRANSLO, JTRANUP, JTRANLO, NPCP
LOGICAL RESTART,STORE, TURBULNT,VISCOUS,PERIODIC,CIRCUL
LOGICAL SHARP,CUSP,BCAIRF
LOGICAL VISXI,VISETA,VISCROSS
REAL*4 MXLNGTH

COMMON /TEMPT/TINF,TWALL,WTRAT,TMN

DIMENSION Q(JDIM,KDIM,4),TURMU(JDIM,KDIM),VORT(JDIM,KDIM)
DIMENSION PRESS(JDIM,KDIM),XY(JDIM,KDIM,4),XYJ(JDIM,KDIM)
DIMENSION X(JDIM,KDIM),Y(JDIM,KDIM)
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COMMON/WORKSP/SNOR(MAXJ), TMOMAXJ), TMI(MAXJ),UUMAXJ),
* TAS(MAXJ),WORK(MAXJ,87)
COMMON /FTURB/ FY(260,65), YMAXX(260), FMAXX(260), RYSM(260),YFMN
COMMON/PLTDAT/ RESD(41000),CFPLT(MAXJ),CLPLT(41000),CDPLT(41000),
& MXLNGTH(260,65), TMUI1(260,65), TMUO(260,65),
& DELTA(MAXJ)

dimension FMUtmp( 2)

C
DATA VK,APLUS/0.4,26./
DATA F1,F2/2000.,5.0/
C
IF(TURBULNT) THEN
IF(NUMITER.LT.10) RETURN
KEDGE = 0.75*KEND
DO 40 J=JTAIL1,JTAIL2
C
C DETERMINE VORTICITY TAS(K)
C

DO 5 K=KBEGIN,KUP
TAS(K) = VORT(W,K)
TURMUW,K) = 0.0

5  CONTINUE

c

C COMPUTE RA

[
do 15 k = KBEGIN,KBEGIN+1
C2B = 198.6/TINF
C2BP = C2B + 1.
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RINV = 1/QJ,K,1)
TT = GAMMA*PRESS(J ,K)*RINV
FMUtmp(K) = C2BP*TT**1.5/( C2B+TT)

15 continue

K=KBEGIN
WMU = .5*( FMUtmp(1) + FMUtmp(2))
TAU = 0.10*ABS(VORT(J-2,K))+0.20*ABS(VORT(J-1,K))
& + 0.40*ABS(VORT(J,K))+0.20*ABS(VORT(J+1,K))
& + 0.10*ABS(VORT(J+2,K))
RA = SQRT( RE*XYJ(J,K)*Q(J,K,1)*TAU/WMU)
C WRITE(6,1000) TAU,RA
C1000 FORMAT(1X,'TAU = E10.4,2X,’RA = |\ E10.4)

C
C CALCULATE NORMAL DISTANCE AND YSTAR
C

YSTAR = 1/RA

DELTA({J) = YSTAR

SNOR(1)=0.0

DO 10 K=KLOW,KUP
SCIS = ABS(XY(J,K-1,3)*XY(J,K,3)+XY(J K-1,4)*XY(J,K,4))
SCAL = 1.0/SQRT(SCIS)
SNOR(K) = SNOR(K-1) + SCAL
10 CONTINUE

. ,

C CALCULATE MIXING LENGTH

C
DO 30 K=KBEGIN,KEDGE
YPLUS = SNOR(KYYSTAR
IF(YPLUS .LE. F1) THEN
MXLNGTHWJ,K) = VK*(F1/F2)*YSTAR*(1.-(1.-YPLUS/F1)**F2)
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& *(1.-EXP(-YPLUS/APLUS))
ELSE
MXLNGTH(J,K) = VK*(FI/F2)*YSTAR
ENDIF
TLSQR = MXLNGTH(J,K)*MXLNGTH(J,K)
TURMU(J,K) = QJ,K,1)*XYJ(J,K*RE*TLSQR*ABS(VORT(J,K))
30 CONTINUE
40 CONTINUE
C
C USE CONSTANT T.E. LENGTH SCALE IN WAKE
C
DO 60 K=KLOW,KUP
DO 50 J=1,JMAX
IF(X(J,K) .GT. 1.0 .AND. Y(J,K) .LT. 0.0) JTELO=J
IF(X(J,K) .LT. 1.0 .AND. Y(J,K) .GT. 0.0) JTEHI=J
50 CONTINUE
DO 60 J=1,JMAX
IFXJ,K) .GT. 1.0 .AND. Y(J,K) .LT. 0.0) THEN
MXLNGTH(J,K) = MXLNGTH(JTELO,K)
TLSQR = MXLNGTH®J,K)Y*MXLNGTH(J,K)
TURMU(J,K) = QU K,1)*XYJ(J, K*RE*TLSQR*ABS(VORT(J,K))
ENDIF
IFX({J,K) .GT. 1.0 .AND. Y(J,K) .GT. 0.0) THEN
MXLNGTH({J,K) = MXLNGTH(JTEHLK)
TLSQR = MXLNGTH(J,K)*MXLNGTH(J,K)
TURMU({J,K) = Q(J,K,1)*XYJ(J,K)*RE*TLSQR*ABS(VORT(J,K))
ENDIF
60 CONTINUE
C gL LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LKL
C
C++++ PROVIDE FOR NONZERO LENGTH SCALE ACROSS CENTERLINE OF C-GRID
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JT1M1 = JTAIL1-1

DO 70J=1JT1M1

JMX2 = JMAX-J+1

SLOPEML = (MXLNGTH(JMX2,5)-MXLNGTH(®J,5))/(Y(JMX2,5)-Y(J,5))

DO 70 K=1,4
C
C¥**+* CALCULATE MIXING LENGTH BELOW CENTERLINE
c :
MXLNGTH(,K) = SLOPEML*(Y(J,K)-Y(J,5))+ MXLNGTH(J,5)
TLSQR = MXLNGTH(J,K)*MXLNGTH(J,K)
TURMU({J,K) = Q(J,K,1)*XYJ(J, K)*RE*TLSQR*ABS(VORT(J,K))
C
C**** CALCULATE MIXING LENGTH ABOVE CENTERLINE
C

MXLNGTH(JMX2,K) = MXLNGTH(JMX2,5)-SLOPEML*(Y(JMX2,5)-Y(JMX2,K))
TLSQR = MXLNGTH(MX2,K)*MXLNGTH(JMX2,K)
TURMUWJMX2,K)=Q(JIMX2,K, 1)*XYJ(JMX2, K)*RE*TLSQR*ABS(VORT(JMX2,K))
70 CONTINUE
Coo>5>555555555555555 55555555 555555555555 555555555555 5555 55555555 5555555>
c
iflTRANSLO.ne.0.0)then
c
c zero turmu from JTRANLO to JTRANUP
c
do 455 j = JTRANLO,JTRANUP
do 455 k = KBEGIN,KEND
turmu(j,k) = 0.

455 continue

endif
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c
C IF NOT TURBULNT SET TURMU = 0.0
C
ELSE
DO 800 K = KBEGIN,KEND
DO 800 J = JBEGIN,JEND
TURMU®J,K) = 0.0
800 CONTINUE

ENDIF

RETURN
END
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Appendix 3

Coordinates of the Airfoil/Ice-Shape Geoemtries

This appendix contains the x-y coordinate pairs that define the surface of the three
airfoil/ice-shape geometries used in this work. The coordinates are listed as they would appear
for an input file to the GRAPE grid generation code. All the x-coordinates are listed first
with their corresponding y-values listed afterward. Both sets are listed in the same order(i.e.
starting at the trailing edge and proceeding in a clockwise direction until reaching the trailing
edge again.) All coordinates have been normalized by the chord length with the leading edge
at (0.0, 0.0) and the trailing edge at (1.0, 0.0). Since the ice shapes grow in the negative x-

direction, some coordinate locations will have x-values less than zero.
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Coordinates for the NACA 63, - 415 airfoil and R7 ice shape

X=
1.0000000, 0.9497200, 0.8994100, 0.8491500, 0.7989800, 0.7489100,
0.6989400, 0.6490700, 0.5993000, 0.5496100, 0.5000000, 0.14501500,
0.4009500, 0.3514800, 0.3020000, 0.2525000, 0.2029500, 0.1533100,
0.1035300, 0.0785300, 0.0534000, 0.0280200, 0.0150900, 0.0099999,
0.0037000, -0.0013%00, -0.0077790, -0.0113000, -0.0131500, -0.0115700,
-0.0081500, -0.0041700, 0.0000000, 0.0030000, 0.0052500, 0.0099100,
0.0219800, 0.0466000, 0.0714700, 0.0964700, 0.1466900, 0.1970500,
0.2475000, 0.2980000, 0.3485200, 0.3990500, 0.4495500, 0.5000000,
0.5503900, 0.6070000, 0.6509300, 0.7010600, 0.7510900, 0.8010200,
0.8508500, 0.9005900, 0.9502800, 1.0000000,
Y=

0.0000000, 0.0033300, 0.0018400, -0.0019300, -0.0071600, -0.0132700,
-0.0198900, -0.0266000, -0.0331100, -0.0391800, -0.0445900, -0.0490900,
-0.0524300, -0.0543900, -0.0547400, -0.0536100, -0.0509500, -0.0465600,
-0.0400900, -0.0356500, -0.0300000, -0.0222000, -0.0164600, -0.0185200,
-0.0181500, -0.0175900, -0.0168500, -0.0151900, -0.0116700, -0.0060200,

0.0000000, 0.0063000, 0.0115700, 0.0128700, 0.0158500, 0.0207400,

0.0296400, 0.0426400, 0.0526100, 0.0607700, 0.0734800, 0.0827900,

0.0894100, 0.0936200, 0.0955900, 0.0952700, 0.0928900, 0.0887100,

0.0829800, 0.0759500, 0.0678000, 0.0587700, 0.0490700, 0.0390000,

0.0288500, 0.0188400, 0.0093100, 0.0000000
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Coordinates for the NACA63 A—415 airfoil and G3 ice shape

X=
1.0000000, 0.9497200, 0.8994100, 0.8491500, 0.7989800, 0.7489100,
0.6989400, 0.6490700, 0.5993000, 0.5496100, 0.5000000, 0.4504500,
0.4009500, 0.3514800, 0.3020000, 0.2525000, 0.2029500, 0.1533100,
0.1035300, 0.0785300, 0.0534000, 0.0280209, 0.0116200, 0.0088810,
0.0065130, 0.0046010, 0.0022330, -0.0000456, -0.0028660, -0.0046860,
-0.0069620, -0.0081510, -0.0085260, -0.0079870, -0.0070810, -0.0055410,
-0.0049140, -0.0046560, -0.0048770, -0.0051820, -0.0056810, -0.0062490,
-0.0069890, -0.0077240, -0.0084540, -0.0094570, -0.0111000, -0.0132800,
-0.0150200, -0.0166600, -0.0184100, -0.0187900, -0.0178000, -0.0155300,
-0.0112500, -0.0070600, -0.0030580, 0.0003970, 0.0030300, 0.0054740,
0.0106100, 0.0219800, 0.0466000, 0.0714700, 0.0964700, 0.1466900,
0.1970500, 0.2475000, 0.2980000, 0.3485200, 0.3990500, 0.4495500,
0.5000000, 0.5503900, 0.6070000, 0.6509300, 0.7010600, 0.7510900,
0.8010200, 0.8508500, 0.9005900, 0.9502800, 1.0000000,
Y=
0.0000000, 0.0033300, 0.0018400, -0.0019300, -0.0071600, -0.0132700,
-0.0198900, -0.0266000, -0.0331100, -0.0391800, -0.0445900, -0.0490900,
-0.0524300, -0.0543900, -0.0547400, -0.0536100, -0.0509500, -0.0465600,
-0.0400900, -0.0356500, -0.0300000, -0.0222000, -0.0148100, -0.0140500,
-0.0139000, -0.0138300, -0.0135900, -0.0132600, -0.0132900, -0.0133100,
-0.0132400, -0.0126400, -0.0116800, -0.0109700, -0.0106100, -0.0099830,
-0.b090120, -0.0076940, -0.0040130, -0.0010340, 0.0029950, 0.0050950,
0.0061400, 0.0068340, 0.0070020, 0.0071670, 0.0072390, 0.0073050,
0.0079010, 0.0088490, 0.0105000, 0.0120700, 0.0130500, 0.0131600,
0.0128500, 0.0128000, 0.0129300, 0.0132300, 0.0137800, 0.0149500,
0.0195600, 0.0296400, 0.0426400, 0.0526100, 0.0607700, 0.0734800,
0.0827900, 0.0894100, 0.0936200, 0.0955900, 0.0952700, 0.0928900,
0.0887100, 0.0829800, 0.0747735, 0.0678000, 0.0587700, 0.0490700,
0.0390000, 0.0288500, 0.0188400, 0.0093100, 0.0000000
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X=
1.0000000,
0.9060580,
0.5252967,
0.2051575,
0.0619175,
0.0352952,
0.0228841,
0.0188905,
0.0052619,

-0.0083667,
-0.0219952,
-0.0264583,
-0.0152068,
0.0032177,
0.0737220,
0.2023058,
0.6700144,
0.9764334,

Y=

0.0000000,
-0.0127008,
-0.0509522,
-0.0577608,
-0.0426421,
-0.0484683,
-0.0523769,
-0.0490488,
-0.0370620,
-0.0202050,

0.0076136,

Coordinates for the NACA 0012 airfoil and G1 ice shape

0.9913444, 0.9809285, 0.9681920, 0.9523343,
0.8714901, 0.8252681, 0.7642254, 0.6882111,
0.4601904, 0.4103649, 0.3700089, 0.3300074,
0.0888420, 0.0851143, 0.0737720, 0.0695000,
0.0581143, 0.0543111, 0.0505079, 0.0467048,
0.0314291, 0.06309070, 0.0276889, 0.0238857,
0.0224050, 0.06219731, 0.02161907, 0.0213361,
0.0166191, 0.0143476, 0.0120762, 0.0098048,
0.0029905, 0.0007191, -0.0015524, -0.0038238,
-0.0106381, -0.0129095, -0.0151810, -0.0174524,
-0.0242667, -0.0265381, -0.02683877, -0.0269931,
-0.0258790, -0.0251724, -0.0244191, -0.0213483,
-0.0121361, -0.0090653, -0.0059946, -0.0029238,
0.0062884, 0.0093592, 0.0124299, 0.0155007,
0.0836666, 0.0965504, 0.1080990, 0.1285863,
0.3143436, 0.4387820, 0.5316864,  0.5894307,
0.7106869, 0.7707552, 0.8509442, 0.9156263,
0.9905078, 1.0000000,

-0.0012323, -0.0026976, -0.0044639, -0.0066250,
-0.0170272, -0.0225450, -0.0293820, -0.0371858,
-0.0550485, -0.0574780, -0.0589117, -0.0597804,
-0.0449812, -0.0441132, -0.0417323, -0.0407000,
-0.0436131, -0.0445841, -0.0455552, -0.0465262,
-0.0494393, -0.0504103, -0.0513813, -0.0523524,
-0.0522204, -0.0519603, -0.0516100, -0.0511872,
-0.0472992, -0.0454587, -0.0435218, -0.0414819,
-0.0346632,  -0.0321230, -0.0294269, -0.0265574,
-0.0166590, -0.0128070, -0.0085832, -0.0038910,

0.0152347, 0.0259245, 0.0266049, 0.0269931,
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0.9321911,
0.6043302,
0.2887478,
0.0657206,
0.0390934,
0.0233862,
0.0211634,
0.0075333,

-0.0060952,

-0.0197238,

-0.0268443,

-0.0182775,
0.0001469,
0.0185714,
0.1792650,
0.6300145,
0.9540105,

-0.0093109,
-0.0448267,
-0.0600007,
-0.0416710,
-0.0474972,
-0.0524220,
-0.0507137,
-0.0393315,
-0.0234926,

0.0014202,

0.0280895,



0.0287365,
0.0280588,
0.0251956,
0.0417323,
0.0576065,
0.0389335,
0.0033242,

0.0292182,
0.0275816,
0.0247184,
0.0439715,
0.0599511,
0.0349618,
0.0013507,

0.0294798,
0.0271044,
0.0242412,
0.0462317,
0.0561746,
0.0286748,
0.0000000
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0.0294914,
0.0266272,
0.0237640,
0.0481440,
0.0505007,
0.0195168,

0.0290133,
0.0261500,
0.0232867,
0.0511603,
0.0460672,
0.0114718,

0.0285361,
0.0256728,
0.0228095,
0.0560180,
0.0426025,
0.0063985,
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