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ABSTRACT

This is the tenth in a seriesof evaluated setsof rate constants and photochemical cross

sectionscompiled by the NASA Panel forData Evaluation.The primary applicationofthe data is

in the modeling of stratosphericprocesses,with particularemphasis on the ozone layer and its

possibleperturbationby anthropogenic and natural phenomena. Copies of thisevaluationare

availablefrom the Jet PropulsionLaboratory,CaliforniaInstituteofTechnology,LibrarySection,
MS 111-120,4800 Oak Grove Drive,Pasadena,California,91109.
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CHEMICALKINETICSANDPHOTOCHEMICAL DATA

FOR USE IN STRATOSPHERIC MODELING

INTRODUCTION

The present compilation of kinetic and photochemical data represents the tenth evaluation
prepared by the NASA Panel for Data Evaluation. The Panel was established in 1977 by the NASA
Upper Atmosphere Research Program Office for the purpose of providing a critical tabulation of the
latest kinetic and photochemical data for use by modelers in computer simulations of stratospheric

chemistry. The previous publications appeared as follows:

Evaluation Number

1

2

6

9

Reference

NASA RP 1010, Chapter 1

(Hudson, 1977)

JPL Publication 79-27

(DeMore et al., 1979)

NASA RP 1049, Chapter 1
(Hudson and Reed, 1979)

JPL Publication 81-3
(DeMore et ai. 1981)

JPL Publication 82-57

(DeMore et al., 1982)

JPL Publication 83-62

(DeMore et al., 1983)

JPL Publication 85-37

(DeMote et al., 1985)

JPL Publication 87-41

(DeMore et al., 1987)

JPL Publication 90-1

(DeMore et al., 1990)

The present composition of the Panel and the major responsibilities of each member are
listed below:

W. B. DeMore, Chairman

D. M. Golden (three-body reactions, equilibrium constants)

R. F. Hampson (halogen chemistry)

C. J. Howard (HOx chemistry, O(1D) reactions, singlet 02, metal chemistry, profiles)

C. Kolb (heterogeneous chemistry)



M. J.Kurylo (SOx chemistry)

M. J. Molina (photochemicaldata)

A_ R. Ravishankara (hydrocarbon oxidation,photochemical data)

S. P. Sander (NOx chemistry)

As shown above,each Panel member concentrateshis efforton a given area or type ofdata.

Nevertheless,the finalrecommendations of the Panel representa consensus of the entirePanel.

Each member reviews the basisforallrecommendations, and iscognizantof the finaldecisionin

every case. Communications regardingparticularreactionsmay be addressed to the appropriate

panel member.

W. B. DeMore

S. P. Sander

Jet PropulsionLaboratory
183-301
4800 Oak Grove Drive
Pasadena, CA 91109

D. M. Golden
PS-031
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

R. F. Hampson
M. J. Kurylo
National Institute of Standards and Technology
Chemical Kinetics Division

Gaithersburg, MD 20899

C. J.Howard

A. R. Ravishankara

NOAA-ERL, R/E/AL2

325 Broadway

Boulder,CO 80303

C. Kolb

Aerodyne Research Inc.
45 Manning Rd.
Billerica, MA 01821

M. J. Molina

Department ofEarth,Atmospheric,and PlanetarySciences

and Department ofChemistry

Massachusetts InstituteofTechnology

Cambridge, MA 02139

The Chairman and Panel Members gratefullyacknowledge the invaluablecontributionsof

Ms. Grace Hallowellin the organizationand productionofthisand previousevaluations.
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Copies of this evaluation may be obtained by requesting JPL Publication 92-20 from:

Jet PropulsionLaboratory
California Institute of Technology

LibrarySection,MS 111-120
4800 Oak Grove Drive

Pasadena,CA 91109

Telephone:(818)354-5090

BASIS OF THE RECOMMENDATIONS

The recommended rate data and crosssectionsare based on laboratorymeasurements. In

order toproviderecommendations thatare as up-to-dateas possible,preprintsand writtenprivate

communications are accepted,but only when itis expected that they willappear as published

journal articles.In no cases are rate constants adjusted to fitobservations of stratospheric
concentrations.The Panel considersthe questionof consistencyof data with expectationsbased

on the theoryofreactionkinetics,and when a discrepancyappearstoexistthisfactispointedoutin

the accompanying note. The major use of theoreticalextrapolationofdata is in connectionwith

three-body reactions,in which the required pressure or temperature dependence is sometimes

unavailablefrom laboratorymeasurements, and can be estimatedby use ofappropriatetheoretical

treatment. In the case ofimportant rateconstantsfor which no experimentaldata are available,

the panel may provideestimatesofrateconstantparameters based on analogy tosimilarreactions
forwhich data are available.

RECENT CHANGES AND CURRENT NEEDS OF LABORATORY KINETICS

In the present evaluation the numbers of new (80) and changed (42) recommendations are
greater than those of the previous evaluation, reflecting the continuing high level of activity in

laboratory studies of atmospheric chemistry. Reactions of singlet molecular oxygen are included
for the first time. Another new addition is an appendix of model-generated concentration profiles
and J-values for important species in the upper atmosphere. The appendix listing heats of
formation of many atmospheric species has been updated and expanded.

Although the database for homogeneous reaction kinetics of the stratosphere is by now
relatively mature, it is well to remember that no rate constant is known to better than 10%, and
many have uncertainties of 20% or more. The rate constant for the important reaction, OH + CH4,
has been corrected in the present evaluation by approximately 20%. This change is typical of that

for many OH abstraction reactions, for which early measurements have often been erroneously
high. Such changes are important because oxidation by OH is the principal removal path for many
trace species, including man-made compounds such as the HCFCs (hydrochlorofluorocarbons).
For reactions of this type, including Cl abstraction reactions, there is often some difficulty in
reconciling high temperature (above 298 K) and low temperature (below 298 K) rate constant data.
Early problems in evaluating the rate constant for the important CI + CH4 reaction were related to

this situation. The frequent observation is that Arrhenius plots of the rate constant data show
upward curvature at low temperatures which cannot be explained by tunneling or by expected
departures from Arrhenius behavior. Some or perhaps all of these departures are due to secondary
chemistry or reaction with walls and impurities. As a consequence, there is a continuing need for

new techniques and approaches which minimize such errors.
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As it is now well-recognized, the role of heterogeneous processes is one of the most uncertain
areas of atmospheric modeling. Efforts have continued in many laboratories to quantify these
effects and to provide a basis for their incorporation into the models. Substantial difficulties and
uncertainties remain, however. Our evaluation of laboratory data for heterogeneous chemistry,
which began in the previous evaluation, now includes a recommendation of preferred values
rather than just a compilation of reported data.

The kinetics of the O, 02, and 03 system are relatively well-established. However, the 0 +

02 + M reaction remains of fundamental importance in atmospheric chemistry. This is because
the extent of ozone destruction is determined by the relative rates of competing reactions such as O
+ 03, O + NO2, O + OH, and O + CIO. Additional studies of the ozone-forming reaction, or of its

relative rate compared to the competing reactions, would be useful, especially at very low
temperatures.

Reactions of Sina, let Oxvcen

O(1D) Reactions

The recommended rate coefficients for the O(1D) reactions correspond to the rate of removal

of O(1D), which includes both chemical reactions and physical quenching of the excited 0 atoms.

Details on the branching ratios are given in the notes.

The O(1D) reactions of 7 halocarbons have been added to this review. These compounds are

generally long-lived trace species for which the reaction with O(1D) in the stratosphere may
represent a significant destruction process. There are new measurements that improve our
database for several of the hydrohalocarbons. Some of the latter seem to exhibit an unexpected

efficiencyfor physicalquenching ofO(ID).

The kinetic energy or hot atom effects of photolytically generated O(1D) are probably not
important in the atmosphere, although the literature is rich with studies of these processes and with

studies of the dynamics of many O(1D) reactions. The important atmospheric reactions of O(1D)

include: (1) deactivation by major gases, N2 and 02, which limit the 0(1D) steady state

concentrations; (2) reaction with trace gases, e.g., H20, CH4, and N20, which generate radicals;

and (3) reaction with long lived trace gases, e.g., HCN, which have relatively slow atmospheric
degradation rates. There are no data for the O(1D) + HCN reaction.

02 (IA and 1D

Fourteen reactionsof the (alhg)and (blZ+g) excitedstatesof molecularoxygen have been

added tothisevaluation.These statesare populated viaphotochemicalprocesses,mainly the UV

photolysisofozone and the reactionofO(ID) with 02. Over the years they have been proposed as

contributorsto variousreactionschemes in the atmosphere, but as yet no significantrolein the

chemistryofthe stratospherehas been demonstrated. The fateofmost of theseexcitedspeciesis

physical quenching by means of energy transferprocesses. In the few cases where chemical

reactionoccurs,itisindicatedin the correspondingnote.

4



HO_ Reactions

There has been no change in the database for HOx chemistry since the last evaluation. The

HO2 + 03 reaction rate coefficient remains one of the most significant uncertainties in the HOx

system. High quality data at low temperatures are needed for this key reaction.

NO_ Reactions

The changes to the database on NOx reactions are relatively minor. There are new entries
for the reactions of OH + HONO, NH + NO, NH + NO2, and H + NO2. The latter is a reaction

commonly used in laboratory preparations of the hydroxyl radical. There are minor changes to
the recommendations for the reactions NO + HO2, NO + NO3, OH + NH3 and NH2 + 02 due to

recently published work.

Hydrocarbon Oxidation

The major change in the recommendations for the hydrocarbon oxidation chemistry since
the last evaluation is the value for the rate coefficient for the reaction of OH with CH4, which has

been reduced by approximately 20%. Even though this is a rather small numerical change, it is
quite significant in the atmospheric budget and chemistry calculations. A few reactions dealing
with atmospheric chemistry of ethane, peroxyacetyl nitrate (PAN), and simple organic acids have
been added. In addition, small changes have been made for many rate coefficients. The
accuracies of many rate coefficients have improved, and are reflected in the revised rate
constants.

There still remain some areas of large uncertainties. The major such area is the reactions of

peroxy radical reactions. Further work is needed to clarify the rate coefficients for many peroxy
radicals. Use of peroxy radical detection by methods other than UV absorption would be very
beneficial. Also, controlling the chemistry in the experimental system to minimize secondary
reactions would be beneficial. The reactions involving PAN, CH3CN, and HCN also require

some attention. PAN reactions may be important in the evaluation of the atmospheric
acceptability of supersonic and subsonic aircraft and in estimating the long range transport of odd

nitrogen in the upper troposphere.

Haloeen Reactions

The kinetics database for homogeneous reactions of halogen species has been expanded
since the previous evaluation. Rate coefficients for the reaction of OH with three propane-
substituted HCFCs have been added, increasing to twenty-three the number of potential
alternatives to the fully halogenated CFCs for which rate data for reaction with OH are now
included. Rate coefficients for the reaction of chlorine atoms with eighteen of these species have
also been added. Note that rate coefficient data for the reaction of these halocarbons with O(1D) are

included in the O(1D) section of Table 1. Rate coefficients have also been added for the reaction of

chlorine atoms with PAN (CH3CO3NO2), for the reaction of OH with CHF2Br (a proposed

replacement for Halons), and for the reaction of OH with C1N02. There have been only minor

changes in the recommendations for reactions included in the previous evaluation, with the
exception of the O + OC10 reaction, for which the recommended bimolecular rate constant value

has been significantly reduced and a termolecular reaction component forming CIO3 has been

included. With these additions and improvements, the kinetics database for homogeneous gas-
phase reactions of halogen species appears to be well-established.
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The database on homogeneous sulfur chemistry has seen only minor changes in the

recommendations forthe reactionsthat were includedin the previousevaluation.However, this

sectionhas undergone moderate expansion to includeadditionalreactionsof importance in the

atmospheric oxidationofreduced sulfurcompounds of natural and anthropogenic origin.These
new entriesincludereactionsinvolvedin the oxidationofthe radicalproductsCH3S, CH3SS, and

CH3SSO. The database has alsobeen expanded to includethe reactionsofSH with F2, Cl2,Br2,

and BrCI; the reactionsofCS2 and CH3SH with Cl;as wellas the reactionsofH2S with 03, SO3

with NH3, and CH3SCH3 withN205.

Metal Chemistrv

Sodium isdepositedinthe upper atmosphere by meteors alongwith largeramounts ofsilicon,

magnesium, and iron; comparable amounts of aluminum, nickel,and calcium; and smaller

amounts ofpotassium,chromium, manganese, and other elements. The interestisgreatestinthe

alkalimetals because they form the leaststableoxidesand thus freeatoms can be regenerated

through photolysisand reactionswith O and 03. The othermeteoricelements are expectedtoform

more stableoxides. A review by Plane (1991) describesmany aspects of atmospheric metal

chemistry.

The totalfluxof alkalimetals through the atmosphere isrelativelysmall,e.g.,one or two

ordersof magnitude lessthan CFMs. Thereforeextremely efficientcatalyticcyclesare required

in order for Na to have a significanteffecton stratosphericchemistry. There are no

measurements ofmetals or metal compounds in the stratospherewhich indicatea significantrole.

Ithas been proposed thatthe highlypolarmetal compounds may polymerizetoform clusters

and that the stratosphericconcentrationsof free metal compounds are too small to play a

significantrolein the chemistry.

Some studies have shown that the polar species NaO and NaOH associate with abundant
gases such as 02 and C02 with very fast rates in the atmosphere. It has been proposed that

reactions of this type will lead to the production of clusters with many molecules attached to the
sodium compounds. In most cases thermal dissociation is slow, and photolysis competes with the
association reactions and limits the cluster concentrations in daylight. If atmospheric sodium
does form large clusters, it is unlikely that Na species can have a significant role in stratospheric
ozone chemistry. In order to assess the importance of these processes, data are needed on the

association rates and the photolysis rates involving the cluster species.

Photochemical Data

In orderto reduce an important sourceofuncertaintyin atmosphericmodeling calculations,

high resolutionmeasurements around 300 nm (i.e.inthe Huggins bands) shouldbe carriedout for

ozone absorption cross sections,quantum yieldsfor OlD production and their temperature

dependency.

For C1202, the small absorption cross sections beyond 320 nm are potentially very important
for photodissociation in the polar stratosphere, and need to be further studied. In addition, the
temperature dependency of the absorption cross sections in the 300 nm region may be very
important for HN03, as well as for HO2N02.



In the case of HCFCs, there are discrepancies among the available sets of UV absorption data

on the magnitude of the temperature effect; further work in this area is still needed.

Hetero_neous Chemistry

There is no longer any question that heterogeneous processes on the surfaces of polar

stratospheric cloud particles play a critical role in the chemistry of the winter and spring polar

stratospheres. Furthermore, there is increasing observational and modeling evidence that

heterogeneous reactions on background sulfuric acid aerosols may play a very important role in
stratospheric processes at mid-latitudes, particularly when stratospheric sulfate levels are

elevated by major volcanic eruptions.
Polar heterogeneous chemical processes identified to date have a tendency to enhance the

destruction of stratospheric ozone, primarily by converting relatively inactive "reservoir" species

HCl and ClONO2 to more active CI2 and HOCI, which are easily photolyzed to Ci and C10. In

addition, interaction with PSC surfaces can remove N205 and HNO3 vapor from the polar

stratosphere, sequestering nitrogen oxides in the form of condensed phase nitric acid and, thus,

reducing the normal mitigating effect gaseous NOx can have on ClOx-catalyzed ozone

destruction. The net effect of these processes is a major buildup of CIOx radicals in PSC-processed

polar stratospheric air masses and, particularly over the Antarctic, a massive springtime

destruction of stratospheric ozone.

Model calculations also suggest that the reaction of stratospheric N205 with liquid water in

sulfuric acid aerosols to form HNO3 can have a significant impact on NOx/HNO3 ratios in the

lower mid-latitude stratosphere, bringing measured mid-latitude ozone losses into better

agreement with observations. Models suggest that at current mid-latitude ratios of NOx/CIOx this

process increases ozone loss by lowering NOx levels and thus reducing the scavenging of C10 by

ClONO2 formation. However, at higher NOx/CIOx ratios, such as those projected for mid-latitude

regions impacted by the exhaust from a future high altitude supersonic aircraft fleet, the projected

additional ozone loss from homogenous NOx catalyzed destruction is greatly reduced or
eliminated.

The laboratory study of heterogeneous processes relevant to the stratosphere is an immature
field in comparison to the measurement of gas phase kinetic and photodissociation parameters.

Heterogeneous experimental techniques are not yet as well developed and the interpretation of

experimental data is significantly more complex. Nonetheless, over the past several years, a
number of experimental groups have made very significant progress and data from

complementary techniques are increasingly available to help determine when the quantification

of heterogeneous kinetic processes has been successfully distinguished from complicating mass

transport and surface saturation processes.

However, it is well to remember that quantitative application of laboratory results on

heterogeneous processes to the stratosphere is not straightforward. First, there is still a significant

level of uncertainty in both the detailed chemical and physical characteristics of the droplet and

particle surfaces present in the stratosphere and in how faithful the laboratory simulation of these

surfaces in various experimental configurations may be. Secondly, the proper incorporation of

heterogeneous processes into models of stratospheric chemistry is very difficult and no current
models incorporate formation of and reaction on droplet/particle surfaces in a fully coupled and

self-consistent way. A great deal of effort will have to be expended before the modeling community

is as adept at incorporating heterogeneous effects as they are in representing gas phase kinetic and
photochemical processes.
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f',_Lq_ _nth.lr.y ]_ (Appendix 1)

This table gives AHf(298) values for a number of atmospheric species.Most of the

recommendations are based upon data inthe IUPAC Evaluation(Atkinsonetal.,1989). Some of

the valuesare differentfrom the currentIUPAC recommendations, reflectingrecentstudiesthat

have notyetbeen acceptedand incorporatedintothatpublication.These data arepresentedwithout

citationor referencetothe originalsource.

Pro_ (Appendix 2)

A set of nine figures presenting model-calculated altitude profiles for stratospheric
temperature, trace species concentrations, and photolysis rate coemcients has been added to this
publication. These data are given to provide "order of magnitude" values of important parameters
for the purpose of evaluating stratospheric kinetics and photochemical processes. Since the
profiles are sensitive to variations in season, hour of the day, and latitude, some care must be
taken in how they are applied to specific problems. They are not intended to be standards for
comparison with other model calculations. Some details of the model used to generate the profiles
aregiven at the beginningofAppendix 2. The effortsofPeterS.Connelland othermembers ofthe

LLNL are gratefullyacknowledged for providingthese profiles.

RATE CONSTANT DATA

In Table 1 (Rate Constants for Second Order Reactions) the reactions are grouped into the

classes Ox, O(1D), Singlet 02, HOx, NOx, Hydrocarbon Reactions, C1Ox, BrOx, FOx, SOx, and

metal reactions. The data in Table 2 (Rate Constants for Three-Body Reactions), while not
grouped by class, are presented in the same order as the bimolecular reactions. Further, the
presentation of photochemical cross section data follows the same sequence.

Bimni_]lsr Reaction R

Some of the reactionsin Table 1 are actuallymore complex than simpletwo-body reactions.

To explainthe pressureand temperaturedependences occasionallyseen in reactionsofthistype,it

isnecessary to considerthe bimolecularclassofreactionsin terms of two subcategories,direct
(concerted)and indirect(non-concerted)reactions.

A direct or concerted bimolecular reaction is one in which the reactants A and B proceed to
products C and D without the intermediate formation of an AB adduct which has appreciable
bonding, i.e., no stable A-B molecule exists, and there is no reaction intermediate other than the

transition state of the reaction, (AB) _.

A + B-_ (AB)$_ C + D

The reaction of OH with CH4 forming H20 + CH3 is an example of a reaction of this class.

Very usefulcorrelationsbetween the expectedstructureofthe transitionstate[AB]# and the

A-Factor of the reactionrateconstantcan be made, especiallyin reactionswhich are constrained

tofollowa well-definedapproach ofthe two reactantsinorder tominimize energy requirementsin

the making and breaking ofbonds. The rateconstantsforthesereactionsare wellrepresentedby
the Arrhenius expression k = A exp(-E/RT) in the 200-300 K temperature range. These rate

constantsare not pressuredependent.
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The indirect or non-concerted class of bimolecular reactions is characterized by a more

complex reaction path involving a potential well between reactants and products, leading to a

bound adduct (or reaction complex) formed between the reactants A and B:

A+ B _[AB]*-_C +D

The intermediate [AB]* is different from the transition state [AB] _, in that it is a bound molecule

which can, in principle, be isolated. (Of course, transition states are involved in all of the above

reactions, both forward and backward, but are not explicitly shown.) An example of this reaction

type is ClO + NO, which normally produces Cl + NO2. Reactions of the non-concerted type can

have a more complex temperature dependence and can exhibit a pressure dependence if the
lifetime of [AB]* is comparable to the rate of collisional deactivation of [AB]*. This arises because

the relative rate at which [AB]* goes to products C + D vs. reactants A + B is a sensitive function of

its excitation energy. Thus, in reactions of this type, the distinction between the bimolecular and

termolecular classification becomes less meaningful, and it is especially necessary to study such

reactions under the temperature and pressure conditions in which they are to be used in model

calculation, or, alternatively, to develop a reliable theoretical basis for extrapolation of data.

The rate constant tabulation for second-order reactions (Table 1) is given in Arrhenius

form: k(T) = A exp ((-E/R)(1/T)) and contains the following information:

1. Reaction stoichiometry and products (if known). The pressure dependences are

included, where appropriate.

2. Arrhenius A-factor.

3. Temperature dependence and associated uncertainty ("activation temperature"
E/R+AE/R).

4. Rate constant at 298 K.

5. Uncertainty factor at 298 K.

6. Note giving basis of recommendation and any other pertinent information.

Termoleeular Reactions

Rate constants for third order reactions (Table 2) of the type A + B _-_ [AB]* M AB are given in

the form

ko(T) = k_00(T/300) -n cm 6 molecule -2 s"l,

(where ko 300 has been adjusted for air as the third body), together with a recommended value of n.

Where pressure fall-off corrections are necessary, an additional entry gives the limiting high

pressure rate constant in a similar form:

koo(T) = k 300 (T/300) "m cm 3 molecule "1 s "1.



To obtain the effective second-orderrate constant for a given condition of temperatureand
pressure(altitude),the followingformulais used:

{l +[logl0(ko(T)[M]]ko.(T))]2}"1
k°(T)[M] ) 0.6

k(Z) = k(M,T) = ( 1 + (ko(T)tMl/k_(T))

The fixed value 0.6 which appears in this formula fits the data for all listed reactions adequately,

although in principle this quantity may be different for each reaction, and also temperature

dependent.

Thus, a compilation of rate constants of this type requires the stipulation of the four

parameters, ko(300), n, k_o(300), and m. These can be found in Table 2. The discussion that

follows outlines the general methods we have used in establishing this table, and the notes to the

table discuss specific data sources.

Low-Pressure Limiting Rate Constant [l_(T)]

Troe (1977) has described a simple method for obtaining low-pressure limiting rate

constants. In essence this method depends on the definition:

k_)(T) -= 13xk_,sc(T)

Here sc signifies "strong" collisions, x denotes the bath gas, and ]3x is an efficiency parameter (0

<_ <1), which provides a measure of energy transfer.

The coefficient _x is related to the average energy transferred in a collision with gas x,

<AE>x, via:

_x <AE>
x

l__x 1/2 FE kT

Notice that <AE> is quite sensitive to 9. FE is the correction factor of the energy dependence of the

density of states (a quantity of the order of 1.1 for most species of stratospheric interest).

For many of the reactions of possible stratospheric interest reviewed here, there exist data in

the low-pressure limit (or very close thereto), and we have chosen to evaluate and unify this data by

calculating k_,sc(T) for the appropriate bath gas x and computing the value Of_x corresponding to

the experimental value [Troe (1977)1. A compilation (Patrick and Golden, 1983) gives details for
many of the reactions considered here.

From the _x values (most of which are for N2, i.e., _N2), we compute <AE>x according to the

above equation. Values of <AE>N2 of approximately 0.3-1 kcal mole "1 are generally expected. If

multiple data exist, we average the values of <AE>N2 and recommend a rate constant

corresponding to the _N2 computed in the equation above.

Where no data exist we have estimated the low-pressure rate constant by taking _3N2 = 0.3 at

T = 300 K, a value based on those cases where data exist.
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Temperature Dependence of Low-Pressure Limiting Rate Constants: n

The value of n recommended here comes from measurements or, in some cases, a

calculation of <AE>N2 from the data at 300 K, and a computation of _N2 (200 K) assuming that

<AE>N2 is independent of temperature in this range. This _N2 (200 K) value is combined with the

computed value of ko sc (200 K) to give the expected value of the actual rate constant at 200 K. This

latter in combination with the value at 300 K yields the value of n.

This procedure can be directly compared with measured values of k o (200 K) when those

exist. Unfortunately, very few values at 200 K are available. There are often temperature-

dependent studies, but some ambiguity exists when one attempts to extrapolate these down to 200 K.

If data are to be extrapolated beyond the measured temperature range, a choice must be made as to

the functional form of the temperature dependence. There are two general ways of expressing the
temperature dependence of rate constants. Either the Arrhenius expression ko(T) = Aexp(-E/RT)

or the form ko(T) = A' T "n is employed. Since neither of these extrapolation techniques is soundly

based, and since they often yield values that differ substantially, we have used the method

explained earlier as the basis of our recommendations.

High-Pressure Limit Rate Constants [k_(T)]

High-pressure rate constants can often be obtained experimentally, but those for the

relatively small species of atmospheric importance usually reach the high-pressure limit at

inaccessibly high pressures. This leaves two sources of these numbers, the first being guesses
based upon some model, and the second being extrapolation of fall-off data up to higher pressures.

Stratospheric conditions generally render reactions of interest much closer to the low-pressure

limit, and thus are fairly insensitive to the high-pressure value. This means that while the

extrapolation is long, and the value of k_(T) not very accurate, a "reasonable guess' of koo(T) will
then suffice. In some cases we have declined to guess since the low-pressure limit is effective over

the entire range of stratospheric conditions.

Temperature Dependence of High-Pressure Limit Rate Constants: m

There are very few data upon which to base a recommendation for values of m. Values in

Table 2 are often estimated, based on models for the transition state of bond association reactions
and whatever data are available.

Uncertainty Estimates

For second-order rate constants in Table 1, an estimate of the uncertainty at any given
temperature may be obtained from the following expression:

f(T)=f(298)exp -- ( T -298)

Note that the exponent is absolute value. An upper or lower bound {corresponding
approximately to one standard deviation} of the rate constant at any temperature T can be

obtained by multiplying or dividing the value of the rate constant at that temperature by the
factor f{T}. The quantities f{298) and AE/R are, respectively, the uncertainty in the rate
constant at 298 K and in the Arrhenius temperature coefficient, as listed In Table 1. This
approach is based on the fact that rate constants are almost always known with minimum
uncertainty at room temperature. The overall uncertainty normally increases at other
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temperatures,becausethere areusually fewerdata and it is almostalwaysmoredifficult to
makemeasurementsat other temperatures. It is important to note that the uncertainty at a
temperatureT cannot be calculated from the expression exp{AE/RT). The above expression for
fiT) must be used to obtain the correct result.

The uncertainty represented by f(T) is normally symmetric; i.e., the rate constant may be
greater than or less than the central value, k{T), by the factor f(T). In a few cases in Table I
asymmetric uncertainties are given in the temperature coefficient. For these cases, the factors
by which a rate constant are to be multiplied or divided to obtain, respectively, the upper and
lower limits are not equal, except at 298 K where the factor is simply /'{298 K}. Explicit
equations are given below for the case where the temperature dependence is {E/R +a, -b):

For T > 298 K, multiply by the factor

f(298 K)e [a(1/298 l/T)]

and divide by the factor

f(298 K)e [b(1/298 l/T)]

For T < 298 K, multiply by the factor

f(298 K)e [b(lfr-1/298)]

and divide by the factor

f(298 K)e In(l/T- 1/298)]

Examples of symmetric and asymmetric error limits are shown in Figure 1.

For three-body reactions (Table 2) a somewhat analogous procedure is used. Uncertainties

expressed as increments to ko and k_ are given for these rate constants at room temperature. The

additional uncertainty arising from the temperature extrapolation is expressed as an uncertainty
in the temperature coefficients n and m.

The assigned uncertainties represent the subjective judgement of the Panel. They are not

determined by a rigorous, statistical analysis of the database, which generally is too limited to

permit such an analysis. Rather, the uncertainties are based on a knowledge of the techniques, the

difficulties of the experiments, and the potential for systematic errors. There is obviously no way

to quantify these "unknown" errors. The spread in results among different techniques for a

given reaction may provide some basis for an uncertainty, but the possibility of the same, or

compensating, systematic errors in all the studies must be recognized. Furthermore, the

probability distribution may not follow the normal, Gaussian form. For measurements subject to

large systematic errors, the true rate constant may be much further from the recommended value

than would be expected based on a Gaussian distribution with the stated uncertainty. As an
example, the recommended rate constants for the reactions HO 2 + NO and Cl + ClON02 have

changed by factors of 30-50, occurrences which could not have been allowed for with any
reasonable values of ¢; in a Gaussian distribution.
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The rate constantsare given in units of concentrationexpressedas moleculesper cubic
centimeterandtime in seconds.Thus,for first-, second-,andthird-orderreactionsthe units of k
ares"l, cm3 molecule-1s"l, andcm6 molecule-2 s"1,respectively.Crosssectionsareexpressedas
cm2 molecule"l, basee.
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TABLE 1. RATE CONSTANTS FOR SECOND ORDER REACTIONS

Reaction A.Factor a E/R+(AE/R) k(298 K) f{298)b Notes

Ox Reactions

0+02 MO3 (See Table 2)

O + 0 3 --, 0 2 + 02 8.0xi0-12 206022S0 8.0xi0-15 1.15 A1

O(1D) + N20 ___N2 + 02 4.9xi0-11 02100 4.9x10-11 1.3 A2, A3

-_ NO+NO 6.7x10-11 0_100 6.7x10-11 1.3 A2, A3

O(ID) + H20 -_ OH + OH 2.2xi0-I0 02_100 2"2xi0-I0 1.2 A2, A4

O(1D) + CH4 --, OH + CH3 1Axl0-10 02100 1.4x10-10 1.2 A2, A5

_., H2+ CH2O 1.4x10-11 02100 1.4x10-11 1.2 A2, A5

O(1D) + H 2 --*OH + H 1.0x10-I0 02100 1.0x10-10 1.2 A2, A6

& O(ID) + N 2 -K) + N 2 1.8x10-11 -(110+100) 2.6x10-11 1.2 A2

O(1D) + N2 M N20 (See Table 2)

& O(1D) + 0 2 -_ O + 0 2 3.2x10-11 -(70_100) 4.0x10-11 1.2 A2jk40

& O(ID) + CO 2--* O + CO 2 7.4x10-11 -(120+100) 1.1x10-10 1.2 A2

O(1D) + 03 __,02 + 02 1.2x10-I0 02100 1"2x10-10 1.3 A2, A7

0 2 +O +O 1.2x10-10 02100 1"2x10-10 1.3 A2, A7

O(ID) + HCf --_ products 1.5x10-I0 02100 1.5xi0-I0 1.2 AS

O(1D) + HF --_ OH + F 1.4x10-10 02100 1.4x10-10 2.0 A9

O(1D) + HBr --* products 1.5x10-10 02100 1.5x10-I0 2.0 AI0

O(1D) + C12 _ products 2.8xi0-10 (kkl00 2.8x10-10 2.0 All

O(1D) + CCI 4 --_products 3.3x10-10 02100 3.3x10-I0 1.2 A2, A12

O(1D) + CFCI3 --* products 2.3x10-10 02100 2.3x10-10 1.2 A2, A12

O(1D) + CF2CI 2 --_products 1.4x10-10 02100 1.4x10 "10 1.3 A2, A12

* O(1D) + CF 4 -_ CF 4 + O 2.0x10-14 1.5 A2, A13

O(1D) + CC]20 --_products 3.6x10-10 02100 3.6x10-10 2.0 A2, A14
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Table 1. {Continued)

Reaction

O(1D) + CFCIO _ products

O(1D) + CF20 --, products

O(1D) + NH3 -_ OH + NH2

# O(1D) + CF3Ci --* products

# O(1D) + CF2CICFCI 2 _ products

# O(1D) + CF3CC! 3 --, products

# O(1D) + CF2CICF2C1 --, products

# O(1D) + CF3CFC]2 -_ products

# O(1D) + CF3CF2 C] --, products

# O(1D) + c-C4F 8 --* products

O(1D) + CHFCI 2 _ products

* O(1D) + CHF2Cl _ products

O(1D) + CHF3 _ products

O(1D) + CH2F 2 _ products

O(1D) + CH3F --, products

* O(1D) + CHCI2CF 3 _ products

* O(1D) + CHFC1CF 3 -_ products

* O(1D) + CHF2CF 3 --, products

O(1D) + CH2CICF2CI -_ products

* O(1D) + CH2CICF 3 --_ products

* O(1D) + CH2FCF3 _ products

* O(1D) + CH3CFC12 -_ products

* O(1D) + CH3CF2C! --, products

O(1D) + CH3CF 3 -_ products

1.9x10 -10

7.4x10-11

2.5x10 -10

8.7x10-11

2x10-10

2x10-10

1.3x10 -10

lxl0-10

5x10-11

.

1.gx10 -10

1.0xl0-10

8Axl0 -12

9.0x10 -11

1.4x10 -10

2.0x10 -10

8.6x10-11

1.2x10 -10

1.6x10 -10

1.2x10 -10

4.9x10 -11

2.6x10 -10

2.2x10 -10

1.0xl0 -10

0-2100

02100

0-kl00

02100

02100

02100

02100

02100

02100

02100

02100

02100

02100

02100

02100

02100

021OO

02100

02100

02100

02100

0±100

02100

1.9x10 -10

7.4x10 -11

2.5x10 -10

8.7x10 -11

2x10-10

2x10-10

1.3x10 -10

lxl0-10

5x10-11

8x10-13

1.9x10 "10

1.0xl0 "10

8Axl0 -12

9.0x10 -11

1.4x10 -10

2.0x10 -10

8.6x10 -11

1.2x10 -10

1.6x10 -10

1.2x10 -10

4.9x10-11

2.6x10 -10

2.2x10-10

1.0xl0 -10

2.0

2.0

1.3

1.3

2.0

2.0

1.3

2.0

1.3

1.3

1.3

12.

5.0

3.0

2.0

1.3

1.3

2.0

2.0

1.3

1.3

1.3

1.3

3.0

A2, A14

A2, AI4

A2, AI5

A12,A33

A12,A34

A12,A35

A12,A36

A12,A37

A12,A38

A12,A,99

A16, A12

A17, A12

A18, A12

A19, A.12

A20, A12

A21, A12

A22, AI2

A23, AI2

A2A, AI2

A25, A12

A26, AI2

A27, A12

A28, A12

A29, A12
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Reaction

Table 1. (Continued)

A.Factor a E/R+(AE/R) k(298 K) f(298)b No_s

* O(1D) + CH3CHF 2 --_products

* O(1D)+C2F6 --*O+C2F6

* O(1D) + SF 6 _ products

# O2(IA)+ O --_products

# O2(IA)+ 02 --_products

# O2(la)+ O3 -_O + 202

# O2(1A)+ H20 _ products

# O2(1A)+ N--,NO + O

# O2(1A)+ N 2 _ products

# O2(14) + CO2 _ products

# O2(Iz)+ O -_products

# O2(15)+ 02 --,products

# O2(1_)+ 03 _ products

# O2(1D + H20 -,products

# O2(15:)+ N --*products

# O2(Iz)+ N 2 --_products

# O2(ID + C02 --_products

H+o2MHo3

H+O3-*OH+O 2

H + HO 2 -_products

O + OH _O2 +H

O+ HO2-* OH + O2

2.0xi0"10 0_100

Sing]et 0 2 Reactions

3.6x10-18

5.2x10-11

22_100

2840_00

0__2002.2x10 -11

2.1x10-15 (}+_200

4.2x10-13 0+_200

Reactions

(See Table 2)

1.4x10-10 470+_200

8.1x10-11 0k_100

2.2x10-11 -(120+100)

3.0x10-11 _200_100)

2.0x10-10

1.5x10 "13

1.8x10-14

<2xi0-16

1.7x10 -18

3.8xi0 -15

4.8xi0 -18

<9x10-17

<I0-20

<2x10-20

8xi0-14

3.9x10 -17

2.2x10-11

5.4x10 -12

<10-13

2.1x10-15

4.2x10-13

2.9x10-11

8.1x10 -11

3.3xi0-11

5.9x10"11

1.3

1.5

1.5

1,2

1.2

1.5

5.0

1.5

1.2

1.3

1,2

1.2

1.25

1.3

1.2

1.2

A30, A12

A31

A32

A41

A42

A43

A44

A45

A46

A47

A48

A49

AS0

A51

AS2

A53

A54

B1

B2

B3

B4
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Reaction

O + H202 --* OH + HO2

OH + HO2 --* H20 + 02

OH + O3 _H02 + O2

OH + OH -* H20 + O

Ma202

OH + H202 _ H2 O+ HO2

OH + H2 --# H2 TMH

H02 + HO2 --* H202 + 02

MH O2+02

H02 + 03 _OH + 202

N + O2--*NO +O

N+Os_NO+02

& N+NO_N2+O

N + N02-_N20 +O

O + NO M__NO 2

O+NO2 _NO + O2

O+NO2 M__+NO3

O +NO3 --*02+ NO2

O + N205 _ products

O + HNO 3 _ OH + NO3

O + HO2NO 2 -* products

# H+NO2_OH+NO

O3 +NO _N02 + O2

Table 1. (Continued)

A.Factora E/R±(AE/R)

1.4x10 12 200021000

4.8x10-11 -(250+200)

1.6x10-12 940+_300

4.2x10-12 240+_2A0

(See Table 2)

2.9x10-12 1602100

5.5x10-12 20002400

2.3x10-13 -(600_+_200)

1,7x10-33[M] -(10002400)

l.lx10-14 500
500_1Co

k(298K)

1.7x10-15

1.1x10-10

6.8x10-14

1.9x10-12

1.7x10 -12

6.7x10 -15

1.7x10 -12

4.gx10-32[M]

2.0x10 -15

NO x _¢actions

1.5x10-11 36(X>k400 8,5x10-17

<2.0x10 -16

3.4x10 -11 02100 3.4x10 -11

3.0x10 -12

(See Table 2)

6.5x10-12 -(120±120) 9.7x10 "12

(See Table 2)

1.0xl0-11 0__150 1.0xl0 -11

<3.0x10 -16

<3.0x10 -17

7.8x10-11 34002750 8.6x10-16

4.0x10-10 340+_300 1.3x10-10

2.0x10-12 1400+_200 1.Sx10 "14

t_s>u

2.0

1.3

1.4

1.2

12

1.3

1.3

1,3

1.25

1.3

3.0

1.1

1.5

3.0

1.3

1.2

III
No_s

B5

B6

B7

B8

B9

B10

BII

BII

B12

C1

C2

C3

C4

C5

C6

C7

C8

C9

CIO

Cll
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Table 1. (Continued)

Reaction ' A.Factor a E/R+(AE/R) k(298 K) f(298)b Notes

* NO + HO2 --*NO2 + OH

* NO + NO3 -_ 2NO2

OH + NO M HONO

OH + NO 2 M HNO3

OH + NO3 _ products

# OH + HONO --* H20 + NO2

OH + HNO 3 --_H20 + NO 3

OH + HO2NO 2 _ products

HO 2 + NO 2 M HO2NO2

HO2 + NO3 _ products

O3 + NO2 _NO3 + O2

03 + HN02 --*02 +HNO3

N02+NO3M N205

* NO 2 + NO 3 _ NO + NO 2 +02

N205 + H20 -_2HNO3

# NH + NO_ products

# NH + NO 2 --* products

* OH + NH3 --* H20 + NH2

NH2 + HO2 -_ products

3.7x10 -12

1.5xl 0"11

(See Table 2)

(See Table 2)

1.8x10 -11

-(250+80) 8.6x10-12 1.2 C12

-(170+100) 2.6x10-11 1.3 C13

°

2O0
390_5¢ o

(See Note C16 and * below)

1.3x10-12 270
-(3sO_5oo)

(See Table 2)

1.2x10-13 245(_150

(See Table 2)

(See Note)

4.9x10-11 02300

3.5x10-13 -(1140-J:500)

1.7x10-12 710__200

2.3x10-11 2.0 C14

4.5x10-12 1.5 C15

1.3 C16

4.6x10-12 1.5" C17

4.1xi0-12 2.0 C18

3.2xi0-17 1.15 C19

<5.0xi0-19 - C20

C21

<2.0x10-21 C_

4.9x10-11 1.5 C23

1.6x10-11 2.0

1.6x10-13 1.2 C"25

3.4x10-11 2.0 C26

OH + HNO 3 pressure and temperature dependence fit by

k(M,T) = k o +. k
[M]

k3 [M}
I+_

k2

{k_2 = 7.2x10 "15 exp(785/T)
with 4.1x10 -16 exp(1440/T)

k3 1.9x10 -33 exp(725/T)
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Re_gtion

Table 1. (Continued)

A.Factor a E/R+(AE/R) k(298 K) f<_a8)b No_s

NH2 + NO --* products

NH2 + NO2 --*products

NH2 + 02 --*products

NH 2 + 0 3 --_ products 4.3x10-12 9304=:500

Hydrocarbon Reactions

OH + CO --* CO2 1.5xl0"13(l+0.6Patm)

* OH + CH4 --*CH3 + H2 O 2.9x10 "12

* OH + 13CI-I4 -_ 13C_I3 + H20 (See Note)

* OH + C2H6 _ H20 + C'2H5 8.7x10 "12

* OH + C3H8 --_H20 + C3H7 1.1xl0 "11

OH + C2H4 --*products (See Table 2)

OH + C2H 2 --_ products (See Table 2)

OH + H2CO --* H20 + HCO 1.0xl0 "11

OH + CH3OH -* products 6.7x10 "12

* OH + C2H5OH --* products 7.0x10 "12

OH + CH3CHO _ CH3CO + H20 6.0x10 "12

OH + CH3OOH --_ products 3.8x10 "12

# OH + HC(O)OH _ products 4.5x10 "13

# OH + CH3C(O)OH --*products 1.2x10 "12

OH + HCN _ products 1.2x10 "13

* OH + CH3CN -* products 7.8x10 "13

# OH + CH3C(O)O'2NO2 --* products 1.1xl0 "12

0 3 + C2H 2 -_ products 1.0xl0 "14

03 + C2H4 -, produ_ 1.2x10-14

3.8x10-12 -(450±150)

2.1x10-12 -(650_250)

1.7x10-11 2.0 C27

l_xl0-11 3.0 C28

<6.0x10-21 C'29

1.9x10-13 3.0 C30

0_300 1.5xl0"13(l+0.6Patxn) 1.3

1820+_200 6.5x10-15 1.1

1070_100 2.4x10-13 1.1

700_100 1.1x10-12 1.2

Oe_200 1.Oxl0-11 1.25

600_00 8.9x10-13 1.2

235-_100 3.2x10-12 1.3

-(250_+_200) 1.4x10-11 1.4

-(200=L200) 7.4x10-12 1.5

0_200 4.5x10-13 1.3

170d=150 6.8x10-13 1.5

400_150 3.1x10-14 3.0

105__200 2.3x10-14 1.5

650_:400 1.2x10-13 3.0

41004=:500 1.0xl0 "20 3.0

2630_100 1.7x10 "18 1.25

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

Dll

D12

D13

D14

D15

D16

D17

2O



Table 1. (Continued)

Reaction A.Factor a E/R±(AE/R) k(298 K) f(298)b Notes

03 + C3H 6 -+ products

HO2 + CH20 -_ adduct

& O + HCN _ products

O + C2H 2 -, products

O + H2CO --* products

O + CH3CHO _ CH3CO + OH

O + CH 3 _ products

CH3 + 02 --+products

a-t_+03 _ 0H302

_ + 02--,_H4 +HO2

O_+02 _ C_J_02

CH_)H + 02 --+CH_:) + H02

CH30 + 02 -+CH20 + HO 2

# C2H50 + 02 -*CH3CHO + H02

# C2H50 + NO --, products

# C2H50 + NO 2 --, products

HCO + 02-_C0+ HO 2

CH3 + 03 -_ products

_O2 +03 --,_au_

* CH_::_ + 0H302 -_products

CH302 + NO -_OH30 + NO2

CH30 2 + NO 2 M CH302NO2

* CH302 + HO 2 -_ products

# CH302 + CH3C(O)O 2 --_products

6.5x10-15 1900+_200 1.1x10-17 12 D18

6.7x10-15 -(600±600) 5.0x10-14 5.0 D19

1.0xl0-11 4000k1000 1.5x10-17 10.0 D20

3.0x10-11 16(X)+__250 1.4x10-13 1.3 D21

3.4x10-11 16_ 1.6x10-13 1.25 D22

1.8x10-11 1100-k200 4.5x10-13 1.25 D23

1.1xl0-10 0_50 1.1xl0-10 1.3 IYI,A

<3.0x10-16 D25

(See Table 2)

(See Table 2)

3.9x10-14 900_h300

3.1x10-14 40Ok400

(See Table 2)

(See Table 2)

3.5x10-12 -(140_140)

5.4x10-12 220_150

2.5x10-13 -(190_190)

4.2x10-12 -(180±180)

(See Table 2)

3.8x10-13 -(800+400)

1.4xlO-ll 0±400

<2.0xi0-15 I)26

9.1x10-12 1.3 D27

1.9x10-15 1.5 D28

8.1x10-15 2.0 D29

5.5x10-12 1.3 D30

2.6x10-12 2.0 D31

<3.0x10-17 D32

4.7x10-13 1.5 D33

7.7x10-12 L5 D34

5.6x10-12 2.0 D35

1.4x10-11 2.0 D36
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Reaction

Table 1. (Continued)

* C2H50 2 + C2H502 -_ products

C2H502 + NO -_ product8

& C2H502 + H02 -_ products

# CH3C(O)O 2 + CH3C(O)O 2 -, products

CH3C(O)O 2 + NO --* products

CH3C(O)O2 + NO2 -_ products

CH3C(O)O2 + HO2 _ products

& NO3 + CO --, products

NO3 + CH20 _ products

NO 3 + CH3CHO --* products 1.4x10-12 1900-_300

.C]_Qx Reac_ion_

& CI + 0 3 + C10 + 0 2 2.9x10-11 260_100

C1 + H2 --*HCI + H 3.7x10-11 2300_00

C1 + CH4 --_HC1 + CH 3 1.1xl0-11 1400_150

Cl + C2H 6 --, HCl + C2H 5 7.7x10-11 90_0

C1 + C3H8 _ HC1 + C3H7 1.4x10-10 -(402250)

Ci + C2H 2 --, products (See Table 2)

& C1 + CH3OH _ CH2OH + HCI 5.7x10-11 0+_250

Cl + CH3CN --->products

C1 + CH3C1 _ CH2C1 + HC1 3.3x10-11 125_200

# C1 + CH2Cl2 _ HC1 + CHCl 2 3.1x10-11 1350+_500

# Cl + CHC13 -, HCl + CC13 4.9x10-12 1240+_00

# Cl + CHFC12 -_ HCI + CFCl 2

# C1 + CH2FC1 --* HC1 + CHFCl 2.1x10-11 1390=t500

1.5x10-13 270-_270 6.1x10-14

8.9x10-12 0_300 8.9x10-12

6.5x 10 "13 -(650±300) 5.8x 10"12

2.5x10-12 -(5502250) 1.6x10-11

2.4x10-11 Oe_200 2.4x10-11

(See Table 2)

4.5x10-13 -(1000_600) 1.3x10 "11

<4.0x10 -19

5.8x10-16

2.4x10 -15

1.2x10 -11

1.6x10 -14

1.0xl0 -13

5.7x10 -11

1.6x10 -10

5.7x10-11

<2.0x10 -15

4.9x10 "13

3.3×10 -13

7.6x10 "14

1.0xl0 -14

1.9x10 -13

2.0

1.3

2.0

2.0

2.0

2.0

1.3

1.3

1.15

1.25

1.1

1.1

1.5

1.5

1.2

2.0

3.0

3.0

3.0

D37

D38

D39

I340

D41

I342

1343

D44

D45

E1

E2

E3

E4

E5

E6

E7

E8

E9

El0

Ell

El2
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Table 1. (Continued)

Reaction A.Factor a E/R:t:(AE/R) k(298 IQ f(298)b Notes

# CI + CH2F 2 -) HCI + CHF 2 1.7x10-11 1630_00 7.1x10-14 3.0 El3

# C1 + CH3F _ HC1 + CH2 F 4.8x10-12 770_500 3.6x10-13 1.5 El4

C1 + CH3CC13 _ CH2CCl 3 + HCl <4.0x10-14 El5

# C1 + CHCl2CF 3 --, HCl + CC12CF 3 1.2x10-14 1.5 El6

# C1 + CHFClCF3 --) HC1 + CFClCF3 2.7x10-15 2.0 El7

# CI + CH2ClCF3 --, HC1 + CHC1CF3 1.8x10 "12 1710_00 5.9x10-15 3.0 El8

# CI + CHF2CHF 2 _ HC1 + CF2CHF 2 8.2x10 12 2430_00 2.4x10-15 3.0 El9

# Cl + CH2FCF3-_ HCl + CHFCF3 1.4x10-15 3.0 E20

# C1 + CH3CFCI 2 --, HCl + CH2CFCl 2 2.2x10-15 1.5 E21

# CI + CH3CF2Cl _ HC1 + CH2CF2Cl 3.9x10-16 3.0 E_

# C1 + CH2FCHF 2 --, HC1 + CH2FCF 2 5.5x10 -12 1610k500 2.5x10-14 3.0 E23

HCl + CHFCHF 2 7.7x10 12 1720_00 2.4x10-14 3.0 E2:3

# Cl + CH3CF3 -, HCl + CH2CF3 1.2x10-11 3880_00 2.6x10-17 5.0 E24

# Cl + CH2FCH2F --, HC] + CHFCH2F 2.6x10 "11 10602500 7.5x10-13 3.0 E25

# C1 + CH3CHF 2 _ HCl + CH3CF 2 6.4x10 "12 950_00 2.6x10-13 1.5 E26

HCI + CH_2 7.2x10 -12 2390+_500 2.4x10-15 3.0 E26

# CI + CH3CH2F -) HCl + CH3CHF 1.8x10 "11 290]=500 6.8x10-12 3.0 E27

--* HCI + CH2(I-I2F 1.4x10 "11 8802500 7.3x10-13 3.0 E27

# Cl + CH3CO3NO 2 _ products <lx10-14 E28

CI + H2CO _ HCl + HCO 8.1x10-11 30i100 7.3x10-11 1.15 E29

CI + H202 _ HCl + HO2 1.1xl0-11 980_500 4.1x10-13 1.5 E30

Cl + HOCl -) C12 + OH 3.0x10-12 130+_250 1.9x10-12 2.0 E31

CI + HNO 3 -, products - <2.0x10-16 E32

Cl + HO2 --* HC1 + 02 1.8x10-11 -(170_+_200) 3.2xi0-11 1.5 E33

OH+ C_O 4.1x10-11 450+_200 9.1x10-12 2.0 E33
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Table1. (Continued)

[_ee-ction

Cl+ Cl20 -_Cl2 + CIO

Cl+ OCIO _ CIO + CIO

C]+ CIOO-_ Cl2 + O2

-_CIO + CIO

CI + C1202 -_products

Cl+ CIONO2 -_products

Cl+ NO M NOCI

Cl+ NO2 M__)CIONO (CINO2)

CI+ NO3 + CIO + NO2

Cl+ N20 + ClO + N 2

Cl + CINO _ NO + C12

o +02M cloo

CI+ CO M CICO

CIO + O-_Cl + O2

CIO + NO + NO2 + Cl

CIO + NO2 M) ClONO2

CIO + NO3 _ products

C10 + HO2 -* HOC1 + 02

C10 + H2CO _ products

CIO + OH --)products

CIO + CH4 _ products

CIO + H 2 --* products

CIO + CO _ producta

A-Factor a

9.8x10-11

3.4x10-11

2.3x10 "10

1.2x10 "11

6.8x10 "12

(See Table 2)

(See Table 2)

2.6x10 -11

(See Note)

5.8x10-11

(See Table 2)

(See Table 2)

3.0x10 -11

6.4x10 12

(See Table 2)

4.0x10 -13

4.8x10 -13

~l.0xl0 -12

1.1xl0-11

~l.0xl0 -12

-1.0xl0 -12

_l.0xl0 -12

E/R±(AE/R)

_0

4160+_2o0)

O+_250

0+_250

-(160_200)

0_400

4100+_200)

47O±7O)

4290_+100)

0!400

25O
_7oo_7o_

>2100

-(120±150)

>3700

>4800

>3700

k(298 K)

9.8x10 "11

5.8x10 "11

2.3x10 "10

1.2x10 "11

1.0xl0 "10

1.2x10 "11

2.6x10 -11

8.1x10 "11

3.8x10 -11

1.7x10 -11

4.0x10 -13

5.0x10 -12

<l.0xl0-15

1.7x10-11

<4.0x10"18

<I.0x10-19

<4.0x10-18

f_8) b

1.2

1,25

3.0

:3.0

2.0

1.:3

9,.0

1..5

1.2

1.15

2.0

1.4

1.5

Notes
'll

E34

E,_

F_

F__

F27

F28

E40

FA1

E42

E43

E44

E45

E46

FA7

E48

E48

E48
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Table 1. (Continued)

• Reaction A_Factor a E/R+(AE/R) k(298 K) f(298)b Notes

CIO + N20 _ products

& CIO + ClO --, products

M
--, C1202

* C10+O 3-_CIOO+O 2

--, OC10+ 02

& CIO + CH302 _ products

OH + C12 -_ HOCI + C]

OH + HC1 _ H20 + Cl

OH + HOCl _ H20 + C10

OH + CH3Cl _ CH2C1 + H20

OH + CH2CI 2 --* CHCl 2 + H20

OH + CHCl3 -* CCI3 + H20

OH + CCI4 -_products

OH + CFCI3 -_products

OH + CF2CI2 _ products

OH + CHFCI 2 -*CFCI2 + H20

OH + CHF2CI -*CF2CI + H20

OH + CH2CIF -*CHCIF + H20

* OH + CH3CCI3 _ CH2CCI3 + H20

* OH + CHC12CF3 _ CC12CF3 + H20

& OH + CHFCICF3 _ CFCICF 3 + H20

OH + CH2CICF2C1 -_ CHClCF2Cl + H20

OH + CH2C1CF 3 _ CHClCF 3 + H20

* OH + CH3CFC12 _ CH2CFCI2 + H2 O

~l.0xl0"12 >4300 <6.0xi0-19 E48

8.0xi0-13 1250-2500 1.2xi0-14 2.0 E49

(SeeTable 2)

<1.4x10-17 E50

1.0x10-12 >4000 <1.0x10-18 ES0

(See Note) E51

1.4x10-12 900-2400 6.7x10-14 1.2 E52

2.6x10-12 350-_100 8.0x10-13 1.3 E53

3.0x10-12 5002500 5.0x10-13 3.0 E54

2.1x10-12 115OJ=200 4.4x10-14 1.2 E55

5.8x10-12 1100+_2_50 1.4x10-13 12 E56

4.3x10-12 1100+_200 1.1x10-13 12. E57

-l.0xl0"12 >2300 <5,0xi0-16 E58

-1.0x10"12 >3700 <5.0x10 -18 E59

-1.0xl: >3600 <6.0x10-18 2.0 E60

1.2xll, '; ii00_00 3.0xi0-14 1.2 E61

1.2x10-12 165Ok300 4.7x10-15 1.3 E62

3.0x10-12 125Ok200 4.5x10-14 1,2 E63

1.8x10-12 1550_150 1.0x10-14 1.1 E64

7.7x10-13 900_00 3.8x10-14 1.3 E65

6.6x10-13 _00 1.0x10-14 1.3 E66

3.6x10-12 160(>h400 1.7x10-14 2.0

5.2xi0-13 1100+_300 1.3xi0-14 1.3 E68

1.3x10-12 16002300 6.0xi0-15 1.3 E_
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Table 1. (Continued)

Reaction A.Factor a E/R+(AE/R) k(298 K) f(298)b Notes

* OH + CH3CF2Ci --*CH2CF2C1 + H20 1.4x10 "12 1800k_200 3.3x10-15 12. E70

# OH + CF3CF2CHC12 --* 1.5x10-12 12502200 2.3x10-14 1.3 E71

CF3CF2CC12 + H20

# OH + CF2C1CF2CHFCI --* 5.5x10-13 1250_00 8.3x10-15 1.3 E72

CF2C1CF2CFC1 + H20

# OH + CH3CF2CFC12 -_ 7.7x10-13 1700+_300 2.6x10-15 2.0 E73

CH2CF2CFC12 + H20

& OH + C2C14 _ products 9.4x10-12 1200_00 1.7x10-13 1.25 E74

& OH + C2HCI 3 -_ products 4.9x10-13 -(450.+.200) 2.2x10-12 1.25 E75

# OH + C1NO2 -* HOC1 + NO 2 3.5x10-14 3.0 E76

OH + C1ONO 2 --_ products 1.2x10-12 330+_200 3.9x10-13 1.5 E77

O + HCI -_ OH + Cl 1.0xl0-11 3300i350 1.5x10-16 2.0 E78

O + HOC1 -_ OH + ClO 1.0xl0-11 2200k1000 6.0x10-15 10.0 E79

O + C1ONO 2 -_ products 2.9x10-12 800_00 2.0x10-13 1.5 F_20

O + C]20 --, C10 + ClO 2.9x10-11 635k200 3.5x10-12 1.4 ES1

* OC10 + O -_ CIO + 0 2 2.5x10-12 950_300 1.0x10-13 2.0 E82

OCIO + oM_ C103 (See Table 2)

OC10 + 0 3 _ products 2.1x10-12 47002_1000 3.0x10-19 2.5 E83

OClO + OH --, HOCI + 02 4.5x10-13 -(800±200) 6.8x10-12 2.0 E84

OC10 + NO _ NO2 + ClO 2.5x10-12 600_300 3Ax10-13 2.0 E85

Cl202 + 03 --, products <l.0x10-19 E86

C1202 + NO -_ products <2.0x10-14 Eg7

& HCf + NO3 -_HNO3 + Cl <5.0xi0-17 E88

HC] + CIONO 2 _ products <I.0x10-20 E89

HCI + H02NO2 --*products <1.0x10-21 Eg0

H20 + CIONO2 -_products <2.0x10-21 E91
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Table 1, (Continued)

Reaction A.Factor a E/R±(AE/R) k(298 K) f(298)b Notes

& CF2C10 2 + NO --> CF2CIO + NO 2 3.1x10-12 -(500.+.200) 1.6x10-11 1.3 E92

& CFCI20 2 + NO --> CFCI20 + NO2 3.5x10-12 -(430+200) 1.5x10-11 1.3 E93

& CC1302 + NO --> CCI30 + NO2 5,7x10-12 -(330+_00) 1.7x10-11 1.3 E94

&

&

Br + O3 --*BrO + O2

Br + H202 --*HBr + HO 2

Br + H2CO --, I-IBr + HCO

Br+HO 2 -_HBr + 02

Br + N02 M BrNO2

Br + C120 _ BrC1 + C10

Br + OC10 --> BrO + ClO

Br + C120 2 -_ products

BrO+O-_Br +O 2

BrO + C10 -_ Br + OC10

Br +CIO0

_ BrCl +O2

BrO + NO _ NO2 + Br

BrO + NO2 M BrONO2

BrO + BrO --->2 Br + 0 2

-*Br2+O2

BrO + O3 _Br + 202

BrO + HO2 -_ products

BrO + OH _ products

OH + Br2 --* HOBr + Br

BrOx Reactions

1.7x 10"11 800+_200

1.0xl0-11 >3000

1.7x10-11 800±200

1.Sx10 "11 600±600

(See Table 2)

2.0x10-11 50Ok300

2.6x10-11 1300+_300

3.0x10-11 0+_250

1.6x10-12 -(430:L200)

2.9x10-12 -(220._200)

5.8x10-13 -(170+_200)

8.8x10-12 -(260±130)

(See Table 2)

1.4x10-12 -(150+150)

6.0x10-14 -(600-}-600)

_l.OxlO-12 >1600

6.2x10-12 -(500±500)

4.2x10-11 0±600

1.2x10 "12 1.2 F 1

<5.0x10-16 F2

1.1x10-12 1.3 F3

2.0x10-12 2.0' F4

3.8x10-12 2.0 F5

3.4x10-13 2.0 F6

3.0x10-12 2.0 F7

3.0x10-11 3.0 F8

6.8x10-12 1.25 F9

6.1x10-12 1.25 F9

1.0x10-12 1.25 F9

2.1x10-11 1.15 F10

2.3x10-12 1.25 Fll

4.4x10-13 1.25 Fll

<5.0x10-15 F12

3,3x10-11 3.0 F13

1.0xl0-11 5.0 F14

4.2x10-11 1.3 F15
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Reaction

Table 1. (Continued)

A.Factor a E/R±(AE/R) k(298 K) t_298)b No_s

OH + HBr _ H20 + Br 1.1xl0-11 0_50 1.1xl0-11

* OH + CH3Br -_ CH2Br + H20 3.6x10-12 1430!150 3.0x10-14

# OH + CHF2Br --* CF2Br + H2 O 7.4x10-13 1300/500 9.4x10-15

& OH + CF2Br 2 --*products <5.0x10 "16

& OH + CF2C1Br --_products <l.5x10 "16

& OH + CF3Br _ products <1.2x10 "16

& OH + CF2BrCF2Br _ products <l.5x10 "16

O + HBr -_ OH + Br 5.8x10-12 1500+_200 3.8x10-14

& NO3 + Br--* BrO + NO 2 1-6x10 "11

& NO3 + BrO --_ products - 1.0xl0 "12

& NO 3 + HBr-_ HNO 3 + Br <l.0xl0 "16

F+O3-_FO+O 2

F+H2_HF+H

F + CH4-_HF +all3

F + H20 _ HF + OH

 ÷o2 Fo2

F + NO _ FNO

F +N(>2 M FNO2(FONO)

F + HNO 3 -_HF + NO 3

NO + FO -_NO2 +F

FO +FO-_2F+ O2

FO+O3-_F+ 202

-_ FO2 + 02

ReactioDs

2.8x10-11 230+_200 1.3x10-11

1Axl0-10 500+_200 2.6x10-11

3.0x10-10 400_300 8.0x10-11

1.4x10-11 0+_200 1.4x10-11

(See Table 2)

(See Table 2)

(See Table 2)

6.0x10-12 -(400i200) 2.3x10 oll

2.6x10-11 0+_250 2.6x10-11

1.5x10-11 0+_250 1.5x10-11

(See Note)

(See Note)

1.2

1.1

3.0

1.3

2.0

3.0

2.0

1.2

1.5

1.3

1.3

2.0

3.0

F16

F17

F18

F19

F20

F21

F22

F23

F2A

P25

F26

G1

G2

G3

G4

G5

G6

G7

G8

G8
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Table 1. (Continued)

N

Reaction A.Factora E/R±(AE/R) k(298 K) f(298)b No_s

FO+No2 MFONO2

O+FO_F+O 2

O + FO2-_FO+ O2

OH + CHF 3 -_ CF3 + H20

* OH + CH2F2 -_ CHF2 + H20

OH + CH3 F _ CH2 F + H20

* OH + CHF2CF 3 _ CF2CF 3 + H20

OH + CHF2CHF 2 _ CF2CHF2+ H20

& OH + CH2FCF 3 _ CHFCF3 + H2 O

OH + CH2FCHF 2 --*products

* OH + CH3CF3 _ CH2CF3 + H20

OH + CH2FCH2F --* CHFCH2F + H20

& OH + CH3CHF2 -_ products

OH + CH3CH2 F --* products

CF30 2 + NO _ CF30 + NO 2

OH + H2S -* SH + H20

& OH + OCS _ products

& OH + CS 2 _ products

OH + SO2 M HOSO2

O + H2S _ OH + SH

O+ OCS _CO+ SO

0+CS2 -,CS +SO

# 0 3 + H2S _ products

(See Table 2)

5,0x10-11 0+_250 5.0x10-11

5,0x10" 11 0+_250 5.0x10-11

1,5x10-12 2650_00 2.1x10-16

1,9x10-12 1550_00 1.0x10-14

5,4x10-12 170_300 1.8x10-14

5,6x10-13 1700+_300 1.9x10-15

8,7x10-13 1500J_500 5.7x10-15

1.7x10 "12 1750_300 4.8x10-15

2.8x10"12 1500_00 1.8x10 "14

1.6x10-12 21_00 1.4x10-15

1,7x10 "11 1500_00 1.1xl 0-13

1.5x10 "12 110(_200 3.7x10-14

1.3x10 -11 1200_00 2,3x10-13

3.9x10-12 -(400__200) 1.Sx10-11

SOx Reaction_

6.0x10-12 75_75 4.7x10-12

l.lxlO-13 1200_00 1.9xi0-15

(See Note)

(See Table 2)

9.2x10-12 1800_50 2.2x10-14

2.1x10-11 22002150 1.3x10-14

3.2x10-11 6502150 3.6x10-12

<2.0x10 "20

3.0

5.0

1.5

1.3

1.2

1.3

2.0

1.3

2.0

1.3

2.0

1.2

2.0

1.3

1.2

2.0

1.7

1.2

1.2

G9

G10

Gll

G12

G13

G14

GI5

G16

G17

G18

G19

G20

G21

G22

H1

H2

H3

H4

H5

H6

H7
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Reaction

Table1. (Continued)

A.Factora E/R±(AE/R) k(298 K) f(298_ Norm

8+O2-*SO+O

S+O3_SO+O2

S+OH-_SO+H

SO +O2-,SO2+O

SO +03-_SO2+02

SO + OH-*SO2 +H

SO + NO2-* SO2 + NO

SO + CIO-_S02 + Cl

SO + OClO _ SO2 + ClO

SO + BrO _S02 + Br

SO2 +HO2 _ products

SO 2 + CH30 2 --,products

SO 2 + NO 2 _ products

SO2 + NO3 --*products

SO2 + O3-,SO3 +02

SO3 + H20 --_H2S04

SO 3 + NO 2 --* products

SO3 + NH 3 --, products

Cl + H2S --* HCI + SH

Cl+ OCS --,SCI + CO

C1+ CS2 -*products

Cl + CH3SH -_ CH3S + HCf

CIO + OCS _ products

CIO + SO2-,CI + SO3

2.3x10-12 02200)

2.6xi0-13 24002500

3.6xi0-12 1100+_200

1.4x10-11 02_

2.8x10-11 0250

3.0x10-12 >7000

5.7xi0-II 0150

2.3x10 "12

1.2x10 -11

6.6x10 -11

8.4x10 -17

9.0x10 "14

8.6x10 -11

1.4x10 "11

2.8x10 -11

1.9x10 -12

5.7x10 -11

<l.0xl0 -18

<5.0x10 -17

<2.0x10 -26

<7.0x10 -21

<2.0x10 -22

<6.0x10 -15

1.0xl0 -19

6.9x10 -11

5.7x10 -11

<l.0xl0 -16

<4.0x10 -15

1.4x10 -10

<2.0x10 -16

<4.0x10 -18

1.2

2.0

3.0

2.0

1.2

2.0

12.

1.3

3.0

1.4

10.0

3.0

1.3

1.4

H8

1-19

HI0

HI1

HI2

HI3

HI4

H15

HI6

HI7

HI8

HI9

H20

H21

H22

H23

H24

H25

H26

H27

H28

H29

H30

H30

3O



Table 1. (Continued)

Reaction A_Factor a E/R+(AE/R) k(298 K) f(298)b Notes

SH + H202 _ products

SH+O_H+SO

SH + O2-_OH + SO

& SH + 03 -_ HSO + 0 2 9.0x10-12 280+__200

SH + NO M HSNO (See Table 2)

& SH + NO 2 --*HSO + NO 2.9x10-11 -(240+100)

# SH + F2__,FSH + F 4.3x10-11 13_i200

# SH + Cl2 _ CISH + C1 1.7x10-11 690_200

# SH + Br 2--, BrSH + Br 6.0x10-11 -(160±160)

# SH + BrCI --, products 2.3x10-11 -(350.+_200)

& HSO + 02 _ products

* HSO + O3 --*products

HSO + NO _ products

HSO + NO2 -_ HS02 + NO

HSO2 + 02-_ HO2 + SO2

HOSO2 + O2 _ HO2 + SO3 1.3x10-12 330+_200

CS+ 02 _OCS +O

CS + O3-_OCS + 02

CS + NO 2 --,OCS + NO

& OH + CH3SH--_ products 9.9xi0-12 -(360+100)

& OH + CH3SCH3 _ H20 + CH2SCH3 1.1xl0-11 240_100

& OH + CH3SSCH3 -*products 5.7x10-11 -(380±300)

NO3+ H2S _ products

NO3 + O(_ -_ products

<5.0x10-15 H31

1.6x10-10 5.0 H32

<4.0x10-19 H33

3.5x10-12 1.3 H34

6.5x10-11 1.3 H35

4.0x10-13 2.0 H36

1.7x10-12 2.0 H36

1.0xl0-10 2.0 H36

7.4x10-11 2.0 H36

<2.0x10-17 H37

1.0x10-13 1.3 H38

<l.0x10-15 H39

9.6x10-12 2.0 H39

3.0x10-13 3.0 H40

4.4x10-13 1.2 H41

2.9xi0-19 2.0 H42

3.0x10-16 3.0 H43

7.6x10-17 3.0 H43

3.3x10-11 1.2 H44

4.9x10-12 1.2 H45

2.0x10-10 1.3 H46

<8.0x10-16 H47

<l.0xl0 "16 H48
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Reaction

Table 1. (Continued)

A.Factora E/R+(AE/R) ki298K) t_298)b No_s

N03 + {282_ products

& NO3 + CH3SH _ products

& NO3 + CH3SCH3-* products

NO3 + CH3SSCH3 -_ products

# N205 + CH3SCH3 -* products

CTI3S + O 2 --_products

* CH3S + 03 -_ products

# CH3S + NO -_ products

& CH3S + N02 --, CH3SO + NO

* CH3SO + 03 -_ products

& CH3SO + NO 2 --, CH3SO 2 + NO

# CI-I3SS + 03 --_ products

# CH3SS + NO2 -_ products

# CH3SSO + NO 2 _ products

Na + 0 2 _ NaO2

Na + 03 _ NaO + 02

_ Na02+O

Na + N20 _ NaO + N2

Na + Cl 2 --* NaC] + C1

NaO+O --_ Na + 02

N_O+02 M N_O_

NaO + 03 -_ NaO2 + 02

-_Na+202

4.4x10-13 -(210_+_210)

1.9x10-13 -(500_L200)

1.3x10-12 270_x270

Metal ]_eaction_

(See Table 2)

7.3x10 -10

2.8x10 -10

7.3x10 -10

3.7x10 "10

(See Table 2)

1.6x10 "10

6.0x10-11

O+__2O9

1600_400

O+__200

0_400

0_400

O+_8OO

<4.0x10 -16

8.9x10 "13

1.0xl0 12

5.3x10 "13

<l.0xl0 -17

<3.0x10 -18

5.4x10 -12

<l.0xl0 "13

5.6x10 -11

6.0x10 "13

1.2x10 -11

4.6x10 -13

1.8x10 -11

4.5x10 -12

7.3x10 -10

<4.0x10 -11

1.3x10 "12

7.3x10 "10

3.7x10 "10

1.6x10-10

6.0x10-11

1.25

1.2

1.4

1.3

1.3

1.5

1.4

2.0

2.0

2.0

1.2

1.2

1.3

3.0

2.0

3.0

H49

HS0

H51

H52

H53

H54

H55

H56

H57

H58

H59

H60

H61

H61

J1

J1

J2

J3

J4

J5

J5
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Table 1. (Continued)

Reaction A.Factor a E/R+(AE/R) k(298 K) f(298)b Notes

NaO + H2 --* NaOH ÷ H

NaO + H20 _ NaOH + OH

NaO + NO _ Na + NO 2

NaO + O-A)2 M NaCO 3

NaO + HC1 -_ products

NaO'2 + NO-_ NaO + NO 2

NaO2 + HG-'l_ products

NaOH + HCl _ NaCl + H20

NaOH + CO 2 M NaHCO3

2.6x10-11 0-2600

2.2x10-10 OA:400

1.5x10-10 0-J:400

(See Table 2)

2.8x10-10 0_=400

2.3x10-10 Ot-400

2.8x10-10 0_400

(See Table 2)

2.6x10-11 2.0 J6

2.2x10-10 2.0 J7

1.Sx10-10 4.0 J8

2.8x10-10 3.0 J9

<10-14 J10

2.3x10-10 3.0 Jll

2.8x10-10 3.0 J12

a Units are cm3/molecule-sec.

b f(298) is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the

expression:

Note that the exponent is absolute value.

& Indicates a change in the Note.

* Indicates a change from the previous Panel evaluation (JPL 90-1).

# Indicates a new entry that was not in the previous evaluation.
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A1.

A2,

A3.

A4.

A5.

A6.

A7.

A8.

NOTES TO TABI_ 1

O + 0 3. The recommended rate expression is from Wine et al. (1983) and is a linear least squares fit of
all data (unweighted) from Davis et al. (1973b), McCrumb and Kaufman (1972), West et al. (1978),
Arnold and Comes (1979), and Wine et al. (1983).

O(1D) Reactions. These recommendations are based on averages of the absolute rate constant

measurements reported by Streit et al. (1976), Davidson et al. (1977) and Davidsen et al. (1978) for N2 O,

H20, CH4, H2, N2, 02, 03, CC14, CFC13, CF2C12, NH3, and CO2; by Amimoto et al. (1978), Amimoto et
al. (1979), and Force and Wiesenfeld (1981a,b) for N20, H20, CH4, N2, H2, 02, O3, C02, CC14, CFCI3,

CF2C12, and CF4; by Wine and Ravishankara (1981, 1982, 1983) for N2 O, H2 O, N2, H2, 03, CO2, and

CF20; by Brock and Watson (private communication, 1980) for N2, 02 and CO2; by Lee and Slanger

(1978 and 1979) for H2 O and 02; by Gericke and Comes (1981) for H2; and by Shi and Barker (1990) for

N 2 and CO2. The weight of the evidence from these studies indicates that the results of Heidner and
Husain (1973), Heidner et al. (1973) and Fletcher and Husain (1976a, 1976b) contain a systematic error.
For the critical atmospheric reactants, such as N2 O, H2 O, and CH4, the recommended absolute rate

constants are in good agreement with the previous relative measurements when compared with N2 as

the reference reactant. A similar comparison with 0 2 as the reference reactant gives somewhat poorer

agreement.

O(1D) + N20. The branching ratio for the reaction of O(1D) with N20 to give N2 + 02 or NO + NO is an

average of the values reported by Davidson et al. (1979); Volltrauer et al. (1979); Marx et al. (1979) and
Lain et al. (1981), with a spread in k(NO + NO)/k(TOTAL) = 0.52 - 0.62. The recommended branching
ratio agrees well with earlier measurements of the quantum yield from N20 photolysis (Calvert and

Pitts 1966b). The O(1D) translational energy and temperature dependence effects are not clearly

resolved. Wine and Ravishankara (1982) have determined that the yield of O(3p) from O(1D) + N20 is

<4.0%. The uncertainty for this reaction includes factors for both the overall rate coefficient and the
branching ratio. A direct measurement by Greenblatt and Ravishankara (1990) of the NO yield from

the O(1D) + N20 reaction in the presence of airlike mixtures agrees very well with the value predicted

using the recommended O(1D) rate constants for N2, O2, and N20 and the O(1D) + N20 product

branching ratio. These authors suggest that their results support the recommendations and reduce the
uncertainty in the collected rate parameters by over a factor of two.

O(1D) + H20. Measurements of the 02 + H2 product yield were made by Zellner et al. (1980) ( 1 + 0.5

or -1)% and by Glinski and Birks (1985) (0.6 + 0.7 or -0.6)%. Wine and Ravishankara (1982) have

determined that the yield of O{3p) from O(1D) + H20 is <(4.9±3.2)%.

O(1D) + CH 4. The branching ratio for the reaction of O(1D) with CH4 to give OH + CH3 or CH20 + H2 is

from Lin and DeMore (1973). A molecular beam study by Casavecchia et al. (1980) indicates that an
additional path forming CH30 (or CH2OH) + H may be important. This possibility requires further

investigation. Wine and Ravishankara (1982) have determined that the yield of O(3p) from O(1D) +

CH4 is <4.3%.

O(1D) + H2. Wine and Ravishankara (1982) have determined the yield of O(3p) is <4.9%. The major

products are H + OH.

O(1D) + 03. The branching ratio for reaction of O(1D) with O 3 to give 0 2 + 0 2 or 0 2 + O + O is from

Davenport et al. (1972). This is supported by measurements of Amimoto eta]. (1978) who reported that

on average one ground state O is produced per O(1D) reaction with O 3. It seems unlikely that this could

result from 100% quenching of the O(1D) by O 3.

O(1D) + HCl. The recommendation is the average of measurements by Davidson et al. (1977) and

Wine et al. (1986). Product studies by the latter indicate: O(3p) + HC1(9±5)%; H + C10(24_5)%; and OH
+ C1(67+10)%.
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Ag.

A10.

Ali.

AI2.

AI3.

A14.

A15.

AI6.

AI7.

A18.

O(1D) + HF. Rate coefficient and product yield measured by Wine et al. (1984, private

communication). The O(3p) yield is less than 4%.

O(1D) + HBr. Rate coefficient and products measured by Wine et al. (1986). Product yields: HBr +

O(3p) (20+7)%, H + BrO <4.5%, and OH + Br (80+12)%.

O(1D) ÷ C] 2. Rate coefficient and O(3p) product measured by Wine eta]. (1985a). Product yields: Cl 2 +

O(3p) (25+10)%. The balance is probably ClO + Cl. An earlier indirect study by Fveudenstein and

Biedenkapp (1976) is in reasonable agreement on the yield of C10.

O(1D) + halocarbons. The halocarbon rate constants are for the total disappearance of O(1D) and

probably include physical quenching. Products of the reactive channels may include CX30 + X, CX2 O +

X2, and CX 3 + XO, where X = H, F, or Cl in various combinations. Chlorine and hydrogen are more

easily displaced than fluorine from halocarbons. Some values have been reported for the fractions of

the total rate of disappearance of O(1D) proceeding through physical quenching and reactive channels.

For CC14: quenching = (14+6)% and reaction = (86+6)%, (Force and Wiesenfeld, 1981a); for CFCI3:

quenching = (25±10)%, ClO formation = (60±15)% (Donovan, private communication, 1980); for CF2Ci2:

quenching = (14±7)% and reaction = (86±14)% (Force and Wiesenfeld, 1981a), quenching = (20_10)%,

C10 formation = (55±15)% (Donovan, private communication, 1980).

O(1D) + CF4. (CFC-14) The recommendation is based upon the measurement by Ravishankara et al.

(1992) who report 92±8% physical quenching. Force and Wiesenfeld (1981a) measured a quenching

rate coefficient about 10 times larger. Shi and Barker (1990) report an upper limit that is consistent with

the recommendation. The small rate coefficient for this reaction makes it vulnerable to interference

from reactant impurities. For this reason the recommendation should probably be considered an upper

limit.

O(1D) + CC120 , CFCIO and CF20. For the reactions of O(1D) _th CCI20 and CFC10 the recommended

rate constants are derived from data of Fletcher and Husain (1978). For consistency, the recommended

values for these rate constants were derived using a scaling factor (0.5) which corrects for the

difference between rate constants from the Husain Laboratory and the recommendations for other

O(1D) rate constants in this table. The recommendation for CF20 is from the data of Wine and

Ravishankara (1983). Their result is preferred over the value of Fletcher and Husain (1978) because it

appears to follow the pattern of decreased reactivity with increased fluorine substitution observed for

other halocarbons. These reactions have been studied only at 298 K. Based on consideration of similar

O(1D) reactions, it is assumed that E/R equals zero, and therefore the value shown for the A-factor has

been set equal to k(298 K).

O(1D) + NH3. Sanders et al. (1980a) have detected the products NH(alA) and OH formed in the

reaction. They report the yield of NH(alA) is in the range 3-15% of the amount of OH detected.

O(1D) + CHFC12 (HCFC-21). The recommendation is based upon the measurement by Davison et al.

(1978) of the total rate coefficient (physical quenching and reaction).

O(1D) + CHF2Cl (HCFC-22). The recommendation is based upon the measurements by Davidson et al.

(1978) and Warren eta]. (1991) of the total rate coefficient. A measurement of the rate of reaction

(halocarbon removal) relative to the rate of reaction with N20 by Green and Wayne (1976/77a) agrees

very well with this value when the O(1D) + N20 recommendation is used to obtain an absolute value. A

relative measurement by Atkinson et al. (1976) gives a rate coefficient about a factor of two higher.

Addison et al. (1979) reported the following product yields: C10 55±10%, CF 2 45±10%, O(3p) 28 +10 or

-15%, and OH 5%, where the O(3p) comes from a branch yielding CF 2 and HCI. Warren eta]. (1991)

also report a yield of O(3p) of 28±6%, which they interpret as the product of physical quenching.

O(1D) + CHF3. (HFC-23) The recommendation is based upon the measurement of Force and

Wiesenfe]d (1981a) who also reported that the rate coefficient is partitioned between physical quenching
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A19.

A20.

A21.

A22.

A23.

A24.

A25.

A26.

A27.

A28.

A_°

(77%) and reactive loss of CHF 3 (23%). The recommendation has a large error limit because it seems

inconsistent with the recommended value for the analogous compound CHF2CF 3.

O(ID) + CH2F 2. (HFC-32) The recommendation is based upon the relativerate measurement of Green

and Wayne (1976/77a) who measured the loss of CH2F 2 relative to the loss of N20. The

recommendation for N20 is used to obtain an estimated rate coefficientfor reactive loss of CH2F2,

4.6x10 "11. This has been increased by a factor of two to obtain the recommendation based on the

assumption that physical quenching will account for about 50% of the total O(1D) loss. This estimate is

made by analogy to the data for CHF 3 and CH3F from Force and Wiesenfeid (1981a).

O(ID) + CH3F. (HFC-41) The recommendation is based upon the measurement of Force and

Wiesenfeld (1981a) who also reported that the rate coefficientis partitioned between physical quenching

(25%) and reactive loss of CH3F (75%).

O(ID) + CHCI2CF 3. (HCFC-123) The recommendation is based upon measurements by Warren et al.

(1991). The relative rate measurement of Green and Wayne (1976/77a) who measured the loss of

CHCI2CF 3 relative to the loss of N20 agrees well with the recommendation when the recommendation

for N20 is used. Warren et al.report 21±8% physical quenching,

O(1D) + CHC1FCF3. (HCFC-124) The recommendation is based upon the measurement of Warren et

el. (1991) who report 31±10% physical quenching.

O(ID) + CHF2CF 3. (HFC-125) The recommendation is based upon the measurement of Warren et al.

(1991) who report 85+15/-22% physicel quenching. Green and Wayne (1976/77a) measured the loss of

CHF2CF 3 relative to the loss of N20 and report a loss corresponding to about 40% of the recommended

rate coefficient.This reaction is much faster than one would predict by analogy to similar compounds,

such as CH2FCF3.

O(ID) + CH2CICF2CI. (HCFC-132b) The recommendation isbased upon the relative rate measurement

of Green and Wayne (1976/77a) who measured the loss of CH2CICF2CI relative to the lossof N20. The

recommendation for N20 is used to obtain the value given. It is assumed that there is no physical

quenching.

O(1D) + CH2CICF 3. (HCFC-133a) The recommendation is based upon the measurement of Warren et

al. (1991) who report 20_5% physical quenching. This agrees with Green and Wayne (1976/77a) who

measured the loss of CH2CICF3 relativeto the loss ofN20, when the recommendation for N20 is used.

O(1D) + CH2FCF 3. (HFC-134a) The recommendation is based on the measurement of Warren eta].

(1991) who report 94+6/-10% physical quenching. The predominance of physical quenching is

surprising, considering the presence of C-H bonds which are usually reactive to O(1D).

O(ID) + CH3CFCI 2. (HCFC-141b) The recommendation is based upon the measurement of Warren et

el.(1991) who report 31±5% physical quenching.

O(ID) + CH3CF2CI. (HCFC-142b) The recommendation isbased upon the measurement of Warren et

al. (1991) who report 26±5% physical quenching. This agrees very well with Green and Wayne

(1976/77a) who measured the lossof CH3CF2CI relativeto the lossof N20 ,when the recommendation for

N20 is used.

O(1D) + CH3CF 3. (HFC-143a) The recommendation is based upon the relative rate measurement of

Green and Wayne (1976/77a) who measured the loss of CH3CF 3 relative to the loss of N20. The

recommendation for N20 is used to obtain the value given. It is assumed that there is no physical

quenching, although the reported physical quenching by CH2FCF 3 and CH3CHF2 suggests possible

quenching.
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O(1D) + CH3CHF 2. (HFC-152a) The recommendation is based on the measurements of Warren et al.

(1991) who report 54+7% physical quenching.

O(1D) + C2F 6. (CFC-116) The recommendation is based on a measurement by Ravishankara et al.

(1992) who report 85+15% physical quenching. The small rate coefficient for this reaction makes it

vulnerable to interference from reactant impurities. For this reason the recommendation should

probably be considered an upper limit.

O(1D) + SF 6. The recommendation is based upon measurements by Ravishankara et al. (1992) who

report 32±10% physical quenching. The small rate coefficient for this reaction makes it vulnerable to

interference from reactant impurities. For this reason the recommendation should probably be

considered an upper limit.

O(1D) + CF3Cl. (CFC-13) New Entry. The recommendation is based on the measurement by

Ravishankara et al. (1992) who report 31+10% physical quenching.

O(1D) + CF2CICFC12. (CFC-113) New Entry. The recommendation is an estimate based on analogy to

similar compounds.

O(1D) + CF3CCI 3. (CFC-113a) New Entry. The recommendation is an estimate based on analogy to

similar compounds.

O(1D) + CF2CICF2CI. (CFC-114) New Entry. The recommendation is based on the measurement by

Ravishankara et al. (1992) who report 25±9% physical quenching.

O(1D) + CF3CFCI 2. (CFC-114a) New Entry. The recommendation is an estimate based on analogy to

similar compounds.

O(1D) + CF3CF2C1. (CFC-115) New Entry. The recommendation is based on the measurement by

Ravishankara et al. (1992) who report 70+7% physical quenching.

O(1D) + c-C4F8. New Entry. The recommendation for perfluorocyclobutane is based upon the

measurement by Ravishankara et al. (1992) who report 100+0/-15% physical quenching. The small

rate coefficient for this reaction makes it vulnerable to interference from reactant impurities. For this

reason the recommendation should probably be considered an upper limit.

O(1D) + 02. The deactivation of O(1D) by 02 leads to the production of O2(1Y) with an efficiency of

80±20%: Noxon (1970), Biedenkapp and Bair (1970), Snelling (1974), and I._e and Slanger (1978). The

O2(1Z) is produced in the v=0, 1, and 2 vibrational levels in the amounts 60%, 40%, and <3%, Gauthier

and Snelling (1974) and Lee and Slanger (1978).

O2(1A) + O. New Entry. The recommendation is based on the upper limit reported by Clark and

Wayne (1969b).

O2(1A) + 02. New Entry. The recommendation is the average of eight room temperature

measurements: Steer et al. (1969), Findlay and Snelling (1971b), Borrell et al. (1977), Leiss et al. (1978),

Tachibana and Phelps (1981), Billington and Borrell (1986), Raja et al. (1986), and Wildt et al. (1988).

The temperature dependence is derived from the data of Findlay and Shelling and Billington and

Borrell. Several other less direct measurements of the rate coefficientagree with the recommendation

including Clark and Wayne (1969a), Findlay et al. (1969), and McLaren et al. (1981). Wildt et al.

(1989) report observations of weak emissions in the near IR due to collisioninduced radiation.

O2(IA) + 03. New Entry. The recommendation is the average of the room temperature measurements

of Clark et al. (1970), Findlay and Shelling (1971a), Becker et al. (1972), and Collins eta]. (1973).

Several less direct measurements agree well with the recommendation, (McNeal and Cook (1967),

Wayne and Pitts (1969), and Arnold and Comes (1980)). The temperature dependence is from Findlay
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and Snelling and Becker et al. who agree very well, although both covered a relatively small

temperature range. An earlier study by Clark et al. covered a much larger range, and found a much

smaller temperature coefficient. The reason for this discrepancy is not clear. The yield of O + 20 2

products appears to be close to unity, based on many studies of the quantum yield ofO 3 destruction near

the peak of the Hartley band. For example, measurements of the number of O3 molecules destroyed per

photon absorbed: Von Ellenrieder et al. (1971), Lissi and Heicklen (1972/73), and references cited

therein and measurements of 0 3 loss and O atom temporal profiles in pulsed experiments Klais et al.

(1980b) and Arnold and Comes (1980).

O2(1A) + H20. New Entry. The recommendation is the average of the measurements reported by

Becker et al. (1971) and Findlay and Shelling (1971b). An earlier study by Clark and Wayne (1969a)

reported a value about three times larger.

O2(1A) + N. New Entry. The recommendation is an upper limit based upon the measurement reported

by Westenberg et al. (1970b) who used ESR to detect O2CX3y and alA), O(3p) and N(4S) with a discharge

flow reactor. They used an excess of O2(1A) and measured the decay of N and the appearance of O at 195

and 300 K_ They observed that the reaction of N with O2(1A) is somewhat slower than its reaction of

O2(3Y). The recommended rate constant value for the latter provides the basis for the recommendation.

Clark and Wayne (1969b, 1970) and Schmidt and Schiff (1973) reported observations of an O2(1A)

reaction with N that is about 30 times faster than the recommended limit. Schmidt and Schiff attribute

the observed loss of O2(1A) in excess N to a rapid energy exchange with some constituent in discharged

nitrogen, other than N.

O2(IA) + N 2. New Entry. The recommendation is based upon the measurements by Findlay et al.

(1969) and Becker et al. (1971). Other studies obtained higher values for an upper limit: Clark and

Wayne (1969a) and Steer et al.(1969).

O2(Ih) + CO 2. New Entry. The recommendation is based on the measurements reported by Findlay

and Snelling (1971b) and Leiss et al. (1978). Upper limit rate coefficientsreported by Becker et al.

(1971), McLauren eta]. (1981), and Singh et al.(1985) are consistent with the recommendation.

O2(IY) + O. New Entry. The recommendation is based on the measurement reported by Slanger and

Black (1979).

O2(1Y) + 0 2. New Entry. The recommendation is the average of values reported by Martin et a].

(1976), Lawton et al. (1977), and Lawton and Phelps (1978) who are in excellent agreement.
Measurements by Thomas and Thrush (1975), Chatha et al. (1979), and Knickelbein et al. (1987) are in

reasonable agreement with the recommendation. Knickelbein et al. report an approximate unit yield

of O2(1A) product.

O2(1Y) + 0 3. New Entry. The recommendation is based upon the room temperature measurements of

Gilpin et al. (1971), Slanger and Black (1979), Choo and Leu (1985b), and Shi and Barker (1990).

Measurements by Shelling (1974), Amimoto and Wiesenfeld (1980), Ogren et al. (1982), and

Turnipseed et al. (1991b) are in very good agreement with the recommendation. The temperature

dependence is derived from the results of Choo and Leu. The yield of O + 202 products isreported to be

70_20% by Slanger and Black and Amimoto and Wiesenfeld.

O2(I_) + H20. New Entry. The recommendation is the average of room temperature measurements

reported by Stuhl and Niki (1970), Filssth et al.(1970), Wildt et al.(1988), and Shi and Barker (1990).

These data cover a range of about a factor of two. Measurements reported by O'Brien and Myers (1970),

Derwent and Thrush (1971), and Thomas and Thrush (1975) are in good agreement with the

recommendation. Wildt et al.(1988) report that the yield of O2(1A) > 90%.

O2(IY) + N. New Entry. The recommendation is based on the limit reported by Slanger and Black

(1979).
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O2(I_) + N 2. New Entry. The recommendation is the average of measurements reported by Izod and

Wayne (1968), Stuhl and Welge (1969), Filseth et al.(1970), Martin et al. (1976), Kohse-H_inghaus and

Stuhl (1980), Choo and Leu (1985b), Wildt et al. (1988), and Shi and Barker (1990). Less direct

measurements reported by Noxon (1970), Myers and O'Brien (1970), and Chatha et al. (1979) are

consistent with the recommendation. Kohse-Hoinghaus and Stuhl observed no significant temperature

dependence over the range 203-349 K.

O2(I_) +CO 2. New Entry. The recommendation is the average of measurements reported by Filseth et

al. (1970), Davidson et al. (1972/73), Avilds et al. (1980), Muller and Houston (1981), Choo and Leu

(1985b), Wildt et al. (1988), and Shi and Barker (1990) at room temperature. The temperature

dependence is from the work of Choo and Leu. Muller and Houston and Singh and Setser (1985) give

evidence that O2(1A) is a product. Wildt et al.report that the yieldof O,2(1A)> 90%.

H + 03. The recommendation is an average of the results of Lee et ai. (1978b) and Keyser (1979), which

are in excellent agreement over the 200-400 K range. An earlier study by Clyne and Monkhouse (1977)

is in very good agreement on the T dependence in the range 300-560 K but lies about 60% below the
recommended values. Although we have no reason not to believe the Clyne and Monkhouse values, we

prefer the two studies that are in excellent agreement, especially since they were carried out over the T
range of interest. Recent results by Finlayson-Pitts and Kleindienst (1979) agree well with .the present

recommendations. Reports of a channel forming HO 2 + O (Finlayson-Pitts and Kleindienst, 1979:

-25%, and Force and Wiesenfeld, 1981b: -40%) have been contradicted by other studies (Howard and

Finlayson-Pitts, 1980: <3%; Washida et al., 1980a: <6%; Finlayson-Pitts et al., 1981: <2%); and

Dodonov et al., 1985: <0.3%). Secondary chemistry is believed to be responsible for the observed O-

atoms in this system. Washida et al. (1980c) measured a low limit (<0.1%) for the production of singlet

molecular oxygen in the reaction H + 0 3.

H + HO2. There are five studies of this reaction: Hack et al. (1978), Hack et al. (1979c), Thrush and

Wilkinson (1981b), Sridharan et al. (1982) and Keyser (1986). Related early work and combustion

studies are referenced in the Sridharan et al. paper. All five studies used discharge flow systems. It is
difficult to obtain a direct measurement of the rate constant for this reaction because both reactants are

radicals and the products OH and O are very reactive toward the HO 2 reactant. The recommendation

is based on the data of Sridharan et al. and Keyser because their measurements were the most direct

and required the fewest corrections. The other measurements, (5.0-_1.3) x 10 "11 cm 3 molecule "1 s "1 by

Thrush and Wilkinson (1981b) and (4.65+1) x 10 "11 by Hack et al. (1979c) are in reasonable agreement

with the recommended value. Three of the studies reported the product channels: (a) 2OH, (b) H20 + O,

and (c) H2 + 02. Hack et al. (1978) ka/k = 0.69, kb/k < 0.02, and kc/k = 0.29; Sridharan et al. (1982)

ka/k = 0.87±0.04, kb/k = 0.02+0.02, kc/k = 0.09±.045; and Keyser (1986) ka/k = 0.90±0.04, kb/k =

0.02_=0.02, and kc/k ffi 0.08±0.04. Hislop and Wayne (1977), Keyser eta]. (1985), and Michelangeli et a].

(1988) reported on the yield ofO 2 (blD formed in channel (c) as (2.8±1.3) x 10 "4, <8 x 10 -3, and <2.1 x

I0 "2 respectively of the total reactions. Keyser found the rate coefficient and product yields to be

independent oftemperature for 245 < T < 300 K.

O + OH. The rate constant for O + OH isa fitto three temperature dependence studies: Westenberg et

al. (1970a), Lewis and Watson (1980), Howard and Smith (1981). This recommendation is consistent

with earlier work near room temperature as reviewed by Lewis and Watson (1980) and with the recent

measurements of Brune et al. (1983). The ratio k(O + HO2)/k(O + OH) measured by Keyser (1983)

agrees with the rate constants recommended here.

O + HO 2. The recommendation for the O + HO 2 reaction rate constant is the average of five studies at

room temperature (Keyser, 1982, Sridharan et al., 1982, Ravishankara et al., 1983b, Brune et al., 1983

and Nicovich and Wine, 1987) fitted to the temperature dependence given by Keyser (1982) and

Nicovich and Wine (1987). Earlier studies by Hack et al. (1979a) and Burrows et al. (1977, 1979) are not

considered, because the OH + H20 2 reaction was important in these studies and the value used for its

rate constant in their analyses has been shown to be in error. Data from Lii eta]. (1980c) are not used,

because they are based on only four experiments and involve a curve fitting procedure that appears to be

insensitive to the desired rate constant. Data from Ravishankara et al. (1983b) at 298 K show no
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dependence on pressure between 10 and 500 torr N 2. The ratio k(O + HO2)/k(O + OH) measured by

Keyser (1983) agrees with the rate constants recommended here. Sridharan et al. (1985) showed that the

reaction products correspond to abstraction of an oxygen atom from HO 2 by the O reactant. Keyser et al.

(1985) reported <1% 0 2 (bly_) yield.

O + H20 2. There are two direct studies of the O + H20 2 reaction: Davis et al. (1974c) and Wine et ai.

(1983). The recommended value is a fit to the combined data. Wine et al. suggest that the earlier

measurements may be too high because of secondary chemistry. The A-factor for both data sets is quite

low compared to similar atom-molecule reactions. An indirect measurement of the E/R by Roscoe

(1982) is consistent with the recommendation.

OH + HO2. A study by Keyser (1988) appears to resolve a discrepancy between low pressure discharge

flow experiments which all gave rate coefficientsnear 7 x 10 "11 cm 3 molecule -1 s"1 : Keyser (1981),

Thrush and Wilkinson (1981a), Sridharan et al. (1981, 1984), Temps and Wagner (1982), and

Rozenshtein et al.(1984), and atmospheric pressure studies which gave rate coefficientsnear 11 x 10"11:

Lii et al.(1980a), Hochanadel et al. (1980), DeMore (1982), Cox et al.(1981), Burrows et al. (1981), and

Kurylo et al. (1981). Laboratory measurements using a discharge flow experiment and a chemical

model analysis of the results by Keyser (1988) demonstrate that the previous discharge flow

measurements were probably subject to interference from small amounts of O and H. In the presence of

excess HO 2 these atoms generate OH and result in a rate coefficientmeasurement which fallsbelow the

true value. The temperature dependence is from Keyser (1988) who covered the range 254 to 382 K. A

flow tube study by Schwab et al. (1989) reported k = (8.0 +3/-4) x 10 "11 in agreement with the

recommendation. These workers measured the concentrations of HO2, OH, O, and H and used a

computer model of the relevant reactions to test for interference. A flow tube study by Dransfeld and

Wagner (1986) employing isotope labelled 18OH reactant obtained k = (11±2) x 10 "11 in good agreement

with the recommendation. They attributed about half of the reactive events to isotope scrambling

because control experiments with 16 OH gave k = 6 x 10 "11. It should be noted that their control

exper/ments were subject to the errors described by Keyser (1988) due to the presence of small amounts of

H and O whereas their 18OH measurements were not. Kurylo et al. (1981) found no evidence of

significant scrambling in isotope studies of the OH and HO 2 reaction. An additional careful study of

the reaction temperature dependence would be useful.

OH + 03. The recommendation for the OH + 03 rate constant is based on the room temperature

measurements of Kurylo (1973) and Zahniser and Howard (1980) and the temperature dependence

studies of Anderson and Kaufman (1973), Ravishankara et al. (1979b) and Smith et al. (1984).

Kurylo's value was adjusted (-8%) to correct for an error in the ozone concentration measurement

(Hampson and Garvin, 1977). The Anderson and Kaufman rate constants were normalized to k = 6.2 x

10 "14 era 3 molecule "1 s "1 at 295 K as suggested by Chang and Kaufman (1978).

OH + OH. The recommendation for the OH + OH reaction is the average of six measurements near 298

K: Westenberg and de Haas (1973a), McKenzie et al.(1973), Clyne and Down (1974), Trainor and yon

Rosenberg (1974), Farquharson and Smith (1980), and Wagner and Zellner (1981). The rate constants

for these studies all fallbetween (1.4and 2.3)x 10 "12 cm 3 molecule "1 s"1. The temperature dependence

isfrom Wagner and Zellner, who reported rate constants for the range T = 250-580 K.

OH + H202 . The recommendation is a fitto the temperature dependence studies of Keyser (1980b),

Sridharan et al.(1980), Wine et al.(1981c), Kurylo et al.(1982b), and Vaghjiani et al. (1989). The data

from these studies have been revised to account for the H202 UV absorption cross section

recommendations in this evaluation. The firsttwo references contain a discussion of some possible

reasons for the discrepancies with earlier work and an assessment of the impact of the new value on

other kinetic studies. All of these measurements agree quite well and overlap one another.

Measurements by Lamb et al. (1983) agree at room temperature but indicate a quite different

temperature dependence with k increasing slightly with decreasing temperature. Their data were not

incorporated in the fit.A measurement at room temperature by Marinelli and Johnston (1982a) agrees
well with the recommendation.
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OH + H 2. The OH + H2 reaction has been the subject of numerous studies (see Ravishankara et al.

(1981b) for a review of experimental and theoretical work). The recommendation is fixed to the

average of nine studies at 298 K: Greiner (1969), Stuhl and Niki (1972), Westenberg and de Haas

(1973c), Smith and Zellner (1974), Atkinson et al. (1975), Overend et al. (1975), Tully and

Ravishankara (1980), Zellner and Steinert (1981), and Ravishankara et al. (1981b).

HO 2 + HO 2. Two separate expressions are given for the rate constant for the HO 2 + HO 2 reaction. The

effective rate constant is given by the sum of these two equations. This reaction has been shown to have

a pressure independent bimolecular component and a pressure dependent termolecular component.

Both components have negative temperature coefficients. The bimolecular expression is obtained from

data of Cox and Burrows (1979), Thrush and Tyndall (1982a,b), Kircher and Sander (1984), Takacs and

Howard (1984, 1986), Sander (1984) and Kurylo et al. (1986). Data of Rozenshtein et al. (1984) are

consistent with the low pressure recommendation but they report no change in k with pressure up to 1

arm. Earlier results of Thrush and Wilkinson (1979) are inconsistent with the recommendation. The

termolecular expression is obtained from data of Sander et al. (1982), Simonaitis and Heicklen (1982),

and Kurylo et al. (1986) at room temperature and Kircher and Sander (1984) for the temperature

dependence. This equation applies to M = air. On this reaction system there is general agreement

among investigators on the following aspects of the reaction at high pressure (P -1 atm): (a) the HO 2

UV absorption cross section: Paukert and Johnston (1972), Cox and Burrows (1979), Hochanadel et al.

(1980), Sander et al. (1982), Kurylo et al. (1987a), and Crowley et al. (1991); (b) the rate constant at 30014d

Paukert and Johnston (1972), Hamilton and Lii (1977), Cox and Burrows (1979), Lii et al. (1979),

Tsuchiya and Nakamura (1979), Sander et al. (1982), Simonaitis and Heicklen (1982), Kurylo et al.

(1986), Andersson et al. (1988), and Crowley et al. (1991) (all values fall in the range (2.5 to 4.7) x 10 "12

cm 3 molecule -1 s'l); (c) the rate constant temperature dependence: Cox and Burrows (1979), Lii et al.

(1979), and Kircher and Sander (1984); (d) the rate constant water vapor dependence: Hamilton (1975),

Hochanadel et al. (1972), Hamilton and Lii (1977), Cox and Burrows (1979), DeMore (1979), Lii et al.

(1981), Sander et al. (1982), and Andersson et al. (1988); (e) the H/D isotope effect: Hamilton and Lii

(1977) and Sander et al. (1982); and (f) the formation H202 + 02 as the major products at 300 I_ Suet al.

(1979b), Niki et al. (1980a), Sander et al. (1982), and Simonaitis and Heicklen (1982). Sahetchian et al.

(1982, 1987) give evidence for the formation of a small amount of H2 (-10%) at temperatures near 500 K

but Baldwin et al. (1984) and Ingold (1988) give evidence that the yield must be much less. Glinski and

Birks (1985) report an upper limit of 1% H 2 yield at a total pressure of about 50 torr and 298 K, but their

experiment may have interference from wall reactions. A smaller limit to H 2 production (0.01%) was

later determined in the same laboratory (Stephens et al., 1989). For systems containing water vapor,

the multiplicative factor given by Lii et al. (1981) and Kircher and Sander (1984) can be used: 1 + 1.4 x

10 "21 [H20] exp(2200fr). Lightfoot et al. (1988) reported atmospheric pressure measurements over the

temperature range 298-777 K that are in agreement with the recommended value at room temperature

but indicate an upward curvature in the Arrhenius plot at elevated temperature. A high temperature

study by Hippler et al. (1990) confirms the strong curvature.

HO 2 + 0 3. There are four studies of this reaction using flow tube reactors: Zahniser and Howard (1980)

at 245 to 365 K, Manzanares et al. (1986) at 298 K, Sinha et al. (1987) at 243 to 413 K, and Wang et al.

(1988a) at 233 to 400 K. The data of Sinha et al. was given somewhat greater weight in the evaluation

because this study did not employ an OH radical scavenger. The other studies fall close to the

recommendation. All of the temperature dependence studies show some curvature in the Arrhenius plot

with the E/R decreasing at lower temperature. The recommendation incorporates only data at

temperatures less than 300 K and is not valid for T > 300 K and is uncertain at T < 230 K, where there are

no data. Zahniser and Nelson (private communication, 1991) observe curvature in the Arrhenius plot

at low temperatures. High quality low temperature data are needed for this reaction. Indirect studies

using the HO2 + HO2 reactions as a reference (Simonaitis and Heicklen, 1973; DeMore and

Tschuikow-Roux, 1974; and DeMore, 1979) give results that fall below the recommendation, when

current data are used for the reference rate coefficient.

N + O 2. The recommended expression is derived from a least squares fit to the data of Kistiakowsky

and Volpi (1957), Wilson (1967), Becker et al. (1969), Westenberg et al. (1970b), Clark and Wayne

(1970), Winkler et al. (1986) and Barnett eta]. (1987). k(298 K) is derived from the Arrheaius

expression and is in excellent agreement with the average of all of the room temperature
determinations.
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N + 0 3. The recommendation is based on the results of Barnett et al.(1987). The value of (I.01-0.2)x

10 "16 cm 3 molecule "1 s"1 reported by Barnett et al.should probably be considered an upper limit rather

than a determination. The low values reported by Barnett et al.,Stief et al. (1979) and Garvin and

Broida (1963) cast doubt on the much faster rates reported by Phillips and Schiff (1962), and Chen and

Taylor (1961).

N ÷ NO. There is relativelypoor agreement between the temperature dependence studies of Clyne and

McDermid (1975), who obtain E/R - 400 K over the range 298-670 K using discharge flow - mase

spectroscopy and Lee et al.(1978c) who observe no temperature dependence between 200 and 400 K using

the discharge flow - resonance fluorescence and flash photolysis - resonance fluorescence techniques.

The recommendation for the temperature dependence isbased on Lee et al. because the better sensitivity

of the resonance fluorescence method for N(4S) reduces the possibilityof interference from secondary

reactions, and because of the relativelylarge experimental scatter in the data of Clyne and McDermid.

There is clearly a need for additional temperature dependence data. The room temperature value is

from these studies and the data of Sugawara et al. (1980), Cheah and Clyne (1980) and Husain and

Slater (1980).

N + NO 2. The Panel accepts the results of Clyne and Ono (1982) for the value ofthe rate constant at 298

K. This is a factor of 2 higher than that reported by Clyne and McDermid (1975). However, Clyne and

Ono consider that the more recent study is probably more reliable. Husain and Sister (1980) reported a

room temperature rate constant of 3.8 x 10 "11 cm 3 molecule "1 s"I,which is a factor of 12 greater than the

value reported by Clyne and Ono. This high value may indicate the presence of catalytic cycles, as

discussed by Clyne and McDermid, and Clyne and Ono. There are no studies of the temperature

dependence of the rate constant. The reaction products are taken to be N20 + O (Clyne and McDermid).

A recent study by lwata et al.(1986) suggested an upper limit of 3.3 x 10 "13 cm 3 molecule "1 s"1 for the

corresponding reaction involving N(2D) and N(2p) atoms (sum of all reaction channels).

O + NO 2. k(298 K) is based on the results of Davis et al.(1973a), Slanger et al.(1973), Bemand et al.

(1974), Ongstad and Birks (1986) and Geers-Muller and Stuhl (1987). The recommendation for E/R is

from Davis et al.,Ongstad and Birks, and Geers-Muller and Stuhl with the A-factor adjusted to give the

recommended k(298 K) value.

O + NO 3. Based on the study of Graham and Johnston (1978) at 298 K and 329 K. While limited in

temperature range, the data indicate no temperature dependence. Furthermore, by analogy with the

reaction of O with NO2, it is assumed that this rate constant is independent of temperature. Clearly,

temperature dependence studies are needed.

O + N20 5. Based on Kaiser and Japar (1978).

O + HNO 3. The upper limit reported by Chapman and Wayne (1974) is accepted.

O + HO2NO2. The recommended value is based on the study of Chang et al. (1981). The large

uncertainty in E/R and k at 298 K are due to the fact that the recommendation is based on a single study.

H + NO 2. New Entry. The recommended value of k298 is derived from the studies of Wagner et al.

(1976), Bemand and Clyne (1977), Clyne and Monkhouse (1977), Michael et al. (1979c) and Ko and

Fontijn (1991). The temperature dependence is from the studies of" Wagner et al. and Ko and Fontijn.

The data from Wategaonkar and Setser (1989) and Agrawalla et al. (1981) were not considered.

O 3 + NO. The recommended Arrh2,_ius expression is a least squares fit to the data reported by Birks et

al. (1976), Lippmann et al. (1980), Ray and Watson (1981b), Michael et al. (1981) and Borders and Birks

(1982) at and below room temperature, with the data at closely spaced temperatures reported in

Lippmann et al. and Borders and Birks being grouped together so that these five studies are weighted

equally. This expression fits all the data within the temperature range 195-304 K reported in these five

studies to within 20%. Only the data between 195 and 304 K were used to derive the recommended

Arrhenius expression, due to the observed non-linear Arrhenius behavior (Clyne et al. (1964), Clough

and Thrush (1967), Birks eta]., Michael et al. and Borders and Birks). Clough and Thrush, Birks et
al., Schurath et al. (1981), and Michael et al. have all reported individual Arrhenius parameters for
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CI2.

C13.

C14.

C15.

C16.

each of the two primary reaction channels. The range of values for k at stratospheric temperatures is

somewhat larger than would be expected for such an easy reaction to study. The measurements of

Stedman and Niki (1973a) and Bemand et al. (1974) at 298 K are in excellent agreement with the

recommended value ofk at 298 K.

HO2 +NO. Changed from JPL 90-1. The recommendation for HO2 +NO is based on the average of

seven measurements of the rate constant near room temperature: Howard and gvenson (1977), Leu

(1979b), Howard (1979), Glaschick-Schimpf et al. (1979), Hack et al. (1980), Thrush and Wilkinson

(1981a) and Jemi-Alade and Thrush (1990). All of these are in quite good agreement. An earlier study,

Burrows et al. (1979) has been disregarded because of an error in the reference rate constant, k (OH +

H202). The room temperature study of Rozenshtein et al. (1984) has also been disregarded due to an

inadequate treatment of possible secondary reactions. The temperature dependence is from the data of

Howard (1979), Leu (1979b) and Howard (1980). Since all of these studies were carried out at low

pressures, a direct study at higher pressures is needed.

NO + NO 3. Changed from JPL 90-1. The recommendation is based on the studies of Hammer et al.

(1986), Sander and Kircher (1986) and Tyndall et al. (1991a) which are in excellent agreement.

OH + NO3. The recommendation is derived from an average of the results of Boodaghians et al. (1988)

and the 298 K results of Mellouki et al. (1988a). The reaction products are probably HO 2 + NO 2.

OH + HONO. New Entry. The recommended rate expression is derived from the work of Jenkin and

Cox (1987) which supersedes the earlier room temperature study of Cox et al. (1976b). Recent

unpublished results from the Ravishankara group suggest that the reaction may have a small negative

temperature dependence.

OH + HNO3. The intensive study of this reaction over the past few years has significantly reduced

many of the apparent discrepancies among (a) the early studies yielding a low, temperature

independent rate constant (Smith and Zellner, 1975 and Margitan et al., 1975); (b) more recent work

(mostly flash photolysis) with a k(298) approximately 40% larger, and a strong negative T dependence

below room temperature (Wine et al., 1981b; Kurylo et al., 1982a; Margitan and Watson, 1982;

Marinelli and Johnston, 1982a; Ravishankara et al., 1982; Jourdain et al., 1982; C. A. Smith et al.,

1984; Jolly et al., 1985 (298 K); Stachnik et al., 1986); and (c) recent discharge low studies yielding the

lower value for k(298 K) but showing substantial negative T dependence (Devolder et al., 1984; Connell

and Howard, 1985). Major features of the data are (1) a strong negative T dependence below room

temperature, (2) a much weaker temperature dependence above room temperature, possibly leveling off

around 500 K, and (3) stun]l, measurable pressure dependence which becomes greater at low

temperature. The pressure dependence has been determined by Margitan and Watson (1982) over the

ranges 20-100 ton" and 225-298 K and by Smchr6k et al. (1986) at pressures of 10, 60 and 730 torr at 298 K.

The two studies are in excellent agreement. Their "low pressure limit" agrees well with the average

k(298 K) = 1.0 x 10 "13 cm 3 molec "1 s "1 derived from the four low pressure discharge flow studies. The

value measured for pressures typical of the other flash photolysis studies (20-50 torT) also agrees well.

The two pressure dependence studies indicate that the high pressure limit is approximately 50% greater

than the low pressure limit at 298 K, and about a factor of 2 greater at 240 K. Thus, over the narrow

pressure ranges explored in most flash photolysis studies, the P dependence can be represented by

combining a Iow pressure (bimoIecular) limit, ko, with a Lindemann-Hinshelwood expression for the

P dependence:

k3 IMI
k(M,T) = k o 4-

k 3 IM]
1+--

k2

with
{ k_ -=7'2x10"15 exp(785/l')

- 4.1x10 "16 exp(1440/I')

k3 = l.Pxl0 "33 exp(7251T}

The coefficients k 3 and k 2 are the termolecular and high pressure limits for the "association"

channel. The vaIue ofk at high pressures is the sum k o + k2. The weak pressure dependence and weak

T dependence above 300 K explain many of the apparent discrepancies for all the data (including the

1975 studies), except for a few minor features which are probably due to the normal]y encountered

experimental scatter. The Smith and Zellner flash photolysis values are low compared to other flash
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C18.

C19.

C20.

C21.

C22°

C23°

systems (closer to the flow studies), although the difference is not unusual -30%). Conversely, the

Jourdain et al. flow study is high relative to the other ones. The Connell and Howard T dependence

(below 300 K) is significantly weaker than the other studies. The failure of Smith et al. to observe a

pressure effect between 50 and 760 torr, even at 240 K, is in sharp conflict with the effect seen by Sta_hnik

et al. over the same range in a much more detailed study. Jolly et al., also could not detect a pressure

dependence between 1 torr (M = HNO 3) and 600 torr (M = SF6) at 298 K. Nelson et al. (1981), Jourdain et

al. and Ravishankara et al. have all shown that within experimental error the yield of NO3 (per OH

removed) is unity at 298 K, with similar results at 250 K (Ravishankara et al.).

OH + HO2NO 2. The recommendation for both k at 298 K and the Arrhenius expression is based upon

the data of Trevor et al. (1982), Barnes et al. (1981), C. A. Smith et al. (1984) and Barnes et al. (1986b).

Trevor et al. studied this reaction over the temperature range 246-324 K and reported a temperature

invariant value of 4.0 x 10 "12 cm 3 molecule "1 s "l, although a weighted least squares fit to their data

yields an Arrhenius expression with an E/R value of (193±193) K. In contrast, Smith et al. studied the

reaction over the temperature range 240-300 K and observed a negative temperature dependence with an

F_,/R value of-(650+30) K. The early Barnes et al. study (1981) was carried out only at room temperature

and 1 tort total pressure while their most recent study was performed in the pressure range 1-300 torr N 2

and temperature range 268-295 K with no rate constant variation being observed. In addition, k298

derived in Barnes et al. (1981) was revised upward in the later study from 4.1 x 10 "12 to 5.0 x 10 "12 due to

a change in the rate constant for the reference reaction. The values of k at 298 K from the four studies

are in excellent agreement. An unweighted least squares fit to the data from the above-mentioned

studies yields the recommended Arrhenius expression. The less precise value for k at 298 K reported by

Littlejohn and Johnston (1980) is in fair agreement with the recommended value. The error limits on

the recommended E/R are sufficient to encompass the results of both Trevor et al. and Smith et al. It

should be noted that the values ofk at 220 K deduced from the two studies differ by a factor of 2. Clearly

additional studies of k as a function of temperature and the identification of the reaction products are

needed.

HO 2 + NO 3. The recommendation at 298 K is obtained from a least squares fit to the 298 K data of

Mellouki et al. (1988a) and the temperature dependence data of Hall et al. (1988)below 333 K.

0 3 + NO 2. The recommended expression is derived from a least squares fit to the data of Davis et al.

(1974b), Graham and Johnston (1974), Huie and Herron (1974) and Cox and Coker (1983). The data of

Verhees and Adema (1985) and Stedman and Niki (1973a) were not considered because of systematic

discrepancies with the other studies.

03 + HNO 2. Based on Kaiser and Japar (1977) and Streit et al. (1979).

NO2 + NO3. Changed from JPL 90-1. The existence of the reaction channel forming NO + NO 2 + 0 2

has not been firmly established. However, studies of N205 thermal decomposition that monitor NO2

(Daniels and Johnston, 1921; Johnston and Tao, 1951; Cantrell et al., 1988) and NO (Hjorth et al., 1989,

and Cantre|| et al., 1990a) require reaction(s) that decompose NO 3 into NO = O 2. The rate constant

from the first three studies is obtained from the product kKeq where Keq is the equilibrium constant for
NO 2 + NO 3 = N20 5 while for the latter two studies the rate constant is obtained from the ratio k/k(NO +

NO 3) where k(NO + NO 3) is the rate constant for the reaction NO + NO 3 --+ 2NO 2. Using Keq and k(NO

+ NO 3) from this evaluation, the rate expression that best fits the data from all five studies is 4.5 x 10 "14

exp (-1260fr) cm 3 molecule "1 s "1 with an overall uncertainty factor of 2.

N20 5 + H20. The recommended value at 298 K is based on the studies of Tuazon et al. (1983a),

Atkinson et al. (1986) and Hjorth et al. (1987). Sverdrup et al. (1987) obtained an upper limit that is a

factor of four smaller than that obtained in the other studies, but the higher upper limit is recommended

because of the difficulty of distinguishing between homogeneous and heterogeneous processes in the

experiment. See Table 57 for heterogeneous rate data for this reaction.

NH + NO. New Entry. The recommendation is derived from the room temperature results of Hansen

et al. (1976), Cox et al. (1985) and Harrison et al. (1986). The temperature dependence is from Harrison
et al.
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C25.

C26.

C27.

C28.

C29.

NH + NO 2. New Entry. The recommendation is derived from the temperature dependence study of

Harrison et al. (1986).

OH + NH3. Changed from JPL 90-1. The recommended value at 298 K is the average of the values

reported by Stuhl (1973b), Smith and Zellner (1975), Perry et al. (1976b), Silver and Kolb (1980), Stephens

(1984) and Diau et al. (1990). The values reported by Pagsberg et al. (1979) and Cox et al. (1975) were not

considered because these studies involved the analysis of a complex mechanism and the results are

well outside the error limits implied by the above six direct studies. The results of Kurylo (1973) and

Hack et al. (1974) were not considered because of their large discrepancies with the other direct studies

(factors of 3.9 and 1.6 at room temperature, respectively). Because the Arrhenius plot displays

considerable curvature, the temperature dependence is based only on the data below 300 K, i.e. the

studies of Smith and Zellner (1975) and Diau et al. (1990), and the A-factor has been selected to fit the

recommended room temperature value.

NH 2 + HO 2. There is a fairly good agreement on the value of k at 298 K between the direct study of

Kurasawa and Lesclaux (1980b), and the relative studies of Cheskis and Sarkisov (1979) and Pagsberg

et al. (1979). The recommended value is the average of the values reported in these three studies. The

identity of the products is not known; however, Kurasawa and Lesclaux suggest that the most probable

reaction channels give either NH3 + 02 or HNO + H20 as products.

NH2 + NO. The recommended value for k at 298 K is the average of the values reported by Gordon et al.

(1971), Gehring et a]. (1973), Lesclaux et al. (1975), Hancock et al. (1975), Sarkisov et al. (1978), Hack et

al. (1979b), Stief et al. (1982), Silver and Kolb (1982), and Whyte and Phillips (1983). The values

reported in these studies for k at 298 K range from 8.3 to 27.0 (x 10 "12) cm 3 molecule "1 s "l, which is not

particularly satisfactory. The results tend to separate into two groups. The flash photolysis results

average 1.9 x 10 -11 cm 3 molecule "1 s "l, while those obtained using the discharge flow technique

average 0.9 x 10 "11 cm 3 molecule "1 s "1. The apparent discrepancy cannot be due simply to a pressure

effect as the pressure ranges of the flash photolysis and discharge flow studies overlapped, and none of

the studies observed a pressure dependence for k. There have been four studies of the temperature

dependence of k. Each study reported k to decrease with increasing temperature, i.e. T "1"25 (Lesclaux

et al. from 300-500 K), T -1"85 (Hack et al. from 210-503 K), T "1"67 (Stiefet al. from 216-480 K) and T -2"3

exp(-684/T) (Silver and Kolb from 294-1215 K). The recommended temperature dependence is taken to

be a weighted average of the data below 500 K from all four studies. The expression is: k = 1.6 x 10 "11

(T/298) -1"5 for the temperature range 210-500 K. There are many possible product channels for this

reaction. Strong evidence against the formation of H atoms exists. Both Silver and Kolb (1982) and

Andresen et al. (1982) report substantial yields of OH of 40% and >65%, respectively, in disagreement

with Stief et al. (1982), Ha]] et al. (1986) and Dolson (1986) who observed room temperature OH yields of

<22%, 13+2% and <15%, respectively. In addition, Andresen et al. set a lower limit of >29% of the

channel N 2 + H20.

NH2 + NO2. There have been four studies of this reaction (Hack et al., 1979b; Kurasawa and Lesclaux,

1979; Whyte and Phillips, 1983; and Xiang et al., 1985). There is very poor agreement among these

studies both for k at 298 K (factor of 2.3) and for the temperature dependence ofk (T "3-0 and "1"1-3). The

recommended values of k at 298 K and the temperature dependence of k are averages of the results

reported in these four studies. Hack et al. have shown that the predominant reaction channel (>95%)

produces N20 + H2 O. Just as for the NH 2 + NO reaction, the data for this reaction seem to indicate a

factor of two discrepancy between flow and flash techniques, although the database is much smaller.

NH2+ 02. Changed from JPL 90-1. This reaction has several product channels which are

energetically possible including NO + H20 and HNO + OH. With the exception of the studies of Hack

et al. (1982) and Jayanty et al. (1976) and several studies at high temperature, there is no evidence for a

reaction. The following upper limits have been measured (cm 3 molecule "1 s'l): 3 x 10 "18 (Lesclaux

and Demissy, 1977), 8 x 10 "15 (Pagsberg et al., 1979), 1.5 x 10 "17 (Cheskis and Sarkisov, 1979), 3 x 10 "18

(Lozovsky et al., 1984), 1 x I0 "17 (Patrick and Golden, 1984b) and 7.7 x 10 "18 (Michael et al., 1985b) and 6

x 10 -21 (Tyndall eta]., 1991b). The recommendation is based on the study of Tyndall et al. which was

sensitive to reaction paths leading to the products NO, NO2 and N20. The reaction forming NH202

cannot be ruled out, but is apparently not important in the atmosphere.
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D1.

D2.

NH2 + 03. There is poor agreement among the recent studies of Cheskis et al. (1985), k(298) = 1.5 x 10 "13

cm 3 s -1, Patrick and Golden (1984b), k(298) = 3.25 x 10 "13 cm 3 s "1, Hack et al. (1981), 1.84 x 10 "13 cm 3

s "l, Bulatev et al. (1980), 1.2 x 10 "13 cm 3 s "1, and Kurasawa and Lesclaux (1980a), 0.63 x 10 "13 cm 3 s "1.

The very low value of Kurasawa and Lesclaux may be due to regeneration of NH2 from secondary

reactions (see Patrick and Golden), and it is disregarded here. The discharge flow value of Hack et al.

is nearly a factor of two less than the recent Patrick and Golden flash photolysis value. The large

discrepancy between Bulatov et al. and Patrick and Golden eludes explanation. The recommendation

is the k(298) average of these four studies, and E/R is an average of Patrick and Golden (1151 K) with

Hack et al. (710 K).

OH + CO. The recommendation allows for an increase in k with pressure. The zero pressure value

was derived by averaging all direct low pressure determinations [those listed in Baulch et al. (1980)

and the values reported by Dreier and Wolfrum (1980), Husain et al. (1981), Ravishankara and

Thompson (1983), Paraskevopoulos and Irwin (1984), Hofzumahaus and Stuhl (1984), Fritz and Zellner,

private communication (1987)]. The results of Jonah et al. (1984) are too high and were not included.

An increase in k with pressure has been observed by a large number of investigators [Overend and

Paraskevopoulos (1977a), Perry et al. (1977), Chan et al. (1977), Bierman et al. (1978), Cox et al. (1976b),

Butler et al. (1978), Paraskevopoulos and Irwin (1982b, 1984), DeMore, (1984), Hofzumahaus and Stuhl

(1984), Fritz and Zellner (1987), Hynes et al. (1986a), Stachnik and Molina, private communication

(1987), and Wahner and Zetzsch, private communication (1987)]. In addition, Niki et al. (1984) have

measured k relative to OH + C2H 4 in one atmosphere of air by following CO 2 production using FTIR.

The recommended 298 K value was obtained by using a weighted non-linear least squares analysis of

all pressure dependent data in N 2 [Paraskevopoulos and Irwin (1984); DeMore (1984), Hofzumahaus

and Stuhl (1984), and Hynes et al. (1986a)] as well as those in air [Fritz and Zellner (1987), Niki et al.

(1985), Hynes et al. (1986a), Stachnik and Molina (1987), Wahner and Zetzsch (1987)] to the form k ffi

(A+BP)/(C+DP) where P is pressure in atmosphere. The data were best fit with D = 0 and therefore a

linear form is recommended. Previous controversy regarding the effect of small amounts of 0 2

(Bierman et al., 1978) has been resolved and is attributed to secondary reactions [(DeMore (1984),

Hofzumahaus and Stuhl (1984)]. The results of Butler et al. (1978) have to be re-evaluated in the light of

refinements in the rate coefficient for the OH + H20 2 reaction. The corrected rate coeffÉcient is in

approximate agreement with the recommended value. Currently, there are no indications to suggest

that the presence of O 2 has any effect on the rate coefficient other than as a third body. The E]R value in

the pressure range 50-760 torr has been shown to be essentially zero between 220 and 298 K by Hynes et

al. (1986a), and Stachnik and Molina (private communications, 1987). Further substantiation of the

temperature independence ofk at 1 atm. may be worthwhile. The uncertainty factor is for 1 atm. of air.

In the presence of 02, the HOCO intermediate is converted to HO 2 + CO 2 (DeMore, 1984). Beno et al.

(1985) observe an enhancement of k with water vapor which is in conflict with the flash photolysis

studies, e.g., Ravishankara and Thompson (1983), Paraskevopoulos and Irwin (1984), and Hynes et al.

(1986a).

OH + CH 4. This reaction has been investigated by many workers over past few decades because of its

importance in combustion and atmospheric processes [Greiner (1970b), Davis eta]. (1974a), Margitan

et al. (1974), Zellner and Steinert (1976), Tully and Ravishankara (1980), Jeong and Kaufman (1982),

Jonah et al. (1984), and Madronich and Felder (1985)]. The Arrhenius plot for this rate coefficient is

curved and there is very little data at temperatures below 298 K. Extrapolation of the higher temperature

data to the lower atmospheric temperatures is likely to cause errors. Furthermore, at lower

temperatures, the rate coei_cient is small and, hence, its measurements are easily influenced by the

presence of impurities and occurrence of secondary reactions. Recently, Vaghjiani and

Ravishankara (1991) have investigated this reaction using a pulsed laser photolysis-laser induced

fluorescence apparatus. They found k(298 K) to be -20% lower than the previous recommendation.

They attribute the previously measured higher values to secondary reactions of OH with CH 3 radicals

and partly to the presence of impurities. They have extensively measured the rate coefficient at the

lower atmospheric temperatures and obtain a slightly higher E/R than the previously recommended

value. The current recommendation is based on their results. The results of Vaghjiani and

Ravishankara agree with most previous data obtained at T>400 K where the rate coefficient is

significantly larger and hence not influenced by the above mentioned problems.
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D3. OH + 13CH4 (k13). This reaction has been studied relative to the OH + CH 4 (k12) reaction, since the

ratio of the rate coefficientsk12/k13 is the quantity needed for identifying methane sources. Rust and

Stevens (1980), Davidson et al.(1987), and Cantrell et al.(1990c) have measured k12/k13 at 298 K to be

1.003, 1.010, and 1.0055, respectively. Cantrell et al.'sdata supersede the results of Davidson et al..The

recommended value of 1.005 ± 0.002 is based on the results of Rust and Stevens and Cantrell et al..

Cantrell et al.find k12/k13 to be independent of temperature between 273 and 353 I_

D4. OH + C2H 6. There are seventeen studies of this reaction at 298 K, [Greiner (1970a), Howard and

Evenson (1976b), Overend et a].(1975), Lee and Tang (1982), Leu (1979b), Tully et al.(1983), Jeong et al.

(1984), Tully et al. (1986), Nielsen eta]. (1986), Zabarnick et al.(1988), Wallington et al. (1987), Smith

et al.(1984), Baulch et al.(1985), Bourmada et al.(1987), Abhatt et al.(1990), Schiffman et al.(1991), and

Talukdar et al.(1991c)]. The recommended value is obtained by averaging the results of the recent

investigations by Tully et al. (1986), Wallington et al. (1987), Abbatt et al. (1990), Schiffman et al.

(1991), and Talukdar et al. (1991). These investigations are believed to have smaller errors and yield

298 K values which are -15% lower than the previous recommendation. When the measurements were

not carried out at exactly 298 K, we have recalculated k using an E/R of 1070 K. The temperature

dependence of the rate coefficientbelow 298 K has been measured only by Jeong et al.,Wallington et al.,

and Talukdar et al. The last two studies are in excellent agreement. The recommended E/R is

obtained from an analysis of the data of Wallington et al. and Talukdar et al.

DS. OH + C3H 8. There are many measurements of the rate coefficientsat 298 K. In this evaluation we

have considered only the direct measurements [Greiner (1970a), Tully et al. (1983), Droege and Tully

(1986), Schmidt et al.(1985), Bauleh et al.(1985), Bradley et al.(1973), Abbatt eta]. (1990), Schiffman et

al. (1991), and Talukdar et al. (1991)]. The 298 K value is the average of these nine studies. Greiner

(1970a), Tully et al. (1983), Droege and Tully (1986) and Talukdar et al. (1991c) have measured the

temperature dependence of this reaction. The recommended E/R was obtained from a linear least

squares analysis of the data of Droege and Tully below 400 K and the data of Talukdar et al. The A

factor was adjusted to reproduce k(298 K). This reaction has two possible channels, i.e.,abstraction of

the primary and the secondary H-atom. Therefore, non-Arrhenius behavior is exhibited over a wide

temperature range, as shown by Tully et al. and Droege and Tully. The branching ratios were

estimated from the latter study:

D6.

DT.

kprimary = 6.3 x 10 "12 exp(-1050/T) cm 3 molecule "1 s "1

ksecondary = 6.3 x 10 "12 exp(-S80/T) cm 3 molecule "1 s "1

These numbers are in reasonable agreement with the older data of Greiner.

OH + H2CO. The value for k(298 K) is the average of those determined by Atkinson and Pitts (1978),

Stief et al. (1980), Temps and Wagner (1984), and Zabarnick et ah (1988). The value reported by Morris

and Niki (1971) agrees within the stated uncertainty. There are two relative values which are not in

agreement with the recommendations. The value of Niki et al. (1987b) relative to OH + C2H 4 is higher

while the value of Smith (1978) relative to OH + OH is lower. The latter data are also at variance with

the negligible temperature dependence observed in the two flash photolysis studies. The combined data

set suggests E/R = 0. The abstraction reaction shown in the table is the major channel ]Temps and

Wagner (1984), Niki et al. (1984)]; other channels may contribute to a small extent [Horowitz et al.

(1978)].

OH + CH3OH. The recommended value for k(298 K) is the average of seven direct studies [Overend

and Paraskevopoulos (1978), Ravishankara and Davis (1978), Hagele et al.(1983), Meier et al.(1984),

Greenhill and O'Grady (1986), Wallington and Kurylo (1987), and Hess and Tully (1989)]. Indirect

measurements by Campbell et al.(1976), Barnes et al. (1982), Tuazon et al. (1983b) and Klopffer et al.

(1986) are in good agreement with the recommended value. The temperature dependence of k has been

measured by Hagele et al.,Meier et al.,Greenhill and O'Grady, Wallington and Kurylo, and Hess

and Tully. The recommended value of E/R was calculated using the results obtained in the

temperature range of 240 to 400 K by Greenhill and O'Grady (1986) and Wallington and Kurylo (1987),

the only investigators who have measured k below 298 K. Hess and Tully report a curved Arrhenius

plot over the temperature range 298 - 1000 K, while Meier et al. do not observe such a curvature. This

reaction has two pathways: abstraction of the H-atom from the methyl group or from the OH group. The
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D9.

DIO.

Dll.

D12.

results of Hagele et al., Meier et al., and Hess and Tully suggest that H abstraction from the methyl
group is the dominant channel below room temperature.

OH + C2H5OH. The recommended value for k(298 K) is the average of those reported by Campbell et al.

(1976), Overend and Paraskevopoulos (1978), Ravishankara and Davis (1978), Cox and Goldstone
(1982), Kerr and Stocker (1986), Wallington and Kurylo (1987), and Hess and Tully (1988). The value
reported by Meier et al. is nearly a factor of two lower than that recommended here. The recommended
value of E/R was obtained by using the data of Wallington and Kurylo, and Hess and Tully. The A-
factor has been adjusted to yield the recommended value of k(298 K). At atmospheric temperatures, H-
atom abstraction from the CH 2 group is the dominant channel [Meier et al. (1985), Hess and Tully

(1988)].

OH + CH3CHO. There are six measurements of this rate coefficient at 298 K [Morris et al. (1971), Niki

et al. (1978b), Atkinson and Pitts (1978), Kerr and Sheppard (1981), Semmes et al. (1985), and Michael et
al. (1985a)]. The recommended value of k(298 K) is the average of these measurements. Atkinson and
Pitts, Semmes et al., and Michael et al. measured the temperature dependence of this rate coefficient
and found it to exhibit a negative temperature dependence. The recommended E/R is the average value
of these studies. The A-factor has been adjusted to yield the recommended value of k(298 K).

OH + CH3OOH. The recommended value for k(298 K) is the average of the rate coefficients measured

by Niki et al. (1983) and Vaghjiani and Ravishankara (1989a), which differ by nearly a factor of two.

Niki et al. measured the rate coefficient relative to that for OH with C2H 4 (= 8.0 x 10 "12 em 3 molecule "1

s"l) by monitoring CH3OOH disappearance using an FTIR system. Vaghjiani and Ravishankara

monitored the disappearance of OH, OD, and 18OH in excess CH3OOH in a pulsed photolysis-LIF

system. They measured k between 203 and 423 K and report a negative activation energy with E/R =
-190 K; the recommended E/R is based on their results. The reaction of OH with CH3OOH occurs via

abstraction of H from the oxygen end to produce the CH3OO racScal and from the CH 3 group to produce

the CH2OOH radical, as originally proposed by Niki et al. and confirmed by Vaghjiani and

Ravishankara. CH2OOH is unstable and falls apart to CH20 and OH within a few microseconds. The

possible reaction of CH2OOH with 02 is unimportant under atmospheric conditions (Vaghjiani and

Ravishankara). The recommended branching ratios are,

OH + CH3OOH _ CH302 + H20 (a) 70%

OH + CH3OOH -o CH2OOH + H20 (b) 30%,

(from Vaghjiani and Ravishankara) and are nearly independent of temperature.

OH + HC(O)OH. New Entry. The recommended value of k(298 K) is the average of those measured by
Wine et al. (1985b), Jolly et al. (1986), and Dagaut eta]. (1988c). Zetzsch and Stuhl (1982) have also
measured k(298 K), to be -50% lower than the recommended value. The temperature dependence of k
has been studied only by Wine et al., who observed a very small negative activation energy. In the
absence of confirmatory studies, a temperature independent k is recommended. Based on the study of
Wine et al., where the rate coefficient for the OH + HC(O)OH reaction was found to be the same as that

for OH + DC(O)OH reaction, and the study of Jolly et al., where the formic acid dimer was found to be
unreactive toward OH, the reaction appears to proceed via abstraction of the acidic H atom. Wine et al.
also found that H atoms are produced in the reaction, which is consistent with the formation of HC(O)O
that would rapidly fall apart to CO 2 and H. Wine et al., also raise the possibility that, in the

atmosphere, the formic acid could be hydrogen bonded to a water molecule and its reactivity with OH
could be lowered.

OH + CH3C(O)OH. New Entry. The recommended k(298 K) was obtained from the average of the

values obtained by Zetzseh and Stuhl (1982) and Dagaut et al. (1988c). The temperature dependence has
been studied only by Dagaut et al., and is recommended. Dagaut et al. observe that the acetic acid

dimer reacts twice as fast as the monomer, and attribute this to the reactivity of the acid group being
unalteredupon dimerization.However, thisobservationisinconsistentwith the non-reactivityofthe

formicacid dimer but isconsistentwith the reactionproceedingmainly via the abstractionof the H
from the alkylgroup.
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OH + HCN. This reaction is pressure dependent. The recommended value is the high pressure limit

measured by Fritz et al. (1984) using a laser photolysis-resonance fluorescence apparatus. Phillips

(1978) studied this reaction using a discharge flow apparatus at low pressures and found the rate

coefficient to have reached the high pressure limit at ~10 tort at 298 K. Fritz et al.'s results contradict

this finding. They agree with Phillip's measured value, within a factor of two, at 7 tort but they find k

to increase further with pressure. The products of the reaction are unknown.

OH + CH3CN. This rate coefficient has been measured as a function of temperature by Harris et al.

(1981) between 298 and 424 K, Kurylo and Knable (1984) between 250 and 363 K, Rhasa (1983) between 295

and 520 K, and Hynes and Wine (1991) between 256 and 388 K. In addition, the 298 K value has been

measured by Poulet et al. (1984a). The 298 K results of Harris et al. are in disagreement with all other
measurements and therefore have not been included. The recommended 298 K value is a weighted

average of all other studies. The temperature dependence was computed using the results of Kurylo and

Knable (250-363 K), the lower temperature values (i.e., 295-391 K) of Rhasa, and the data of Hynes and

Wine (256-388 K). Three points are worth noting: (a) Rhasa observed a curved Arrhenius plot even in

the temperature range of 295-520 K and therefore extrapolation of the recommended expression could

lead to large errors, (b) Hynes and Wine observed a pressure dependent increase of k(298 K) which

levels off at about 1 atmosphere. This observation is contradictory to the results of other investigations.

(c) Hynes and Wine have carried out extensive pressure, temperature, 0 2 concentration, and isotope

variations in this reaction. They postulate that the reaction proceeds via addition as well as abstraction

pathways. They observe OH regeneration in the presence of 0 2. The recommended k(298 K) and F_JR

are applicable for only lower tropospheric conditions. Because of the unresolved questions of pressure

dependence and reaction mechanism, the recommended value may not be applicable under upper

tropospheric and stratospheric conditions.

OH + CH3C(O)O2NO 2 (PAN). New Entry. This reaction has been studied by three groups of

investigators, Winer et al. (1977), Wallington et al. (1984), and Tsalkani et al. (1988). Winer et al.

obtained only an upper limit for the rate coefficient. The recommended value is a weighted average of

the results from Wallington et al. and Tsalkani et al. Tsalkani et al. noted that their system was

very ill-behaved and obtained a value of k(298 K) that is a factor of -2 lower than that obtained by

Wallington eta]. The pulsed photo]ysis study of Wal]ington et al. yielded consistent results and their

results are weighted more heavily in this evaluation. PAN is unstable and a very difficultmolecule to

handle. Also, it is difficultto get rid of the solvent in which it is prepared. Therefore, measuring PAN

concentrations and avoiding impurities are very difficult. Our recommendation reflects this

difficulty. The recommended k(298 K) is consistent with the upper limit of Winer et al. The

temperature dependence of this reaction has been studied only by Wallington et al,, and is

recommended. The products of the reaction are not known. Further measurements of the rate

coefficientsand information on the reaction pathways are needed.

0 3 + C2H 2. The database for this reaction is not well established. Room temperature measurements

(Cadle and Schadt, 1953; DeMore, 1969; DeMote, 1971; Stedman and Niki, 1973b; Pate et al, 1976; and

Atkinson and Aschmann, 1984) disagree by as much as an order of magnitude. It is probable that

secondary reactions involving destruction of ozone by radical products resulted in erroneously high

values for the rate constants in several of the previous measurements. The present recommendation

for k(298 K) is based on the room temperature value of Atkinson and Aschmann (1984), which is the

lowest value obtained and therefore perhaps the most accurate. The temperature dependence is

estimated, based on an assumed A-factor of 1.0 x 10 "14 cm 3 s "1 similar to that for the O 3 + C2H 4 reaction

and corresponding to the expected 5-membered ring structure for the transition state (DeMore, 1969,

1971). Further studies, particularly of the temperature dependence, are needed. Major products in the

gas phase reaction are CO, CO2, and HCOOH, and chemically-activated formic anhydride has been

proposed as an intermediate of the reaction (DeMore, 1971, and DeMore and Lin, 1973). The anhydride

intermediates in several alkyne ozonations have been isolated in low temperature solvent experiments
(DeMore and Lin, 1971).

03 + C2H4. The rate constant of this reaction is well established over a wide temperature range, 178 to

360 IC Our recommendation is taken from that of IUPAC (1989), which is based on the data of DeMore

(1969), Stedman et al. (1973), Herron and Huie (1974), Japar et al. (1974, 1976), Toby et al. (1976), Suet a].

(1980), Adeniji et al. (1981), Kan et al. (1981), Atkinson et al. (1982), and Bahta et al. (1984).

49



D18.

D19.

I320.

D21.

D22.

D23.

03 + C3H6 . The rate constant of this reaction is well established over the temperature range 185 to 360 K.

The present recommendation is based largely on the data of Herron and Huie (1974), in the temperature

range 235-362 K. (Note that a typographical error in Table 2 of that paper improperly lists the lowest

temperature as 250 K, rather than the correct value, 235 I_) The recommended Arrhenius expression

agrees within 25% with the low temperature (185-195 K) data of DeMore (1969), and is consistent with, but

slightly lower (about 40%) than the data of Adeniji et al. (1981) in the temperature range 260-294 K.

Room temperature measurements of Cox and Penkett (1972), Stedman et al. (1973), Japar et al. (1974,

1976), and Atkinson et al. (1982) are in good agreement (10% or better) with the recommendation.

HO 2 + CH20. There is sufficient evidence to suggest that HO2 adds to CH20 [Suet al. (1979b,c), Veyret

et al. (1982), Zabel et al. (1987), Barnes et al. (1985), and Veyret et al. (1989)]. The recommended k(298

K) is the average of values obtained by Suet al. (1979c), Veyret et al. (1982), and Veyret et al. (1989). The

temperature dependence observed by Veyret et al. (1989) is recommended. The value reported by

Barnes et al. at 273 K is consistent with this recommendation. The adduct HO2"CH20 seems to

isomerize to HOCH2OO reasonably rapidly and reversibly. There is a great deal of discrepancy

between measured values of the equilibrium constants for this reaction.

O + HCN. Because itis a very slow reaction,there are no studies of this reaction below 450 IC Davies

and Thrush (1968) studied this reaction between 469 and 574 K while Perry and Melius (1984) studied it

between 540 and 900 K. Results of Perry and Melius are in agreement with those of Davies and Thrush.

Our recommendation is based on these two studies. The higher temperature (T>1000 K) combustion

related studies [Roth et al. (1980), Szekely et al. (1984), and Louge and Hanson (1984)] have not been

considered. This reaction has two reaction pathways: O + HCN -_ H + NCO, AH = -2 kcal/mol (ka);

and O + HCN -_ CO + NH (kb),AH = -36 kcal/mol. The branching ratio ka/k b for these two channels

has been measured to be -2 at T = 860 K. The branching ratio at lower temperatures, which is likely to

vary significantly with temperature, is unknown.

0 + C2H 2. The value at 298 K is an average of ten measurements [Arrington et al. (1965), Sullivan and

Warneck (1965), Brown and Thrush (1967), Hoyermann et al. (1967, 1969), Westenberg and deHaas

(1969b), James and Glass (1970), Stuhl and Niki (1971), Westenberg and deHaas (1977), and

Aleksandrov et al. (1981)]. There is reasonably good agreement among these studies. Arrington et al.

(1965) did not observe a temperature dependence, an observation which was later shown to be erroneous

by Westenberg and deHaas (1969b). Westenberg and deHaas (1969b), Hoyermann et al. (1969) and

Aleksandrov et al. (1981) are the only authors who have measured the temperature dependence below

500 I4L Westenberg and deHaas observed a curved Arrhenius plot at temperatures higher than 450 K. In

the range 194-450 K, Arrhenius behavior provides an adequate description and the E/R obtained by a fit

of the data from these three groups in this temperature range is recommended. The A-factor was

calculated to reproduce k(298 K). This reaction can have two sets of products, i.e., C2HO + H or CH 2 +

CO. Under molecular beam conditions C2HO has been shown to be the major product. The study by

Aleksandrov et al. using a discharge flow-resonance fluorescence method (under undefined pressure

conditions) indicates that the C2HO + H channel contributes no more than 7% to the net reaction at 298

K, while a similar study by Vinckier et al. (1985) suggests that both CH2 and C2HO are formed.

O + H2CO. The recommended values for A, E/R and k(298 K) are the averages of those determined by

Klemm (1979) (250 to 498 K) using flash photolysis-resonance fluorescence, by Klemm et al. (1980) (298

to 748 K) using discharge flow-resonance fluorescence, and Chang and Barker (1979) (296 to 436 K)

using discharge flow-mass spectrometry techniques. All three studies are in good agreement. The

k(298 K) value is also consistent with the results of Niki et al. (1969), Herron and Penzhorn (1969), and

Mack and Thrush (1973). Although the mechanism for O + H2CO has been considered to be the

abstraction reaction yielding OH + HCO, Chang and Barker suggest that an additional channel

yielding H + HCO2 may be occurring to the extent of 30% of the total reaction. This conclusion is based

on an observation of CO 2 as a product of the reaction under conditions where reactions such as O + HCO

-_ H + CO2 and O + HCO -, OH + CO apparently do not occur. This interesting suggestion needs

independent confirmation.

O + CH3CHO. The recommended k(298 K) is the average of three measurements by Cadle and Powers

(1967), Mack and Thrush (1974), and Singleton et al. (1977), which are in good agreement. Cadle and

Powers and Singleton et al. studied this reaction as a fhnction of temperature between 298 and 475 K and
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obtainedvery similar Arrheniusparameters.TherecommendedE/R valuewasobtainedby
considering both sets of data. This reaction is known to proceed via H-atom abstraction [Mack and

Thrush (1974), Avery and Cvetanovic (1965), and Singleton et al. (1977)].

O + CH3. The recommended k(298 K) is the weighted average of three measurements by Washida and

Bayes (1976), Washida (1980), and Plumb and Ryan (1982b). The E/R value is based on the results of

Washida and Bayes (1976), who found k to be independent of temperature between 259 and 341 Iz_

CH 3 + 0 2. This bimolecular reaction is not expected to be important based on the results of Baldwin

and Golden (1978a), who found k < 5 x 10 "17 cm 3 molecule "1 s "1 for temperatures up to 1200 K. Klais et

el. (1979) failed to detect OH (via CH3 + 02 _ CH20 + OH) at 368 K and placed an upper limit of 3 x 10 "16

cm 3 molecule "1 s "1 for this rate coefficient. Bhaskaran et al. (1979) measured k = lxl0 "11 exp

(-12,900fr) cm 3 molecule "1 s -1 for 1800 < T < 2200 K. The latter two studies thus support the results of

Baldwin and Golden. Studies by Selzer and Hayes (1983) and Plumb and Ryan (1982b) confirm the low

value for this rate coefficient. Previous studies of Washida and Bayes (1976) are superseded by those of

Selzer and Bayes. Plumb and Ryan have placed an upper limit of 3 x 10 "16 cm 3 molecule "1 s "1 baaed on

their inability to find HCHO in their experiments. A study by Zellner and Ewig (1988) suggests that

this reaction is important at combustion temperature but is unimportant for the atmosphere.

C2H5 + 02. This recommendation is taken from IUPAC (1989).

CH2OH + O 2. The rate coefficient was first measured directly by Radford (1980) by detecting the HO 2

product in a laser magnetic resonance spectrometer. The wall loss of CH2OH could have introduced a

large error in this measurement. Radford also showed that the previous measurement of Avramenko

and Kolesnikova (1961) was in error. Wang et al. (1984) measured a value of 1.4 x 10 -12 cm 3

molecule "1 s -1 by detecting the HO 2 product. Recently, Dobe et al. (1985), Grotheer et al. (1985), Payne et

al. (1988), Grotheer et al. (1988) and Nesbitt et al. (1988) have measured k(298 K) to be close to 1.0 x 10 "11

cm 3 molecule "1 s "1 under conditions where wall losses are small. This reaction appears to exhibit a

very complex temperature dependence. Based on the recent data of Grotheer et al. (1988) and Nesbitt et

el. (1988), k appears to increase from 200 K to approximately 250 K in an Arrhenius fashion, levels offat

approximately 300 K, decreases from 300 to 500 K, and finally increases as temperature is increased.

This complex temperature dependence is believed to be due to the formation of a CH2(OH)*O 2 adduet

which can isomerize to CH20*HO 2 or decompose to reactants. The CH20*HO 2 isomer can also

decompose to CH20 and HO 2 or reform the original adduct. At temperatures less than 250 K, the data of

Nesbitt et al. suggests an E/R value of -1700 K.

CH30 + 0 2. The recommended value for k(298 K) is the average of those reported by Lorenz et el. (1985)

and Wantuck et al. (1987). The recommended E/R was obtained using the results of Gutman et al.

(1982) (413 to 608 K), Lorenz et el. (1985) (298 to 450 K), and Wantuek et el. (1987) (298 to 498 K). These

investigators have measured k directly under pseudo-first order conditions by following CH30 via

laser induced fluorescence. Wantuck et al. measured k up to 973 K and found the Arrhenius plot to be

curved; only their lower temperature data are used in the fit to obtain E/R. The A factor has been

adjusted to reproduce the recommended k(298 K). The previous high temperature measurements

[Barker et al. (1977) and Batt and Robinson (1979)] are in reasonable agreement with the derived

expression. This value is consistent with the 298 K results of Cox et al. (1980), obtained from an end

product analysis study, and with the upper limit measured by Sanders et al. (1980b). The A-factor

appears to be too low for a hydrogen atom transfer reaction. The Arrhenius plot is curved at higher

temperature (Wantuck et al.). The reaction may be more complicated than a simple abstraction. At

298 K, the products of this reaction are HO 2 and CH2 O as shown by Niki et al. (1981).

C2H50 + 02. New Entry. The recommendation is based on the pulsed laser photolysis study of Gutman

et al.. (1982) who directly monitored the removal of C2H50 via laser induced fluorescence in a excess of

02. They measured k at only two temperatures, all above 298 K. The 298 K value deduced from an

indirect study by Zabarnick and Heicklen (1985) is in reasonable agreement with the recommended

value.
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HCO + 02. The value of k(298 K) is the average of the determinations by Washida et al. (1974), Shibuya

et al. (1977), Veyret and Lesclaux (1981), and Langford and Moore (1984). There are three

measurements of k where HCO was monitored via the intracavity dye laser absorption technique

(Reilly et al. (1978), Nadtochenko et al. (1979), and Gill et al. (1981)). Even though there is excellent

agreement between these three studies, they yield consistently lower values than those obtained by other

techniques. There are several possible reasons for this discrepancy: (a) The relationship between

HCO concentration and laser attenuation in an intracavity absorption experiment might not be linear,

(b) there could have been depletion of 02 in the static systems that were used (as suggested by Veyret and

Lesclaux), and (c) these experiments were designed more tbr the study of photochemistry than kinetics.

Therefore, these values are not included in obtaining the recommended value. The recommended

temperature dependence is essentially identical to that measured by Veyret and Lesclaux. We have

expressed the temperature dependence in an Arrhenius form even though Veyret and Lesclaux

preferred a T n form (k = 5.5 x 10 -11 T -(0"4±0"3) cm 3 molecule "1 s'l).

CH3 + 03. The recommended A-factor and E/R are those obtained from the results of Ogryzlo et al.

(1981). The results of Simonaitis and Heicklen (1975), based on an analysis of a complex system, are

not used. Washida et al. (1980b) used O + C2H 4 as the source of CH 3. Studies on O + C2H 4 reaction

[Buss et al. (1981), Kleinermanns and Luntz (1981), Hunziker et al. (1981), and Inoue and Akimoto

(1981)] have shown this reaction to be a poor source of CH 3. Therefore, the results of Washida et al. are

also not used.

CH30 2 + O 3. There are no direct studies of this reaction. The quoted upper limit is based on indirect

evidence obtained by Simonaitis and Heicklen (1975).

CH302 + CH302. This reaction has been studied at 298 K by Hochanadel et al. (1977), Parkes (1977),

Anastasi et al. (1978), Kan et al. (1979), Sanhueza et al. (1979), Cox and Tyndall (1980), Sander and

Watson (1981c), Basco and Parmer (1985), McAdam et al. (1987), Kurylo and Wallington (1987),

Jenkin et al. (1988), Lightfoot et al. (1990a), and Simon et al. (1990b). All the above determinations used

UV absorption techniques to monitor CH302 and hence measured k/o, where o is the absorption cross

section for CH302 at the monitored wavelength. Therefore, the derived value of k critically depends on

the value ore that is used. Even though there is good agreement between the measured values of k/a,

there are large discrepancies (approximately a factor of 2) between the values of o measured by

Hochanadei et al., Parkes, Sander and Watson, Adachi et al. (1980), McAdam et al., Kurylo et al.

(1987a), and Simon et al. To obtain the recommended k value at 298 K, an average value of a at 250 nm,

4.0 x 10 -18 cm 2 (obtained by averaging the results of Sander and Watson, Kurylo and Wallington as

amended in Dagaut and Kurylo (1990), Lightfoot et al., and Jenkin et al.) was chosen. The value of

k(298 K) was derived using this value of a and the weighted average value ofk/a at 250 nm measured by

Cox and Tyndall, Jenkin et al., Sander and Watson, McAdam et al., Kurylo and Wallington,

Lightfoot et al., and Simon et al. The recommended temperature dependence was calculated by using

the results of Sander and Watson, Kurylo and Wallington, Lightfoot et al. (at temperatures between 228

and 420 K), and Jenkin and Cox (1990), using a value of a independent of T. It has been recently shown

by Lightfoot and Jemi-Alade (1991) that o is essentially invariant with temperature. It is not clear

whether the above procedure of recalculating k using an average value of a is valid. Therefore, the

quoted error limits encompass the values of k calculated by various authors. This reaction has four

possible sets of products, i.e.,

CH302 + CH302 --* 2CH30 + 02

CI-I302 + CH302 -* CH2 O + CH3OH + 02

CH302 + CH302 _ CH3OOCH3 + O2

CH302 + CH302 _ CH3OOH + CH202

ka ; ka/k = 0.3 at 298 K

kb; kb/k = 0.6 at 298 K

kc; kc/k = 0.I at 298 K

kd; kd/k = 0.0 at 298 K

FTIR studies by Kan et al. (1980) and Niki et al. (1981) are in reasonable agreement on branching

ratios at 298 K; ka/k ~ 0.35, kb/k ~ 0.55. The recent study by Lightfoot et al. also yields ka/k --- 0.35

while Horie et al. (1990) obtain 0.30. The last two groups see a large decrease of ka/k with decreasing

temperature, which may be expressed as (ka/k) = 1/[1 + (exp(l130?r)}/19]. The results of Balled et al.

(1989) are in fair agreement with this trend. Channel (d) was suggested by NangJa and Benson (1980),
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but there is no experimental data to suggest its occurrence [Khursan et al..(1990)]. Because of the

existence of multiple pathways, the temperature dependence of k may be complex. Further work is

required on both the temperature dependence and the variation of branching ratios with temperature. It

should be noted that the recommended value depends on the branching ratios.

CH302 + NO. The value of k(298 K) is the average of those determined by Sander and Watson (1980),

Ravishankara eta]. (1981a), Cox and Tyndall (1980), Plumb et al. (1981), Simonaitis and Heieklen

(1981) and Zellner et al. (1986). Values lower by more than a factor of two have been reported by Adachi

and Basco (1979) and Simonaitis and Heicklen (1979). The former direct study was probably in error

because of interference by CH3ONO formation. The results of Simonaitis and Heicklen (1979) and

Plumb et al. (1979) are assumed to be superseded by their more recent values. Ravishankara et al.

(1981a) and Simonaitis and Heicklen (1981) have measured the temperature dependence of k over

limited temperature ranges. The recommended A-factor and E/R were obtained by a least squares

analysis of the data from these two studies. The value of k(218 K) obtained by Simonaitis and Heicklen

(1981) is not included; however, the large error bounds allow the calculated value ofk at 218 K to overlap

that measured by Simonaitis and Heicklen. Rav_shankara et al. (1981a) find that the reaction channel

leading to NO 2 accounts for at least 80% of the reaction. Zellner eta]. (1986) have measured the yield of

CH30 to be 1.0±0.2. These results, in conjunction with the indirect evidence obtained by Pate et al.

(1974), confirm that NO 2 formation is the major reaction path, at least at low pressures.

CH30 2 + HO 2. The rate coefficient at 298 K has been measured by Cox and Tyndall (1979, 1980),

Moortgat et al. (1986), McAdam et al. (1987), Kurylo et al. (1987b), Jenkin et al. (1988), and Lightfoot et

al. (1990b). In all the studies, except that of Jenkin et al., both CH302 and HO 2 have been monitored via

UV absorption. Jenkin et al. used IR absorption of HO 2 and UV absorption of CH30 2 to obtain the rate

constants. Because of overlapping absorption spectra of CH302 and HO 2 and the unavoidable

occurrence of the CH302 + CH302 and HO2 + HO2 reactions along with the CH302 + HO2 reaction, the

extraction of the rate coefficient requires modelling of the system and reliance on the UV cross sections

of both CH30 2 and HO 2. The agreement between the values ofk obtained by all these groups is not very

good. Part of the differences are definitely due to different values of the UV cross sections used in

various studies. Contribution from secondary reactions may also be partly responsible for the

differences. Unfortunately, it is not feasible to correct the reported values to a common set of cross

sections. Therefore, the average of values from Cox and Tyndall, Moortgat et al., McAdam et al.,

Kurylo and Wallington, Jenkin et al., and Lightfoot et al. are used to obtain the recommended value.

Cox and Tyndall, Dagaut et al. (1988a), and Lightfoot et al., have measured the temperature dependence

of this rate coefficient. The recommended E/R was obtained by plotting In (k(T)/k298) vs 1/T from

these studies. This method looks for only the E/R value in each data set. The A-factor was calculated to

reproduce k(298 K). The studies by the above groups have indicated that this reaction is not affected by

pressure or nature of the buffer gas.

Jenkin et al. suggest that a substantial fraction of the reaction may yield H20 + CH20 + 02 rather than

CH3OOH + 02. The lower value of k measured by monitoring CH3OOH formation by Moortgat et al.
and Kan et al. (1980) is consistent with the occurrence of the second channel and the lower value of k

measured when CH3OOH product yield is monitored. However, the recent work of Wallington (1991)

indicates that CH3OOH is the dominant (>92%), if not the only, product. Further work on measurement

of k without reliance on UV absorption cross sections and branching ratios where CH20 is monitored is

needed.

CH302 + CH3C(O)O2. New Entry. The reaction has been investigated by Addison et al. (1980),

Moortgat et al. (1986), and Moortgat et al. (1989a) using UV absorption in conjunction with
investigations of the CH3C(O)O 2 self-reaction. The rate coefficient obtained by Addison et al. is a

factor of -5 lower than those measured by Moortgat et al. (1986). It is believed that this lower value is

due to the use of low UV absorption cross sections, which were poorly known at the time of this study

[Moortgat et al. (1989)]. The recommended value is that obtained by Moortgat et al. (1989), which is in

excellent agreement with the value of Moortgat et al. (1986). The temperature dependence of k has been

studied by Moortgat et al. (1989) and is recommended.

The reaction has two pathways,
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CH3C(O)O2 + CH302 --* CH3C(O)O + CH30 + 02 (a)

CH3C(O)O2 + CH302 -_ CH3C(O)OH + CH20 + O2 (b).

Moortgat et al. (1989) have extracted from their measurements the following T dependence for the

individual rate coefficients over a very limited temperature range near 298 I_

k a ffi 1.8 x 10 .9 exp [-(1800 + ll00)/T] cm 3 molecule "1 s "1

k b = 4.1 x 10 "15 exp [(2100 + 1200)/T] cm 3 molecule "1 s "1"

Note that these rate coefficients have large uncertainties and should be used only for 250 < T < 350 K.

Pathway (a) was originally proposed by Weaver et al. (1976) while pathway (b) was proposed by

Moortgat et al. (1989).

C2H502 + C2H502. The recommended value of k(298 K) was derived from the studies of Adachi et al.

(1979), Anastasi et al. (1979), Munk et al. (1986), Cattell et al. (1986), Anastasi et al. (1987), and

Wallington et al. (1988a). All the above determinations used UV absorption to monitor C2H502 and

hence measured k/c, where a is the absorption cross section of C2H502 at the monitoring wavelength.

These investigators also measured the a that was used in evaluating the rate coefficient. There are

large discrepancies in the measured values of _. For this evaluation, we have used the reported value of

k rather than evaluating a mean value ofk/_ and converting it to k, using a preferred value ofa. In all

these experiments the observed rate coefficient is higher than the true rate coefficient because of

secondary reactions involving HO 2. HO 2 is formed by the reaction of CH3CH20 with 02, and reacts

with C2H502 to enhance the observed rate coefficient (see Wallington et al. for further discussion).

Based on product branching ratios discussed below, which determine the magnitude of the necessary
correction, the recommended rate coefficient is 0.6 times the average observed rate coefficient. The

recommended value of E/R was obtained from the results of Anastasi et al. (1979), Wallington et al.

(1988a), Anastasi (1987), and Cattell et al. (1986). The observed products [Niki et al. (1982)], suggest that

at 298K the channel to yield 2 C2H5 O + O2 accounts for about 60% of the reaction; the channel to yield

CH3CHO + C2H5OH + 02 accounts for about 40% of the reaction; and the channel to yield C2H502C2H 5

+ 02 accounts for less than 5% of the reaction. These branching ratios were used above to obtain the true

rate coefficient from the observed rate coefficient.

C2H502 + NO. The recommended value is that reported by Plumb et al. (1982). The value reported by

Adachi and Basco (1979), which is a factor of three lower than the Plumb et al. value, was not used. The

rate coefficient for the CH302 + NO reaction measured by Basco and co-workers [Adachi et al. (1979)],

using the same apparatus, is much lower than the value recommended here. The temperature

dependence of the C2H50 2 + NO rate coeffÉcient has not been measured. However, by analogy with the

CH30 2 + NO reaction, the ErR is expected to be near zero, with a small negative value being likely.

C2H502 + HO2. New Entry. The recommended value is the average of those measured by Cattell et al.

(1986) and Dagaut et al. (1988b). In both experiments the rate coefficient was obtained by modeling the

reaction system. Also, the calculated rate coefficients depended on the UV absorption cross sections of

both C2H50 2 and HO 2. As mentioned earlier, the absorption cross section of C2H50 2 is not well-

defined. The agreement between the two studies, however, is reasonable. The recommended ErR is

that measured by Dagaut et al. Wallington and Japar (1990) have shown that C2H502 H and 02 are the

only products of this reaction.

CH3C(O)O 2 + CH3C(O)O 2. New Entry. This reaction has been studied by Addison et al. (1980), Basco

and Parmar (1985), and Moortgat et al. (1989a), using UV absorption techniques. The recommended

value is that obtained by Moortgat et al. As pointed out by Moortgat et al., the six times lower value ofk

obtained by Addison et al. is likely due to the use of incorrect UV absorption cross sections for the

peroxyradical, which were poorly defined when the study was carried out. The k obtained by Basco and

Parmar is -2 times lower than the recommended value. This discrepancy is possibly due to neglecting

the UV absorption of CH302 in their data analysis [Moortgat et al. (1989a)]. The recommended

temperature dependence is that measured by Moortgat et al. Addison et al. reported the formation ofO3,

which was attributed to the reaction channel which produces CH3C(O)OCH3C(O) + 03. Moortg_t et al.
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place an upper limit of 2% for this channel. The main products of this reaction appear to be CH3C(O)O +

0 2. The CH3C(O)O radicals rapidly decompose to give CH 3 and CO 2.

CH3C(O)O 2 + NO. New Entry. This rate coefficient has been determined relative to that for the

addition reaction of CH3C(O)O 2 with NO 2 by Cox et el. (1976c), Cox and Roffey (1977), Hendry and

Kenley (1977), Kirchner et al. (1990), and Tuazon et al. (1991). The pressure and temperatures

employed in these studies are not all the same. The recommended value for the addition reaction of

CH3C(O)O 2 with NO 2 has been used to place all these relative values on an absolute scale. The obtained

values are in reasonable agreement and show that the rate coefficient is independent of pressure. The

recommended value was obtained by a weighted (depending on the number of determinations) average

of the results from all the investigators. The study of Kirchner et al. shows that the rate coefficient is

independent of temperature, at least within the small range of 304 to 321 K. Based on analogy with other

RO 2 + NO reactions, the E/R is recommended to be zero. The product of the reaction is most likely

CH3C(O)O and NO 2.

CH3C(O)O2 + HO2 • New Entry. The recommendation is based on Moortgat et el. (1989b), the only

measurement of this rate coefficient. They measured UV absorption at 210 and 260 nm as a function of

time in a flash photolysis system and fitted the observed 210 and 260 nm absorption temporal profiles to

a set of reactions involving CH3C(O)O2, CH302, and HO 2. The recommended temperature

dependence is also from this study. The rate coefficient obtained in such a measurement is dependent

on the UV absorption cross sections of all the absorbers and all their reactions. Hence, any change in

these parameters can change the calculated rate coefficient. The recommended k and E/R are

consistent with those for similar peroxy radical reactions. There are two possible channels for this
reaction:

CH3C(O)O2 + H02 -_ CH3C(O)OOH + O2 (a)

CH3C(O)O 2 + HO 2 _ CH3C(O)OH + 03 (b)

Niki et al. (1985) measured kb/k to be 0.25 which agrees reasonably with 0.33 measured by Moortgat et

el. Moortgat et al. also found that kb/k did not vary with temperature. A temperature independent

value of 0.3 is recommended for kb/k.

NO 3 + CO. The upper limit is based on the results of Hjorth et el. (1986), who monitored isotopically

labeled CO loss in the presence of NO 3 by FTIR. Burrows et a!. (1985b) obtained an upper limit of 4 x

10 "16 em 3 molecule "1 s "l, which is consistent v_th the Hjorth eta]. study. Products are expected to be

NO 2 + CO2, if the reaction occurs.

NO 3 + CH20. There are three measurements of this rate coefficient at 298 K: Atkinson et al. (1984a),

Cantrell et al. (1985), and Hjorth et el. (1988). The value reported by Atkinson et al. (I984a), k = (3.23 ±

0.26) x 10 "16 cm 3 molecule -1 s "l, is corrected to 5.8 x 10 "16 cm 3 molecule -1 s "1 to account for the different

value of the equilibrium constant for the NO 3 + NO 2 e-_ N20 5 reaction that was measured subsequent to

this study by the same group using the same apparatus. This correction is in accordance with their

suggestion [Tuazon et al. (1984)]. The value reported by Cantrell et al., and Hjorth et el. k = 6.3 x 10 "16

cm 3 molecule "1 s "1 and (5.4±1.1) x 10 "16 cm 3 molecule "1 s "l, respectively, are in good agreement with

the corrected value of Atkinson et al. The recommended value is the average of these three studies.

Cantrell et al. have good evidence to suggest that HNO 3 and CHO are the products of this reaction. The

temperature dependence of this rate coefficient is unknown.

NO 3 + CH3CHO. There are four measurements of this rate constant: Morris and Niki (1974),

Atkinson et el. (1984a), Cantrell et al. (1986), D]ugokencky and Howard (1989). The value reported by

Atkinson et el. (1984a), k = (1.34+0.28) x 10 "15 cm 3 molecule "1 s "1, is corrected to 2.4 x 10 "15 cm 3

molecule "1 s "1 as discussed for the NO 3 + H2CO reaction above and as suggested by Tuazon et el.

(1984}. The recommended value is the average of the values obtained by Atkinson et al., Cantrell et al.,

and Dlugokencky and Howard. The results of Morris and Niki agree with the recommended value

when their original data is re-analyzed using a more recent value for the equilibrium constant for the

reaction NO 2 + NO 3 e-_ N20 5 as shown by Dlugokencky and Howard. Dlugokencky and Howard have
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studied the temperature dependence of this reaction. Their measured value of E/R is recommended.

The A-factor has been calculated to yield the k(298 K) recommended here. Morris and Niki, and

Cantrell et al. observed the formation of HNO3 and PAN in their studies, which strongly suggests that

HNO 3 and CH3CO are the products of this reaction.

C1 + 03. The results reported for k(298 K) by Watson et al. (1976), Zahniser et al. (1976), Kurylo and

Braun (1976) and Ciyne and Nip (1976a) are in good agreement, and have been used to determine the

preferred value at this temperature. The values reported by Leu and DeMore (1976) (due to the wide
error limits) and Clyne and Watson (1974a) (the value is inexplicably high) are not considered. The

four Arrhenius expressions are in fair agreement within the temperature range 205-300 K. In this

temperature range, the rate constants at any particular temperature agree to within 30-40%. Although

the values of the activation energy obtained by Watson et al. and Kurylo and Braun are in excellent

agreement, the value of k in the study of Kurylo and Braun is consistently (-17%) lower than that of

Watson et al. This may suggest a systematic underestimate of the rate constant, as the values from the

other three agree so well at 298 K. A more disturbing difference is the scatter in the values reported for

the activation energy (338-831 cal/mol). However, there is no reason to prefer any one set of data to any

other; therefore, the preferred Arrhenius expression shown above was obtained by computing the mean

of the four results between 205 and 298 K. Inclusion of higher temperature (_<466 K) experimental data

would yield the following Arrhenius expression: k = (3.4±1.0) x 10 "11 exp(-310i76fr). Results of the

study by Nicovich et al. (1990b) show non-Arrhenius behavior over the temperature range 189-385 K.

These results are in good agreement with the present recommendation above about 250 K, but at lower

temperatures they are faster than the recommendation although still within its stated uncertainty down

to about 220 K. DeMote (1991) directly determined the ratio k(Cl + O3)/k(Cl + CH4) at 197-217 K to be

within 15% of that calculated from the absolute rate constant values recommended here.

Vanderzanden and Birks (1982) have interpreted their observation of oxygen atoms in this system as

evidence for some production (0.1-0.5%) of O 2 (1_: g+) in this reaction. The possible production of singlet

molecular oxygen in this reaction has also been discussed by DeMore (1981), in connection with the C12

photosensitized decomposition of ozone. However Choo and Leu (1985a) were unable to detect O2(1D or

O2(1A) in the C1 + 03 system and set upper limits to the branching ratios for their production of 5 x 10 -4

and 2.5 x 10 "2, respectively. They suggested two possible mechanisms for the observed production of

oxygen atoms, involving reactions of vibrationally excited C10 radicals with 03 or with C1 atoms,

respectively. Burkholder et al. (1989) in a study of infrared line intensities of the C10 radical present

evidence in support of the second mechanism. In their experiments with excess CI atoms, the

vibrationally excited C10 radicals produced in the CI + O3 reaction can react with Cl atoms to give Cl 2

and oxygen atoms which can. then remove additional C10 radicals. These authors point out the

possibility for systematic error from assuming a 1:1 stoichiometry for [C1)]:[O3] o when using the C1 +

O 3 reaction as a quantitative source of C10 radicals for kinetic and spectroscopic studies.

C1 + H 2. This Arrhenius expression is based on the data below 300 K reported by Watson et al. (1975),

Lee et al. (1977), Miller and Gordon (1981), and K/ta and Stedman (1982). The results of these studies

are in excellent agreement below 300 K; the data at higher temperatures are in somewhat poorer

agreement. The results of Watson et al., Miller and Gordon, and Kita and Stedman agree well (after

extrapolation) with the results of Benson et al. (1969) and Steiner and Ridea] (1939) at higher

temperatures. For a discussion of the large body of rate data at high temperatures, see the review by

Baulch et al. (1980). Miller and Gordon and Kita and Stedman also measured the rate of the reverse

reaction, and found the ratio to be in good agreement with equilibrium constant data.

Cl + CH 4. The values reported from the tbSrteen absolute rate coefficient studies for k at 298 K fall in the

range (0.99 to 1.48) x 10 "13, with a mean value of 1.15 x 10 "13. However, based upon the stated confidence

limits reported in each study, the range of values far exceeds that to be expected. A preferred average

value of 1.0 x l0 "13 can be determined from the absolute rate coefficient studies for k at 298 K by giving

equal weight to the values reported in Lin et al. (1978a), Watson et al. (1976), Manning and Kurylo

(1977); Whytock et al. (1977), Zahniser et al. (1978), Michael and Lee (1977), Keyser (1978), and

Ravishankara and Wine (1980). The values derived for k at 298 K from the competitive chlorination

studies of Pritchard et al. (1954), Knox (1955), Pritchard et a]. (1955), Knox and Nelson (1959), and Lin

et al. (1978a) range from (0.95-1.13) x l0 "13, with an average value of 1.02 x l0 "13. The preferred value
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of 1.0 x 10 "13 was obtained by taking a mean value from the most reliable absolute and relative rate

coefficient studies.

There have been nine absolute studies of the temperature dependence of k. In general the agreement

between most of these studies can be considered to be quite good. However, for a meaningful analysis of

the reported studies it is best to discuss them in terms of two distinct temperature regions, (a) below 300

K, and (b) above 300 K. Three resonance fluorescence studies have been performed over the temperature

range -200-500 K [Whytock et el. (1977), Zahniser et el. (1978) and Keyser (1978)] and in each case a

strong nonlinear Arrhenius behavior was observed. Ravishankara and Wine (1980) also noted

nonlinear Arrhenius behavior over a more limited temperature range. This behavior tends to explain

partially the large variance in the values of E/R reported between those other investigators who

predominantly studied this reaction below 300 K [Watson et al. (1976) and Manning and Kurylo (1977)]

and those who only studied it above 300 K [Clyne and Walker (1973), Poulet et al. (1974), and Lin et al.

(1978a)]. The agreement between all studies below 300 K is good, with values of(a) E/R ranging from

1229-1320 K, and (b) k(230 K) ranging from (2.64-3.32) x 10 "14" The mean of the two discharge flow

values [Zahniser et al. (1978) and Keyser (1978)] is 2.67 x 10 "14, while the mean of the four flash

photoIysis values [Watson et el. (1976), Manning and Kurylo (1977), Whytock et el. (1977), and

Ravishankara and Wine (1980)] is 3.22 x 10 "14 at 230 K. There have not been any absolute studies at

stratospheric temperatures other than those which utilized the resonance fluorescence technique.

Ravishankara and Wine (1980) have suggested that the results obtained using the discharge flow and

competitive chlorination techniques may be in error at the lower temperatures (<240 K) due to a non-

equilibration of the 2P1/2 and 2P3/2 states of atomic chlorine. Ravishankara and Wine observed that

at temperatures below 240 K the apparent bimolecular rate constant was dependent upon the chemical

composition of the reaction mixture; i.e., if the mixture did not contain an efficient spin equilibrator,

e.g. Ar or CC14, the bimolecular rate constant decreased at high CH 4 concentrations. The chemical

composition in each of the flash photolysis studies contained an efficient spin equilibrator, whereas this

was not the case in the discharge flow studies. However, the reactor walls in the discharge flow studies

could have been expected to have acted as an efficient spin equilibrator. Consequently, until the

hypothesis of Ravishankara and Wine is proven it is assumed that the discharge flow and competitive

chlorination results are reliable.

Above 300 K the three resonance fluorescence studies reported (a) "averaged" values of E/R ranging

from 1530-1623 K, and (b) values for k(500 K) ranging from (7.74-8.76) x 10 "13. Three mass

spectrometric studies have been performed above 300 K with E/R values ranging from 1409-1790 K. The

data of Poulet et al. (1974) are sparse and scattered, that of Clyne and Walker (1973) show too strong a

temperature dependence (compared to all other absolute and competitive studies) and k(298 K) is -20%

higher than the preferred value at 298 K, while that of Lin et al. (1978a) is in fair agreement with the

resonance fluorescence results.

In conclusion, it should be stated that the best values ofk from the absolute studies, both above and below

300 K, are obtained from the resonance fluorescence studies. The competitive chlorination results

differ from those obtained from the absolute studies in that linear Arrhenius behavior is observed. This

difference is the major discrepancy between the two types of experiments. The values of E/R range

from 1503 to 1530 K, and k(230 K) from (2.11-2.54) x 10 "14 with a mean value of 2.27 x 10 "14. It can be

seen from the above discussion that the average values at 230 K are: 3.19 x 10 "14 (flash photolysis), 2.67

x 10 "14 (discharge flow) and 2.27 x 10 "14 (competitive chlorination). These differences increase at

lower temperatures. Until the hypothesis of Ravishankara and Wine (1980) is re-examined, the

preferred Arrhenius expression attempts to best fit the results obtained between 200 and 300 K from all

sources. The average value ofk at 298 K is 1.04 x 10 "13, and at 230 K is 2.71 x 10 "14 (this is a simple

mean of the three average values). The preferred Arrhenius expression yields values similar to those

obtained in the discharge flow-resonance fluorescence studies. If only flash photolysis-resonance

fluorescence results are used then an alternate expression of 6.4 x 10 "12 (exp(-1200fr)) can be obtained

(k(298 K) = 1.07 x 10 -13, and k(230 K) = 3.19 x 10"14).

Cl + C2H6. The absolute rate coefficients reported in all four studies [Davis et al. (1970), Manning and

Kurylo (1977), Lewis et el. (1980), and Ray et al. (1980)] are in good agreement at 298 IC The value

reported by Davis et el. was probably overestimated by -10% (the authors assumed that If was
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proportional to [Cl]0"9, whereas a linear relationship between If and [eli probably held under their

experimental conditions). The preferred value at 298 K was taken to be a simple mean of the four

values (the value reported by Davis et al.was reduced by 10%), i.e.,5.7 x 10 "11. The two values reported

for E/R are in good agreement; E/R = 61 K (Manning and Kurylo) and E/R = 130 K (Lewis et al.). A

simple least squares fitto all the data would unfairly weight the data of Lewis et al. due to the larger

temperature range covered. Therefore, the preferred value of 7.7 x 10 "11 exp(-90fr) is an expression

which best fits the data of Lewis et al. and Manning and Kurylo between 220 and 350 K.

C1 + C3H 8. This recommendation isbased on results over the temperature range 220-607 K reported in

the discharge flow-resonance fluorescence study of Lewis et al. (1980). These results are consistent

with those obtained in the competitive chlorination studies of Pritchard et al. (1955), Knox and Nelson

(1959), Atkinson and Aschmann (1985), and Wallington et al.(1988).

Cl + CH3OH. This recommendation is based on the 200-500 K results of Michael et al. (1979b) by the

flash photolysis-resonance technique and the 298 K results of Payne et al. (1987) by the discharge flow-

mass spectrometry technique. Product analysis and isotopic substitution have established that the

reaction mechanism consists of abstraction of a hydrogen atom from the methyl group rather than from

the hydroxyl group. See Radford (1980), Radford et al. (1981), Meier et al. (1984), and Payne et al.

(1987). This reaction has been used as a source of CH2OH and as a source of HO2 by the reaction of

CH2OH with 02. The results obtained in the competitive chlorination studies of Wallington et al.

(1988c), Lightfoot et al.(1990b) and Nelson et al.(1990b) are consistent with the recommendation.

Cl + CH3CN. The recommendation accepts the upper limit at room temperature reported by Kurylo and

Knable (1984) using flash photolysis-resonance fluorescence. Poulet et al. (1984a) used discharge flow-

mass spectrometry and reported the expression k = 3.5 x 10 "11 exp(-2785fr) over the temperature range

478-723 K. They also reported a room temperature value of 9 x 10 "15, which is a factor of 3 greater than

that calculated from their expression. ]t appears likely that their room temperature observations were

strongly influenced by heterogeneous processes. It should be noted that their extrapolated room

temperature value is approximately equal to Kurylo and Knable's upper limit. Olbregts et al. (1984)

reported values near 400 K that agree with results ofPoulet et al.

Cl + CH3CI. The results reported by C]yne and Walker (1973) and Manning and Kurylo (1977) are in

good agreement at 298 K. However, the value of the activation energy measured by Manning and

Kurylo is significantly lower than that measured by Clyne and Walker. Both groups of workers

measured the rate constant for the C1 + CH4 and, similarly, the activation energy measured by

Manning and Kurylo was significantly lower than that measured by Clyne and Walker. It is

suggested that the discharge flow-mass spectrometric technique was in this case subject to a systematic

error, and it is recommended that the flash photolysis results be used for stratospheric calculations in

the 200-300 K temperature range (see discussion of the Cl + CH4 studies). In the discussion ofthe C1 +

CH4 reaction it was suggested that some of the apparent discrepancy between the results of Clyne and

Walker and the flash photolysis studies can be explained by nonlinear Arrhenius behavior. However,

it is less likely that this can be invoked for this reaction as the pre-exponential A-factor (as measured

in the flash photolysis studies) is already -3.5 xl0 "11 and the significant curvature which would be

required in the Arrhenius plot to make the data compatible would result in an unreasonably high value

for A (>2 x 10"10). Results of the relative rate study of Wallington et al. (1990b) are in good agreement

with the recommended value.

C1 + CH2CI 2. New Entry. The recommended value is based on results of the relative rate study of

Tschuikow-Roux et al. (1988) normalized to the value of the rate constant for the reference reaction (C1 +

CH 4) recommended in this evaluation. The room temperature value is in good agreement with results

of the relative rate study of Niki et al. (1980b). The higher results of Clyne and Walker (1973) were not
used.

C1 + CHCI 3. New Entry. The recommended value is based on results of the relative rate study of Knox

(1962) normalized to the values of the rate constants for the two reference reactions (Cl + CH 4 and C1 +

CH3Cl) recommended in this evaluation. The higher results of Clyne and Walker (1973) were not

used.
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C1 + CHFCl 2 (HCFC-21). New Entry. The recommended value is based on results of the relative rate

study of Glavas and Heicklen (1985) normalized to the value of the rate constant for the reference

reaction (C1 + NO + M) recommended in this evaluation.

C! + CH2FCl (HCFC-31). New Entry. The recommended value is based on results of the relative rate

study of Tschuikow-Roux et al. (1988) normalized to the value of the rate constant for the reference

reaction (C1 + CH 4) recommended in this evaluation.

C] + CH2F2 (HFC-32). New Entry. The recommended value is based on results of the relative rate

study of Tschuikow-Roux et al. (1985b) normalized to the value of the rate constant for the reference

reaction (C1 + CH 4) recommended in this evaluation.

C] + CH3F (HFC-41). New Entry. The recommended value is based on results of the direct study of

Manning and Kurylo (1977) using the flash photolysis-resonance fluorescence technique. The results

of the relative rate study of Tschuikow-Roux et al. (1988) are in good agreement at room temperature but

show a stronger temperature dependence, which is encompassed within the error limits.

C1 + CH3CC13 . There has been only one study of this rate, that by Wine et al. (1982), using a laser flash

photolysis-resonance fluorescence technique. It was concluded that the presence of a reactive impurity

accounted for a significant fraction of the Cl removal, and therefore only upper limits to the rate were

reported for the temperature range 259-356 K. This reaction is too slow to be of any importance in

atmospheric chemistry.

C1 + CHC12CF3 (HCFC-123). New Entry. The recommended value is based on results of the direct

study of Warren and Ravishankara (private communication) using the pulsed photolysis-resonanee

fluorescence technique, and the relative rate study of Wallington and Hurley (1992) at room

temperature.

C1 + CHFC1CF3 (HCFC-124). New Entry. The recommended value is based on results of the direct

study of Warren and Ravishankara (private communication) using the pulsed photolysis-resonance

fluorescence technique.

C1 + CH2ClCF 3 (HCFC-133a). New Entry. The recommended value is based on results of the direct

study of Jourdain et el. (1978b) using the discharge flow-mass spectrometric technique to monitor the

decay of the HCFC in the presence of a large excess of C1 atoms.

Cl + CHF2CHF2 (HFC-134). New Entry. The recommended value is based on results of the relative

rate study of Yano and Tschuikow-Roux (1986) normalized to the value of the rate constant for the

reference reaction (CI + C2H6) recommended in this evaluation.

C1 + CH2FCF3 (HFC-134a). New Entry. The recommended value is based on results of the relative rate

study of Wellington and Hurley (1992).

C1 + CH3CFC13 (HCFC-141b). New Entry. The recommended value is based on results of the relative

rate study of Warren and Ravishankara (private communication) using the pulsed photolysis-

resonance fluorescence technique and the relative rate study of Wallington and Hurley (1992) at room

temperature.

C1 + CH3CF2CI (HCFC-142b). New Entry. The recommended value is based on results of the relative

rate study of Wallington and Hurley (1992).

C1 + CH2FCHF 2 (HFC-143). New Entry. The recommended values for the two reaction channels are

based on results of the relative rate study of'Tschuikow-Roux et al. (1985b) normalized to the value of the

rate constant for the reference reaction (CI + CH 4) recommended in this evaluation.
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Cl+CH3CF3(HFC-143a).NewEntry.Therecommendedvalueisbasedonresultsoftherelativerate
studyofTschuikow-Rouxetal. (1985b)normalizedto thevalueoftherateconstantforthereference
reaction(C1+CH4)recommendedin thisevaluation.

C1+ CH2FCH2F(HFC-152).NewEntry. Therecommendedvalueisbasedonresultsoftherelative
rate study of Yano and Tschuikow-Roux (1986) normalized to the value of the rate constant for the

reference reaction (C1 + C2H 6) recommended in this evaluation.

Cl + CH3CHF 2 (HFC-152a). New Entry. The recommended values for the two reaction channels are

based on results of the relative rate study of Yano and Tschuikow-Roux (1986) normalized to the value

of the rate constant for the reference reaction (C1 + C2H 6) recommended in this evaluation. The overall

rate constant value is in good agreement with results of the relative rate study of Wallington and

Hurley (1992) at room temperature.

C1 + CH3CH2F (HFC-161). New Entry. The recommended values for the two reaction channels are

based on results of the relative rate study of Tschuikow-Roux et al. (1985b) normalized to the value of the

rate constant for the reference reaction (Cl + CH4) recommended in this evaluation.

C1 + CH3CO3NO 2 (PAN). New Entry. The recommended value is based on results of the relative rate

study of Wallington et al. (1990b). In this study no reaction of PAN was observed in the presence of Cl

atoms. These results are preferred over the results of the direct study of Tsalkani et al. (1988) using a

discharge flow system with EPR detection of C1 atom decay (in which study the authors reported a rate

constant of (3.7+1.7) x 10 "13 cm 3 molecule "1 s-l). In both studies the major impurity in the PAN

samples would be the alkane solvent. The presence of 0.1% tridecane in the PAN sample used by

Tsalkani et al. could account for the observed C] atom decay; however, solvent impurities in the PAN

sample would be of no consequence in the relative rate study of Wallington et al.

C1 + H2CO. The results from five of the six published studies [Michael et al. (1979a), Anderson and

Kurylo (1979), Niki et al. (1978a), Fasano and Nogar (1981) and Poulet et al. (1981)] are in good

agreement at -298 K, but -50% greater than the value reported by Foon et al. (1979). The preferred value

at 298 K was obtained by combining the absolute values reported by Michael et al., Anderson and

Kurylo, and Fasano and Nogar, with the values obtained by combining the ratio of k(Cl + H2CO)/k(Cl ÷

C2H 6) reported by Niki et al. (1.3+0.1) and by Poulet et al. (1.16±0.12) with the preferred value of 5.7 x

10 "11 for k(C1 + C2H 6) at 298 K. The preferred value of E/R was obtained from a least squares fit to all

the data reported in Michael et al. and in Anderson and Kurylo. The A-factor was adjusted to yield the

preferred value at 298 K.

C] + H20 2. The absolute rate coefficients determined at -298 K by Watson et al. (1976), Leu and DeMore

(1976), Michael et al. (1977), Poulet eta]. (1978a) and Keyser (1980a) range in value from (3.6-6.2) x

10 "13. The studies of Michael et al., Keyser, and Poulet et al. are presently considered to be the most

reliable. The preferred value for the Arrhenius expression is taken to be that reported by Keyser. The

A-factor reported by Michael et al. is considerably lower than that expected from theoretical

considerations and may possibly be attributed to decomposition of H20 2 at temperatures above 300 K.

The data of Michael et al. at and below 300 K are in good agreement with the Arrhenius expression

reported by Keyser. More data are required before the Arrhenius parameters can be considered to be

well-established. Heneghan and Benson (1983), using mass spectrometry, confirmed that this reaction

proceeds only by the abstraction mechanism giving HC1 and HO 2 as products.

C1 + HOCl. This recommendation is based on results over the temperature range 243-365 K using the

discharge flow-mass spectrometric technique in the only reported study of this rate, Cook et al. (1981a).

Ennis and Birks (1985) have measured the product distribution in a discharge flow-mass spectrometric

system and found that the major reaction channel is that to give the products C]2 + OH with a yield of

91±6%.

CI + HNO 3. The recommended upper limit at room temperature is that reported in the recent study of

Wine et al. (1988), in which long path laser absorption spectroscopy was used to look for the appearance

of NO 3 following the pulsed laser photolysis of Cl2-HNO3 mixtures and no evidence for NO 3 production

was observed. In the same study a less sensitive upper limit was derived from monitoring CI atom
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decaybyresonancefluorescence.A lesssensitiveupperlimit wasalsofoundin therecentdischarge
flow-EPRstudyofZagogiannietal. (1987).Highervaluesobtainedinearlierstudies[LeuandDeMore
(1976),Kuryloetal.(1983b),andClarketal.(1982)]aswellasthehighertemperatureresultsofPouletet
al.(1978a)arenotused.

C1+HO2. TherecommendationsforthetworeactionchannelsarebasedupontheresultsbyIce and
Howard(1982)usingadischargeflowsystemwithlasermagneticresonancedetectionofHO2,OHand
ClO. Thetotal rateconstantis temperatureindependentwitha valueof (4.2±0.7)x 10-11cm3
molecule"1s°1overthetemperaturerange250-420K. Thisvaluefor thetotalrateconstantis in
agreementwiththeresultsofindirectstudiesrelativetoCl+H202[LeuandDeMore(1976),Pouletetal.
(1978a),Burrowsetal. (1979)]or to Cl +H2 [Cox(1980)].Thecontributionofthereactionchannel
producingOH+C10(21%atroomtemperature)ismuchhigherthantheupperlimit reportedbyBurrows
et al. (1%of total reaction).CattellandCox(1986)usinga molecularmodulation-UVabsorption
techniqueoverthepressurerange50-760torrreportresultsin goodagreementwith thoseofLeeand
Howardbothfortheoverallrateconstantandfortherelativecontributionofthetworeactionchannels.
TherateconstantforthechannelproducingC10+OHcanbecombinedwiththatforthereactionCIO+
OH>C1+HO2togiveanequilibriumconstantfromwhichavalueoftheheatofformationofriO2at298
K of3.0kcal/molcanbederived.

Cl+C120.Thepreferredvaluewasdeterminedfl'omtwoindependentabsoluteratecoefficientstudies
reportedbyRayet al. (1980),usingthedischargeflow-resonancefluorescenceanddischargeflow-
massspectrometrictechniques.ThisvaluehasbeenconfirmedbyBurrowsandCox(1981)who
determinedtheratiok(Cl+ Cl20)/k(Cl+H2)= 6900 in modulated photolysis experiments. The earlier

value reported by Basco and Dogra (1971a) has been rejected. The Arrhenius parameters have not been

experimentally determined; however, the high value of k at 298 K precludes a substantial positive

activation energy.

CI + OC10. The recent data of Toohey (1988) are in good agreement with the results of Bemand et al.

(1973) at room temperature, and the recommended value at room temperature is the mean of the values

reported in these two studies. The slight negative temperature dependence reported by Toohey (1988) is

accepted but with error limits that encompass the temperature independence reported in the earlier

study.

C1 + C1OO. The recommended value is based on the results of recent studies by Mauldin et al. (1992)

and Baer et al. (1991), in which studies C1OO was formed by the pulsed photolysis of C12/O2 mixtures

and its overall loss rate was monitored by UV absorption. In both studies k was found to be independent

of temperature. These results are preferred over the results of the earlier, indirect studies of Johnston et

al. (1969), Cox et al. (1979), and Ashford et al. (1978). The earlier studies did show that the predominant

reaction pathway is that yielding Cl2 + 02 as products. From the branching ratio data of Cox et al.,

Ashford et al., and Nicholas and Norrish (1968), it can be estimated that this reaction channel

constitutes 95% of the overall reaction with ClO + ClO the products of the minor (5%) reaction channel.

C1 + C120 2. The recommended value is that determined by Friedl (private communication, 1989) in a

study using a DF-MS technique. It is in agreement with the value reported by Cox and Hayman (1988)

in a study using a static photolysis technique with photodiode array UV spectroscopy.

Cl + ClONO 2. Flash photolysis/resonance fluorescence studies by Margitan (1983a) and by Kurylo et

al. (1983a), which are in good agreement, show that the rate constant for this reaction is almost two

orders of magnitude faster than that indicated by the previous work of Kurylo and Manning (1977) and

Ravishankara et al. (1977b). It is probable that the slower reaction observed by Kurylo and Manning

was actually O + C1NO3, not Cl + CINO 3. The preferred value averages the results of the two new

studies.

Cl + NO 3. The recommended value at room temperature is based on the recent discharge flow-EPR

study ofMe]]ouki et a]. (1987). The results of this direct absolute rate study are preferred over results of

the earlier relative rate studies of Cox et al. (1984a), Burrows et al. (1985b), and Cox et al. (1987), in all of

which NO 3 was monitored in the photolysis of C12-C]ONO2-N 2 mixtures. Complications in the

chemistry of the earlier systems probably contributed to the spread in reported values. This radical-
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radical reaction is expected to have negligible temperature dependence, which is consistent with the

results from the study of Cox et al. (1987) in which the complications must have been temperature-

independent.

CI + N20. This rate coefficient has been determined in a study of the halogen-catalyzed decomposition

of nitrous oxide at about 1000 K by Kaufman et al. (1956). The largest value reported was 10 "17 cm 3

molecule "1 s "l, with an activation energy of 34 kcal/moh Extrapolation of these results to low

temperature shows that this reaction cannot be of any significance in atmospheric chemistry.

C1 + C1NO. Recent studies have significantly improved the database for this rate constant. The

discharge flow-resonance fluorescence study of Abbatt et ah (1989) provides the first reliable data on the

temperature dependence. The laser photolysis-LMR study of Chasovnikov et al. (1987) provides rate

data for each Cl atom spin state, and they attribute the low value reported by Nelson and Johnston (1981)

in a laser flash photolysis-resonance fluorescence study to reaction of the C1 2P1/2 state. Adsorption

and decomposition of C1NO on the walls of their static system may account for the very low value of

Grimely and Houston (1980). The results of Clyne and Cruse (1972) in a discharge flow-resonance

fluorescence study are significantly lower than all recent results. The recommended value at room

temperature is the mean of the values reported by Abbatt et al. (1989), Chasovnikov et al. (1987), Nesbitt

et al. (1987), and Kita and Stedman (1982). The recommended temperature dependence is from the

study of Abbatt et ah (1989).

ClO + O. Recently there have been five studies of this rate constant over an extended temperature range

using a variety of techniques: Leu (1984b); Margitan (1984h); Schwab et al. (1984); Ongstad and Birks
(1986); and Nicovich et ah (1988). The recommended value is based on a least squares fit to the data

reported in these studies and in the earlier studies of Zahniser and Kaufman (1977) and Ongstad and

Birks (1984). Values reported in the early studies ofBemand et ah (1973) and Clyne and Nip (1976b) are

significantly higher and were not used in deriving the recommended value. Leu and Yung (1987) were

unable to detect O2(1_:) or O2(1A) and set upper limits to the branching ratios for their production of 4.4 x

10 -4 and 2.5 x 10 -2 respectively.

CIO + NO. The absolute rate coefficients determined in the four discharge flow-mass spectrometric

studies [Clyne and Watson (1974a), Leu and DeMote (1978), Ray and Watson (1981a) and Clyne and

MacRobert (1980)] and the discharge flow laser magnetic resonance study Lee et al. (1982) are in

excellent agreement at 298 K, and are averaged to yield the preferred value. The value reported by

Zahniser and Kaufman (1977) from a competitive study is not used in the derivation of the preferred

value as it is about 33% higher. The magnitudes of the temperature dependences reported by Leu and

DeMore (1978) and Lee et ah are in excellent agreement. Although the E/R value reported by Zahniser

and Kaufman (1977) is in fair agreement with the other values, it is not considered as it is dependent

upon the E/R value assumed for the Cl + 03 reaction. The Arrhenius expression was derived from a

least squares fit to the data reported by Clyne and Watson, Leu and DeMore, Ray and Watson, Clyne
and MacRobert and Lee et al.

C10 + NO3 The recommended value is based on results reported by Cox et al. (1984a) and by Cox et al.

(1987) in the only reported stucSes of this reaction. Both studies used the modulated photolysis of C12 +

ClONO 2 mixtures. In the new study a small temperature dependence is reported, but because of

uncertainties in the data a temperature-independent va]ue is recommended in this evaluation.

C10 + HO 2 . There have now been five studies of this rate constant. Three were low pressure discharge

flow studies, each using a different experimental detection technique (Reimann and Kaufman, 1978;

Stimpfle et ah, 1979; Leck et al., 1980), and two were molecular modulation studies; at one atmosphere

(Burrows and Cox, 1981), and over the pressure range 50-760 torr (Cattell and Cox, 1986). The 298 K

values reported, in units of 10 "12 cm 3 molecule "1 s "l, are: 3.8+0.5 (Reimann and Kaufman), 6.3+1.3

(Stimpf[e et al.), 4.5±0.9 (Leck et ah), 5.4 (Burrows and Cox), and 6.2±1.5 (Cattell and Cox). The

recommended value is the mean of these values. The study of Cattell and Cox over an extended

pressure range when combined with results of the low pressure discharge flow studies seems to indicate

that this reaction exhibits no pressure dependence at room temperature. The only temperature

dependence study (Stimpfle eta].) resulted in a non-linear Arrhenius behavior. The data were best

described by a four parameter equation of the tbvm k = Ae B/T ÷ CT n, possibly suggesting that two
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different mechanisms may be occurring. The expression forwarded by Stimpfle et al. was 3.3 x 10 "11

exp(-850/T) + 4.5 x 10 "12 (T/300) "3"7. Two possible preferred values can be suggested for the temperature

dependence of k; (a) an expression of the form suggested by Stimpfle et al., but where the values of A and

C are adjusted to yield a value of 5.0 x 10 "12 at 298 K, or (b) a simple Arrhenius expression which fits the

data obtained at and below 300 K (normalized to 5.0 x 10 "12 at 298 K). The latter form is preferred. The

two most probable pairs of reaction products are, (1) HOC1 + O 2 and (2) HC1 + 03. Leu (1980b) and Leek

et el. used mass spectrometric detection of ozone to place upper limits of 1.5% (298 K) and 3.0% (248 K);

and 2.0% (298 K), respectively, on k2/k. Burrows and Cox report an upper limit of 0.3% for k2/k at 300

K.

C10 + H2CO. Poulet et al. (1980) have reported an upper limit of 10 -15 ¢m 3 molecule "1 s "1 for k at 298 K

using the discharge flow-EPR technique.

CIO + OH. The recommended value is based on a fit to the 219-373 K data of Hills and Howard (1984),

the 243-298 K data of Burrows et al. (1984a), and the 298 K data of Poulet et el. (1986a). Data reported in

the studies of Ravishankara et al. (1983a), and Leu and Lin (1979) were not used in deriving the

recommended value because in these studies the concentration of ClO was not determined directly.

The results of Burrows et al. are temperature-independent while those of Hills and Howard show a

slight negative temperature dependence. The fraction of total reaction yielding HO2 + Cl as products

has been determined by Leu and Lin (>0.65); Burrows et al. (0.85+0.2); Hills and Howard (0.86+0.14);

and Poulet et al. (0.98±0.12). The latest study gives an upper limit of 0.14 for the branching ratio to give

HCI + 0 2 as products. The uncertainties in all studies allow for the possibility that the HC1 yield is

indeed zero.

ClO Reactions. These upper limits are based on the data of Walker (reported in Clyne and Watson,

1974a). The upper limits shown for k(298) were actually determined from data collected at either 587 or

670 K. The Arrhenius expressions were estimated based on this -600 K data.

CIO + C10. There are three bimolecular channels for this reaction: C10 + CIO -_ OCIO + C1 (kl); ClO +

C10 -_ Cl + C1OO (k2); and C10 + C10 -* Cl 2 + O2 (k3). The recommended values given here are for the

total rate coefficient at low pressures. They are based largely on results obtained in the discharge flow

studies of Clyne and Coxon (1968), Clyne and White (1971) and Clyne et el. (1975). Note that the rate

constant is here defined as -d(C10)/dt = 2 k (C10) 2. Molecular modulation studies of Hayman et el.

(1986) and Cox and Derwent (1979) have given a similar temperature dependence but somewhat lower

rate constant values. The product branching ratios and their dependence on temperature and pressure

are not well established. The low pressure results indicate that k 2 and k 3 are both important, while k 1

represents only about 10 percent of the total reaction. Results of the recent molecular modulation study

of Simon et al. (1990a) are significantly different indicating an equal partitioning among the three

reaction channels. Moreover, the overall rate constant value is nearly twice as large as that reported by

Clyne and co-workers. This new work raises questions. However, we prefer to leave unchanged the

present recommendation which is based on the low pressure studies of Clyne and co-workers -- the

higher pressure used in the study of Simon et el. (1990a) may result in complications in the chemistry.

These new results are encompassed within the stated uncertainty limits. The reaction exhibits both

bimolecu]ar and termolecular reaction channe}s (see entry for this reaction in Table 2). The

termolecular reaction, presumably to give the dimer, dominates at pressures higher than about 10 torr;

however, the role of the dimer in the overall reaction is unclear - whether it is merely in equilibrium

with CIO or decomposes to give the same products given in the bimolecular reaction channels. Some

product branching ratio data have been derived from studies of the chlorine photosensitized

decomposition of ozone. In these systems there are uncertainties concerning the need for some reaction

of the C120 2 complex in order to account for the strong temperature dependence of the ozone quantum

yield and also concerning the possible role of ClO complex formation with 0 2 and subsequent reactions

of the C10-O2 complex. The equilibrium constant for formation of the Cl20 2 dimer is given in Table 3.

ClO + 0 3. There are two possible channels for this reaction: C10 + 0 3 --_ CIOO + 0 2 (kl); and C10 + 0 3

OCIO + O 2 (k2). The recommended upper limit for k 1 at 298 K is based on results ofthe recent study

by Stevens and Anderson (1990). These authors also report that k 1 = (4_+2) x 10 "16 cm 3 molecule "1 s "1 at

413 K. These data can be combined to derive the Arrhenius parameters A = 2 x 10 -12 cm 3 molecule "1 s "1
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and E/R > 3600 IC The upper limit for k 2 is based on results reported by DeMore et al. (1976) and

Wongdontri-Stuper et al. (1979); the Arrhenius parameters for k 2 were estimated.

ClO + CH302. There are two possible channels for this reaction: C10 + CH302 _ ClOO + CH30 (kl);

and (310 + CH302 -_ OClO + CH30 (k2). DeMore (1991) reported the results of a study of the photolysis of

C12/CH4/O3/O2/N 2 mixtures at _. > 320 nm, with products monitored by UV-VIS and FTIR absorption

spectroscopy. The following upper limits at 200 K were derived: k 1 < 4 x 10 "12 cm 3 molecule -1 s -1 and

k2 < 1 x 10 "15 cm 3 molecule "1 s "1. These results are preferred over the low temperature value suggested

by Simon et al. (1989) (which was based on results of their room temperature study) because the newer

results provide more direct information on the rate of this reaction at low temperatures.

OH + C12. The recommended room temperature value is the average of the results reported by

Boodaghians et al. (1987), Loewenstein and Anderson (1984), Ravishankara et al. (1983a), and Leu and

Lin (1979). The temperature dependence is from Boodaghians eta]. Loewenstein and Anderson

determined that the exclusive products are Cl + HOCl.

OH + HC1. The recommended value is based on a least squares fit to the data reported in the recent

studies by Molina et al. (1984), Keyser (1984), and Ravishankara et al. (1985b). In these studies

particular attention was paid to the determination of the absolute concentration of HCl by UV and IR

speetrophotometry. Earlier studies by Takacs and Glass (1973c), Zahniser et al. (1974), Smith and

Zellner (1974), Ravishankara et al. (1977a), Hack et al. (1977), Husain et al. (1981), Cannon et al.

(1984), Husain et al. (1984), and Smith and Williams (1986) had reported somewhat lower room

temperature values.

OH + HOCl. In the only reported study of this system Ennis and Birks (1988) reported the value of this

rate constant at room temperature to lie in the range (1.7 - 9.5) x 10 "13 cm 3 molecule -1 s "1. A

temperature dependent expression has been estimated by choosing a pre-exponential factor by analogy

with the OH + H20 2 reaction and selecting the midpoint of the experimental range for the room

temperature rate constant. The large uncertainty factor is needed to encompass the entire range.

OH + CH3C1. The preferred values were obtained using only absolute rate coefficient data. The data of

Howard and Evenson (1976a), Davis et al. (1976), Perry et al. (1976a), Paraskevopoulos et al. (1981) and

Jeong and Kaufman (1982) are in good agreement and were used to determine the preferred values.

The preferred Arrhenius expression was derived from a least squares fit to the data below 400 K.

Results of a new study by Taylor et al. (1989) over the temperature range 295-800 K are in good

agreement with the recommendation at room temperature, but values extrapolated to stratospheric

temperatures are substantially lower than the recommendation.

OH + CH2C12. The data of Howard and Evenson (1976a), Perry et al. (1976), Davis et al. (1976) and

Jeong and Kaufman (1982) are in reasonable agreement. The temperature dependence data of Davis et

al. tend to somewhat smaller values than those of Jeong and Kaufman but the resulting activation

energies are in good agreement. The preferred Arrhenius expression was derived from a least squares

fit to the data below 400 K. The recommended room temperature value was derived from the Arrhenius

expression at 298 K. Results of a new study by Taylor eta]. (1989) over the temperature range 298-775 K

are in reasonable agreement with the recommendation at room temperature and when extrapolated to

stratospheric temperatures.

OH + CHC13. The preferred values were obtained using only absolute rate coefficient data. The

accuracy of the OH + CH4/OH + CHC13 study (Cox et al., 1976a) was probably no better than a factor of 2.

The data of Howard and Evenson (1976a), Davis et al. (1976) and Jeong and Kaufman (1982) are in good

agreement and were used to determine the preferred values. The preferred Arrhenius expression was

derived from a least squares fit to the data below 400 K. Results of a new study by Taylor et al. (1989)

over the temperature range 295-775 K are in good agreement with the recommendation at room

temperature, but values extrapolated to stratospheric temperatures are higher than the
recommendation.

OH + CC14. The recommended upper limit at room temperature is based on the upper limit reported in

the competitive study by Cox et al. (1976a). The value given there has been increased by a factor of four
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toallowforuncertaintiesin thenumberof NO molecules oxidized. The recommendation is compatible

with the less sensitive upper limits reported by Howard and Evenson (1976a) and Clyne and Holt

(1979a). None of these investigators reported any evidence for reaction between these species. The A-

factor was estimated and a lower limit for E/R was derived.

OH + CFCI 3. The A-factor was estimated, and a lower limit was derived for E/R by using the upper

limit reported for the rate constant by Chang and Kaufman (1977b) at about -480 K. This expression is

quite compatible with the upper limits reported by Atkinson et al. (1975), Howard and Evenson (1976a),

Cox et al. (1976a) and Clyne and Holt (1979b). None of the investigators reported any evidence for

reaction.

OH + CF2C12 . The A-factor was estimated, and a lower limit was derived for E/R by using the upper

limit reported for the rate constant by Chang and Kaufman (1977b) at about -480 K. This expression is

quite compatible with the upper limits reported by Atkinson et al. (1975), Howard and Evenson (1976a),

Cox et al. (1976a) and Clyne and Holt (1979b). None of the investigators reported any evidence for

reaction.

OH + CHFC12 (HCFC-21). Absolute rate coefficient data for this reaction have been reported by Howard

and Evenson (1976a), Perry et al. (1976a), Watson et al. (1977), Chang and Kaufman (1977a), Clyne and

Holt (1979b), Paraskevopoulos et al. (1981) and Jeong and Kaufman (1982). The database is well

established and there have been no new data recently. The preferred values are derived from a fit to all

data below 400 K except the rate constants of Clyne and Holt (1979b) which have a significantly larger

temperature dependence than all the other studies. The rate constants from the latter study are

consistently larger than those obtained in all other studies.

OH + CHF2C1 (HCFC-22). Absolute rate coefficient data for this reaction have been reported by Howard

and Evenson (1976a), Atkinson et al. (1975), Watson et al. (1977), Chang and Kaufman (1977a),

Handwerk and Zellner (1978), Clyne and Holt (1979b), Paraskevopoulos et al. (1981) and Jeong and

Kaufman (1982). The database is well established and there have been no new data recently. The

preferred values are derived from a fit to all data below 400 K except the rate constants of Clyne and Holt

(1979b), which have a significantly larger temperature dependence than all the other studies.

OH + CH2FCI (HCFC-31). The data for this reaction are in excellent agreement. The recommended

Arrhenius expression was derived from the room temperature data of Howard and Evenson (1976a) and

Paraskevopoulos et al. (1981), and the temperature dependence data of Watson et al. (1977), Handwerk

and Zellner (1978) and Jeong and Kaufman (1982) below 400 K.

OH + CH3CC13. The k(298K) recommendation is based on absolute rate studies of Talukdar et al.

(1992) and Finlayson-Pitts et al. (1992), and a relative rate study (CH 4 as reference) of DeMote (1992).

The temperature dependence is that of Talukdar et al. (1992). These recent studies indicate both a lower

k(298K) and E/R than was reported in earlier studies: Nelson et al. (1990a), Jeong and Kaufman

(1979), and Kurylo et al. (1979).

OH + CHCI2CF 3 (HCFC-123). The preferred rate expression is derived from the temperature

dependence data below 400 K of Nielsen (1991), Gierczak et al. (1991), Liu eta]. (1990), Watson et al.

(1979), and the room temperature data of Howard and Evenson (1976b). The data of Brown et al. (1990a)

and Clyne and Holt (1979b) were not considered. The recommended value of k298 is derived from the

temperature dependence expression.

OH + CHFCICF3 (HCFC-124). The preferred rate expression is derived from the temperature

dependence data of Gierczak et al. (1991), Watson et al. (1979), and the room temperature data of

Howard and Evenson (1976b). The recommended value of k298 is derived from the temperature

dependence expression.

OH + CH2C1CF2C1 (HCFC-132b). The recommended temperature dependence was derived from the

data of Watson eta]. (1979b) which were corrected by these authors for the presence of alkene

impurities. The data of Jeong et al. (1984), indicating substantially faster rate constants may have

been affected by such impurities and hence were not included in deriving the recommendation. The

preferred value of k298 was derived from the recommended Arrhenius expression.
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OH + CH2C1CF 3 (HCFC-133a). The temperature dependence of the preferred rate expression was

derived from the data of Handwerk and Zellner (1978). The recommended value of k298 is the average
of the values of Howard and Evensen (1976b) and Handwerk and Zellner (1978) adjusted to 298 IC The
data of Clyne and Holt (1979b) were not used in deriving this recommendation.

OH + CH3CFCI2 (HCFC-141b). The preferred rate expression is significantly different from that in

NASA (1990) due to the recent data of Talukdar et al. (1991a) and Zhang et al. (1992a). The above review
was based on the results of Liu et al. (1990) and the preliminary data of Talukdar et al. which showed
noticeable curvature in the Axrhenius plots. The reaction rate at the lowest temperature, being so slow,
is most likely to be affected by impurities. The use of higher-purity samples and improved OH
detection sensitivity in the studies of Talukdar et al. and Zhang et al. resolved the problem of
Arrhenius curvature. The new results imply an A-factor which is more consistent with similar H-
abstractions by OH. The temperature dependence expression is derived from the data of Zhang et al.
(1992a), Liu et al. (1990) at 330 K and above, and the data of Talukdar et al. above 253 K. The
temperature dependence data of Brown et al. (1990a) were not considered because the relatively large
rate constants and Arrhenius curvature are suggestive of sample impurities. The recommended value
of k298 is obtained from the temperature dependence expression.

OH + CH3CF2CI (HCFC-142b). The recommended rate expression is derived from a fitto the

temperature dependence data ofGeirczak etal.(1991),Liu etal.(1990),Watson etal.(1977),Handwerk

and Zellner(1978),the 270 K data ofZhang etal.(1992a)and the room temperature data ofHoward and

Evenson (1976b),and Paraskevopoulosetal.(1981).The data from Brown etal.(1990a)and Clyne and

Holt(1979b)were not considered.The valueofk298 was derivedfrom the rateexpression.

OH + CF3CF2CHCI2 (HCFC-225ca). The preferredrate expressionisderivedfrom the temperature

dependence data ofNelson etal.(1992)and Zhang etal.(1991).The data ofBrown etal.(1990b)were

ignored. The recommended value ofk298 isobtainedfrom the temperature dependence expression.

OH + CF2CICF2CHFCI (HCFC-225cb). The preferredrate expressionisderivedfrom the temperature

dependence data of Nelson etal.(1992)and Zhang et al.(1991). The recommended value ofk298 is

obtainedfrom the temperature dependence expression.

OH + CH3CF2CFCI2 (HCFC-243cc). The preferredrate expressionisderivedfrom the temperature

dependence data of Nelson et al. (1992). The recommended value of k298 isobtained from the

temperature dependence expression.

OH + C2CI4. The preferredvalueat298 K isa mean ofthevalue reportedby Howard (1976)and Chang

and Kaufman (1977a). The value reportedby Winer et al.(1976),which ismore than a factorof 10

greater,isrejected.The preferredArrhenius parameters are those ofChang and Kaufman. Kirchner

etal.(1990)reporta room temperature rate constantin good agreement with the recommended value

and Arrhenius parameters in reasonableagreement with the recommended values.

OH + C2HCI 3. The preferredvalue at 298 K isa mean of the values reportedby Howard (1976)and

Chang and Kaufman (1977a). The value derivedfrom a relativerate coefficientstudy by Winer etal.

(1976)isa factorof-2 greaterthan the other values and isnot consideredin derivingthe preferred

value at298 K. The Arrhenius parameters are based on those reportedby Chang and Kaufman (theA-

factorisreduced toyieldthe preferredvalueat298 K). Kirchner etal.(1990)reporta room temperature
rateconstantand Arrhenius parameters in reasonableagreement with the recommended values.

E76. OH + CINO 2. The recommended value isbased on resultsofthe directstudy ofGanske etal.(1991)

using the dischargeflow-resonancefluorescencetechnique. Mass spectrometricstudiesshowed HOCI

tobe the major productwith no evidenceforproductionofHONO 2 or CI2.

E77. OH + CIONO 2. The resultsreportedby Zahniser etal.(1977)and Ravishankara etal.(1977b)are in

good agreement at -245 K (within25%), consideringthe difficultiesassociatedwith handling CIONO2.

The preferredvalueisthatofZahniser etal.Neitherstudyreportedany data on the reactionproducts.
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O + HCI. Fair agreement existsbetween the results of Brown and Smith (1975), Wong and Belles (1971),

Ravishankara et al. (1977a), Hack et al. (1977) and Singleton and Cvetanovic (1981) at 300 K (some of

the values for k(300 K) were obtained by extrapolation of the experimentally determined Arrhenius

expressions), but these are a factor of -7 lower than that of Balakhnin et al.(1971). Unfortunately, the

values reported for E/R are in complete disagreement, ranging from 2260-3755 I_ The preferred value

was based on the results reported by Brown and Smith, Wong and Belles, Ravishankara et al.,Hack et

al.and Singleton and Cvetanovic but not those reported by Balakhnin et al.

O + HOCI. There are no experimental data; this is an estimated value based on rates of O-atom

reactions with similar compounds.

O + CIONO2. The results reported by Molina et al. (1977b) and Kurylo (1977) are in good agreement,

and this data has been used to derive the preferred Arrhenius expression. The value reported by

Ravishankara et al. (1977b) at 245 K is a factor of 2 greater than those from the other studies, and this

may possibly be attributed to (a) secondary kinetic complications, (b) presence of NO 2 as a reactive

impurity in the ClONO2, or (c) formation of reactive photolytic products. None of the studies reported

identification of the reaction products. The room temperature result of Adler-Golden and Wiesenfeld

(1981) is in good agreement with the recommended value.

O + Cl20. The recommendation averages the results of Miziolek and Molina (1978) for 236-295 K with

the approximately 30 percent lower values of Wecker et al. (1982) over the same temperature range.

Earlier results by Basco and Dogra (I97Ic) and Freeman and Phillips (1968) have not been included in

the derivation of the preferred value due to data analysis difficulties in both studies.

OCIO + O. The recommended value is based on results of the DF-RF study of Gleason et al. (1991).

Over the temperature range from 400 K down to 240 K their data are well fitted by this Arrhenius

expression, but at lower temperatures down to 200 K their data show an abrupt change to a negative

temperature dependence. At 200 K the value measured is a factor of 3 higher than that calculated from

the Arrhenius expression. Similar results were obtained in a recent study (Toohey, Avallone, and

Anderson, private communication). Over the temperature range 413 - 273 K their data showed a

temperature dependence very similar to that reported by Gleason et al. over the same temperature

range. Moreover as the temperature was lowered further their rate constant values also levelled off and

then increased at the lowest temperature. Their rate constant values were nearly 50% lower than the

values of Gleason et al. from 400 K down to 273 K and 30% lower at 253 K. Colussi (1990), using a laser

flash photolysis - resonance fluorescence technique over an extended pressure range, reported a value

of the bimolecular rate coefficient at room temperature 50% higher than the recommended value.

Colussi et al.(1992) extended these measurements down to 248 K; in contrast to the positive temperature

dependence over thistemperature range reported by Gleason et al.(1991), these authors report a negative

temperature dependence. The bimolecular rate constants reported by Colussi et al. (1992) are not

directly measured but are derived quantities which are consistent with fa|]off curves fitted to the

experimental data over the pressure range 20 -600 torr. Itappears that the experiments of Bemand et al.

(1973), which provided the basis for the previously recommended value (a factor of 5 higher than the

present recommendation), were complicated by secondary chemistry. The results of Colussi (1990) and

Colussi et ah (1992) over an extended pressure range demonstrate the importance of the termolecular

reaction O + OCIO + M -_ CIO 3 + M (see entry for this reaction in Table 2). Itshould be noted that the

termolecular rate constants derived by Gleason et al. (1991) on the basis of their low temperature data

are not consistent with the termolecular rate constant expression recommended in this evaluation

(factor of 3 difference),which expression is based on the results of Colussi (1990) and Colussi eta].

(1992).

OCIO + 03. The recommended value is based on results over the temperature range 262-296 K reported

by Wongdontri-Stuper et ah (1979). Within the indicated uncertainty limits it also encompasses the

somewhat lower room temperature result of Birks et al.(1977).

OClO + OH. The recommended value is that reported by Poulet et al. (I986b), the only reported study of

this rate constant, using a discharge flow system in which OH decay was measured by LIF or EPR over
the temperature range 293-473 K. Product HOC1 was detected by modulated molecular beam mass

spectrometry. The branching ratio for the channel to produce HOC] + 02 was determined to be close to

unity, but experimental uncertainty would allow it to be as low as 0.80.
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OC10 + NO. The Arrhenius expression was estimated based on 298 K data reported by Bemand, Clyne
and Watson (1973).

C1202 + 03. The recommended upper limit is that determined by DeMore and Tschuikow-Roux (1990).

It refers to a temperature of 195 K and while the reaction possibly could be faster at higher temperatures,
the value of the rate at the higher temperatures would be of no significance because of the thermal
decomposition of the dJmer.

C1202 + NO. The recommended upper limit is that determined by Fried] (private communication,

1989) in a study using a DF-MS technique.

HC1 + NO3. The recommended upper limit is that reported by Mellouki et al. (1989) in a study using

DF-EPR techniques. This upper limit shows that this reaction is of negligible importance in
stratospheric chemistry. Somewhat lower upper limits have been reported by Cantrell et al. (1987b) and
Canosa-Mas et al. (1989); the latter study also reports Arrhenius parameters at higher temperatures
(333-473 K).

HCi + C1ONO 2. Recently, results of four studies of the kinetics of this system have been published, in

which the following upper limits to the homogeneous bimolecular rate constant were reported: 1 x 10 "19

cm 3 molecule -1 s-1 by a static wall-less long-path UV absorption technique and a steady-state flow

FTIR technique (Molina et a]., 1985); 5 x 10 -18 using a flow reactor with FTIR analysis (Fried] et al.,

1986); and 8.4 x 10"21 using a static photolysis system with FTIR analysis (Hatakeyama and Leu, 1986

and Leu et al., 1989), and 1.5 x 10 -19 by FT!R analysis of the decay of C1ONO 2 in the presence of HC1 in

large-volume (2500 and 5800 liters) Teflon or Teflon-coated chambers (Atldnson et al., 1987). Earlier,
Birks et al. (1977) had reported a higher upper limit. All studies found this reaction to be catalyzed by
surfaces. The differences in the reported upper limits can be accounted for in terms of the very
different reactor characteristics and detection sensitivities of the various studies. The homogeneous
reaction is too slow to have any significant effect on atmospheric chemistry.

HC1 + HO2NO 2. This upper limit is based on results of static photolysis-FTIR experiments reported by
Leu et al. (1989).

H2 O + C1ONO 2. This recommendation is based on the upper limits to the homogeneous bimolecular

rate constant reported by Atkinson et al. (1986), and by Hatakeyama and Leu (1986, 1989). Atkinson et
al. observed by FTIR analysis the decay of CIONO 2 in the presence of H20 in large-volume (2500 and

5800 liters) Teflon or Teflon-coated chambers. Their observed decay rate gives an upper limit to the
homogeneous gas phase rate constant, and they conclude that the decay observed is due to heterogeneous
processes. Hatakeyama and Leu, using a static photolysis system with FTIR analysis, derive a
similar upper limit. Rowland et al. (1986) concluded that the decay they observed resulted from rapid
heterogeneous processes. The homogeneous reaction is too slow to have any significant effect on
atmospheric chemistry.

CF2C102 + NO. The recommended value is based on results reported by Dognon et al. (1985) for the

temperature range 230-430 K, using a pulsed laser photolysis - time resolved mass spectrometry
technique. Measurement of NO 2 yields showed that CF2C10 and NO2 are the major products. The

alkoxy radical produced (CF2ClO) decomposes spontaneously to yield a carbonyl (CF20) plus a C1
atom.

CFC120 2 + NO. The recommended value is based on results reported by Dognon et al. (1985) for the

temperature range 230-430 K, using a pulsed laser photolysis - time resolved mass spectrometry
technique. It is in good agreement with the room temperature value reported by Lesclaux and Caralp
(1984). Measurement of NO 2 yields by Dognon et al. showed that CFC120 and NO 2 are the major

products. The alkoxy radical produced (CFC120) decomposes spontaneously to yield a carbonyl

(CFC10) plus a Cl atom.

CC1302 + NO. The recommended value isbased on resultsreported by Dognon et al.(1985)forthe

temperature range 230-430 K, using a pulsed laser photolysis- time resolved mass spectrometry
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technique. It is in good agreement with the room temperature value reported by Ryan and Plumb (1984).

Measurement of NO 2 yields by Dognon et al. showed that CCI30 and NO 2 are the major products. The

alkoxy radical produced (CC130) decomposes spontaneously to yield a carbonyl (CCI20) plus a Ci atom.

Br + 0 3. The results reported for k(298 K) by Clyne and Watson (1975), Leu and DeMore (1977), Michael

et al. (1978), Michael and Payne (1979), and Toohey et al. (1987b) are in excellent agreement. The

preferred value at 298 K is derived by taking a simple mean of these five values. The temperature

dependences reported for k by Leu and DeMote and by Toohey et al. are in good agreement, but they can

only be considered to be in fair agreement with those reported by Michael et al. and Michael and Payne.

The preferred value was synthesized to best fit all the data reported from these five studies. The new

results of Nicovich et al. (1990b) are in excellent agreement with this recommendation.

Br + H202. The recommended upper limit to the value ofthe rate constant at room temperature is based

on results reported in the study by Toohey et al. (1987) using a discharge flow-laser magnetic resonance

technique. Their upper limit determined over the temperature range 298-378 K is consistent with less

sensitive upper limits determined by Leu (1980a) and Posey et al. (1981) using the discharge flow-mass

spectrometric technique. The much higher value reported by Heneghan and Benson (1983) may result

from the presence of excited Br atoms in the very low pressure reactor. The pre-exponential factor was

chosen to be consistent with that for the C1 + H202 rate constant, and the E/R value was fitted to the upper

limit at 298 K.

Br + H2CO. There have been two studies of this rate constant as a function of temperature; Nava et al.

(1981), using the flash photolysis-resonance fluorescence technique, and Poulet et al. (1981), using the

discharge flow-mass spectrometric technique. These results are in reasonably good agreement. The

Arrhenius expression was derived from a least squares fit to the data reported in these two studies. The

higher room temperature velue ofLe Bras et al. (1980) using the discharge flow-EPR technique has been

shown to be in error due to secondary chemistry (Poulet et al.).

Br + HO2. This recommendation is based on results obtained over the 260-390 K temperature range in

the recent study by Toohey et al. (1987), using a discharge flow system with LMR detection of HO 2 decay

in excess Br. The room temperature value reported in this study is a factor of three higher than that

reported by Poulet et a]. (1984b) using LIF and MS techniques and is an order of magnitude larger than

the value of Posey et al. (1981). The uncertainty in E/R is set to encompass the value F_JR = O, as for

other radical-radical reactions. A new value determined by Laverdet et al. (1990) using DF-EPR

techniques is in good agreement with this recommendation. The reactions of Br atoms with FI202,

HCHO, and HO 2 are all slower than the corresponding reactions of Cl atoms by one to two orders of

magnitude.

Br + C120. The recommended value is that reported by Sander and Friedl (1989). It was derived by

observing the formation of C10 using long path UV absorption following the flash photolysis of a Br 2 -

C120 mixture.

Br + OC10. The recommended value at room temperature is the mean of the values reported by Clyne

and Watson (1977) and Toohey (1988). In the earlier study correction for the effect of the rapid reverse

reaction was required. The temperature dependence reported by Toohey (1988) is accepted but with
increased error limits.

Br + C120 2. The recommended value is that determined by Friedl (private communication, 1989) in a

study using a DF-MS technique.

BrO + O. The preferred value is based on the value reported by Clyne et al. (1976). This value appears

to be quite reasonable in light of the known reactivity of C10 radicals with atomic oxygen. The

temperature dependence ofk is expected to be small for an atom-radical process, e.g., O + CIO.

BrO + ClO. There has recently been a substantial improvement in the database for this rate coefficient.

Friedl and Sander (1989) using DF/MS techniques measured the overall rate constant over the

temperature range 220-400 K and also over this temperature range determined directly branching

ratios for the reaction channels producing BrC1 and OC10. The same authors in a separate study using

flash photolysis-ultraviolet absorption techniques (Sander and Friedl, 1989) determined the overall
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rate constant over the temperature range 220-400 K and pressure range 50-750 torr and also determined

at 220 K and 298 K the branching ratio for OC10 production. The results by these two independent

techniques are in excellent agreement, with the overall rate constant showing a negative temperature

dependence. Toohey and Anderson (1988) using DF/RF/LMR techniques reported room temperature

values of the overall rate constant and the branching ratio for OC10 production. They also found

evidence for the direct production of BrC1 in a vibrationally excited n state. Poulet et al. (1990) using

DF/MS techniques reported room temperature values of the overall rate constant and branching ratioe

for OClO and BrC1 production. Overall room temperature rate constant values reported also include

those from the DF/MS study of Clyne and Watson (1977) and the very low value derived in the flash

photolysis study of Basco and Dogra (1971b) using a different interpretation of the reaction mechanism.

The recommended Arrhenius expressions for the individual reaction channels are taken from the

study of Friedl and Sander (1989). This study and the very recent study of Turnipseed et al. (1991a)

contain the most comprehensive sets of rate constant and branching ratio data. The overall rate

constants reported in these two studies are in good agreement (20%) at room temperature and in

excellent agreement at stratospheric temperatures. Both studies report that OClO production by channel

(1) accounts for 60% of the overall reaction at 200 K. Both studies report a BrCl yield by channel (3) of

about 8%, relatively independent of temperature. The recommended expressions are consistent with

the body of data from all studies except those of Hills et al. (1988) and Basco and Dogra (1971b).

BrO + NO. The results of the three low pressure mass spectrometric studies (Clyne and Watson, 1975;

Ray and Watson, 1981a; Leu, 1979a) and the high pressure UV absorption study (Watson et al. 1979a),

which all used pseudo first-order conditions, are in excellent agreement at 298 K, and are thought to be

much more reliable than the earlier low pressure UV absorption study (Clyne and Cruse, 1970b). The

results of the two temperature dependence studies are in good agreement and both show a small
negative temperature dependence. The preferred Arrhenius expression was derived from a least

squares fit to all the data reported in the four recent studies. By combining the data reported by Watson

et al. with those from the three mass spectrometric studies, it can be shown that this reaction does not

exhibit any observable pressure dependence between 1 and 700 torr total pressure. The temperature

dependences of k for the analogous ClO and HO2 reactions are also negative, and are similar in

magnitude.

BrO + BrO. There are two possible bimolecular channels for this reaction: BrO + BrO --, 2Br + 02 (k 1)

and BrO + BrO --* Br 2 + O 2 (k2). The total rate constant for disappearance ofBrO (k = k 1 + k 2) has been

studied by a variety of techniques, including discharge flow-ultraviolet absorption (Clyne and Cruse,

1970a), discharge flow.mass spectrometry (Clyne and Watson, 1975; Turnipseed et al. 1990; and

Lancar et al. 1991) and flash photolysis-ultraviolet absorption (Basco and Dogra, 1971b; Sander and

Watson, 1981b). Since this reaction is second order in [BrO], those studies monitoring [BrO] by

ultraviolet absorption required the value of the cross section o to determine k. There is substantial

disagreement in the reported values of o. Although the magnitude of o is dependent upon the particular

spectral transition selected and instrumental parameters such as spectral bandwidth, the most likely

explanation for the large differences in the reported values ofo is that the techniques (based on reaction

stoichiometries) used to determine o in the early studies were used incorrectly (see discussion by Clyne

and Watson). The study of Sander and Watson used totally independent methods to determine the

values of o and (o/k). The recommendations for k 1 and k 2 are consistent with a recommendation of k

= 1.14 x 10 "12 exp(+255fr) cm 3 molecule "1 s "1. This temperature dependence is the average of the

corrected value from Sander and Watson and from Turnipseed et al., and the pre-exponential factor

has been chosen to fit the value of k(298 K) = 2.7 x 10 "12 cm 3 molecule "1 s "l, which is the average of the

values reported by Clyne and Watson (the mass spectrometric study where knowledge of o is not

required), by Sander and Watson (the latest absorption study) by Turnipseed et al. and by Lancar et al.

There was no observable pressure dependence from 50 to 475 torr in the study by Sander and Watson.

Cox et al. (1982) used the molecular modulation technique with ultraviolet absorption to derive a

temperature independent value of k2 which is 50 percent greater than the 298 K value recommended

here.

The partitioning of the total rate constant into its two components, k 1 and k2, has been measured at

room temperature by Sander and Watson (1981b), Turnipseed et al. (1990) and Lancar et al. (1991), by

Jaffe and Mainquist (1980) from 258 to 333 K, and by Cox et al. (1982) from 278 to 348 K. All are in

agreement that kl/k = 0.84±0.03 at 298 K. In the temperature dependent studies the quantum yield for
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thebrominephotosensitizeddecompositionofozone was measured. Jaffe and Mainquist observed a

strong, unexplained dependence of the quantum yield at 298 K on [Br2] , and their results were obtained

at much higher [Br 2] values than were those of Cox et al. This make a comparison of results difficult.

From an analysis of both sets of temperature dependent data, the following expressions for kl/k were

derived: 0.98 exp(-44/T) (Jaffe and Mainquist); 1.42 exp(-163/T) (Cox et al.); and 1.18 exp(-104]T)

(mean value). This mean value has been combined with the expression for kl shown in the table. The

expression for k2 results from the numerical values of k2 at 200 K and 300 K derived from the

evaluation of these expressions for k I and fbr k = (kl + k2). In a very recent study (Mauldin, Wahner,

and Ravishankara, private communication) the overall rate constant was observed to be pressure

dependent at 220 K, at which temperature an additional, short-lived, absorption feature was observed

and was tentatively attributed to the dimer Br202.

BrO + 03. Based on a study reported by Sander and Watson (1981b). Clyne and Cruse (1970a) reported an

upper limit of 8 x 10 "14 cm 3 molecule "1 s "1 for this reaction. Both studies reported that there is no

evidence for this reaction. The analogous C10 reaction has a rate constant of <10 -18 cm 3 molecule "1

s-].

BrO + HO2. The preferred value is based on the study of Pou]et et al (1992) in which BrO decay in excess

HO 2 was monitored by DF/MS. The only product observed was HOBr; however, the possible production

of HBr requires further study. These new results are preferred over the previous study of Cox and

Sheppard (1982) by molecular modulation-UV absorption in which a much lower value (factor of 6) was

reported. The temperature dependence is our estimate, based on analogy with the ClO + HO 2 reaction.

BrO + OH. Value chosen to be consistent with k(ClO + OH), due to the absence of any experimental
data.

OH + Br2. The recommended room temperature value is the average of the values reported by

Boodaghians et al. (1987), Loewenstein and Anderson (1984), and Poulet et al. (1983). The temperature

independence is from Boodaghians et a]. Loewenstein and Anderson determined that the exclusive

products are Br + HOBr.

OH + HBr. The preferred value at room temperature is the average of the values reported by

Ravishankara et al. (1979a) using FP-RF, by Jourdain et al. (1981) using DF-DPR, by Cannon et al.

(1984) using FP-LIF, and by Ravishankara et al. (1985a) using LFP-RF and LFP-LIF techniques. In

this latest study the HBr concentration was directly measured in-situ in the slow flow system by UV

absorption. The rate constant determined in this re-investigation is identical to the value

recommended here. The data of Ravishankara et al. (1979a) show no dependence on temperature over

the range 249-416 K. Values reported by Takacs and Glass (1973a) and by Husain eta]. (1981) are a

factor of two lower and were not included in the derivation of the preferred value.

OH + CH3Br. The recommended value is derived from an analysis of results of the studies of Mellouki

et al. (1992) and Zhang et al (1992b). The results of these extensive studies are in excellent agreement

and are preferred over the higher values reported in the earlier studies of Davis et al. (1976) and

Howard and Evensen (1976a).

OH + CHF2Br. New Entry. The recommended value is based on results of the direct study of Talukdar

et al. (1991b) using two techniques: pulsed laser photolysis with LIF detection of OH and discharge

flow-LMR detection of OH. These results are preferred over the consistently higher results by Brown et
al. (1990b).

F19. OH + CF2Br 2. The recommended upper limit at room temperature is the upper limit reported by

Burkholder et al. (1991) in a study using pulsed photolysis-LIF and DF-LMR techniques.

F20. OH + CF2C1Br. The recommended upper limit at room temperature is the upper limit reported by

Burkholder et al. (1991) in a study using pulsed photolysis-LIF and DF-LMR techniques. A less

sensitive upper limit was reported by Clyne and Holt (1979a).
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OH + CF3Br. The recommended upper limit at room temperature is the upper limit reported by

Burkholder et al. (1991) in a study using pulsed photolysis-LIF and DF-LMR techniques. A less

sensitive upper limit was reported by LeBras and Combourieu (1978).

OH + CF2BrCF2Br. The recommended upper limit at room temperature is the upper limit reported by

Burkholder et al. (1991) in a study using pulsed photolysis-LIF and DF-LMR techniques.

O + HBr. Results of the flash photolysis-resonance fluorescence study of Nays et al. (1983) for 221-455 K

and the laser flash photolysis-resonance fluorescence study of Nicovich and Wine (1989) for 250-402 K

provide the only data at stratospheric temperatures. Results have also been reported by Singleton and

Cvetanovic (1978) for 298-554 K by a phase-shift technique, and discharge flow result_ of Brown and

Smith (1975) for 267-430 K and of Takacs and Glass (1973b) at 298 K. The preferred value is based on the

results of Nava et al., those of Nicovich and Wine and those of Singleton and Cvetanovic over the same

temperature range, since these results are less subject to complications due to secondary chemistry than

are the results using discharge flow techniques. The uncertainty at 298 K has been set to encompass

these latter results.

NO 3 + Br. The recommended value is that reported by Mellouki et al. (1989) in a study using DF-DPR

techniques.

NO 3 + BrO. The recommended value is the geometric mean of the lower and upper limits reported by

Mellouki et al. (1989) in a study using DF-DPR techniques. These reported limits are encompassed
within the indicated uncertainty limits.

NO3 + HBr. The recommended upper limit is the upper limit reported by Mellouki et al. (1989) in a

study using DF-EPR techniques. This upper limit shows that this reaction is of negligible importance

in stratospheric chemistry. Canosa-Mas eta]. (1989) reported a value which is consistent, within

experimental error, with the upper limit of Mellouki et al.

F + O 3. The only experimental data are those reported by Wagner et al. (1972). The value appears to be

quite reasonable in view of the well-known reactivity of atomic chlorine with 03.

F + H 2. The value of k at 298 K seems to be well established with the results reported by Zhitneva and

Pshezhetskii (1978), Heidner et al. (1979, 1980), Wurzberg and Houston (1980), Dodonov et al. (1971),

Clyne et al. (1973), Bozzelli (1973), Igoshin et al. (1974), Clyne and Hodgson (1985) and Stevens et al.

(1989) being in excellent agreement (range of k being 2.3-3.0 x 10 "11 em 3 molecule "1 s'l). The

preferred value at 298 K is taken to be the mean of the values reported in these references. Values of E/R

range from 433-595 K (Heidner et al.; Wurzberg and Houston; Igoshin et al.; and Stevens et al.). The

preferred value of E/R is derived from a fit to the data in these studies. The A-factor was chosen to fit the

recommended room temperature value.

F + CH 4. The three absolute rate coefficients determined by Wagner eta]. (1971), Clyne et al. (1973)

and Kompa and Wanner (1972) at 298 K are in good agreement; however, this may be somewhat

fortuitous as the ratios of k(F + H2)/k(F + CH 4) determined by these same groups can only be considered

to be in fair agreement, 0.23, 0.42 and 0.88. The values determined for k (298) from the relative rate

coefficient studies are also in good agreement with those determined in the absolute rate coef_cient

studies, and the value of 0.42 reported for k(F + H2)/k(F + CH 4) by Foon and Reid (1971) is in good

agreement with that reported by Clyne et al. Fasano and Nogar (1982) determined the absolute room

temperature rate coefficient, and the rate coefficient relative to that of the reaction F + D2. The preferred

value for k (298) is a weighted mean of all the results. The magnitude of the temperature dependence is

somewhat uncertain. The preferred Arrhenius parameters are based on the data reported by Wagner et

al., and Foon and Reid, and the preferred Arrhenius parameters of the F + H 2 reaction. This reaction

has been reviewed by both Foon and Kaufman (1975) and Jones and Skolnik (1976). The A-factor may

be too high.

F + H20. The recommended temperature-independent value is based on results reported in the recent

study by Stevens et al.(1989) over the temperature range 240-373 K using a discharge flow system with

chemical conversion of fluorine atoms to deuterium atoms and detection of the latter by resonanace

fluorescence. This value is in excellent agreement with the room temperature results of Frost et al.
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(1986) and Walther and Wagner (1983). The latter authors in a limited temperature dependent study

reported an E/R value of 400 K. Although these data have not been included in the derivation of the

preferred value, with the exception of the one low temperature data point, they are encompassed within

the indicated uncertainty limits.

F + HNO 3. The recommendation is based on results of the temperature-dependent study of Wine et al.

(1988) and the room temperature results of Mellouki et al.(1987) and Rahman et al. (1988). The values

at room temperature are in good agreement. The study of Wine et ai. (1988) was over the temperature

range 260-373 IC Below 320 K the data were fittedwith the Arrhenius expression recommended here,

whereas at higher temperatures a temperature-independent value was found, suggesting the occurrence

of differentmechanisms in the two temperature regimes.

NO + FO. This is the value reported by Ray and Watson (1981a) for k at 298 K using the discharge flow-

mass spectrometric technique. The temperature dependence of k is expected to be small for such a

radical-radical reaction. The temperature dependences of k for the analogous C10 and BrO reactions

(Table 1) are small and negative.

FO + FO. The value ofk(FO + FO) reported by Clyne and Watson (1974b) was obtained in a more direct

manner than that of Wagner et al. (1972), and as such is less susceptible to error due to the presence of

complicating secondary reactions. The value recommended in this assessment is a weighted average

of the two studies. From the data of Wagner et al. it can be seen that the dominant reaction channel is

that producing 2F + 02. However, their database is not adequate to conclude that this is the only process.

FO + O3. The FO + O 3 reaction has two possible pathways which are exothermic, resulting in the

production of F + 202 or FO2 + 02. Although this reaction has not been studied in a simple direct

manner, two studies of complex chemical systems have reported some kinetic information about it.

Starrico et al. (1962) measured quantum yields for ozone destruction in F2/O 3 mixtures, and attributed

the high values, -4600, to be due to the rapid regeneration of atomic fluorine via the FO + O 8 --_ F + 20 2

reaction. However, their results are probably also consistent with the chain propagation process being

FO + FO --_ 2F + 02 (the latter reaction has been studied twice (Wagner et al., 1972; Clyne and Watson,

1974b), and although the value of [F]produced/[FO]consumed is known to be close to unity, it has not been

accurately determined. Consequently it is impossible to ascertain from the experimental results of

Starrico et al.whether or not the high quantum yieldsfor ozone destruction should be attributed to the FO

+ 03 reaction producing either F + 202 or FO2 + 02 (thisprocess is also a chain propagation step ifthe

resulting FO 2 radical preferentiallyreacts with ozone rather than with either FO or itself).Wagner et

al. utilized a low pressure discharge flow-mass spectrometric system to study the F + 0 3 and FO + FO

reactions by directly monitoring the time history of the concentrations of F, FO and 03. They

concluded that the FO + 03 reaction was unimportant in their system. However, their paper does not

present enough information to warrant this conclusion. Indeed, their value ofk(FO + FO) of 3 x 10"11 is

about a factor of 4 greater than that reported by Clyne and Watson, which may possibly be attributed to

either reactive impurities being present in their system, e.g.,O(3p), or the FO + 03 reactions being not

of negligibleimportance in their study. Consequently, itis not possible to determine a value for the FO

+ 03 reaction rate constant from existing experimental data. It is worth noting the analogous CIO + 03

reactions are extremely slow (<10 "18 cm 3 molecule -1 s"1) (DeMore et al.,1976), and upper limits of 8 x

10"14 (Clyne and Cruse, 1970a) and 5 x 10"15 cm 3 molecule -1 s"1 (Sander and Watson, 1981b) have been

reported for BrO + 03.

O + FO. This estimate isprobably accurate to within a factor of 3,and isbased upon the assumption that

the reactivityof FO is similar to that of CIO and BrO. The temperature dependence of the rate constant

is expected to be small, as for the analogous CiO reaction.

O + FO 2. No experimental data. The rate constant for such a radical-atom process is expected to

approach the gas collisionfrequency, and is not expected to exhibit a strong temperature dependence.

OH + CHF3 (HFC-23). The recommendation isbased on three data points: the room temperature points

of Howard and Evenson (1976a), and the 387 K and 410 K points of Jeong and Kaufman (1982). The data

of Clyne and Holt (1979b) were not considered because of the large disparity with other studies. Because
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G12.

G13.

G14.

G15.

G16.

G17.

G18.

G19.

G20.

of experimental complications associated with the measurement of rate constants near 10 "16 cm 3

molecule -1 s "1, the k298 determinations of Howard and Evenson (1976a) and Nip et al. (1979) should be

considered upper limits. The Howard and Evenson value, being the smaller of the two, was therefore

used as the basis for the k298 recommendation.

OH + CH2F2 (HFC-32). The temperature dependence of the preferred rate expression is derived from

the data of Jeong and Kaufman (1982), Ta]ukdar et al. (1991a) below 400 K and the room temperature

data of Howard and Evenson (1976a) and Nip et al. (1979). Although the data of Clyne and Holt (1979b)

are consistent with the data from the other studies, this study is not included in the least squares fit. The

recommendation for k298 is derived from the Arrhenius line.

OH + CH3 F (HFC-41). The temperature dependence of the preferred rate expression is derived from the

data of Jeong and Kaufman (1982) below 400 K. The recommendation for k298 is derived from the

average of the room temperature data of Jeong and Kaufman (1982), Howard and Evenson (1976a) and

Nip et al (1979).

OH + CHF2CF 3 (HFC-125). The preferred rate expression is derived from the temperature dependence

data of Talukdar et al. (1991a) and the room temperature data of Martin and Paraskevopoulos (1983)

and DeMore (1992). Due to the large discrepancy between the room temperature rate constant of Clyne

and Holt (1979b) and those of Martin and Paraskevopoulos and Talukdar et al., the Clyne and Holt data

were ignored. The data from Brown et al. (1990a) were not considered due to the likelihood of

impurities. The preferred value of k298 is taken from the recommended temperature dependence.

OH + CHF2CHF 2 (HFC-134). For the preferred rate expression, the data of Clyne and Holt (1979b) were

rejected in favor of an estimated temperature dependence. The recommended value of k298 was

obtained by adjusting the 294 K value of Clyne and Holt (1979b) to 298 K.

OH + CH2FCF 3 (HFC-134a). The preferred rate expression was derived from the data of Gierczak et al.

(1991) above 243 K, Liu et al. (1990), the 270 K data of Zhang et al. (1992a) and the room temperature data

of Martin and Paraskevopoulos (1983) and DeMote (1992). The data of Jeong et al. (1984), Brown et al.

(1990a), and Clyne and Holt (1979b) were not considered. The recommended value of k298 is obtained

from the temperature dependence expression.

OH + CH2FCHF2 (HFC-143). The only temperature dependence data for this reaction are those of Clyne

and Holt (1979b). Due to the large discrepancy between the room temperature rate constant of Clyne and

Holt (1979b) and that measured by Martin and Paraskevopoulos (1983), and the generally poor

agreement between the Clyne and Holt data and that of other workers for several other halomethanes

and haloethanes, the Clyne and Holt data were not used in deriving this recommendation. The

preferred value of k298 is taken from Martin and Paraskevopoulos (1983). The temperature

dependence was estimated.

OH + CH3CF3 (HFC-143a). The only temperature dependence data for this reaction are those of

Talukdar et al. (1991a) and Clyne and Holt (1979b). Due to the large discrepancy between the room

temperature rate constant of Clyne and Holt (1979b) and that measured by Martin and Paraskevopoulos

(1983), and the generally poor a_rreement between the C]yne and Holt data and that of other workers for

several other halomethanes and haloethanes, the Clyne and Holt data were ignored. The

recommended rate expression is derived from a fit to the temperature dependence data of Talukdar et

ai. for T > 251 K and the room temperature point of Martin and Paraskevopou]os. The recommended

value of k298 is derived from the rate expression.

OH + CH2FCH2F (HFC-152). The preferred rate expression is derived by fitting an estimated

temperature dependence to the room temperaLure data of Martin and Paraskevopoulos (1983).

OH + CH3CHF 2 (HFC-152a). The preferred rate expression is derived from the temperature

dependence data of Nielsen (1991), Gierczak eta]. (1991), Liu et al. (1990) and the room temperature

data of Howard and Evenson (1976b), Handwerk and Zellner (1978), and Nip et al. (1979). The data of

Brown eta]. (1990a) and Clyne and Holt (1979b) were not considered. The recommended value of k298

is derived from the rate expression.
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G22.

HI.

a2.

H3.

OH + CH3CH2F (HFC-161). There are no temperature dependence data for this reaction. The

temperature dependence of the recommended expression was derived by analogy with members of the

homologous series which includes the OH + C2H6 and OH + CH3CHF2 reactions. The value of k298

was taken from the study of Nip et al. (1979). Singleton et al. (1980) determined that 85 ± 3% of the

abstraction by OH is from the fluorine substituted methyl group.

CF30 2 + NO. The recommended value for the reaction of NO with this perhalogenated methylperoxy

radical is based on the results reported by Dognon et al. (1985) for the temperature range 230-430 tL It iB

in good agreement with the room temperature value reported by Plumb and Ryan (1982a). Dognon et al.

have shown that NO 2 is the major product in this reaction.

OH + H2 S. The values of k(298 K) and E/R are derived from a composite unweighted least squares fit to

the individual data points of Perry et al. (1976b), Cox and Sheppard (1980), Wine et al. (1981a), Leu and

Smith (1982a), Michael et ah (1982), Lin (1982), Lin et al. (1985), Barnes et al. (1986a), and Lafage et al.

(1987). The studies of Leu and Smith (1982a), Lin et al. (1985), Lin (1982), and Lafage et al. (1987) show

a slight parabolic temperature dependence of k with a minimum occurring near room temperature.

However, with the error limits stated in this evaluation, all data are fit reasonably well by an

Arrhenius expression. Lafage et ah and Michael et al. discuss the results in terms of a two channel

reaction scheme involving direct H atom abstraction and complex (adduct) formation. Lafage et al.

analyzed their results above room temperature to yield an apparent E/R = 400K for the abstraction

channel in good agreement with the E/R value determined above room temperature by Westenberg and

de Haas (1973b). The results of these latter workers lie systematically higher (by about 70%),

presumably due to secondary reactions. The room temperature value measured by Stuhl (1974) lies just

outside the 2o error limit set for k(298 K).

OH + OCS. The value of k(298 K) is an average of the determinations by Wahner and Ravishankara

(1987) and Cheng and Lee (1986). The room temperature rate constants from these studies are a factor of

three higher than the earlier determination by Leu and Smith (1981). As discussed in the later studies,

this difference may be due to an overcorrection of the Leu and Smith data to account for OH reaction

with H2 S impurities and also to possible regeneration of OH. Nevertheless, the uncertainty factor at 298

K has been set to encompass the earlier study within 2c. The work by Wahner and Ravishankara

(1987) supersedes the study of Ravishankara et al. (1980b), which minimized complications due to

secondary and/or excited state reactions presumably interfering with the experiments of Atkinson et

al. (1978) and of Kurylo (1978b). The upper limit for k(298 K) reported by Cox and Sheppard (1980) is too

insensitive to permit comparison with the more recent studies. The room temperature measurements of

Wahner and Ravishankara demonstrate the lack of an effect of total pressure (or O 2 partial pressure)

on the rate constant and are supported by the more limited pressure and 0 2 studies of Cheng and Lee.

The recommendation for E/R is based on the study of Cheng and Lee who determined a value

considerably lower than reported by Leu and Smith, although this difference may be due in part to the

earlier mentioned overcorrection of the data by these latter authors.

Product observations by Leu and Smith indicate that SH is a primary product of this reaction and

tentatively confirm the suggestion of Kurylo and Laufer (1979) that the predominant reaction pathway

is to produce SH + CO 2 through a complex (adduct) mechanism similar to that observed for the OH + CS 2

reaction. However, the absence of an O2/pressure effect for OH + OCS is in marked contrast with the

strong dependence seen in studies of OH + CS 2 (see note H3).

Experiments by Greenblatt and Howard (1989) have s}mwn that oxygen atom exchange in the reaction of

18OH with OCS is relatively unimportant, leading to an upper limit of 1 x 10 "15 being set on the rate

constant of the exchange reaction.

OH + CS2. There is a consensus of experimental evidence that this reaction proceeds very slowly as a

direct bimolecular process. Wine et al. (1980) set an upper limit on k(298 K) of 1.5 x 10 "15 cm 3

molecule "1 s "1. A consistent upper limit is also reported by Iyer and Rowland (1980) for the rate of direct

product of OCS, suggesting that OCS and SH are primary products of the bimolecular process. This

mechanistic interpretation is further supported by the studies of Leu and Smith (1982b) and of Biermann

et ah (1982), which set somewhat higher upper limits on k(298 K). The more rapid reaction rates

measured by Atkinson et al. (1978), Kurylo (1978b), and Cox and Sheppard (1980) may be attributable to
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severe complications arising from excited state and secondary chemistry in their photolytic systems.

The Cox and Sheppard study in particular may have been affected by the reaction of electronically

excited CS 2 (produced via the 350 nm photolysis) with 02 (in the one atmosphere synthetic air mixture)

as well as by the accelerating effect of 02 on the OH + CS2 reaction itself, which has been observed by

other workers as summarized below. The possible importance of electronically excited CS 2 reactions

in the tropospheric oxidation ofCS 2 to OCS has been discussed by Wine et al. (1981d).

An accelerating effectof 0 2 on the OH + CS 2 reaction rate has been observed by Jones et al.(1982),

Barnes et al. (1983), and Hynes et al. (1988) along with a near unity product yield for SO 2 and OCS. In

the lattertwo studies the effectivebimolecular rate constant was found to be a function of totalpressure

(0 2 + N2) as well and exhibited an appreciably negative temperature dependence. These observations

are consistent with the formation of a long-livedadduct as postulated by Kurylo (1978b) and Kurylo and

Laufer (1979) followed by itsreaction with 02:

k a

OH+CS2+M _ HOCS2 +M

kb

kc

HOCS2 + 02 --* Products

Hynes et al. (1988), Murrells et al. (1990), Becker et al. (1990), and Bulatov et al. (1988) have, in fact,

directly observed the approach to equilibrium in this reversible adduct formation. In the Hynes et al.

study, the equilibrium constant was measured as a function of temperature and the heat of formation of

HOCS 2 was calculated (-27.4 kcaYmole). A rearrangement of this adduct followed by dissociation into

OCS and SH corresponds to the bimolecular (low k) channel referred to earlier. Hynes et al. (1988)

measured the rate constant for this process in the absence ofO 2 (at approximately one atmosphere of N 2)

to be < 8 x 10 "16 cm 3 molecule "1 s "1. Hynes et al. (1988) and Murrells et al. (1990) agree quite well on the

value of k c with an average value of 2.7 x 10 "14 being reported independent of temperature and

pressure. The effective second order rate constant for CS 2 or OH removal in the above reaction scheme

can be expressed as

I/keff = (kb/kakc)(1/Po2) + (I/ka)(1/PM)

where PO2 is the partial pressure of 0 2 and PM equals PO2 + PN2. The validity of this expression

requires that k a and kb are invariant with the Po2/PN2 ratio. A 1/k vs 1/Po2 plotof the data ofJones et

al. (1982) taken at atmospheric pressure exhibits marked curvature, suggesting a more complex

mechanistic involvement of 02; whereas the data of Barnes et al. (1983) and Hynes et al. (1988) are

more satisfactorily represented by this analytical expression. Nevertheless, while the qualitative

features of the data from all three laboratories agree, there are some quantitative inconsistencies.

First, under similar conditions of 0 2 and N 2 pressures, the Barnes et al. rate constants lie

approximately 60% higher than those of Jones et al. and up to a factorof two higher than those derived by

Hynes et al. Secondly, two fitseach of both the Barnes et al. and Hynes et al.data can be made: one at

fixed PM and varying PO2, and the other at fixed PO2 and varying PM (i.e.,varying added N2).

Within each data set,rate constants calculated from both fitsagree reasonably well for mole fractions

of 0 2 near 0.2 (equivalent to air)but disagree by more than a factor of two for measurements in a pure

0 2 system. Finally, the temperature dependence (from 264 - 293 K) of the keff values from Barnes et al.

varies systematically from an E/R of -1300 K for experiments in pure 0 2 (at 700 torr total pressure) to

-2900 K for experiments in a 50 torr 0 2 plus 650 torr N 2 mixture. An Arrhenius fitof the Hynes et al.

data (from 251 - 348 K) recorded in synthetic air at 690 torr yields an E/R ffi-3300 K, although the data

show marked curvature over the temperature range of study. These observations suggest that ka and kb

may not be independent of the identity of M. For this reason, we limit our recommendation to air

mixtures (i.e.,Po2/PN2 = 0.25) at atmospheric pressure. Since most CS2 is oxidized within the

atmospheric boundary layer, such restriction does not limit the applicability of this recommendation in

atmospheric modeling.
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HS.
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The present recommendation accepts the measurements of Hynes et al. (1988) which appear to be the

most sensitive of the three investigations. Thus, k(298 K) is derived from the Arrhenius fit of the data

near room temperature.

k(298 K) = 1.2 x 10 "12 cm 3 molecule "1 s "1

The uncertainty factor, f(298) = 1.5, encompasses the results of Barnes et ah (1983) within 2(_. To

compute values ofk below 298 K we have accepted the analysis of Hynes et al.

k(T) = {1.25 x 10 -16 exp(4550/T)//{T + 1.81 x 10 -3 exp(3400/T)}

This recommendation is only valid for one atmosphere pressure of air. It is interesting to note that

measurements by Hynes et al. (1988) at approximately 250 K and 700 torT total pressure result in keff

values that are independent of the amount of 0 2 for partial pressures between 145 - 680 torT. This

suggests that the adduct is quite stable with respect to dissociation into the reactants (OH + CS 2) at this

low temperature and the effective rate constant for reactant removal approaches the elementary rate
constant for adduct formation.

From a mechanistic viewpoint, the primary products of reaction c determine the products of CS 2

oxidation in air. Lovejoy et el. (1990a) have shown that the yields of both HO 2 and SO 2 are equal and

near unity. Together with the earlier mentioned unity yield of OCS, these observations suggest that the

oxidation equation

OH + CS 2 + 202 _ OCS + HO 2 + SO 2

describes this atmospheric system. Insight into the specific reaction pathways can be gleaned from the

study of Lovejoy et al. (1990b) in which k c for the reaction of DOCS 2 + O 2 was found to be the same as that

for HOCS2, indicating that simple H atom abstraction is not the likely process. These authors have also

found that 180 from 18OH ends up on SO2, suggesting that direct OH attack on the S atom is followed by

a complex reaction pathway involving 0 2, Additional work involving direct intermediate

observations would be helpful in elucidating this reaction mechanism.

O + H2S. This recommendation is derived from an unweighted least squares fit of the data of

Singleton et al. (1979) and Whytock et el. (1976). The resu]ts of Slagle et el. (1978) show very good

agreement for E/R in the temperature region of overlap (300 - 500 K) but lie systematically higher at

every temperature. The uncertainty factor at 298 K has been chosen to encompass the room temperature

rate constant values of Slagle et al. (1978) and Hollinden et al. (1970). Other than the 263 K data point of

Whytock et al. and the 281 K point of Slagle at el., the main body of rate constant data below 298 K comes

from the study of Hollinden et el., which indicates a dramatic change in FiR in this temperature

region. Thus, AE/R was set to account for these observations. Such a non-linearity in the Arrhenius

plot might indicate a change in the reaction mechanism from abstraction (as written) to addition. An

addition channel (resulting in H atom displacement) has been proposed by Slagle et el. (1978),

Singleton et al. (1979), and Singleton et ah (1982). In the latter two studies, an upper limit of 20% was

placed on the displacement channel. Direct observations of product HSO was made in the reactive

scattering experiments of Clemo et al. (1981) and Davidson et al. (1982). A threshold energy of 3.3

kcal/mo]e was observed (similar to the activation energy measured in earlier studies) suggesting the

importance of this direct displacement channel. Addition products from this reaction have been seen

in a matrix by Smardzewski and Lin (1977). Further kinetic studies in the 200 - 300 K temperature

range as well as quantitative direct mechanistic information could clarify these issues. However, this

reaction is thought to be of limited importance in stratospheric chemistry.

O + OCS. The value of k(298 K) is the average of the determinations by Weatenberg and de Haas

(1969a), Klemm and Stief (1974), Wei and Timmons (1975), Manning et al. (1976), and Breckenridge

and Miller (1972). The recommended value of E/R is the average value taken from the first three listed

studies. Hsu et el. (1979) report that this reaction proceeds exclusively by a stripping mechanism.

O + CS2. The value of k(298 K) is an average of the rate constants determined by Wei and Timmona

(1975), Westenberg and de Haas (1969a), Slagle et el. (1974a), Callear and Smith (1967), Callear and
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H13.

H14.

H15.

H16.

H17.

Hedges (1970), Homann et al. (1968), and Graham and Gutman (1977). The E/R value is an average of

the determinations by Wei and Timmons and Graham and Gutman. The AE/R has been set to

encompass the limited temperature data of Westenberg and de Haas. The principal reaction products

are thought to be CS + SO. However, Hsu et al. (1979) report that 1.4% of the reaction at 298 K proceeds
through a channel yielding CO + S 2 and calculate a rate constant for the overall process in agreement

with that recommended. Graham and Gutman (1977) have found that 9.6% of the reaction proceeds to

yield OCS + S at room temperature.

0 3 + H2S. New Entry. This upper limit was determined by Becker et al. (1975) from measurements of

the rates of SO 2 production and 03 consumption. The heterogeneous reaction between H2 S and O 3 is far

more efficient in most laboratory systems.

S + 02. This recommendation is based primarily on the study of Davis et al. (1972). Modest agreement

at 298 K is found in the studies of Fair and Thrush (1969) Fair et el. (1971), Donovan and Little (1972),

and Clyne and Townsend (1975). The study by Clyne and Whitefield (1979), which indicates a slightly

negative E/R between 300 and 400 K, is encompassed by the assigned uncertainty limits.

S + 0 3. This recommendation accepts the only available experimental data of Clyne and Townsend

(1975). In this study the authors measure a value of the rate constant for S + O 2 in reasonable agreement

with that recommended above. The assigned error limit reflects both this ancillary agreement and the

need for independent confirmation.

S + OH. This recommendation is based on the single study by Jourdain et al. (1979). Their measured

value for k(298 K) compares favorably with the recommended value of k(O + OH) when one considers

the slightly greater exothermicity of the present reaction.

SO + 02. This recommendation is based on the low temperature measurements of Black et el. (1982a,

1982b). The room temperature value accepts the results of the more recent paper as recommended by the
authors. The uncertainties cited reflect the need for further confirmation and the fact that these results

lie significantly higher than an extrapolation of the higher temperature data of Homann et el. (1968).

A room temperature upper limit on k set by Breckenridge and Miller (1972) is consistent with the Black

et al. data.

SO + 03. The value of k(298 K) is an average of the determinations by Halstead and Thrush (1966),

Robertshaw and Smith (1980), and Black et al. (1982a, 1982b) using widely different techniques. The

value of E/R is an average of the values reported by Halstead and Thrush and Black eta]. (1982b), with

the A-factor recalculated to fit the recommendation for k(298 K).

SO + OH. The value recommended for K(298 K) is an average of the determinations by Fair and

Thrush (1969) and Jourdain et el. (1979). Both sets of data have been corrected using the present
recommendation for the O + OH reaction.

SO + NO 2. The value ofk(298 K) is an average of the determinations by Clyne and MacRobert (1980),

Black et al. (1982a), and Brunning and Stief (1986a), which agree quite well with the rate constant

calculated from the relative rate measurements of Clyne et al. (1966). The Arrhenius parameters are

taken from Brunning and Stief.

SO + CIO. The value of k(298 K) is an average of the determinations by Clyne and MacRobert (1981)

and Brunning and Stief (1986a). The temperature independence is taken from the latter study with the

A-factor recalculated to fit the k(298 K) recommendation.

SO + OC10. This recommendation is based on the single room temperature study by Clyne and

MacRobert (1981). The uncertainty reflects the absence of any confirming investigation.

SO + BrO. This recommendation is based on the measurements of Brunning and Stief (1986b)

performed under both excess BrO and excess SO conditions. The rate constant is supported by the lower

limit assigned by C]yne and MacRobert (1981) from measurements of SO 2 production.
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H19.

H20.

H21.

H22.

H23.

H24.

H25.

H26.

H27.

SO 2 + HO 2. This upper limit is based on the atmospheric pressure study of Graham et el. (1979). A low

pressure laser magnetic resonance study by Burrows et al. (1979) places a somewhat higher upper limit

on k(298 K) of 4 x 10 "17 (determined relative to OH + H202). Their limit is based on the assumption that

the products are OH and SO3. The weight of evidence from both studies suggests an error in the earlier

determination by Payne et al. (1973).

SO 2 + CH30 2. This recommendation accepts the results from the study of Sander and Watson (1981a),

which is believed to be the most appropriate for stratospheric modeling purposes. These authors

conducted experiments using much lower CH302 concentrations than employed in the earlier

investigations of Sanhueza et aI. (1979) and Ken et al. (1979), both of which resulted in k(298 K) values

approximately 100 times greater. A later report by Ken et al. (1981) postulates that these differences are

due to the reactive removal of the CH302SO2 adduct at high CH302 concentrations prior to its reversible

decomposition into CH302 and SO2. They suggest that such behavior of CH302SO2 or its equilibrated

adduct with 02 (CH302SO202) would be expected in the studies yielding high k values, while

decomposition of CH302SO 2 into reactants would dominate in the Sander and Watson experiments. It

does not appear likely that such secondary reactions involving CH302, NO, or other radical species

would be rapid enough, if they occur under normal stratospheric conditions to compete with the adduct

decomposition. This interpretation, unfortunately, does not explain the high rate constant derived by

Cocks et el. (1986) under conditions of low [CH302].

SO 2 + NO 2. This recommendation is based on the study of Penzhorn and Canosa (1983) using second

derivative UV spectroscopy. While these authors actually report a measured value for k(298 K), their

observations of strong heterogeneous and water vapor catalyzed effects prompt us to accept their

measurement as an upper limit. This value is approximately two orders of magnitude lower than that

for a dark reaction observed by Jaffe and Klein (1966), much of which may have been due to

heterogeneous processes. Penzhorn and Canosa suggest that the products of this reaction are NO + SO 3.

SO 2 + NO 3. This recommended upper limit for k(298 K) is based on the study by Daubendiek and

Calvert (1975). Considerably higher upper limits have been derived by Burrows et el. (1985b),

Wallington et al. (1986a), Canosa-Mas et el. (1988), and Dlugokencky and Howard (1988).

SO 2 + 03. This recommendation is based on the limited data of Davis et al. (1974b) at 300 K and 360 K

in a stopped flow investigation using mass spectrometric and uv spectroscopic detection.

SO 3 + H20. This recommendation is based on the measurements of Wang et el. (1988b). Although

these authors attempted to exclude any heterogeneous effects from their experiments, they conclude that

their measurements must still be viewed as yielding an upper limit to the gas phase homogeneous

reaction rate constant. An earlier reported higher rate constant value by Castleman et al. (1975) may

have resulted from an underestimation of the effects of heterogeneous reactions.

SO 3 + NO 2. This recommendation is based on the study of Penzhorn and Canosa (1983) using second

derivative UV spectroscopy. These authors observe the production of a white aerosol, which they

interpret to be the adduct NSO 5. This claim is supported by ESCA spectra.

SO 3 + NH 3. New Entry. This recommendation is based on the single study by Shen et el. (1990). The

uncertainty reflects the absence of any confirming investigation.

Cl + H2S. The value ofk(298 K) is an average of the determinations by Nesbitt and Leone (1980) (which

refines the data of Braithwa_te and Leone (1978)), C]yne and Ono (1983), Clyne et al. (1984), and Nava et

al. (1985). The zero activation energy is derived from the data of Nave et al. with the A-factor

calculated to agree with the recommended value for k(298 K). Lu et al. (1986) also measure a

temperature independent rate constant, and their larger value of k(298 K) = 10.5 x 10 "11 may be

indicative of a sligh_ pressure dependence of the reaction since their experiments were performed a_

4000 tort.

Cl + OCS. This upper limit is based on the minimum detectable decrease in atomic chlorine measured

by Eibling and Kaufman (1983). Based on the observation of product SC1, these authors set a lower limit

79



H28.
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H30.

H31.

H32.

H33.

H34.

H35.

on k(298 K) of 10 "18 for the reaction as written. Considerably higher upper limits on k(298 K) were

determined in the studies of Clyne et ah (1984) and Nava et al. (1985).

C1 + CS 2. New Entry. This upper limit for the overall reaction is based on determinations by Nicovich

et al. (1990c) and Wallington et al. (1991). The first authors confirm that the reaction proceeds via

reversible adduct formation as suggested by Martin et al. (1987). The much larger rate constant values

determined by Martin et al. may possibly be attributed to reactive impurities in the CS 2 sample.

Nicovich et al. set an upper limit on the rate constant for the adduct (CS2C1) reacting with 0 2 of 2.5 x

10 "16 at room temperature.

C1 + CH3SH. New Entry. This recommendation is an average of of the room temperature

determinations of Mellouki et ah (1988b) and Nesbitt and Leone (1980). Nesbitt and Leone (1981) report

that less than 2% of the reaction occurs via abstraction of an H atom from the CH3 group.

CIO + OCS; C10 + SO 2. These recommendations are based on the discharge flow mass spectrometric

data of Eibling and Kaufman (1983). The upper limit on k(298 K) for CIO + OCS was set from the

minimum detectable decrease in C10. No products were observed. The upper limit on k(298 K) for ClO

+ SO 2 is based on the authors' estimate of their detectability for SO 3. The upper limit for this same

reaction based on the minimum detectable decrease in ClO was not used due to the potential problem of

ClO reformation from the CI + O 3 source reaction.

SH + H20 2. This recommended upper limit tbr k(298 K) is based on the single study of Friedl et al.

(1985). Their value is calculated from the lack of SH decay (measured by laser-induced fluorescence)

and the lack of OH production (measured by resonance fluorescence). The three possible product

channels yield: H2S + HO2, HSOH + OH, and HSO + H20.

SH + O. This recommendation accepts the results of Cupitt and Glass (1975). The large uncertainty

reflects the absence of any confirming investigation.

SH + 02. This upper limit for k(298 K) is based on the study by Stachnik and Molina (1987) utilizing

experiments sensitive to the production of OH. Somewhat higher upper limits of 1.0 x 10 "17 and 1.5 x

10 "17 were assigned by Friedl et ah (1985) and Wang et al. (1987) respectively from the detection

sensitivities for OH detection and SH decay respectively. An even higher upper limit by Black (1984),

based on the lack of SH decay, may have been complicated by SH regeneration. Much less sensitive

upper limits have been calculated by Tiee et al. (1981), Nielsen (1979), and Cupitt and Glass (1975).

Stachnik and Molina (1987) also report a somewhat higher upper limit (< 1.0 x 10 "18) for the rate

constant for the sum of the two SH + O 2 reaction channels (producing OH + SO and H + SO2).

SH + 03. The value for k(298 K) is an average of the determinations by Friedl et al. (1985) (laser

induced fluorescence detection of SH), Schonle et al. (1987) (mass spectrometric detection of reactant

SH and product HSO) as revised by Schindler and Benter (1988), and Wang and Howard (1990) (laser

magnetic resonance detection of SH). The temperature dependence is from Wang and Howard with the

A-factor calculated to agree with the recommended value for k(298 K). AE/R reflects the fact that the

temperature dependence comes from measurements above room temperature and, thus, extrapolation to

lower temperatures may be subject to additional uncertainties. Wang and Howard report observing a

minor reaction channel that produces H + SO + 02.

SH + NO2. This recommendation accepts the measurements of Wang et al. (1987). These authors

suggest that the lower values of k(298 K) reported by Black (1984), Friedl et al. (1985), and Bulatov et al.

(1985) are due to SH regeneration from the H2S source compound. In the study by Stachnik and Molina

(1987), attempts were made at minimizing such regeneration and a value of k(298 K) was reported

significantly higher than that from the earlier studies, but still 30% lower than that measured by Wang

et al. who used two independent SH source reactions. A slightly higher rate constant measured by
Schonle et al. (1987) as revised by Schindler and Benter (1988) has not been recommended due to the

somewhat more limited database for their determination. The reaction as written represents the most

exothermic channel. In fact, HSO has been detected as a product by Leu and Smith (1982a), Bulatov et

al. (1985), Schonle et al. (1987), and Wang et al. (1987). The absence of a primary deuterium isotope

effect, as observed by Wang et ah (1987), coupled with the large magnitude of the rate constant suggests
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H36.

H37.

H38.

H39.

H4O.

H41.

that the (four-center intermediate) channels producing SO + HNO and OH + SNO are of minor

importance. No evidence for a three body combination reaction was found by either Black (1984) or

Friedl et al. (1985). Based on a pressure independence of the rate constant between 30 - 300 torr, Black

set an upper limit of 7.0 x 10 "31 for the termolecular rate constant. Similarly, Stachnik and Mo]ina

(1987) saw no change in decay rate between 100 and 730 tort with 02 (although these O 2 experiments

were designed primarily to limit SH regeneration).

SH + F2; SH + C12; SH + Br2; SH + BrC1. New Entries. The recommendations for these reactions are

derived from the data of Fenter and Anderson (1991) for the SD radical. The uncertainties have been

increased over those estimated by the investigators to reflect the absence of any confirming

investigations and the influence of the secondary isotope effect. For the BrCl reaction, the channel

producing C1SD + Br was found to be described by the rate expression k = 2.3 x 10 "11 exp(100fr).

HSO + 0 2. This recommendation is based on the study by Lovejoy et al. (1987), who employed laser

magnetic resonance monitoring of HSO in a discharge flow system. The upper limit thus derived for

k(298 K) is nearly two orders of magnitude lower than measured by Bulatov et al. (1986).

HSO + 03. This recommendation is based on the determinations by Fried] et al. (1985) and Wang and

Howard (1990). In the first study, performed at higher O 3 concentrations, greater quantities of HSO

were produced in the flow tube and SH approached a steady state due to its generation via HSO + O 3. The

rate constant for this reaction was thus determined relative to SH + 03 from measurements of the steady

state SH concentration as a function of the initial SH concentration. In the second study, the rate

constant and its branching ratio were measured at two temperatures. At room temperature, the overall

rate constant is in excellent agreement with that of Friedl et al.

The lack of an isotope effect when SD was employed in the Friedl et al. study suggests that the products

of the HSO + 03 reaction are SH + 202 (analogous to those for HO2 + 03). However, Wang and Howard

found that only 70% of the reaction leads to HS formation. In addition, their observations of HO 2

production in the presence of 0 2 suggests the existence of a reaction channel producing HSO 2 + 0 2

followed by HSO 2 + O 2 _ HO 2 + SO 2. At the present time, no recommendation is given for the product

channels. Further mechanistic work is suggested since it is important to understand whether this

reaction in the atmosphere leads to HS regeneration or to oxidation of the sulfur.

HSO + NO; HSO + NO 2. The recommendations for these reactions are based on the study by Lovejoy et

a]. (1987) in which laser magnetic resonance was used to monitor HSO in a discharge flow system.

Their upper limit for the NO reaction is a factor of 25 lower than the rate constant measured by Bulatov

et al. (1985) using intracavity laser absorption at pressures between 10 and 100 torr. Since it is unlikely

that this reaction rate undergoes a factor of 25 increase between 1 torr (the pressure of the Lovejoy et al.

work) and 10 torr, the higher rate constant may be due to secondary chemistry associated with the HSO

production methods employed.

The recommendation for the NO 2 reaction is a factor of two higher than the rate constant reported by

Bulatov et al. (1984). Lovejoy et a]. have attributed this difference to HSO regeneration under the

experimental conditions used by Bulatov et al. (1984). The product assignment for this reaction is
discussed in note H40.

HSO 2 + 02. This recommendation is based on the rate ofHO 2 formation measured by Lovejoy et al.

(1987) upon addition of 0 2 to the HSO + NO 2 reaction system. While HSO 2 was not observed directly, a

consideration of the mechanistic possibilities for HSO + NO2, coupled with measurements of the HO 2

production rate at various 02 pressures, led these authors to suggest that HSO 2 is both a major product of

the HSO + NO 2 reaction and a precursor for HO 2 via reaction with O 2.

HOSO2 + 02. This recommendation is based on the studies of Gleason et al. (1987) and Gleason and

Howard (1988) in which the HOSO 2 reactant was monitored using a chemical ionization mass

spectrometric technique. Gleason and Howard conducted their measurements over the 297-423 K

temperature range in the only temperature dependence investigation. Thus, _F_JR has been increased

from their quoted limits to account for the potential uncertainties in extrapolating their data to

subambient temperatures. The value of k(298 K) derives further support from the studies of Margitan
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H42.

H43.

H44.

H45.

H46.

(1984a) and Martin et al. (1986), both of whom used modeling fits of OH radical decays in the OH + SO 2

+ M reaction system in the presence of O 2 and NO. In this latter analysis, the HOSO 2 reacts with 02

yielding HO2, which subsequently regenerates OH through its reaction with NO. The infrared

spectrum of HOSO 2 has been recorded in low temperature matrix isolation experiments by Hashimoto

et al. (1984) and Nagase et al. (1988). Mass spectrometric detection of HOSO 2 in the gas phase has also

been reported by Egsgaard et al. (1988),

CS + 02. The recommendation given for k(298 K) is based on the work of Black et al. (1983) using laser

induced fluorescence to monitor CS. This value agrees with the somewhat less precise determination

by Richardson (1975) using OCS formation rates. The latter author presents evidence that this reaction

channel dominates over the one producing SO + CO by more than a factor of 10. Measurements by

Richardson at 293 K and 495 K yield an E/R of 1860 K. However, use of this activation energy with the

recommended value of k(298 K) results in an unusually low Arrhenius A-factor of 1.5 x 10 "16. In view

of this, no recommendation is given for the temperature dependence.

CS + 03; CS + NO 2. The k(298 K) recommendations for both reactions accept the results of Black et al.

(1983) who used laser induced fluorescence to monitor the CS reactant in a room temperature

experiment. The uncertainty factors reflect the absence of any confirming measurements.

OH + CH3SH. This recommendation is based on a composite fit to the data ofAtkinson et al. (1977b),

Wine et al. (1981a), Wine et al. (1984a), and Hynes and Wine (1987), which are in excellent

agreement. The results from the relative rate study of Barnes et al. (1986) are in agreement with this

recommendation and indicate that the higher value of Cox and Sheppard (1980) is due to complications

resulting from the presence of O 2 and NO in their reaction system. MacLeod et al. (1983, 1984) and Lee

and Tang (1983) obtained rate constants at 298K approximately 50% lower than recommended here.

These authors also obtained lower values for the ethanethiol reaction in comparison with results from

studies upon which the methanethiol recommendation is made. Wine et al. (1984a) present evidence

that this reaction proceeds via adduct formation to produce a species that is thermally stable over the

temperature range and time scales of the kinetic measurements. Tyndall and Ravishankara (1989)

have determined the yield of CH3S (via laser induced fluorescence) to be unity, indicating that any

adduct must be short lived (less than 100 _s). Longer lifetimes would have led to anomalies in the OH

decay kinetics used for the rate constant determinations. Hynes and Wine (1987) failed to observe any

effect ofO 2 on the measurement rate constant.

OH + CH3SCH 3. This recommendation averages the results of Hynes eta]. (1986b), Wine et al.

(1981a), and Hsu et al. (1987c). The earlier higher rate constant values of Atkinson et al. (1978) and

Kurylo (1978a) are presumably due to reactive impurities, while those of MacLeod et al. (1983) were most

likely overestimated because of heterogeneous reactions. Absolute determinations lower than those

recommended were obtained by Martin et al. (1985), Wallington et al. (1986b), and Nielsen eta].

(1989). While the reasons for these differences are not readily apparent, these results are encompassed

within the 20 error limits of the 298 K recommendation. Hynes et al. (1986b) have demonstrated the

importance of a second reaction channel involving addition of OH to dimethyl sulfide. The adduct

formed decomposed rapidly, so that in the absence of any adduct scavenger, only the direct abstraction

channel is measured. The recommendation given is for the abstraction reaction only. In the presence

of O2, however, the adduct reacts to form a variety of products. An increase in k with increasing 0 2

concentration has been clearly observed by Hynes et al. (1986b), Wallington et al. (1986b), Barnes et al.

(1988), and Nielsen et al. (1989). This O 2 effect has been suggested as an explanation for the higher rate

constants obtained in many of the earlier relative rate studies. Hynes et al. (1986b) give the following

expression for the observed rate constant in one atmosphere of air:

kobs = {T exp(-234?T) + 8.46 x 10 "10 exp(7230fr) + 2.68 x 10 "10 exp(7810fr)}/

{1.04 x 1011 T + 88.1 exp(7460/r)}

OH + CH3SSCH 3. This recommendation is based on the study of Wine et al. (1981a). The room

temperature relative rate study by Cox and Sheppard (1980) is in good agreement with the recommended

value. The value of AE/R reflects the existence of only one temperature dependence investigation.

Domine and Ravishankara (1989) have observed both CH3S (via laser induced fluorescence) and
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H47.

H48.

H49.

H50.

H51.

H52.

H53.

H54.

H55.

H56.

H57.

CH3SOH (via photoionization mass spectrometry) as products of this reaction. At 298 K, the yield of

CH3S alone was quantified at approximately 30%.

NO 3 + H2S. This recommendation accepts the upper limit set by Dlugokencky and Howard (1988)

based on experiments in which NO 3 loss was followed in the presence of large concentrations of H2S.

Less sensitive upper limits for the rate constant have been reported by Wallington et al. (1986a) and

Cantrell et al. (1987b).

NO 3 + OCS. This upper limit is based on the relative rate data of MacLeod et al. (1986).

NO3 + CS2. This upper limit is based on the study of Burrows et al. (1985b). A somewhat higher upper

limit was derived in the relative rate data of MacLeod et al. (1986).

NO 3 + CH3SH. The recommended values are derived from a composite fit to the data of Wallington et

al. (1986a), Rahman et al. (1988), and Dlugokencky and Howard (1988). The room temperature rate

constant derived in the relative rate experiments of MacLeod et al. (1986) is in good agreement with the

recommended value. The suite of investigations shows the rate constant to be pressure independent

over the range 1 - 700 torr. Dlugokencky and Howard place an upper limit of 5% on the production of

NO 2 via this reaction at low pressure.

NO 3 + CH3SCH 3. The recommended values are derived from a composite fit to the data of Wallington

et al. (1986a), Tyndall eta]. (1986), and Dlugokencky and Howard (1988). The relative rate study of

Atkinson et al. (1984b) yields a rate constant at room temperature in good agreement with that

recommended. The experimental data from all investigations demonstrate the pressure independence

of the rate constant over the range 1 - 740 torr. A recent room temperature study by Daykin and Wine

(1990) is also in agreement with the recommended value. Evidence to date indicates a pressure

independence of the rate constant despite the temperature dependence and observed products being

consistent with the formation of an NO3-CH3SCH3 adduct.

NO 3 + CH3SSCH 3. The recommended values were derived from a composite fit to the data of

Wallington eta]. (1986a) and Dlugokencky and Howard (1988). The investigation by Atkinson eta].

(1988) indicates that the relative rate technique cannot be considered as yielding reliable rate data for

this reaction due to chemical complexities. Thus, the much lower room temperature results from the

study of MacLeod et al. (1986) can be considered to be erroneous.

N205 + CH3SCH 3. New Entry. This recommendation is based on the value estimated by Tyndall and

Ravishankara (1991) from the study by Atkinson et al. (1984b).

CH3S + 02. This upper limit is based on the study by Tyndall and Ravishankara (1989a). Somewhat

higher upper limits were derived in the earlier studies of Balls et a]. (1986) and Black and Jusinski

(1986).

CH3S + 03. This recommendation is based on the room temperature determinations of Tyndall and

Ravishankara (1989b) and Domine et al. (1992). The latter authors measured the yield of CH3SO to be

15% at low pressure and use this value to revise the corrections of the earlier investigation to account for

CH3S regeneration by CH3SO + 0 3. A failure to observe significant reaction in the study by Black and

Jusinski (1986) is interpreted as due to rapid regeneration of CH3S in their system.

CH3S + NO. New Entry. The upper limit for the bimolecular reaction between CH3S and NO is based

on estimates by Balla et al. (1986) who conducted a temperature dependence study of the termolecular
reaction.

CH3 S + NO2. This recommendation averages the results of Tyndall and Ravishankara (1989a) and

Domine et al. (1990). An earlier study by Balls et al. (1986) yielded a room temperature rate constant

nearly a factor of two higher, which may be attributed to secondary reactions at higher radical

concentrations. Tyndall and Ravishankara determined the NO yield to be (80 + 20)%. Together with

the unity yield of CH3SO obtained by Domine et al., this implies that the primary reaction channel is as

written.
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H58.

H59.

H60.

H61.

J1.

J2.

J3.

J4.

JS.

CH3SO + 0 3. This recommendation is based on the study by Domineet al. (1992). It is supported by the

study of Tyndall and Ravishankara (1989b) in which the rate constant was derived from a complex

analysis of the CH3S + 03 reaction system. Domine et al. place the direct yield of CH2SO at

approximately 10% and that of CH3S at 13% at low pressure.

CH3SO + NO 2. This recommendation is based on the direct measurements of Domine et al. (1990).

The results are supported by somewhat less direct measurements of Tyndall and Ravishankara

(1989a) and Mellouki et al. (1988b).

CH3SS + 0 3. New Entry. This recommendation is based on the discharge flow photoionization ma_

spectroscopy study by Domine et al. (1992). The uncertainty factor reflects the absence of any

confirming investigations. The rate constant ratio for the reactions of CH3SS with 0 3 and NO 2 is

consistent with the rate constant ration for the corresponding CH3S reactions.

CH3SS + NO2; CH3SSO + NO2. These recommendations are based on the discharge flow

photoionization mass spectroscopy study by Domine eta]. (1991). The rate constant ratio for these two

reactions agrees with that observed for other RS/RSO radicals with NO2. The assigned uncertainties

reflect this agreement but acknowledge the absence of any confirming investigation. In the Domine et

al. study, CH3SSO was produced by reacting away all CH3SS with high NO 2 concentrations. Thus, as

expected, 0 atom transfer may be the primary channel in the CH3SS reaction.

Na + 03. The recommendation is based on the measurements of Ager et al. (1986) and Worsnop et al.

(1991). The data of Worsnop et al. is taken from their Table II because the values in the abstract and text

are in error (Worsnop, private communication, 1991). The data of Worsnop et al. supersedes earlier

work from that laboratory (Silver and Kolb, 1986a). Measurements made by Husain et al. (1985) at 500

H are consistent with the recommendation but are not included because they did not recognize that

secondary chemistry, NaO + O 3 -_ Na + 20 2, interferes with the rate coefficient measurement.

Worsnop et al. (1991) observe no significant temperature dependence from 214-294 K. Ager et al. (1986)

estimate that the NaO 2 + O product channel _<5%.

Na + N20. The recommendation incorporates the data of Husain and Marshall (1985), Ager et al.

(1986), Plane and Rajasekhar (1989), and Worsnop et al. (1991). Silver and Kolb (1986a) measured a

rate coefficient at 295 K that is lower and is superceded by Worsnop et al. (1991). Earlier, leas direct

studies are discussed by Ager et ah (1986). The NaO product does not react significantly with N20 at

room temperature [k (for Na + N 2 + O 2 products) < 10 "16 and k (for NaO 2 + N 2 products) _<2 x 10 "15 Ager

et al.].

Na + Cl 2. Two measurements of the rate coefficient for this reaction are in excellent agreement:

Silver (1986) and Ta]cott et al. (1986). The recommended value is the average of these room

temperature results.

NaO + O. The recommendation is based on a measurement at 573 K by Plane and Husain (1986). They

reported that _<1% of the Na product is in the 32p excited state.

NaO + 03. This reaction was studied by Silver and Kolb (1986a) and Ager et al. (1986), who agree on the

rate coefficient and branching ratio. This agreement may be fortuitous because Silver and Kolb used

an indirect method and an analysis based on their rate coefficient for the Na + 03 reaction which is

about 1/2 that reported by Ager et al. Ager et al. employed a somewhat more direct measurement but the

study is complicated by a chain reaction mechanism in the Na/O 3 system.

NaO + H 2. The recommendation is based on a measurement by Ager and Howard (1987a). They also

reported a significant Na + H2 O product channel and that a small fraction of the Na from this channel

is in the 32p excited state.

J7. NaO + H20. The recommendation is based on a measurement by Ager and Howard (1987a).
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JS. NaO+ NO.TherecommendationisbasedonanindirectmeasurementreportedbyAgeretal. (1986).

J9. NaO+HC1.Thereisonlyone indirect measurement of the rate coefficient for this reaction, that from

the study by Silver et al. (1984a). They indicate that the products are NaCl and OH, although some

NaOH and Cl production is not ruled out.

J10. NaO 2 + NO. This reaction is endothermic. The upper limit recommended is from an experimental

study by Ager et al. (1986).

Jll. NaO 2 + HCI. The recommendation is based on a measurement reported by Silver and Kolb (1986b).

They indicated that the products are NaC1 + HO2, but NaOOH + Cl may be possible products.

J12. NaOH + HCl. The recommendation is based on the study by Silver et al. (1984a), which is the only

published study of this reaction.
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TABLE 2. RATE CONSTANTS FOR THREE-BODY REACTIONS

Reaction

Low Pressure Limita

ko(T)= ko300 (T/300)-n

High Pressure Limitb

k_(T) = k_ 300 (T/300)m

ko300 n
k_300 rn Notes

&

&

&

$

&

#

#

o+o2_o3

O(ID) + N2 M N20

H+O2 MHO2

OH 4- OH M H202

O + NO M NO2

o +so2 _ No3

OH + NO M HONO

OH + NO2 M HNO3

HO2+NO2M HO2NO2

No2+No3_ N'_:)S

Cl+ NO M CINO

+No2E CIONO

MCINO2

ci+o2M_cloo

Cl+ CO M CICO

CI + C2H2 M ClC2H2

cIo +cIo Mc%o2

ClO + NO2 M CIONO2

O + OCIO M CiO3

Br + NO2 M) BrN&2

BrO + NO2 M BrONO2

(6.0_0.5)(-34) 2.3±0.5

(3.5±3.0)(-37) 2.0
0-6±0.6

(5.7±0.5)(-32) 1.6±0.5

(6.9_3.0)(-31) 2.0
0.8±0. 8

(9.0_2.0) (-32) 1.5±0,3

(9.0_1.0) (-32) 2.0±1.0

(7.0±2.0) (-31) 2.6±1,0

(2.6±0.3) (-30) 3,2±0.7

(1.8±0.3) (-31) 3.2±0,4

(2.2_%0.5) (-30) 3.9±1,0

(9.0±2.0) (-32) 1.6±0.5

(1.3±0.2) (-30) 2.0±1.0

(1.8±0.3) (-31) 2.0±1.0

(2.7±1.0) (-33) 1.5+0.5

(1.3±0.5) (-33) 3.8±O.5

(8.0±1.0) (-30) 3.5±0.5

(1.9±0.5) (-32) 3.9±1.0

(1.8±0.3) (-31) 3.4±1,0

(1.9±0.5)(-31) 1.1±1.0

(4.2±0.8) (-31) 2.4±0.5

(5.2±0.5) (-31) 3.0±0.8

(7.5±4.0) (-11) 0±1.0

(1.5±0.5) (-11) 0£-0.5

(3.0±1.0) (-11) 0±1.0

(2.2+0.3) (-11) 0±1.0

(1,5±1.0) (-11) 0.5:L0.5

(2.4+1.2) (-11) 1.3+1.3

(4.7±1.0) (-12) 1.4±1.4

(1.5±0.8) (-12) 0.7±0.4

(1.0±0.5) (-10) 1.0±1,0

1.0±0.5) (-10) 1.0±1.0

1.0±0.5) (-10) 2.6±0.5

(7.0±1) (-12) (h:l.O

1.5±0.7) (-11) 1.9±1.9

3.1±0.8) (-11) 0±1.0

(2.7+_0.5) (-11) 0±1.0

(9.0±1.0) (-12) 2.3±1.0

1

2

3

4

5

6

7

8

9

I0

11

12

12

13

14

15

16

17

18

19

20

86



Table2. (Continued)

Reaction

LowPressureLimita
ko(T) = ko 300 (T/300) -n

High Pressure Limit b

k_(T) = k_ 300 (T/300) "m

ko 300 n k_ 300 m Notss

F+ozMFo2

F + NO M FNO

F+ NO2 M products

m +No2 MrONO2

CHa+O2MCH_O2

* C2H5 + O2 M---_C2H502

# CH30+NO _CH3ONO

# CH30 + NO2 M CH3ON02

# C2H50+ NO M_C2H5ONO

# C2H50+ NO 2 M C2H5ONO2

CH302 + NO2 M CH302NO2

& OH+so2 MHOSO2

* OH + C2H4 M HOCH2CH2

OH + C2H2 M HOCHCH

CF3 + 02 M CF302

# CF2C]+O2 MCF2CIO2

CFCI 2 + 02 M_,CFCI202

" c_3 +02M c_3o2

& CFCI202 + NO 2 M CFCI202NO2

# CF2CIO2 + NO2 M CF2CIO2NO2

# CH3C(O)O 2 + NO 2 M

CH3C(O)O2NO2

(4.4±0.4) (-33) 1,9.+0.5

(5.9±3.0) (-32) 1.7+1.7

(1.1+0.6) (-30) 2.0+2.0

(2.6+2.0) (-31) 1.3+1.3

(4.5±1.5) (-31) 3.0±1.0

(1.5±1.0) (-28) 3.0±I.0

(1.35+0.5) (-29) 3.8+1

(2.8±0.6) (-29) 4.0±2.0

(2.0±I.0) (-27) 4.0+2.0

(2.0ti.0) (-27) 4.022.0

(1.5±0.8) (-30) 4.0±2.0

(3.0±1.0) (-31) 3.3±1.5

(1.0±0.6) (-28) 0.8±2.0

(5.5±2.0) (-30) 0.0±0.2

(1,520,3) (-29) 4.0±2.0

(3.0+1.5) (-30) 4.0±2.0

(5.0+0.8) (-30) 4.0±2.0

(1.0±0.7) (-30) 6.0±2.0

(3.5t0.5) (-29) 5.0±1.0

(3.5±1.8) (-29) 5.0±1.0

(8±4) (-29) 7.0±2.0

(3.0±2.0) (-11) 1.0-_1.0

(2.0+1.0) (-11) 1.5±1.5

(1.820.2) (-12) 1.7±1.7

(8.0±1.0) (-12) 0±1.0

(3.6±1.6) (-11) 0.6±1.0

(2.0±0.4) (-11) 1.0±1.0

(4.4±0.4) (-11) 1.0_1.0

(2.8±0.4) (-11) 1.021,0

(6.5±3.2) (-12) 2.0±2.0

(1.5±10.5) (-12) 0
o_

(8.8±0.9) (-12) 0
o_

(8.3±1.0) (-13) 2
-2± 1

(8.5±1.0) (-12) 1,021.0

(3±2) (-12) 1.0±1.0

(6.021.0) (-12) 1.0±1.0

(2.5±2.0) (-12) 1.021.0

(6.0±1.0) (-12) 2.521.0

(5.221.0) (-12) 2.5tl.0

(12+2)(-12) 1,0±1.0

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41
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Table 2. (Continued)

Low Pressure Limit a

ko(T) - ko 300 (T/300)-n

Reaction

m

CF302 + NO2 _ CF302NO2

CC1302 + NO 2 -_ CC1302NO 2

HS + NO M HSNO

CH3S + NO M CH3SNO

Na + 02 M NaO2

NaO + 02 M NaO3

NaO + CO2 M NaCO3

NaOn + CO 2 M NaHCO3

ko 300 n

#

&

(2.2+0.5) (-29) 5.0±1.0

(5.0±1.0) (-29) 5.0±1.0

(2.4±0.4) (-31) 3.0:tl.0

(3.2=t0.4) (-29) 4.0_1

(2.4+0.5) (-30) 1.220.5

(3.5±0.7) (-30) 2.0_2.0

(8.7+2.6) (-28) 2.0±2.0

(1.3±0.3) (-28) 2.0±2.0

High Pressure Limit b

k_(T) -- k= 300 (T/300) "m

k**300 m Notes

, , _ , ,

(6.0+1.0) (-12) 2.5±1.0 42

(6.05:1.0) (-12) 2.5±1 43

(2.7+0.5) (-11) 0 44

(3.920.6) (-11) 2.7±1.0 45

(4.0±2.0) (-10) 0_1.0 46

(5.7+3.0) (-10) 0_1.0 47

(6.5±3.0) (-10) 0-&l.0 48

(6.8±4.0) (-10) 0_1.0 49

ko(T)[MI 1 + (ko(T)[M]/k=(T))]21-1

Note: k(Z)= k(M,T)= ( l+ (ko(T)tMI/_(T))) 0.6{ [l°gl0

The values quoted are suitable for air as the third body, M.

a Units are cm6/molecule2-sec.

b Units are cm3bmo]ecule-sec.

* Indicates a change from the previous Panel evaluation (JPL 90-1).

& Indicates a change in the Note.

# Indicates a new entry that was not in the previous evaluation.



1.

2.

3.

4.

FOTES TO TABLE

O + 0 2. Low-pressure limit and T-dependence are an average of Klais, Anderson, and Kurylo (1980a)

and Lin and Leu (1982). The result is in agreement with most previous work (see references therein)

and with the recent study of Hippler et al. (1990). Kaye (1986) has calculated isotope effects for this

reaction, using methods similar to those discussed in the Introduction; Troe (1977), Patrick and Golden

(1983).

Croce de Cohos and Troe (1984) are in agreement with earlier work. Rawlins et al. (1987) report values

in Ar between 80 and 150K that extrapolate to agreement with the recommended values.

O(1D) + N 2. Low-pressure limit from Kajimoto and Cvetanovie (1976). The T-dependence is obtained

by assuming a constant _. The rate constant is extremely low in this special system due to electronic

curve crossing.

H + O2. Kurylo (1972), Wong and Davis (1974) and Hsu et al. (1987) are averaged to obtain the low

pressure limiting value at 300K. The first two studies include T-dependence, as does a recent study by

Hsu et al. (1979). The recommended value is chosen with constant <AE>N2 -.05 kcal mole "1. This

very low number reflects rotational effects. The high pressure limit is from Cobos et al. (1985). The

temperature dependence is estimated. Cobos et al. (1985) estimate m = -0.6, which is within our

uncertainty. Recent high temperature measurements in Ar by Pirraglia et al. (1989) are in good

agreement.

OH + OH. Zellner et al. (1988) have studied this reaction at 253, 298, and 353K at pressures between 26

and 1100 mbar of N 2. They report

ko(T) = (6.9 +1.4. 10.31 s. 1-2.5 ) x (T/298) -0'8 cm 6

k_(T) = 1.5 x 10 "11 (T/298) 0 cm 3 s "1

5,

6,

.

8.

The unsymmetrical error limits in ko (298) take into account contributions from H + OH _ H2 O.

Error limits were not reported for other parameters. The recommended error limits are estimates.

Trainor and yon Rosenberg (1974) report a value at 300K that is lower by a factor of 2.7.

O + NO. Low-pressure limit and n from direct measurements of Schieferstein et al. (1983) and their re-

analysis of the data of Whytock et al. (1976). Error limits encompass other studies. High.pressure

limit and m from Baulch et al. (1980) and Baulch et al. (1982), slightly modified. Recent shock tube

measurements by Yarwood et al. (1991) in argon from 300-1300K are consistent with these values.

O + NO2. Values of rate constants and temperature dependences from the evaluation of Baulch et al.

(1980). They use F c = 0.8 to fit the measured data at 298 K, but our value of F c = 0.6 gives a similar

result. In a supplementary review, Baulch et al. (1982) suggest a slight temperature dependence for F o

which would cause their suggested value to rise to Fc = 0.85 at 200 K.

OH + NO. The low-pressure limit rate constant has been reported by Anderson and Kaufman (1972),

Stuhl and Niki (1972), Morley and Smith (1972), Westenberg and de Haas (1972), Anderson et al. (1974),

Howard and Evenseon (1974), Harris and Wayne (1975), Atkinson et al. (1975), Overend et al. (1976),

Anastasi and Smith (1978), and Burrows et al. (1983). The general agreement is good, and the

recommended value is a weighted average, with heavy weighting to the work of Anastasi and Smith.

The reported high pressure limit rate constant is generally obtained from extrapolation. The

recommended value is a weighted average of the reports in Anastasi and Smith (1978) and Anderson et

al. (1974). [Both cis and trans--HONO are expected to be formed,]

OH + NO 2. The low-pressure limit is from Anderson et al. (1974), who report n = 2.5 (240 < T/K < 450);

Howard and Evenson (1974): Anastasi and Smith (1976), who report n = 2.6 (220 < T/K < 550); and
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9.

10.

11.

12.

13.

Wine et al. (1979), who support these values over the range (247 < T/K < 352). The recommended value

of n = 3.2 comes from <AE>N2 = 0.55 kcal mole "1. (This value is consistent with the experiments.)

Burrows et al. (1983) confirm the value ofk at 295 K. The high-pressure limit and T-dependence come

from RRKM model of Smith and Golden (1978), although the error limits have been expanded to

encompass m ffi 0. Robertshaw and Smith (1982) have measured k up to 8.6 atmospheres of CF 4. Their

work suggests that ko_ might be higher than suggested here (-50%). This might also be due to other

causes (i.e., isomer formation or involvement of excited electronic states). Burkholder et al. (1987)

.25
have shown that HONO 2 is the only isomer formed (yield - .75+.10). The recommendation here fits all

data over the range of atmospheric interest.

HO2 + NO2. Kurylo and Ouellette (1986) have remeasured the 300K range constants. Kurylo and

Ouellette (1987) have also remeasured the temperature dependence. The recommended values are
taken from this latter reference wherein their data were combined with that of Sander and Peterson

(1984). The recommended k o (300 k) is consistent with Howard (1977). Other studies by Simonaitis and

Heicklen (1978) and Cox and Patrick (1979) are in reasonable agreement with the recommendation.

NO 2 + NO 3. Data with N2 as the bath gas from Kircher et al. (1984), Croce de Cohos et al. (1987a) (up to P

= 5 atm), Smith et al. (1985), Burrows et al. (1985a), and Wallington et ai. (1987a) were used to obtain

ko 300 and koo 300. Values from Croce de Cobos et al. (1984) at pressures above 10 atm are 30% higher than

the curve used herein. The values ofn and m are from Kircher et al. (1984) and Orlando et al. (1991b).

The study of Fowles et al. (1982) is noted, but not used. Johnston et al. (1986) have reviewed this

reaction.

Data for the reverse reaction have been obtained by Connetl and Johnston (1979) and Viggiano et al.

(1981). (These two data sets are in reasonable agreement under overlapping conditions.) These data

may be compared to the suggested parameters by multiplying by the recently redetermined equilibrium

constant given in Table 3. The agreement is good. If the previous value of the equilibrium constant is

used, the agreement is less than good.

C1 + NO. Low-pressure limit from Lee et al. (1978a), Clark etal. (1966), Ashmore and Spencer (1959),

and Ravishankara et al. (1978). Temperature dependence from Lee et al. (1978a) and Clark et al.

(1966).

C1 + NO 2. Low-pressure limit and T-dependence from Leu (1984a). (Assuming similar T-dependence

in N 2 and He.) Leu (1984a) confirms the observation of Niki et al. (1978c) that both CIONO and C1NO 2

are formed, with the former dominating. This has been explained by Chang et al. (1979a), with detailed

calculations in Patrick and Golden (1983). The temperature dependence is as predicted in Patrick and

Golden (1983). The latter work extends to 200 torr and the high pressure limit was chosen to fit these

measurements. The temperature dependence of the high pressure limit is estimated.

C1 + 02. Nicovich et al. (1991) measure k=(9 ± 3) x 10 -33 cm 6 molecule'2s -1 at T = 187 ± 6K in O2. Using

the methods described in Patrick and Golden (1983), but adjusting the thermochemistry of CIO2 such

o K. 1
that $298 ffi64.3 cal tool "1 and hHf,298 = 23.3 ± 0.6 kcal tool "1 (See note 6 of Table 3). We calculate

5.4 x 10 -33 cm 6 molecule "2 s "1 at T = 185K with collisional etEciency of the bath gas taken from the

formula [_/(1-_]1/2)] = <AE>/FEkT and <AE> ~ 0.5 kcal mole "1 (i.e., [_185 = .42 and _300 = .30). Since

0 2 may be particularly efficient for this process we use this calculation with broader error limits. The

value from the calculation at 3001(. (i.e., 2.7 x 10 -33 cm 6 nmlec "2 s -1) compares with an older value of

Nicholas and Norrish (1968) of 1.7 x 10 -33 in an N 2 + 0 2 mixture. The temperature dependence is from

the calculation. Baer et al. (1991) report a value at 298 K in good agreement with the value

recommended here. But the temperature dependence is strikingly different as noted by the authors.

14. C] + CO --_ CICO. From Nicovich et al. (1990a) who measured the process in N 2 for 185 _<T/K < 260.

9O



15. Cl + C2H2. Brunning and Stief (1985) measured k from 210 to 361 K in Ar between 10 and 300 torr.

Experiments in N 2 at 296K were used to scale the low-pressure limiting rate constant. They report:

ko = (1.0 ± 0.2) x 10 -29 (T/300) -3"50 ± 0.05

k_ = (4.7± 0.9)10 -11 (T/300)-2.63± 0.05

Wallington et al. (1990a) measured k at 295K in air between 50 and 5800 torr. They report for a

combination of their data and the 296K, N 2 data of Brunning and Stief:

ko = (6.1+ 0.8)x 10 -30

koo = (1.9 ± 0.3) x 10 "10

16.

17.

The values recommended here, place heavier weight on the data at pressures below an atmosphere. The

temperature dependence is from Brunning and Stief with increased error limits. These values are

compatible with earlier studies at Poulet et al. (1973), Atkinson and Aschmann (1985), Lee and

Rowland (1977) and Wallington et al. (1988b).

CIO + CIO. Sander et al. (1989) and Troller et al.(1990) measured this reaction at 200-260K in 20-600

torr nitrogen and oxygen. The results are generally consistent with a Patrick and Golden (1983) type

calculation within a factor of 2, using thermodynamics consistent with the equilibrium constant

measurements of Cox and Hayman (1988). At low temperature and pressure, the rate constants of

Trolier et al. (1990) exceed those of Sander et al. (1989) and the calculation, suggesting a possible

additional route. The recommended values are an average of these two studies. The error limits

encompass both sets of results.

Hayman et al. (1986) report a higher value at higher temperatures that is not consistent in the above

sense. Other previous measurements, such as Cox and Derwent (1979), Basco and Hunt (1979) and

Walker (1972) and Johnston et al. (1969) range from 1-5 x 10 -32 cm 6 s -1 with N 2 or 0 2 as third bodies.

Birk et al. (1989) have reported that the major dimerization product is chlorine peroxide. Recent studies

of DeMore and Tschuikow-Roux (1990), Slanina and Uhlik (1991) and Stanton et al. (1991) support this
observation.

CIO + NO 2. Several independent low-pressure determinations (Zahniser et al.,1977; Birks et al.,1977;

Leu et al.,1977; Lee et al.,1982) ofthe rate of CIO disappearance via the CIO + NO 2 + M reaction are in

excellent agreement and give an average ko (300) near 1.8 x 10 "31 cm 6 s"1. No product identification

was carried out, and it was assumed that the reaction gave chlorine nitrate, C]ONO 2. In contrast,

directmeasurements of the rate of thermal decomposition of CIONO 2 (Knauth, 1978; Schone et al.,1979;

and recently Anderson and Fahey, 1990), when combined with the accepted thermochemistry give a

value lower by a factor of three. It is concluded that earliermeasurements of the heat of formation are

incorrect and the value 5.5 kcal mole "1 evaluated from the kinetics by Anderson and Fahey (1990) is

accepted.

Earlier explanations to the effect that the low-pressure ClO disappearance studies measured not only a

reaction forming C]ONO2, but another channel forming an isomer, such as OCINO2, CIOONO, or

OC1ONO (Chang et al., 1979a; Molina et al., 1980a) are obviated by the above and work of Margitan

(1983b), Cox et al. (1984b), and Burrows et al. (1985a) which indicates that there are no isomers of

CIONO 2 formed. Wallington and Cox (1986) confirm current values, but are unable to explain the

effect of OC10 observed by both Molina et al. (1980a) and themselves.

The high-pressure limit rate constants and their temperature dependence are from the model of Smith

and Golden (1978). The recommended rate constants fitmeasured rate data for the disappearance of
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18.

19.

20.

21.

22.

23.

reactants (Cox and Lewis, 1979; Dasch et al., 1981). Data from Handwerk and Zellner (1984) indicate a

slightly lower k_.

O + OClO. New Entry. The recommendation is based on recent data of Colussi et al. (1991) and Colu_i

(1990) who measured the pressure dependence between 248 and 312K. Their results are consistent with

calculations. A zero pressure rate constant of (1.6 ± 0.4) x 10 "13 cm 3 s "1 is reported for the chemical

O

activation channel producing ClO + O2, and their value of AH f(C10 3) = 52 kcal mole -1 is derived at

298I_

Br+NO 2. New Entry. The recommended values are from a study by Kreutter et al. (1991). Their k o

value agrees with the measurement of Mellouki et al. (1989) at 300K. A Patrick and Golden (1983) type

calculation using the known structure of the more stable BrNO 2 isomer and the measured equilibrium

by Kreutter et al. (1991) underpredicts k o by an order of magnitude. Participation by other electronic

states and isomers such as BrONO merits further consideration, in keeping with the chlorine analog.

BrO + NO 2. Earlier measurements at 300 K from Sander et al. (1981) are combined with recent work of

Thorn et al. (1989) who measured the rate constant at pressures from 16 to 800 torr ofN 2 and at 268, 298,

and 346 K. A recent study by Danis et al. (1990) reports kQ = (3.8 ± 0.8) x 10 "31 (T/298) -2"4 + 0.5 for

M--O 2. The recommended value for n is taken from Thorn et al. (1989) and Danis et al. (1990). The

value of ko seems large and possible isomer formation cannot be ignored even though similar

suggestions for C10 + NO2 are not important.

F + O 2. A recent study by Pagsberg et al. (1987) reports k0 in Argon -- 4.38 x 10 -33 (T/300) "1"2. This is in

good agreement with earlier values of Smith and Wrigley (1980), Smith and Wrigley (1981),

Shamonina and Kotov (1979), Arutyhonov et al. (1976) and slightly lower than the values of Chen et al.

(1977) and Chegodaev et al. (1978). Lyman and Holland (1988) report a slightly lower value in Ar and

298K_ We assume that PAr -- _N2 at all temperatures.

Pagsberg et al. (1987), also determined the equilibrium constant and thus bHf (FO2). See Note 11 of

Table 3. A calculation such as described in Patrick and Golden (1983), using the new value yields: k o

-- 1.06 x 10 -33 (T/300) -1"5 using _N2 = 0.3 (i.e., <bE> = 2kJ mol'l). This is not good agreement.

F + NO. Parameters estimated from strong collision calculations with <bE> set at .42 kcal/mole "1,

yielding b = 0.30 at 300 K and _ = 0.38 at 200 K.

F + NO 2. Experimental data of Fasano and Nogar (1983) were used to determine both the high and low

pressure limits at 300 K. They fit their data to an expression such as recommended here.

Treatment of the data for this system requires knowledge of the relative stabilities of FNO 2 and FONO.

Patrick and Golden (1983) assumed that the difference between these would be the same as between the

o 10.31 o
C1NO2 isomers. Thus, they concluded that k 300 (FNO2) = 8.9 x and k 300 (FONO) - 2.4 x 10-30, and

that FONO would be formed -3 times more favorably than FNO2. We have found an error of a factor of

O

four in their calculations, which would predict k300 (FONO) - 1.06 x 10 "29, and thus an overwhelming

amount of FONO. The measured value is k -1.06 x 10 "30, which is one-tenth ofthe predicted value.

A calculation at the MP-3/6-31G* level by Evleth (private communication, 1984) indicates that the

FONO is much more than 10 kcal tool "1 less stable than FNO2 and that its rate of formation can be

ignored. Thus, we have k(exp) = k(FNO 2) = 1.06 x 10 "30.

The value of n _- 2 is from Patrick and Golden, and the value of m is a rough estimate from similar
reactions.
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24.

25.

FO + NO2. Low-pressure limit from strong collision calculation and _ = 0.33. T-dependence from

resultant <AE> = .523 kcal mole "1. High-pressure limit and T-dependence estimated. Once again

(see Note 20) multiple channels could be important here, which would mean that the reaction between

FO and NO 2 could be much faster, since these values consider only FONO 2 formation.

CH3 + 02. Low-pressure limit from Seltzer and Bayes (1983). (These workers determined the rate

constants as a function of pressure in N2, Ar, 02, and He. Only the N2 points were used directly in the

evaluation, but the others are consistent.) Plumb and Ryan (1982b) report a value in He which is

consistent within error limits with the work of Seltzer and Bayes. Pilling and Smith (1985) have

measured this process in Ar (32-490 torr). Their low pressure limiting rate constant is consistent with

this evaluation, but their high pressure value is a little low. Cobos et el. (1985) have made

measurements in Ar and N 2 from 0.25 to 150 atmospheres. They report parameters somewhat different

than recommended here, but their data are reproduced well by the recommended values. The work of

Laguna and Baughcum (1982) seems to be in the fall-off region. Results of Pratt and Wood (1984) in Ar

are consistent with this recommendation, although the measurements are indirect. Their T-

dependence is within our estimate. As can be seen from Patrick and Golden (1983), the above value

leads to a very small 13, -.02, and thus temperature dependence is hard to calculate. The suggested

value has been changed from the previous evaluation to accommodate the values of Keiffer et el. (1987)

who measure the process in Ar between 20 and 600 torr and in the range 334 _<T/K _<582. Ryan and

Plumb (1984) suggest that the same type of calculation as employed by Patrick and Golden yields a

reasonable value of]_. We have not been able to reproduce their results. The high pressure rate constant

fits the data of Cohos et al. (1985). The temperature dependence is an estimate. (Data of van den Bergh

and Callear (1971), Hochanadel et al. (1977), Basco et al. (1972), Washida and Bayes (1976), Laufer and

Bass (1975), and Washida (1980) are also considered.) The fit to Keiffer et al. (1987) is very good,

suggesting that the temperature dependence for the high pressure limit is also reasonable.

26. C2H5 + 02. A relative rate study by Kaiser et al. (1990) yields:

27.

28.

30.

1_ = (9.2 + 0.9) x 10 "12 cm 3 molecule'ls "1

k o = (6.5 + 2.0) x 10 .29 cm 6 molecule-2s "1 in He at 298K and pressures between 3 and 1500 torr. Their k_

agrees with the value calculated by Wagner et el. (1990) (k= = 7 x 10 -12 cm 3 molecule'ls "1) using

variational RRKM theory. The extrapolation to the low pressure limit is difficult due to the complex

O

potential energy surface, but agrees with a Patrick and Golden (1983) type calculation using AH o = 32.4

kcal mol "1. The recommended values use the calculated temperature dependence and a 2.5 times

higher rate constant for air as the bath gas.

CH30 + NO. New Entry. The recommended values are taken from the results of Frost and Smith

(1990b) in argon.

Temperature dependences are from their higher temperature results. The low pressure rate constant is

consistent with the measurement of McCaulley et al. (1990) in helium and half the value from Troe type

calculations. A bimolecular path also exists, forming HNO + CH20 (Frost and Smith (1990b)).

CH3 O + NO 2. New Entry. Recommended values at 298K from the study of Frost and Smith (1990a) in

argon. Low pressure results agree with the measurements of McCaulley et al. (1985) in helium.

Temperature dependences are estimated.

C2H50 + NO. New Entry.

pressure value estimated

reactions.

High pressure rate constant at 298K from Frost and Smith (1990b). Low

from a Troe calculation, and temperature dependences from similar

C2H50 + NO2. New Entry. High pressure rate constant at 298K from Frost and Smith (1990a). Other

values estimated from similar reactions.
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31. CH30 2 + NO 2. Parameters from a reasonable fit to the temperature and pressure-dependent data in

Sander and Watson (1980) and Ravishankara et al. (1980a). The former reference reports their room-

temperature data in the same form as herein, but they allow F c to vary. They report:

k o = 2.33 x 10 "30, koo = 8 x 10 "12, F c = 0.4

which is not a qualitatively differentfitto the data at 300K. The latterreference reports temperature

dependence as:

ko = 2.2 x 10 -30 (T/300) "2"5, koo = 7 x 10 "12 (T/300) "3.5, Fc = 0.4

32.

33.

These parameters are a better fit at all temperatures than those recommended here. We do not adopt

them since they are not much better in stratospheric range, and they would require both a change in our

F c = 0.6 format, and the adoption of a quite large negative activation energy for k_.

The CODATA recommendation (Baulch et al.,1982) are: ko ffi2.3 x 10 -30 (T/300)-4,ko_ = 8 x 10 "12 and

Fc = e"T/320 + e'1280fr; yielding Fc = .41 + 300 K and .54 at 200 K. These values do not fitthe data as

well as the current recommendations. It is interesting to note that the data require a negative T-

dependence for ko_ similar to our HO2 + NO2 recommendation, and that the value of _ at 300 K is -.2.

A recent study of the reverse reaction by Zabel et al. (1989) reports: ko/[N 2] = 9.0 x 10 -5 exp(-80.6 kJ

mole'l/RT) cm 3 molecule "1 sec -1; k_ = 1.1 x 1016 exp(-87.8 kJ mole'l/RT) sec "1

Fc = 0.4.

The values recommended herein taken with the value of the equilibrium constant in Table 3, fit the

data in Zabel et al.(1989) very well.

Destriau and Troe (1990) have fitthe above data to

ko/[N2] = 2.5 x 10-30 (T/298)5"5

koo = 7.5 x 10 "12 independent of temperature

Fc = 0.36.

OH + SO2. Values of the rate constant as a function of pressure at 298 K from Leu (1982),

Paraskevopoulos et al. (1983), and Wine et al.(1984). The value of the low pressure limit is from Leu

(1982), corrected for fall-off.The high pressure limitis from a fitto all the data.

The value of n comes from the above data combined with calculations such as those of Patrick and

Golden (1983), except that the heat of formation of HOSO 2 is raised by 4 kcal tool"1,as suggested by the

work of Margitan (1984). The value of m is estimated. This is not a radical-radical reaction and is

unlikely to have a positive value of m. The limit of m = -2 corresponds to a real activation energy of -1

kcal mol "1. Earlier data listedin Baulch et al.(1980) and Baulch et al.(1982) are noted. Recent work of

Martin et al. (1986), Barnes et al. (1986a), and Lee et al. (1990) confirm the current evaluation.

OH + C2H 4. Experimental data of Tully (1983), Davis et al.(1975), Howard (1976), Greiner (1970a),

Morris et al. (1971), and Overend and Paraskevopolous (1977b) in helium, Atkinson et al. (1977) in

argon, and Lloyd eta|. (1976) and Cox (1975) and Klein et al. (1984) in nitrogen/oxygen mixtures, have

been considered in the evaluation. This well-studied reaction is considerably more complex than most

others in this table. The parameters recommended here fitexactly the same curve proposed by Klein et

al. (1984) at 298 K. An error in the k o value has been corrected from the previous evaluation.

Discrepancies remain and the effectof multiple product channels is not well understood. Kuo and Lee

(1991) report very strong temperature dependence for the low pressure limit (n=4). Calculations of the
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34.

35.

36.

37.

38.

9.

type in Patrick and Golden (1983) yield the recommended value. The high-pressure limit temperature

dependence has been determined by several workers. Almost all obtain negative activation energies,

the Zellner and Lorenz (1984) value being equivalent to m = +0.8 over the range (296 < T/K < 524) at

about 1 atmosphere. Although this could theoretically arise at a result of reversibility,the equilibrium

constant is too high for thispossibility.Ifthere is a product channel that proceeds with a low barrier via

a tight transition state,a complex rate constant may yield the observed behavior. The actual addition

process (OH + C2H 4) may even have a small positive barrier. The recommended limits encompass the

reported values.

OH + C2H2. The rate constant for thiscomplex process has recently been re-examined by G. P. Smith et

al. (1984) in the temperature range from 228 to 1400 K, and in the pressure range 1 to 760 torr. Their

analysis, which is cast in similar terms to those used here, is the source of the rate constants and

temperature dependences at both limits. The negative value of m reflects the fact that their analysis

includes a 1.2 kcal/mole barrier for the addition of OH to C2H 2. The data analyzed include those of

Pastrana and Carr (1974), Perry et al.(1977), Michael et al.(1980), and Perry and Williamson (1982).

Other data of Wilson and Westenberg (1967), Breen and Glass (1971), Smith and Zellner (1973), and

Davis et al.(1975) were not included. A recent study by Liu et al.(1988) is in general agreement with
the recommendation.

Calculations of ko via the methods of Patrick and Golden (19830 yield values compatible with those of

Smith et al.

CF 3 + 0 2. Caralp et al.(1986) have measured the rate constant in N 2 between 1 and 10 torr. This

supplants the value from Caralp and Lesclaux (1983). They recommend different parameters, but the

data are well represented by the currently recommended values. Data of Ryan and Plumb (1982) are in

agreement.

CF2CI + 0 2. New Entry. Values estimated from other reactions in thisseries.

CFCI 2 + 0 2. Values for both low and high-pressure limits at 300K are from Caralp and Lesclaux (1983).

Temperature dependences are rough estimates based on calculations and similar reactions.

CC13 + 0 2. Experimental data of Ryan and Plumb (1984) and Danis et al. (1991) have been considered

in the evaluation. Ryan and Plumb (1984) report:

3_o 30Ok (He) = (5.8+ 0.6)x I0 31, k o. = 2.5 x 10 "12 with F = 0.25.

We find a good fit to their data using F = 0.6 to yield

300 300 i0.12.
k o (He) = 4 x 10"31,keeping k _ --2.5 x

300

The recommended value ofk o (N2) is 2.5 times the value in He and n=6 is selected to give a good fitto

Danis et al.'s(1991) data.

A Patrick and Golden (1983) type calculation using the therrnochemistry of Russell et al.(1990) yields

300 10.30 300 10.12
k o =1.5x . Avalueofk =5x has been reported by Cooper et al.(1980).

CFC120 2 + NO2. Based on experiments in 0 2 of Caralp et al. (1988), who suggest a somewhat different

fitting procedure, but the values recommended here fit the data just as well. Destriau and Troe (1990)

use yet a different fitting procedure that does not represent the data quite as well as that recommended

herein. Reverse rate data are given by KSppenkastrop and Zabel (1991).

40. CF2C10 2 + NO 2. New Entry. Data are from Moore and Carr (1990).
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41.

42.

43.

44.

4_°

47.

49.

Their measurements are consistent with others in the series, n and m are same as the other reactions

in this family.

CH3C(O)O2 + NO2. New Entry. Parameters are from Bridier et al.(1990) who report in the format

30O 300
represented here, but using Fc = 0.3. Their values are: k o = (2.7 ± 1.5)x 10 "28,k _ = (12.1 ± 2.0) x

10-12,with n ffi7.1+1.7 and m= 0.9 ± 0.15.

CF302 + NO2. Exactly same note as 39.

CC1302 + NO2. Exactly same note as 39.

HS + NO. Data and analysis are from the work of Black et al. (1984). The temperature dependence of

k_ has been estimated.

CH3S + NO. New Entry. The recommended values are from the study by Balls et al. (1986) at 296K in

nitrogen. Temperature dependences are derived from the higher temperature results of the same study.

Na + 02. A recent study by Plane and Rajasekhar (1989) finds ko = (2.9+ 0.7)x 10 .30 at 300 K with n =

1.30 ¢ .04. They also estimate ko_ --6 x 10 -10 with a slight positive temperature dependence. The ko

value is about 60% higher than that of Silver et al.(1984b). The recommended value is an average of the

two studies. Itis consistent with the value measured by Marshall et al.(1990) at 600K.

NaO + 02. Ager and Howard (1986) have measured the low-pressure limit at room temperature in

several bath gases. Their value in N 2 is used in the recommendation. They performed a Troe

calculation as per Patrick and Golden (1983) to obtain collision efficiency and temperature

dependence. They obtained a high-pressure limit rate constant by use of a simple model. The

temperature dependence is estimated.

NaO + CO 2. Ager and Howard (1986) have measured the rate constant for this process in the "fall-off'

regime. Their lowest pressures are very close to the low-pressure limit. The temperature dependence

is an estimate. Ager and Howard calculate the high-pressure rate constant from a simple model. The

temperature dependence is an estimate.

NaOH + CO 2. Ager and Howard (1987b) have measured the low-pressure limiting rate constant. The

temperature dependence is an estimate. Ager and Howard have calculated the high-pressure limit

using a simple model. The temperature dependence is an estimate.
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EQUILIBRIUM CONSTANTS

Fo_t

Some of the three-body reactions in Table 2 form products which are thermally unstable at
atmospheric temperatures. In such cases the thermal decomposition reaction may compete with
other loss processes, such as photodissociation or radical attack. Table 3 lists the equilibrium
constants, K(T), for eleven reactions which may fall into this category. The table has three
column entries, the first two being the parameters A and B which can be used to express K(T):

K(T)/cm 3 molecule -1 = A exp(Bfr) (200 < T < 300 K)

The third column entry in Table 3 is the calculated value of K at 298 I_

The data sources for K(T) are described in the individual notes to Table 3. When values of

the heats of formation and entropies of all species are known at the temperature T, we note that:

log [K (T)/cm 3 molecule-1 ] _

0 0

AS T AH T

2.303R 2.303RT
+ logT- 21.87

Where the superscript "o" refers to a standard state of one atmosphere. In some cases K values
were calculated from this equation, using thermochemical data. In other cases the K values were
calculated directly from kinetic data for the forward and reverse reactions. When available,
JANAF values were used for the equilibrium constants. The following equations were then used to
calculate the parameters A and B:

K200 300x 200
B/°K=2.303 [log -- ] ( .)

K 300 300 -200

= 1382 log(K200/K300)

log A = log K(T) - B/2.303 T
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TABLE 3. EQUHABRIUM CONSTANTS

Reaction ' A/cm 3 molecule-1 B_'AB/°K Keq(298K) f(298K)a Note

HO2 + NO2 -*HO2NO2 2.1x10-27 1090(_I000 1.6x10-11 5

NO + NO 2 _ N203 3.0xi0-27 4700y_I00 2.1xi0-20 2

NO2 + NO2 -_N204 5.9xi0-29 6600Y250 2.5x10-19 2

* NO 2 + NO 3 __N205 4.0x10-27 1093_ 3.4x10-11 1.3

CH30 2 + NO 2 _, CH302NO2 1.3x10-28 l1200J=1000 2.7x10-12 2

& C1 + 02 _ ClOO 5.7x10-25 2500_750 2,5x10-21 2

* CIO + 02 _ C10-02 2.9x10-26 <3700 <7.2x10-21

C1 + CO --, C1CO 1.6x10-25 4000_00 1.1x10-19 5

& CIO + CIO -,C1202 3.0xi0-27 8450y_850 6.2xi0-15 2

CIO + OCIO -,Cl20 3 1.6xi0-27 7200_1400 5.0x10-17 10

F + 02 --*FOO 3.2x10-25 6100J:1200 2.5x10-16 10

# OH + CS2 _ CS20H 4.5x10-25 5140J:500 1.4x10-17 1.4

1

2

3

4

5

6

7

8

9

10

11

12

K/cm 3 molecule-1= A exp (B/T)[200 < T/K < 300]

a f(298)isthe uncertaintyfactorat298 K. To calculatetheuncertaintyatothertemperatures,use the

expression:

f(T) = f(298 K) exp (AB ' T_- _ I ).

* Indicates a change from the previous Panel evaluation (JPL 90-1).

& Indicates a change in the Note.

# Indicates a new entry that was not in the previous evaluation.
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°

°

.

4.

°

°

7.

8.

9.

NOTES TO TABI,E 3

HO 2 + NO 2. The value was obtained by combining the data of Sander and Peterson (1984) for the rate

constant of the reaction as written and that of Graham et al. (1977) for the reverse reaction. From the

equilibrium constant, it may be inferred that the thermal decomposition of HO2NO 2 is unimportant in

the stratosphere, but it is important in the troposphere.

NO + NO 2. The data are from JANAF. This process is included because a recent measurement of the

rate constant by Smith and Yarwcod (1986) shows that it is too slow to be an important rate process but

there will be some equilibrium concentration present.

NO 2 + NO2. The data are from JANAF. Recent rate data for this process are reported by Brunning et

al.(1988), Borrell et al.(1988) and Gozel et al.(1984).

NO 2 + NO3. The recommendation is an average of the temperature dependence data of Burrows et a].

(1985c) and Cantrell et al. (1988), and the room temperature data of Tuazon et al. (1983), Perner et al.

(1985) and Hjorth eta]. (1992). The entry in Table 3 is not exactly equivalent to the ratio of the forward
rate constant from Table 2 and the reverse rate constant from the data of Conneii and Johnston (1979)

and Viggiano et al. (1981). However, there is agreement within experimental error over the range of
mutual measurement.

CH30 2 + NO 2. Thermochemical values at 300 K for CH302NO2 and CH30 2 are from Baldwin (1982).

In the absence of data, AH ° and AS ° were assumed to be independent of temperature. Bahta et al. (1982)

have measured k(dissociation) at 263 K. Using the values of k(recombination) suggested in this

evaluation, they compute K(263) = (2.68 ± 0.26) x 10 -10 cm 3. Our values predict 3.94 x 10 -10 cm 3, in good

agreement.

Zabel et al.(1989) have measured k(dissociation)as a function of pressure and temperature. (See Note

25, Table 2). Their values are in good agreement with Bahta et al. (1982) and taken together with

k(recombination) would lead to A = 5.2 x 10 -28 and B = 10,766. This is sufficientlyclose to the value in

Table 3 to forgo any change in parameters, but the uncertainty has been reduced.

Ci + 02. Baer et al. (1991) determined K in the temperature range 180 to 300K. Their value at 185.4 K

(5.23 x 10"19cm 3 molecule -1) compares well with the Nicovich et al. (1991) measurement K = 4.77 x

10 -19 cm 3 molecule "l, and within error with the Mauldin et al. (1992) value of 2.55 x 10 -19 cm 3

molecule -1. A different expression for K by Avallone et al. (1991) gives S°298 (ClOO) = 61.8 cal K "1

tool "1 and AH_,298 (CIOO) = 23.3 kcal mol "1. Using known thermochemistry for C1 and O 2 and

computed entropy values for C1OO, AHf,298 (ClOO) = 23.3 ±0.6 kcal mole -1 is obtained from the

Nicovich et al. (1991) data. The value of S°298 (CIOO) = 64.3 cal mole "1 K "1 used is computed from a

structure with a 105 ° bond angle and Cl-O and O-O bond lengths of 1.73 and 1.30 _ respectively.

Frequencies of 1441, 407 and 373 cm "1 are from Arkell and Schwager (1967). Symmetry number is 1

and degeneracy is 2.

CIO + 0 2. DeMore (1990) reports K <4 x 10 "18 cm 3 molecule -1 at 197K. His temperature dependence of

the equilibrium constant is estimated using S°298 (CIO.O 2) = 73 cal mol'lK "1 and AH°298 < 7.7 kcal

tool "1. A higher value of K has been proposed by Prasad (1980), but it requires S°(ClO-O2) to be about 83

cal mol "1 K -1, which seems unreasonably high. Carter and Andrews (1981) found no experimental

evidence for C10.O 2 in matrix experiments.

C1 + CO. From Nicovich et al. (1990a) who measured both k and K between 185 and 260K in N 2. They

report AHf,298 (CICO) = -5.2 + 0.7 kcal mole "1.

C10 + CIO. The value is from Cox & Hayman (1988). The corresponding second law entropy of the

dimer is 74 cal mol "1 K "1 and AHf = 31.5 kcal tool "1. Previous work of Cox and Derwent (1979) and
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10.

11.

12.

Hayman et al. (1986) is noted. The ab initio frequencies of McGrath et al. (1990) give a lower entropy;
the resulting parameters for K(T) are indistinguishable from those in the Table.

CIO + OCIO. Data istaken from Hayman and Cox (1989). They deduce AHf (C1203) = 34 ± 3 kca]

mole"1and S°(C1203)= 80 ± 12 calmole"I°K"1.

F + 02. Calculated from JANAF thermochemical values except for AHf.298(FO 2) = 6.24± 0.5 kcal

mole -1. The latterwas taken from Pagsberg et aI.(1987). This directmeasurement, which falls

between the earlierdisputedvalues,would seem tosettlethatcontroversy,but (seeNote 21 ofTable 2)the

calculatedvalue ofk o isnot ingood agreement with the experiment.

OH + CS 2. New Entry. Average ofthe concordantrecentmeasurements ofMurrells et al.(1990)and

Diau and Lee (1991)between 249 and 298K. The measurements ofHynes eta]. (1988)indicatea less

stableadduct,but agree withincombined experimentalerror.
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PHOTOCHEMICAL DATA

Discussion of Format and Error Estimates

In Table 4 we present a list of photochemical reactions considered to be of stratospheric

interest. The absorption cross sections of 02 and 03 largely determine the extent of penetration of

solar radiation into the stratosphere and troposphere. Some comments and references to these

cross sections are presented in the text, but only a sample of the data is listed here. (See, for

example, WMO Report #11, 1982; WMO-NASA, 1985.) The photodissociation of NO in the O2

Schumann-Runge band spectral range is another important process requiring special treatment
and is not discussed in this evaluation (see, for example, Frederick and Hudson, 1979; Allen and

Frederick, 1982; and WMO Report #11, 1982).

For some other species having highly structured spectra, such as CS2 and SO2, some

comments are given in the text, but the photochemical data are not presented. The species CH20,

NO2, NO3, CIO, BrO, and OCIO also have complicated spectra, but in view of their importance for

atmospheric chemistry a sample of the data is presented in the evaluation; for more detailed

information on their high-resolution spectra and temperature dependence, the reader is referred to

the original literature.

Table 5 gives recommended reliability factors for some of the more important photochemical

reactions. These factors represent the combined uncertainty in cross sections and quantum

yields, taking into consideration the atmospherically important wavelength regions, and they

refer to the total dissociation rate regardless of product identity (except in the case of O(1D)

production from photolysis of 03).

The error estimates are not rigorous numbers resulting from a detailed error propagation

analysis of statistical manipulations of the different sets of literature values; they merely

represent a consensus among the panel members as to the reliability of the data for atmospheric

photodissociation calculations, taking into account the difficulty of the measurements, the

agreement among the results reported by various groups, etc.

The absorption cross sections are defined by the following expression of Beer's Law:

I = Ioexp(-anl),

where Io and I are the incident and transmitted light intensity, respectively; _ is the absorption

cross section in cm 2 molecule-i; n is the concentration in molecule cm "3, and l is the pathlength in

cm. The cross sections are room temperature values at the specific wavelengths listed in the table,

and the expected photodissociation quantum yields are unity, unless otherwise stated.
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Table 4. Photochemical Reactions

* O2 +hv-_O + O

& O3+hv_02+O

* 03+hv_02+O(1D)

* H02 + hv _ products

# H20 +hv_H + OH

H202 + hv --* OH + OH
NO+hv_N+O

NO2 + hv _ NO + O
NO3 + hv -_ products

& N20 + hv _ N2 + O(1D)

N205 + hv _ products

NH3 + hv -_ NH2 + H
* HONO+hv_OH+NO

& HNO3+hv_OH+N02
HO2NO2 + hv -_ products

Cl 2 + hv --* Ci + Ci
& CIO+hv_Cl+O

* CIOO + hv _ products
& OCIO + hv -_ O + CIO

* CIO3 + hv -_products

# Cl20 + hv _ products

& C1202 + hv _ products

# C1203 + hv -_products

# C1204 + hv --,products

# Cl206 + hv -_products

HCI + + hv --,H + C!

HOCI + hv _ OH + Cl

CINO + hv _ Cl + NO

CINO2 + hv _ products

CIONO + hv _ products

& CIONO2 + hv --*products

CCI4 + hv _ products

CCI3F + hv -_ products

CCI2F 2 + hv --_products

* CHCIF2 + hv--*products

CH3CI + hv. products

# CF2CICFCI2 + hv -_products

# CF2CICF2CI + hv --#products

# CF3CF2CI + hv _ products

CH3CF2CI + hv -_products

* CF3CHCI2 + hv _ products

CF3CHFCI + hv _ products

* CH3CFCI2 + hv -_products

CH3CCI 3 + hv -*products

# CF3CF2CHCI2 + hv -_products

# CF2CICF2CHFCI + hv-, products

* CF3Br + hv _ products

* CF2Br 2 + hv -_products

* CF2CIBr + hv _ products

* CF2BrCF2Br + hv --*products

# CH3Br + hv -_products

# CHBr3 + hv--*products

CF4 + hv --,products

C2F 6 + hv -_products

SF6 + hv --_products

CCI20 + hv _ products

CCIFO + hv _ products

CF20 + hv _ products

BrO + hv -_ products

BrONO2 + hv _ products

HF+ hv--*H + F

CO + hv -*C+ O (1)

CO2 + hv _ CO + O (I)

CH4 + hv _ products (2)

* CH20 --*products

CH3OOH + hv --,products

HCN + hv -_products

CH3CN + hv -_products

SO2 + hv --*SO + O
OCS +hv _ CO + S

H2S + hv -_HS + H

CS2+ hv -_products

NaCl + hv --*Na + Cl

NaOH + hv -_ Na + OH

(1) Hudson and Kieffer (1975).
(2) Turco (1975).
# New Entry.
* Indicates a change in the recommendation from the previous evaluation.
& Indicates a change in the note.
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Table 5. Combined Uncertainties for Cross Sections and Quantum Yields

Species Uncertainty

O2 (Schumann-Runge bands) 1.2

02 (Continua) 1.2

03 (Cross Sections Only) 1.1

O3 -'* O(1D) 1.2

NO2 1.2

NO3 2.0

N20 1.2

N205 2.0

H202 1.3

HNO3 1.3

HO2NO2 2.O

CH20 1.4

HCl 1.1

HOC1 1.4

CIONO2 1.3

CCl4 1.1

CCI3F 1.1

CCI2F2 1.1

CH3CI 1.1

CF20 2.0

CH3OOH 1.5

BrONO2 1.4

CF3Br 1.3

CF2ClBr 2.0

CF2Br2 2.0

C2F4Br2 2.0
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02+hv-_O+O

Thephotodissociationof molecularoxygenin the stratosphereis dueprimarily to absorption
of solarradiationin the 200-220nm wavelengthregion,i.e.,within the Herzbergcontinuum.The
185-200nm region--the02 Schumann-Rungebandspectralrange--isalsovery important, since
solarradiationpenetratesefficientlyinto thestratosphereat thosewavelengths.

Frederickand Mentall (1982),Hermanand Mentall (1982)and Andersonand Hall (1983,
1986)estimated02 absorptioncrosssectionsfromballoonmeasurementsof solarirradiancein the
stratosphere.Theseauthorsfind the crosssectionsin the 200-210nm rangeto be~35%smaller
than the smallestof the olderlaboratoryresults,whichare thoseof Shardanandand PrasadRao
(1977). The more recent laboratorystudies(Johnstonet al., 1984;Cheunget al., 1984,1986;
Jenovrieret al., 1986)confirm the lower valuesobtainedfrom solar irradiancemeasurements.
Therecommendedabsorptioncrosssectionvaluesbetween205and240nm are listed in Table6;
theyaretakenfromYoshinoet al. (1988b),andarebasedontherecentlaboratorymeasurements.

Table6. AbsorptionCrossSectionsof02 Between205and240nm

k 10_-Ao k 1024 o

(nm) (cm 2) (nm) (era 2)

205 7.35 223 3.89

206 7.13 224 3.67

207 7.05 225 3.45
208 6.86 226 3.21

209 6.68 227 2.98

210 6.51 228 2.77

211 6.24 229 2.63
212 6.05 230 2.43

213 5.89 231 2.25

214 5.72 232 2.10

215 5.59 233 1.94

216 5.35 234 1.78

217 5.13 235 1.63
218 4.88 236 1.48

219 4.64 227 1.34

220 4.46 238 1.22

221 4.26 239 1.10

222 4.09 240 1.01

The studies of the penetration of solar radiation in the atmosphere in the Schumann-Runge

wavelength region were based originally on laboratory measurements of cross sections which

were affected by instrumental parameters due to insufficient spectral resolution. Yoshino et al.

(1983) reported high resolution 02 cross section measurements at 300 K, between 179 and 202 nm,

obtaining the first set of results which is independent of the instrument width. Additional studies

at other temperatures, wavelengths and isotopic compositions have been carried out by Yoshino et

al. (1984; 1987; 1988a; 1989; 1990), Lewis et al. (1986a,b), Cheung et al. (1990) and Chiu et al. (1990).
Minschwaner et al. (1992) have fit temperature dependent 02 cross sections between 175 and 204

nm with polynomial expressions, providing accurate means of determining the Schumann-
Runge band cross sections with a model that incorporates the most recent laboratory data. Coquart
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et al. (1990) have reported Herzberg continuum absorption cross sections in the wavelength region
196-205 nm of the Schumann-Runge bands.

For parameterizations of the 02 absorption in the Schumann-Runge bands used in

atmospheric modeling calculations see, e.g., the review in WMO (1985). More recent work by
Murtagh (1988), Nicolet and Kennes (1989) and Minschwaner and Salawitch (private
communication, 1992) incorporates results of the later laboratory measurements into efficient
schemes for computing broad-band transmission and photolysis rates. Transmission values
obtained by Murtagh (1988) agree well with the WMO (1986) recommendations, although the high
resolution calculations of Minschwaner and Salawitch differ with the WMO values by as much as
10 - 20% at some wavelengths.

In view of the quality of the high resolution laboratory measurements, the primary source of
uncertainty in modeling O2 photolysis in the Schumann-Runge bands (other than the issue of
absolute solar irradiance) has shifted to the choice of broadband parameterization.

O8 +by-* O+ O2

The 03 absorption cross sections and their temperature dependence have been measured by

several groups. For a review see WMO-NASA, 1985; this reference should be consulted to obtain
data for atmospheric modeling calculations. Table 7 lists merely a sample of the data taken from
this review, namely the 273 K cross section values averaged over the wavelength intervals

commonly employed in modeling calculations, except for the wavelength range 185 to 225 nm,
where the present recommendation incorporates the averaged values from the recent work of
Molina and Molina (1986); the older values were based on the work of Inn and Tanaka (1953). The
temperature effect is negligible for wavelengths shorter than -260 nm. Recent work by Mauers-

berger et al. (1986, 1987) yields a value of 1137 x 10 -20 cm 2 for the cross section at 253.7 nm, the

mercury line wavelength; it is about 1% smaller than the commonly accepted value of 1147 x 10-20

cm 2 reported by Hearn (1961), and about 2% smaller than the value obtained by Molina and Molina

(1986), 1157 x 10 -20 cm2; see also Barnes and Mauersberger (1987). The reason for the small

discrepancy, which appears to be beyond experimental precision, is unclear. Cacciani et al. (1989)
reported measurements of the ozone cross sections in the wavelength range from 339 to 355 nm, in
reasonable agreement with the present recommendation; the same group has measured recently
the cross sections in the 590-610 nm region, at 230 K and at 299 K (Amoruso et al., 1990).
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Table 7. Absorption Cross Sections of O3 at 273 K

_. 1020 o(cm 2) _. 1020 a(cm 2)

(nm) average (nm) average

175.439 - 176.991 81.1 238.095 - 240.964 797

176.991 - 178.571 79.9 240.964 - 243.902 900

178.571 - 180.180 78,6 243.902 - 246.914 1000

180.180 - 181.818 76.3 246.914 - 250.000 1060

181.818 - 183.486 72.9 250.000 - 253.165 1130

183.486 - 185.185 68,8 253.165 - 256.410 1150

185.185 - 186.916 62.2 256,410 - 259.740 1120
186.916 - 188.679 57.6 259.740 - 263.158 1060

188.679 - 190.476 52,6 263.158 - 266.667 965

190.476 - 192.308 47.6 266.667 - 270.270 834

192.308 - 194.175 42.8 270.270 - 273.973 692

194.175 - 196,078 38,3 273.973 - 277.778 542

196.078 - 298.020 34.7 277.778 - 281.690 402

198.020 - 200.000 32.3 281.690 - 285.714 277

200.000 - 202.020 31.4 285.714 - 289.855 179

202.020 - 204,082 32.6 289.855 - 294.118 109

204.082 - 206.186 36.4 294.118 - 298.507 62.4
206.186 - 208.333 43.4 298.507 - 303.030 34.3

208.333 - 210.526 54.2 303.030 - 307.692 18.5

210.526 - 212.766 69.9 307.692 - 312.5 9.80

212.766 - 215,054 92,1 312.5 - 317.5 5.01

215.054 - 217.391 119 317.5- 322.5 2.49

217.391 - 219.780 155 322.5- 327.5 1.20

219.780 - 222.222 199 327.5 - 332.5 0.617

222,222 - 224.719 256 332.5 - 337.5 0.274

224,719 - 227.273 323 337,5 - 342,5 0,117

227.273 - 229.885 400 342.5 - 347.5 0.0588
229.885 - 232.558 483 347.5 - 352.5 0.0266

232.558 - 235.294 579 352.5 - 357.5 0.0109

235.294 - 238.095 686 357.5 - 362.5 0.00549
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The quantumyieldsfor O(1D) production, ¢p(O1D) for wavelengths near 310 nm, i.e., the

energetic threshold or fall-off region, have been measured mostly relative to quantum yields for

wavelengths shorter than 300 am, which were assumed to be unity. There are several studies

which indicate that this assumption is not correct: Fairchild et al. (1978) observed approximately

10% of the primary photolysis products in the ground state channel, that is ¢(O3p) ~0.1, at 274 nm:

Sparks et al. (1980) also report ¢(03p) -0.1, at 266 nm; according to Brock and Watson (1980b)

¢(O1D) = 0.88 at 266 nm; Amimoto et al. (1980) report ¢(O1D) = 0.85 at 248 nm, and Wine and

Ravishankara (1982) measured directly ¢(O1D) = 0.9 at 248 nm. There are also some indications

that (OLD) decreases slightly between 304 and 275 nm (see Brock and Watson, 1980a,b).

Turnipseed et al. (1991b) report ¢(01D) = 0.87+0.04 at 222 nm and 0.46+0.29 at 193 nm. The

photochemistry of ozone has been reviewed by Wayne (1987) and by Steinfeld et al. (1987). Table 8

presents a polynomial expression for the (OLD) quantum yield as a function of wavelength and

temperature in the fall-off range, 305 to 320 nm. The upper limiting value of¢(O1D) at 305 nm is

taken as 0.95, in view of the above-mentioned evidence for a less than unit value, but witb a slight
maximum near 305 nm.

The recommendations of Table 8 are based on the high resolution laser data of Arnold et al.
(1977), Brock and Watson (1980b), and Trolier and Wiesenfeld (1988). An exception" is that the

"tail" sometimes seen in the laser experiments at longer wavelengths has been eliminated, on the

grounds that it is not reproduced in the monochromator experiments and may be an artifact.
Temperature dependence in the present recommendation is based on the monochromator

experiments of Moortgat and Kudzus (1978).

The uncertainty in the quantum yield values for atmospheric modeling purposes is

estimated in Table 5 as 1.2. However, considering the importance of the process additional high

resolution measurements should be carried out in the fall-off region (the Huggins bands) for cross

sections, quantum yields and their temperature dependency.

Table 8. Mathematical Expression for O(1D) Quantum Yields, _, in the Photolysis of 03

in the Wavelength Region 305 to 320 nm.

• (_., T) = a0(z) + al(z)x + a2(_)x 2 + a3(_)x 3 + a4(z)x4+ a5('c)x 5 + a6(_)x 6

where x = (k -305) and _ = (298-T(K)) and

a0 = .94932 - 1.7039" 10 -4 _ + 1.4072.10 -6 _2

al = -2.4052.10 -2 + 1.0479.10 -3 z - 1.0655.10 -5 _2

a2 = 1.8771"10 -2 - 3.6401°10 -4 _ - 1.8587°10 -5 _2

a3 = 1.454°10 -2 - 4.7787"10 -5 _ + 8.1277* 10 "6 z2

a4 = 2.3287* 10 -3 + 1.9891°10 -5 z- 1.1801o10 -6 _2

a5 = -1.4471o 10 -4 - 1.7188 ° 10 -6 _ + 7.2661o 10 -8 _2

a 6 = 3.183 • 10 -6 + 4.6209° 10 -8 z - 1.6266o 10 -9 _2

If¢(k,T) < 0.02 then let ¢(k,T) = 0. For _ >320 nm, ¢(_.,T) = 0.

Expression is valid for the temperature range 220-300 K.
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H20 + hv -_ H + OH

Water vapor has a continuum absorption spectrum at wavelengths longer than 145 nm, with

a maximum around 165 nm, the cross sections falling off rapidly toward longer wavelengths; the
photedissociation threshold occurs at 246 nm. Below 69 nm the spectrum is also a continuum, and

between 69 and 145 nm it consists of diffuse bands. In the atmosphere water vapor is

photodissociated mainly by the solar Lyman alpha line (121.6 nm).

The absorption cross sections and the photochemistry of water vapor have been reviewed, for

example, by Hudson (1971; 1974), by Hudson and Kiefer (1975); by Calvert and Pitts (1966c); and by
Okabe (1978).

The recommended absorption cross sections are taken from the review by Hudson and

Kiefer (1975), and are listed in Table 9 between 175 and 190 nm. At these wavelengths the quantum

yield for production of H and OH is unity. At shorter wavelengths H2 and O are also formed as

primary products; Stief et al. (1975) report a quantum yield of 0.11 for this process between 105 and
145 nm.

Table 9. Absorption Cross Sections of H20 Vapor

_.(n m) 1020a(cm 2)

175.5 262.8

177.5 185.4

180.0 78.1

182.5 23.0
185.0 5.5

186.0 3.1

187.5 1.6

189.3 0.7

HO2 + hv --, OH + O

The absorption cross sections of the hydroperoxyl radical, H02, in the 200-250 nm region

have been measured at room temperature by Paukert and Johnston (1972), Hochanadel et al. (1972;

1980), Cox and Burrows (1979), McAdam et al. (1987), Kurylo et al. (1987a), Moortgat et al. (1989),

Dagaut and Kurylo (1990), by Lightfoot and Jemi-Alade (1991), who measured the cross sections up

to 777 K, and by Crowley et al. (1991); and by Sander et al. (1982) at 227.5 nm. There are

significant discrepancies in the cross section values, particularly around 200 nm; no definitive
explanation of the differences can be offered at present.

Table 10 lists the recommended cross sections, which are taken from the review by
Wallington et al. (1992). Photolysis of HO2 in the stratosphere and troposphere is slow and can be

neglected, but the UV absorption cross sections are important in laboratory studies of reaction
kinetics.
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Lee(1982)hasdetectedO(1D)asa primaryphotodissociationproductat 193and at 248nm,
with a quantumyield which is about 15 times larger at the longerwavelength. The absolute
quantumyield for O(1D)productionhasnotbeenreportedyet.

Table10. AbsorptionCrossSectionsof HO2

k(nm) 1020(_(cm2)

190 387
2OO 458
210 454
220 373
230 245
24O 135
25O 6O

H202 + hv _ OH + OH

The recommended 298 K absorption cross section values, listed in Table 11, are the mean of

the data of Lin et al. (1978b), Molina and Molina (1981), Nicovich and Wine (1988), and Vaghjiani

and Ravishankara (1989b). Molina and Molina (1981) supersedes the earlier results of Molina et

al. (1977a). Nicovich and Wine measured the cross sections at k > 230 relative to the values at

202.6, a = 4.32 x 10 -19 cm 2, and at 228.8 nm, (r = 1.86 x 10 -19 cm 2. The values are within 2% of the

recommended value.

Table 11. Absorption Cross Sections of H202 Vapor

k(nm) 1020c(cm 2) _( n m ) 1020(r(cm 2 )

298 K 355 K 298 K 355 K

190 67.2 270 3.3 3.5
195 56.4 275 2.6 2.8

200 47.5 280 2.0 2.2

205 40.8 285 1.5 1.6

210 35.7 290 1.2 1.3

215 30.7 295 0.90 1.0

220 25.8 300 0.68 0.79
225 21.7 305 0.51 0.58

230 18.2 18.4 310 0.39 0.46

235 15.0 15.2 315 0.29 0.36

240 12.4 12.6 320 0.22 0.27

245 10.2 10.8 325 0.16 0.21

250 8.3 8.5 330 0.13 0.17

255 6.7 6.9 335 0.10 0.13

260 5.3 5.5 340 0.07 0.10

265 4.2 4.4 345 0.05 0.06

350 0.04 0.05
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Nicovich and Wine have measured the temperature dependence of these cross sections.

They expressed the measured cross sections as the sum of two components; al, due to absorption

from H202 which has the O-O stretch excited and the other a0, due to absorption by ground state

molecules. For atmospheric calculations the expression given in Table 12 may be used. The

photodissociation quantum yield is believed to be unity. At and above 248 nm, the major

photodissociation process is that leading to OH, i.e., the quantum yield for OH production is 2

(Vaghjiani and Ravishankara, 1990 and Vaghjiani et al., 1992).

Table 12. Mathematical Expression for Absorption Cross Sections of H202

as a Function of Temperature

7 4

1021 o(k,T) = X n___oAn kn + (1-_) n___oB n kn

Where T: temperature Kelvin; k: nm; Z = [1+ exp (-1265/T)]"1

A0 = 6.4761x 104

A1 = -9.2170972 x 102

A2 = 4.535649

A3 = -4.4589016 x 10 -3

A4 = -4.035101 x 10 -5

A5 = 1.6878206 x 10 -7

A 6 = -2.652014 x 10 -10

A7 = 1.5534675 x 10 -13

B0 = 6.8123 x 103

B1 = -5.1351x 101

B2 = 1.1522 x 10 -1

B3 = -3.0493 x 10 -5

B4 = -1.0924 x 10 -7

Range 260-350 nm; 200-400 K

NO2 + hv --->NO + O

Earlier recommendations for the absorption cross sections of nitrogen dioxide were taken

from the work of Bass et al. (1976). More recent measurements have been reported by Schneider et

al. (1987), at 298 K, for the wavelength range from 200 to 700 nm; and by Davidson et al. (1988),

from 270 to 420 nm, in the 232-397 K temperature range. At room temperature the agreement

between these three sets of measurements is good; within 5 % between 305 and 345 nm, and within

10% at the longer wavelengths. The agreement is poor below room temperature, as well as at the

shorter wavelengths. A possible cause for the discrepancies is the presence of N204. The

corrections needed to account for the presence of this species are largest around 200 nm, where it
absorbs strongly. The corrections are also large at the lowest temperatures, because a significant
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fractionof the NO2formsN204. On theotherhand,thereis noerrorapparentin the corrections

carried out by Bass et al., so that the reason for the discrepancy is not clear.

Table 13 liststhe recommended absorption cross sections, averaged over the wavelength

intervals used for atmospheric photodissociation calculations. For the wavelength range from 200

to 274 nm the values are taken from Schneider et al.(1987);in this range the temperature effectis

negligible. For the 274 to 420 nm region the temperature-dependent values are taken from
Davidson et al.(1988).

Table 13. Absorption Cross Sections of NO2

J ,l , , i, ,,,

1020 a, average at 25°C _ 102 0 a, average at 0°C 102 2 a*

(nm) cm 2 molecule-1 (nm) (cm 2 molecule-l) (cm 2 molecule-1 degree-l)
• ,L

202.02 - 204.08 41.45 273.97 - 277.78 5.03 0.075

204.08 - 206.19 44.78 277.78 - 281.69 5.88 0.082
206.19 - 208.33 44.54 281.69 - 285.71 7.00 -0.053

208.33 - 210.53 46.41 285.71 - 289.85 8.15 -0.043

210.53 - 212.77 48.66 289.85 - 294.12 9.72 -0.031

212.77 - 215.06 48.18 294.12 - 298.51 11.54 -0.162

215.06 - 217.39 50.22 298.51 - 303.03 13.44 -0.284

217.39 - 219.78 44.41 303.03 - 307.69 15.89 -0.357

217.78 - 222.22 47.13 307.69 - 312.50 18.67 -0.536

222.22- 224.72 37.72 312.5 - 317.5 21.53 -0.686

224.72- 227.27 39.29 317.5 - 322.5 24.77 -0.786

227.27 - 229.89 27.40 322.5 - 327.5 28.07 -1.105

229.89- 232.56 27.78 327.5 - 332.5 31.33 -1.355

232.56 - 235.29 16.89 332.5 - 337.5 34.25 -1.277

235.29 - 238.09 16.18 337.5 - 342.5 37.98 -1.612

238.09 - 240.96 8.812 342.5 - 347.5 40.65 - 1.890

240.96 - 243.90 7.472 347.5 - 352.5 43.13 -1.219

243.90- 246.91 3.909 352.5 - 357.5 47.17 -1.921

246.91 - 250.00 2.753 357.5 - 362.5 48.33 -1.095

250.00- 253.17 2.007 262.5 - 367.5 51.66 -1.322
253.17 - 256.41 1.973 367.5 - 372.5 53.15 -1.102

256.41 - 259.74 2.111 372.5 - 377.5 55.08 -0.806

259.74 - 263.16 2.357 377.5 - 382.5 56.44 -0.867

263.16 - 266.67 2.698 382.5 - 387.5 57.57 -0.945

266.67 - 270.27 3.247 387.5 - 392.5 59.27 -0.923

270.27 - 273.97 3.785 392.5 - 397.5 58.45 -0.738
397.5 - 402.5 60.21 -0.599

402.5 - 407.5 57.81 -0.545
407.5 - 412.5 59.99 -1.129

412.5 - 417.5 56.51 0.001

417.5 - 422.5 58.12 -1.208

* The quantity a is the temperature coefficient ofo as defined in the equation a(t) = c(0 °) + a x t

where t is in degrees Celsius.
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The earlier recommendation for quantum yields was based on the work of Harker et al.

(1977) and of Davenport (1978) for the atmospherically important 375-470 nm region. The work by

Gardner et al. (1987) yields values which are in much better agreement with the values reported

earlier by Jones and Bayes (1973). The recommended quantum yield values, listed in Table 14,

are in agreement with the recommendation of Gardner et al. (1987); they are based on a smooth fit

to the data of Gardner et al. (1987) for the wavelength range from 334 to 404 nm; Harker et al. (1977)

for 397-420 nm (corrected for cross sections); Davenport (1978) for 400-420 nm; and Jones and

Bayes (1973) for 297-412 nm. Direct measurements of the solar photodissociation rate of NO2 in the

troposphere by Parrish et al. (1988) and by Shetter et al. (1988) agree better with theoretical
estimates based on this recommendation than with the earlier one.

Table 14. Quantum Yields for NO2 Photolysis

l, nm @ _., nm (b

285 1.000 393 0.953

290 0.999 394 0.950
295 0.998 395 0.942

300 0.997 396 0.922
305 0.996 397 0.870

310 0.995 398 0.820

315 0.994 399 0.760

320 0.993 400 0.695

325 0.992 401 0.635

330 0.991 402 0.560

335 0.990 403 0.485

340 0.989 404 0.425
345 0.988 405 0.350

350 0.987 406 0.290

355 0.986 407 0.225

360 0.984 408 0.185

365 0.983 409 0.153

370 0.981 410 0.130

375 0.979 411 0.110
380 0.975 412 0.094

381 0.974 413 0.083

382 0.973 414 0.070

383 0.972 415 0.059
384 0.971 416 0.048

385 0.969 417 0.039

386 0.967 418 0.030
387 0.966 419 0.023

388 0.964 420 0.018

389 0.962 421 0.012

39O 0.960 422 0.008

391 0.959 423 0.004

392 0.957 424 0.000
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NO3 ÷ hv _ NO ÷ 02 (¢1)

-_NO2 + O (¢2)

The absorption cross sections of the nitrate free radical, NO3, have been studied by (1)

Johnston and Graham (1974); (2) Graham and Johnston (1978); (3) Mitchell et al. (1980); (4)
Marineili et al. (1982); (5) Ravishankara and Wine (1983); (6) Cox et al. (1984a); (7) Burrows et al.
(1985b); (8) Ravishankara and Mauldin (1986); (9) Sander (1986); (10) Cantrell et al. (1987a); and
(11) Canosa-Mas et al. (1987). The 1st and 4th studies required calculation of the NO3

concentration by modeling a complex kinetic system. The other studies are more direct and the
results in terms of integrated absorption coefficients are in good agreement. The recommended

value at 298 K and 662 nm, (2.00 ± 0.25)x10 -17 cm 2, is the average of the results of studies (4), (5)

and (7) through (11). The values in the wavelength range 600-670 nm, shown in Figure 2 and listed
in Table 15, were calculated using the spectra measured in studies (8), (9) and (11), and
normalizing the 662 nm value to the above average. The spectra obtained in other studies are
consulted for a more extended wavelength range. The temperature dependence of the 662 nm band
has been studied by Ravishankara and Mauldin (1986), Sander (1986) and Cantrell et al. (1987a),
while the first two investigators observe the cross section at 662 nm to increase with decreasing
temperature, Cantrell et al. (1987a) found no measurable temperature dependence. The reason for
this discrepancy is not clear.

The quantum yields ¢1 and ¢2 have been measured by Graham and Johnston (1978), and

under higher resolution by Magnotta and Johnston (1980), who report the product of the cross section
times the quantum yield in the 400 to 630 nm range. The total quantum yield value, ¢1 + ¢2,

computed from the results of this latter study and the cross sections of Graham and Johnston (1978),
is above unity for k <610 nm, which is, of course, impossible. Hence, there is some systematic
error and it is most likely in the primary quantum yield measurements. Magnotta and Johnston
(1980) and Marinelli et al. (1982) have discussed the probable sources of this error, but the question
remains to be resolved and further studies are in order. At present, the recommendation remains
unchanged, namely, to use the following photodissociation rates estimated by Magnotta and
Johnston (1980) for overhead sun at the earth's surface.

JI(NO + 02) = 0.022 s-1

J2(N02 + 0) = 0.18 s"1.

The spectroscopy of NO3 has been reviewed recently by Wayne et al. (1991). The reader is

referred to this work for a more detailed discussion of the cross section and quantum yield data,
and for estimates of the photodissociation rates as a function of zenith angle.
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Table 15. Absorption Cross Sections of NO3 at 298 K

k 1020(_ X 1020c _, 1020a

(nm) (cm 2) (nm) (cm 2) (nm) (cm 2)

6O0 258 625 796 648 6O

601 263 626 703 649 51

602 302 627 715 650 49

603 351 628 702 651 52

6O4 413 629 672 652 55
605 415 630 638 653 61

606 322 631 470 654 76

607 225 632 344 655 93

608 170 633 194 656 131

609 153 634 142 657 172

610 192 635 128 658 222

611 171 636 159 659 356

612 202 637 191 660 658

613 241 638 193 661 1308

614 242 639 162 662 2000

615 210 640 121 663 1742

616 190 641 99 664 IIi0

617 189 642 91 665 752

618 208 643 93 666 463

619 229 644 92 667 254

620 292 645 85 668 163

621 450 646 72 669 113

622 941 647 69 670 85

623 1407

624 1139
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N20 +hv-o N2+ O(1D)

The recommended values are taken from the work of Selwyn et al. (1977), who measured the

temperature dependence of the absorption cross sections in the atmospherically relevant

wavelength region. They have fitted their data with the expression shown in Table 16; Table 17

presents the room temperature data. Hubrich and Stuhl (1980) remeasured the N20 cross sections

at 298 K and 208 K and Merienne et al. (1990) in the range from 220 K to 296 I_ The results of these

two sets of measurements are in very good agreement with those of Selwyn et al. The quantum

yield for photodissociation is unity and the products are N2 and O(1D) (Zelikoff and Aschenbrand,

1954; Paraskevopoulos and Cvetanovic, 1969; Preston and Barr, 1971; Simonaitis et al., 1972). The

yield of N(4s) and NO(2FI) is less than 1% (Greenblatt and Ravishankara, 1990).

Table 16. Mathematical Expression for Absorption Cross Sections
of N20 as a Function of Temperature

in o(_.,T) =
n--o

Where T: temperature Kelvin;

A0 = 68.21023

A1 = -4.O71805

A 2 = 4.301146 x 10 -2

A3 = -1.777846 x 10 -4

A4 = 2.520672 x 10 -7

4 3
Y. An _n + (T-300) exp( Y. Bn _n)

n=0

_.: nm;

B0 = 123.4014

B1 = -2.116255

B2 = 1.111572x 10 -2

B 3 = -1.881058 x 10 -5

Range 173 to 240 nm; 194 to 320 K
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Table17.AbsorptionCrossSectionsofN20 at 298K

_, 102%
(nm) (cm2)

1020<S L 10200 .

(nm) (cm 2) (nm) (cm 2)

173 11.3

174 11.9

175 12.6

176 13.4

177 14.0

178 13.9

179 14.4

180 14.6
181 14.6

182 14.7

183 14.6

184 14.4

185 14.3

186 13.6

187 13.1

188 12.5

189 11.7

190 11.1

191 10.4

192 9.75

193 8.95

194 8.11

195 7.57

196 6.82 219 0.115

197 6.10 220 0.0922

198 5.35 221 0.0739

199 4.70 222 0.0588

200 4.09 223 0.0474

201 3.58 224 0.0375

202 3.09 225 0.0303
203 2.67 226 0.0239

204 2.30 227 0.0190

205 1.96 228 0.0151

206 1.65 229 0.0120

207 1.38 230 0.00955

208 1.16 231 0.00760

209 0.980 232 0.00605

210 0.755 233 0.00478

211 0.619 234 0.00360

212 0.518 235 0.00301

213 0.421 236 0.00240
214 0.342 237 0.00191

215 0.276 228 0.00152

216 0.223 239 0.00123

217 0.179 240 0.00101

218 0.142

N205 + hv _ Products

The absorption cross sections of dinitrogen pentoxide, N205, have been measured at room

temperature by Jones and Wulf (1937) between 285 and 380 nm, by Johnston and Graham (1974)

between 210 and 290 nm, by Graham (1975) between 205 and 380 nm; and for temperatures in the 223

to 300 K range by Yao e_ al. (1982), between 200 and 380 nm. The agreement is good, particularly

considering the difficulties in handling N205. The recommended cross section values, listed in

Table 18, are taken from Yao et al. (1982); for wavelengths shorter than 280 nm there is little or no

temperature dependence, and between 285 and 380 nm the temperature effect is best computed with

the expression listed at the bottom of Table 18.

There are several studies on the primary photolysis products of N205: Swanson et al. (1984)

have measured the quantum yield for NO3 production at 249 and at 350 nm, obtaining a value close

to unity, which is consistent with the observations of Burrows et al. (1984b) for photolysis at 254 nm.

Barker et al. (1985) report a quantum yield for O(3p) production at 290 nm of less than 0.1, and

near unity for NO3. For O-atom production Margitan (private communication, 1985) measured a
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quantum yield value of 0.35 at 266 nm, and Ravishankara et al. (1986) report values of 0.72, 0.38,
0.21 and 0.15 at 248, 266, 287 and 289 nm, respectively, with a quantum yield near unity for NO 3
production at all these wavelengths. It appears, then, that N03 is produced with unit quantum yield

while the O-atom and hence the NO yield increases at shorter wavelengths with a consequent
decrease in the NO2 yield. The study of Oh et al. (1986) indicates that, besides NO3, the primary

photolysis products are a wavelength dependent mixture of N02, NO2* and NO + O, where NO2*

represents one or more excited electronic states, most likely the 2B1 state.

Table 18. Absorption Cross Sections of N205

_. 1020c(cm 2) _. 1020o_cm 2)
(nm) (nm)

200 920 245 52
206 820 25O 40
210 560 255 32
215 370 260 26
220 220 265 20
225 144 270 16.1

230 99 275 13.0
235 77 28O 11.7
240 62

For 285 nm< k < 380 nm; 300 K > T > 225 K:

1020 _ = exp[2.735 + ((4728.5 - 17.127 k)Tr)]

where a is in cm2/molecule; _. in nm; and T in Kelvin.

HON0 + hv -_ H0 ÷ NO

The ultraviolet spectrum of HONO between 300 and 400 nm has been studied by Stockwell
and Calvert (1978) by examination of its equilibrium mixtures with NO, NO2, H20, N203 and

N204; the possible interferences by these compounds were taken into account. More recently,
Vasudev (1990) measured relative cross sections by monitoring the OH photodissociation product
with laser-induced fluorescence; and Bongartz et al. (1991) determined absolute cross section

values at 0.1 nm resolution in a system containing a highly diluted mixture of NO, NO2, H20 and
HONO, by measuring total NOx, NO and NO2. There are some discrepancies between these two

recent sets of results in terms of relative peak heights; however, both yield essentially the same
photodissociation rate provided Vasudev's relative data are normalized to match the cross section
value reported by Bongartz et al. at 354 nm; at this wavelength the value reported earlier by
Stockwell and Calvert is about 20% smaller. The recommended values, listed in Table 19, are
taken from Bongartz et al.
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Table 19. Absorption Cross Sections of HONO

x 1020 x 102° x 1°2° 
(nm) (cm 2) (nm) (cm 2) (rim) (¢m 2)

310 1.3 339 18.8 368 52.0

311 1.9 340 10.0 369 38.8

312 2.8 341 17.0 370 17.8

313 2.2 342 38.6 371 11.3

314 3.6 343 14.9 372 10.0

315 3.0 344 9.7 373 7.7

316 1.4 345 10.9 374 6.2

317 3.1 346 12.3 375 5.3
318 5.6 347 10.4 376 5.3

319 3.6 348 9.1 377 5.0

320 4.9 349 7.9 387 5.8

321 7.8 350 11.2 379 8.0

322 4.9 351 21.2 380 9.6

323 5.1 352 15.5 381 11.3

324 7.1 353 19.1 382 15.9

325 5.0 354 58.1 383 21.0

326 2.9 355 36.4 384 24.1

327 6.6 356 14.1 385 20.3

328 11.7 357 11.7 386 13.4

329 6.1 358 12.0 387 9.0

330 11.1 359 10.4 388 5.6

331 17.9 360 9.0 389 3.4

332 8.7 361 8.3 390 2.7

333 7.6 362 8.0 391 2.0

334 9.6 363 9.6 392 1.5

335 9.6 364 14.6 393 1.1

336 7.2 365 16.8 394 0.6

337 5.3 366 18.3 395 1.0

338 10.0 367 30.2 396 0.4
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HNO3 + hv _ OH + NO2

The recommended absorption cross sections, listed in Table 20, are taken from the work of

Molina and Molina (1981). These data are in good agreement throughout the 190-330 nm range

with the values reported by Biaume (1973). They are also in very good agreement with the data of

Johnston and Graham (1973) except towards both ends oft he wavelength range. Okabe (1980) has
measured the cross sections in the 110-190 nm range; his results are 20-30% lower than those of
Biaume and of Johnston and Graham around 185-190 nm.

Johnston et al. (1974) measured a quantum yield value of-1 for the OH + NO2 channel in the

200-315 nm range, using end product analysis. The quantum yield for O-atom production at 266

nm has been measured to be 0.03, and that for H-atom production less than 0.002, by Margitan and

Watson (1982), who looked directly for these products using atomic resonance fluorescence. Jolly

et ai. (1986) measured a quantum yield for OH production of 0.89 + 0.08 at 222 nm. Turnipseed et

al. (1992) have measured a quantum yield near unity for OH production at 248 and 222 nm.

However, at 193 nm they report this quantum yield to be only -0.33, and the quantum yield for

production of O-atoms to be about 0.8. Thus, it appears that HONO is a major photolysis product at
193 nm.

There are some indications that the temperature dependency of the cross sections in the 300-

350 nm range is significant (R. A. Cox, private communication, 1991). Additional measurements

are required of this temperature effect as well as of the cross sections at k's longer than 330 nm,

particularly in connection with polar stratospheric chemistry calculations.

Table 20. Absorption Cross Sections of HNO 3 Vapor at 298 K

x lo2O x
(nm) (cm 2) (nm) (cm 2)

190 1560 260 1.88

195 1150 265 1.71
200 661 270 1.59

205 293 275 1.35

210 105 280 1.10

215 35.6 285 0.848

220 15.1 290 0.607

225 8.62 295 0.409

230 5.65 300 0.241

235 3.72 305 0.146

240 2.57 310 0.071

245 2.10 315 0.032

250 1.91 320 0.012

255 1.90 325 0.005

330 0.002

120



HO2NO2 + hv -_ Products

There are five studies of the UV spectrum of HO2NO2 vapor: Cox and Patrick (1979), Morel et

al. (1980), Graham et al. (1978b), Molina and Molina (1981), and Singer et al. (1989). The latter

three studies are the only ones covering the gas phase spectrum in the critical wavelength range

for atmospheric photodissociation, that is, wavelengths longer than 290 nm. The recommended

values, listed in Table 21, are an average of the work of Molina and Molina (1981) and of Singer et

al. (1989), which are the more direct studies. The cross sections appear to be temperature-

independent between 298 and 253 K (Singer et al. 1989). MacLeod et al. (1988) report that photolysis

at 248 nm yields one third OH and N03 and two thirds H02 + N02.

Table 21. Absorption Cross Sections of HO2NO2 Vapor

X 1020 o X 1020 o

(nm) (cm 2) (nm) (cm 2)

190 1010 260 28.5

195 816 265 23.0

2O0 563 270 18.1

205 367 275 13.4

210 239 280 9.3
215 161 285 6.2

220 118 290 3.9
225 93.5 295 2.4

230 79.2 300 1.4

235 68.2 305 0.9

240 58.1 310 0.5

245 48.9 315 0.3

250 41.2 320 0.2

255 35.0 325 0.1
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CI2 +hv_ CI + CI

The absorptioncrosssectionsofCl2,listedinTable 22,are taken from the work ofSeery and

Britton(1964). These resultsare in good agreement with those reportedby Gibson and Bayliss
(1933),Fergusson etal.(1936),and Burkholder and Bair (1983).

Table 22. AbsorptionCrossSectionsofCl2

i [

},, 1020(I _. 1020cr

(nm) (cm 2) (nm) (cm 2)

l

240 0.08 350 18.9
250 0.12 360 13.1
260 0.23 370 8.3
270 0.88 380 4.9
280 2.7 390 3.3
29O 6.5 40O 1.9
300 12.0 410 1.3
310 18.5 420 0.99
32O 23.6 43O 0.73
330 25.6 440 0.53
340 23.6 450 0.34

CIO +hv _Cl+ O

The absorption cross sectionsof chlorinemonoxide, CIO, have been reviewed by Watson

(1977). There are more recentmeasurements yieldingresultsin reasonableagreement with the

earlierones,(1)by Mandelman and Nicholls(1977)in the 250-310 nm region;(2)by Wine eta].

(1977)around 283 nm; (3)by Rigaud et al.(1977),(4)Jourdain etal.(1978a),(5)Sander and Friedl

(1989),(6)Trolieret al.(1990)inthe 270-310 nm region,and (7)Simon etal.(1990a)between 240

and 310 nm. The peak crosssectionatthe topofthe continuum is5.2x10-18,based on the averageof

studies(4)-(7),and Johnston et al.(1969).Figure3 shows a spectrum ofCIO. Itshouldbe noted

that the crosssectionson the structuredpart are extremely dependent on instrument resolution,

and the figureisonly a guide tothe linepositionsand approximate shapes. The crosssectionsof
the continuum are independent of temperature (Trollereta].(1990),while the structuredpart is

extremelytemperaturedependent. The bands sharpen and grow with a decreaseintemperature.

The calculations of Coxon et al. (1976) and Langhoff et al. (1977) indicate that
photodecompositionofC]O accountsforatmost 2 to3 percentofthe totaldestructionrateofCIO in

the stratosphere,which occurspredo._.inantlyby reactionwith oxygen atoms and nitricoxide.
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Figure 3. Absorption Spectrum of CIO
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CIO0 +hv _ ClO ÷ 0

Johnston et al. (1969) measured the absorption cross sections of the ClOO radical using a
molecular modulation technique which required interpretation of a complex kinetic scheme.
More recently, Mauldin et al. (1992) reported cross section measurements in the range from 220 to
280 nm, and Baer et al. (1992) from 240 to 300 nm. These two studies are in very good agreement,
yielding cross section values which are more than twice as large as the older Johnston et al.
values. The recommended cross sections are listed in Table 23, and are taken from the work of
Mauldin et al.

Table 23. Absorption Cross Sections of CIOO

q

_. lO20 o x lO20 o

(nm) (era 2) (nm) (cm 2)

220 611 252 2630
222 670 254 2370
22A 747 256 2120
226 951 258 1890
228 1100 26O 1610
230 1400 262 1370
232 1650 264 1120
234 1960 266 905

236 2240 268 725
238 2520 270 596
240 2730 272 435

242 2910 274 344
244 2960 276 282
246 2980 278 210
248 2950 280 200
250 28OO

OCIO ÷ hv _ 0 + CIO

The spectrum of OCIO is characterized by a series of well developed progressions of bands
extending from -280 to 480 nm. The spectroscopy of this molecule has been studied extensively,
and the quantum yield for photodissociation appears to be unity throughout the above wavelength
range. See for example, the review by Watson (1977). Birks et al. (1977) have estimated a half-life
against atmospheric photodissociation of OClO of a few seconds.

The recommended absorption cross section values are those reported by Wahner et al. (1987),
who measured the spectra with a resolution of 0.25 nm at 204, 296 and 378 K, in the wavelength
range 240 to 480 nm. Table 24 lists the cross section values at the peak of the bands [a(0) to a(26)].
Figure 4, from Wahner et al., shows the 0CIO spectrum at 204 K and at room temperature.

Colussi (1990) measured the quantum yield for chlorine atom production to be less than 0.01,
and for oxygen atom production to be unity (within experimental error), both at 308 nm. Vaida et
al. (1989) and Ruhl et al. (1990) reported chlorine atom production at 362 nm; and Bishenden et al.
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(1991) measured the quantum yield for this process to be 0.15 + 0.10 around that same wavelength;

in contrast, Lawrence et al. (1990) report a quantum yield for Cl-atom production in the 359-368 nm

region of less than 5x10 -4. This conclusion is supported by photofragment studies of Davis and Lee

(1992), who report Cl yields <0.2% below 370 nm, rising to a maximum of 4% near 404 nm. The

recommended values are based on the work of Colussi (1990), namely unit quantum yield for O-

atom production.

Table 24. Absorption Cross Sections of OClO at the Band Peaks

1020 _(cm 2)

k(nm) 204 K 296 K 378 K

475.53 13

461.15 17 17 16

446.41 94 69 57

432.81 22O 166 134

420.58 393 304 250

408.83 578 479 378

397.76 821 670 547

387.37 1046 844 698

377.44 1212 992 808

368.30 1365 1136 920

359.73 1454 1219 984

351.30 1531 1275 989

343.44 1507 1220 938

336.08 1441 1139 864

329.22 1243 974 746
322.78 1009 791 628

317.21 771 618 516

311.53 542 435 390

305.99 393 312 291

300.87 256 219 216

296.42 190 160 167

291.77 138 114 130

287.80 105 86 105

283.51 _9 72 90
279.64 073 60 79

275.74 059 46 -

272.93 053 33 -
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Figure 4. Absorption Spectrum of OCIO

126



C103 + hv -_ Products

The previous recommendation for absorption cross sections was based on the work of
Goodeve and Richardson (1937). Lopez and Sicre (1990) have shown that the spectrum reported by
Goodeve and Richardson is most likely that of C1206. Thermochemical estimates by Colussi et al.

(1991) further corroborate this assignment. No recommendation is given at present for the Cl03
cross sections.

C120 + hv _ Products

The preferred absorption cross sections, listed in Table 25, are those reported by Knauth et al.

(1979) at 298 IC They are in very good agreement with the cross sections measured by Lin (1976)
and by Molina and Molina (1978); the discrepancy is largest at the longest wavelengths. Nee
(1991) has recently reported cross section measurements in the 150-200 nm wavelength region.

Sander and Fried] (1989) have measured the quantum yield for production of O-atoms to be
0.25 + 0.05, using a broadband photolysis source extending from 180 nm to beyond 400 nm. The
main photolysis products are Cl and ClO.

Table 25. Absorption Cross Sections of C120

_. lo2.0o x lO20 o

(nm) (cm 2) (nm) (era 2)

200 71.0 330 8.40
210 23.8 340 3.58
220 8.6 350 1.54
230 28.1 360 0.73
240 103 370 0.40

250 191 380 0.36
260 195 390 0.51
270 151 400 0.79
280 126 420 1.26
29o io3 440 i.ii
300 71.0 460 0.63
310 40.3 480 0.32
320 19.5 500 0.22

C1202 + hv--_ CI + CIO0

The recommended absorption cross sections for dichlorine peroxide (the ClO dimer),
ClOOCl, are listed in Table 26. The values are the smoothed average of the results reported by Cox
and Hayman (1988), DeMote and Tschuikow-Roux (1990), Permien et al. (1988), and Burkholder

et ai. (1990). These measurements were carried out in the 200-250 K temperature range; thermal
decomposition of the dimer occurs very fast at higher temperatures. There is general agreement
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among these workers on the shape of the spectrum, and the cross section values at the maximum at

about 245 am are within 10%. There are, however, significant discrepancies, i.e., around 280 nm.

The results of Burkholder et al. (1989) are about 35% larger than those of the other three data sets.
More accurate measurements are needed, particularly beyond 290 nm, in order to better estimate

atmospheric photodissociation rates. These studies also indicate that only one stable species is
produced in the recombination reaction of C10 with itself, and that this species is dichlorine

peroxide, CIOOCI, rather than C1OCIO. Using submillimeter wave spectroscopy, Birk et al. (1989)

have further established the structure of the recombination product to be ClOOC1. These

observations are in agreement with the results of quantum mechanical calculations (McGrath et
al., 1988; 1990; Jensen and Odershede, 1990; Stanton et al., 1991).

The experiments of Cox and Hayman (1988) indicate that the main photodissociation

products at 253.7 nm are C1 and CIO0. Molina et al. (1990) measured the quantum yield _ for this

channel to be unity at 308 rim, with no C10 detectable as a product, with an experimental

uncertainty in _ of about + 25%. These results are also supported by quantum mechanical

calculations (Stanton et al., 1990). In contrast, Eberstein (1990) suggested a quantum yield of unity
for the production of two C10 radicals, based merely on an analogy with the photolysis of H202 at

shorter wavelengths. For atmospheric photodissociation calculations the recommended quantum

yield value is based on the work of Molina et al. (1990), i.e. a quantum yield of unity for the CI +
ClO0 channel.

Table 26. Absorption Cross Sections of ClOOCl around 200-250 K

(n m ) 1020(cm 2) (n m ) 1020(cm 2) (n m ) 1020(cm 2) (n m ) 1020(cm 2)

200 383.5 240 600.3 280 172.5 320 25.6
2(]2 352.9 242 625.7 282 159.6 322 23.4

204 325.3 244 639.4 284 147.3 324 21.4

206 298.6 246 642.6 286 136.1 326 19.2

208 274.6 248 631.5 288 125.2 328 17.8

210 251.3 250 609.3 290 114.6 330 16.7

212 231.7 252 580.1 292 104.6 332 15.6

214 217.0 254 544.5 294 95.4 334 14.4

216 207.6 256 505.4 296 87.1 3,36 13.3

218 206.1 258 463.1 298 79.0 338 13.1

220 212.1 260 422.0 300 72.2 340 12.1

222 227.1 262 381.4 302 65.8 342 11.5

224 249.4 264 344.6 304 59.9 344 10.9

2_ 280.2 266 311.6 306 54.1 346 10.1

228 319.5 268 283.3 308 48.6 348 9.0

230 365.0 270 258.4 310 43.3 350 8.2

232 415.4 272 237.3 312 38.5 352 7.9

234 467.5 274 218.3 314 34.6 354 6.8

236 517.5 276 201.6 316 30.7 356 6.1

238 563.0 278 186.4 318 28.0 358 5.8

360 5.5
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C1203 + hv _ Products

The absorption cross sections of C1203 have been measured by Hayman and Cox (1989) and

by Burkholder et al. (1992). The agreement on the shape of the spectrum is very good, but the cross
section values reported by Hayman and Cox are 30 - 50% larger. Table 27 lists the recommended
values; these are taken from the work of Burkholder et al., which is the more direct study.

Table 27. Absorption Cross Sections of C1203

)_ 1020 _ )_ 1020o

(nm) (cm 2) (rim) (cm 2)

220 968 275 1376
225 93O 28O 1136
230 9O8 285 89O
235 883 290 642
240 904 295 435
245 989 300 288
250 1154 305 176
255 1352 310 107
26O 1512 315 56
265 1594 320 16
270 1544

C120 4 + hv _ Products

The absorption cross sections of C1204 have been measured by Lopez and Sicre (1988); their

results are given in Table 28.

Table 28. Absorption Cross Sections of C1204

x lO2o _ x lO20 a
(rim) (cm 2) (nm) (cm 2)

f i i i ' , ' | if

200 161 255 42
205 97 260 31
210 72 265 22
215 64 270 14
220 71 275 8.8
_.5 75 280 5.5
23O 95 285 4.0
235 95 290 2.7
24O 87 295 2.2
245 72 300 1.7
250 56 305 1.2

310 0.7
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C1206 + hv _ Products

The absorption cross sections for C1206 are listed in Table 29, and are taken from the work of

Lopez and Sicre (1990). These authors show that the spectrum originally attributed to CIO3 by

Goodeve and Richardson (1937) was most likely that of C1206. The cross section values measured

by Lopez and Sicre are several times larger than those reported by Goodeve and Richardson, but the
shape of the spectrum is similar.

Table 29.

I

Absorption Cross Sections of C120 6

X 1020a X 1020a

(nm) (cm 2) (nm) (cm 2)

2OO 1230 3OO 98O

210 1290 310 715

220 1230 320 450

23O 1080 33O 285

24O 1010 34O 180
250 1010 350 112

260 1290 360 59

270 1440 370 28
280 1440 380 12

29O 1290

HCI + hv-_H + C1

The absorption cross sections of HCI, listed in Table 30, are taken from the work of Inn
(1975).

Table 30. Absorption Cross Sections of HCI Vapor

_, 1020 o" _ 1020 0

(nm) (cm 2) (nm) (cm 2)

140 211 185 31.3

145 281 190 14.5

150 345 195 6.18

155 382 200 2.56

160 332 205 0.983

165 248 210 0.395

170 163 215 0.137

175 109 220 0.048
180 58.8
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HOC1 + hv --> OH + CI

The absorption cross sections of HOCl vapor have been measured by several groups. Molina

and Molina (1978) and Knauth et al. (1979) produced this species using equilibrium mixtures with

Cl20 and H20; their results provided the basis for the earlier recommendation. More recently,

Mishalanie et al. (1986) and Permien et al. (1988) used a dynamic source to generate the HOC1

vapor. The cross section values reported by Molina and Molina (1978), Mishalanie et al. (1986),

and Permien et al. (1988) are in reasonable agreement between 250 and 330 nm. In this

wavelength range, the values reported by Knauth et al. (1977) are significantly smaller, e.g., a

factor of four at 280 am. Beyond 340 nm, the cross sections of Mishalanie et al. are much smaller

than those obtained by the other three groups: at 365 nm, the discrepancy is about an order of

magnitude.

The recommended values are taken from the work of Permien et al.; they are listed in Table

31. These authors were able to produce HOC1 vapor in the absence of significant amounts of other

absorbing gases such as CI2 and C120. The corrections due to the presence of these impurities are

the most likely source of error in most of the investigations.

Molina et al. (1980b) observed production of OH radicals in the laser photolysis of HOCl

around 310 nm, and Butler and Phillips (1983) found no evidence for O-atom production at 308 nm,

placing an upper limit of-0.02 for the primary quantum yield for the HCl + O channel.

Table 31. Absorption Cross Sections of HOCi

lo2O(s _. lo2oa
(nm) (cm 2) (nm) (cm 2)

215 8.71 295 16.12

220 13.26 300 14.55

225 18.95 305 12.30

230 25.33 310 10.43

235 31.48 315 8.60

240 36.48 320 6.95

245 38.89 325 5.54
250 40.49 330 4.35

255 38.54 335 3.32

260 34.11 340 2.48

265 28.34 345 1.83

270 23.61 350 1.34

275 20.63 355 0.92

280 19.18 360 0.61

285 18.26 365 0.42

290 17.38 370 0.27

375 0.15

131



CINO + hv _ CI + NO

Nitrosyl chloride has a continuous absorption extending beyond 650 nm. There is good

agreement between the work of Martin and Gareis (1956) for the 240 to 420 nm wavelength region,

ofBallash and Armstrong (1974) for the 185 to 540 nm region,ofliliesand Takacs (1976) for the 190

to 400 nm region,and ofTyndall et al.(1987) for the 190 to350 region except around 230 nm, where

the values of Ballash and Armstrong are larger by almost a factor of two. The recommended

absorption cross sections, listed in Table 32, are taken from the recent work of Tyndall et al.
(1987).

The quantum yield for the primary photolytic process has been reviewed by Calvert and Pitts

(1966a); it is unity over the entire visible and near-ultraviolet bands.

Table 32. Absorption Cross Sections of C1NO

_. 1020 a k 1020 a _. 1020 _ _. 102 0

(nm) (cm 2) (nm) (cm 2) (nm) (cm 2) (nm) (cm 2)

190 4320 230 266 270 12.9 310 11.5

192 5340 232 212 272 12.3 312 11.9
194 6150 234 164 274 11.8 314 12.2

196 6480 236 120 276 11.3 316 12.5

198 6310 238 101 278 10.7 318 13.0

200 5860 240 82.5 280 10.6 320 13.4

202 5250 242 67.2 282 10.2 322 13.6

204 4540 244 55.2 284 9.99 324 14.0
206 3840 246 45.2 286 9.84 326 14.3

208 3210 248 37.7 288 9.71 328 14.6

210 2630 250 31.7 290 9.64 330 14.7

212 2180 252 27.4 292 9.63 332 14.9

214 1760 254 23.7 294 9.69 334 15.1
216 1400 256 21.3 296 9.71 3,_ 15.3

218 III0 258 19.0 296 9.89 338 15.3

896 260 17.5 300 10.0 340 15.2

222 707 262 16.5 302 10.3 342 15.3

224 552 264 15.3 304 10.5 344 15.1

226 436 266 14.4 306 10.8 346 15.1

228 339 268 13.6 3(}8 11.1 348 14.9

350 14.5
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C1NO2 + hv -_ Products

The absorption cross sections ofnitryl chloride, ClN02, have been measured between 230 and

330 nm by Martin and Gareis (1956), between 185 and 400 nm by Illies and Takacs (1976), and

between 270 and 370 nm by Nelson and Johnston (1981). The results are in good agreement below
300 nm. Table 33 lists the recommended values, which are taken from Illies and Takacs (1976)

between 190 and 270 nm, and from Nelson and Johnston (1981) between 270 and 370 nm. These

latter authors showed that an approximate 6% C12 impurity in the samples used by Illies and

Takacs could explain the discrepancy in the results above 300 nm. Nelson and Johnston (1981)

report a value of one (within experimental error) for the quantum yield for production of chlorine
atoms; they also report a negligible quantum yield for the production of oxygen atoms.

Table 33. Absorption Cross Sections of ClN02

;_ I020o ;_ i020o

(rim) (cm 2) (nm) (cm 2)

190 2690 290 18.1

455 300 15.5

210 339 310 12.5

220 342 320 8.70

230 236 33O 5.58

240 140 340 3.33

250 98.5 350 1.78
260 63.7 360 1.14

270 37.2 370 0.72

280 22.3
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CIONO +hv -_Products

Measurements in the near-ultraviolet of the cross sections of chlorine nitrite (CIONO) have

been made by Molina and Molina (1977). Their results are listed in Table 34. The characteristics
of the spectrum and the instability of CIONO strongly suggest that the quantum yield for
decomposition is unity. The CI-O bond strength is only about 20 kilocalories, so that chlorine
atoms are likely photolysis products.

Table 34. Absorption Cross Sections of CIONO at 231 K

I I

lo2o_ _ lo2oa
(nm) (cm 2) (nm) (cm 2)

235 215.0 320 80.3
24O 176.0 325 75.4
245 137.0 330 58.7
250 106.0 335 57.7
255 65.0 340 43.7
260 64.6 345 35.7
265 69.3 350 26.9
27O 90.3 355 22.9
275 110.0 360 16.1
280 132.0 365 11.3
285 144.0 370 9.0
290 144.0 375 6.9
295 142.0 380 4.1
300 129.0 385 3.3
305 114.0 390 2.2
310 105.0 395 1.5
315 98.1 400 0.6

CIONO2 + hv -_Products

The recommended cross section values, listed in Table 35, are taken from the work of
Molina and Molina (1979), which supersedes the earlier work of Rowland, Spencer and Molina
(1976).

The identity of the primary photolytic fragments has been investigated by several groups.
Smith et al. (1977) report O + ClONO as the most likely products, using end product analysis and
steady-state photolysis. The results of Chang et al. (1979b), who employed the "Very Low Pressure
Photolysis" (VLPPh) technique, indicate that the products are C1 + NO3. Adler-Golden and

Wiesenfeld (1981), using a flash photolysis atomic absorption technique, find O-atoms to be the
predominant photolysis product, and report a quantum yield for C]-atom production of less than
4%. Marinelli and Johnston (1982b) report a quantum yield for NO3 production at 249 nm between

0.45 and 0.85 with a most likely value of 0.55; they monitored NO3 by tunable dye-laser absorption

at 662 nm. Margitan (1983a) used atomic resonance fluorescence detection of O- and Cl-atoms and
found the quantum yield at 266 and at 355 nm to be 0.9 + 0.1 for Cl-atom production, and ~0.1 for O-
atom production, with no discernible difference at the two wavelengths. These results were

confirmed by Knauth and Schindler (1983), who used end-product analysis to infer the quantum
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yields. Burrows et al. (1988) report also C1 and NO3 as the photolysis products at 254 rim, with a

quantum yield of unity within experimental error.

The preferred quantum yield values are 0.9 for the C1 + NO3 channel, and a complementary

value of 0.1 for the O + C1ONO channel. The recommendation is based on Margitan (1983a),

whose direct study is the only one with results at a wavelength longer than 290 nm, which is where

atmospheric photodissociation will predominantly occur. The reason for the discrepancy with the

studies by Adler-Golden and Wiesenfeld (1981) and by Marinelli and Johnston (1982b) is almost

surely that the rate constant for C1 + ClN03 is much faster (two orders of magnitude) than

previously thought (Margitan, 1983a; Kurylo et al., 1983a).

Table 35. Absorption Cross Sections of C1ONO2

1020 _cm 2) 1020 (r(cm 2)

k(nm) 227K 243K 296K k(nm) 227K 243K 296K

190 555 589 325 0.463 0.502 0.655

195 358 381 330 0.353 0.381 0.514

200 293 307 335 0.283 0.307 0.397
205 293 299 340 0.246 0.255 0.323

210 330 329 345 0.214 0.223 0.285

215 362 360 350 0.198 0.205 0.246

220 348 344 355 0.182 0.183 0.218

225 282 286 360 0.170 0.173 0.208

230 206 210 365 0.155 0.159 0.178

235 141 149 370 0.142 0.140 0.162

240 98.5 106 375 0.128 0.130 0.139

245 70.6 77.0 380 0.113 0.114 0.122

250 52.6 50.9 57.7 385 0.098 0.100 0.108

255 39.8 39.1 44.7 390 0.090 0.083 0.090

260 30.7 30.1 34.6 395 0.069 0.070 0.077

265 23.3 23.1 26.9 400 0.056 0.058 0.064

270 18.3 18.0 21.5 405 - 0.055
275 13.9 13.5 16.1 410 - 0.044

280 10.4 9.98 11.9 415 - 0.035

285 7.50 7.33 8.80 420 0.027

290 5.45 5.36 6.36 425 0.020

295 3.74 3.83 4.56 420 - 0.016

300 2.51 2.61 3.30 435 0.013

305 1.80 1.89 2.38 440 0.009

310 1.28 1.35 1.69 445 0.007

315 0.892 0.954 1.23 450 0.005

320 0.630 0.681 0.895
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Halocarbon Absorption _ross Sections and Ouantum yields

The primary process in the photodissociation of chlorinated hydrocarbons is well
established: absorption of ultraviolet radiation in the lowest frequency band is interpreted as an
n-o* transition involving excitation to a repulsive electronic state (antibonding in C-CI), which
dissociates by breaking the carbon chlorine bond (Majer and Simons, 1964). As expected, the
chlorofluoromethanes, which are a particular type of chlorinated hydrocarbons, behave in this
fashion (Sandorfy, 1976). Hence, the quantum yield for photodissociation is expected to be unity for
these compounds. There are several studies which show specifically that this is the case for
CF2C12, CFC13 and CC14. These studies, which have been reviewed in CODATA (1982), also

indicate that at shorter wavelengths two halogen atoms can be released simultaneously in the
primary process.

The absorption cross sections for various other halocarbons not listed in this evaluation have

also been investigated: CHCl2F by Hubrich et al. (1977); CC1F3, CHCl 3, CH2CI2, CH2C1F,
CF3CH2Cl and CH3CH2C1 by Hubrich and Stuhl (1980); CHCI3, CHFCI2, C2HCl3 and C2H3C13 by

Robbins (1977); CH2Cl2 and CHC13 by Vanlaethem-Meuree et al. (1978a); CHCl2F , CClF2CH2Cl

and CF3CH2C1 by Green and Wayne (1976-1977); and CH2Br 2 and CBrF2CF 3 by Molina et al.
(1982). Simon and co-workers have reported absorption cross section measurements over the
temperature range 295-210 K for various other halocarbons not listed here. These include the

following: CHC13, CH2CI2, CHFC12 and CF3C1 by Simon et al. (1988a).

As before, the recommendation for the photodissociation quantum yield value is unity for all
these species.

CF4 and C2F 6 do not have any absorptions at wavelengths longer than 105 and 120 nm,

respectively (Sauvageau et al., 2973, 1974; Inn, 1980); therefore, they are not expected to
photodissociate until they reach the mesosphere. SF6 does not absorb at wavelengths longer than
130 nm.
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CC14 + hv _ Products

CCI3F (CFC-II) + hv _ Products

CCI2F 2 (CFC-12) + hv --_ Products

Tables 36, 37 and 38 list the present recommendations for the cross sections of CC14, CCI3F

and CC12F2, respectively. These data are given by the mean of the values reported by various

groups, i.e., Hubrich et al. (1977), Hubrich and Stuhl (1980), Vanlaetbem-Meuree et al. (1978a,b),
and Green and Wayne (1976, 1977), as well as those referred to in earlier evaluations (CODATA,
1982). Absorption cross sections for these species over the temperature range 295-210 K have also
been reported by Simon et al. (I988a). These results are in generally good agreement with the
present recommendations. Expressions for the temperature dependence of the CCl3F and CCl2F 2

cross sections are given at the bottom of Tables 37 and 38, respectively. These expressions are
valid in the wavelength range of maximum solar photodissociation, i.e., about 190-210 nm, but
may not exactly reproduce the experimental temperature dependences outside this wavelength
range. However, J-value calculations should not be affected.

Table 36. Absorption Cross Sections of CC14

X 102o o X 1020 o

(rim) (cm 2) (nm) (cm 2)

174 995 218 21.8
176 1007 22O 17.0
178 976 222 13.0
180 772 224 9.61
182 589 226 7.19
184 450 228 5.49
186 318 230 4.07
188 218 232 3.01

190 144 234 2.16
192 98.9 _36 1.51
194 74.4 238 1.13
196 68.2 240 0.784
198 66.0 242 0.579
200 64.8 244 0.414
202 62.2 246 0.314
204 60.4 248 0.240
206 56.5 250 0.183
208 52.0 255 0.0661
210 46.6 260 0.0253
212 39.7 265 0.0126

214 33.3 270 0.0061
216 27.2 275 0.0024
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Table 37. Absorption Cross Sections of CCl3F

_. 1020a _. i020a

(n m) (cm 2) (n m) (cm 2)

170 316 2O8 21.2
172 319 210 15.4

174 315 212 10.9

176 311 214 7.52

178 304 216 5.28

180 308 218 3.56
182 285 220 2.42

184 260 222 1.60

186 233 224 1.10

188 208 226 0.80

190 178 228 0.55

192 149 230 0.35

194 123 235 0.126

196 99 240 0.0464

198 80.1 245 0.0173

200 64.7 25O 0.O0661

202 50.8 2_55 0.00337

204 38.8 260 0.00147
_6 29.3

OT = a298 exp[1.0x10"4(X-184.9)(T-298)]

Where a298 = cross section at 298 K
: nm

T : temperature, Kelvin

Table 38. Absorption Cross Sections of CCl2F2

_. 1020_ _ 1020a

(nm) (cm 2) (nm) (cm 2)

170 124 2OO 8.84

172 151 202 5.60

174 171 204 3.47

176 183 206 2.16
178 189 208 1.52

180 173 210 0.80

182 157 212 0.48

184 137 214 0.29

186 104 216 0.18

188 84.1 218 0.12

190 62.8 22O 0.068

192 44.5 225 0.022

194 30.6 230 0.0055

196 20.8 235 0.0016

198 1_2 240 0,00_'29

_T = _298 exp[4-1x10-4(k-184.9)(T-298)]

Where ¢_298 = cross section at 298 K
X : nm

T : temperature, Kelvin
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CHCIF2 (HCFC-22) + hv _ Products

The absorption cross sections of CHC1F2 (HCFC-22) have been measured at room

temperature by Robbins and Stolarski (1976) and by Chou et al. (1976), at 208 K and 218 K by
Hubrich et al. (1977), and between 210 and 295 K by Simon et al. (1988a). The agreement between

these groups is reasonable. The preferred absorption cross sections, listed in Table 39, are taken
from work of Simon et al.

Photolysis of CHClF2 is rather unimportant throughout the atmosphere: reaction with OH

radicals is the dominant destruction process.

Table 39. Absorption Cross Sections of CHCIF2

1020(_ (cm 2)

_. (nm) 295K 270K 250K 230K 210K

|

174 5.72 5.72 5.72 5.72 5.72

176 4.04 4.04 4.04 4.04 4.04

178 2.76 2.76 2.76 2.76 2.76

180 1.91 1.91 1.91 1.91 1.91

182 1.28 1.28 1.28 1.28 1.28
184 0.842 0.842 0.842 0.842 0.842

186 0.576 0.576 0.576 0.576 0.576

188 0.372 0.372 0.372 0.372 0.372

190 0.245 0.245 0.245 0.245 0.242

192 0.156 0.156 0.156 0.152 0.148

194 0.103 0.102 0.099 0.096 0.093

196 0.072 0.069 0.067 0.064 0.062

298 0.048 0.045 0.043 0.041 0.039

200 0.032 0.029 0.029 0.0259 0.0159
202 0.0220 0.0192 0.0184 0.0169 0.0159

204 0.0142 0.0121 0.0114 0.0104 0.0096

139



CI-I3CI + hv _ Products

The preferred absorption cross sections, listed in Table 40, are those given by Vanlaethem-

Meuree et al. (1978b). These values are in very good agreement with those reported by Robbins

(1976) at 298 K, as well as with those given by Hubrich et al. (1977) at 298 K and 208 K, if the

temperature trend is taken into consideration. The results recently reported by Simon et al.
(1988a) over the temperature range 295-210 K are in excellent agreement with the present
recommendation.

Table 40. Absorption Cross Sections of CH3C1

1020 o_cm 2)

(nm)
296 K 279 K 255 K

186 24.7 24.7 24.7

188 17.5 17.5 17.5

190 12.7 12.7 12.7

192 8.86 8.86 8.86

194 6.03 6.03 6.03
196 4.01 4.01 4.01

198 2.66 2.66 2.66

200 1.76 1.76 1.76

202 1.09 1.09 1.09

204 0.691 0.691 0.691

206 0.483 0.475 0.469

208 0.321 0.301 0.286

210 0.206 0.189 0.172
212 0.132 0.121 0.102

214 0.088 0.074 0.059

216 0.060 0.048 0.033

CF2CICFCI2 (CFC-113) + hv _ Products

CF2CICF2CI (CFC-114) + hv --, Products

CF3CF2CI (CFC-115) + hv --* Products

The recommended absorption cross section values for these species at 295 K and at 210 K are

presented in Table 41, and are taken from Simon et al. (1988b). These values are in good
agreement with those reported by Hubrich and Stuhl (1980), who also carried out measurements at

lower temperatures. They are also in good agreement with the data ofChou et al. (1978), except that

these authors report cross section values for CF3CF2Cl that are about 50% higher. Also, for this

species the temperature dependency is unimportant in the wavelength range of interest.
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Table41. AbsorptionCrossSectionsfor CF2C1CFC12,CF2CICF2CIandCF3CF2CI

1020c(cm2)

k CF2C1CFCI2 CF2C1CF2CI CF3CF2Cl

(n m) 295 K 210 K 295 K 210 K 295 K

172 69 69

174 55 55

176 43 43

178 34 34

180 26 26

182 19.8 19.8
184 118 118 15.0 15.0

186 104" 104 11.0 Ii.0

188 83.5 83.5 7.80 7.72

190 64.5 64.5 5.35 5.03

192 48.8 48.8 3.70 3.28

194 36.0 36.0 2.56 2.13

196 26.0 24.3 1.75 1.39

198 18.3 15.9 1.20 0.88

200 12.5 10.1 0.80 0.55

202 8.60 6.54 0.54 0.34

204 5.80 4.09 0.37 0.22

206 4.00 2.66 0.24 0.13

208 2.65 1.68 0.16 0.084

210 1.8 1.12 0.104 0.051

212 1.15 0.696 0.068 0.031
214 0.760 0.452 0.044 0.020

216 0.505 0.298 0.029 0.012

218 0.318 0.184 0.019 0.007

220 0.220 0.125 0.012 0.004

222 0.145 0.081

224 0.095 0.053

226 0.063 0.034

228 0.041 0.022
230 0.027 0.014

5.65

4.05

2.85

2.05

1.45

1.05

0.75

0.53
0.38

0.27

0.19

0.13

0.090

0.063

0.044

0.031

0.021

CH3CF2CI (HCFC-142b) + hv -_ Products

The preferred absorption cross sections at 298 K, listed in Table 42, are the mean of the values

reported by Gillotay et al. (1989a) and Orlando et al. (1991a) over the wavelength range where the

agreement is better than a factor of two. At lower wavelengths the agreement is much better; e.g.,
at 200 nm the agreement is within 5%. Green and Wayne (1976/77) and Hubrich and Stuhl (1980)

have also measured the cross sections in the ranges 185-200 nm and 160-230 nm, respectively. The

results of Green and Wayne are very different from the recommended value and were not

considered for this evaluation. The results of Hubrich and Stuhl (reported at 5 nm intervals) are

in reasonable agreement with the more recent studies of Gillotay et al. and Orlando et al. The

temperature dependence of the cross sections has been measured by Orlando et al. and by Giilotay

and Simon (1991); it has not been inc|uded in this evaluation.
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CF3CHCI 2 (HCFC-123) + hv --_ Products

The preferred absorption cross sections at 298 K, listed in Table 42, are the mean of the values

reported by Gillotay and Simon (1991) and Orlando et al. (1991a). The agreement is quite good

over the entire wavelength range. The measurements by Green and Wayne (1976/77) over the

range 185-205 nm are in reasonable agreement with the recommended values. The temperature

dependence of the cross sections has been measured by Orlando et al. and by Gillotay and Simon;
it is not included here.

CF3CHFCI (HCFC-124) + hv -_ Products

The preferred values are those reported by Orlando et al. (1991a), this being the only
available set of measurements between 190 and 230 nm. The data are listed in Table 42. The

temperature dependence of the cross section has been measured by Orlando et al. but has not been

evaluated here. The quantum yield for the dissociation to give C1 atoms is expected to be unity.

CH3CFCI 2 (HCFC-141b) + hv -* Products

The preferred absorption cross sections listed in Table 42 are the mean of the 298 K values

reported by Talkudar et al. (1991a) and Gillotay and Simon (1991). The agreement between these
two sets of measurements is not very good. Both groups also report the temperature dependence of
the cross sections down to 210 K.

Table 42. Absorption Cross Sections of Hydrochlorofluoroethanes at 298 K

i

1020 a(cm 2) at 298 K

_" CH3CFC12 CH3CF2CI CF3CHC12 CF3CHFCI
(nm)

190 75.3 0.94 59.0 0.73

192 58.8 0.66 44,5 0.53

194 44.3 0.46 32,9. 0.38
196 32.2 0.31 23.6 0.26

198 22.8 0.21 16.9 0.18

200 15.8 0.14 11.9 0.13
2(_ 10.8 0.09 8.3 0.086

204 7.3 0.061 5.7 0.059
206 4.9 0.039 4.0 0.040

208 3.2 0.026 2.7 0.026
210 2.2 0.017 1.8 0.018

212 1.4 0.010 1.3 0.012

214 0.94 0.007 0.87 0.008

216 0.61 0.004 0.61 0.006

218 0.41 0.003 0.40 0.004

220 0.27 0.002 0.28 0.003
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CH3CCI3 + hv -_ Products

The absorption cross sections have been measured by Robbins (1977), by Vanlaethem-Meuree
et al. (1979) and by Hubrich and Stuhl (1980). These latter authors corrected the results to account
for the presence of a UV-absorbing stabilizer in their samples, a correction which might account
for the rather large discrepancy with the other measurements. The results of Robbins (1977) and of
Vanlaethem-Meuree et al. (1979) are in good agreement. The recommended values are taken
from this latter work (which reports values at 210 K, 230 K, 250 K, 270 K and 295 K, every 2 nm, and
in a separate table at wavelengths corresponding to the wavenumber intervals generally used in
stratospheric photodissociation calculations). Table 43 lists the values at 210 K, 250 K and 295 K,
every 5 nm; the odd wavelength values were computed by linear interpolation.

Table 43. Absorption Cross Sections of CH3CCl3

1020 a(cm 2)

(n m ) 295 K 250 K 210 K

185 265 265 265
190 192 192 192
200 81.0 81.0 81.0
205 46.0 44.0 42.3
210 24.0 21.6 19.8
215 10.3 8.67 7.47
220 4.15 3.42 2.90
225 1.76 1.28 0.97
230 0.700 0.470 0.330
235 0.282 0.152 0.088
240 0.102 0.048 0.024
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CF3CF2CHCI 2 (HCFC-225 ca) + hv _ Products

CF2CICF2CHFCI (HCFC-225 cb) + hv -_ Products

Table 44 lists the absorption cross sections for these molecules at 298 K, taken from the work
of Braun et al. (1991). These values have been fitted with a mathematical expression for the
wavelength range from 170 to 250 nm, for each of the two molecules; the expressions are listed in
the original publication. The authors also measured the cross sections in the liquid phase.

I,,r

Table 44. Absorption Cross Sections of CF3CF2CHC! 2 and CF2C1CF2CHFCI

k
(nm)

1020 c(cm 2)

CF3CF2CHC12 CF2CICF2CHFC1

160
165
170
175
180
185
190
195
2OO
2O5
210
215
22O
225
23O
235
239

269 188
197 145
183 91
191 47
177 21
129 9.1

74 3.5
37 1.4
16 0.63

6.9 0.33
2.9 0.25
1.2
0.46
0.17
0.065
0.025
0.011
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CF3Br (Halon-1301)+hv -_Products

The preferred absorption cross sections at 298 K, listed in Table 45, are the mean of the values
reported by Gillotay and Simon (1989) at 2 nm intervals and Burkholder et al. (1991) at 1 nm
intervals over the wavelength range where the agreement is acceptable, i.e., better than 70%. At
longer wavelengths Burkholder et al. (1991) measure larger values than those reported by Gillotay
and Simon. Molina et al. (1982) have also measured these cross sections which agree better with
Gillotay and Simon. However, the agreement in the wavelength range 190-230 nm among the
three studies is excellent. The temperature dependence of the cross sections has been measured by
Gillotay and Simon as well as Burkholder et al. (1991). The agreement between these two studies
is poor. We have not evaluated the temperature dependence of the cross section and the readers are
referred to the original publications for this information. For all the bromofluoromethanes,
photolysis is expected to cleave the C-Br bond with unit quantum efficiency.

CF2Br2 (Halon-1202)+hv -_Products

The preferred absorption cross sections at 298 K, listed in Table 45, are the mean of the values
reported by Gillotay and Simon (1989) at 2 nm intervals and Burkholder et al. (1991) at 1 nm
intervals over the wavelength range where the agreement is no more than a factor of two. At
wavelengths longer than -250 nm, Burkholder et al. (1991) measured cross sections larger than
those reported by Gillotay and Simon (1989) and Molina et al. (1982). The discrepancy increases
with wavelength and is more than a factor of two beyond 280 nm. However, the agreement between
all three measurements is acceptable below 250 nm. The values of Molina et al. agree with those of
Gillotay and Simon over the entire range of wavelengths. The temperature dependence of the
cross sections has been measured by Gillotay and Simon as well as Burkholder et al. (1991). The
agreement between these two studies is poor.

The quantum yield for the dissociation of CF2Br2 has been measured to be unity at 206,248
and 308 nm by Molina and Molina (1983), independent of pressure, in contrast to an earlier report
by Walton (1972) that the quantum yield at 265 nm decreases from unity when the system pressure
is raised to 50 torr of CO2.

CF2BrCI (Halon-1211)+ hv _ Products

The preferred absorption cross sections at 298 K, listed in Table 45, are the mean of the values
reported by Gillotay and Simon (1989) at 2 nm intervals and Burkholder et al. (1991) at 1 nm
intervals. Molina et al. (1982) and Giolando et al. (1980) have also measured the cross sections at 5
nm and 10 nm intervals, respectively. The agreement between the four studies is quite good.

The temperature dependence of the cross sections has been measured by Gillotay and Simon
as well as Burkholder et al. (1991). The agreement between the two studies is poor. We have not
evaluated the temperature dependence of the cross section and the readers are referred to the
original publications for this information.

CF2BrCF2Br (Halon-2402)+ hv -_Products

The preferred absorption cross sections at 298 K, listed in Table 45, are the mean of the values
reported by Gillotay et al. (1988) at 2 nm intervals and Burkholder et al. (1991) at 1 nm intervals

over the wavelength range where the agreement is acceptable, i.e., -70%. At longer wavelengths,
Burkholder et al. (1991) measured larger cross sections than those measured by Gillotay et ai.
Molina et al. (1982) have also measured these cross sections and they agree with the results of
Gillotay et al. at longer wavelengths. The agreement between the three studies at wavelengths
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shorter than 250 nm is good. The results of Robbins (1977) are in good agreement with the
recommended values.

The temperature dependence of the cross sections has been measured by Gillotay et al.(1988)

and Burkholder et al. (1991). The agreement between the two studies is poor at longer

wavelengths. We have not evaluated the temperature dependence of the cross section and the

readers are referred to the investigators for the information.

Table 45. Absorption Cross Sections ofCF2CIBr, CF2Br2, CF3Br, and CF2BrCF2Br at 298 K

, ,

1020 a(cm 2)

_, CF2CIB r CF2Br2 CF3Br CF2BrCF2Br
(nm)

190 47 114 6.4 109

192 58 109 7.5 114

194 70 100 8.5 119

196 83 91 9.5 122

198 96 82 10.4 124

200 112 75 11.2 124
2(_ 118 72 11.8 124

204 121 74 12.2 120

206 122 81 12.4 117

208 121 93 12.4 112
210 117 110 12.0 106

212 112 136 11.4 100

214 106 155 10.7 92

216 98 180 9.8 85

218 90 203 8.8 77
220 81 224 7.7 69

222 72 242 6.7 61

224 64 251 5.7 54

226 56 253 4.7 47
228 49 250 3.8 40

230 42 241 3.1 35

232 36 227 2.4 29

234 31 209 1.9 24

236 25 189 1.4 20

238 22 168 1.1 16

240 18 147 0.81 13

242 15 126 0.59 11
244 12 106 0.43 8.4

246 10 88 0.31 6.7

248 8.0 73 0.22 5.2

250 6.5 59 0.16 4.1

252 5.1 47 0.II 3.1

254 4.0 37 0.076 2.3

256 3.2 29 0.053 1.8
258 2.4 23 0.037 1.3

260 1.9 18 0.026 0.95

Continued on next page...
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Table 45. (Continued)

1020 c_(cm2)

_" CF2CIBr
(nm)

CF2Br2 CF3Br CF2BrCF2Br

262 1.4 13
264 1.1 10
266 0.84 7.6
268 0.63 5.7
270 0.48 4.2
272 0.36 3.1
274 0.27 2.2
276 0.20 1.6
278 0.15 1.2
280 0.1 0.89
282 0.079 0.65
284 0.058 0.48
286 0.043 0.34
288 0.031 0.24
290 0.18
292 0.13
294 0.096
296 0.068
298 0.050
300 0.036

0.018
0.012
0.009
0.006

0.71

0.53
0.39
0.28
0.21
0.16
0.11
0.082
0.060
0.044
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CH3Br + hv -_ Products

Table 46 lists the recommended absorption cross sections at 298 K, taken from Gillotay and

Simon (1988). These authors measured the cross sections down to 210 K; for < 210 nm the

temperature effect is negligible. Molina et al. (1982) and Robbins (1976) have also measured the

absorption cross sections for this molecule at room temperature; the agreement among the three

studies is very good.

Table 46. Absorption Cross Sections of CH3Br

lO2Oc, lO2Oo
(nm) (cm 2) (rim) (ore 2)

190 44 230 15

192 53 232 12

194 62 234 9.9

196 69 236 7.6

198 76 238 5.9
200 79 240 4.5

202 80 242 3.3

204 79 244 2.5

206 77 246 1.8

208 73 248 1.3
210 67 250 0.96

212 61 252 0.69

214 56 254 0.49

216 49 256 0.34

218 44 258 0.23

220 38 260 0.16

222 32

224 28

226 23

228 19
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CHBr3 + hv -_ Products

The only published absorption cross section values are those of Giliotay et al. (1989), who
report measurements at temperatures down to 240 IL Table 47 lists the values at 298 K taken from

this work.

Table 47. Absorption Cross Sections of CHBr3

k 1020 ¢_ k 1020 ¢_

(nm) (cm 2) (nm) (cm 2)

190 399 250 174

192 360 252 158

194 351 254 136

196 366 256 116

198 393 258 99

200 416 260 83

202 433 262 69

294 440 264 57

206 445 266 47

208 451 268 38

210 468 270 31
212 493 272 25

214 524 274 20

216 553 276 16

218 574 278 12

220 582 280 9.9
222 578 282 7.8

224 558 284 6.1

226 527 286 4.8

228 487 288 3.7

230 441 290 2.9

232 397 292 2.2

234 362 294 1.7

236 _A 296 1.3

238 295 298 0.96

240 273 300 0.72
242 253 302 0.54

244 234 304 0.40

246 214 306 0.30

248 194 308 0.22
310 0.16
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CC120 + hv -* Products, CCIFO + hv -, Products, and CF20 + hv -_ Products

Table 48 shows the absorption cross sections ofCCl20 (phosgene) and CFCIO given by Chou et

al. (1977),and of CF20 taken from the work of Molina and Molina (1982). The spectrum of CF20

shows considerable structure; the values listedin Table 48 are averages over each 50 wavenumber

interval. The spectrum ofCFCIO shows less structure,and the CCI20 spectrum isa continuum; its

photodissociation quantum yield isunity (Calvert and Pitts,1966a).

The quantum yield for the photodissociation of CF20 at 206 nm appears to be -0.25 (Molina

and Molina, 1982); additional studies of the quantum yield in the 200 nm region are required in

order toestablish the atmospheric photodissociationrate.

Table 48. Absorption Cross Sections ofCCl20 ,CCIFO and CF20

1020 (_(cm2)

(n m) CCI20 CCIFO CF20

184.9 204.0

186.0 189.0 15.6 5.5

187.8 137.0 14.0 4.8

189.6 117.0 13.4 4.2

191.4 93.7 12.9 3.7
193.2 69.7 12.7 3.1

195.1 52.5 12.5 2.6
197.0 41.0 12.4 2.1

199.0 31.8 12.3 1.6

201.0 25.0 12.0 1.3

103.0 20.4 11.7 0.95

205.1 16.9 11.2 0.69

207.3 15.1 10.5 0.50
209.4 13.4 9.7 0.34

211.6 12.2 9.0 0.23

213.9 11.7 7.9 0.15

216.2 11.6 6.9 0.10
218.6 11.9 5.8 0.06

221.0 12.3 4.8 0.04
223.5 12.8 4.0 0.03

226.0 13.2 3.1

BrO + hv -, Br + 0

The BrO radical has a banded spectrum in the 290-380 nm range. The strongest absorption
feature is around 338 nm. The measured cross sections are both temperature and resolution

dependent. As an example, the spectrum measured by Wahner et al. (1988) is shown in Figure 5.
The bands are due to a vibrational progression in the A +- X"system, and the location of the bands,

along with the assignments and cross sections measured using 0.4 nm resolution, are shown in

Table 49. BrO is expected to dissociate upon light absorption. As a guide, the cross sections
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averagedover5 nm wavelengtbintervalsare taken from the work of Coxet al. (1982),and are
listedin Table50. Theseauthorsestimatea BrOlifetime againstatmosphericphotodissociationof
~20secondsat theearth'ssurface,for asolarzenithangleof30°.

The earlier BrO crosssectionmeasurementswerecarriedout mostly around338nm, and
havebeenreviewedby CODATA(1980;1982).

Table49. AbsorptionCrossSectionsat thePeakofVarious
Bandsin theA +-X SpectrumofBrO

ii ,

1020 o(cm 2)

v', v" _. 298K 223K
(nm)

13,0 313.5 712 938

12,0 317.0 1010 1360

11,0 320.8 1180 1570

10,0 325.0 1130 1430

9,0 329.1 1130 1390

8,0 333.5 1210 1470

7,0 338.3 1550 1950

6,0 343.7 935 1110
5,0 348.8 703 896

4,0 354.7 722 1050

3,0 360.4 264 344

2,0 367.7 145 154

1,0 374.5 90 96

Spectral resolution is 0.4 nm, fwhm.

Table 50. Absorption Cross Sections of BrO

l,

)_ 1020 a(cm 2)

(nm) average

300 - 305 200

305 - 310 259

310 - 315 454

315 - 320 391
320 - 325 600

325 - 330 753

330 - 335 628

335 - 340 589

340 - 345 515

345 - 350 399

350 - 355 228

355 - 360 172

360 - 365 161

365 - 370 92

370 - 375 51
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BrONO2 + hv -_ Products

The bromine nitrate cross sections have been measured at room temperature by Spencer and

Rowland (1978) in the wavelength region 186-390 nm; their results are given in Table 51. The

photolysis products are not known.

Table 51. Absorption Cross Sections of BrONO2

Z 1020 (_ _. 1020

(nm) (cm 2) (nm) (cm 2)

186 1500 280 29

190 1300 285 27

195 1000 290 24

200 720 295 22

205 430 300 19

210 320 305 18

215 270 310 15

220 240 315 14

225 210 320 12

230 190 325 11

235 170 330 i0

240 130 335 9.5

245 100 340 8.7

250 78 345 8.5

255 61 350 7.7
260 48 360 6.2

265 39 370 4.9
270 34 380 4.0

275 31 390 2.9
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HF+ hv--,H + F

The ultravioletabsorptionspectrum ofHF has been studiedby Salaryetal.(1951).The onset

ofabsorptionoccursat k < 170 nm, so thatphotodissociationofHF shouldbe unimportant in the

stratosphere.

H2CO + hv -o H + HCO (O1)

-_ H2 + CO (4)2)

The earlierrecommendation for the formaldehyde absorptioncross sectionswas based on

the work carriedout by Bass et al.(1980)with a resolutionof0.05nm at 296 K and 223 K, and by

Moortgat etal.(1980;1983)with a resolutionof0.5nm in the 210-360 K temperature range. More
recently,Cantrelletal.(1990b)measured the crosssectionsinthe 300-360 nm range between 223 K

and 293 K, and Rogers (1990)measured the crosssectionsin the 235-365 nm range at296 K, both

groups using Fourier transform spectrometry at a resolutionof up to 0.011 nm (1 cm'l). The

agreement between these two reportsisvery good. The recommended values are those given by

Cantrellet al.as a functionoftemperature;the readerisreferredtothe originalarticleto obtain
the high resolutiondata. Table 52 liststhe low resolutioncrosssectionstaken from that work,

which are suitableforatmospheric photodissociationcalculations.

The quantum yields have been reported with good agreement by Horowitz and Calvert (1978),
Clark et al. (1979a), Tang et al. (1979), Moortgat and Warneck (1979), and Moortgat et al. (1980;
1983). The recommended values listed in Table 52 are based on the results of these investigators,
as evaluated by S. Madronich (private communication, 1991). The quantum yield for the
production of H2 and CO is pressure and temperature dependent for wavelengths longer than about
330 nm (Moortgat et al., 1983). Table 52 gives the values at atmospheric pressure and room
temperature; the reader is referred to the Moortgat et al. publication for information on values at
lower pressures and temperatures.
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(rim)

Table 52. Absorption Cross Sections and Quantum Yields for Photolysis of CH20

i r i i ,i • r

1020 (_(cm 2) T-Parameters* ¢_1 ¢2

223 K 293 K A B (H + HCO) (H2 + CO)

i i ,u

301.25 1,38 1,36 1.37 -0.21 0.749 0.251

303.75 4.67 4.33 4.43 -4.73 0.753 0,247
306.25 3.32 3.25 3.27 - 1.06 0. 753 0,24 7

308.75 2.27 2.22 2.24 -0.724 0.748 0.252

311.25 0.758 0.931 0.882 2.48 0. 739 0.261

313.75 3.65 3.40 3.47 -3.64 0,724 0,276

316.25 4.05 3.89 3.94 -2.30 0.684 0.316

318.75 1.66 1.70 1.69 0.659 0.623 0.368

321.25 1.24 1.13 1.16 - 1.52 0.559 0,423

323.75 0.465 0.473 0.471 0.118 0.492 0,480

326.25 5.06 4.44 4.61 -8.86 0.420 0.550

328.75 2.44 2.29 2.34 -2.15 0.343 0.634

331.25 1.39 1.28 1.31 - 1.53 0.259 0.697

333.75 0.093 O.123 0.114 0.432 O.168 0.739
336.25 0.127 O.131 0.130 0.050 0.093 0.728

338.75 3.98 3.36 3.54 -8.96 0.033 0.667

34 1.25 0.805 0.936 0.898 1.86 0.003 0.602

343.75 1.44 1.26 1.31 -2.64 0.001 0.535

346.25 0.004 0.071 0.052 0.957 0 0,469

348.75 0.009 0.040 0.031 0.438 0 0,405

351.25 0.169 0.235 0.216 0.948 0 0.337

353.75 1.83 1.55 1.63 -4.05 0 0.265

356.25 0.035 0.125 0.099 1.27 0 0,197

Note: The values are averaged for 2.5 nm intervals centered on the indicated wavelength.

* Cross section for -50°C < T < 20°C calculated as _(T) = A + Bxl0 "3 T; T in °C, and _ in 10 -20 cm 2.
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CH3OOH + hv _ Products

Vaghjiani and Ravishankara (1989b) have measured the cross sections of CH3OOH by

measuring the CH3OOH concentration via trapping and titration. These results are

recommended and are listed in Table 53. The earlier results of Molina and Arguello (1979) are

consistently 40% higher than the values shown in Table 53; this difference is believed to be due to

difficulty in trapping CH3OOH and measuring its concentration. CH3OOH dissociates upon

light absorption to give CH30 with unit quantum yield (Vaghjiani and Ravishankara, 1990). At

shorter wavelength (i.e. 193 nm) production of H and 0 atoms is also seen.

Table 53. Absorption Cross Sections of CH3OOH

_. 109,0(_ _. 1020 (_

(nm) (cm 2) (nm) (cm 2)

210 31.2 290 0.69

220 15.4 300 0.41

230 9.62 310 0.24

240 6.05 320 O.14

250 3.98 330 0.079
260 2.56 340 0.047

270 1.70 350 0.027

280 1.09 360 0.016

HCN + }iv -_ Products

Herzberg and Innes (1957) have studied the spectroscopy of hydrogen cyanide, HCN, which

starts absorbing weakly at k < 190 nm.

The solar photodissociation rate for this molecule is rather small, even in the upper

stratosphere; estimates of this rate would require additional studies of the absorption cross sections

and quantum yields in the 200 nm region.

CH3CN + hv _ Products

McElcheran et al. (1958) have reported the spectrum of acetonitrile or methyl cyanide,

CH3CN; the first absorption band appears at _. < 220 nm. More recently, Suto and Lee (1985) and

Zetzsch (1989) have measured the cross sections around 200 nm; solar photodissociation is
unimportant compared to reaction with OH radicals.

SO2 + hv-_ Products

The UV absorption spectrum of $02 is highly structured, with a very weak absorption in the

340-390 nm region, a weak absorption in the 260-340 nm region, and a strong absorption extending
from 180 to 235 nm; the threshold wavelength for photodissociation is -220 nm. The atmospheric

photochemistry of SO2 has been reviewed by Heicklen et al. (1980) and by Calvert and Stockwell
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(1983). Directphoto-oxidationat wavelengthslongerthan -300 nm by wayof the electronically
excitedstatesofS02appearstoberelativelyunimportant.

TheabsorptioncrosssectionshavebeenmeasuredrecentlybyMcGeeandBurris (1987)at 295
and 210 K, between300 and 324 nm, which is the wavelengthregion commonlyused for
atmosphericmonitoringof S02.

OCS+hv_CO +S

The absorption cross sections of OCS have been measured by Breckenridge and Taube (1970),

who presented their 298 K results in graphical form, between 200 and 260 nm; by Rudolph and Inn
(1981) between 200 and -300 nm (see also Turco et al., 1981), at 297 and 195 K; by Leroy et al. (1981)

at 294 K, between 210 and 260 nm, using photographic plates; by Molina et al. (1981) between 195 and

260 nm, in the 195 K to 403 K temperature range. The results are in good agreement in the regions

of overlap, except for _. > 280 nm, where the cross section values reported by Rudolph and Inn (1981)

are significantly larger than those reported by Molina et al. (1981). The latter authors concluded

that solar photodissociation of OCS in the troposphere occurs only to a negligible extent.

The recommended cross sections, given in Table 54, are taken from Molina et al. (1981).
(The original publication also lists a table with cross section values averaged over 1 nm intervals,

between 185 and 300 nm.)

The recommended quantum yield for photodissociation is 0.72. This value is taken from the

work of Rudolph and Inn (1981), who measured the quantum yield for CO production in the 220-254

nm range.

CS2 + hv-* CS + S

The CS2 absorption spectrum is rather complex. Its photochemistry has been reviewed by

Okabe (1978). There are two distinct regions in the near UV spectrum: a strong absorption

extending from 185 to 230 nm, and a weaker one in the 290-380 nm range. The threshold
wavelength for photodissociation is -280 nm.

The photo-oxidation of CS2 in the atmosphere has been discussed by Wine et al. (1981d), who

report that electronically excited CS 2 may react with 0 2 to yield eventually OCS.
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Table 54. Absorption Cross Sections of OCS

Cam)

1020a(cm 2) X

225K (nm)295 K

1020a(cm 2)

295 K 225K

186.1 18.9 13.0 228.6 26.8 23.7
187.8 8.33 5.63 231.2 22.1 18.8
189.6 3.75 2.50 233.9 17.1 14.0
191.4 2.21 1.61 236.7 12.5 9.72
193.2 1.79 1.53 239.5 8.54 6.24
195.1 1.94 1.84 242.5 5.61 3.89
197.0 2.48 2.44 245.4 3.51 2.29
199.0 3.30 3.30 248.5 2.11 1.29
201.0 4.48 4.50 251.6 1,21 0.679
203.1 6.12 6.17 254.6 0.674 0.353
205.1 8.19 8.27 258.1 0.361 0.178
207.3 10.8 10.9 261.4 0.193 0.0900
209.4 14.1 14.2 264.9 0.0941 0.0419
211.6 17.6 17.6 268.5 0.0486 0.0199
213.9 21.8 21.8 272.1 0.0248 0.0101
216.2 25.5 25.3 275.9 0.0119 0.0048
218.6 28.2 27.7 279.7 0.0584 0.0021
221.5 30.5 29.4 283.7 0.0264 0.0009
223.5 31.9 29.5 287.8 0.0012 0.0005
226.0 30.2 27.4 292.0 0.0005 0.0002

296.3 0.0002
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NaCI + hv _ Na + CI

There are several studies of the UV absorption spectra of NaCI vapor. For a review of the

earlier work, which was carried out at high temperatures, see Rowland and Rogers (1982). The

recommended cross sections,listedin Table 55, are taken from the work ofSilver et al.(1986),who

measured spectra of gas phase NaCl at room temperature in the range from -190 to 360 nm, by

directlymonitoring the product Na atoms.

Table 55. Absorption Cross Sections of NaC!Vapor at 300 K

_.( n m ) 1020a(cm 2)

189.7 612

193.4 556

203.1 148

205.3 90.6

205.9 89.6

210.3 73.6
216.3 151

218.7 46.3

225.2 146

230.4 512

231.2 947

234.0 1300

237.6 638

241.4 674

248.4 129

251.6 251
254.8 424

260.2 433
268.3 174

277.0 40

291.8 0.8

Na0H ÷ hv _ Na + OH

The spectrum of NaOH vapor is poorly characterized. Rowland and Makide (1982) inferred

the absorption cross section values and the average solar photodissociation rate from the flame

measurements of Daidoji (1979). Additional measurements are required.
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HETEROGENEOUS CHEMISTRY

We have evaluated and tabulated the currently available information on heterogeneous

stratospheric processes. However, this is a relatively new and rapidly developing field and

further results can be expected to change our quantitative, and even qualitative, understanding on

a regular basis. The topic's complexity is compounded by the difficulty of characterizing the
chemical and physical properties of stratospheric heterogeneous surfaces and then reproducing

suitable simulations in the laboratory.

To a first approximation there are three major types of surfaces believed to be present at

significant levels in the stratosphere. They are: 1) Type I - polar stratospheric clouds (PSCs)

nominally composed of nitric acid trihydrate (HN03 * 3H20); 2) crystals of relatively pure water

ice, designated as Type II PSCs because they form at lower temperatures than Type I and are

believed to be nucleated by Type I (similar surfaces may form as contrails behind high altitude

aircraft under some stratospheric conditions); and 3) sulfuric acid aerosol, which is nominally a

liquid phase surface generally composed of 60 - 80 weight percent H2SO4 and concomitantly, 40-20

weight percent H20. While PSCs, as their name suggests, are formed primarily in the cold winter

stratosphere at high latitudes, sulfuric acid aerosol is present year round at all latitudes and may
influence stratospheric chemistry on a global basis, particularly after large injections of volcanic

sulfur periodically increase their abundance and surface area.

The detailed composition and morphology of each surface type are uncertain and probably

subject to a significant range of natural variability. Certain chemical and physical properties of

these surfaces, such as their ability to absorb and/or solvate HC! and HNO3, are known to be

strongly dependent on their detailed chemical composition. Moreover, most heterogeneous

processes studied under laboratory conditions (and in some cases proceeding under stratospheric

conditions) can change the chemical composition of the surface in ways which significantly affect

the kinetic or thermodynamic processes of interest. Thus, a careful analysis of the time-

dependent nature of the active surface is required in the evaluation of measured uptake kinetics
experiments. Experimental techniques which allow the measurement of mass accommodation or

surface reaction kinetics with high time resolution and/or with low trace gas fluxes are often more
credible in establishing that measured kinetic parameters are not seriously compromised by

surface saturation or changing surface chemical composition.

The measured kinetic uptake parameters, mass accommodation coefficients and surface

reaction probabilities are separately documented for relevant atmospheric trace gas species for the

three stratospheric surfaces noted above. Since these parameters can vary significantly with

surface composition (e.g., the H2SO4/H20 ratio for sulfate aerosol or the HNO3/H20 ratio for Type

I PSC) the dependence of these parameters on surface composition is reviewed where sufficient

data are available. Furthermore, data are also compiled for liquid water for several reasons.

This surface is one asymptote of the H2SO4/H20 aerosol continuum; the interactions of some trace

species with liquid water and water ice (Type II PSC) surfaces are often similar; and the uptake of

some trace species by water surfaces in the troposphere can play a key role in understanding their

tropospheric chemical lifetimes and thus, the fraction which may be transported into the

stratosphere. Finally, a few processes measured on solid inorganic salt surfaces, which may be
relevant to the stratosphere perturbed by volcanic eruptions or solid rocket exhaust particles are

also included. Heterogeneous processes on soot produced by high altitude aircraft or rockets using

hydrocarbon propellants are not addressed in this tabulation but may be addressed in the future.

Tem_el_tJl_e I}e_nel_.n_

A number of laboratory studies have shown that mass accommodation coefficientsand, to

some extent, surface reaction probabilities can be temperature dependent. While these
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dependencies have not been characterized for many systems of interest, temperature effects on
kinetic data are noted where available. More work which fully separates heterogeneous kinetic

temperature effects from temperature controlled surface composition is obviously needed.

Solubility Limitations

Experimental data on the uptake of some trace gases by various stratospherically relevant

surfaces can be shown to be governed by solubility limitations rather than kinetic processes. In

these cases properly analyzed data can yield measurements of trace gas solubility parameters

relevant to stratospheric conditions. In general, such parameters can be strongly dependent on

both condensed phase composition and temperature. Such parameters may be very important in

stratospheric models since they can govern the availability of a reactant for a bimolecular

heterogeneous process (e.g., the concentration of HCf available for the HC1 + CIONO2 reaction on

sulfuric acid aerosols) or the gas/condensed phase partitioning of a heterogeneous reaction product

(e.g., the HNO3 formed by the reaction of N205 on sulfuric acid aerosols).

Data Organization

Data for trace gas heterogenous interactions with relevant condensed phase surfaces are

tabulated in Tables 56, 57 and 58. These are organized into:

Table 56 - Mass Accommodation (Sticking) Coefficients
Table 57 - Surface Reaction Probabilities

Table 58 - Solubility Data

Mass accommodation coefficients (a), often called sticking coefficients, represent the

probability of reversible uptake of a gaseous species colliding with the condensed surface of

interest. For liquid surfaces this process is generally followed by bulk solvation. Examples
include: simple surface absorption, absorption followed by ionic dissociation and solvation (e.g.,

HCl + H20 _-_ H+(aq) + C1- (aq) and absorption followed by a reversible chemical reaction with a

condensed phase substituent (e.g., SO2 + H20 _ H+ + HSO3- ). Processes involving liquid

surfaces are subject to Henry's law which limits the fractional uptake of a gas phase species into a

liquid. If the gas phase species is simply solvated a physical Henry's law restraint holds; if the

gas phase species reacts with a condensed phase substituent, as in the sulfur dioxide/liquid water

case noted above, a %hemically modified" or "effective" Henry's law constraint holds. It is

presently unclear whether "surface solubility" effects govern the uptake on nominally solid water
ice or HNO3/H20 ice surfaces in a manner analogous to bulk solubility effects for liquid

substrates.

For some trace species on some surfaces experimental data suggest that mass

accommodation coefficients untainted by experimental saturation limitations have been

obtained. These are tabulated in Table 56. In other cases experimental data can be shown to be

subject to Henry's law constraints, and Henry's law constants, or at least their upper limits, can be

determined. These are tabulated for liquid surfaces in Table 58. Some experimental data sets are

insufficient to determine if measured "uptake" coefficients are true accommodation coefficients
or if the measurement values are lower limits compromised by saturation effects. These are

currently tabulated, with suitable caveats, in Table 56.

Surface reaction probabilities (7) are kinetic values for generally irreversible reactive
uptake of trace gas species on condensed surfaces. Such processes are not subject to Henry's law

constraints; however, the fate of the uptake reaction products may be subject to saturation

limitations. For example, N205 has been shown to react with sulfuric acid aerosol surfaces.

However, if the H2SO4/H20 ratio is too high, the product HN03 will be insoluble and a large

161



fractionwillbe expelledback intothe gas phase. Surface reactionprobabilitiesforsubstantially

irreversibleprocessesare presentedin 57. Reactionproductsare identifiedwhere known.

The data in Tables 56 and 57 are organized by trace gas species,since some systematic

variationmay be expected for surface accommodation or reactionas the surface composition

and/orphase isvaried. Data presentedforone surfacemay be judged for"reasonableness"by

comparing with data fora "similar"surface.In some cases itisnot yet clearifsurfaceuptake is

trulyreversible(accommodation) or irreversiblyreactivein nature. In such cases the available
uptake coefficientsare generally tabulated in Table 56 as accommodation coefficients,a

judgement which willbe subjectto change ifmore definitivedata become available.

Where a specific evaluated value for an accommodation coefficient or reaction probability
has been obtained, an estimated uncertainty factor is also tabulated. However, when the data
evaluation yielded only a lower or upper limit, no uncertainty factor can be reliably estimated and
none are presented.
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Table 56. Mass Accommodation Coefficients (a)

G_ou8

Species

Surface

Type Composition T(K) a Uncertainty
Factor

Notes

HCl Water Ice

Liquid Water
NitricAcid Ice

SulfuricAcid

H20(s)

H20(1)
HNO 3 * 3H20(s)

H2SO 4 * nH20(1 )

(n i_8, < 40 wt.% H2SO 4)

(n< 8,>40 wt.% H2SO 4)

191-211 0.3 3
274 0.2* 2
191-211 0.3 See note

288 0.15' 2

218 >0,05"

(No data - allmeasurements limitedby

HCI solubility)

HNO3 Water Ice

Liquid Water
Sulfuric Acid

H20(s) 200 0.03

H20(I) 268 0,2*

H2SO4 " nH20(I)
(73 wt.% H2SO 4) 283 0.1
(75 wt,% H2SO4) 2:30 > 2 x 10"3

(96.5 wt.% H2SO 4) 296 < 4 x 10 -3

O3 Water Ice

Liquid Water
Nitric Acid Ice
Sulfuric Acid

H20(s)

H20(I)

HNO 3 * 3H20(s )

H2SO 4 * nH20(I )
(50 wt.% H2SO4)

(97 wt.% H2S04)

195-262 < 1 x 10-6$

292 > 2 x 10-35

195 2.5 x 10-45

195 < 1 x 10-65
196 < 1 x 10"65

8
9

8
10

H202 Liquid Water
Sulfuric Acid

H20(1)

H2SO4 * nH20(I)

(96 wt.% H2SO 4)

273 0.18"

298 > 8 x 10-45

11

12

NO2 Water Ice

Liquid Water
Sulfuric Acid

H20(s)

H20(1)

H2SO 4 * nH20(1 )

(96 wt.% H2SO 4)

195 < 1 x 10-45

273 > 6 x 10"45

298 < I x 10-65

13
14

12

NO Water Ice
Sulfuric Acid

H20(s)

H2SO 4 * nH20

(96 wt.% H2S04)

195 < 1 x I0-4_

298 < 1 x I0-65

15

16

SO2 Liquid Water
Sulfuric Acid

H20(1)

H2S04 • nH20(I)

(96 wt.% H2SO4)

260-292 0.11

298 < 1 x 10-65

17

18

HO2 Liquid Water

Aqueous Salts

Sulfuric Acid

H20(I) 275 > 0.02

NH4HSO4(aq) 2_ > 0,2

and LiNO3(aq)

H2SO 4 , nH20(I ) 275 >0.07

(28 wt.% H2S04)

19
19

20

163



Table 56. (Continued)

Gaseous Surface

Species Type Composition T(K) a Uncertainty Notes
Factor

OH Liquid Water H20(1) 275 > 4 x 10-3 21

Sulfuric Acid H2SO 4 * nH20(l ) 22

(28 wt.% H2SO 4) 275 > 0.07

(96 wt.% H2SO 4) 298 > 5 x 10-45

O Sulfuric Acid H2SO 4 * nH20(l) 23

(96 wt.% H2SO 4) 298 < 1 x 10-65

HO2NO 2 Sulfuric Acid H2SO 4 * nH20(1) 24

(96 wt.% H2SO4) 298 < 2.7 x I0-55

H20 Water Ice H20(s) 200 0.5 2 25

Sulfuric Acid H2SO 4 * nH20 26

(96 wt.% H2SO 4) 298 > 2 x 10-35

CF2 O Water Ice H20{s) 192 < 3 x 10-65 27

Liquid Water H20(I) 26@290 < 1 x 10-3, 28

Nitric Acid Ice HNO3 * 3H20(s) 192 < 3 x 10-65 27

Sulfuric Acid H2SO 4 . nH20(1 ) 215-230 27

(60 wt.% H2SO4) 3 x 10-65 3

(40 wt.% H2SO4) 6 x 10-55 2

CC120 Liquid Water H20(I) 260-290 < 1 x 10"3$ 28

CF3CCIO Liquid Water H20(]) 260-290 < 1 x 10-3, 28

CF3CFO Liquid Water H20(I) 260-290 < 1 x 10-35 28

Cl 2 Water Ice H20(s) 200 < 1 x 1045 29

* Varies with T, see Notes,

_:Measurement likely affected by saturation.
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NOTES FOR TABLE 56

HC1 on H20(s) - Leu, 1988a (0.4; +0.6, -0.2) and Hanson and Ravishankara, 1991b (a >_0.3)

are in reasonable agreement at stratospheric ice temperatures.

HCl on H20(1) - Recommendation is based on Van Doren et al., 1990. Measured a's

decrease from 0.18 + 0.02 at 274 K to 0.064 +0.01 at 294 K, demonstrating a strong negative

temperature dependence. Tang and Munkelwitz (1989) have measured a larger (0.45 +_0.4)

HC1 evaporation coefficient for an aqueous NH4C1 droplet at 299 tC

HCi on HNO3 • nil20 - There is severe disagreement between Hanson and Ravishankara

(1991b) (a _>0.3) for NAT (54 wt. % HN03 ), and Leu eta]., (1991) (a = 8 x 10-3 to < 9 x 10-7 over

weight % range of 44-57). Variation with HNO 3 wt. % in Leu et al. seems unreasonable

unless a solubility limitation is operating. Data plotted in Moore et al. (1990) suggest uptake

coefficients measured by Leu et al. (1991) may be surface solubility limited and hence may

not represent a. However, further work is needed to reconcile the measurements of Hanson
and Ravishankara with those of Leu et al. The measurements of Hanson and

Ravishankara (1991) are consistent with _ = 1.

HCI on H2SO4onH20 - Measurements by Watson et al. (1990) at 284 K show a = 0.15 +0.01

independent of n for n _>8. Experimental uptake and, therefore, apparent a falls offfor n <_8

(>_40 wt. % H2SO4). This behavior is also observed at stratospheric temperature (218 K) by

Hanson and Ravishankara (1991d). Solubility constraints also controlled earlier low

temperature uptake measurements ofTolbert et al. (1988b).

HNO3 on H20(s) - Leu (1988a) reports 0.3 (+0.7, -0.1). Some additional uncertainty is

introduced by effective ice surface area in fast flow measurement (see Keyser et al., 1991).

HN03 on H20(1) - Measured R has a strong negative temperature dependence varying from

0.19 +_0.02 at 268 Kto 0.07 + 0.02 at 293 K(Van Doren et al., 1991).

HNO3 on H2SO4onH20 - Initial uptake at 73 wt. % H2SO 4 allows a measurement of a = 0.11

+ 0.01 at 283 K (Van Doren et a]., 1991). This value is expected to increase at lower

temperatures, similar to H20(1) uptake (Van Doren et al., 1990). Total HN03 uptake is

subject to Henry's law solubility constraints, even at stratospheric temperatures (Reihs et al.,
1990). Solubility limitations also affected the earlier "sticking coefficient" measurements of
Tolbert et al. (1988b).

O3 on H20(s) - Undoped ice surfaces saturate too quickly for reliable measurements. When

ice is doped with Na2SO3 to chemically remove absorbed 03, the apparent a increases to 1 x

10-2 (0.1M) or up to 4 x 10 -2 (1M) (Dlugokencky and Ravishankara, 1992). Limit of a = i0-6

or undoped ice is consistent with earlier measurement by Leu (1988b) of _<1 x 10 -4 .

Dlugokencky and Ravishankara also measured the tabulated value of an uptake coefficient

for 03 on an NAT "like" surface but the data were difficult to reproduce and the surfaces were
not well characterized.

O3 on H20(l) - Utter et al. (1992) used a wetted wall flow tube technique with various chemical

scavengers to measure a lower limit for a of 2 x 10 -3. The stopped flow measurement

technique using an SO 3 = scavenger (Tang and Lee, 1987) is subject to saturation effects, so

their quoted a of 5.3 x 10-4 is also taken as a lower limit.

O3 on H2SO4"nH20 - Recent flow tube measurements (Diugokencky and Ravishankara,

1992) of a<10 -6 on solid H2SO 4 surfaces are consistent with earlier, but probably less
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

quantitative,staticsystems measurements of Olszyna et al.(1979) and aerosolchamber

measurements ofHarker and Ho (1979)who reporta'softhe order10-8or lessfora varietyof

sulfuricacid concentrationsand temperatures. In these earlierexperiments doping the

H2SO4 with Ni2+, Cr2+, Al3+, Fe3+ and NH4 + (Olszyna et al.,1979) or A1203 or Fe203

(Harker and Ho, 1979) did not significantlyincreasemeasured 03 loss. Ozone uptake is

probablylimitedby saturationeffects.

H202 on H20(1) - Measured accommodation coefficient(Worsnop et al.,1989) has a strong

negativetemperature dependence overthe measured range of260-272 K, with a = 0.3at260K

decreasingto0.1at292 IL

H20 2 on H2SO4*nH20 -Knudsen celluptake measurement issubjectto surfacesaturation,

thus value quoted by Baldwin and Golden (1979)isalmost certainlya lower limit.This is

probablyalsoresponsibleforthe lackofmeasured uptake forNO, NO2, SO2 and otherspecies

reportedin thisreferenceand Baldwin and Golden (1980).

NO2 on H20(s) - In the absence of a chemical sink,Leu (1988b) measured no sustained

uptake ofNO2 on iceyieldingan apparent a <I x 10-4.This value isprobably influencedby

surfacesaturation.

NO2 on H20(1) - Measured a of (6.3 + 0.7) x 10-4 (Tang and Lee, 1988) was achieved by

chemical consumption of NO2 by S03 =. Stopped flow measurement was probably still
affected by surface saturation, lending to the measurement of a lower limit.

NO on H20(s) -See note 13;NO subjecttosame concernsas NO2.

NO on H2SO4*nH20. See Note 12.

S02 on H20(1) - Measured a of 0.11 + 0.02 has no significant temperature variation over
temperature range of 260 - 292 K (Worsnop et al., 1989).

SO2 on H2SO4,nH20. See Note 12.

H02 on H20(l) - Determination of a in liquid wall flow tube (Hanson et al., 1992) is

dependent on diffusion corrections; measured limit (a >0.02) is consistent with a = 1. In the
aqueous salt aerosol measurements of Mozurkewich et al. (1987), H02 was chemically

scavenged by Cu ++ from added CuS04 to avoid Henry's law constraints; this measurement
is also consistent with a =1.

H02 on H2SO4*nH20 - Liquid wall flow tube technique used by Hanson et al. (1992) is

subject to a large gas phase diffusion correction; measured lower limit is consistent with a =
1.

OH on H20(I) - see Note 20, OH and H02 measurements of Hanson et al. (1992) are subject to

same analysis issues.

OH on H2SO4°nH2 0 - See Note 20 for measurement by Hanson et al. (1992) and Note 12 for

measurement by Baldwin and Golden (1980).

0 on H2SO4°nH2 0 -See Note 12.

HO2NO2 on H2SO4-nH20 -See Note 12.
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H20 on H20(s) - Measurements are available from Leu (1988a) giving 0.3 (+0,7, -0.1) at 200

K and Haynes et al. (1991) (1.1 ± 0.1 to 0.71 ± 0.2) from 20 to 185 K.

H20 on H2SO4°nH20 -See Note 12.

CF20 coefficient uptake measurements by Hanson and Ravishankara (1991c) on

stratospheric surfaces are probably subject to surface and/or bulk saturation effects and may
not represent accommodation coefficient measurements.

Halocarbonyis on H20(I) - Uptake may be solubility limited, thus limits on accommodation

coefficients measured by Worsnop and Davidovits (1991) could be too large.

29. See Note 13, C12 subject to same concern as NO2.
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Table 57. Gas/Surface Reaction Probabilities (7)

Gaseous Surface

Species Type Composition T(K) Uncertainty Notes
7 Factor

' ,

CIO + Surfnce -_ Products

CIO Water Ice H20(s) 190 > 0.01 1

SulfuricAcid H2SO4 *nH20(1) 221-296 8x I0_5 I0 2

(72to95 wt.% H2SO 4)

CI + Surface --, ProdtJc_s

Cl SulfuricAcid H2SO4 * nil20(1) 221-296 2x 10-4 I0 3

(72to95 wt.% H2SO 4)

CIONO2 + H20 -_ HOCI + HNO3

CIONO2 Water Ice H20(s) 200-202 0.3 3 4

NitricAcid Ice HNO 3 • 3H20(s ) 200-202 0.006 See note 5

SulfuricAcid H2SO 4 . nH20(l)

(40 wt.% H2SO4) 218 6.4 x 10 -1 2 6
(60 wt.% H2SO4) 215 3.1 x 10 -3 2

(65 wt.% H2SO4) 215 1.2 x 10 -3 2
(70 wt.% H2SO4) 220 3.9 x 10 -4 2

2_0 1.9x 10-4 2
(75wt.% H2SO4) 295 2
(96wt.% H2SO4) 3.2x 10-4

CIONO2 + HC1 _ C12 + HNO3

CIONO2/HCI Water Ice H20(s) 200-202 0.3 3 7

NitricAcid Ice HNO 3 * 3H20 ° HCf 200-202 0.3 3 8
Doped with HCI

SulfuricAcid H2SO 4 • nH20(l ) See note 9

(H2SO 4 wt.% > 60))

CIONO2 + NaCl(s) _ C12 + NaNO3

CIONO 2 Sodium Chloride NaCl(s) 300 See note I0

CIONO 2 + NaBr(s) -_ BrCI + NaNO3

CIONO 2 Sodium Bromide NaBr(s) _00 See note I0

NsO5+H20 -,2HNOs

N205 Water Ice

Liquid Water
NitricAcid Ice

SulfuricAcid

H20(s) 195-200 0.03 1.5 11

H20(I ) 270-275 0.08* 2 12
HNO 3 • 3H20(s ) 200 6 x 10-4 3 13

H2SO 4 ° nH20(l) 210-230 0.1 2 14
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Table 57. (Continued)

u

Gaseous Surface

Species Type Composition

w

N205 + HCI --*C1NO2 + HNO3

N205 Water Ice H20(s)
Nitric Acid Ice HNO 3 • 3H20(s)

N205 + NaCl(s) _ CINO2 + NaNO3(s)

N205 Sodium Chloride NaCl(s)

N205 + NaBr(s) --*BrNO2 + NaNO3(s)

N205 Sodium Bromide

HOCI + HCI(s) --*C12 + H20

HOC1/HCI Water Ice
Nitric Acid Ice

NaBr(s)

H20(s)

HNO3 ° 3H20(s)

T(K)

190-220
2OO

298

298

195-200

195-200

0.03

0.003

> 2.5 x 10 -3

0.3
0.1

Uncertainty
Factor

See note

2

See note

3
3

No_s

15
16

17

17

18
18

* T is temperature dependent
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_Oq_S FOR TABLE 57

CIO on H20(s) - Proposed reaction (Leu et al., 1988b) is 2 CiO _ C12 + 02, reactive uptake

may depend on C10 surface coverage, which in turn, may depend on gas phase CIO
concentrations.

CIO on H2S04 ° nH20 - Measured reaction probability (Martin et al., 1980) varies between 2

x 10-5 and 2 x 10-4 as H20 content is varied by changing wall temperature. Reaction product

is claimed to be HC1, not C12.

C1 on H2S04 ° nH20 - Measured reaction probability (Martin et al., 1980) varies between 3 x

10 -5 and 7 x 10 -4 as H20 and T co-vary as stated in Note 2. Reaction product is claimed to be

HC1.

CION02 on H20(s) - Measurement of _ = 0.3 (+0.7, -0.1) (Hanson and Ravishankara, 1991a)

significantly exceeds previous measurements of Molina et al. (1987), Tolbert et al. (1987),

Leu (1988a) and Moore et al. (1990). Previous measurements were probably impeded by NAT
formation on surface. Lower levels of CIONO2(g) used by Hanson and Ravishankara

(1991a) minimized this surface saturation problem. Reaction products are HNO3 and HOCI.

All of the HNO3 and much of the HOCl is retained on the surface under polar stratospheric

conditions (Hanson and Ravishankara, 1991b).

C10N02 and HNO3 ° nH20 - Hanson and Ravishankara (1991a, b) report a value of 0.006

for C10N02 reaction with the water in NAT (HN03 • 3H20). Similar experiments (Moore et

al., 1990; Leu et al., 1991) report a larger value 0.02 +0.01 which falls very rapidly as slight

excesses of H20 above the 3/1 H20/HNO3 ratio for NAT are removed. They measure T of

less than 10-6 for slightly water poor "NAT" surfaces. The inconsistency between Hanson

and Ravishankara (1991a,b) and the JPL group (Moore et al., 1990; Leu et al., 1990) has not
been resolved. Hanson and Ravishankara (1991b) report that 7 for this reaction increases by

a factor of 4 as the surface temperature increases from 191 to 211 I_

CIONO2 for H2SO4 ° nH20 - Quoted results are from Hanson and Ravishankara (1991d)

and Rossi et al. (1987). The former agree within a factor of two at 65 and 75 wt.% H2SO 4 with

measurements by Tolbert et al. (1988b), further results which are consistent with those in
Table 57 have been obtained by Reihs et al. (1991). Results of Hanson and Ravishankara

(1991d) and Reihs et al. (1991) can be expressed as log 10 (T) = 1.87 - 0.0747 W, for 40 < W < 75

where W is H2S04 wt.%.

ClONO2/HCI on H20(s) - Reaction probabilities of 0.27 (+0.73, -0.13) (Leu, 1988a) and 0.05 to

0.1 (Molina et al., 1987) have been reported near 200 K. Abbatt et al. (1991), Abbatt and Molina

(1992), and Hanson and Ravishankara (1991b) report that a portion of the reaction may be due

to HOCI + HCl _ C12 + H20, with HOC1 formed from CIONO2 + H20(s) _ HOCI + HNO3(s).

Hanson and Ravishankara (1991b) see no enhancement of the ClONO2 reaction probability

when H20(s) is doped with HC1. Their preferred value is T = 0.3, but is consistent with T = 1.

CIONO2 + HC1 on HNO 3 ° 3/-I20 - Measurements by Hanson and Ravishankara (199is,b)

and Leu and co-workers (Moore et al., 1990; Leu et al., 1991) both confirm a very high T,
relatively independent of the HNO3/H20 ratio.

CION02 + HCI on H2SO4 ° nH20 - Hanson and Ravishankara (1991d) have determined that

low temperature solubility limits for HCf in H2S04 • nH20 (> 60 wt.% H2SO4) will restrict

the ClON02 + HC1 reaction by demonstrating that HC1 vapor has a minimal effect on

ClONO2 uptake on 60-75 wt.% H2S04 surfaces, confirming the conclusion of Watson et al.
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17.

(1990)that HCIsolubility will restrict C1ON02+ HCi onnormalstratosphericsulfuricacid
aerosols.Tolbert et al. (1988b)alsonotednomeasurableenhancementof CIONO2lossona
65wt.% H2SO4surfaceat 210K whenthe surfaceis exposedto HCI;howeverthe reaction
productsdo changeto includeC12. Sulfuric acid surfaces with less than -60 wt.% H2SO4

have sufficient water to absorb significant levels of HCl. Wolff and Mulvaney (1991) have

suggested that such water rich H2S04 aerosols may form under polar stratospheric
conditions.

CIONO2 on NaCl(s), NaBr(s) - Finlayson-Pitts and co-workers have shown that C|ONO2

reacts with crystallineNaCI (Finlayson-Pitts et al.,1989) and NaBr (Berko et al.,1991) to

produce Cl2 and BrCl respectively. No rate data for these reactions have been reported.

N205 on H20(s) - Leu (1988b) and Hanson and Ravishankara (1991a) have measured

nearly identical values of 0.28 (+0.11) and 0.24 (+30%) near 200 K. Quinlan et al. (1990) have

measured a lower limit for 7 on fresh ice surfaces of 0.03 at 188 I_

N205 on H20(l) - Reaction on liquid water has a negative temperature dependence. Van

Doren et al. (1990) measured y's of 0.057 +0.003 at 271 K and 0.036 +0.004. at 282 K.

Mozurkewich and Calvert (1988) studied 7 on NH3/H2SO4/H20 aerosols. For their most

water rich aerosols (RH = 76%) they measured 7's of 0.10 +0.02 at 274 and 0.039 +0.012 at 293
K.

N20 5 on HNO 3 • 3H20(s) - Hanson and Ravishankara (1991a) have measured 7 = 0.0006

(+30%) at 200 I_ This is in very poor agreement with 7= 0.015 (+0.006) reported by Quinlan et
al. (1990). This latter measurement may have been biased by a supercooled nitric acid
surface rather than NAT.

N20 5 on H2SO4 ° nH20(s) - Recent measurements by Hanson and Ravishankara (1991d)

yielded _ (215 K) = 0.14 (_+0.08) for 60 wt. % H2SO4, y (220) = 0.10 (±0. 02) for 70% H2SO4 and 7

(230) = 0.10 (+0.02) for 75% H2SO4. This is in good agreement with 7 (283) = 0.055 (+0.006) for

70% H2S04 measured by Van Doren et al. (1991), since higher temperatures can be expected

to yield lower "is. Reihs et al. (1991) measured values near 0.055 over the temperature range

220-295 K, for 75-90 wt.% H2S04. Their data show little dependence on either temperature or

H2SO 4 content. Their values are significantly smaller than Hanson and Ravishankara

(1991d). Both Reihs et al. (1991) and Van Doren et al. (1990) measured significant levels of

product HNO 3 in the gas phase, indicating that HNO3 solubility limitations will limit gas

phase denitrification due to reaction on normal stratospheric sulfuric acid aerosols.

NH3/H2SO4 aerosol studies at 274 and 294 K by Mozurkewich and Calvert (1988) are also

consistent with the recommended lower temperature 7 for S04 = concentrations consistent

with stratospheric aerosols.

N205 + HCl on H20(s) - Leu (1988b) measured 7 = 0.028 (+0.011) at 195 K, while Tolbert et al.

(1988a) measured a lower limit of 1 x 10-3 at 185 K. These experiments were done at high HCl

levels probably leading to a liquid water/acid surface solution (Abbott et al., 1991). The

reaction probability may be much smaller on HC1/H20 ice surfaces characteristic of the

stratosphere.

N20 5 + HC1 on HNO3 * 3H20 - Hanson and Ravishankara (1991a) measured 7 = 0.0032
(+30%) near 200 K.

N205 on NaCl, NaBr - Finlayson-Pitts and co-workers (Finlayson-Pitts et al., 1989;

Livingston and Finlayson-Pitts, 1991) have demonstrated the N205 reacts with crystalline

NaC] and NaBr to form NaNO3(s) plus CINO2 and BrNO2, respectively. A lower limit of
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for the NaCl reaction of 2.5 x 10-3 has been reported by Livingston and Finlayson-Pitts
(1991).

HOCI + HCl on H20(s) and HNO3 ° 3H20(s) - Hanson and Ravishankara (1991b) and

Abbatt and Molina (1992) have investigated the HOC1 + HC1 reaction on water ice and NAT
like surfaces. The high reaction probabilities measured indicate that this reaction may play
a significant role in release of reactive chlorine from the HCI reservoir. The reaction
probability on "NAT-like" surfaces falls off dramatically (a factor of 10) on water-poor
(HNO3-rich) surfaces (Abbatt and Molina, 1992). The measured yield of product Cl2 is

0.87_+0.20 (Abbatt and Molina, 1992).
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Table 58. Henry's Law Constants for Gas-Liquid Solubilities

H(T)

(M/atm) Notes

H = A exp(Bfr)

T wt. % H2SO 4 A (M/atm) B(K)

188-240 58 7.47 x 10 -8 7.16 x 103 1

66 0.202 3.19 x 103

74 8.54 x 10 -3 3.55 x 103

87 3.56 x 10-3 3.32 x 103

283 73 4 x 103 2

HCI in H2SO 4 • nH20

203 60 > 8.6 x 103 3

283 40 > 1.0 x 104 4

283 50 > 1.0 x 103 4

283 60 > 1.0 x 102 4

283 70 > 1.0 x 101 4

F2CO in H2SO 4 * nil20

215-230 60 > 5 5
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NOTES FOR TABLE 58

These parameters are from measurements of Reihs et al. (1990) in the temperature range
188-240 K. Extrapolation to higher temperatures shows good agreement with other studies
(Van Doren et al., 1991).

High temperature value from Van Doren et al. (1991). Estimated from decrease in HNO3

uptake and gaseous evolution of HNO3 from N205 uptake.

From Tolbert (1989, private communication); see Watson et al. (1990).

From Watson et al. (1990). Estimated by assuming HCl uptake is solubility limited as
calculated from a Hammett-type acidity function (Ho) of aqueous sulfuric acid. Effective

solubility given by:

where

H * = HKa/10-H o

HKa = 107 M2/atm at 283 K

H o = -3 at 40 wt%

Ho = -6 at 70 wt%

See discussion in Watson et al. (1990), Clegg and Brimblecombe (1986), and Schwartz (1988).

Hanson and Ravishankara (1991c) calculate an upper limit for H of F2CO based on assumed

solubility limit resulting in lack of measurable uptake into 60 wt% H2SO 4.
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GAS PHASE ENTHALPY DATA

APPENDIX 1

SPECmS aHf(298)
(Kcal/mol)

, ,r , , ,

SPECIES AHf(298)

(Kcal/mol)

H 52.1 C2H 133+2

H2 0.00 C2H2 54.35
O 59.57 C2H2OH 30_3

O(1D) 104.9 C2H3 72_

o2 0.00 C2H4 12.,.5
o2 (1A) 22.5 C2H5 28.4

02 (1_) 37.5 C2H6 -20.0

03 34.1 CH2CN 57+2
HO 9.3 CH3 CN 15.6

HO2 _ CH2CO -1113

H20 -57.81 CH3 CO .5.8

H202 -32.60 CH3CHO -39.7
N 113.00 C2H50 -4.1

N2 0.00 CH2CH20H -I0±3
N H 85.3 C2H50H -56.2

NH2 45.3 CH3C02 -49.6

NH3 -10.98 C2H502 -6+2

NO 21.57 CH3COO 2 .41±5

NO2 7.9 CH3OOCH3 -30.0

NO3 17+2 C3H5 39.4

N20 19.61 C3H6 4.8

N203 19.8 n.C3H 7 22.6+9_

N204 2.2 i-C3H7 1922

N205 2.7+2 C3H8 -24.8
HNO 23.8 C2H5CHO -44.8

HONO -19.0 CH3COCH3 -51.9

HNO 3 -32.3 CH3COO2NO2 -62±5
HO2NO 2 -11+2 S 66.22

C 170.9 $2 30.72
CH 142.0 HS 34±1

CH2 93_1 H2S -4.9
CH3 35±.2 SO 1.3

CH4 -17.88 SO2 -70.96
CN 104._ SO3 -94.6
HCN 32.3 HSO -1±3

CH3NH 2 -5.5 HSO3 -92±2

NCO 38 I_I2SO4 .176
CO -26.42 CS 67+2

CO2 -94.07 CS2 28.0
HCO 10il CS2OH 26.4
CH20 -26.0 CH3S 3am
COOH -53+2
HCOOH -90.5 CH3SO2 -57

CH30 4±1 CH3SH -5.5

CH302 4+2 CH2SCH 3 36_3

CH2OH -6.2 CH3SCH3 -8.9

CH3OH .48.2 CH3SSCH3 -5.8
OCS -34

CH3OOH -31.3 F 18.98
CH3ONO -15.6

F2 0.00
CH3ONO2 -28.6 HE -65.34
CH302NO2 -10.6.+.2 HOF -23.4±1

SPECIES AHI(298)
(Kcal/mol)

FO 26_

F20 5.9_.4
FO2 eJ
P202 am
FONO -15±7
FNO -16+2

FNO2 -26_+.2

FONO 2 2.5_7

CF2 -44_2

CF3 -112_1

CF4 -223.0

CHF 3 -166.8

CHF 2 -58+2

CH2F 2 -107.2

CH2F -8+2

CH3F -55.9_1

FCO -41+14

COF 2 -153+2
C1 28.9

Cl 2 0.00
HCl -22.O6
CIO 24.4
CIOO 23_1
OCIO 23_

CIOO 2 16.7

C10 3 52_4
C120 19.5

c1202 3___3
C1203
HOC1 -18±3
C1NO 12.4

C1NO2 3.0
CIONO 13

CIONO 2 5.5
FC1 -12.1

CC12 57_5

CCl 3 18_i

CCI4 -22.9
CHC13 -24.6

CHCI2 23_2
CH2CI 29±2

CH2CI 2 -22.8

CH3CI -19.6

CICO -5±1

COCI2 -52.6

CHFCI -15+2

CH2FCl -63+2
CFC1 7£-6

CFC12 -22+2

CFC13 -68.1

CF2a -64_3

CF2Cl 2 - 117.9

SPECIES AHf(298)
(Kcal/mol)

CF3CI -169.2

CHFC12 -68.1
CHF2C1 -115.6
COFCI -I02+2

CH3CH2F -63+2

CH3CHF -17+2

CH2CF 3 -L24+2

CH3CHF2 -120_1

cH3c_ -7_2
CH3CF 3 -179+2

CF2CF3 -213+2

CHF2CF 3 -264.+_2

CH3CF2C1 -127+2

CH2CF20 -75+2

c2_ -3.o
C2HCI 3 - 1.9

CH2CC13 17+'2

CH3CC13 -34.0

CH3CH2CI -26.8

CH2CH2CI 22t2

CH3CHCI 17.6±1
Br 26.7

Br2 7.39
HBr -8.67
HOBr -19+_2
BrO 30
BrNO 19.7
BrONO 25_7

BrNO2 17_2

BrONO 2 12_
BrCl 3.5

CH2Br 4O+2

CHBr3 6_

CHBr2 45_

CBr3 48_2

CH2Br2 -2.6±2

CH3Br -8.5

CH3CH2Br -14.8

CH2CH2Br 32_2
CH3CHBr 3(_
I 25.52

12 14.92
HI 6.3

CH3I 3.5

CH2I 52_2
IO 41.1
INO 29.0

INO2 14.4
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APPENDIX 2

PROFILES

The species profiles presented in these figures were generated by the LLNL 2-D model of the
troposphere and stratosphere. The tropopause mixing ratios of key trace gases are as follows: total
chlorine 3.4 ppb, methane 1.69 ppm, nitrous oxide 307 ppb, carbon dioxide 350 ppm, and total
bromine 0. The kinetic parameters used were consistent, where possible, with the Evaluation
Number 9 recommendations of the NASA Panel for Data Evaluation (JPL 90-1). The model was
constrained by observational fields for temperature, ozone, methane, nitrous oxide, and water
vapor. These fields of satellite data were obtained from the UARS program (Robert Seals, Jr.,
private communication, 1990) and incorporated into the model to produce distributions for other
infrequently observed species. This version of the model did not incorporate the heterogeneous
reaction of N205 with H20 to form nitric acid, and the predicted nitric acid profiles are smaller
than the available satellite distributions indicate.

The rate constants shown for various photolytic processes are derived from a version of the
LLNL 2-D model developed for the 91/92 UNEP report and incorporated the temperature
dependence of the absorption cross sections for all appropriate species in the calculation of both
atmospheric transmission and absorption. This version of the model represents a 1990 ambient
atmosphere. Further details on this model will appear in the UNEP report.
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