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This is a final report that summarizes the results achieved under this grant. The first
major accomplishment is the development of the sublaminate modeling approach and shear
deformation theory. The sublaminate approach allows the flexibility of considering one ply
or groups of plies as a single laminated unit with effective properties. This approach is
valid when the characteristic length of the response is small compared to the sublaminate
thickness. The sublaminate approach was validated comparing its predictions with a finite
element solution [/]. A shear deformation theory represents an optimum compromise
between accuracy and computational effort in delamination analysis of laminated
composites [2]. This conclusion was reached by applying several theories with i increasing
level of complexity to the prediction of interlaminar stresses and strain energy release rate in
a double cracked-lap-shear configuration.

“~ The shear deformation theory and sublaminate approach was applied to the free-
edge delamination[/,3] and internal delamination analysis [4] of laminated plates including
the influence of hygrothermal stresses [5,6] and combined loading [7]. the analysis was
also applied to tapered laminates subjected to tensile loading [8,9].

The second accomplishment is the development of the variationally asymptotical
analysis for thin-walled anisotropic beams with closed cross sections [10-12]. The theory
is a prerequisite for isolating the influence of damage by comparing predictions with an
reference undamaged configuration. Existing composite beam theories have significant
differences in the derived expressions for the stiffness coefficients. The variationally
asymptotical analysis was developed in order to isolate the effects contributing to these
differences. The major advantage of this approach lies in the fact that the displacement field
is not assumed a priori as is the case for the existing theories and emerges as a result of the
analysis. Moreover, the assumed displacement fields in the existing theories follow the
classical isotropic formulation. However, no proof is provided with regard to the validity
of such a displacement field for anisotropic materials.

' The displacement field which resulted from the theory showed two new
contributions which were identified as out-of-plane warping due to axial strain and
bending. These contributions emerge in addition to the classical out-of-plane torsional
warping and are significantly influenced by the material's anisotropy. However, they
vanish for materials that are orthotropic or whose properties are antisymmetric relative to
the beam middie surface. These configurations coincide with the cases where the
predictions of the existing theories are in agreement with test results and numerical
simulations. For generally anisotropic materials the error associated with the existing
theory predictions correspond to the neglect axial strain and bending related out-of-plane
warping.
~ In addition to providing a definitive answer to the reasons for the disparity in
existing theories predictions, the variationally aymptotical theory provides a consistent
approach to deriving the displacement field in anisotropic structures. A number of
investigators have now adopted this approach for the modeling of initially curved and
twisted composite beams and laminated composite plates[13, 14]. Moreover, the closed




form expressions indicate that the new contributions are proportional to the extensional
strain and bending curvature. This provides a proof for the work of Kosmatka [15] where
an improvement to the displacement field was proposed by adding two terms which are
proportional to the extensional strain and bending curvatures. However, their contributions
were determined using a finite element simulation.

The details of the sublaminate and Variationally asymptotical analyses are provided
by the work of Ref. 12 which is provided in Appendix A for convenience. A list of the
publications and presentations related to the Grant is provided in Appendix B.
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CHAPTER 1

INTRODUCTION

1.1 Background

The use of fiber reinforced composites is increasing in engineering applications. One
of the major issues in composite structures is the understanding of the role of the ma-
terial’s anisotropy on the deformation modes, damage modes and failure mechanisms.
This research work addresses these stiffness and strength related issues by developing
analytical models for the prediction of deformation modes and their coupling effects
and damage onset and growth in laminated composites. Accurate prediction of stiff-
ness, response, damage modes and failure mechanisms is bound to lead to the design
of efficient and damage tolerant composite stiuctures.

Delamination is a predominant failure mode in continuous fiber reinforced lam-
inated composite structures. Based on the location and direction of growth, there
are two distinct types of delamination, namely, free edge delamination and local or
transverse crack tip delamination. In many cases, both types occur concurrently with
varving levels of interaction.

In the first part of this work shear deformation models including hygrothermal
effects are developed for the analysis of mid-plane edge delamination and local de-
lamination originating from transverse cracks in 90° plies. The results of these models
are combined with a previously developed shear deformation model for mixed-mode

edge delamination to yield a unified analysis of delamination and the ability to iden-




tify the critical failure modes and loads.

Elastically tailored composite design are being used to achieve favorable defor-
mation modes under a given loéding environment. Coupling between deformation
modes such as extension-twist or bending-twist is created by an appropriate selec-
-tion of fiber orientation, stacking sequenée and materials. An example is the X-29
swept forward wing aircraft where a laminated composite skin is used to create the
bending-twist coupling required to handle divergence. This design uses AS-1 /3501-5A
graphite/epoxy wing covers with —45° outboard plies 9° forward of the wing’s 40 %
chord line. Elastically tailored composite rotor blades have the potential to be used

in rotorcraft structures in order to control flapping and twisting motions at different

rotor speeds. This concept can be utilized in tilt rotor aircraft in order to achieve a.

compromise between hover performance and forward flight propulsive efficiency. A~

change in the blade twist between flight modes can be developed through the use

of extension-twist coupling.as implemented in the XV-15 tilt rotor aircraft. Twist .

control is achieved by assuming a 15 percent change in operating rpm between hover

and forward flight regimes.

The coupling of deformation modes provides a flexibility to meet design require-
ments on the aeroelastic behavior, dynamic response and stability of structures and
results in improved fatigue life and durability.

A prerequisite for the implementation of an elastically tailored concept, is the
development of an analytical model which accurately predicts the various stiffness
components and isolate the material and geometrical parameters controlling the be-
havior.

Inr the seconéipm"’{,r a variationally and aéymptotica:jl} célisisiZnt theor) rfor thin-
walled beams that incorporates the anisotropy associated with laminated composites

is developed. The theory is based on an asymptotical analysis of 2D shell energy.

+
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The major advantage of this approach lies in the fact that the displacement function
is not assumed a priori and is determined as a result of the minimization of the energy
functional. As a result, two nonclassical contributions to the warping emerge. While
these new contributions vanish for isotropic and orthotropic materials, they have a
significant influence on the response of ger'xerally anjsot‘ropic materials. The accuracy
of previously developed theories is assessed by comparing the resulting displacement

fields and an assessment of the significance of shear deformation is presented. Com-

parison of predictions with finite element simulation and test results illustrate the

consistency and accuracy of the developed theory.

The delamination analysis model is presented in the first part of this work. this is
followed by the development of the thin-walled anisotropic beam theory. Each part
includes a literature survey in order to place the present work in proper prospective.
A comparison of prediction is presented in order to validate the developed theories

and assess their accuracy.




CHAPTER II

DELAMINATION ANALYSIS

This chapter addresses damage modeling in laminated composite plates. A review
of previous work is presented first, this is followed by a development of the analytical
model.

2.1 Review of Previous Work

Failure in laminated composite materials often initiates in the form of matrix frac-
tures, namely, transverse matrix cracks and delaminations. Based on the location and
direction of growth, two distinct types of delamination can be discerned. These two
types are called edge delamination and local or transverse crack tip delamination, as
shown in Fig. 2.1. Edge delaminations initiate at the load free edges of the laminate
whereas local delaminations start from a transverse matrix crack. Transverse matrix
cracks refer to intralaminar failures whereas delaminations refer to int.erlaﬁnar fail-
ures. Transverse cracks usually occur within laminates where the fibers run at an
angle to the i)ﬁmary load direction and hence the name. In many cases, both types
occur concurrently with varying levels of interaction. |

It has been observed (1] in sitﬁple tension tests of uniform reétaﬁgu.lar cross section
specimen (Edge Dela.mina.tion tests) that delaminations initiate‘a'long the load free
edges and propagate normal to the load directibn as srl;tr)wniin Fxg21 ﬁmsverse
matrix cracks running parallel to the fibers have also been observe& in off-axis and

90° plies. Such transverse cracks extend through the thickness of similarly oriented
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6
plies and terminate where the ply orientation changes. Delaminations can also origi-
nate at the interfaces where transverse cracks terminate. These transverse crack tip
delaminations or local delaminations, grow normal to the transverse crack from which
they originate. In the case of 90° plies, the growth direction is parallel to the load.

The growth process of edge delaminations and local delaminations is often mod-
eled using a fracture mechanics approach leading to the calculation of a strain energy
release rate. This is because the strain energy release rate can correlate delamination
behavior from different loading conditions and can account for geometric dependen-
cies. The strain energy release rate associated with a particular growth configuration
is a measure of the driving force behind that failure mode. In combination with ap-
propriate failure criteria, the strain energy release rate provides a means of predicti{lg
the failure loads of the structure.

Several methods are available in the literature for analyzing edge delaminations.
These include finite element modeling as in [2], {3], and [4], the complex variable stress
potential approach (5], a simple technique based on classical laminate theory [1] and
a higher order laminate theory including shear deformations [6]. Finite element mod-
els provide accurate solutions but involve intensive computational effort. Classical
laminate theory (CLT) provides simple closed form solutions and is thus well suited
for preliminary design evaluation. However, CLT provides only the total energy re-
lease rate, and thus, in a mixed mode situation, there is insufficient information to
completely assess the delamination growth tendency. A higher order laminate theory
including shear deformations has the ability to provide the individual contributions
of the three fracture Enodes while retaining the simplicity of a closed form solution.
A shear deformation model is available forr off-nlia-pi;xn; redéer 7<:ielaimi7natir<r>rn A;xd has
been shown to agree well with finite element predictions (7).

- Crossman and Wang (8] have tested T300/934 graphite/epoxy {£25/90,], speci-
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mens in simple tension and reported a range of behavior including transverse cracking,
edge delamination and local delamination. O’Brien [9] has presented classical lam-
- inate theory solutions for these specimens, demonstrating reasonable agreement in
the case of edge delamination but with some discrepancies in the local delamina-
tion predictions. The local delamination .model overestimates the failure strains for
[£25/90,], specimens for small values of n mainly due to the implicit critical strain
energy matching used.

A finite element model combining edge and local delaminations has been pro-
posed by Law [10]). His predictions, however, do not fully explain the dependency of
the critical strain on the number of 90° plies. A similar three-dimensional finite ele-
ment analysis including hygrothermal effects has been performed by Wang ef al. [11]
to determine the delamination onset load for combined delamination, qualitatively
demonstrating stable crack growth.

A three-dimensional finite element analysis of delamination from matrix cracks
has been developed by Fish and O’Brien|[12]. They conducted an experimental and
analytical study on the inﬁueﬂce of matrix cracking on delamination in [+15/ —
90,,/ — 15}, glass-epoxy laminates subjected to monotonically increasing tension loads.
Experimental results showed that local delaminations form at the intersection of
matrix cracks in the +15° plies and the free-edge. Comparison of a Quasi-three-
dimensional (Q3D) finite element results with a three-dimensional (3D) ﬁnif.e element
analysis showed significant differences in the relative and absolute magnitudes of the
interlaminar stress components. Thus, discrepancies in failure predictions may exist
between Q3D and 3D analysis. The results of this study emphasized the importance
of incorporating the various damage mechanisms that influence subsequent damage
development in the failure analysis.

Thermal and moisture effects on the strain energy release rates for interlaminar
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fracture of unidirectional graphite/epoxy have been investigated by Russell and Street
[13]. This investigation also included a study of the effects of shear loading through
the use of various test configurations (Double Cantilever Beam, Cracked Lap Shear
etc.). .Initiation energies for delamination were found to increase as the proportion
of shear loading increased and as the temperature was lowered, but no significant
moisture influence was observed. The fracture resistance to crack extension was found
to increase under tensile dominated loadings with both temperature and moisture
content, but for high shear loading, the resistance was insensitive to the hygrothermal
conditions.

O’Brien, Raju and Garber have presented a CLT based analysis of mixed mode
edge delamination specimens including hygrothermal effects [14]. They have used
finite element modeling to determine the strain energy release rate components.' Their
results indicate total strain energy release rate increases of as much as 170% due to
thermal effects for some T300/5208 graphite/epoxy laminates. However, a moisture
content of 0.75% has been shown to totally alleviate this increase. According to
. this analysis, in general, the consideration of thermal eflects increases the energy
release rate whereas moisture effects hﬁve the opposite influence. These results have
been confirmed using shear deformation models in the case of off-mid-plane edge
delaminations [15]. It was found that the interlaminar stresses follow the same trend
as the energy release rate, with increase due to thermal effects and alleviation due to
hygroscopic effects.

Aoki and Kondo calculated the strain energy release rate under thermal loading
for mixed mode edge delamination. They used conventional finite element method
[16] and a siﬁpliﬁeg method :[;16,”17] based on the classical lamination theory in com-
bination with the J-integral for mechanical loading. Two types of axial constraint

conditions were considered : (1) constant strain or fixed-grip and (2) constant load.

oo
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Numerical examples for cross-ply and angle-ply laminates showed that in angle-ply
laminate, the energy release rate under free axial elongation increased constantly
with delamination growth, while it remained constant under fixed-grip conditions. A
higher order plate theory including transverse normal strain and thermal eflects has
been developed by Whitney [18] for the analysis of mid-plane edge delaminations.
This approach provides the interlaminar stresses a.lsd, in addition to the strain en-
ergy release rate. A [03/90;3), graphite/epoxy mode I specimen was analyzed and
the maximum interlaminar normal stress was shown to increase by a factor of 2.7
due to thermal effects, when compared with the pure mechanical strain reference
conﬁguration.

From this summary it is found that there is a need for a unified approach that
includes the analysis of free edge as well as local delamination and their interaction. In
practical composite configuration free edge delamination does not occur in isolation,
it is accompanied by other damage modes. Developing an analysis methodology that
includes the interaction of delamination with other damage modes is essential for
designing damage tolerant structures.

The study of delamination consists of two main sections. These are the analysis of

mid-plane edge delamination and local delamination in laminated composite plates.

2.2 Mid-Plane Edge Delamination

A mid-plane edge delamination specimen is shown in Fig. 2.2. A uniform axial strain
¢ is applied in the z direction. From symmetry only one quarter of the specimen is
considered. The sublaminate scheme and the choice of coordinate axes are illustrated
in Fig. 2.3. ‘

Sublaminates 1 and 2 in Fig. 2.3 represent the uncracked and the cracked regions,




Figure 2.2: Mid-Plane Edge Delamination

Figure 2.3: Sublaminate Modeling Scheme (Mid-Plane Edge Delamination)

10
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respectively. “The analysis is based on the following displacement fields within each

sublaminate

u=ze+ Uy) + 28:(y)
v=V(y)+ ;Bu(y) (2.1)
w = W(y)

where u,v, and v denote the djsplacements relative to the z,y, and - axes, respec-
tively. Shear deformation is recognized through the rotations g, and j,. 11;1 the
present formulation thickness strain is neglected, and consequently inaccurate values
of interlaminar peel stress, .., are expected. However, the peel stress can be modified
by enforcing the free edge boundary condition associated with the transverse shear
stress resultant.

A generic sublaminate along with the applied forces and moments is shown in
Fig. 2.4. The force and moment resultants are denoted by N,, @,, and M,, respectively.
The constitutive relationships in terms of these force and moment resultants can be

written as

]\'T,' = A,‘_,‘Ej + ngh',k - ]\",-"m (1~]-’\ = 1.26)
M; = B,‘jEj + Dikis — ﬁl,"m (2,7,k = 1,2,6) (2.2)
Qi = Aijej (1,7 = 4,5)

The subscripts z,y,2,yz,zz, and zy are replaced by the subscripts 1-6, respec-
tively. The non-mechanical forces and moments resulting from hygrothermal effects

are labeled with superscript nm for non-mechanical. They are defined as

-k
(Nem mrm) = [F {ATa;+ ARB}T,0,2)e: (23)
T2
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Figure 2.4: Notation and Sign Convention for & Generic Sublaminate
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The thermal coefficient is denoted by @; in Eq. (2.3), while the swelling coefficient

by Bj. The _Q_,-J- are the plane stress sublaminate reduced stifinesses {19]. The bars on

aj,3; and Q;; indicate that theses quantities are to be obtained through appropriate

coordinate transformations. The change in temperature between the ambient and the

stress free temperature is denoted by AT. The percentage moisture weight gain is
represented by AH.

For a sublaminate of thickness h, th.e elastic stiffnesses A,;, B;;, and D;; in Eqs.

(2.2) are defined as
h
+3
(45, By D) = [, Qyi(1,2,27)dz (2.4)

2

The equilibrium equations can be written as follows

]\?zy,y + t2:r - tl:t =0

o
1]

Qy.y+?2_Pl=0 (
Mayy — Qs + 2(tae + ty2) = 0
My, -Q,+ ’2'(1231 +1,)=0

where t;,,15,,p2 and t;;,1;,,p; denote the interlaminar stress components at the
sublaminate upper and lower surfaces, respectiveiy. These stress com};onenls appear
in Fig. 2.4. Partial differentiation is denoted by a comma in Eqgs. (2.5). Application
of the boundary conditions and the governing equations to each of the sublaminates
results in a system of differential equations which are solved to obtain the stresses
and strain energy release rate. The boundary conditions to be prescribed at constant
values of y, the sublaminate sections, are N, or U, N, or V,Q, or W, M, or S, and

M., or B..
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2.2.1 Uncracked Region (Sublaminate 1)

From symmetry conditions at the sublaminate bottom surface, both w and the shear-
ing stresses are zero. Since thickness strain is neglected, this leads to w being zero

everywhere in this sublaminate. The equilibrium equations can be written as

Nepw=0
N,,=0
Quy—pm=0 (2.6)
My y— Q=0
Myy—Q, =0

where subscript 1 refers to sublaminate 1. From Egs. (2.6) and the continuity of axial

and in-plane shear stress resultants between sublaminates 1 and 2, we get
N, =N.,, =0 (2.7)

By substituting from the constitutive relations into Eqs (2.6) and Eq. (2.7). and
assuming an exponential form for the rotations f;, and B;.. we get the following

characteristic equation

Eis*—Es* 4+ Ey=0 (2.8)
with
Eo = AgAss — (Ags)’
E; = Qg1 Ass + Qa2Aas — Da0Ags — D31 Ags
E4 = Q21 Q3‘2 - Q22931

(A12€12 + Aselaz + Bi2)  (A12€ia + Aseas + Bie)
[Raye = | (B2aba2 + Breb22 + D322) (B22€13 + Baefas + Do)
| (Bastaz + Beeaz + Das) (Baebrs + Besas + Des)
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A2z Ax] 7 [A12 By By
[£]2x3=—

A26 AGG -416 B26 BGG

Coefficient E; depends solely on the sublaminate axial stiffiness, while E; is pre-

dominantly influenced by the bending and coupling coefficients D,; and B;; . The
numerical value of E; can be orders of magnitude smaller than F; and Ey. This results
in the presence of a boundary zone in the response. For the material and laminate
layups considered, the roots of this characteristic equation are real. Only the negative
roots of Eq. (2.8) are considered as they give solutions decaying exponentially from

the delamination tip. The solution can be written as

=4}
= I;e=%Y (0<y<b-a) (2.9)
,Blz 75

2
Q?lsj — Aus
7 Q225% — Ags

where
(.7 =1, 2)

Parameters I; are arbitrary constants to be determined from the boundary condi-
tions. By substituting Eq. (2.7) into the constitutive relations and using the assumed

displacement fields, we obtain
v S nm
{ l,y } _ [611] {E} + { 1 } + [612 613} {ﬂly.y} (210)
Ul,y 521 SZ 622 {23 ﬂl:r,y

{s, }"’"_ Az Azs]_l{Ny }""’
52 A26 AGG ]\sz

Substitute from Eqs. (2.10) into the constitutive relations to get the resultant forces

where

and moments in terms of the total extensional strain

N., An + A + Asén
M,, = |Biz + B+ Basln | {€]
M., B¢ + B3s€11 4 Besa
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ASP™ + AyeSy™ — NI
+ Bu$m+Bu$m—M?’+Km“{m”} (2.11)
ByeSy™ + BesSy™ — ML

2.2.2 Cracked Region (Sublaminate 2)

From the stress free boundary conditions at the face y = —a of sublaminate 2 and

the equilibrium equations, we get ’

Ny,=N,=0Q,.=M,=0
The equilibrium equations reduce to
Meyy— Qe =0

Following a similar procedure as in sublaminate 1, the rotation can be written as

Baz = Hie™ (-a<y<0) (2.12)
with |
i Ausdss — A3
\ A4s(Dgs + Baswrz + Beewaz + Dagiaz)
where
A2 B
[S"]axz":"{"rl’]-l Aie Bes
B2 Dy
and
Az, Az Bi
W’]= Aze Ae¢ B
By, By D,

H, is an arbitrary constant to be determined from the continuity conditions be-

tween sublaminates 1 and 2. The force and moment resultants can be expressed in

. .



17

terms of ti :0tal strain

-] A + A + Aiewan + Brawa
l A, J B Bi6 + Basp11 + Bespn + DzeP:n] te}

[ AL FT™ + AeF3™ + By Fy™ — NI
| Bo6Fy'™ + BeeF;™ + Dy F3™ — M;‘;"]
[ Bi6 + A129012 + Ar622 + Braws:

+ } AH e | (2.13)
| Dec + Baep12 + Bespaz + Dasps:

<4
0

where o , m
F N,

F, = [11‘]-l N:y
Fs M,

The response associated with sublaminates 1 and 2 shown in Fig. 2.3 is coupled

through the following conditions at y = 0,
M, (0)=M,(0)=0
M., (0)= M, (0)=0

$r12(0) = 5:2(0)
The solution for both sublaminates i.e., the values of J; and H, can be obtained
by applying these conditions. The final expressions for the sublaminate rotations is
given by Eqs. (2.9) and Eq. (2.12) where

_{=©1+(0a+Oum)(f)} e + Oumalf) - O + Ou(2)
@3—(@44'@5772)—1'*@5771

Iy= = (Ae + Ay + Ashh)
H, =l + 91,

with
Ay = By2 + Bty + Baebn

Az = B2 ST™ 4 ByS;™ ~ M;m
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Az = —(Q21 + mQ22)s

As = —(Q21 + 12Q22)s2

and

©1 = Bae(§11 — ¢11) + Bee(€a1 — p21) — Daeoom
©2 = Bys(S7" — F77 )+ Be(S3™ — Fo ™) — Dy F5™
O35 = —(Q31 + MmQa2)s:
O4 = — (8231 + 128232)s2
Os = —(Des + Brep12 + Beewaz + Dagipaz) A

The total strain energy release rate can be calculated by considering the work

done by the external forces. This is given by

Gr=Gr=-}

1

2 14
dw’ (2.14)

7 da
where W, = work done by the external force in sublaminate i, L = laminate length,
and a = crack length.
The work done by the external forces is written in terms of the mechanical strain,
€], as
W, = g/y €™ N,.dy (2.15)
with

e =€e—¢€ (2.16)

The sublaminate free expansion strains, e7™ , are calculated by setting the axial force

resultant to zero, i.e.

/ Nydy=0 (2.17)
Vi
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7 ® 0] = (0] (0) + gnm *| 0O ®
(AT+AH) (AT+AH) AT=AH=0

e =9 e=0 e=1

o N m . N

(a) ®) ©

Figure 2.5: Effective non-mechanical free expansion strain across the entire width of

the laminate

where N, is given in Eq. (2.11) and Eq. (2.13). The expression for each sublaminate
1s
. A1 5T™ + AeS;™ — NI
! A+ Az + Arebn
_AuFl'"" + A16F7™ + By, FJ™ — NI™

e = 2.18
2 A+ Appn + Arepar + Brapa ( )

The total strain, ¢, is given by
=" 4" T (2.19)

where €™ is the effective mechanical strain and ™™ is the effective free-expansional
strain across the entire width of the laminate estimated by decomposing the non-
mechanical problem in Fig. 2.5(a) into the superposition of the two cases shown in
Fig. 2.5(b) and Fig. 2.5(c). In case (b) the laminate is subjected to a non-mechanical
change ( AT + AH), while the strain is prescribed 1o be zero. In case (c¢) a unit axial

strain is applied, while no hygrothermal change is considered. Knowing that no axial
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force is applied in the main problem, i.e. Fig. 2.5(a), the sum of the axial forces in

the two subproblems should be zero. hence
A,z", + Eﬁmsz¢ — 0

and

nm Ne,

£ = - Mo,

(2.21)

where N, and N are the axial forces in case (b) and case (c), respectively. These

axial forces are computed by substituting the expressions of N, and N,, from Eq.

(2.11) and Eq. (2.13) into the relations

. (b-a) 0 :
N, = / Nody+ [ N.,dy
0 —e e=0(AT+AH)

(b=a) 0
N, = [ /; N, dy + Nz,dy]

e=1, AT=AH=0
The expressions for N,, and N, are found to be

Ny = (AnST7 + A1eS;" — N7 )(b - a)

+ (A1 F77 + AjeFJ™ 4+ B Fy™ — N7 )a
and

N., = (An+ Aén + Al )(b— a)

+ (A3 + Az + Area + Brawa )a

4

(2.22)

(2.24)

The crack length and half of the total laminate width are denoted by a and b, respec-

tively, as shown in Fig. 2.3.

- By combining-the expressions of N,; from Eqs. (2.11) and Egs. (2.13) with Eqs.

(2.14)-(2.24), the total energy release rate for the Mode I case can be written in the

form

G1=(Grn)+ (Gr,) + (Gir + G1g,)

(2.25)
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where

Gir = (e—€7")[(An + Anby1 + Aselar) € + (A2 T+ AeS2T — NI )]
— (e —€37) [(A11 + Ar2p11 + Arepnr + Brapar) €

+(ARFy™ + Ay F;™ + B F™ — N2™)

de
G, = _E(b —a){(An + Ak + Arebar) (26 — €77)

+ (A28 + AweS;™ — N7}
ds
- Zga{(An + A12011 + Arepns + Brawa) (2 — €37)

-+ (AmFlnm -+ A;(;anm + BmF;m — }V:m )}

Gir = —(e—€") [(Qn + Qo) Lisie™ ) 4 (Q + 7)25'212)]2326“’“"“’)]

— (e — €37) (Bye + A1212 + Ar6p22 + Bi2ps2) Hl/\e_h

ds

e {(Qn +m) 1 [e'a:(b-a) - 1] + (1 + 920 I, [e"’(b“’) _ 1]

Gir., =

+ (Bie + A12v12 + Arewzz + Br2wsz) Hy (1 - 6-“)}

and

de de™™ _ Alz(S;"" - anm) + A]G(S;m - anm) - Ble;m

da = da N,
_ Nz [Ar2(€11 — 011) + Asel(€a1 — 1) — Biapa]

3 (2.26)

- The resulting expression for the total energy release rate G; is composed of three
terms. The first term, denoted by Gy is independent of the delamination length while
the second, Gy, is a linear function of the crack length. The third term denoted by
(Gir + Grg,) , is an exponentially decaying function of the delamination length.

In computing the non-mechanical strains, the laminate is assumed to be held at

the prescribed temperature and moisture levels. This is followed by testing under
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fixed-grip condition, i.e., the constant strain measured in the lab is the mechanical
strain €™. In Refs.[18] and [20], Whitney considered the strain measured in the tests
to be the total strain, i.e. £ = €™ + €™ = constant . Th? difference between the

_two interpretations is detected by the terms Gz, and Gg, in Eq. (2.25). These two
terms are neglected in Refs. [18] and [20] since the total strain ¢ is assumed to be
constant.

As mentioned previously, neglecting the thickness strain leads to inaccurate esti-

mates for the peel stress. The peel stress is given by
P=Quy = —(Ass+ Agsj)js 67" (7 =12) (2.27)
The equilibrium of transverse force requires that

(b—a)
/0 pdy =0 (2.28)

or from the equilibrium equations (2.6)

Qm lyy=(b-a) - le Iy, =0 =0

While for all practical purpose the resultant sheér stress Q,, lyymtoer vanishes due to
the free edge, the resultant shear stress at the delamination front Q,, by <0 # 0. That
is in order for the peel stress to satisfy transverse force equilibrium, the shear force
boundary condition at the sublaminate end should be enforced. This is done by
adding to the peel stress distribution an appropriate boundary function expressed in
terms of the characteristics roots as

aje” "V 4 are?

The coefficients a; and a, are obtained by enforcing equilibrium of transverse force

given in Eq. (2.28) and moment given by

=0

Uyye(d—e)

(b-a)
_/; pydy + M,
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Figure 2.6: Local Delamination Specimen Cross Section

The corrected peel stress distribution is

$182

. -ny -2y
= §1€ — 82€
P s;—8; 'n=(b—-)[ 2 )

2.3 Local Delamination

A longitudinal section illustrating the geometry of a generic configuration is shown
in Fig. 2.6. The central region is assumed to be made of 90° plies with an isolated
transverse crack in the middle. Delaminations are assumed to grow from both ends
of the transverse crack, and towards both specimen ends as shown. From symmetry
considerations, only one quarter of the configuration is modeled. The modeled portion
of length L is divided into four sublaminates as shown in Fig. 2.7. The crack length

is denoted by a. The top surface (sublaminates 1 and 4) is stress free. lr order to




free free

@ @ 2
@ @ free

Symmetry Shear stress=0 Shear stress=0
Plane w=0 w=0

Figure 2.7: Sublaminate Scheme for Local Delamination

simplify the analysis, the thickness strain €. is neglected. The consequence of this,

combined with the fact that the transverse displacement w is zero along the center line,

is that w is zero in sublaminates 1, 2, and 3. Also, this approximation does not allow

for the enforcement of boundary conditions on the shear stress resultants, leading

to incorrect estimates of the interlaminar normal stresses. The interlaminar shear

stress estimates, however, are reliable [6]. These assumptions lead to considerable
simplifications in the analysis. In spite of the simplifications, reliable energy release

rate components can be estimated based on the interlaminar shear stress distributions

[7].

A generic sublaminate is shown in Fig: 2.8 along with the notations--and sign—--- - —-—

conventions. The peel and interlaminar shear stresses are denoted by P and T,

respectively, with ¢ and b subscripts for the top and bottom surfaces, respectively.
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Figure 2.8: Generic Sublaminate for Local Delamination

The axial stress resultant, shear stress resultant, and bending moment resultant are
denoted by N,Q, and M, respectively. The governing equations correspond to the
one-dimensional form of Eqs. (2.1 - 2.5). These are summarized in the following for

convenience.

The z and z displacements within the sublaminate are assumed to be of the form
u(z,z) = U(z) + zB(z)

w(z,z) = W(z)

Here, U represents the axial mid-plane stretching and W is the transverse displace-
ment. The shear deformation is recognized through the rotation, 8. These displace-
ments are the total quantities and include the hygrothermal effects. The origin of
the coordinate axes for the sublaminates is taken at the delamination tip as shown

in Fig. 2.9 . The equilibrium equations take the form
N,z +T¢ - Tb = 0

Que+P.—F =0 (2.29)
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Figure 2.9: Sublaminate Forces and Coordinate Systems

k
M,-Q+ E(Tf +T)=0
where h is the thickness of the sublaminate. The constitutive relationships in terms
of the force and moment resultants are

N = AU, 4+ BB

Q= As(B+W2D)
M = B,U,; +D118,:

The boundary variables to be prescribed at the sublaminate edges are

N o U
M or B
Q or W
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Additionally, at the interfaces between sublaminates, reciprocal traction, and dis-
placement matching boundary conditions have to be specified. The stress resultants
in these equétions include the equivalent hygrothermal loads also.

The solutions in sublaminates 1 and 2 are coupled by the reciprocal interlaminar
stresses denoted T, and P, and by displacement continuity at the common interface.
Assuming exponential solutions for the axial force and bending moment resultants
leads to an eigenvalue problem involving the exponential parameters. The character-

istic equation is of the form
8[B1s* 4+ Bys® + B3] = 0

where s is the eigenvalue parameter, and the B coefficients are given by

B] — ( 1 1 hi hg ) Dn(])Dn(z)

+ + 4

A11(2) All(l) 4D11(1) 4D11(2) A55(1) A55(2)
D 11 B2

B, = — 11<2)< 4 R )
A55(2) All(]) A11(2) 4D11(2)

ASS(]) All(l) A11(2) 41)11(])

and
1 1

= +
Angy  Ang)

Bs

' 4
The eigenvalues turn out to be zero and two nonzero values given by

_, (=B £ (B3 -4B:B) "\
B 2B,

For the problem under consideration, all the square roots in this expression lead to
real quantities and thus the eigenvalues are real. Since the eigenvalues involve only
the stiffness parameters, they are not affected by the inclusion of hygrothermal effects.

Further, due to the fact that B, has D terms in the numerator, it is much smaller
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than B;. This leads to the boundary layer nature of the solution. Since the response
(axial forces, moments) has finite values at large distances from the origin, namely, at
the ends of the specimen, only the exponentially decaying and constant solutions are
used. Using subscripts to denote the sublaminate of validity, the following boundary

conditions from the ends of the modeled region are enforced.

N(0)=0
Q4(a) =10
Bs(a) =0

N, + N, = Applied Load

The conditions on N apply only to the mechanical quantities. Further, the fol-

lowing displacement matching conditions are applied.

MY _. (. hk
Uy -'!',—2 = Uu; 1,',—2'

UI(O) = U.;(O)
Uz(0) = U3(0)
B1(0) = B4(0)

It should be noted that a 3; and $; matching condition cannot be applied at this
level of modeling since it would amount to specifying both W and Q. To eliminate
rigid body displacements, U, is set to zero at the left end. The following solutions

can then be obtained for the stress resultants in sublaminates 1 and 2
N] = ale"= + aze"’ =+ EA]](]) - Ar]nm

}\72 = —016"2 - 026.23 + EAu(z) - N;m
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Al] = a.,k;e"’ -+ agkze"t - Mlnm

M2 = alkae"' + azk.,e"’ - A'I;m

Here k, is defined as
by 2
35
k] = A
s801) _ (2
Dy 1

The parameter k; is defined in a similar manner using the eigenvalue, s;. The re-
maining parameters, k3 and k; , are similar to k; and k, but based on sublaminate 2

properties. The nominal strain, ¢, is defined as

1
Ay + Ange)

P
e= (55 + N+ NpT)

where P is the applied uniform axial force and b is the specimen width. The a’s can

be derived from the boundary conditions as follows

63 + 640 1 P
= —A N™ A — N4 )
“ 6a  Angy+ A (26 1z) TNy Ay = N Anq)

as =

01+02a 1 (P

—A ]\T""’A _ ]\rnm.4 )
6a  Ang+ Ang) \2b u@) + M 11(2) 2 A

with

and

94= 93—01 +(94-92)a
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The interlaminar shear and peel stresses between sublaminates 1 and 2 can be ob-

tained using the equililrinin equations (2.29) as
Ty = a18,€"" + azs2€”"

h h
Pl = (k] + ‘51)0-1516"3 + (kz + '51')02826.2:

As mentioned breviously, this peel stress estimate is not accurate because of the
inability to apply boundary conditions on shear. Recognizing the fact that there
are no applied shear forces, it can be concluded that the peel stress distribution
should be self equilibrating. This assumption can be satisfied by including additional .
exponential terms in the above peel stress expression and determining these additional
terms by setting the net force and moment due to the peel stress to zero as shown
in section 2.2. The peel stress estimated through this correction process is referred
to as the modified peel stress. Proceeding on to sublaminates 3 and 4, the following .

solutions can be written.

N:=0
M3 = ¢y sinh(w3z) + @, cosh(wsz)

where

p2 = a1k3 + azky
1 = —p3 coth(wsa)

and
Ass(2)

2

ws =

8 Dll(Z)
P

M4 = a k) + azk;
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The total energy release rate Gz is calculated using Gy = dW. /da where W, is the
work done per unit width by the external (constant) loads on the specimen displace-
ments. For the case where hygrothermal effects are included, there are additional
terms due to the work done by N*™ . In reality, these N'™ quantities are not applied
loads but correspond to residual stresses. Thus, the additional terms are due to the
work done by the applied mechanical strains on these residual stresses. The total

energy release including hygrothermal effects is given by

P /P 1 1
Gr = _(—+N"'")( - +1-1)
T 26\ b ! Angy  Angy+ Ang ] ?
P 1
+ — N = — I+ 1 2.30) -
2bh 2 ( Ay + Ange) ? 2) ( )

where the I factors are

0293 - 0] 64 1 - e"’l(L"ﬂ) 1 - e—a;(L-a)
I] =X 02 —_
d 83 S92
6 + Bqa)e= L) _ (8, + B,q)e 210
]2=X( 3+ 64a)e (6, + 6,a)e 2.31)
64
with
X 1 Anm

Ang)+ Aue) Ana)

Parameter I3 is the same as I, but with the ratio A;3(1)/A4,1(2) instead of unity in
Eq. (2.31). Using the virtual crack closure technique [21], from the relative displace-
ments in the cracked portion and the interlaminar stresses ahead of the crack tip, the
mode I and mode II energy release rate contributions can be obtained. The mode III
energy release rate is zero from the assumption of plane strain. The mode II energy
release rate is given by

1 g |
G = y_xgﬁfo Ty(z — 6)Au(z)dz

where 6 is the virtual crack step size and Au is the differential axial displacement

across the crack surface. This c:lculation can be simplified using only the linear
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part of the differential displacement [7]. In a similar fashion, the mode 1 energy
release rate can be obtained based on the normal stress (P) and the differential
w displacements near the crack front. Since the unmodified peel stress estimate is
inaccurate, an alternate approach was used to estimate G;, the mode I energy release
rate. The total energy release rate for this .prob]em is made up entirely of G; and Gy,
(Gr1r = 0). From an estimate of Gr and Gy, an estimate for GG; can be obtained
simply as

Gr=Gr -Gy

The critical load for a given specimen can then be evaluated based on an appropriate

fracture law. This is illustrated in the next chapter.
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| ~ CHAPTER III

APPLICATIONS OF DELAMINATION MODELS

3.1 Model Edge Delamination

The analytical model is applied to the mid-plane edge delamination specimen shown
in Fig. 2.2. The material considered is T300/5208 graphite epoxy. Its properties are
listed in Table 3.1.

The difference between the ambient and cure temperature, AT, is —156°C". The
moisture level was allowed to vary from 0 to 1.2 percent of the laminate weight. which
reflects feasible conditions. Laminates of the class [§/.— 6,/6/90,], and [03/903], have
been analyzed.

Normalized values of strain energy release rate are shown in Figs. 3.1-3.6, where
the labels M,M + T, and M + T + H stand for mechanical, mechanical and ther-

mal, and mechanical, thermal and moisture, respectively. The strain energy release

Table 3.1: ED Specimen Geometry and Material Properties

E;, = 128 GPa | Thermal Coefficients : a; = —041uc/°C

Ezz = 8.47 GPa ' Q; = 26.8#6/00
G12 = 5.73 GPa | Swelling Coefficients : Br1=0
G = 3.27 GPa B2 = 5560uc /%W

G23 = 3.27 GPa Width = 2b = 38.4 mm
vy = 0.292 Ply Thickness = 0.14 mm
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rate parameter in the figures is defined as the total energy release rate divided by
Eph(e™)>.

The strain energy release rate in Figs. 3.1-3.3 is zero at @ = 0. Residual thermal
stresses results in an increase of 275%. 40% and 280% of the energy release rate for the
[15/—15,/15/90,},,[60/—60,/60/90.], and [03/90;], laminates, respectively. Residual
moisture alleviates this effect as illustrated in Figs. 3.4-3.6. The specific moisture
content for total alleviation from the thermal effect is equal to 0.763% irrespective of
the layup.

The peel stress distribution; o.., appears in Figs. 3.7-3.9. The stress parameter in
these figures is defined as the interlaminar stress divided by E,,z™. The inaccurate
peel stress distribution given in Eq. (2.27) is plotted for the case where mechanical
loading only is considered. The corrected peel stress distribution is self-equilibrating
and yields a ténsile peel stress at the delamination front.

The magnitude of the peel stresses shows a strong dependency on the thermal
and moisture conditions. The stress increases with thermal effect as compared to
pure mechanical loading.. The addition of moisture alleviates the thermal effect.
Moreover, the distance at which the peel stress reverses its sign is not affected by the
residual thermal and moisture strains. It is worth noting that at the specific moisture
percent (0.763%) producing complete alleviation of the total energy release rate from
the thermal eflect, the interlaminar pee] stress distribution is identical to the case
where only mechanical loading is considered. This is shown in Figs. 3.7-3.9. This
finding establishes a similarity in behavior between the energy release rate and the
interlaminar stresses. . .
The analytical model presented herein was applied to the laminates presented in

Ref. [18]. The Graphite/Epoxy lamina properties from Ref. [18] are listed in Table

3.2. Similar values of strain energy release rate G were calculated for the wide range
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Table 3.2: ED Specimen Geometry and Material Properties, Ref. [18]

E/E;, =14 Ply Thickness = 0.1267 mm

E33/Ey = 1

G12/E2; = 0.533 | Thermal Coefficients : o = —09uc/°C
Ga3/ E2p = 0.323 a, = a3 = 23.0uc/°C
v = 0.3

vy3 = 0.55 width = 2b = 38.0mm

of a/h where the G; remains constant. as shown in Figs. 3.10 and 3.11. Negligible
change in the G; value with decreasingly small values of a/h were obtained. This
is in contrast with the increase in G; at small values of a/h reported in Ref. [18].
Although thickness strain is neglected in Eqs. (2.1), the peel stress distribution has
been estimated through a modification as described previously, which simplifies con-
siderably the computational effort. A comparison of the peel stress distribution with
Ref. [18] is shown in Figs. 3.12 and 3.13.

The peel stress intensity at the delamination front in the [30/ — 30,/30/90,], is
higher than the [03/90;], laminate. This is due to the difference in poisson’s ratio
between the core plies made of 90° plies and the outer phies. The poisson’s ratio
mismatch is larger for the case of [30/—30,/30/90,], compared to the [03/903], layup.
The interlaminar peel stress distribution predicted by the present approach is in good
agreement with the distribution of Ref. {18] for the case of a {03/90;3],Jaminate. This is
in contrast with the case of a[30/ — 30,/30/90,), where the maximum stress intensity

as well as the distribution differ from the predictions of Ref. [18]. This difference may

be due to the transverse normal strain influence on the analysis of these laminates.
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3.2 Edge and Local Delamination

The delamination models have been used to study the behavior of [+£25/90,], T300,/934
Graphite Epoxy specimen for n values of 0.5, 1, 2, 3, 4, 6, and 8. These correspond
to the specimen tested by Crossman and Wang [8]. The specimen width and length
were fixed at 0.025m and 0.15m, respectively, as in the tests. In computing the non-
mechanical strains, the laminate is assumed to be held at the prescribed temperature
and moisture levels. In predicting critical strains, the difference between test and
stress free temperatures is assumed to be —155°C' and specimen is assumed to be
dry. It is assumed that local delamination occurs under fixed load conditions whereas
edge delamination occurs under fixed grip conditions. This difference is a consequence
of the modeling approaches used in the analyses. The applied uniform load was.100
MPa axial stress for the local delamination analysis and 0.5% strain for the edge de-
Jamination an?lysis. The solutions were generated using simple computer programs
based on the closed form expressions for the interlaminar stresses and energy release

rates.

3.2.1 Local Delamination

An example of the total energy release rate variation associated with local delamina-
tion (neglecting hygrothermal effects) with the crack length is presented in Fig. 3.14.
The asymptotic value of Gr is denoted by Gro in the figure. It can be observed that
after a certain crack length, the Gr is independent of the crack length. On the basis of
curves like the one shown in Fig. 3.14, the crack length was fixed at 10 ply thicknesses
for the remainder of the studies. Typical interlaminar shear stress profiles including
the hygrothermal effect are presented in Fig. 3.15. The corresponding total strain

energy release rates appear in Fig. 3.16. The inclusion of thermal effects increases
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the stress and the energy release rate while the inclusion of moisture effects has the
opposite effect. In fact a moisture level of about 0.75% almost exactly negates the
thermal] eflects. After some initial dependence on crack length, the mode mix tended
to stabilize to a constant value. Using the model developed here, the asymptotic
mode II component of the local delamin#tion energy release rate was found to be
approximately 30 percent for all n values. In the case of off-mid-plane edge delami-
nation, the mode II contribution was less than 10 percent for the n = 0.5 specimen

and progressively less for the thicker specimen.

3.2.2 Edge Delamination

As in the case of local delaminations, the interlaminar stress increases with thermal
effects and the addition of moisture alleviates this as shown in.Fig. 3.17 for the case of
mid-plane edge delamination. A moisture level of about 0.75% produces a modified
peel stress distribution that is indistinguishable from the case of mechanical loading
alone. Moreover, the distance at which the modified peel stress reverses its sign is
not affected by the residual hygrothermal strains. The hygrothermal influence on
mid-plane delamination strain energy release rate is illustrated in Fig. 3.18 where the
" strain energy release rate is plotted versus moisture content for a [£25/90,], laminate.
The strain energy release rate follows the trend of increasing with residual thermal
stress as in the case of pee] stress. Further, residual moisture alleviates the thermal
effects and a moisture level of about 0.75% results in a total alleviation of thermal

effects. Similar behavior is observed in the case of off-mid-plane edge delamination.

3.2.3 Failure Loads and Modes

In order to evaluate the critical loads for local delamination, an appropriate mixed

mode fracture law has to be applied, based on the calculated energy release compo-
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nents. The following mixed mode criterion [22] has been fitted to the test data of
Ref. [23] to calculate the mixed mode G7, which is then used in the Griffith criterion

Gr = Gr. to obtain the critical delamination growth stress o, and strain £, values.
= fnGIc + (1 - f)nGIIc

Here £ is the mode I fraction (G;/Gr) and Gj. and G 11 are the critical strain energy '
release rates for the limiting cases of pure mode I and pure mode II, respectively.
The exponential parameter 7 is a material constant and for the T300/934 system. its
value is approximately 0.9. In the case of mid-plane delamination, since only mode
I is present, Gr. was iaken as Gzc(125J/m2).' Based on the mixed mode criterion,
Gr. was about 400J/m? for the local delamination case (£ = 0.7). The failure loads
for edge delamination at the ~25/90 interface have also been calculated using a G,
value of 150 J/m2. This Gr. value is different from the ve.lue used for mid-plane
delamination due to the limited (less than 10 percent) presence of mode II.

In order to consider a worst case situation, thermal stresses were included and the
moisture level was set at zero. Though the thermal stresses had a significant effect
on the calculated peak stresses, the eflect on the energy release rate was not signifi-
cant except in the case of mid-plane edge delamination for the material system and
layup considered. The critical strains are plotted against n, the number of 90° plies
in Fig. 3.19. The experimental results of Ref. (8] are also presented in the figure for
comparison. The results of the model developed in this paper are represented by the
solid and dotted lines while the experimental results are shown as filled squares. The
CLT based model of Ref. [9] agrees well with the shear de{ormatlon model in terms
‘of the total energy release rate. However, the CLT based model does not prov1de in-
formation on the mode split and thus, the value of G.(x~ G}.) used can lead to bias in

the critical strain estimates. In the experiments, the local delamination phenomenon
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was observed as the predominant failure mode only for the n = 4,6 and 8 specimens.
The shear deformation model presented in this paper provides good agreement with
the experimental data in this range. For n < 4, edge delamination either in the
mid-plane or in the 25/90 interface was observed in the tests, in agreement with the
edge delamination models. Further, the relative closeness of the calculated critical
strains from the mid-plane and ofl-mid-plane edge delamination models implies that,
in prﬁctice, one could have Interaction between these two modes. in such cases, one
can expect the delamination to wander around the mid-plane and the 25/90 inter-
faces. This is especially so in the case n = 0.5 where mid-plane delamination is not
actually between two distinct layers but in the middle of a single layer. Experimental
observations [8] are in agreement with this expectation. Thus, it can be seen that
the shear deformation models reproduce the observed behavior with reasonable ac-
curacy and can be used to estimate critical loads for a range specimen thicknesses

incorporating various delamination modes.

3.3 Conclusions

Shear deformation models including hygrothermal effects have been developed to
analyze local delaminations growing from transverse cracks in 90° plies and edge
delaminations located around the mid-plane of symmetric laminates. The models
have been combined into a unified delamination analysis code in order to predict
damage modes and loads in laminated composites. The ana.lyticai results of the
shear deformation models agree reasonably with critical strain experimental data
from [+25/90,,], T300/934 graphite epoxy laminates in the range of n from 0.5 to 8.
Residual thermal and moistufe stresses are found to have only minor eflects on the

critical strains except in the case of mid-plane edge delamination for the geometry
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and material considered. The same failure modes as in the tests are reproduced in
the analysis. The integrated delamination code is expected to be of use in design

evaluation applications. -

&
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Figure 3.12: Peel Stress Distribution ahead of the Crack in a [05/903), Laminate
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CHAPTER IV

-

THEORY OF ANISOTROPIC THIN-WALLED BEAMS

A variationally and.asymptotically consistent theory is developed in order to derive
the governing equations of anisotropic thin-walled beams with closed cross sections.
The theory is based on an asymptotical analysis of two-dimensional shell theory.
Closed-form expressions for the beam stifiness coefficients, stress and displacement
fields are provided. The influence of material anisotropy on the displacement field
is identified. A comparison of results obtained by other analytical developments is
performed.

A review of previous work is presented first, this is followed by a detailed develop-
ment of the theory. Finally an analytical comparison of the displacement field with
previously developed theories is providéd.

4.1 Review of Previous Work

Elastically tailored composite designs are being used to achieve favorable deformation
modes under a given loading environment. Coupling between deformation modes
such as extension-twist or bendjng-twist is created by an appropriate selection of fiber
orientation, stacking sequence and materials. The fundamental mechanism producing
elastic tailoring in composite beams is a result-of-their-anisotropy. Several theories
have been developed for the analysis of thin-walled anisotropic beams. An extensive
review is provided in Ref. [26]. A number of issues relevant to the research undertaken

in this thesis is highlited in the {ollowing.
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A basic element in the analytical modeling development is the derivation of
the effective stifiness coefficients and governing equations which allows the three-
dimensional (3D) state of stress to be recovered from a one-dimensional (1D) beam
formulation. For isotropic or orthotropic materials this is a classical problem, which
is considered in a number of text books such as Refs. [52]-[59].

For generally anisotropic materials, a description of the major approaches is pro-
vided in Refs. [24]-[49). A number of 1D theories have been developed in Refs. [27],
(28], (30], [42], [43], and [46]. A discussion of the displace.ment provided in these works
is presented in the analytical comparison section of this chapter.

Missing from the review of Ref. {26] and all other current publications is the work
of Reissner and Tsai in Ref. [27]. It presents an exact solution to the governing
equilibrium, compatibility and constitutive relationships of shell theory. Closed as
well as open cross-sections were considered. However, the authors left to the reader
the derivation of the explicit expreésions for the stiffness coefficients. This may be
the reason for their work to have been overlooked. These expressions are important
in identifying the parameters controlling the behavior and in performing parametric
design studies. Furthermore, the explicit form of the displacement field helps evaluate
and understand predictions of other analytical and numerical models.

A number of assumptions were adopted in Reissner and Tsai’s development re-
garding material properties such as neglecting the coupling between in-plane strains
and curvature which can be significant in anisotropic materials. It is important to
assess the influence of these assumptions on the accuracy. This has been done in the
present work by using an asymptotical expansion of the shell energy.

Mansfield and Sobey [28] and Libove [29] obtained the beam fiexibilities relating
the stretching, twisting and bending deformation: to the applied axial load, torsional

and bending moments for a special origin and axes orientation. Their analyses are
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similar. Although they did not refer to the work of Reissner and Tsai [27], surprisingly
when their analyses is applied to the special case outlined in Ref. [27], their stiffnesses
coincide. However, one has to carry out details to show this fact. They adopted the
assumptions of a negligible hoop stress resultant N,, and a membrane state in the
thin-walled beam section. The special case in Ref. [27] refers to the one where classical
assumption of neglecting shear, hoop stress and constént shear flow is adopted.

A pertinent element in tlhe analytical modeling development is the inclusion of
section warping. The major difference among the various theories lies in the method-
ology used to eliminate warping and consequently obtain a one-dimensional theory.
The work of Refs. [30], {41}, [42]. [43], [44], [45], and [46] use the displacement field
of thin-walled isotropic beams with shear deformation as the basis of their analytical:
development. In Refs. [42] and {46] the torsional rigidity is derived in terms of Clas-
sical Lamination Theory in what the author described as a “practical manner”. In.
Refs. [43] and [44] a shear correction factor has been introduced in order to reduce the:
overestimated bending stiffness. This factor was derived for the case of pure torsion:
by using the virtual work method and enforcing compatibility. While this approach
shows an improvement in predictions, it is problem dependent. Another modification
was proposed in the finite element formulation of Ref. [38]. This formulation aims at
minimizing the error associated with the neglect of bending-related warping in the
theory of Ref. [30]. This modification was based on shear stiffness correction factors
determined by numerical comparison of results with an MSC/NASTRAN solution of

cantilevered beam configurations loaded transversely at the free end.

This summary points to the necessity of addressing three fundamental issues.

The first, is the effect of the material’s anisotropy on the displacement field and how
to include its contribution in a consistent manner. No rigorous proof is provided

to validate the assumed displacement fields in Refs. [30], [42], [43], [44], [45], and
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[46] for beams made of anisotropic material as indicated by the various correction
factors introduced. The second, is the significance of the shear deformation relative
to the other contributions such as section related warping. The last is the accuracy
of the membrane stress state assumption in thin-walled anisotropic beam sections.
The present work addresses these issues by using an asymptotical expansion of the
2D shell energy to derive the 1D beam displacement field. As a consequence, the
material’s anisotropy is accounted for in a consistent manner and the deformation

modes that have a lead contribution to the energy emerge naturally.

4.2 Coordinate Systems

Consider the slender thin-walled elastic cylindrical shell shown in Fig. 4.1. The length
of the shell is denoted by L, its thickness by h, the radius of curvature of the middle

surface by R and the maximum cross sectional dimension by d. It is assumed that
d<< L h<<d h<<R (4.1)

The shell is loaded by external forces applied to the lateral surfaces and at the
ends. It is assumed that the variation of the external forces and material properties
over distances of order d in the axial direction and over distances of order % .in the
circumferential direction, is small. The material is anisotropic and its properties can
vary circumferentially and in the normal direction to the middle surface as well.

It is convenient to consider two coordinate systems for the description of the state
of stress in thin-walled beams. The first one is the Cartesian system z,y and = shown
in Fig. 4.1. The axial coordinate is z while y and : are associated with the beam
éross section. The second coordinate system, is the curvilinear system z,s and ¢ -
shown in Fig. 4.2. The circumferential coordinate s is measured along the tangent

to the middle surface in a counter-clockwise direction whereas ¢ is measured along




Figure 4.1: Cartesian Coordinate System
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Figure 4.2: Curvilinear Coordinate System
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the outward normal to the middle surface. A number of relationships have a simpler
form when expressed in terms of curvilinear coordinates. A relationship between the
two coordinate systems can be established as follows.

Define the position vector 7 of the shell middle surface as
T = 21, + y(s)7, + 2(s)7-

where 7, 7,,, 7. are unit vectors associated with the cartesian coordinate system z, y
and :. Equations y = y(s) and = = z(s) define the closed contour I in the y, = plane.

The normal vector to the middle surface 77 has two nonzero components
= n,(s)y, + n.(s)i. (4.2)
The position vector R of an arbitrary material point can be written in the form
R=+ + én (4.3)

Equations (4.2) and (4.3) establish the relations between the cartesian coordinates r,
¥, = and the curvilinear coordinates z, s, £. The coordinate { ies within the limits

_Me) B
2 — 7 2

The shell thickness varies along the circum{erential direction and is denoted by h(s).
The tangent vector £, the normal vector 77 and the projection of the position vector

7 on t and 7 are expressed in terms of the cartesian and curvilinear coordinates as

{_dF_dy_+ z.
T ds sV s
-~ .. d= dy
n=1tX1=—i,— —1,
" sV ds
D o d <
rt=r-t=yd—§+:d—s (4.4)
. - : dy
T =T -Nl=y——2—
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An asymptotical analysis is used to model the slender thin-walled shell as a beam
with effective stiffnesses. The method follows an iterative process. The displacement
function corresponding to the zeroth-order approximation is obtained first by keeping
the leading order terms in the energy functional. A set of successive corrections is
added and the associated energy functional is determined. The process is terminated
when the new cycle does not generate any additional terms of the same order in the

energy functional.

4.3 Shell Energy Functional

Consider in a 3D space the prismatic shell in Fig. 4.2. A curvilinear frame z, s, and
€ is associated with the undeformed shell configuration. Values 1, 2 and 3 denoting
z, s, and §, respectively are assigned to the curvilinear frame. Throughout this
study, Latin superscripts (or subscripts) run from 1 to 3, while Greek superscripts
(or subscripts) run from 1 to 2, unless otherwise stated.

The strain energy density of a 3D elastic body is a quadratic form of the strains
1 ..
U= -2-E"kl£ij6k1

The material properties are expressed by the Hookean tensor E'¥'. Following the
classical shell formulation of [60], [61], and [62] the through-the-thickness stress com-
ponents o*® are considerably smaller than the remaining components o®?. Therefore

we can set

ai3 =0 (45)

so that the strains can be written as

€ap = Yap + {Pas (4.6)
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where 4,5 and p,g represent the in-plane strain components and the change in the
shell middle surface curvatures, respectively. For a cylindrical shell these are related

to the displacement variables by

o
228! — Bz
2y = 20 4 O
M2 =55 T b
G
722 s + R
8%
P11 = 5';—2 (4.7)
8*v 1 (6v, Ov,
P2 =55z T IR (E B 35)
v 8 (v,
P22 = 552~ Bs (ﬁ)

where v;, v, and v represent the middle surface displacements in the axial, tangentiél
and normal directions, respectively as shown in Fig. 4.2. These are related to the

displacement components in Cartesian coordinates by

dy z

Vg = ‘U-zzs- -+ 1135 (4.8)
d: dy

v= uzds Y3ds

where u;, u; and u; denote the displacexhents along the z. y and : coordinates,
respectively.
The energy density of the 2D elastic body is obtained in terms of 9,5 and p,g by
the following procedure.
" The 3D energy is first minimized with respect to €;5. This is equivalent to satis- . _

fying Eq. (4.5). The result is

. 1
U=minU = §D°B’6eaﬁe,6 (4.9)

€3

]
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where D*A" represent the component of the 2D Young’s mocuiu.. The expressions
for D*A"¢ are given in terms of E®#* by

EaB33 E1633

Da[i-16 = Eoﬁ'yb _ _ Hp)GaﬁuG—Y&A

F3333

EaBSS Eu333

apu _ paBuld _
G =FE [3333

. . 333 A3
and H,, are components of the inverse of the 2D matrix ”E H3AS _ E-“Tsf‘;-;— i The

expression for D°?* in terms of familiar Classical Lamination Theory (CLT) param-
eters is provided in Eqs. (4.43) and (4.44).

The strain c,5 from Eq. (4.6) is substituted into Eq. (4.9). After integration of
the result over the thickness £ one obtains the energy of the shell & per unit middle

surface area

&
28 = hC® " q057,6 + 2O " ya5p05 + -—(' 32 Pappas

1
Cat316 = < DoB-y6 >

2 .
(yaB'Hs h2 < DOB'76£ >

12

056
c;”” =13

< DcB’y$£2 >

and a function of £, say a({), between pointed brackets is defined as an integral

through the thickness, viz.,

+M‘)/2
<a>= / (4.12)
h(n)/2

The first term in Eq. (4.11) represents the in-plane contribution, the second the
coupling between in-plane and bending, and the third the bending contribution to

the shell energy.
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For an applied external loading P;, the displacement field u; determining the

deformed state are the stationary points of the energy functional

I= / $dads - / Puidzds | (4.13)

4.4 Asymptotical Analysis of the Shell Energy Functional

4.4.1 Zeroth-Order Approximation

Let A and E be the order of displacements and stiffness coefficients ("*#*¢, respec-

tively. Assume that the order of the external forces is

(4.14)

h
P~O(EA )

12

This assumption is sl;ou'n later to be consistent with the equilibrium equations.
An alternative would be to assume the order of the external force as some quantity P
and derive the order of the displacements as PL?/Eh from an asymptotical analysis
of the energy functional.

For a thin-walled slender beam whose dimensions satisfy Eq. (4.1) the rate of
change of the displacements along the axial direction is much smaller than their
rate of change along the circumferential direction. That is, for each displacement

component
6v,~ << 81);
Oz Os

Using Eq. (4.7) and assuming that d is smaller or of the same order as R, the

(4.15)

order of magnitude of the in-plane strains and curvatures is

A | i}
m ~0 (I)

=0 (8




Since 43; and p;; are much smaller than 7,3, 42, and p;2, p22, respectively, their
contribution to the elastic energy is neglected.
The order of magnitude of the shell energy per unit area and the work done by

external forces is

2
¢~O(EAh)

d?

Piu; ~0(

Since Piu; << &, the contribution of external forces is neglected. Therefore the

energy functional takes the form
L ‘ )
21 =/0 %{4,101212(712)2 + 4h012?2‘712722 + hCz.-z(,nz)z + 4h2(,'1]212'712p13

+2h2C1* q12p22 + 2R CT 00012 + B2 CF 92001
h? 2 h® 122 h?
3 €2 pr2) + 5 O prapas + 503 (p2) }sdz (4.16)

*3

Using Eq. (4.15), the strain-displacement relationships in Eq. (4.7) can be written

as
ov
2=,
6‘02 v
L P
1 81}1 -
P12 = TE s (4.17)

v 8 v,

o= g~ 503
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The integrand in Eq. (4.16) is a positive quadratic form, therefore the minimum
of the functional is reached by functions v, v;, and v, for which 72 = 922 = p12 =

P22 = 0. From Eq. (4.17) this corresponds to

6‘01‘
Y (4.18)
Ovy, v
B + - 0 (4.19)
6%v 8 (v,
—_— =)= 2
ds* 0Os (R) 0 (4.20)
The function v in Egs. (4.19) and (4.20) should be single valued, i. e.
ov 1 s0v '
(5;) =14 %= (4.21)

The bar in (4.21) and in the subsequent derivation denotes averaging along the closed
contour I" whose length is denoted by [ in Eq. (4.21).

Equation (4.18) implies that v, is a function of z only, i.e.
v, = Uy(z) (4.22)

Integrate Eq. (4.20) to get

31’ (]

where ¢(z) is an arbitrary function which is shown later to represent the cross-
sectional twist. From Eq. (4.21) and (4.23), one obtains the relation between o(zx)

and Vs,

= (¥
o(e) = (2)
Substitute v from Eq. (4.19) into Eq: (4.23), to get the following second-order differ-

ential equation for v,

8 AN
2 (R—a-;—) +g = o(z) (4.24)
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To solve this equation, one has to recall the relations between the radius of curvature

R and the components y(s) and =(s) of the position vector associated with contour I’

d*= _ldy
ds?  Rds
Sy  1d: .
4? = "Rds (4.29)

It follows from Egs. (4.25) and (4.4) that % and :—i are solutions of the homogeneous
form of Eq. (4.24) and v, = ¢(z)r, is its particular solution. The general solution is
therefore given by

d d:

v = Ug(z)5 + Usl@) T + p(z)rs (4.26)

ds ds
where [/; and U'; are arbitrary functions of z. Substitute from Eq. (4.26) into Eq.
(4.19) to get

d: dy

v = lrg(t)z - l’3(£)‘2; - ‘p(!‘)ﬁ (427)

Eqgs. (4.22), (4.26) and (4.27) represent the curvilinear displacement field that mini-
mizes the zeroth-order approximation of the shell energy. Using Eq. (4.8) the curvi-

linear displacement field is written in Cartesian coordinates as
u; = Uh(z)
uy = liz(x) — zpp(x) (4.28)

us = Us(x) + yp(z)

The variables Uj(z),Uz(z) and Us(x) represent the average cross-sectional transla-
tion while ¢(z) the cross-sectional rotation normally referred to in beam theory as
the torsional rotation. This displacement field corresponds to the geroth-order ap-
proximation and does not include bending behavior. For a centroidal coordinate

system U,(z), Us(z), Us(z) and ¢(z) can be expressed as

Uh(z) =1




Us(z) = 7

Ua(!‘.) = Uug (429)

=3
ﬂﬂ=g_

Tn

4.4.2 First-Order Approximation

A first-order approximation can be constructed by rewriting the displacement field in

Eqgs. (4.22). (4.26) and (4.27) in the form

v = Ui(z) + wi(s, 7)

d d=
vs = Us(2)L 4 Us(z)== + (2 )rm + wi(s, z) (4.30)
ds ds :
d: d
v = Up(z) o = Us(z) o2 — p(z)re + w(s, )
ds ds

where w;,w, and w can be regarded as correction functions to be determined based
on their contributions to the energy functional.
Substitute Eq. (4.30) into (4.7) to obtain the strains and curvatures in terms of

the displacement corrections

5,4 20
71 = i bz
° Ow, aw]
=27 — 4 24 29
2712 12 + 5z +292 , 2n2= Be
_.I;, " - 6w2 + w
Y22 = V2 + Y22 5, Y22 = s )
8w
P11 = i+ = 522 (4.31)
62‘!.0 3 311’2 N 6

P12 =p12-:+636x —m 5z +P12 K R—a"’

P12
_;’ . . 2w 6 (w )
P22 =P22+ paz 4 pP22= 52 s \R
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where 7°,5 and P°,g are the strains and curvatures corresponding to the zeroth-order

approximation. These are expressed as

Su=Ulz)~ 0 (9-)

I
-] dy d: A
- /rl V) 7! _ ! ~ -
2712 lz(r)d3+l3(z)ds+(,o(:c)r,, O(L)
Y22 =10
o d: dy /A
= ]II T I” v _ A ~ — 2
b = U(2) L - U(2) 3 = ¢l ~ 0 (53) (4.32)
° 1 dy d:= A
= — |lvi(n)2 + r/(0)Z + —Jz)~0 (2
P = t:(z)ds+ta<z>ds+¢<z>rn] #(z)~0(37)
;?22=0

The prime in Eq. (4.32) denotes differentiation with respect to z. Among the new
terms introduced by the function w; the leading ones are denoted by superscript ~ in
Eq. (4.31). The order of u; is (%).f this is derived from Eqs. (4.31) and (4.32) where
it is seen that the leading terms 29,, and p;, are of the same order of magnitude as

27°;2 and P°;, , respectively, i.e.

25, = 20 0 (2)

Os
- 1 611)1 A
bu= 155 ~ 0 (1) (1.33)
Therefore,
Ad

An alternative approach is to assume the order of w; as (%’) and verify this assump-

tion, as shown later, once w; is determined. The order of magnitude of the remaining

leading terms in Eq. (4.31) is as follows

w-o(3)
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. A ,,
i~ 0 (57) 4.33
P22 77 | (4.35)

The energy functional can be represented by @ (911,2712,722,P115P12,p022). By
keeping the strains and curvature associated with the zeroth-order approximation

and the leading terms contribution over the other terms (i.e., by dropping the terms

uy; Buy Huw 8w 1 Swy : . :
g Suz2 v Jw o =22 .
D2 B2 B2 and 3:5: — aE 3= 10 Eq. (4.31)) the energy functxon can be written as

[«] (o] " " o [+] N .
(V11,2712 + 2912, 0 + 422, P11, P12 + P12, 0 + p22)
The interaction terms associated with £°;; and £°;,, namely
o o o o
hPy1h12, hP11d22 h?P11prz s h*P11pas

o o 29 . 29 .
hP12912 5 hP1222, h°P12p12, B P12p22

are of order (%;7") or smaller. They are neglected in comparison with the following

terms

[} . [] N o . <] .
Y117z M119225 N12912s V1222 (4.36)

of order (%;). Similarly, the contribution of the work done by external forces, Piw;, is
- neglected since its order is (Eh %:—(%)) in comparison with the order of the remaining
terms in the energy functional (E h %;) . Therefore in order to determine the functions

w,; one has to minimize the functional

o ° D' - - -~
f‘i’(711,2712 + 2912, %22, 0, p12, P22) ds

If the rigid body motion is suppressed the solution is unique. The terms p;3, ps, are

essential to the uniqueness of the solution; however, their contribution to the energy,

expressed by the interaction terms

. ©° .. ° . © . ©
hpi27V11, hp12712, hP22 V11, hpaz Y12



g

is of order (%:'(%)) or smaller, and is consequently dropped in comparison with the
membrane contribution listed in (4.36). This aspect is discussed by Berdichevsky and
Misiura [63], with regard to the accuracy of classical shell theory. Therefore, the shell

energy can be represented by
L ° o
I= / f¢(711,2‘)12 + 2'}12a ﬁﬁ:oao? 0) dsdr (437)
0

It is worth noting that the bending contribution does not appear in Eq. (4.37). That
is, to the first-order approximation the shell energy corresponds to a membrane state.

The first variation of the energy functional is

0% O, od Ow, w
81 = / f{d(zm ( )+67226(3s R)}dsdr (4.38)

= N, and 661 22, Eq. (4.38) takes the form

Recall that ——

8(2'1 )

5] = /‘ %{ 6w1) + Ny (ﬂ%‘:’_ﬂ + %M.) } dsdr

Set the first variation of the energy to zero, to obtain the following

0Ny,
8s 0
0N,
8s 0
22
2 _0
R
which result in
. N;; = constant (4.39)
and
Ny =0 ' (4.40)

This is similar to the classical solution of constant shear flow and vanishing hoop

stress resultant. By setting N,, o zero the energy density is expressed in terms of
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711 and T2 only

2¢;, =min2¢ = mizn hcaﬁﬂ")aﬁ’)-yﬁ = A(S)(711)2 + 2B(s)mim:z + ("(5)(‘712)2 (4.41)

Y22 2
The variables A(s), B(s) and C(s) represent the axial, coupling and shear stiffnesses,
respectively. They are defined in terms of the .D"ﬁ""S as follows

' (< p1122 >)2

A(s) =< D™ >~ ~ O (E})
< D1122 S< D1222 >
B(s)=2 [< DM > ~ s ] ~ O (Eh) (4.42)
, < D1222 >)2
C'(S) =4 [< Dnl2 > —(—mz—;—] ~ O(Eh)

where the 2D Young’s modulus D*#"¢ are expressed in terms of the Hookean tensor .
E°5 in Eq. (4.10). The pointed brackets denote integration over the thickness as
defined in Eq. (4.12).
For convenience, D*#* is given in matrix form as
-1 T -1

D)= (@] -2[@ 07 [ + [0 [7] [e] (1.43)

where ”

phn pnz  pme

[D] = | D122 pw2 pua

pyiz  pr2 piae
Q1 Qi Q]
[Ql] = 612 azz 626
l.als 626 _Q—esJ
(Q1s Qs @ud]
[Qz] = Z?:;; -Q-zs 6247 (444)

. 636 QSG 646 o
i Q33 Q35 —Q.SG )

[Qs] = 635 -Q—ss 6;5
.ase 645 a«.




79
613 aza 535
[Q‘] = Z;)_15 325 656

Qu Gy Q
The indices adopted in Eq. (4.44) follow the convention of Ref. [50]. The bars over

the reduced stiffness coefficients Q;; of Classical Laminate Theory, Refs. {19] and
[50], indicate that these quantities are to be obtained through appropriate coordinate
transformations. |

Equation (4.41) indicates that, to the first-order, the energy density function is
independent of functions w,; and w. That is, the in-plane warping contribution to
the shell energy is negligible. The function w; however, can be determined from Eq.

(4.39) and (4.41) and by enforcing the condition on w, to be single valued as follows

ad 1
== (B(s)y11 + C(s)912) = constant (4.45)

Nio =
27 8(2m) 2

Substitute from Eqs. (4.31) and (4.32) into (4.45) to get

1 6'11.’]
- T —
2B (ll(:r)+ 5 )

1 ‘ dy 61.U a'tL’l
- 7 . —— e = 8 g
+ 4C (l 2(1‘)d Us(x ) + @' (2)ra(s) + 61‘ B ) constant (4.46)

Following the relations in Eq. (4.15), the term %“'2 is neglected in comparison with

8“’ . Moreover, the term 3B a—“’L in Eq. (4.46) may be neglected in comparison with

%C%’i}. This is possible, if {B] is less or of the same order of magnitude as C. For
the case when |B| >> C additional investigation is needed. Since the elastic energy
is positive definite, B> < AC, and B could be greater than C only if A >> C. In
practical laminated composite designs |B| < C as the shear stiffness is greater than

the extension-shear coupling. Therefore, Eq. (4.46) becomes

‘;‘BU{(I) + %C ( (3) + U3(z)— + ‘P(ﬂ"‘n(s) + aa—) = constant (4.47) ‘
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Equation (4.47) is a first order ordinary differential equation in w;. The value
of the constant in the right hand side of (4.47) can be found from the single value

condition of the function wy:

(%) = % %“s'lds =0 (§-48)
The solution of Eq. (4.47) is determined within an arbitrary function of z. This func-
tion can be specified from various conditions. Each one yields a specific interpretation
of the variable U;. For example if @y = 0 the variable U/; = 77 according to Eq. (4.30).
The choice of these conditions does not affect the final form of the 1D beam theory

and therefore will not be specified in this formulation. The result is the following

simple analytical solution of Eq. (4.47)
w;, = —yls(z) — z2Ux(z) + G(s)¢' () + g1(s)U; (=) (4.49)

where

Gs)= [ [Fretr) = ratr)]ér ~ 0 (&)

s b
qi1(s) = /0 [b(‘r) - -E-c(r)]d'r ~ 0(d)

_ _oBl) -1 L
b(s) = -20(3) c(s) = ) A, 57 :(4.50)

The area enclosed by contour I' is denoted by A, in Eq. (4.50). It is seen from expres-

"

sion (4.49) that w, is of order (ALE) and relation (4.34) is justified. The displacement
field corresponding to the first correction is obtained by substituting Eq. (4.49) into

Eq. (4.30) and dropping w; and w since their contribution to the shell energy is negli-

gible compared to w;. The result referred to as the first-order approximation is given

by
o = Us(z) - y(s)V(2) - 2(s)Ul(z) + Gs)¢'(=) + ax()U)(2)
d 2
v = Ua(e) 50 + Us(=) 52 + e, (4.51)
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d: d
v =Un(z)- - Ua(x) =L - ()

4.4.3 Second-Order Approximation

Following a similar procedure to the one described in section 4.4.2, a second-order
approximation can be constructed by rewriting the displacement field in Eq. (4.51)

in the form
v = Uy(z) — yU,(x) = zUs(z) + G(s)e'(z) + g1 (s)U1(x) + (s, 7)
d dz
v2 = Up(x) o + Us(z) o= + pl=)rn + (s, ) (4.52)
ds ds

d: d _ _
v =Us(z)—- - Us(m)d—z — p(z)r + w(s, x)

where w;,w, and @ can be regarded as correction functions to be determined based
on their contributions to the energy functional.
Substitute Eq. (4.52) into (4.7) to obtain the strains and curvatures in terms of

the displacement corrections

R o,
711 = M o7
. 3@2 - H 315
2712 = 2912 + E— +29, » 292 = 6_.51
v : 2 3'&12 w
Y22 = Y22+ V22 7”=E+ﬁ
8w
=7 —_— 4.53
1 =pn+ B2 (4.53)
3211! 3 6‘&’2 Y - 1 611)]

P12=P12+——6361—ag+1’12 ; P12=4R Bs
8*w a(wz)

P22 = P2z + Pay 1322=58—2’5; -

R

where 4,5 and g, are the strains and curvatures corresponding to the first-order

approximation. These are expressed as
(2 (¥ (%)

S, p——
S = Ui(2) - yUs(2) - 2U3(2) +G(s)¢"(2) + g2 () Ui (=)

Q-2




Y ___2A¢ 1 dgl v A
2 = ep'(x) + o Ui(2) ~ 0 ()

Y22 =0
d: dy A
— T’ s 9 _ B ~ =2
Py =Uy(z) = - Ug(= z)g, ~ ¥ (#In~0 (Lz) (4.54)
v 1 dg] r! 1 2A€ ] A
b= gp g )+ (e —1) o) ~ (EZ)
P22 =10

The terms written over the overbraced expressions in Eq. (4.54) denote their order
Among the new terms introduced by the function w; the leading ones are denoted by

superscri'pt: in Eq. (4.53). The order of ; is assumed to be

d?
u-.',' ~0 (%) (4.55)

Such an assumption will be justified later. Therefore, the order of magnitude of the

leading terms, Eq. (4.53), is as follows

Ad _ '
'712"")22"’0( )

L2
P - A

The energy functional can be represented by & (4311,2v12,922: 11, P125P22)
keeping the strains and curvature associated with the first-order approximation and

the Jeading terms contribution over the other terms (i.e., by dropping the terms

Y8z ?
&, %2;'% and :.g‘; 2% in Eq. (4.53)) the energy function can be written as
®(1, 20 2')12’0 + 722’ Pn,Plz + Pn 0 + Pzz) (4.57)

In the following, the order of magnitude of the energy due to bending, i.e. due to gy,

P12, P19, a0d po,, is investigated.
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The interaction terms associated with j;;, namely
hpndig s RPudas hzﬁuﬁw ) hzﬁnﬁzz

are of order (%‘4) or smaller. They are neglected in comparison with the following

membrane contribution to the energy

~0 (A—?)- associated with U’] and ¢’

5115'12 ) "7’11"722 ’ ";12"712 ) '712'322 a?g? . (4.58)
: ~0 ( 4 ) associated with U} and U}
The interaction terms due to the bending curvature g,; are
. = . = A?h . . , .
hp12912 s hpr2Y9, ~ O I associated with U] and ¢ (4.59)
s . 3 A% (h? ) )
hzﬁupn , thlzpzz ~ 0 [-L_" (?)] associated with U] and ¢ (4.60)

These terms.are of higher order in comparison with the membrane contribution asso-
ciated with U] and ¢’ in Eq. (4.58), and may be neglected. The remaining interaction

terms associated with p,, and p,,, namely

~0 (A;h.) associated with U and ¢’

’75‘11’512 ’ ’ﬁllf’zz ’ h"il'zl"m ’ h:)'lzi’zz (4-61)

~0 (%) associated with U’} and Uy
are of higher order when compared to the corresponding membrane ones, listed in
(4.58). Therefore in order to determine the functions @; one has to minimize the shell

energy expressed by

L - "
I =/0 f«p(fm,zxm + 2505, 522,0,0,0) dsdz (4.62)

The contribution of the new corrections in the work done by external forces is neg-
ligible compared to the first-order approximation. Consequently its contribution is
neglected in Eq. (4.62). It is worth- noting that the bending contribution does not
appear in Eq. (4.62). That is, to the second order approximation the shell energy

corresponds to a membrane state.
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The first variation of the energy functional is

8% _(8u,\ 0% (0w, w
é + .
I= / /{6(2%2) ( ) 67226(63 )}dsd:r (4.63)

= Ny; and 37— = Ny, Eq. (4.63) takes the form

L a Sdw .7 6 Sdw 1 -
L (50 )

Set the first variation of the energy to zero, to obtain Eqs. (4.39) and (4.40). By

Reca.ll that

setting V;, to zero, the energy density is expressed in terms of 7,; and 4;; only as
given by Eq. (4.41). The function ®w; can be determined from Eq. (4.39) and (4.41)
and by enforcing the condition on w,; to be single valued as previously outlined in

section 4.4.2. Substitute from Eqgs. (4.53) and (4.54) into (4.45) to get

A%?- 9
em | (£)  (37)  (3F) (£4) () (L,-A-\)
1/\’-1—/" F_’hT/ ’_"l/ i H g _Au ai'l
2 B (Ui(z)—y(s)U; — z(s)U3 + G(s)p"(z) + g1 (s)U7 (2) + B
a2
I N
+l? 24, —c'(x )+dg] Ul(z)+ iy +6_u!l = constant (4.64)
4 le Oz Os
J

Comparing the order of magnitude of each kinematical variable, Eq. (4.64) reduces

to

1 1 " 1"
§B [U (z) - y(s)U; - :(3)U3]

2A ' aﬁ)]
=17 —] = , .
“+ - C’ (,o( )+ l ( ) s consfant (4 65)

Using the single value condition of function w;, the foﬁowing siﬁipIé ;na.lyt;cé.l solution

of Eg. (4.65) is obtained

= 9:U; (z) + g3(s)U3 () . (4.66)
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where
s v "
g2(s) = -/O [b('r)y(r) - -;ic(r)]df ~ 0 (&)
gs(s) = — /0 [b(‘r):(-r) - %c(r)] dr ~ O (d’) ('4.67)

It is seen from expression (4.50) and (4.67) that G(s). gi(s), g2(s) and ga(s) are

single-valued functions, with

G(0) = G(I) = g1(0) = g1(l) = g2(0) = g2(!) = 93(0) = g3(I) = 0
Using Eqs. (4.66) and (4.67), w, is found to be of order (AL‘-’;) and the assumption in
Eq. (4.53) is justified.
4.4.4 Convergence of Displacement Field

The displacement field corresponding to the second correction is obtained by substi-
tuting Eq. (4.66) into Eq. (4.52) and dropping w, and @ since their contribution to

the shell energy is negligible compared to ;. The result is

v = Ui(z) - y(s)Us(z) - 2(s)Us(=) + Gls)¢'(=)

+ g1(8)Uy(x) + ga2(s)U5 (2) + ga(s) U5 ()

dy d=
19 = U. — —_— ,
v2 = Ua(z) == + Us(z)— + p(z)rm (4.68)
dz dy
v=Up(z) -~ Ua(z) = — ple)r

A third cycle is carried out, however no additional terms of the same order in the
energy functional result as shown in the Appendix, and the final displacement field
converges to the expression given in Eq. (4.68).

The underlined terms in Eq. (4.68) correspond to the classical theory of extension,
bending and torsion of beams. The additional terms él(s)U{ s 92(s)U, and gs(s)Uj

in Eq. (4.68) represent warping due to axial strain and bending . These new terms
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emerge naturally in addition to the classical torsional related warping G(s)¢’'. They
are strongly influenced by the material anisotropy, and vanish for materials that are
either orthotropic or whose properties are antisymmetric relative to the shell middle
surface. For these layups the coupling parameter b(s) defined in Eqs. (4.50) and
(4.42) vanishes. The significance of the axial and bending-related warping terms and
their effect on the accuracy, is shown in the applicatiohs of Chapter V. Moreover, the
expression for torsional related warping G(s) differs from the work of Refs. [30] and

[42])-[46]. A comparison of these expressions is presented in section 4.6.

4.4.5 Strain Field

We now substitute the displacement field of Eq. (4.68) into the in-plane strain com-

ponents of Eq. (4.7), while using Eq. (4.50), to obtain

(z) (%) (%) (i7)

p—— prm——— f—’\— prmm————

m = Ui(z)=yU;(z) - 2Uy(x) + G(s)p"(z)
(8¢ (%)  (5%)

’—,h;l_-‘ ’—-’III_ "
+ g1(s)Uy (z) + g2U5"(2) + gaU3"(2)

(%) (%) (24) (%)
24, dg; .., dg. .., dgs ...
I = tep(z >+—U( )+ =207 () + ()
Ic ds
N2z = 0 (4.69)

The terms g, U7, g.U;", and g3U3" can be neglected in comparison with U], yU’;, and

zUy, respectively. Therefore, the in-plane strain components become

71 = Uy(z) = y(8)U5(z) - 2(s)Us(z) + Gp"

2A I dgl U: dg" U ‘193

2m2 = e + I U (4.70)

Y22 =0
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Using Eq. (4.70), the shell energy density, Eq. (4.41), can be written as

on | (5)

224
(&F)
~I\ ——
20, = A (U1 +(yUL) + (=UY) +(a,o") —oyUl U — 2:UUY
() (=) (%)
’-—" ”
+ 28U " v +2y:U Uy -2yGU"go"-—2-Gl T
| (5
(’ffl d dg, d 24
g1 r1y2 g2 7] 93 € I
= (l ] - ——— s
2A. . ' 4 dgz rypt dg3 24,
o 7 I I, ]I TII_ e ]ll !
+ el + RO + U - el
dg] Hyrt dg3 nypn 2 4 ] dgl
—_ y——J7'r bk § P o4 r_ . Ty
o Ul ~ y 22U U - el - 2SR
(&)  (#F) (%) ]
_ ”——(’”Uﬂ dgl uUl G@ ner dg3 "

] A 7//
dsso 2+Gds‘r°la

() () ()

4A¢ dgl 1 : 4A d92 " I 4A d93 "ot
T Cds P T T o e oy, Us
dg, dg. dg, dgs e dg; dgs -
gL I g IS ] " .
+2 === U + 2= Uy + 2= U, Uy (4.71)

where the underlined terms are associated with the Gy" contribution in Eq. (4.70)

These terms are of higher order and may be neglected in comparison with the remain
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ing overbraced leading terms, as shown in Eq. (4.71). Therefore, one may drop G¢"

from Eq. (4.70), and the final expressions for the in-plane strain components, using

Egs. (4.50) and (4.67), become

711 = Ui(z) — y(s)U; (z) — 2(s)U5 ()

24, ., 5 ,
2m2 = "IE—C(S)‘P + [b(s) - %C(s)] U,

- [b(s)y(s) - gc(s)] U, (4.72)

01

- [b<s):<s) - éc(s)] 64

2]

Y22 = 0

It is worth noting that the vanishing of hoop stress resultant in Eq. (4.40) and hoop
strain in Eq. (4.72) should be interpreted as negligible contribution relative to other
parameters. The longitudinal strain 4;; is a linear function of y and z. This result
was adopted as an assumption in the work of Ref. [29].

In the present formulation, parameters A, B and C where assumed to be of

the same order. However, the results are valid for configurations which satisfy the

ﬁi<<l ££<<1
Cc\L c\L

4.4.6 Constitutive Relationships

following inequalities

Dropping the underlined terms in Eq. (4.71) and integrating over the shell middle

surface to get the energy of 1D beam theory .

L
I=/0 Pods — /P;u;d:z:d-s (4.73)‘
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where

¢y = % [C"II(UI,)? + C2a(¢')? + Caa(Uy)* + C«(Uél)z]

+C'12U;'SO' + ClsUllU;;' + C"14(,],[72”

+C23¢'Uy + Caap'Uy '+ Ca U, U, (4.74)
Explicit expressions for the stiffness coefficients C;; (i, 7 = 1, 4) are given in Eq.
(4.78).
" The constitutive relationships can be written in terms of stress resultants and kine-
matic variables by differentiating Eq. (4.74) with respect to the associated kinematic

variable or by relating the traction T, torsional moment A, and bending moments

M, and M. to the shear flow and axial stress as follows

% f/andgds f]\’ndc

M, = a—f = f‘/alzr,,(s)dfds = f]\’ur,,(s)ds

M, = gfif, = f/an-dﬁds = —fA“ (s)ds (4.75)
. M. af),,z, = f/allydfd‘ = —f]\ny(s

The shear flow N, is derived from the energy density in Eq. (4.45) and the axial

stress resultant N;; is given by

%
Ny = 3 L = A(s)y + B(s)n2 (4.76)
T11

and the associated axial and shear stresses are uniform through the wall thickness.

Substitute Eq. (4.72) into Eqs. (4.45) and (4.76) and use Eq. (4.75) to get
(T ) [Cin Ci2 Cis Cu] (U;)

M. Ciz2 Ci2 Ca3 Cauy | ¢ .
L y = . ’ (4.77)
M, Cis Ci Csz Cx| | Us

LM'A _014 Cz4 034 C44._ \ £'J




90
where expressions for the stiffness coefficients C;; (¢, 7 = 1, 4) in terms of the cross

section geometry and materials properties are as follows

due tog,U
lf(B/(' ds)?
Cus ‘f(A $(1/C)ds
_ §(B/C)ds
g -

due to g, 1!} and gsU','

§(B/C)ds §(B/C)=ds

Cis= - $(A- —)d

§(1/C)ds
due to gﬂand g0}
_ B $(B/C)ds §(B/C)yds
C“"f(A" ¢ vds - $(1/C)ds
—_ 1 2
Caz = —_—"fu/o)dsA' (4.78)
Coe = _f(B/C):ds
BT T (1/C)ds e
. _ $(B/C)yds
O == /c)s -
due tog;U'
[f(B/C' zds})’
Clsa = f(A s+ e
due to 93[12': and g U’
_ B> §(B/C)yds §(B/C)zds
Cas = f(A’ T Jysds §(1/C)ds
due tig;U,"
_ _ B .. [§(B/C)yds]
Cus = f(A Tt 0

The out-of-plane warping contribution to the stiffnesses due to the axial strain (i.e.,
due to g,U]), bending about y axis (i.e., due to g3Uy '), and bending about z axis (i.e.,

due to g,U;) is shown by the overbraces in Eq. (4.78).
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The coefficients C;; (¢, 7 = 1, 4) can be expressed in terms of the in-plane axial
stiffness coefficients A;; of Classical Lamination Theory (CLT) if one neglects the

through-the-thickness contribution to the stifinesses in Eq. (4.78). The result is

e f e S
o= 24 G i
Crz = = f (K- I‘f:) as - 115/ Knﬁjl\i (K /gt
Coa= = f Ui = %;—z)yds _f (Kn/K?Jf?‘is/ I\i ifl\;u/f\'zz)yds
1
Co = 4A3m
R T
Cay = —24, “fl‘;z//::;zdggds

v - K122 .2 [$ (K ,/R22)z ds]®
Css= f (Fu = p2)%ds 4 op 1/K7)ds

¥ §(R,/Ka)yds § (K ,/Ry)zds
Y= ¢ (K — =22)y=d 12/ f22 12/
Csq f( 111 I\zz)y s + fl/]\'zzds
1\2 {f(I\. /I\'go)yd.S]z
C - I\ 12 d 4 12 -~
“ f( R i $(1/Ks)ds
where, the stiffnesses K;; are
A
Iin = An (AI:”)
A A
Ky = Aye — 32226 (4.79)
(Aze)
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4.4.7 Equilibrium Equations

The equilibrium equations are derived using the principle of virtual work. The vari-

ation of the internal strain energy is

L .
U = /o f(]\’,,&q,,+2N,,67,,)dsd:r

Using the strain displacement relations, one-dimensional stretching. twisting, and

bending generalized internal forces are defined as

M, =- ){ Npzzds
M, =- f N.zyds

Consider a beam subjected to external forces and moment resultants T, 3 ., M, and

M_ at both ends. Moreover, surface tractions P, P,, and P. are applied along the

z, y, and = directions, respectively. The variation of the virtual work of the external

forces can be written as

W, = T&U] !é + H,&?l{; - -]M—VSU:I;‘% - Hzél,;“l;

+ /o - [(f P,ds) 80, — ( f P,yds) §U; — (f p,:ds) 8T + ( f Pyds) 80,
- ( § Puzds) 6o - (f P:ds) 5U; - (f P.yds) 5‘;] dr

Using the principle of virtual work
85U = 6W. S
one obtains a system of linear equilibrium equations as follows

T'+fp,ds=o
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M+ f(P:y —P,z)ds =0
M+ f P.zds) + f P.ds=0 (4.80)
M+ ( f P.yds) + fp,,ds =0

One of the member of each of the following four pairs must be prescribed at the

beam ends :

Tor U, M,or ¢, MyorUy,and M.or U, (4.81)

4.5 Summary of governing equations

The development presented in this work encompasses five equations. The first, is
the displacement field given in Eq. (4.68). Its functional form was determined based
on an asymptotical expansion of shell energy. The associated strain field is given in
Eq. (4.72) and the stress resultants in Eq. (4.45), (4.75) and (4.76). The fourth, are
the constitutive relationships in Eq. (4.77) with the stiffness coefficients expressed as
integral of material properties and cross sectional geometry in Eq. (4.78). Finally the
equilibrium equations and boundary conditions are given in Eqs. (4.80) and (4.81),
respectively.

In the present development the determination of the displacement field is essential
in obtaining accurate expressions for the beam stiffnesses. A comparison of the derived
displacement field with results obtained by previous investigators is presented in the

following section.

4.6 Analytical comparison with previous results

In anisotropic materials the importance of physical eflects such as transverse shear

strains is influenced by the relative magnitude of elastic moduli. For example in
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laminated composites the extensional modulus along the fibers direction is usually
large relative to the shear moduli and consequently transverse shear effects can be
significant. Several theories have addressed this issue by including transverse shear
in the assumed displacement field [30], and [42]-[46]. The displacement function
Eq. (4.68) derived from the asymptotical analysis does not include transverse shear
strain terms explicitly. This is a consequence of the vanishing of the through-the-
thickness stress component o in Eq. (4.5) or (4.9) where the transverse shear strains
are expressed in terms of other strain components. Their effect however is implicitly
included in the stretching-related warping term g;(s) and the bending-related warping
terms g.(s) and gs(s) as illustrated by the applications of Chapter V.

Rehfield’s theory [30] recognizes the significance of transverse shear strain in thin- .

walled composite beams. Its displacement field is given by
vy = Ui(z) = y(s) [Uz(x) = 292y(2)] = 2(5) [U3(z) ~ 272:(x)] + g(s,7)

uz = Uz(z) — =(s)p(z) (4.82) .
uz = Us(z) + y(s)p(x)

where 4., and 4. are the transverse shear strains. The warping function g{s,r) is

given as
9(s,z) = G(s)p'(z) (4.83)

with
s

G(s) = 243 /D " ra(r)dr (4.84)

A comparison of the displacement fields in Eq. (4.68) and (4.82) shows that the
warping function in Rehfield’s formulation includes the torsional-related contribution

and does not include explicit terms that express the bending-related warping. The

torsional-relaied warping function G(s) in Eq. (4.50) is different from the function in




95
Eq. (4.84). The two expressions coincide when ¢ = constant that is, when the wall
stifiness and thickness are uniform along the cross section circumference.
The torsional related warping function in Eq. (4.84) was modified by Atilgan [44],
and Rehfield and Atilgan [43] as

N s 2Ac
G(s) = /0 [lac’ - r,,(‘r)]d‘r (4.85)
where
! (4.86)
= T3 .00
‘4166 - (A'A ;‘_1)
and
2
[Au ASGJ ) [An = Ao = 4 } (4.87)
= 2 .
A;G Alse AlG - &jz_‘:& AGG - %

The A;; in Eq. (4.87) are the in-plane axial stiffinesses of CLT, Refs. [19] and [50],

they are related to the modulus tensor by
Ay =< EM's | A=< EY?S | Ap =< E2222 5

AlG =< E1112 > A26 =< E1222 > AGG =< E1212 >

A comparison of the modified torsional warping function in Eq. (4.85) and G(s) in
Eq. (4.50) shows that they coincide for laminates with no extension-shear coupling
( < D2 >=< D' >= (, in Eq. (4.10) ). For the case where the through-the-
thickness contribution is neglected in Eq. (4.10), this reduces to A;6 = Az = 0.

The warping function obtained in Refs. [42] and [46] for composite box beams is
identical to the expression of Refs. [43] and [44] in Eqgs. (4.83) and (4.85).

An assessment of all the previous warping expressions can be made by checking
whether they reduce to the exact expression for isotropic materials (see, for example,
Ref. [59])

G(s) = /o ’ [?-Aic, - r,,(‘r)]dr (4.88)

le
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with

where y is the shear modulus.
For isotropic materials the in-plane coupling b is zero and consequently g;, g» and
gs in Eqs. (4.50) and (4.67) vanish. That is the warping is torsion-related and reduces

to G(s)y'. Moreover, the shear parameter c is equal to and the expressions for

1
4uh(s)
G(s) and G(s) in Eqs. (4.50) and (4.88) coincide.
Rehﬁe]d’s.warping function in Eq. (4.84) coincides with Eq. (4.88) when the ma-
terial is isotropic and the wall thickness is constant. Also the works of Refs. [43], {44]

and [46] reduce to Eq. (4.88) for isotropic materials.

4.7 Closing Remarks

The major advantage of the approach adopted in this work is the fact that the dis-
placement function emerges as'a result of the asymptotical analysis of the shell energy.
The influence of the material’s anisotropy is accounted for in a consistent manner and
the deformation modes are determined on the basis of their contribution to the asso-
ciated energy. Two new contributions to the warping emerge due to stretching and
bending. They are of the same order of the classical torsional-related warping. 4Their

significance is illustrated in the applications provided in the next chapter.




CHAPTER V

APPLICATIONS OF ANISOTROPIC THIN-WALLED
BEAM THEORY

An evaluation of the variationally consistent theory developed in chapter IV is
provided. The theory is ;pphed to beams with arbitrary closed cross-sections made
of Jaminated composite materials with variable thickness and stiffness subjected to
axial load, torsion and bending. A comparison of flexibility coefficients and deforma-
tion with finite element predictions, closed form solutions and experimental data is
performed to validate predictions and isolate the influence of different contributions to
the section warping. In addition to the torsional related warping, two new contribu-
tions namely, axial strain and bending related out-of-plane warping were identified in
the'developed theory. Extension and bending related out-of-plane warping are shown
to have a significant effect on the accuracy of predictions. Comparison of predictions
provides also a check of the asymptotical analysis result regarding the contribution
of shear deformation. Although the resulting displacement field does not include
an explicit shear deformation term similar to Timoshenko’s theory, shear deforma-
tion contribution is shown to be implicitly accounted for through the out-of-plane
warping due to extension and bending.

Two special layups: The circumferentially uniform stiffness (CUS) and circum-
ferentially Asymmetric stifiness (CAS) have been considered in Refs. [41]-[46] and

[51]. They are associated with different non-classical behaviors. These behaviors are
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shown to be influenced by the out-of-plane warping due to extension and bending in
the next section.

5.1 Effect of Out-of-Plane Warping due to Extension and Bending

5.1.1 CUS Configuration

This configuration produces both extension-twist and'bending-transverse shear cou-
plings. The axial, coupling and in-plane stiffnesses A, B, and C given in Eq. (4.42)
are constant throughout the cross section and hence the name circumferentially uni-
form stifiness (CUS) adopted in Ref. [43], [44], {45] and [51]. Such a configuration
is manufactured by wrapping the composite lay-up using a winding technique. For-
a box-beam, the ply lay-ups on opposite sides are of reversed orientation, and hence .
the name antisymmetric configuration adopted in Refs. [41], [42], and [46].

Since A, B, and ( are constants, the stiffness matrix in Eq. (4.78), for a centroidal.

coordinate system, reduces to

(Cnn C12 0 0
Ci2 Ca2 O 0
[Ci;] = (5.1)
0 0 Ciz O

[0 0 0 Ca

The nonzero stiffness coefficients are given by

Cn = Al
Cy2 = BA,
C
; Ca = 'I-Af 7 7 (5.2)

Caz = f 22ds — — f :2;1_5-

2

Cos = Afyzds - %fyéds
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where ! denotes the length of the closed contour I'. For such a case the out-of-plane
warping due to axial strain vanishes and g, does not affect the response. This is
shown by considering A, B, and (' as constants in Eq. (4.78). The influence of the
out-of-plane warping due to bending in the z-z and z-y planes are expressed by the
underlined terms in the expressions of Cia and Cj4, respectively. These terms are

significant in predicting the deflection of antisymmetric configurations.

5.1.2 CAS Configuration

This configuration produces both bending-twist and extension-transverse shear cou-
plings. The stifiness A is constant throughout the cross section. For a box beam, the
coupling stiffness, B, vanishes for the vertical members, while its values in the top

and bottom members are of opposite signs
Btop = ~ Bhottom

Bvertical members = 0 (53)

and hence the name circumferentially asymmetric stiffness (CAS) adopted in Ref. [43],
[44], [45] and [51]. For a box-beam, the ply lay-ups on opposite sides are mirror images,
and hence the name symmetric configuration adopted in Ref. [41],{42], and [46]. The

stifiness C along the horizontal and vertical members are equal and expressed by
Ctop = Cboztom

Cuerticcl left = Cverticnl right (54)

The stiffness matrix, for a centroidal system of axes, reduces to
[Cy O 0 0

0 Cp Ci O
[C.'j] = (5.5)
. 0 Cy Css O

0 0 0 Cul
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The nonzero stiffness coefficients are expressed by

O = Al - 2%4
[ —",
) 2|d+a (&)
S ey o
Css = Af:’ds - 232' {a - .d+‘:'(%). } A,
Cus = Aj/:yzds - %%f;

Subscripts t and v denote top and vertical members, respectively. The box width
and height are represented by d and a, respectively. Equations (5.6) are derived by
substituting Eqs. (5.3) and (5.4) into Eq. (4.78) and considering A to be constant. The
underlined term in the expression of the axial stiffness C;; represents the extension
contribution to the out-of-plane warping. The bending contributions to the out-of-
plane warping are represented by the underlined terms in the expressions of Cs; and
(‘44 For the CAS configuration, bending about the y-axis is coupled with torsion
while extension and bending about the z-axis are decoupled.

In order to assess the accuracy of the predictions and isolate the influence of
stretching and bending-related warping, the present theory is applied to the box
beam given in Ref. [51]. The cross sectional configuration is shown in Fig. 5.1 and

the material properties in Table 5.1.

5.2 Cbniparison of Frlexibility” Coefﬁcientsq

A comparison of the flexibility coefficients S;; with the predictions from two models

is provided in Table 5.2. The flexibility cbefﬁcients S;; are obtained by inverting
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Table 5.1: Properties of T300/5208 Graphite/Epoxy

E,; = 21.3 Msi

FEs = E33 = 1.6 Msi
G2 = G335 = 0.9 Msi
G = 0.7 Msi

V12 = 113 = 0.28

Vaz = 0.5

the 4 x 4 matrix in Eq. (4.77). NABSA (Nonhomogeneous Anisotropic Beam Section
Analysis) is a finite element model based on an extension of the work presented in Ref.
[32]. In this. model all possible types of warping are accounted for. The TAIL model
is based on Ref. [30], but neglecting the restrained torsional warping. The predictions
of the NABSA and TAIL models are pr(;\'ided in Ref. [51]). The percentage differences
appearing in Table 5.2 are relative to the NABSA predictions. The present theory is
in good agreement with NABSA. Its predictions show a difference ranging from +0.7
to +3.6 percent while those based on Ref. [30] range from +3.6 to —18.4 percent.
Since the box beam has a CUS configuration, the out-of-plane warping due to
bending has a significant effect on the prediction of the bending flexibilities (51’—3-) and
(Z*'l;'.') as shown in Eq. (5.2). Neglecting g3 and g, in the expressions of C3; and Cy4
leads to values of 0.11424 x 10~% 1b™'in"2 and 0.38410 x 10~* 1b~'in~? for S3; and
S44, respectively. Comparison of these values with the underlined results in Table 5.2

shows a 65 percent increase in the bending flexibilities due to out-of-plane bending
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Table 5.2: Comparison of Flexibility C'oefficients of NABSA, TAIL and Present

{Ib, in units)

Flexibility | NABSA | PRESENT % Diff. | TAIL % Diff.
511 x10° | 0.143883 0.14491  +0.7 0.14491  +0.7
Sp2 x 104 | 0.312145 0.32364 +3.6 0.32364 +3.6
S;2 x 10° | —0.417841 | —0.43010 +2.9 | —0.43010 +2.9
S33 x 10° | 0.183684 0.1886  +2.6 0.17294 5.8
Ssqa x 10° | 0.614311 0.63429 +3.2 0.50157 -—18.4

related warping.

5.3 Comparison of Deformation

The present theory is applied to the prediction of the tip deformation in a cantilevered.
beam made of Graphite/Epoxy and subjected to different types of loading. The beam
has a CUS square cross section with [+12]4 lay-up. The geometry and mechanical
properties are given in Table 53 Comparison of results with the MSC/NASTRAN
finite element analysis of Ref. [38] is provided in Table 5.4. The applied axial and
transverse forces are equal to 100 1b, while the applied torsional moment is 100 1b-in.

- The MSC/NASTRAN analysis is based on a 2D plate model accounting for both
shear deformation and warping. The predictions of the present theory range from
+1.7 to —0.7 percent difference relative to the finite element results.

The deflection due to transverse load neglecting out-of-plane bending related warp-

ing is equal to 1.341 inch compared to 1.853 ;nc.h (3g% dif;tierence)rin Tai)le 54 7For
a CUS configuration, the extension-torsional response is decoupled from bending as

shown in Eq. (5.2). Since C is constant and g, does not affect the stifiness coefficients,
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Table 5.3: Geometry and Mechanical Properties of Thin-Walled Beam with [+12],

CUS square cross-section

Length = 24.0 in. En = Egz = E33 = 11.65 Msi
Width = depth = 1.17 in. G,; = G,3 = 0.82, G323 = 0.7 Msi
Ply thickness = 0.0075 in. vy3 = v13 = 0.05, 93 = 0.3

as outlined in section 5.1.1, the flexibility coefficients controlling extension and twist
response, Sy, S12 and Sy coincide with those of Refs. [43] and [44]. As a conse-
quence, the axial displacement and twist angle predictions coincide. However, the
lateral deflection under transverse load differs. The tip lateral deflection predicted
using the theory c.>f Ref. [30], which includes shear deformation, and Refs. [43] and
[44], which include a shear deformation correction to Ref. [30],is 1.724 inch resulting
in —7.6 percentage difference compared to the NASTRAN result. This is due to the
effect of bending-related out-of-plane warping on the bending flexibilities 5]:_3 and 51’:,
(C33 = Cq4 for this case), as shown by the underlined terms in Eq. (5.2).

Figures 5.2 and 5.3 show the bending slope variation along the beam span for
antisymmetric and symmetric cantilevers under a 1 Ib transverse tip load, respec-
tively. The beam geometry and its material properties are given in Table 5.5. The
experimental results are reported in Refs. [41], [42], and [46]). The influence of the
out-of-plane warping due to bending is isolated in these ﬁgures.' The bending related
out-of-plane warping, g.U; and gsUg terms in Eq. (4.68), results in a 91 and 20 %

increase in the bending slope for the antisymmetric and symmetric configurations,
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Table 5.4: MSC/NASTRAN and Present Solutions for a CUS Cantilevered Beam
with [+12], Layups Subjected to Various Tip Load Cases

Tip Load Tip Deformation % Difl.
NASTRAN Present

Axial Force Axial Disp. : 0.002189 in. 0.002202 in. +0.6 %

Axial Force Twist : 0.3178 deg.  0.32325 deg. | +1.7 %

Torsional Moment | Twist : 2.959 deg.  2.998 deg. | +1.32 %

Transverse Force | Defiection :  1.866 in. 1.853 in. -0.7 %

respectively. The analytical predictions reported in Refs. [41}, [42], and [46] together ‘
with results obtained on the basis of the analyses in Ref. [30], {43], [44] and the present
theory are combined in Figs. 5.4 and 5.5. Results show that the present theory is.
in good agreement with the test data and the closest when compared to the other.
analytical approaches which include shear deformation, Refs. [30],742], and (46}, and.
shear deformation corrections, Refs. [43] and [44].

The bending slope in Figs. 5.2-5.5 is defined in terms of the cross section rotation
for theories including shear deformation. For the geometry and material properties
considered, this effect is negligible as shown in Figs. 5.4 and 5.5 where the spa'm.wise
slope at the fixed end from theories with shear deformation, is indistinguishable from
zero. The nonzero value shown by the test data may be due to the experimental set
up used to achieve clamped end conditions.

The spanwise twist distribution of symmetric cantilevered beam with {30)¢ and
[45])6 lay-ups is plotted in Figs. 5.6 and 5.7, respectiveiy. The beams are s;b jected to

a transverse tip load of 1 Ib. Their dimensions and material properties are given in

Table 5.5. Results show that the present theory and those of Refs. {43] and (44] are

H
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Table 5.5: Cantilever Geometry and Properties

Width = 0.953 in. "Ey; = 20.59 Msi, Eyy = E33 = 1.42 Msi
Depth = 0.53 in. Gu = G]3 = 0.87 MSi, st = 0.7 Msi
Ply thickness = 0.005 in. vy2 = 113 = 0.42, 123 = 0.5

the closest to the test data. A similar behavior is found for the bending slope and the
twist angle at the mid-span of the symmetric cantilevered beams appearing in Figs.

5.8 and 5.9. The beams are subjected to a tip torque of 1 lb-in.

5.4 Shear Deformation Contribution

The significance of the out-of-plane warping due to bending is illustrated in Fig. 5.2.
A similar behavior is obtained in Ref. [65] when the shear deformation contribution
is neglected. This indicates that the out-of-plane warping due to bending includes
implicitly the shear deformation contribution. In order to assess this similarity, the
present theory and the numerical work of Ref. [65] are applied to the prediction
of the deflection in a cantilevered beam made of graphite/epoxy and subjected to
a transverse tip load of 1 Ib. The beam has a CUS cross-section with [+15]¢ lay-
up. The geometry and mechanical property, provided in Ref. [65], are given for
convenience in Table 5.6. Figure 5.10 shows a similar behavior suggesting that in the
present theory, shear deformation is implicitly accounted through bending-related
warping. The prediction of Ref. [65] are referred to Classical when shear deformation
is neé]ected. Further evidence could be provided by estimating the equivalent shear

deformation strain. This can be expressed by the slope of the plane that approximates
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Table 5.6: Cantilever Geometry and Properties

Width = 0.923 in. E;; = 20.6 Msi, Eyy = F33 = 1.42 Msi
Depth = 0.50 in. Gi2 = Gy3 = 0.87 Msi, Ga3 = 0.696 Msi
Pl)' thickness = 0.005 in. Vi = W13 = 03, Vi3 = 0.34

the cross-section warping and is given {66] by

JyvidA
N 27:11 = = I

(5.7)

where A and I.. represent the cross-sectional area and moment of inertia about the
c-axis, respectively.

For a CUS box cross-section subjected to a vertical tip transverse load p., the
shear strain distribution across the cantilever length is obtained by substituting the
axial displacement v, from Eq. (4.68) into Eq. (5.7). The result is the following

analytical expression

(L — x,) had [ a? d?
o= e T . — | Sa3p. .
272y = 1l 3 + ad + 3 33P- (5.8)

where
S3z = Bending flexibility
L = Length of cantilever
z; = Cross-section position measured from the fixed end 7
h = Laminate thickness |
a = Box height

d = Box width
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A comparison of the shear strain 4., over the length of the cantilever with the

prediction of Ref. [65] is shown in Fig. 5.11. The shear strain at the fixed end is

4.5924 x 10~¢ based on Eq. (5.8) which is within 2 percent of 4.6857 x 10~* calculated
on the basis of Ref. [65).

5.5 Conclusion

The anisotropic thin-walled closed section has been validated by comparison of re-
sponse predictions with finite element solutions, other closed form analyses and test
data. The influence of the two new nonclassical contributions namely, extensional
and bending related out-of-plane warping on the accuracy of the response predictions
is shown to be significant. Moreover, the contribution of shear deformation is shown
to be implicitly accounted for through the bending related out-of-plane warping, and

in-plane warping eflect is found to be negligible.

5.6 Closing Remarks

For anisotropic beams, the major reason for the discrepancy in the predictions of the

analytical models of Refs. [30] and [41]-[46] and the present theory is due to the apriori
assumed displacement fields which neglect the extension and bending-related out-of-
plane warping. The influence of the material’s anisotropy on the displacement is too
complex to cast in a kinematic assumption similar to classical theory of extension-
bending and torsion.

A consistent approach to account for the various behavioral modes associated
with anisotropic beams was adopted in this work. It is based on an asymptotical
analysis of the energy. The influence of the material’s anisotropy on the displacement

and stifiness coefficients was isolated, and by comparison an assessment of previous
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analyses was performed. In particular, this approach accounts implicitly the shear
deformation contribution shown to be significant in previous models. The difference
being the consistent order of magnitude that this contribution is accounted for and

its significance relative to other contributions.
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Figure 5.2: Significance of out-of-plane bending related warping on the bending slope

of an antisymmetric [15)s cantilever under 1 1b transverse tip Load
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Figure 5.3: Significance of out-of-plane bending related warping on the bending slope

of a symmetric [30]¢ cantilever under 1 Ib transverse tip Load
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CHAPTER VI

"CONCLUSIONS AND RECOMMENDATIONS

This research addresses two key issues for the continuing implementation of com-
posites in advanced structures namely, the understanding of the role of the material’s
anisotropy on its stiffness behavior and its damage modes. An analytical model based
upon a shear deformation theory and a sublaminate approach was developed in or-
der to investigate mid-plane and matrix crack-tip delaminations. This model was
combined with an earlier analysis for mixed-mode free-edge delamination to form an
integrated code for the prediction of damage onset in laminated composites. The
code predictions were validated by comparing its results with test data. Of signif-
icance is the ability it provides for the prediction of damage progression sequence
and corresponding critical strains. Moreover, the effect of hygrothermal stresses on
the strain energy release rate and interlaminar stresses was isolated. The increase
in strain energy release rate and interlaminar stresses associated with curing stresses
can precipitate failure and should be considered for an accurate prediction of failure.

The findings of this research work point to new research inquiries. The first is
characterization and prediction of damage onset and growth under cyclic loading
including the eflect of hygrothermal ;tresses. The investigation can lead to the deter-
mination of composite components’ life and inspection intervals. The second is the
study of the effect of damage modes and their interactions on the vibration charac-
teristics and damping of laminated composites. The result of this investigation will

assess the effect of damage modes on the natural frequencies and mode shapes and
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can lead to the development of Non-Destructive Evaluation methods.

The asymptotical analysis used to develop the thin-walled anisotropic beam theory
provides a rigorous basis for the prediction of the beam stiffnesses and associated
displacement field. Closed-form expressions for the stiffnesses have been developed
and new contributions to the warping have been found. This analysis can be extended
to beams with multi-cell type cross sections and pretwisted configurations. Moreover,
the previous results on the effects of hygrothermal stresses point to the significance
of including their contribution in the thin-walled closed section beam analysis. The
consideration of dynamic and aerodynamic loadings using asymptotical analysis will
provide a rigorous basis for the investigation of the dynamic and aeroelastic response
of composite structures. Finally, the presence of embedded delamination on the
response of composite beams is a first step toward studying the effect of damage
modes on their stiffness and strength. In this respect, the analysis of composite
beams with open cross section can be regarded as the final stage of damage in a
closed section beam.

When accomplished, these recommended research tasks will provide an under-
standing of the effects of damage on the performance of advanced structures made
out of composite and will lead to the development of reliable design tools to ensure

their damage tolerance.

¥
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Appendix A

Convergence of Displacement Field

In this appendix detailed calculation of the third and final cycle is provided.
Results show that no additional correction terms of the same order in the energy
functional emerge and the displacement field given in Eq. (4.68) is the converged one.

1.1 Third-Order Approximation

A third cycle is carried out by rewriting the displacement field in Eq. (4.68) in the

form

v = Ui(z) = y(s)Uy(x) = 2(s)U3(2) + G(s)¢' ()

+91(s)U;(z) + g2(s)Uy (z) + ga(s)U () + (s, 2)

d d: -
vy = Ug(z) 5 + Us(z) == + (2 ) + Ba(s, 7) (A=1)
ds ds
d: d .
v=Us(z)5 - l73(:c)-—y— - p(z)ry + w(s, x)
ds ds

where 1,1, and w are correction functions to be determined based on their contri-

butions to the energy functional.

Substitute Eq. (A-1) into (4.7) to obtain the strains and curvatures in terms of

the displacement corrections

y | 0w
1=+ —37
v dw, - : di,
M=t 5+ = 5o
2 a'&)z ‘&.’

Y22 = Y2+ Y22 s ‘.722=—a?+§
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v 321:'»
P11 = Py 513 (A-2)
_v,+32’» 3 8, o . 1 8wy
=P 556z dR 6z 0 P T IR Bs
Y 2 2 32&’ 0 11-’2
P22 = Pyt P22 5 P2= 35 " \ R

where %’oﬁ and 505 are the strains and curvatures corresponding to the second-order

approximation. These are expressed as

(1) (£9) (%% (%%')
v e gt t— p——
50 = Ui(a)-9Ul(2) - 2Ui(z) + Gls)p'(z)

&) (8%) (&8
+ g1(8)U7(z) + g2U3" (2) + gall5"(x)

(%) (%) (3 (&)
31 = P opa) + 201y + o)+ B
%0 =0
= U253 ~ V() — (e~ 0 (5) (A-3)
b= gt + (qp e~ 1) ) ~ 0 ()
5= 0

An order of magnitude comparison for each strain and curvature measure shows that

some terms of higher order in 'syn can be cancelled and its expression simplifies to

o) oan o ah 6
Y = ( ) ;’(z) - -'-"U:;I(z) + G(S)VDH("C)

Among the new terms introduced by the function w; the leading ones are denoted - -

by superscript: in Eq. (A-2). The order of w; is assumed to be

t.D,-~O(AL—§3) (A—4)

3.4
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Consequently, the order of magnitude of the leading terms in Eq. (A-2), is as follows

IE
- - Ad
P12~P22~0(I§) (A -5)

The energy functional can be represented by ®(9:11,2712,722, P11, P12, 022)- By
keeping the strains and curvature associated with the second-order approximation

and the leading terms contribution over the other terms (i.e., by dropping the terms

%‘%‘-, %1, %%%, and a%i% - 3%%3 in Eq. (A-2)) the energy function can be written as
‘I’Hm?'vfu + 2:7'12’0 + :722’511,%2 + i512'. 0+ 1522) (A - 6)

In the following, the order of magnitude of the energy due to bending, i.e. due to ;31],
5’12, ;312, and ;322, is assessed.

The interaction terms associated with g,,;, namely

Y s Y 2 2% = 2% =
hp11912s RP1A20 s B0 P12 BEP11P2n

are of order (Ai'ldz) or smaller. They are neglected in comparison with the following

membrane contribution to the energy

~0 (%;‘ﬁ) associated with U] and ¢'

(A-7)
~0 (A;fa) associated with U; and Uy

The interaction terms due to the bending curvature 512 are

v = ¢ 2 A%hd ted wi , ,
hf12719 s RP1aYay ~ O T4 associated with U] and ¢

¢ s e s A?h? : .
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These terms are of higher order of magnitude in comparison with the corresponding

membrane contribution in Eq. (A-7), and may be neglected. The remaining interac-

tion terms associated with j,, and p,,, namely

~0 (-A;—fé) associated with U] and ¢’

~0(£h£i

h¥11h12 5 B12P12 5 h'711l:’22 » h¥12P22
i ) associated with U/} and U

may also be neglected in comparison with (A-7). Therefore in order to determine the

functions w; one has to minimize the shell energy expressed by

L o . .
I= /; f‘i’(:hn%-;z + 2912+922,0,0,0) dsdr (A - 8)

Setting the first variation of the energy functional to zero to get Eq. (4.45). Sub-
stitute from Eq. (A-2) into Eq. (4.45) to obtain

adl\1
y- ad Ad Ad (T‘—)
l(Eh) () (£%) (£F) (P‘) 3'—
=B |Ui(2) - y(s)U5 — 2(s)U3 + Glo)g" () + —t
2 Ox
| ]
(1) (%) (£9)
1(52 2. ” dg ~ dg;L
Il ' <le ] 1 b4 71/
+1 70 @)+ 2 Ui(e) + 200 (=)
@ () (&)
—_ =
dg3 " 0w, ow,
Uz —= — | =c tant -
+ s 5 (x)+ 32 + s constan (A-9)

Equation (A-9) shows that the contribution of 1 is of higher order in cbmpafisoﬁ with
all other terms and may be cancelled irom the left hand side. Therefcre no additional

corrections to the displacement field emerges, and the displacement field obtained in
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Eq. (4.68) is the converged one. An alternative is to neglect the terms of higher order

in Eq. (A-9). while keeping the leading W, term, to obtain

1
53BIUi (=) = (o) =~ =(s)T5)]

d g3 ow

d 1
72 Uy(z)+ 'EZU:;(:B) + —| = constant

ds

391

1 [24.
+4¢ s

4 | Ie

cp'(x) + ——Ui(z) +

(A -10)
Solution of Eq. (A-10) is determined using the single value condition of the axial
displacement and @ is found to be a function of z only. Such a function has already

been considered and no new terms of the same order in the energy functional are

generated from the third and therefore final cycle.
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