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This is a final report that summarizes the results achieved under this grant The first
major accomplishment is the development of the sublaminate modeling approach and shear
deformation theory. The sublaminate approach allows the flexibility of considering one ply
or groups of plies as a single laminated unit with effective properties. This approach is
valid when the characteristic length of the response is small compared to the sublaminate
thickness. The sublaminate approach was validated comparing its predictions with a finite
element solution [1], A shear deformation theory represents an optimum compromise
between accuracy and computational effort in delamination analysis of laminated
composites [2]. This conclusion was reached by applying several theories with increasing
level of complexity to the prediction of interlaminar stresses and strain energy release rate in
a double cracked-lap-shear configuration.

""""" The shear deformation theory and sublaminate approach was applied to the free-
edge delamination[7,3] and internal delamination analysis [4] of laminated plates including
the influence of hygrothermal stresses [5,6] and combined loading [7]. the analysis was
also applied to tapered laminates subjected to tensile loading [8,9].

The second accomplishment is the development of the variationally asymptotical
analysis for thin-walled anisotropic beams with closed cross sections [10-12]. The theory
is a prerequisite for isolating the influence of damage by comparing predictions with an
reference undamaged configuration. Existing composite beam theories have significant
differences in the derived expressions for the stiffness coefficients. The variationally
asymptotical analysis was developed in order to isolate the effects contributing to these
differences. The major advantage of this approach lies in the fact that the displacement field
is not assumed a priori as is the case for the existing theories and emerges as a result of the
analysis. Moreover, the assumed displacement fields in the existing theories follow the
classical isotropic formulation. However, no proof is provided with regard to the validity
of such a displacement field for anisotropic materials.

The displacement field which resulted from the theory showed two new
contributions which were identified as out-of-plane warping due to axial strain and
bending. These contributions emerge in addition to the classical out-of-plane torsional
warping and are significantly influenced by the material's anisotropy. However, they
vanish for materials that are orthotropic or whose properties are antisymmetric relative to
the beam middle surface. These configurations coincide with the cases where the
predictions of the existing theories are in agreement with test results and numerical
simulations. For generally anisotropic materials the error associated with the existing
theory predictions correspond to the neglect axial strain and bending related out-of-plane
warping.

In addition to providing a definitive answer to the reasons for the disparity in
existing theories predictions, the variationally aymptotical theory provides a consistent
approach to deriving the displacement field in anisotropic structures. A number of
investigators have now adopted this approach for the modeling of initially curved and
twisted composite beams and laminated composite plates[13, 14]. Moreover, the closed



form expressions indicate that the new contributions are proportional to the extensional
strain and bending curvature. This provides a proof for the work of Kosraatka [15] where
an improvement to the displacement field was proposed by adding two terms which are
proportional to the extensional strain and bending curvatures. However, their contributions
were determined using a finite element simulation.

The details of the sublaminate and Variationally asymptotical analyses are provided
by the work of Ref. 12 which is provided in Appendix A for convenience. A list of the
publications and presentations related to the Grant is provided in Appendix B.
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CHAPTER I

INTRODUCTION

1.1 Background

The use of fiber reinforced composites is increasing in engineering applications. One

of the major issues in composite structures is the understanding of the role of the ma-

terial's anisotropy on the deformation modes, damage modes and failure mechanisms.

This research work addresses these stiffness and strength related issues by developing

analytical models for the prediction of deformation modes and their coupling effects

and damage onset and growth in laminated composites. Accurate prediction of stiff-

ness, response, damage modes and failure mechanisms is bound to lead to the design

of efficient, and damage tolerant composite structures.

Delamination is a predominant failure mode in continuous fiber reinforced lam-

inated composite structures. Based on the location and direction of growth, there

are two distinct types of delamination, namely, free edge delamination and local or

transverse crack tip delamination. In many cases, both types occur concurrently with

varying levels of interaction.

In the first part of this work shear deformation models including hygrothermal

effects are developed for the analysis of mid-plane edge delamination and local de-

lamination originating from transverse cracks in 90° plies. The results of these models

are combined with a previously developed shear deformation model for mixed-mode

edge delamination to yield a unified analysis of delamination and the ability to iden-
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tify the critical failure modes and loads.

Elastically tailored composite design are being used to achieve favorable defor-

mation modes under a given loading environment. Coupling between deformation

modes such as extension-twist or bending-twist is created by an appropriate selec-

tion of fiber orientation, stacking sequence and materials. An example is the X-29

swept forward wing aircraft where a laminated composite skin is used to create the

bending-twist coupling required to handle divergence. This design uses AS-1/3501-5A

graphite/epoxy wing covers with —45° outboard plies 9° forward of the wing's 40 /x

chord line. Elastically tailored composite rotor blades have the potential to be used

in rotorcraft structures in order to control flapping and twisting motions at different

rotor speeds. This concept can be utilized in tilt rotor aircraft in order to achieve a,

compromise between hover performance and forward flight propulsive efficiency. A^

change in the blade twist between flight modes can be developed through the use

of extension-twist coupling,as implemented in the XV-15 tilt rotor aircraft. Twist

control is achieved by assuming a 15 percent change in operating rpm between hover

and forward flight regimes.

The coupling of deformation modes provides a flexibility to meet design require-

ments on the aeroelastic behavior, dynamic response and stability of structures and

results in improved fatigue life and durability.

A prerequisite for the implementation of an elastically tailored concept, is the

development of an analytical model which accurately predicts the various stiffness

components and isolate the material and geometrical parameters controlling the be-

havior.

In the second part, a variationally and asymptotically consistent theory for thin-

walled beams that incorporates the anisotropy associated with laminated composites

is developed. The theory is based on an asymptotical analysis of ID shell energy.
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The major advantage of this approach lies in the fact that the displacement function

is not. assumed a priori and is determined as a result of the minimization of the energy

functional. As a result, two nonclassical contributions to the warping emerge. While

these new contributions vanish for isotropic and orthotropic materials, they have a

significant influence on the response of generally anisotropic materials. The accuracy

of previously developed theories is assessed by comparing the resulting displacement

fields and an assessment of the significance of shear deformation is presented. Com-

parison of predictions with finite element simulation and test results illustrate the

consistency and accuracy of the developed theory.

The delamination analysis model is presented in the first part of this work, this is

followed by the development of the thin-walled anisotropic beam theory. Each part

includes a literature survey in order to place the present work in proper prospective.

A comparison of prediction is presented in order to validate the developed theories

and assess their accuracy.



CHAPTER II

DELAMINATION ANALYSIS

This chapter addresses damage modeling in laminated composite plates. A review

of previous work is presented first, this is followed by a development of the analytical

model.

2.1 Review of Previous Work

Failure in laminated composite materials often initiates in the form of matrix frac-

tures, namely, transverse matrix cracks and delaminations. Based on the location and

direction of growth, two distinct types of delamination can be discerned. These two

types are called edge delamination and local or transverse crack tip delamination, as

shown in Fig. 2.1. Edge delaminations initiate at the load free edges of the laminate

whereas local delaminations start from a transverse matrix crack. Transverse matrix

cracks refer to intralaminar failures whereas delaminations refer to interlaminar fail-

ures. Transverse cracks usually occur within laminates where the fibers run at an

angle to the primary load direction and hence the name. In many cases, both types

occur concurrently with varying levels of interaction.

It has been observed [1] in simple tension tests of uniform rectangular cross section

specimen (Edge Delamination tests) that delaminations initiate along the load free

edges and propagate normal to the load direction as shown in Fig. 2.1. Transverse

matrix cracks running parallel to the fibers have also been observed in off-axis and

90° plies. Such transverse cracks extend through the thickness of similarly oriented
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plies and terminate where the ply orientation changes. Delaminations can also origi-

nate at the interfaces where transverse cracks terminate. These transverse crack tip

delaminations or local delaminations, grow normal to the transverse crack from which

they originate. In the case of 90° plies, the growth direction is parallel to the load.

The growth process of edge delaminations and local delaminations is often mod-

eled using a fracture mechanics approach leading to the calculation of a strain energy

release rate. This is because the strain energy release rate can correlate delamination

behavior from different loading conditions and can account for geometric dependen-

cies. The strain energy release rate associated with a particular growth configuration

is a measure of the driving force behind that failure mode. In combination with ap-

propriate failure criteria, the strain energy release rate provides a means of predicting

the failure loads of the structure.

Several methods are available in the literature for analyzing edge delaminations.

These include finite element modeling as in [2], [3], and [4], the complex variable stress

potential approach [5], a simple technique based on classical laminate theory [1] and

a higher order laminate theory including shear deformations [6]. Finite element mod-

els provide accurate solutions but involve intensive computational effort. Classical

laminate theory (CLT) provides simple closed form solutions and is thus well suited

for preliminary design evaluation. However, CLT provides only the total energy re-

lease rate, and thus, in a mixed mode situation, there is insufficient information to

completely assess the delamination growth tendency. A higher order laminate theory

including shear deformations has the ability to provide the individual contributions

of the three fracture modes while retaining the simplicity of a closed form solution.

A shear deformation model is available for off-mid-plane edge delamination and has

been shown to agree well with finite element predictions [7].

Grossman and Wang [8] have tested T300/934 graphite/epoxy [±25/90n]f speci-
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mens in simple tension and reported a range of behavior including transverse cracking,

edge delamination and local del animation. O'Brien [9] has presented classical lam-

• inate theory solutions for these specimens, demonstrating reasonable agreement in

the case of edge delamination but with some discrepancies in the local delamina-

tion predictions. The local delamination model overestimates the failure strains for

[±25/90n], specimens for small values of n mainly due to the implicit critical strain

energy matching used.

A finite element model combining edge and local delaminations has been pro-

posed b}* Law [10]. His predictions, however, do not fully explain the dependency of

the critical strain on the number of 90° plies. A similar three-dimensional finite ele-

ment analysis including hygrothermal effects has been performed by Wang ei al [11]

to determine the delamination onset load for combined delamination, qualitatively

demonstrating stable crack growth.

A three-dimensional finite element analysis of delamination from matrix cracks

has been developed by Fish and 0'Brien[12]. They conducted an experimental and

analytical study on the influence of matrix cracking on delamination in [-f!5/ —

90,,/— 15], glass-epoxy laminates subjected to monotonically increasing tension loads.

Experimental results showed that local delaminations form at the intersection of

matrix cracks in the +15° plies and the free-edge. Comparison of a Quasi-three-

dimensional (Q3D) finite element results with a three-dimensional (3D) finite element

analysis showed significant differences in the relative and absolute magnitudes of the

interlaminar stress components. Thus, discrepancies in failure predictions may exist

between Q3D and 3D analysis. The results of this study emphasized the importance

of incorporating the various damage mechanisms that influence subsequent damage

development in the failure analysis.

Thermal and moisture effects on the strain energy release rates for interlaminar
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fracture of unidirectional graphite/epoxy have been investigated by Russell and Street

[13]. This investigation also included a study of the effects of shear loading through

the use of various test configurations (Double Cantilever Beam, Cracked Lap Shear

etc.). Initiation energies for delamination were found to increase as the proportion

of shear loading increased and as the temperature was lowered, but no significant

moisture influence was observed. The fracture resistance to crack extension was found

to increase under tensile dominated loadings with both temperature and moisture

content. but for high shear loading, the resistance was insensitive to the hygrothermal

conditions.

O'Brien, Raju and Garber have presented a CLT based analysis of mixed mode

edge delamination specimens including hygrothermal effects [14]. They have used

finite element modeling to determine the strain energy release rate components.' Their

results indicate total strain energy release rate increases of as much as 170% due to

thermal effects for some T300/5208 graphite/epoxy laminates. However, a moisture

content of 0.75% has been shown to totally alleviate this increase. According to

this analysis, in general, the consideration of thermal effects increases the energy

release rate whereas moisture effects have the opposite influence. These results have

been confirmed using shear deformation models in the case of off-mid-plane edge

delaminations [15]. It was found that the interlaminar stresses follow the same trend

as the energy release rate, with increase due to thermal effects and alleviation due to

hygroscopic effects.

Aoki and Kondo calculated the strain energy release rate under thermal loading

for mixed mode edge delamination. They used conventional finite element method

[16] and a simplified method [16,17] based on the classical lamination theory in com-

bination with the J-integral for mechanical loading. Two types of axial constraint

conditions were considered : (1) constant strain or fixed-grip and (2) constant load.
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Numerical examples for cross-pi)' and angle-ply laminates showed that in angle-ply

laminate, the energy release rate under free axial elongation increased constantly

with delamination growth, while it remained constant under fixed-grip conditions. A

higher order plate theory including transverse normal strain and thermal effects has

been developed by Whitney [18] for the analysis of mid-plane edge delaminations.

This approach provides the interlaminar stresses also, in addition to the strain en-

ergy release rate. A [Oa/QOa], graphite/epoxy mode I specimen was analyzed and

the maximum interlaminar normal stress was shown to increase by a factor of 2.7

due to thermal effects, when compared with the pure mechanical strain reference

configuration.

From this summary it is found that there is a need for a unified approach that

includes the analysis of free edge as well as local delamination and their interaction. In

practical composite configuration free edge delamination does not occur in isolation,

it is accompanied by other damage modes. Developing an analysis methodology that

includes the interaction of delamination with other damage modes is essential for

designing damage tolerant structures.

The study of delamination consists of two main sections. These are the analysis of

mid-plane edge delamination and local delamination in laminated composite plates.

2.2 Mid-Plane Edge Delamination

A mid-plane edge delamination specimen is shown in Fig. 2.2. A uniform axial strain

t is applied in the x direction. From symmetry only one quarter of the specimen is

considered. The sublaminate scheme and the choice of coordinate axes are illustrated

in Fig. 2.3.

Sublaminates 1 and 2 in Fig. 2.3 represent the uncracked and the cracked regions,
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Figure 2.2: Mid-Plane Edge Delaminatiion

I

Figure 2.3: Sublaminatc Modeling Scheme (Mid-Plane Edge Delamination)
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respectively. 'The analysis is based on the following displacement fields within each

sublaminate

(2.1)

w = W(y)

where t i , t>, and v denote the displacements relative to the i,y, and : axes, respec-

tively. Shear deformation is recognized through the rotations 0f and j3u. In the

present formulation thickness strain is neglected, and consequently inaccurate values

of interlaminar peel stress, o2,, are expected. However, the peel stress can be modified

by enforcing the free edge boundarj' condition associated with the transverse shear

stress resultant.

A generic sublaminate along with the applied forces and moments is shown in

Fig. 2.4. The force and moment resultants are denoted by A*,, (?,, and Mi, respectively.

The constitutive relationships in terms of these force and moment resultants can be

written as

AT,- = Aifr + Biknk - AT"71 (Lj.k = 1,2,6)

Mi = Bijtj + DM - M™ (i, j,fc = 1,2,6) (2.2)

The subscripts x,y,z,yz,xz, and xy are replaced by the subscripts 1-6, respec-

tively. The non-mechanical forces and moments resulting from hygrothermal effects

axe labeled with superscript nm for non-mechanical. They are defined as

i j(l,z)dz (2.3)
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Figure 2.4: Notation and Sign Convention for a Generic Sublaminat*
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The thermal coefficient is denoted by of, in Eq. (2.3), while the swelling coefficient

by fij. The Q- are the plane stress sublaminate reduced stiffnesses [19]. The bars on

otj,f3j and QJJ indicate that theses quantities are to be obtained through appropriate

coordinate transformations. The change in temperature between the ambient and the

stress free temperature is denoted by AT. The percentage moisture weight gain is

represented by AH.

For a sublaminate of thickness /»., the elastic stiffnesses j4,j,S,j. and Z?,j in Eqs.

(2.2) are defined as
h

( l , r , c 2 )< f - (2.4)
2

The equilibrium equations can be written as follows

Qy,y + Pi - Pi = 0 (2.5)

where <2X^2»)P2 and ^ix;iiv57'i denote the interlaminar stress components at the

sublaminate upper and lower surfaces, respectively. These stress components appear

in Fig. 2.4. Partial differentiation is denoted by a comma in Eqs. (2.5). Application

of the boundary conditions and the governing equations to each of the sublaminates

results in a system of differential equations which are solved to obtain the stresses

and strain energy release rate. The boundary conditions to be prescribed at constant

values of y, the sublaminate sections, are Nxy or U, Nv or V, Qy or W, Mv or /3y and

Mx or 3X.



14

2.2.1 Uncracked Region (Sublaminate 1)

From symmetry conditions at the sublaminate bottom surface, both tr and the shear-

ing stresses are zero. Since thickness strain is neglected, this leads to w being zero

everywhere in this sublaminate. The equilibrium equations can be written as

<?v . ,v -P i=0 (2-6)

My, ,y ~ Qy, = 0

where subscript 1 refers to sublaminate 1. From Eqs. (2.6) and the continuity of axial

and in-plane shear stress resultants between sublaminates 1 and 2, we get

= 0 (2-7)

By substituting from the constitutive relations into Eqs (2.6) and Eq. (2.7). and

assuming an exponential form for the rotations fi\v and fti,. we get the "following

characteristic equation

E4s
4 - E2s* 4 E0 = 0 (2.8)

with

E0 =

= ^21^55 -I- ^32 ̂ 44 ~ ^22^45 ~ ^31 ̂ 45

where
l3{i2 -f A1662 -I- £«) (^12^3 + ^16^3 4 B16)

ja^H + ^26^22 "I- -C>22) (#2263 + ^26^23 •+ <D26)

26^12 "I- -^66^22 + ^26) (^26^13 4 ^66^23 4 ^6e)
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A 16 #26 -Bee

and
^22 ^26

AIR A66

Coefficient E0 depends solely on the sublaminate axial stiffness, while £4 is pre-

dominantly influenced by the bending arid coupling coefficients Z),j and Bij . The

numerical value of £4 can be orders of magnitude smaller than £2 and E0. This results

in the presence of a boundary zone in the response. For the material and laminate

layups considered, the roots of this characteristic equation are real. Only the negative

roots of Eq. (2.8) are considered as they give solutions decaying exponentially from

the delamination tip. The solution can be written as

( 0 < y < b - a ) (2.9)

where

Parameters Ij are arbitrary constants to be determined from the boundarj' condi-

tions. By substituting Eq. (2.7) into the constitutive relations and using the assumed

displacement fields, we obtain

Si
-f

12 CIS
(2.10)

2

where
Si

5,

. nm

»xj/

Substitute from Eqs. (2.10) into the constitutive relations to get the resultant forces

and moments in terms of the total extensional strain

\ _L A f _L A till 4 .AlZtll 4 >»16t21

M,Vl Bj2 4 #22^11 4
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nm ,
l -f

nm XTnm

-i- •fin]3x2 (2.11)

2.2.2 Cracked Region (Sublaminate 2)

From the stress free boundary conditions at the face y = — a of sublaminate 2 and

the equilibrium equations, we get '

= 0

The equilibrium equations reduce to

Following a similar procedure as in sublaminate 1, the rotation can be written as

with

where

( -a < t / < 0 )

*45

-#26^12 + -B66V22

-1

.-012

(2.12)

and

22 -^26 ^22 J

^i is an arbitrary constant to be determined from the continuity conditions be-

tween sublaminates 1 and 2. The force and moment resultants can be expressed in
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terms of Th- :-ois»l strain

)-V '- I -
4- A-uVu 4 AieV>21 4- #12^31 1 ,

4- £26^11 + B66<f>2\ 4- ̂ eVsi J

4

4-

i TJ E^'^'" ?V^^

"f £26F3
nm - Ml

4-

4

"I- Ai6(f>22 4-

4 ^26^32 J
(2.13)

where

3 .

The response associated with sublaminates 1 and 2 shown in Fig. 2.3 is coupled

through the following conditions at y = 0.

The solution for both sublaminates i.e., the values of 7j and H\ can be obtained

by applying these conditions. The final expressions for the sublaminate rotations is

given by Eqs. (2.9) and Eq. (2.12) where

-©! 4 (04 4 Q 5 7 ? 2 ) ( ) £ + e 5 7 7 2 ( ) - ©2 4- © 4 ( )

with

HI = TJj/! 4

I = Bi2 4- BZZ^U 4- -626^21
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A3 = ~(^21 4-

A-4 = — (^21 4

and

©i = B26(tu - ¥>n) 4 -B6

_ f) I cnrn XT1™"1 \ I ZJ2 = -D26(':)i — ̂ i ) -f -D

©3 = -fisi

©5 = ~(I>66 4 ^26^12 4 B66p22 -f

The total strain energy release rate can be calculated by considering the work

done by the external forces. This is given by

GT = G, = -it^ (2.14)

where W, = work done by the external force in sublaminate i.L = laminate length.

and a = crack length.

The work done by the external forces is written in terms of the mechanical strain.

ej",as

Wi = f / cTN^dy (2.15)
Jv>

with

e™ = £ - c™ (2.16)

The sublaminate free expansion strains, e"m , are calculated by setting the axial force

resultant to zero, i.e.

f Nfidy = Q (2.17)
Jv<
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©

(AT+AH) AT=AH=0

e = 0 e=l
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N, nm

e *
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Figure 2.5: Effective non-mechanical free expansion strain across the entire width of

the laminate

where Nx. is given in Eq. (2.11) and Eq. (2.13). The expression for each sublaminate

is
ntn i
] 4

^nm i A rnm i D jpnm'nTn i
l 4

i
4

4 4 Ai(,(f>2i -f

The total strain, e, is given by

= e™ 4 enm

(2.18)

(2.19)

where e"1 is the effective mechanical strain and enm is the effective free-expansional

strain across the entire width of the laminate estimated by decomposing the non-

mechanical problem in Fig. 2.5(a) into the superposition of the two cases-shown in

Fig. 2.5(b) and Fig. 2.5(c). In case (b) the laminate is subjected to a non-mechanical

change ( AT + AfT), while the strain is prescribed to be zero. In case (c) a unit axial

strain is applied, while no hygrothermal change is considered. Knowing that no axial
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force is applied in the main problem, i.e. Fig. 2.5(a), the sum of the axial forces in

the two subproblems should be zero, hence

NXk 4 enmNXc = 0 (2.20)

and

where NXi and Ar
Xc are the axial forces in case (b) and case (c), respectively. These

axial forces are computed by substituting the expressions of Nx, and NX2 from Eq.

(2.11) and Eq. (2.13) into the relations

f r(b-a) fO

KM
Je=0,(AT+AH)

f f(

= \
1J°

NX3dy (2.22)
J

The expressions for NXt and NXe are found to be

+ (AaF™ + A,eF™ 4 £i2F3
nm - Kr )a (2.23)

and

ATxt = (^n + ^»en-l-^i6^i)(t-a)

4 (An 4 AuVii 4 Aiespji 4 Bi2<,P3i)a (2.24)

The crack length and half of the total laminate width are denoted by a and fc. respec-

tively. as shown in Fig. 2.3.

By combining the expressions of Nx, from Eqs. (2.11) and Eqs. (2.13) with Eqs.

(2.14)-(2.24), the total energy release rate for the Mode I case can be written in the

form

Gj = (GJL} 4 (G/ia) 4 (Gin 4 (?«.) (2.25)
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where

GIL = ( e -e

- (e - e™ ) [(Au 4 412S?1, 4 A,ep2i 4

4

a {(Au 4 Aa2y>i, 4 4]6p2i 4
da

. 4 (A12F™ 4 -416/T1 4 £12/3

Gin = - (e - £?*") [("11 4 i7in»)/i«ic"' l(6~a) 4 (fin + ^

- (e - ej1"1) (£16 4

= - (fin 4 ̂ Q^)/: c"> - l 4 (fin 4

4

and

nm T-inm
-

da rfo Ar
lc

A'«6 ^12(61 - y>i i ) 4 /0 orN(2.26)

The resiling expression for the total energy release rate G; is composed of three

terms. The first term, denoted by GIL is independent of the delamination length while

the second, G/i0, is a linear function of the crack length. The third term denoted by

(GjR 4 GI^} , is an exponentially decaying function of the delamination length.

In computing the non-mechanical strains, the laminate is assumed to be held at

the prescribed temperature and moisture levels. This is followed by testing under



22

fixed-grip condition, i.e., the constant strain measured in the lab is the mechanical

strain £*". In Refs.[18] and [20], Whitney considered the strain measured in the tests

to be the total strain, i.e. e = em + enm = constant . The difference between the

two interpretations is detected by the terms GIL. and Gmc in Eq. (2.25). These two

terms are neglected in Refs. [18] and [20] since the total strain £ is assumed to be

constant.

As mentioned previously, neglecting the thickness strain leads to inaccurate esti-

mates for the peel stress. The peel stress is given by

P = <?w,v = -(^44 + A^)IjSje-'v (j = 1.2) (2.27)

The equilibrium of transverse force requires that

f(b-a)f - a
\ pdy = Q (2.28)
Jo

or from the equilibrium equations (2.6)

While for all practical purpose the resultant shear stress Qv vanishes due to
'»j =(*-«)

the free edge, the resultant shear stress at the delamination front Qyi ^ 0. That

is in order for the peel stress to satisfy transverse force equilibrium, the shear force

boundary condition at the sublaminate end should be enforced. This is done by

adding to the peel stress distribution an appropriate boundary function expressed in

terms of the characteristics roots as

a1e-lt/ -I- a2e-3y

The coefficients aj and a2 are obtained by enforcing equilibrium of transverse force

given in Eq. (2.28) and moment given by



23

=
1
\ 1

• J- ( 1
~~T™ii

7
"i

\
T

,4
> 1

Delamination

P<3

90° Plies

Symmetry
Plane

OP

Transverse
Crack

Figure 2.6: Local Delamination Specimen Cross Section

The corrected peel stress distribution is

P = —^Mv
— .82

2.3 Local Delamination

A longitudinal section illustrating the geometry of a generic configuration is shown

in Fig. 2.6. The central region is assumed to be made of 90° plies with an isolated

transverse crack in the middle. Delaminations are assumed to grow from both ends

of the transverse crack, and towards both specimen ends as shown. From symmetry

considerations, only one quarter of the configuration is modeled. The modeled portion

of length L is divided into four sublaminates as shown in Fig. 2.7. The crack length

is denoted by a. The top surface (sublaminates 1 and 4) is stress free. Iri order to
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Figure 2.7: Sublaminate Scheme for Local Delamination

simplify the analysis, the thickness strain £. is neglected. The consequence of this,

combined with the fact that the transverse displacement w is zero along the center line,

is that w is zero in sublaminates 1, 2, and 3. Also, this approximation does not allow

for the enforcement of boundary conditions on the shear stress resultants, leading

to incorrect estimates of the interlaminar normal stresses. The interlaminar shear

stress estimates, however, are reliable [6]. These assumptions lead to considerable

simplifications in the analysis. In spite of the simplifications, reliable energy release

rate components can be estimated based on the interlaminar shear stress distributions

[7].

A generic sublaminate is shown in-Fig. 2.8 along with the notations and sign-

conventions. The peel and interlaminar shear stresses are denoted by P and T,

respectively, with t and b subscripts for the top and bottom surfaces, respectively.
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Figure 2.8: Generic Sublaminate for Local Delamination

The axial stress resultant, shear stress resultant, and bending moment resultant are

denoted by AT,<?, and Jlf, respectively. The governing equations correspond to the

one-dimensional form of Eqs. (2.1 - 2.5). These are summarized in the following for

convenience.

The x and z displacements within the sublaminate are assumed to be of the form

Here, U represents the axial mid-plane stretching and W is the transverse displace-

ment. The shear deformation is recognized through the rotation, /3. These displace-

ments axe the total quantities and include the hygrothermal effects. The origin of

the coordinate axes for the sublaminates is taken at the delamination tip as shown

in Fig. 2.9 . The equilibrium equations take the form

Ntx +71 -Tb = 0

(2.29)
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Figure 2.9: Sublaminate Forces and Coordinate Systems

-Q + ( = 0

where h is the thickness of the sublaminate. The constitutive relationships in terms

of the force and moment resultants are

# = AnC7w+Bn0w

M = BnV,

The boundary variables to be prescribed at the sublaminate edges are

~" N or V

M or (3

Q or W
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Additionally, at the interfaces between sublaminates, reciprocal traction, and dis-

placement matching boundary conditions have to be specified. The stress resultants

in these equations include the equivalent hygrothermal loads also.

The solutions in sublaminates 1 and 2. are coupled by the reciprocal interlaminar

stresses denoted 7\ and P\ and by displacement continuity at the common interface.

Assuming exponential solutions for the axial force and bending moment resultants

leads to an eigenvalue problem involving the exponential parameters. The character-

istic equation is of the form

= 0

where s is the eigenvalue parameter, and the B coefficients are given by

+ -^— + •7^—+..." . ."M\"'"
*55(2)

A n a , / 1 , 1 , hi \
= -- A - 1 ~A -- ^~A -- *" 7n -

>»55(2) \>l l l ( I ) -^11(2) 4iyii(2)/

011(11 f 1 , 1 , ^

^55(1) \-4lld) j4ll(2) 4Z?n(l)

and

The eigenvalues turn out to be zero and two nonzero values given by

_.

For the problem under consideration, all the square roots in this expression lead to

real quantities and thus the eigenvalues are real. Since the eigenvalues involve only

the stiffness parameters, they are not affected by the inclusion of hygrothermal effects.

Further, due to the fact that Bj has D terms in the numerator, it is much smaller
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than B3. This leads to the boundary layer nature of the solution. Since the response

(axial forces, moments) has finite values at large distances from the origin, namely, at

the ends of the specimen, only the exponentially decaying and constant solutions are

used. Using subscripts to denote the sublaminate of validity, the following boundary

conditions from the ends of the modeled region are enforced.

N2(0) = 0

QM = o

&( f l) = o

Ari + A'z = Applied Load

The conditions on TV apply only to the mechanical quantities. Further, the fol-

lowing displacement matching conditions are applied.

M ( M,-yj=,^x,yj

t ' i (O) = r/4(o)

t'2(0) = £/3(0)

ft(0) = /34(0)

It should be noted that a /32 and fi$ matching condition cannot be applied at this

level of modeling since it would amount to specifying both W and Q. To eliminate

rigid body displacements, U\ is set to zero at the left end. The foDowing solutions

can then be obtained for the stress resultants in sublaminates 1 and 2

JV, = aje"1 + a2e"x 4 eAn(l) - N™

N2 = -
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1 -1- o2fc4e"x - Af2
n

Here k\ is defined as

2
lid)

The parameter A-2 is defined in a similar manner using the eigenvalue, sz. The re-

maining parameters, £3 and fc4 , are similar to k-i and A;2 but based on sublaminate 2

properties. The nominal strain, £, is defined as

where P is the applied uniform axial force and b is the specimen width. The a'^s can

be derived from the boundary conditions as follows

to'+ too 1
0 AP«f -A

with

and
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The interlaminar shear iiml pee] stresses between sublaminates 1 and 2 can be ob-

tained using the equilibrium equations (2.29) as

Pi = (*i +

As mentioned previously, this peel stress estimate is not accurate because of the

inability to apply boundary conditions on shear. Recognizing the fact that there

are no applied shear forces, it can be concluded that the peel stress distribution

should be self equilibrating. This assumption can be satisfied by including additional

exponential terms in the above peel stress expression and determining these additional

terms by setting the net force and moment due to the peel stress to zero as shown

in section 2.2. The peel stress estimated through this correction process is referred

to as the modified peel stress. Proceeding on to sublaminates 3 and 4, the following

solutions can be written.

Ar
3 = 0

= y>j sinh(u>3z) -f (f>2 cosh(u>3;r)

where

and

(f>2 =

>l = — (f>2 COth(u>3fl)

2 _ ^55(2)

-f
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The total energy release rate GT is calculated using GT = dWt/da where Wf is the

work done per unit width by the external (constant) loads on the specimen displace-

ments. For the case where hygrothermal effects are included, there are additional

terms due to the work done by N™. In reality, these AT,nrn quantities are not appb'ed

loads but correspond to residual stresses. Thus, the additional terms are due to the

work done by the applied mechanical strains on these residual stresses. The total

energy release including hygrothermal effects is given bjr

i^,,-,)
(2.30)£*r (-

20 \ -

where the I factors are

0203 - M* /I - e-"(L-°> 1 - e-
/i = X-

/2 = x
v '• ' •--' ' l̂î _1-i:: (231)

with

X = -7 —-: :

•^ll(l) • >*11(2)

Parameter 1$ is the same as I\ but with the ratio j4n(1)/j4n(2) instead of unity in

Eq. (2.31). Using the virtual crack closure technique [21], from the relative displace-

ments in the cracked portion and the interlaminar stresses ahead of the crack tip, the

mode I and mode II energy release rate contributions can be obtained. The mode III

energy release rate is zero from the assumption of plane strain. The mode II energy

release rate is given by

1 f6

= lim— / Ti(z — 6)Au
t—o 26 Jo

where 6 is the virtual crack step size and Au is the differential axial displacement

across the crack surface. This cdculation can be simplified using only the linear
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part of the differential displacement [7]. In a similar fashion, the mode I energy

release rate can be obtained based on the normal stress (P) and the differential

tc displacements near the crack front. Since the unmodified peel stress estimate is

inaccurate, an alternate approach was used to estimate G/, the mode I energy release

rate. The total energy release rate for this problem is made up entirely of G/ and G/;

(Gin = 0). From an estimate of Gj and G/;, an estimate for G/ can be obtained

simply as

G/ = GT — GJJ

The critical load for a given specimen can then be evaluated based on an appropriate

fracture law. This is illustrated in the next chapter.
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CHAPTER III

APPLICATIONS OF DELAMINATION MODELS

3.1 Mode I Edge Delamination

The analytical model is applied to the mid-plane edge delamination specimen shown

in Fig. 2.2. The material considered is T300/5208 graphite epoxy. Its properties are

listed in Table 3.1.

The difference between the ambient and cure temperature, AT, is —156°0. The

moisture level was allowed to vary from 0 to 1.2 percent of the laminate weight, which

reflects feasible conditions. Laminates of the class [Q/~ 02/0/902], and [03/903!j have

been analyzed.

Normalized values of strain energy release rate are shown in Figs. 3.1-3.6. where

the labels M, M 4- T, and M •+ T 4 H stand for mechanical, mechanical and ther-

mal, and mechanical, thermal and moisture, respectively. The strain energy release

Table 3.1: ED Specimen Geometry and Material Properties

En = 128 GPa

£22 = 8.47 GPa

G12 = 5.73 GPa

G3i = 3.27 GPa

<?23 = 3.27 GPa

i/12 = 0.292

Thermal Coefficients : ctj = -

Qj = 2

Swelling Coefficients : (3i = 0

& =

Width = 26 = 38.4 mm

Ply Thickness = 0.14 mm
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rate parameter in the figures is defined as the total energy release rate divided by

E2,h(emf-

The strain energy release rate in Figs. 3.1-3.3 is zero at a = 0. Residual thermal

stresses results in an increase of 275%. 40% and 280% of the energy release rate for the

[15/-152/15/902]., [60/-602/60/902]. and [03/903], laminates, respectively. Residual

moisture alleviates this effect as illustrated in Figs. 3.4-3.6. The specific moisture

content for total alleviation from the thermal effect is equal to 0.763%. irrespective of

the layup.

The peel stress distribution. c:., appears in Figs. 3.7-3.9. The stress parameter in

these figures is defined as the interlaminar stress divided by EMS™. The inaccurate

peel stress distribution given in Eq. (2.27) is plotted for the case where mechanical

loading only is considered. The corrected peel stress distribution is self-equilibrating

and yields a tensile peel stress at the delamination front.

The magnitude of the peel stresses shows a strong dependency on the thermal

and moisture conditions. The stress increases with thermal effect as compared to

pure mechanical loading.. The addition of moisture alleviates the thermal effect.

Moreover, the distance at which the peel stress reverses its sign is nol affected by the

residual thermal and moisture strains. It is worth noting that at the specific moisture

percent (0.763%) producing complete alleviation of the total energy release rate from

the thermal effect, the interlaminar peel stress distribution is identical to the case

where only mechanical loading is considered. This is shown in Figs. 3.7-3.9. This

finding establishes a similarity in behavior between the energy release rate and the

interlaminar stresses.

The analytical model presented herein was applied to the laminates presented in

Ref. [18]. The Graphite/Epoxy lamina properties from Ref. [18] are listed in Table

3.2. Similar values of strain energy release rate GI were calculated for the wide range
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Table 3.2: ED Specimen Geometry and Material Properties, Ref. [18]

= 0.533

= 0.323

1̂ 12 = 0.3

i>23 = 0.55

Ply Thickness = 0.1267 mm

Thermal Coefficients : aa = -0.9//£/°C

Q2 = Q3 = 23.0/<£:/0C

width = 26 = 38.0mm

of a/h where the Gj remains constant as shown in Figs. 3.10 and 3.11. Negligible

change in the Gj value with decreasingly small values of a/h were obtained. This

is in contrast with the increase in Gj at small values of a/h reported in Ref. [18].

Although thickness strain is neglected in Eqs. (2.1), the peel stress distribution has

been estimated through a modification as described previously, which simplifies con-

siderably the computational effort. A comparison of the peel stress distribution with

Ref. [18] is shown in Figs. 3.12 and 3.13.

The peel stress intensity at the delamination front in the [30/ — 302/30/902],, is

higher than the [Oa/QOs], laminate. This is due to the difference in poisson's ratio

between the core plies made of 90° plies and the outer plies. The poisson's ratio

mismatch is larger for the case of [30/-302/30/902], compared to the [03/903], layup.

The interlaminar peel stress distribution predicted by the present approach is in good

agreement with the distribution of Ref. [18] for the case of a [03/903],Iaminate. This is

in contrast with the case of a[30/ - 302/30/902], where the maximum stress intensity

as well as the distribution differ from the predictions of Ref. [18]. This difference may

be due to the transverse normal strain influence on the analysis of these laminates.
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3.2 Edge and Local Delamination

The delamination models have been used to study the behavior of [±25/90n], T300/934

Graphite Epoxy specimen for n values of 0.5, 1, 2, 3, 4, 6, and 8. These correspond

to the specimen tested by Grossman and Wang [8]. The specimen width and length

were fixed at 0.025m and 0.15m, respectively, as in the tests. In computing the non-

mechanical strains, the laminate is assumed to be held at the prescribed temperature

and moisture levels. In predicting critical strains, the difference between test and

stress free temperatures is assumed to be — 155°C' and specimen is assumed to be

dry. It is assumed that local delamination occurs under fixed load conditions whereas

edge delamination occurs under fixed grip conditions. This difference is a consequence

of the modeling approaches used in the analyses. The applied uniform load was 100

MPa axial stress for the local delamination analysis and 0.5% strain for the edge de-

lamination analysis. The solutions were generated using simple computer programs

based on the closed form expressions for the interlaminar stresses and energy release

rates.

3.2.1 Local Delamination

An example of the total energy release rate variation associated with local delamina-

tion (neglecting hygrothermal effects) with the crack length is presented in Fig. 3.14.

The asymptotic value of GT is denoted by GTO in the figure. It can be observed thai

after a certain crack length, the GT is independent of the crack length. On the basis of

curves like the one shown in Fig. 3.14, the crack length was fixed at 10 ply thicknesses

for the remainder of the studies. Typical interlaminar shear stress profiles including

the hygrothermal effect are presented in Fig. 3.15. The corresponding total strain

energy release rates appear in Fig. 3.16. The inclusion of thermal effects increases



37

the stress and the energy release rate while the inclusion of moisture effects has the

opposite effect. In fact a moisture level of about 0.75% almost exactly negates the

thermal effects. After some initial dependence on crack length, the mode mix tended

to stabilize to a constant value. Using the model developed here, the asymptotic

mode II component of the local delamination energy release rate was found to be

approximately 30 percent for all n values. In the case of off-mid-plane edge delami-

nation, the mode II contribution was less than 10 percent for the n = 0.5 specimen

and progressively less for the thicker specimen.

3.2.2 Edge Delamination

As in the case of local delaminations, the interlaminar stress increases with thermal

effects and the addition of moisture alleviates this as shown in Fig. 3.17 for the case of

mid-plane edge delamination. A moisture level of aboul 0.75% produces a modified

peel stress distribution that is indistinguishable from the case of mechanical loading

alone. Moreover, the distance at which the modified peel stress reverses its sign is

not affected by the residual hygrothermal strains. The hygrothermal influence on

mid-plane delamination strain energy release rate is illustrated in Fig. 3.18 where the

strain energy release rate is plotted versus moisture content for a [±25/902J» laminate.

The strain energy release rate follows the trend of increasing with residual thermal

stress as in the case of peel stress. Further, residual moisture alleviates the thermal

effects and a moisture level of about 0.75% results in a total alleviation of thermal

effects. Similar behavior is observed in the case of off-mid-plane edge delamination.

3.2.3 Failure Loads and Modes

In order to evaluate the critical loads for local delamination, an appropriate mixed

mode fracture law has to be applied, based on the calculated energy release compo-
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nents. The following mixed mode criterion [22] has been fitted to the test data of

Ref. [23] to calculate the mixed mode GTC which is then used in the Griffith criterion

GT = GTC to obtain the critical delamination growth stress <rc and strain ec values.

Here £ is the mode I fraction (Gi/Gr) and Gjc and GJJC are the critical strain energy

release rates for the limiting cases of pure mode I and pure mode II, respectively.

The exponential parameter TJ is a material constant and for the T300/934 system, its

value is approximately 0.9. In the case of mid-plane delamination, since only mode

I is present, GTC
 was taken as (?;c(125J/m2). Based on the mixed mode criterion.

GTC
 was about 400 J/n?2 for the local delamination case (£ = 0.7). The failure loads

for edge delamination at the -25/90 interface have also been calculated using a GTC

value of 150 J/m2. This GT> value is different from the value used for mid-plane

delamination due to the limited (less than 10 percent) presence of mode II.

In order to consider a worst case situation, thermal stresses were included and the

moisture level was set at zero. Though the thermal stresses had a significant effect

on the calculated peak stresses, the effect on the energy release rale was not signifi-

cant except in the case of mid-plane edge delamination for the material system and

layup considered. The critical strains are plotted against n, the number of 90° plies

in Fig. 3.19. The experimental results of Ref. [8] are also presented in the figure for

comparison. The results of the model developed in this paper are represented by the

solid and dotted lines while the experimental results are shown as filled squares. The

CLT based model of Ref. [9] agrees well with the shear deformation model in terms

of the total energy release rate. However, the CLT based model does not provide in-

formation on the mode split and thus, the value of Gc(^ Gjc) used can lead to bias in

the critical strain estimates. In the experiments, the local delamination phenomenon
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was observed as the predominant, failure mode only for the n = 4,6 and 8 specimens.

The shear deformation model presented in this paper provides good agreement with

the experimental data in this range. For n < 4, edge delamination either in the

mid-plane or in the 25/90 interface was observed in the tests, in agreement with the

edge delamination models. Further, the relative closeness of the calculated critical

strains from the mid-plane and ofT-mid-plane edge delamination models implies that,

in practice, one could have interaction between these two modes. In such cases, one

can expect the delamination to wander around the mid-plane and the 25/90 inter-

faces. This is especially so in the case 77 = 0.5 where mid-plane delamination is not

actually between two distinct layers but in the middle of a single layer. Experimental

observations [8] are in agreement with this expectation. Thus, it can be seen that

the shear deformation models reproduce the observed behavior with reasonable ac-

curacy and can be used to estimate critical loads for a range specimen thicknesses

incorporating various delamination modes.

3.3 Conclusions

Shear deformation models including hygrothermal effects have been developed to

analyze local delaminations growing from transverse cracks in 90° plies and edge

delaminations located around the mid-plane of symmetric laminates. The models

have been combined into a unified delamination analysis code in order to predict

damage modes and loads in laminated composites. The analytical results of the

shear deformation models agree reasonably with critical strain experimental data

from [±25/90n], T300/934 graphite epoxy laminates in the range of n from 0.5 to 8.

Residual thermal and moisture stresses are found to have only minor effects on the

critical strains except in the case of mid-plane edge delamination for the geometry
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and material considered. The same failure modes as in the tests are reproduced in

the analysis. The integrated delamination code is expected to be of nse in design

evaluation applications.
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CHAPTER IV

THEORY OF ANISOTROPIC THIN-WALLED BEAMS

A variationally and.asymptotically consistent theory is developed in order to derive

the governing equations of anisotropic thin-walled beams with closed cross sections.

The theory is based on an asymptotical analysis of two-dimensional shell theory.

Closed-form expressions for the beam stiffness coefficients, stress and displacement

fields are provided. The influence of material anisotropy on the displacement field

is identified. A comparison of results obtained by other analytical developments is

performed.

A review of previous work is presented first, this is followed by a detailed develop-

ment of the theory. Finally an analytical comparison of the displacement field with

previously developed theories is provided.

4.1 Review of Previous Work

Elastically tailored composite designs are being used to achieve favorable deformation

modes under a given loading environment. Coupling between deformation modes

such as extension-twist or bending-twist is created by an appropriate selection of fiber

orientation, stacking sequence and materials. The fundamental mechanism producing

elastic tailoring in composite beams is a result^ofHheir anisotropy. Several theories

have been developed for the analysis of thin-walled anisotropic beams. An extensive

review is provided in Ref. [26]. A number of issues relevant to the research undertaken

in this thesis is highlited in the following.
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A basic element in the analytical modeling development is the derivation of

the effective stiffness coefficients and governing equations which allows the three-

dimensional (31?) state of stress to be recovered from a one-dimensional (ID) beam

formulation. For isotropic or orthotropic materials this is a classical problem, which

is considered in a number of text books such as Refs. [52]-[59].

For generally anisotropic materials, a description of the major approaches is pro-

vided in Refs. [24]-[49]. A number of ID theories have been developed in Refs. (27],
»

[28]. [30j. [42], [43], and [46]. A discussion of the displacement provided in these works

is presented in the analytical comparison section of this chapter.

Missing from the review of Ref. [26] and all other current publications is the work

of Reissner and Tsai in Ref. [27], It presents an exact solution to the governing

equilibrium, compatibility and constitutive relationships of shell theory. Closed as

well as open cross-sections were considered. However, the authors left to the reader

the derivation of the explicit expressions for the stiffness coefficients. This may be

the reason for their work to have been overlooked. These expressions are important

in identifying the parameters controlling the behavior and in performing parametric

design studies. Furthermore, the explicit form of the displacement field helps evaluate

and understand predictions of other analytical and numerical models.

A number of assumptions were adopted in Reissner and Tsai's development re-

garding material properties such as neglecting the coupling between in-plane strains

and curvature which can be significant in anisotropic materials. It is important to

assess the influence of these assumptions on the accuracy. This has been done in the

present work by using an asymptotical expansion of the shell energy.

Mansfield and Sobey [28] and Libove [29] obtained the beam flexibilities relating

the stretching, twisting and bending deformation* to the applied axial load, torsional

and bending moments for a special origin and axes orientation. Their analyses are
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similar. Although they did not refer to the work of Reissner and Tsai [27], surprisingly

when their analyses is applied to the special case outlined in Ref. [27], their stiffnesses

coincide. However, one has to carry out details to show this fact. They adopted the

assumptions of a negligible hoop stress resultant Nlt and a membrane state in the

thin-walled beam section. The special case in Ref. [27] refers to the one where classical

assumption of neglecting shear, hoop stress and constant shear flow is adopted.

A pertinent element in the analytical modeling development is the inclusion of

section warping. The major difference among the various theories lies in the method-

ology used to eliminate warping and consequently obtain a one-dimensional theory.

The work of Refs. [30], [41], [42]. [43], [44], [45], and [46] use the displacement field

of thin-walled isotropic beams with shear deformation as the basis of their analytical

development. In Refs. [42] and [46] the torsional rigidity is derived in terms of Clas-

sical Lamination Theory in what the author described as a "practical manner". In

Refs. [43] and [44] a shear correction factor has been introduced in order to reduce the

overestimated bending stiffness. This factor was derived for the case of pure torsion^

by using the virtual work method and enforcing compatibility. While this approach

shows an improvement in predictions, it is problem dependent. Another modification

was proposed in the finite element formulation of Ref. [38]. This formulation aims at

minimizing the error associated with the neglect of bending-related warping in the

theory of Ref. [30]. This modification was based on shear stiffness correction factors

determined by numerical comparison of results with an MSC/NASTRAN solution of

cantilevered beam configurations loaded transversely at the free end.

This summary points to the necessity of addressing three fundamental issues.

The first, is the effect of the material's anisotropy on the displacement field and how

to include its contribution in a consistent manner. No rigorous proof is provided

to validate the assumed displacement fields in Refs. [30], [42], [43], [44], [45], and
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[46] for beams made of anisotropic material as indicated by the various correction

factors introduced. The second, is the significance of the shear deformation relative

to the other contributions such as section related warping. The last is the accuracy

of the membrane stress state assumption in thin-walled anisotropic beam sections.

The present work addresses these issues by using an asymptotical expansion of the

2D shell energy to derive the ID beam displacement field. As a consequence, the

material's anisotropy is accounted for in a consistent manner and the deformation

modes that have a lead contribution to the energy emerge naturally.

4.2 Coordinate Systems

Consider the slender thin-walled elastic cylindrical shell shown in Fig. 4.1. The length

of the shell is denoted by X, its thickness by /i, the radius of curvature of the middle

surface by R and the maximum cross sectional dimension by d. It is assumed that

d« L h « d h « R (4.1)

The shell is loaded by external forces applied to the lateral surfaces and at the

ends. It is assumed that the variation of the external forces and material properties

over distances of order d in the axial direction and over distances of order h in the

circumferential direction, is small. The material is anisotropic and its properties can

vary circumferentially and in the normal direction to the middle surface as well.

It is convenient to consider two coordinate systems for the description of the state

of stress in thin-walled beams. The first one is the Cartesian system x,y and z shown

in Fig. 4.1. The axial coordinate is x while y and z are associated with the beam

cross section. The second coordinate system, is the curvilinear system x.s and £

shown in Fig. 4.2. The circumferential coordinate s is measured along the tangent

to the middle surface in a counter-clockwise direction whereas £ is measured along
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Figure 4.1: Cartesian Coordinate System
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h(s)

Figure 4.2: Curvilinear Coordinate System
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the outward normal to the middle surface. A number of relationships have a simpler

form when expressed in terms of curvilinear coordinates. A relationship between the

two coordinate systems can be established as follows.

Define the position vector f of the shell middle surface as

f = xi, -f y(s)iy + z(s)iz

where Tx, Tv, f: are unit vectors associated with the cartesian coordinate system x. y

and r. Equations y = y(s) and : = z(s) define the closed contour F in the y. z plane.

The normal vector to the middle surface T? has two nonzero components

n = ny(s)iv + n:(s)i- (4.2)

The position vector R of an arbitrary material point can be written in the form

tf = f + £ n (4.3)

Equations (4.2) and (4.3) establish the relations between the cartesian coordinates x.

t/, z and the curvilinear coordinates x, 5, £. The coordinate £ lies within the limits

The shell thickness varies along the circumferential direction and is denoted by h(s).

The tangent vector f, the normal vector n and the projection of the position vector

f on f and n are expressed in terms of the cartesian and curvilinear coordinates as

r_ df _ dy- , dz-
I — "J~ ~ ~j~*V ~r ~^~tzas ds as

- r -- dz~ dy~n = i x *x = -:-iv - -7-»*ds ds
_ dv dz

Tt = ?.t = y-/- + z- (4.4)
ds ds

. , dz dy
rn = r • n = y— - z—

ds ds
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An asymptotical analysis is used to model the slender thin-walled shell as a beam

with effective stiffnesses. The method follows an iterative process. The displacement

function corresponding to the zeroth-order approximation is obtained first by keeping

the leading order terms in the energy functional. A set of successive corrections is

added and the associated energy functional is determined. The process is terminated

when the new cycle does not generate any additional terms of the same order in the

energy functional.

4.3 Shell Energy Functional

Consider in a 3D space the prismatic shell in Fig. 4.2. A curvilinear frame x. .s, and

£ is associated with the undeformed shell configuration. Values 1, 2 and 3 denoting

x, 5, and £, respectively are assigned to the curvilinear frame. Throughout this

study. Latin superscripts (or subscripts) run from 1 to 3, while Greek superscripts

(or subscripts) run from 1 to 2. unless otherwise stated.

The strain energy density of a 3D elastic body is a quadratic form of the strains

V = IE^C^U

The material properties are expressed by the Hookean tensor E''ki. Following the

classical shell formulation of [60], [61], and [62] the through-the-thickness stress com-

ponents <r*3 are considerably smaller than the remaining components aa0. Therefore

we can set

<ri3 = 0 (4.5)

so that the strains can be written as

£a/3 = 7a/3 + tpa0 (4.6)
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where -)Q^ and pa/3 represent the in-plane strain components and the change in the

shell middle surface curvatures, respectively. For a cylindrical shell these are related

to the displacement variables by
dvi

7n = -5-ox

+ fiox

722 = -o~ + -JJas R
02r

Pu = (4.7)

dsdx 4R ds

02r 8 /t'2

where Vj, t'2 and v represent the middle surface displacements in the axial, tangential

and normal directions, respectively as shown in Fig. 4.2. These are related to the

displacement components in Cartesian coordinates by

t'i =

dy dz
t.2 = m-- 4 w3- (4.8)

= 2 j -- 3 j~as as

where ttj, 7/2 and 1/3 denote the displacements along the x. y and r coordinates,

respective!}-.

The energy density of the 2D elastic body is obtained in terms of -fa0 and p^p by

the following procedure.

The 3D energy is first minimized with respect to e^. This is equivalent to satis-

fying Eq. (4.5). The result is

V = min U = x ? a e « / , c ^ (4.9)
t»3 2



69

where D0^"1* represent the component of the ID Young's mouuiu -. The- expressions

for D"0"1* are given in terms of £0/M by

3 3 > 4 3 3

T^ (4.10)
£-3333

where

GdOu I^G
= /y

3333

and fT^> are components of the inverse of the 2JD matrix £3333

expression for D00^ in terms of familiar Classical Lamination Theory (CLT) param-

eters is provided in Eqs. (4.43) and (4.44).

The strain £QQ from Eq. (4.6) is substituted into Eq. (4.9). After integration of

the result over the thickness £ one obtains the energy of the shell $ per unit middle

surface area

(4-11)

where

fiaplt _ _ ^ r\aBit ^

n
o

fiag-ft * nofl->i,. ̂
C'i = — < L> (^

^o^-,/; _ ̂ £ T)a0llfl .
C2 - ^3 < ̂  < >

and a function of ^, say a(£), between pointed brackets is defined as an integral

through the thickness, viz.,

f+M«)/2

. <o>= L.V
The first term in Eq. (4.11) represents the in-plane contribution, the second the

coupling between in-plane and bending, and the third the bending contribution to

the shell energy.
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For an applied external loading P,, the displacement field u,- determining the

deformed state are the stationary points of the energy functional

/ = f Qdxds - I PiUidxds . (4.13)

4.4 Asymptotical Analysis of the Shell Energy Functional

4.4.1 Zeroth-Order Approximation

Let A and E be the order of displacements and stiffness coefficients C°^f, respec-

tively. Assume that the order of the external forces is

P ~~°\~L r l (4>14)

This assumption is shown later to be consistent with the equilibrium equations.

An alternative would be to assume the order of the external force as some quantity P

and derive the order of the displacements as PL2 j Eh from an asymptotical analysis

of the energy functional.

For a thin-walled slender beam whose dimensions satisfy Eq. (4.1) the rate of

change of the displacements along the axial direction is much smaller than their

rate of change along the circumferential direction. That is, for each displacement

component
d r\

(4.15)
dt

Using Eq. (4.7) and assuming that d is smaller or of the same order as R, the

order of magnitude of the in-plane strains and curvatures is

7n ~£

>" - ° (t)



(7)
A

Since 7u and pn are much smaller than 712, 722 and pw, pzz, respectively, their

contribution to the elastic energy is neglected.

The order of magnitude of the shell energy per unit area and the work done by

external forces is

^ f E t f h \
PiUt „ 0 ^_ J

Since PjUi « $, the contribution of external forces is neglected. Therefore the

energy functional takes the form

rL r
Of— / J //I J,/^1212< \2 _, >IL/-'1222^ _, I L/->2222- \2 . ^1,2/^.12122 / fi4"-^' wiz) -f-4/jG 712722 + n-C (722) -I- 4/? C, 712^12

, Oi 2,01222 „ , «»2/-i2212. , ,2^,2222^ „
-I-//? C-j 7l2/>22 -T ^" t- l ^22^12 -f n C-j 722/>22

A3 7i3 A3
" ' x> , M-2 /?22 fl^flX (4.

as

Using Eq. (4.15), the strain-displacement relationships in Eq. (4.7) can be written

2,,, =
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The integrand in Eq. (4.16) is a positive quadratic form, therefore the minimum

of the functional is reached by functions v, t>i, and t'2 for which 712 = 722 = Pu —

~ 0. From Eq. (4.17) this corresponds to

-£-U- = 0 (4.19)

' £-*(!)"
The function r> in Eqs. (4.19) and (4.20) should be single valued, i. e.

19-7/fr—

The bar in (4.21) and in the subsequent derivation denotes averaging along the closed

contour F whose length is denoted by / in Eq. (4.21).

Equation (4.18) implies that t>i is a function of x only. i.e.

fi = Ui(x) (4.22)

Integrate Eq. (4.20) to get
dv vi^ _ _ ^ = _y,(r) (4.23)

where <p(x) is an arbitrary function which is shown later to represent the cross-

sectional twist. From Eq. (4.21) and (4.23), one obtains the relation between <?(x)

and v->.

Substitute v from Eq. (4.19) into Eq. (4.23), to get the following second-order differ-

ential equation for t>2

+ - < * > <««>
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To solve this equation, one has to recall the relations between the radius of curvature

R and the components y(s) and z(s) of the position vector associated with contour F

.
Hits

-551 <4-25>
It follows from Eqs. (4.25) and (4.4) that ^ and ^ are solutions of the homogeneous

form of Eq. (4.24) and t>2 = <p(x)rn is its particular solution. The general solution is

therefore given by

V2 = U2(xfe + U3(x)~ + ^(x)rn (4.26)
as ds

where Uz and Us are arbitrary functions of x. Substitute from Eq. (4.26) into Eq.

(4.19) to get

t> = U2(xfc - U3(xfe - ^(xjr, (4.27)
as ds

Eqs. (4.22), (4.26) and (4.27) represent the curvilinear displacement field that mini-

mizes the zeroth-order approximation of the shell energy. Using Eq. (4.8) the curvi-

linear displacement field is written in Cartesian coordinates as

t*a = l',(x) - z<p(x) (4.28)

t/s = U3(x) + y<f>(x)

The variables Ui(x),Uj(x) and Us(x) represent the average cross-sectional transla-

tion while <f>(x) the cross-sectional rotation normally referred to in beam theory as

the torsional rotation. This displacement field corresponds to the zeroth-order ap-

proximation and does not include bending behavior. For a centroidal coordinate

system C/i(z),l/2(i), Us(x) and <p(x) can be expressed as
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U t(x) = IZJ

V»(xY=VS (4.29)

4.4.2 First-Order Approximation

A first-order approximation can be constructed by rewriting the displacement field in

Eqs. (4.22), (4.26) and (4.27) in the form

t»a = Vdx + tf,(jr)l + ^xK -I- «.2(3,x) (.4.30)
ds as - •
dz dy

v = U2(x)— - U3(x)- -- tf>(x)r, . + w»(*,x)
as as

where W],u>2 and u- can be regarded as correction functions to be determined based

on their contributions to the energy functional.

Substitute Eq. (4.30) into (4.7) to obtain the strains and curvatures in terms of

the displacement corrections

= 27ia + -5- 4 2->ia , 2^12Oi
o . . 5u>2 It'

722 = 722 4 722 , 722 = ~ 4 -

. d*W d
»* =
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where f°a0 and P°a$ are the strains and curvatures corresponding to the zeroth-order

approximation. These are expressed as

7n = I'i(jr) - O

'2712 = t^(x) + I(z + v'(x)rn ~ 0

' " (4-32)

The prime in Eq. (4.32) denotes differentiation with respect to x. Among the new-

terms introduced by the function u>, the leading ones are denoted by superscript " in

Eq. (4.31). The order of tr,- is (^), this is derived from Eqs. (4.31) and (4.32) where

it is seen that the leading terms 2-712 and p12 are of the same order of magnitude as

2 7°i2 and P°12 , respectively, i.e.

Therefore,

Wl " ° \~Tl ^4 '34^

An alternative approach is to assume the order of u>, as f^-J and verify this assump-

tion, as shown later, once w, is determined. The order of magnitude of the remaining

leading terms in Eq. (4.31) is as follows

722 ~ (-
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(4.35)

The energy functional can be represented by $ (711, 2712, 722, Pii,Pi2,p22)- By

keeping the strains and curvature associated with the zeroth-order approximation

and the leading terms contribution over the other terms (i.e., by dropping the terms

Tte1' %?» &' and fe - 4R^ in E<1- (4-31)) the energy function can be written as

*(7ii,27» + 2712,0 + 722, 11, 12 4 pij,0 4 /322)

The interaction terms associated with P°n and P°i2, namely

O 0 M O M

Jl^ll7l2, 7^11722 , ^ PllPl-i, h

O O A O A

^12712 , ^^12722 , ^ ^12/312 , A-

are of order JTJ} or smaller. They are neglected in comparison with the following

terms

, ^12722 (4.36)

of order (jr). Similarly, the contribution of the work done by external forces, P,U',, is

neglected since its order is (Ehjj-(-^)) in comparison with the order of the remaining

terms in the energy functional [Ehj?]. Therefore in order to determine the functions

Wi one has to minimize the functional

O .' .

If the rigid body motion is suppressed the solution is unique. The terms pi2, £22 are

essential to the uniqueness ofthe solution; however, their contribution to the energy,

expressed by the interaction terms



is of order (jrCj)) or smellier, and is consequently dropped in comparison with the

membrane contribution listed in (4.36). This aspect is discussed by Berdichevsky and

Misiura [63], with regard to the accuracy of classical shell theory. Therefore, the shell

energy can be represented by

f*(1utfi2 + 2fa,in,Q,W)dsdr. (4.37)

It is worth noting that the bending contribution does not appear in Eq. (4.37). That

is, to the first-order approximation the shell energy corresponds to a membrane stale.

The first variation of the energy functional is

FL I \ 5* e f d w i \ d$.(8w, t r \ l , J6I= r \7^ — iM^rM-*— M i r + p ]\d a d x 4-38
Jo J d2- os d- os R* po J |kd(2-)12) V os J d-)22 \ os R

Recall that -$$—. - N12 and •§*- = N22, Eq. (4.38) takes the form

r T / J I » T vy-**".! / ... I ^ y »•• — .!/ , _ c 1 I j j

~y0 /I 12 3* "V 6s R U ')f * *

Set the first variation of the energy to zero, to obtain the following

= 0
ds

r
22

= 0a*

Tf = °
which result in

JV12 = constant (4.39)

and

7V22 = 0 (4.40)

This is similar to the classical solution of constant shear flow and vanishing hoop

stress resultant. By setting AT
22 Jo zero the energy density is expressed in terms of



and 712 only

T22
)2 4
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(4.41)

The variables A($), B(s) and C(s) represent the axial, coupling and shear stiffnesses.

respectively. They are defined in terms of the p*^*1 as follows

B(s) = 2

< 1)2222 >

£,1122 ̂ >< £,1222

0(Eh)

< £2222 >

( <£,1222 > )2-

(4.42)

0(Eh)

where the 2D Young's modulus D0"7* are expressed in terms of the Hookean tensor

gaB^t jn £q (4.10). The pointed brackets denote integration over the thickness as

defined in Eq. (4.12).

For convenience, J}a^f is given in matrix form as

[D} = - 2 < < -f (4.43)

where
•£,1111 £,1122 £,"12

£,1122 £,2222 £,1222

£,1112 £,1222 £)1212

<?16 Q26 <?66.

£23 ^25 P2

^36 Q&6 Q46.

^35 ^55 Q<5

?36 ^45 ^44

(4.44)
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[Q']=

The indices adopted in Eq. (4.44) follow the convention of Ref. {50]. The bars over

the reduced stiffness coefficients Qij of Classical Laminate Theory, Refs. [19] and

[50], indicate that these quantities are to be obtained through appropriate coordinate

transformations.

Equation (4.41) indicates that, to the first-order, the energy density function is

independent of functions tt>2 and w. That is, the in-plane warping contribution to

the shell energy is negligible. The function «>i however, can be determined from Eq.

(4.39) and (4.41) and by enforcing the condition on W) to be single valued as follows

hii + <?(*bi2) = constant (4.45)
" 0(27i2) 2

Substitute from Eqs. (4.31) and (4.32) into (4.45) to get

if?(V1 '(:r)+*~"a* j

-f -C [UM-T + krs (*)-;- + <r>'(*K(s) + ^rp + -jjP~} = constant (4.46)

Following the relations in Eq. (4.15). the term ^^ is neglected in comparison with

Gj-}-. Moreover, the term \B^j£- in Eq. (4.46) may be neglected in comparison with

\CQj-f-. This is possible, if \B\ is less or of the same order of magnitude as C. For

the case when \B\ » C additional investigation is needed. Since the elastic energy

is positive definite, £2 < AC, and B could be greater than C only if A » C. In

practical laminated composite designs |f?| < C as the shear stiffness is greater than

the extension-shear coupling. Therefore, Eq. (4.46) becomes

1 1 / dij dz . dwi \
-BU[(x) -f -C U'2(x}-j- + V'z(x}— -}- i?\x)rn(s) 4 -— = constant (4.47)
2 4 \ as oi us j
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Equation (4.47) is a first order ordinary differential equation in twj. The value

of the constant in the right hand side of (4.47) can be found from the single value

condition of the function u>j :

( du>! \ If duh , , . „ „.

~fi~ = T T -fTds = ° (4'48)
OS J I J OS

The solution of Eq. (4.47) is determined within an arbitrary function of i. This func-

tion can be specified from various conditions. Each one yields a specific interpretation

of the variable V\. For example if w\ = 0 the variable V\ = v^ according to Eq. (4.30).

The choice of these conditions does not affect the final form of the ID beam theory

and therefore will not be specified in this formulation. The result is the following

simple analytical solution of Eq. (4.47)

) (4.49)

where

G(s) =

The area enclosed by contour F is denoted by A, in Eq. (4.50). It is seen from expres-

sion (4.49) that W! is of order (^7) and relation (4.34) is justified. The displacement

field corresponding to the first correction is obtained by substituting Eq. (4.49) into

Eq. (4.30) and dropping w2 and w since their contribution to the shell energy is negli-

gible compared to w\. The result referred to as the first-order approximation is given

by

) + <f(x)rn (4.51)
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11 = v*(x}in ~ U3(r}Ts ~ *(x)r'

4.4.3 Second-Order Approximation

Following a similar procedure to the one described in section 4.4.2, a second-order

approximation can be constructed by rewriting the displacement field in Eq. (4.51)

in the form

t'i = Ui(x) - yU'2(x) - :Ufc) + G(s)<f>'(x) + 5i(*)^(') -I- *i(«,*)

t'2 = U,(xfe + U3(x)^- -f y>(:r)rB -f w2(5, x) (4.52)
as as

v = U3(x)^- - U3(xfe - <p(x)r t + «•(*,*)
as as

where tZ>i,tZ>2 and w can be regarded as correction functions to be determined based

on their contributions to the energy functional.

Substitute Eq. (4.52) into (4.7) to obtain the strains and curvatures in terms of

the displacement corrections

w ,

711 = 7ii

: ; u'z w
722 = 522 "f 722 > ^22 = ~ +

Pu = Pu 4 -^j (4.53)

3 6w3 -. -. 1 dw!
-dx"*Pl2 ' p"

. a2^ a /t;2

^=-^F-^^

where 700 and pQ^ are the strains and curvatures corresponding to the first-order

approximation. These are expressed as

o
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722 = 0

(4.54)

The terms written over the overbraced expressions in Eq. (4.54) denote their order.

Among the new terms introduced by the function tu,- the leading ones are denoted by

superscript" in Eq. (4.53). The order of tD, is assumed to be

) (4.55)
\ *' /

Such an assumption will be justified later. Therefore, the order of magnitude of the

leading terms, Eq. (4.53), is as follows

i»~o —

(4-56)

The energy functional can be represented by $ (711,2712, 722>/>ii» ̂ 12,^22)- By

keeping the strains and curvature associated with the first-order approximation and

the leading terms contribution over the other terms (i.e., by dropping the terms ^j-jf-,

£a, 0, and |^ - ^^f in Eq. (4.53)) the energy function can be written as

*(7n, 27i2 4 27l2,0 4 4»,fri,&2 + 3ia,0 4 ^22) (4.57)

In the following, the order of magnitude of the energy due to bending, i.e. due to

' is investigated.
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The interaction terms associated with pu, namely

are of order ^jjr-) or smaller. They are neglected in comparison with the following

membrane contribution to the energy

„ „ w associated with V{ and <p'
7n722 » 7i2712 , 7i2*)22 S , A2jJ\ (4-58)

° (V~) "sodded with ^' and ^'

The interaction terms due to the bending curvature ^1Z are

^/>i27i2 > ̂ 12722 ~ O ( ~rr } associated with f/j and y>' (4.59)

fc2Pi2^i2 » h*Pi2P22 ~ 0 -fF (^J ) associated with U( and s?' (4.60)

These terms :are of higher order in comparison with the membrane contribution asso-

ciated with r^' and (?' in Eq. (4.58), and may be neglected. The remaining interaction

terms associated with p12 and /J22. namely

O (^£.) associated with U{ and (?'
A

O ^ associated with U2' and Ug

are of higher order when compared to the corresponding membrane ones, listed in

(4.58). Therefore in order to determine the functions u;, one has to minimize the shell

energy expressed by

/ = j[I/$(7ii,27i2-f2^2,422,0,0,0)(i5dx (4.62)

The contribution of the new corrections in the work done by external forces is neg-

ligible compared to the first-order approximation. Consequently its contribution is

neglected in Eq. (4.62). It is worth- noting that the bending contribution does not

appear in Eq. (4.62). That is, to the second order approximation the shell energy

corresponds to a membrane state.
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The first variation of the energy functional is

Recall that = N12 and = JV22, Eq. (4.63) takes the form

i) »r (
+ ̂ 2 \O . 05 OS R )

Set the first variation of the energy to zero, to obtain Eqs. (4.39) and (4.40). By

setting AT
22 to zero, the energy density is expressed in terms of ->n and ->12 only as

given by Eq. (4.41). The function tZ>i can be determined from Eq. (4.39) and (4.41)

end by enforcing the condition on t&j to be single valued as previously outlined in

section 4.4.2. Substitute from Eqs. (4.53) and (4.54) into (4.45) to get

(Eh) m (£)

= constant (4.64)

Comparing the order of magnitude of each kinematical variable, Eq. (4.64) reduces

to

= constant (4-65)

Using the single value condition of function t&i, the following simple analytical solution

of Eq. (4.65) is obtained

(4.66)
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where

9*(») = - /' \b(r)y(r) - ^-c(r)]dr ~~ O (f)
Jo [ c J v '

Ps(*) = - f \b(r)z(r) - ^-c(T)]dT - 0 (f\ (4.67)
Jo [ c J x '

It is seen from expression (4.50) and (4.67) that G(s), pi(s), $2(s) and p3(s) are

single-valued functions, with

G(0) = G(l) = pi(0) = 9l(l) = #(0) = p2(/) = ps(0) = 53(/) = 0

Using Eqs. (4.66) and (4.67), tl'j is found to be of order 77- and the assumption in

Eq. (4.55) is justified.

4.4.4 Convergence of Displacement Field

The displacement field corresponding to the second correction is obtained by substi-

tuting Eq. (4.66) into Eq. (4.52) and dropping u>2 and tl1 since their contribution to

the shell energy is negligible compared to w^. The result is

-f 9As )U(x) -f

-f U 3 ( x ) - + V(x.)Tn (4.68)
as as

A third cycle is carried out, however no additional terms of the same order in the

energy functional result as shown in the Appendix, and the final displacement field

converges to the expression given in Eq. (4.68).

The underlined terms in Eq. (4.68) correspond to the classical theory of extension,

bending and torsion of beams. The additional terms 9i(s)U^ 9^(s)U^ and gs(s)U^

in Eq. (4.68) represent warping due to axial strain and bending . These new terms
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emerge naturally in addition to the classical torsional related warping G(s)(f>'. They

are strongly influenced by the material anisotropy, and vanish for materials that are

either orthotropic or whose properties are antisymmetric relative to the shell middle

surface. For these layups the coupling parameter b(s) defined in Eqs. (4.50) and

(4.42) vanishes. The significance of the axial and bending-related warping terms and

their effect on the accuracy, is shown in the applications of Chapter V. Moreover, the

expression for torsional related warping G(s) differs from the work of Refs. [30] and

[42]-[46]. A comparison of these expressions is presented in section 4.6.

4.4.5 Strain Field

We now substitute the displacement field of Eq. (4.68) into the in-plane strain com-

ponents of Eq. (4.7), while using Eq. (4.50), to obtain

jtL ML
•hi =

2712 . . ( . H ^ + i*.,

722 = 0 (4.69)

The terms g\U", gtU' i , and gsU" can be neglected in comparison with U{, yV%, and

s', respectively. Therefore, the in-plane strain components become

2At , dgl , dgz „ dg3
2?ia = — C? -f — U, + -^-U2 4 — U3 (4.70)

722 = 0



Using Eq. (4.70), the shell energy density, Eq. (4.41), can be written as

2$! =

-f

» « - -'.-"

.„
aS as

-I-
"TV"

•V (/3
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+ 2~2»ITO'| (4.71)
u.* u.o u.̂  u..s fl5 O5 I

where the underlined terms are associated with the G(f>" contribution in Eq. (4.70).

These terms are of higher order and may be neglected in comparison with the remain-
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ing overbraced leading terms, as shown in Eq. (4.71). Therefore, one may drop G<?"

from Eq. (4.70), and the final expressions for the in-plane strain components, using

Eqs. (4.50) and (4.67), become

7ll = V[(x) - y(*)U?(x) - z(8)U?(x)

2712 =

b(s)z(s)-^

77l •

77"1 3

(4.72)

722 = 0

It is worth noting that the vanishing of hoop stress resultant in Eq. (4.40) and hoop

strain in Eq. (4.72) should be interpreted as negligible contribution relative to other

parameters. The longitudinal strain 7^ is a linear function of y and z. This result

was adopted as an assumption in the work of Ref. [29].

In the present formulation, parameters A, B and C where assumed to be of

the same order. However, the results are valid for configurations which satisfy the

following inequalities

4.4.6 Constitutive Relationships

Dropping the underlined terms in Eq. (4.71) and integrating over the shell middle

surface to get the energy of IP beam theory . .

= / *adx - t PiUf (4.73)
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where

+ C'lSt', 1/3 + t'Ml/it/j

// i /~* 'TT" i /""» Tr"7r" / >• ̂  < \
3 T C724SS> "2 + ^34t'2 "3 (4- '4)

Explicit expressions for the stiffness coefficients C,j (i, j = 1, 4) are given in Eq.

(4.78).

The constitutive relationships can be written in terms of stress resultants and kine-

matic variables by differentiating Eq. (4.74) with respect to the associated kinematic

variable or by relating the traction T, torsional moment Mx. and bending moments

My and M- to the shear flow and axial stress as follows

r=5£i
8U[ '

M, = 0 = f J <ri,rn(s)dtds = f Nltrn(s)dS

My = |^ = -ffwdids = -fNuz(s)ds

54>2 f f ' f
M~ = "dV" = ~ J J °liydtdf = ~ f Nny(s)ds

(4.75)

The shear flow Ar
J2 is derived from the energy density in Eq. (4.45) and the axial

stress resultant A7
n is given by

_ 0$j _

and the associated axial and shear stresses are uniform through the wall thickness.

Substitute Eq. (4.72) into Eqs. (4.45) and (4.76) and use Eq. (4.75) to get

(T }

(4.77)
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where expressions for the stiffness coefficients dj (i, j — 1, 4) in terms of the cross

section geometry and materials properties are as follows

due to 0i U[

f(B/C)ds A

f(l/C)dsA '
due togiV and

f(B/C)d* f(B/C)zds
f(l/C)d*

due to g\ t',' and gjVj

f(B/C)d* f(B/C)yds

(4.78)

f(B/C)zd*

§(BIQyds
f(l /C)ds

due

f(l/C)ds
due to 021'i' and 03 VI'

& d §(BIC)yds f(B/C)zds
C > y ~ s + f(l/C)dS

due \

C " f(l/C)ds

The out-of-plane warping contribution to the stiffnesses due to the axial strain (i.e.,

due to giU{), bending about y axis (i.e., due to gzU$), and bending about r axis (i.e.,

due to 52^2") *s sh°wn ^3' the overbraces in Eq. (4.78).
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The coefficients dj (i, j — 1,4) can be expressed in terms of the in-plane axial

stiffness coefficients Aij of Classical Lamination Theory (CLT) if one neglects the

through-the-thickness contribution to the stiffnesses in Eq. (4.78). The result is

C',1 =

Y,7 »/Kn)d* f(K a /Kn)zd*
-13 = - n - —r- )~ds -- -/= - f

•/ 22

A 22

1

C/23 = -2Af f(l/Kx)ds

T ( 1
°«. — — 9 A --24 ~" Arfif

n -
d* f(K l 9 /Kn)zd,

where, the stiffnesses A',-j are

' -A lH = AH
422

j4i2J426 ,. 7Q^
^i2 = 4J6 (4.79)
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4.4.7 Equilibrium Equations

The equilibrium equations are derived using the principle of virtual work. The vari-

ation of the internal strain energy is

= /Q
L f( AXX^Z 2Nx,f*")'xt) dsdx

Using the strain displacement relations, one-dimensional stretching, twisting, and

bending generalized internal forces are denned as

T = f NXIds

M, = 2AtNxt

Mv = - <t> Nxxzds

M- = — <t> Nxxyds

Consider a beam subjected to external forces and moment resultants T, 7l7x. ~MV, and

M. at both ends. Moreover, surface tractions Px. Py, and P. are applied along the

i, y. and r directions, respectively. The variation of the virtual work of the external

forces can be written as

6W. =

-f 1^ Iff Psds} SUi - (f Pxyds} 61* - (j. Pizds) 61% + (^ Pvds)

- (f Pvzds] f>(f> - (J P.ds\ Wa - U P.yds\ 6<] dx

Using the principle of virtual work

one obtains a system of linear equilibrium equations as follows

T' -f Pfds = 0
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;ds = Q (4.80)

M" + (f Pxyds}' + j Pvds = 0

One of the member of each of the following four pairs must be prescribed at the

beam ends :

T or I T! , M, or p, My or U^and M2 or tf, (4.81 )

4.5 Summary of governing equations

The development presented in this work encompasses five equations. The first, is

the displacement field given in Eq. (4.68). Its functional form was determined based

on an asymptotical expansion of shell energy. The associated strain field is given in

Eq. (4.72) and the stress resultants in Eq. (4.45), (4.75) and (4.76). The fourth, are

the constitutive relationships in Eq. (4.77) with the stiffness coefficients expressed as

integral of material properties and cross sectional geometry in Eq. (4.78). Finally the

equilibrium equations and boundary conditions are given in Eqs. (4.80) and (4.81),

respectively.

In the present development the determination of the displacement field is essential

in obtaining accurate expressions for the beam stiffnesses. A comparison of the derived

displacement field with results obtained by previous investigators is presented in the

following section.

4.6 Analytical comparison with previous results

In anisotropic materials the importance of physical effects such as transverse shear

strains is influenced by the relative magnitude of elastic moduli. For example in
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laminated composites the extensional modulus along the fibers direction is usually

large relative to the shear moduli and consequentl}- transverse shear effects can be

significant. Several theories have addressed this issue by including transverse shear

in the assumed displacement field [30], and [42]-[46j. The displacement function

Eq. (4.68) derived from the asymptotical analysis does not include transverse shear

strain terms explicitly. This is a consequence of the vanishing of the through-the-

thickness stress component <r*3 in Eq. (4.5) or (4.9) where the transverse shear strains

are expressed in terms of other strain components. Their effect however is implicitly

included in the stretching-related warping term gi(s) and the ben ding-related warping

terms g^(s) and gz(s) as illustrated by the applications of Chapter V.

Rehfield's theory [30] recognizes the significance of transverse shear strain in thin-

walled composite beams. Its displacement field is given by

«i = UM - y(*)[Ufa) - 27,v(x)] - z(s) [Ufa) - 27«(a-)] + g(s,x)

v* = Vi(x) - z(s)p(x) (4.82)

u* = U3(x) + y(s)<p(x)

where -j-rj, and -)x; are the transverse shear strains. The warping function g(s.x) is

given as

$(«,*) = <?(*)¥>'(*) (4.83)

with

G(s) = 2Ae-- f'rn(r)dr (4.84)
» Jo

A comparison of the displacement fields in Eq. (4.68) and (4.82) shows that the

warping function in Rehfield's formulation includes the torsional-related contribution

and does not include explicit terms that express the bending-related warping. The

torsional-relaied warping function G(s) in Eq. (4.50) is different from the function in
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Eq. (4.84). The two expressions coincide when c = constant that is, when the wall

stiffness and thickness are uniform along the cross section circumference.

The torsional related warping function in Eq. (4.84) was modified by Atilgan [44],

and Rehfield and Atilgan [43] as

<?(«)= /' [^=rd ~ rr,(r)]dr (4.85)
Jo L l C i J

where

d = — fjr^ (4.86)

•^u
and

IA' A' 1 [An (All]3 A^ A " A ™'
U 16 = I A" ' ,"*% (4.87)

A' A1 \ A — A™A™ A** — (A"]
A\6 A66j LA16 An A6(, An _

The Aij in Eq. (4.87) are the in-plane axial stiffnesses of CLT, Refs. [19] and [50],

they are related to the modulus tensor by

A —^ pH22 A _ p2222 .> , .4j2 =< £/ > , AK =•< L/ >

=< £m2 > , ^ 2 6=<£ 1 2 2 2> , A 6 6 =<£ m 2 >

A comparison of the modified torsional warping function in Eq. (4.85) and G(s) in

Eq. (4.50) shows that they coincide for laminates with no extension-shear coupling

( < D1"2 > = < I>1222 >= 0, in Eq. (4.10) ). For the case where the through-the-

thickness contribution is neglected in Eq. (4.10), this reduces to j4J6 = A^ = 0.

The warping function obtained in Refs. [42] and [46] for composite box beams is

identical to the expression of Refs. [43] and [44] in Eqs. (4.83) and (4.85).

An assessment of all the previous warping expressions can be made by checking

•whether they reduce to the exact expression for isotropic materials (see, for example,

Ref. [59])
- ft TO A ~\

G(s)= -pfc2 - rn(r)\dr (4.88)
Jo l lei J
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with

where \i is the shear modulus.

For isotropic materials the in-plane coupling 6 is zero and consequently glt g2 and

#3 in Eqs. (4.50) and (4.67) vanish. That is the warping is torsion-related and reduces

to G(s)<f'. Moreover, the shear parameter c is equal to 4 * . and the expressions for

G(s) and G(s) in Eqs. (4.50) and (4.88) coincide.

Rehfield?s warping function in Eq. (4.84) coincides with Eq. (4.88) when the ma-

terial is isotropic and the wall thickness is constant. Also the works of Refs. [43], [44]

and [46] reduce to Eq. (4.88) for isotropic materials.

4.7 Closing Remarks

The major advantage of the approach adopted in this work is the fact that the dis-

placement function emerges as"a result of the asymptotical analysis of the shell energy.

The influence of the material's anisotropy is accounted for in a consistent manner and

the deformation modes are determined on the basis of their contribution to the asso-

ciated energ3-. Two new contributions to the warping emerge due to stretching and

bending. They are of the same order of the classical torsional-related warping. Their

significance is illustrated in the applications provided in the next chapter.
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CHAPTER V

APPLICATIONS OF ANISOTROPIC THIN-WALLED

BEAM THEORY

An evaluation of the variation ally consistent theory developed in chapter IV is

provided. The theory is applied to beams with arbitrary closed cross-sections made

of laminated composite materials with variable thickness and stiffness subjected to

axial load, torsion and bending. A comparison of flexibility coefficients and deforma-

tion with finite element predictions, closed form solutions and experimental data is

performed to validate predictions and isolate the influence of different contributions to

the section warping. In addition to the torsional related warping, two new contribu-

tions namely, axial strain and bending related out-of-plane warping were identified in

the developed theory. Extension and bending related out-of-plane warping are shown

to have a significant effect on the accuracy of predictions. Comparison of predictions

provides also a check of the asymptotical analysis result regarding the contribution

of shear deformation. Although the resulting displacement field does not include

an explicit shear deformation term similar to Timoshenko's theory, shear deforma-

tion contribution is shown to be implicitly accounted for through the out-of-plane

warping due to extension and bending.

Two special layups: The circumferentially uniform stiffness (CUS) and circum-

ferentially Asymmetric stiffness (CAS) have been considered in Refs. [41]-[46] and

[51]. They are associated with different non-classical behaviors. These behaviors are
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shown to be influenced by the out-of-plane warping due to extension and bending in

the next section.

5.1 Effect of Out-of-Plane Warping due to Extension and Bending

5.1.1 CUS Configuration

This configuration produces both extension-twist and bending-transverse shear cou-

plings. The axial, coupling and in-plane stiffnesses A, J?, and C given in Eq. (4.42)

are constant throughout the cross section and hence the name circumferentially uni-

form stiffness (CUS) adopted in Ref. [43], [44], [45] and [51]. Such a configuration

is manufactured by wrapping the composite lay-up using a winding technique. For

a box-beam, the ply lay-ups on opposite sides are of reversed orientation, and hence

the name antisymmetric configuration adopted in Refs. [41], [42], and [46].

Since A, B, and C are constants, the stiffness matrix in Eq. (4.78). for a centroidal

coordinate system, reduces to

(5.1)

'Cn

CM

0

0

C«

0

0

0

0

0

0 "

0

0

£•44

The nonzero stiffness coefficients are given by

Cn = Al

CM = BAt

C .,
(5.2)

= AJ>; *ds
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where / denotes the length of the closed contour F. For such a case the out-of-plane

warping due to axial strain vanishes and gi does not affect the response. This is

shown by considering A, B, and C as constants in Eq. (4.78). The influence of the

out-of-plane warping due to bending in the x-z and x-y planes are expressed by the

underlined terms in the expressions of £33 and 644, respectively. These terms are

significant in predicting the deflection of antisymmetric configurations.

5.1.2 CAS Configuration

This configuration produces both bending-twist and extension-transverse shear cou-

plings. The stiffness A is constant throughout the cross section. For a box beam, the

coupling stiffness, B, vanishes for the vertical members, while its values in the top

and bottom members are of opposite signs

•& vertical member t == U ("•")

and hence the name circumferentially asymmetric stiffness (CAS) adopted in Ref. [43],

[44], [45] and [51]. For a box-beam, the ply lay-ups on opposite sides are mirror images.

and hence the name symmetric configuration adopted in Ref. [41], [42], and [46]. The

stiffness C along the horizontal and vertical members are equal and expressed by

(-•tap — Cbottom

(^vertical left = Cvertieal rigkt

The stiffness matrix, for a centroidal system of axes, reduces to

< ? „ 0 0 0 r

O f /** n^22 *^23 ^

0 C/23 t/33 0

0 0 0 ^44

(5-4)

(5.5)
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The nonzero stiffness coefficients are expressed by

-'22 =

= A y'd, -

Subscripts f and t> denote top and vertical members, respectively. The box width

and height are represented by d and a, respectively. Equations (5.6) are derived by

substituting Eqs. (5.3) and (5.4) into Eq. (4.78) and considering A to be constant. The

underlined term in the expression of the axial stiffness (7u represents the extension

contribution to the out-of-plane warping. The bending contributions to the out-of-

plane warping are represented by the underlined terms in the expressions of €33 and

C'44- For the CAS configuration, bending about the y-axis is coupled with torsion

while extension and bending about the r-axis are decoupled.

In order to assess the accuracy of the predictions and isolate the influence of

stretching and bending-related warping, the present theory is applied to the box

beam given in Ref. [51], The cross sectional configuration is shown in Fig. 5.1 and

the material properties in Table 5.1.

5.2 Comparison of Flexibility Coefficients

A comparison of the flexibility coefficients 5,j with the predictions from two models

is provided in Table 5.2. The flexibility coefficients 5,-j are obtained by inverting
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Table 5.1: Properties of T300/5208 Graphite/Epoxy

En = 21.3 Msi

£22 = EZZ = 1.6 Msi

G12 = G13 = 0.9 Msi

G23 = 0.7 Msi

i/12 = i/13 = 0.28

1^23 = 0.5

the 4x4 matrix in Eq. (4.77). NABSA (Nonhomogeneous Anisotropic Beam Section

Analysis) is a finite element model based on an extension of the work presented in Ref.

[32]. In this model all possible types of warping are accounted for. The TAIL model

is based on Ref. [30], but neglecting the restrained torsional warping. The predictions

of the NABSA and TAIL models are provided in Ref. [51]. The percentage differences

appearing in Table 5.2 are relative to the NABSA predictions. The present theory is

in good agreement with NABSA. Its predictions show a difference ranging from +0.7

to -1-3.6 percent while those based on Ref. [30] range from 43.6 to —18.4 percent.

Since the box beam has a CUS configuration, the out-of-plane warping due to

bending has a significant effect on the prediction of the bending flexibilities (^r-) and

(^-) as shown in Eq. (5.2). Neglecting g3 and 02 in the expressions of €33 and 644

leads to values of 0.11424 x 10~4 Ib'^n'2 and 0.38410 x 10~4 Ib^in"2 for 533 and

544, respectively. Comparison of these values with the underlined results in Table 5.2

shows a 65 percent increase in the bending flexibilities due to out-of-plane bending
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Table 5.2: Comparison of Flr:;ibiliiy Coefficients of NABSA, TAIL and Present

(Ib, in units)

Flexibility

Su x 105

5M x 104

5« x 105

533 x 104

544 x 105

NABSA

0.143883

0.312145

-0.417841

0.183684

0.614311

PRESENT %Diff.

0.14491 +0.7

0.32364 -(-3.6

-0.43010 +2.9

0.1886 +2.6

0.63429 +3.2

TAIL % Diff.

0.14491 +0.7

0.32364 +3.6

-0.43010 +2.9

0.17294 -5.8

0.50157 -18.4

related warping.

5.3 Comparison of Deformation

The present theory is applied to the prediction of the tip deformation in a cantilevered.

beam made of Graphite/Epoxy and subjected to different types of loading. The beam

has a CUS square cross section with [+12]4 lay-up. The geometry and mechanical

properties are given in Table 5.3. Comparison of results with the MSC/NASTRAN

finite element analysis of Ref. [38] is provided in Table 5.4. The applied axial and

transverse forces are equal to 100 Ib, while the applied torsional moment is 100 lb-in.

The MSC/NASTRAN analysis is based on a ID plate model accounting for both

shear deformation and warping. The predictions of the present theory range from

+1.7 to —0.7 percent difference relative to the finite element results.

The deflection due to transverse load neglecting out-of-plane bending related warp-

ing is equal to 1.341 inch compared to 1.853 inch (38% difference) in Table 5.4. For

a CUS configuration, the extension-torsional response is decoupled from bending as

shown in Eq. (5.2). Since C is constant and gj does not affect the stiffness coefficients,
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Table 5.3: Geometry and Mechanical Properties of Thin-Walled Beam with [-t-12]4

CUS square cross-section

Length = 24.0 in. Eu = E22 = E33 = 11.65 Msi

Width = depth = 1.17 in. G12 = G13 = 0.82, G23 = 0.7 Msi

Ply thickness = 0.0075 in. i/12 = »>i3 = 0.05, i>23 = 0.3

as outlined in section 5.1.1, the flexibility coefficients controlling extension and twist

response, 5n, Si2 and 522 coincide with those of Refs. [43] and [44]. As a conse-

quence, the axial displacement and twist angle predictions coincide. However, the

lateral deflection under transverse load differs. The tip lateral deflection predicted

using the theory of Ref. [30], which includes shear deformation, and Refs. [43] and

[44], which include a shear deformation correction to Ref. [30], is 1.724 inch resulting

in —7.6 percentage difference compared to the NASTRAN result. This is due to the

effect of bending-related out-of-plane warping on the bending flexibilities ̂ - and ^-,

(C33 = €44 for this case), as shown by the underlined terms in Eq. (5.2).

Figures 5.2 and 5.3 show the bending slope variation along the beam span for

antisymmetric and symmetric cantilevers under a 1 Ib transverse tip load, respec-

tively. The beam geometry and its material properties are given in Table 5.5. The

experimental results are reported in Refs. [41], [42], and [46]. The influence of the

out-of-plane warping due to bending is isolated in these figures. The bending related

out-of-plane warping, g2U2 and g3U3 terms in Eq. (4.68), results in a 91 and 20 %

increase in the bending slope for the antisymmetric and symmetric configurations.
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Table 5.4: MSC/NASTRAN and Present Solutions for a CUS Cantilevered Beam

with [+12]4 Layups Subjected to Various Tip Load Cases

Tip Load

Axial Force

Axial Force

Torsional Moment

Transverse Force

Tip Deformation

NASTRAN Present

Axial Disp. : 0.002189 in. 0.002202 in.

Twist : 0.3178 deg. 0.32325 deg.

Twist : 2.959 deg. 2.998 deg.

Deflection: 1.866 in. 1.853 in.

% Diff.

•

+0.6 %

+1.7 %

+1.32 %

-0.7 %

respectively. The analytical predictions reported in Refs. [41], [42], and [46] together

with results obtained on the basis of the analyses in Ref. [30], [43], [44] and the present

theory are combined in Figs. 5.4 and 5.5. Results show that the present theory is

in good agreement with the test data and the closest when compared to the other

analytical approaches which include shear deformation. Refs. [30], [42], and [46], and.-

shear deformation corrections, Refs. [43] and [44].

The bending slope in Figs. 5.2-5.5 is defined in terms of the cross section rotation

for theories including shear deformation. For the geometry and material properties

considered, this effect is negligible as shown in Figs. 5.4 and 5.5 where the spanwise

slope at the fixed end from theories with shear deformation, is indistinguishable from

zero. The nonzero value shown by the test data maj- be due to the experimental set

up used to achieve clamped end conditions.

The spanwise twist distribution of symmetric cantilevered beam with [30]e and

[45]e lay-ups is plotted in Figs. 5.6 and 5.7, respectively. The beams are subjected to

a transverse tip load of 1 Ib. Their dimensions and material properties are given in

Table 5.5. Results show that the present theory and those of Refs. [43] and [44] are
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Table 5.5: Cantilever Geometry and Properties

Width = 0.953 in. ' En = 20.59 Msi, £22 = E33 = 1.42 Msi

Depth = 0.53 in. GJ2 = G13 = 0.87 Msi, G'23 = 0.7 Msi

Ply thickness = 0.005 in. i/12 = i/13 = 0.42, i/23 = 0.5

the closest to the test data. A similar behavior is found for the bending slope and the

twist angle at the mid-span of the symmetric cantilevered beams appearing in Figs.

5.8 and 5.9. The beams are subjected to a tip torque of 1 Ib-in.

5.4 Shear Deformation Contribution

The significance of the out-of-plane warping due to bending is illustrated in Fig. 5.2.

A similar behavior is obtained in Ref. [65] when the shear deformation contribution

is neglected. This indicates that the out-of-plane warping due to bending includes

implicitly the shear deformation contribution. In order to assess this similarity, the

present theory and the numerical work of Ref. [65] are applied to the prediction

of the deflection in a cantilevered beam made of graphite/epoxy and subjected to

a transverse tip load of 1 Ib. The beam has a CUS cross-section with [-I-15J6 lay-

up. The geometry and mechanical property, provided in Ref. [65], are given for

convenience in Table 5.6. Figure 5.10 shows a similar behavior suggesting that in the

present theory, shear deformation is implicitly accounted through bending-related

warping. The prediction of Ref. [65] are referred to Classical when shear deformation

is neglected. Further evidence could be provided by estimating the equivalent shear

deformation strain. This can be expressed by the slope of the plane that approximates
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Table 5.6: Cantilever Geometry and Properties

Width = 0.923 in. £„ = 20.6 Msi, E22 = E33 = 1.42 Msi

Depth = 0.50 in. G12 = GJ3 = 0.87 Msi, G23 = 0.696 Msi

Ply thickness = 0.005 in. 1/12 = 1/13 = 0.3, i/23 = 0.34

the cross-section warping and is given [66] by

/ y t'i dA
2ixv = (5 . / )

where .4 and I-- represent the cross-sectional area and moment of inertia about the

r-axis, respectively.

For a CUS box cross-section subjected to a vertical tip transverse load p.. the

shear strain distribution across the cantilever length is obtained by substituting the

axial displacement T>I from Eq. (4.68) into Eq. (5.7). The result is the following

analytical expression

(L-x , )had fa2 , d-^« » * / I i l l (5.8)
^»*~~ \ /

where

533 = Bending flexibility

L = Length of cantilever

Zi = Cross-section position measured from the fixed end

h — Laminate thickness

a = Box height

d = Box width
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A comparison of the shear strain 7xy over the length of the cantilever with the

prediction of Ref. [65] is shown in Fig. 5.11. The shear strain at the fixed end is

4.5924 x 10~4 based on Eq. (5.8) which is within 2 percent of 4.6857 x 10~4 calculated

on the basis of Ref. [65].

5.5 Conclusion

The anisotropic thin-walled closed section has been validated by comparison of re-

sponse predictions with finite element solutions, other closed form analyses and test

data. The influence of the two new nonclassical contributions namely, extensional

and bending related out-of-plane warping on the accuracy of the response predictions

is shown to be significant. Moreover, the contribution of shear deformation is shown

to be implicitly accounted for through the bending related out-of-plane warping, and

in-plane warping effect is found to be negligible.

5.6 Closing Remarks

For anisotropic beams, the major reason for the discrepancy in the predictions of the

analytical models of Refs. [30] and [41]-[46] and the present theory is due to the apriori

assumed displacement fields which neglect the extension and ben ding-related out-of-

plane warping. The influence of the material's anisotropy on the displacement is too

complex to cast in a kinematic assumption similar to classical theory of extension-

bending and torsion.

A consistent approach to account for the various behavioral modes associated

with anisotropic beams was adopted in this work. It is based on an asymptotical

analysis of the energy. The influence of the material's anisotropy on the displacement

and stiffness coefficients was isolated, and by comparison an assessment of previous



108

analyses was performed. In particular, this approach accounts implicitly the shear

deformation contribution shown to be significant in previous models. The difference

being the consistent order of magnitude that this contribution is accounted for and

its significance relative to other contributions.
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Figure 5.1: Beam Cross Section

VI

0.012

0.01

0.008

Present, with bending-warping

Present, without bending-warping

• Experimental [43,47]

0-°°6

1 0.004

0

Fixed
End

10 20

Spanwise Coordinate (inches)

30

Tip

Figure 5.2: Significance of out-of-plane bending related warping on the bending slope

of an antisymmetric [15]e cantilever under 1 Ib transverse tip Load
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of a symmetric [30]6 cantilever under 1 Ib transverse tip Load
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Figure 5.6: Twist of a Symmetric [30]6 Cantilever Under 1 Ib Transverse Tip Load
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Figure 5.7: Twist of a Symmetric [45]e Cantilever Under 1 Ib Transverse Tip Load
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Figure 5.10: Deflection of an Antisymmetric [15]6 Cantilever under 1 Ib transverse

tip load
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

This research addresses two key issues for the continuing implementation of com-

posites in advanced structures namely, the understanding of the role of the material's

anisotropy on its stiffness behavior and its damage modes. An analytical model based

upon a shear deformation theory and a sublaminate approach was developed in or-

der to investigate mid-plane and matrix crack-tip delaminations. This model was

combined with an earlier analysis for mixed-mode free-edge delamination to form an

integrated code for the prediction of damage onset in laminated composites. The

code predictions were validated bj' comparing its results with test data. Of signif-

icance is the ability it provides for the prediction of damage progression sequence

and corresponding critical strains. Moreover, the effect of hygrothermal stresses on

the strain energy release rate and interlaminar stresses was isolated. The increase

in strain energy release rate and interlaminar stresses associated with curing stresses

can precipitate failure and should be considered for an accurate prediction of failure.

The findings of this research work point to new research inquiries. The first is

characterization and prediction of damage onset and growth under cyclic loading

including the effect of hygrothermal stresses. The investigation can lead to the deter-

mination of composite components' life and inspection intervals. The second is the

study of the effect of damage modes and their interactions on the vibration charac-

teristics and damping of laminated composites. The result of this investigation will

assess the effect of damage modes on the natural frequencies and mode shapes and
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can lead to the development of Non-Destructive Evaluation methods.

The asymptotical analysis used to develop the thin-walled anisotropic beam theory

provides a rigorous basis for the prediction of the beam stiffnesses and associated

displacement field. Closed-form expressions for the stiffnesses have been developed

and new contributions to the warping have been found. This analysis can be extended

to beams with multi-cell type cross sections and pretwisted configurations. Moreover,

the previous results on the effects of hygrothermal stresses point to the significance

of including their contribution in the thin-walled closed section beam analysis. The

consideration of dynamic and aerodynamic loadings using asymptotical analysis will

provide a rigorous basis for the investigation of the dynamic and aeroelastic response

of composite structures. Finally, the presence of embedded delamination on the

response of composite beams is a first step toward studying the effect of damage

modes on their stiffness and strength. In this respect, the analysis of composite

beams with open cross section can be regarded as the final stage of damage in a

closed section beam.

When accomplished, these recommended research tasks will provide an under-

standing of the effects of damage on the performance of advanced structures made

out of composite and will lead to the development of reliable design tools to ensure

their damage tolerance.
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Appendix A

Convergence of Displacement Field

In this appendix detailed calculation of the third and final cycle is provided.

Results show that no additional correction terms of the same order in the energy

functional emerge and the displacement field given in Eq. (4.68) is the converged one.

1.1 Third-Order Approximation

A third cycle is carried out by rewriting the displacement field in Eq. (4.68) in the

form

4 *(*K7(*) + *,(,, x)

,*) (A -n
as as

f = fM*)^ ~ U*(*^ ~ V(T)T< + «"'(^a!)

where tZ'i,u>2 and w are correction functions to be determined based on their contri-

butions to the energy functional.

Substitute Eq. (A-l) into (4.7) to obtain the strains and curvatures in terms of

the displacement corrections

w dw? - - dw-\
27:2 = 2712 -f - + 2712 , 27l2 = -~

v - ; OWj U>
722 = 722 + 722 > 722

 = ~fT~ 4 ~£
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where 50/3 and pQ^ are the strains and curvatures corresponding to the second-order

approximation. These are expressed as

(t)

(I) ( A-3 )

V ft

Ptt = "

An order of magnitude comparison for each strain and curvature measure shows that
v

some terms of higher order in 7n can be cancelled and its expression simplifies to

Among the newtefms introduced by the function if;, the leading ones are denoted
* B

superscript" in Eq. (A-2). The order of tZij is assumed to be

if i (A-4)



123

Consequently, the order of magnitude of the leading terms in Eq. (A-2), is as follows

7l2 ^ 722 ~ 0

^22 ~ 0 \jjJ (A -5)

The energy functional can be represented by $ (lu,2')i2,~i22,Pii)Pi2,P2i)- By

keeping the strains and curvature associated with the second-order approximation

and the leading terms contribution over the other terms (i.e., by dropping the terms

!&"' !£*> fp1- an<* JiJj ~~ 4^1^ *n Eq- (A-2)) tne energy function can be written as

$(5n,25j2 +
 27i2>0 + 722^n Jw + ^12^-^-^22) (A - 6)

In the following, the order of magnitude of the energy due to bending, i.e. due to /5n.

pl2, p12, and /522. is assessed.

^
The interaction terms associated with />„, namely

are of order (^pr-j or smaller. They are neglected in comparison with the following

membrane contribution to the energy

O (nrr-) associated with l̂ ,' and (f1
y j^* / 1
/ Az .j\

° (V-) associated with t^' and U£

v

The interaction terms due to the bending curvature pl2 are

4 I associated with U( and VP'

^ I ~TT~ J
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These terms are of higher order of magnitude in comparison with the corresponding

membrane contribution in Eq. (A-7), and may be neglected. The remaining interac-

tion terms associated with pn and p22, namely

, s i ,» - .
* "712^12 i "Tufas »

associated with U{ and (p1

, ..,.., v
° (TT-) associated with £<r

2" and tf*'

may also be neglected in comparison with (A-7). Therefore in order to determine the

functions u^ one has to minimize the shell energy expressed by

Setting the first variation of the energy functional to zero to get Eq. (4.45). Sub-

stitute from Eq. (A-2) into Eq. (4.45) to obtain

(Eh)

' + d

(Eh) (f)
' +

(#)
= constant ( A - 9 )

Equation (A-9) shows that the contribution of w is of higher order in comparison with

all other terms and may be cancelled from the left hand side. Therefore no additional

corrections to the displacement field emerges, and the displacement field obtained in



125

Eq. (4.68) is the converged one. An alternative is to neglect the terms of higher order

in Eq. (A-9). while keeping the leading t/'j term, to obtain

~,\f> (x) •+ ——UJx) H—^—U^(x) •+ —r—f/ 3(x) 4 —.— = constant
4 [ ic as as as as J

(A-10)

Solution of Eq. (A-10) is determined using the single value condition of the axial

displacement and u'j is found to be a function of x onl}-. Such a function has already

been considered and no new terms of the same order in the energy functional are

generated from the third and therefore final cycle.
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