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Abstract

A novel method of combined use of magnetic vector potential (MVP) based
finite element (FE) formulations and magnetic scalar potential (MSP) based FE for-
mulations for computation of three-dimensional (3D) magnetostatic fields is developed
in this dissertation. This combined MVP-MSP 3D-FE method leads to considerable
reduction by nearly a factor of 3 in the number of unknowns in comparison to the num-
ber of unknowns which must be computed in global MVP based FE solutions. This
method allows one to incorporate portions of iron cores sandwiched in between coils
(conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of
current carrying regions (in comparison with the exclusive MSP based methods) in
electric machinery applications. A unique feature of this approach is that the global
MSP solution is single valued in nature, that is, no branch cut is needed. This is again
a superiority over the exclusive MSP based methods. A Newton-Raphson procedure
with a novel concept of an adaptive relaxation factor was developed and successfully
used in solving the 3D-FE problem with magnetic material anisotropy and nonlinear-
itv. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution
of large scale global type magnetic field computations in rotating electric machinery
with very complex magnetic circuit geometries, as well as nonlinear and anisotropic

material properties.

The combined MVP-MSP 3D-FE solution method, in conjunction with the
state-space equations using the natural abc-frame of reference, forms a complete com-
puter aided model to analyze and predict machine parameters and performances. This
modeling tool was applied to 3D magnetic field analysis and machine performance
computations of an example 14.3 kVA modified Lundell alternator. The energy per-
turbation approach was used in this investigation to compute machine winding induc-
tances from 3D-FE computed magnetic field results. The effects of magnetic material
nonlinearity and the space harmonics due to complex magnetic circuit geometries were
fully included in the results of machine winding inductances. Results of computed
open-circuit, short-circuit, as well as rated load and over-rated load conditions were
found to be in excellent agreement with corresponding test values. In this research,
the electromagnetic torque profiles including their ripples (harmonics) were computed
in terms of terminal voltage and current profiles as well as stored magnetic energies.

In addition. results of use of this modeling and computation method in a design alter-
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ation, in which the stator stack length of the example alternator is stretched in order
to increase voltage and volt-ampere rating, were studied in this investigation. These
results demonstrate the inadequacy of some conventional 2D-based design concepts
and the imperative of this type of 3D magnetic field modeling in analysis of such MLA
class of machines. This includes almost all machines of the axial flux flow variety.
The modeling technique and algorithm developed in this research can serve as an
excellent design tool and means of gaining insight into the workings of such machines
with truly 3D magnetic field patterns and complex magnetic circuit geometries. The
generic nature of this modeling allows one to use it in design optimization and design

synthesis studies.
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Chapter 1

Introduction

1.1 Background of the Problem

It is a well established fact in the body of knowledge on the design of ac electric
machinery that the higher the operating speed (frequency) of a given machine the
lesser its weight and volume, for a given voltampere rating and a particular set of
construction materials. The demand for generators with extra high voltampere to
weight and/or volume ratios is most critical in aerospace applications. One of these
possible applications is in the anticipated thermal portion of the electric power gener-
ation on board NASA’s projected Space Station I'reedom, namely the solar dynamic
(SD) power module [1].

A prime candidate as an extra high speed (> 30,000 r/min) electric generator,
for this SD module is the class of modified Lundell alternators (MLA) [2, 3], in which
the lack of any rotating windings permits such extra high rated speeds. The main
constructional feature of a particular 4-pole MLA is shown in the isometric cut-away
cross-section of Figure (1.1.1). The longitudinal cross-section of an example 14.3 kVA,
4-pole, 36,000 r/min high speed MLA [3], as well as its 4-pole rotor’s isometric of the
magnetic portion are shown in Figures (1.1.2-a) and (1.1.2-b). This is in addition to
a rotor photograph of Figure (1.1.3), of this example 14.3 kVA MLA.

In such MLAs, Figures (1.1.1) and (1.1.2), both the armature and field excitation
windings are stationary. The armature winding is usually a conventional three-phase,
double-layered winding housed in a conventional slotted and laminated armature
core, the longitudinal cross-sections of which can be clearly seen in Figure (1.1.2-

a). Meanwhile, the stationary field winding consists of two toroidal coils, which are
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located on both ends of the machine, surrounding the shaft as shown in Figure (1.1.1).
The two toroidal field coils are much like two Tesla coils located at both ends of the

rotor shaft.

The bimetallic rotor consists of two magnetic metal pieces which are brazed to a
nonmagnetic metal piece filling the space in between. The two magnetic pieces form
a shape which is very similar to that of a “universal joint” as shown in the isometric
diagram of Figure (1.1.2-b). Hence one obtains the 4-pole structure of the example
14.3 kVA MLA. The field coils establish an axial magnetic flux in the rotor shaft
which cannot flow axially from one magnetic portion of the rotor to the next due
to the nonmagnetic metallic piece brazed to both magnetic pieces of the bimetallic
rotor, Figure (1.1.2). Thus the magnetic flux in the shaft is forced to split into two
equal portions, each flowing radially outward through the surfaces of the two (north)
pole pieces of the rotor across the main airgap, Figure (1.1.2), and into the armature
teeth and core, Figure (1.1.2-a). This flux flows circumferentially through the back of
the unslotted portion of the laminated iron core to return radially inward through the
armature teeth and across the main airgap, and into the two (south) pole pieces of the
other magnetic portion of the rotor. See the flux flow arrows in Figure (1.1.2). This
flux continues to flow axially through the rotor until it crosses one of the two auxiliary
airgaps between the shaft surface and the end-bells. Flux flows axially from one end
bell to the other through an outer magnetic casing in the form of a cylindrical shell.
which forms, together with the end bells, an integral part of the return flux path from
one end of the machine to the other across the two auxiliary airgaps. The rotation of
the magnetic fields in this class of machines is caused by the rotation of the “universal
joint like” magnetic portion of the bimetallic rotor structure, Figure (1.1.2-b), and
not by the rotation of the field windings as in conventional synchronous machines

with rotor mounted excitation.

It is obvious that the magnetic flux path and its corresponding spatial flux dis-
tribution in this class of MLAs are truly three dimensional (3D) in their nature. That
is, the magnetic flux distributions are of simultaneously axial, radial and circumfer-
ential orientations, and are at variance with the usual, largely two dimensional (2D),
flux patterns encountered in conventional electric machinery. The intrinsically 3D
nature of the magnetic field distribution in such MLAs immensely complicates the
design, performance computation and prediction processes. The concepts of perfor-

mance computation which are based on 2D fields and axial symmetry, such as the
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computation of voltages in straight armature conductors using the well known for-
mula {(T x B)= lvB, or the flux linkage concept (4.44f¢Nk, ), or the proportionality
of the voltampere rating to volume, VA o D?L, would not apply for such MLAs.
Accordingly, one needs powerful computer modeling and computation methods to be
able to thoroughly study the nature of the MLA’s 3D magnetic field distributions.
Meanwhile, new approaches of computation of machine parameters, induced voltages
in windings, etc., which are based on the fact that the field is 3D in nature, have to

be developed.

Therefore, this dissertation is directed towards the study and development of
large scale nonlinear magnetic field three-dimensional finite element (3D-FE) com-
putation methods, as well as machine performance simulation models, for rotating
electric machinery with truly 3D magnetic field distributions such as these MLAs at
hand. At this stage, a literature review of published work in the area of 3D magnetic
field analysis and computation methods is most appropriate. This literature review
also includes the review of publications of magnetic field computations on design and

performance simulation of ac rotating electric machines.

1.2 Literature Search

Within the last two decades, many numerical modeling approaches for computation
of magnetic fields have been developed by investigators and researchers. The fast
advances of modern computer technologies made it possible for many numerical com-
putation methods to be used in solving practical engineering problems. Publications
on the subject of numerical computation of magnetic fields can be counted in the
hundreds throughout the literature. It has been found that magnetic vector potential
(MVP) and magnetic scalar potential (MSP) based finite element formulations are
most widely used in applications to the magnetic field problems in electrical machines

and devices.

In the 1960’s, Erdelyi et al were among the earliest to attempt finite difference
solutions of magnetostatic problems in electric machinery (4, 5, 6, 7, 8]. These authors
used finite difference discretization for solving 2D partial differential equations which
govern the MVP or MSP problem in the solution region. Relaxation techniques

were applied to the potentials in solving the problems involving magnetic material



saturation in an iterative manner. Demerdash and Hamilton [9, 10] in 1972 developed
a model using a finite difference approach for magnetic field computations in large
turbo-generators, which related the internal magnetic field distributions directly to
the load and terminal voltage conditions through an iterative process. A saturation
iteration method based on computations of updated magnetic permeabilities obtained
from the most recent flux densities and field intensities was implemented for solving

this class of problems involving magnetic material nonlinerities.

In the early 1970’s, Silvester and Chari (11, 12] applied the 2D finite element
method to the solution of magnetostatic field problems. These authors used first
order triangular elements to discretize the 2D solution region. The Newton-Raphson
technique [11] was employed for the nonlinear magnetic field computation. Chari [13]
has extended the 2D-FE method to the investigation of eddy current problems in
1974. The superiority of the finite element method over the finite difference method
was demonstrated in papers by Demerdash and Nehl in 1976 [14] and 1979 {15].
These authors pointed out the strong advantages of the finite element method due
to its relative ease in handling complex geometric contours, boundary conditions, as
well as requirements of computer resources. Many other investigators have used 2D-
FE methods in their research areas. Example publications on the subject of 2D-FE

developments and applications can be found in references [16] through [20].

Numerical computation of 3D magnetostatic fields in electrical machines and de-
vices appeared in the literature in the early 1970’s. Holziner [21} developed a method
based on integral formulations for solving 3D magnetic field problems. Kozakoff and
Simons [22] have solved the differential equation associated magnetic scalar potential
problems. Muller and Wolff [23], as well as Djurovic and Carpenter [24] have derived

3D finite difference formulations using MSP for magnetostatic computations.

Three dimensional magnetostatic field analysis using 3D-FE methods appeared
in the literature in a paper by Guancial and DasGupta [25] in 1977. These authors
used curl-curl MVP partial differential equation with the zero divergence constraint
on the MVP to formulate their solution method. Also in 1977, Zienkiewicz et al [26]
published a paper in which the authors introduced the concept of reduced MSP in
solving magnetostatic field problems using the finite element method.

Simkin and Trowbridge [27], in 1980, developed the two scalar potential 3D-FE
formulation, which successfully overcame the difficulty of the reduced scalar potential

method of reference [26] in computing magnetic fields involving ferromagnetic mate-
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rials. Later, the idea introduced by the two scalar potential method [27] was adopted
by investigators in developing other scalar potential formulations [28, 29]. In 1982,
Campbell et al [30] published a paper in which a 3D-FE MSP modeling method for
permanent magnets was presented. A 3D finite difference computation method based
on the concept of extended MSP was presented in a paper by Liese et al in 1984 [31].

In 1980, Demerdash et al [32] developed a 3D-FE formulation based on the
unconstrained curl-curl MVP partial differential equation for solving 3D magneto-
static problems. The complete 3D-FE formulation and applications to a 1.5 kVA
transformer problem as well as experimental verifications were reported in a series
of papers by these authors {32, 33, 34, 35]. In this work, magnetic saturation was
accounted for using the saturation iteration method developed earlier by Demerdash
(9, 10]. Later, the same curl-curl 3D-FE formulation in conjunction with a Newton-

Raphson technique for nonlinear magnetic field problems was developed by theses

authors [36] in 1936.

Chari et al [37] published a paper in 1981 on 3D-FE magnetostatic field com-
putation problem using a formulation based on the vector Poisson equation which
stems from the curl-curl equation with an assumption of zero divergence of the MVP.
In the same year, Coulomb [38] presented a formulation for a 3D-FE MVP solution
method. In Coulomb’s formulation, the author added an extra term to the functional

used by Demerdash et al [32] that attempts to impose a zero divergence condition of

the MVP.

These three formulations, that is Demerdash’s, Chari’s and Coulomb’s, were
discussed by many other investigators. Among these discussions are the papers by
Kotiuga and Silvester [39], as well as Csendes et al [40]. The discussions were on
the question of the uniqueness of the MVP computed from these three formulations.
Many other comments and debates on this uniqueness issue appeared later in the
literature. In 1982, Mohammed et al [41, 42] published papers showing the unique-
ness of the MVP computed from the unconstrained curl-curl formulation [32] using
first-order tetrahedral elements. In 1988, Hoole et al [43] showed test computation
results using the above mentioned three different MVP 3D-FE formulations for an
air-core coil problem. Hoole et al reported that the unconstrained curl-curl MVP
formulation yielded the best results on the magnetic flux densities. Also in this work
[43], the authors tried to explain the uniqueness of the numerical results from the

unconstrained curl-curl MV'P formulation of reference [32].



In recent years, pre-conditioned conjugate gradient methods [44, 45] have been
introduced in the area of magnetic field computation for solving the large scale linear
systems of equations resulting from 3D-FE analysis. Substantial savings of computer
cpu times and memory requirements can be achieved by using this type of solver,
which made it possible for one to contemplate solutions of large scale practical mag-
netic field problem using 3D-FE methods. These savings in computer resources are
in comparison to those resource requirements associated with the commonly used

solvers, which are based fully on Gauss elimination or Choleski decomposition.

Also, magnetic field 3D-FE computations using edge-elements were introduced
by Bossavit [46], and subsequently have been reported on in 3D-FE magnetostatic
field analysis by Barton and Csendes {47} in 1987. This method is based on the uncon-
strained curl-curl MVP equation in conjunction with tetrahedral edge-elements. The
total number of unknowns computed in this formulation is equal to the total number
of element edges. Meanwhile, among recent works of significance [48] introduced by
Nehl and Field, is a method of adaptive refinement of first-order tetrahedral 3D-FE

meshes to improve the accuracy of the unconstrained curl-curl MVP method [32].

In the category of application of numerical magnetic field computation methods
to the simulation of the performance of ac rotating electric machines, most of the ear-
lier works were centered on the calculation of conventional direct and quadrature axis
reactances from 2D field computations. These d — ¢ type reactances (inductances)
computed from 2D magnetic field solutions were used in conjunction with network
phasor type calculations (frequency domain) to obtain machine performance charac-
teristics. Demerdash et al in 1972 [9, 10], Fuchs and Erdelyi in 1973 [49], Chari et
al in 1981 [50], and other investigators published papers of such work on ac machine
performance computations. In these methods, the conventional steady state d — ¢
theory forms the basis, and the individual phase winding mmfs (current sheets), and
inductances were assumed to vary sinusoidally with respect to the rotor position an-
gle, thus yielding the well known rotor angle independent inductance (or reactance)
terms Ly (or z4), and L, (or z,).

In 1981 and 1982, Nehl, Fouad, and Demerdash [17, 18, 51, 52] developed a
computer aided model for brushless dc machines, in which a 2D-FE magnetic field
computation model and a time domain network model under the natural abc-frame
of reference were used for machine performance simulation. In this work, 2D-FE

magnetic field computations were performed for a series of rotor positions to obtain



various machine winding inductances as functions of the rotor position. The advan-
tage of the natural abc-frame of reference used by these authors is that the effects of
the space harmonics of the magnetic flux distribution can be fully included in study-
ing such machine performance characteristics. Also, upon use of the abc-frame of
reference, one directly deals with measurable machine armature phase currents such
that the electronically switched power conditioner circuits or loads can be easily and
directly incorporated into the simulation network of the whole machine-power elec-
tronic system, without the need for any interfacing mathematical transformations.
In 1985, Nehl et al [53] applied this model to the study of brushless excitation sys-
tems for large turbine-generators. In 1987 Nyamusa and Demerdash [54, 55, and in
1988 Arkadan, Hijazi and Demerdash [56, 57] extended this model to study steady
state and transient performance characteristics of various types of permanent magnet

motors and generators.

In 1987 and 1989, IKulig et al [58, 59, 60] presented a method to study transient
currents in generator windings and damper circuits caused by internal and external
faults as well as abnormal operations using a natural abc-frame of reference simulation
model. In these authors’ work, 2D finite difference methods were employed to the
computation of magnetic fields and associated machine inductances at a series of rotor

positions.

Other applications of 2D-FE magnetic field computation methods to rotating
electric machinery are found to be in electromagnetic torque and force as well as iron
loss calculations. References [61] through [63] are examples of work on such research

topics.

Publications in the area of application of 3D magnetic field analysis to electric
machinery are found to be much less in numbers than those in the 2D magnetic field
analysis area. The reasons for this are not only due to the complexity of the problem,
but also due to the high cost of such 3D-FE analysis and computation for a practi-
cal rotating electric machine. It should be mentioned that between 1963 and 1966
Tegopoulos [64, 65, 66, 67, 68, 69] had used analytical methods to study 3D flux dis-
tributions and resulting forces on the end windings of turbine generators. In his work
the concept of MVP was used to calculate the 3D distributions of flux densities. The
volume current distributions in the winding end-turns were approximated by current
sheets. Magnetic forces on the winding end-turns were studied. These methods are

the predecessors to the numerical 3D magnetic field analysis in electric machinery.

10



In 1981, Weiss and Stephen [70] published a paper in which the magnetic fields
in the end-turn region of a turbine-generator were studied using a finite elment based
method. In this work, the 3D magnetic fields in the end-turn region were computed by
superposition of a series 2D-FE solutions, to account for the spatial mmf harmonics,
performed in a longitudinal cross-section (r — z plane) of the machine. This method is
fully based on the assumptions of magnetic linearity and axisymmetric geometry. In
the same year, Davey and King [71] presented a MSP based method of a permeance
grid concept to calculate the magnetic field distributions in the end-turn region of a
turbine generator. These authors assumed that the MSP distributions in the end-turn
region of the generator vary sinusoidally along the circumferential direction. Thus the
magnetic field computation was performed by these authors using a 2D permeance
grid in a longitudinal cross-section of the machine. Both of the above works represent
efforts of using 2D field computations which approximate the actual 3D field problems

being solved.

In the area of 3D-FE applications to rotating electric machinery, results of com-
putation of the winding self inductance of a stepping motor using the two scalar po-
tential method were presented by Simkin and Trowbridge [27] in 1980. Synchronous
inductances of a superconducting machine were calculated from a MSP method in a
paper by Zheng and Wang [28] in 1985. Brauer et al [72, 73] in 1985 and 1988 pre-
sented applications of 3D-FE magnetic field computations to an automotive Lundell
alternator. The unconstrained curl-curl MVP formulation was used in these authors’
3D-FE model. The end-turn region of the stator winding was not included in this
3D-FE work. Magnetic field analysis using 3D-FE MVP formulations for actuators
in automotive applications have been reported in papers by Brauer et al [74] in 1988,
as well as Nehl and Field [48, 75] in 1989. However, up to the time of publication of
this dissertation, an example of a complete model using 3D magnetic field computa-
tion for design, analysis, and prediction of performance of a rotating electric machine

could not be found in the literature.

1.3 Definition of the Problem

The objective of this research is the development of computer-aided models for study-
ing effects of various design changes on the machine parameters and performance

characteristics of MLAs. The core of this computer-aided modeling is a 3D-FE mag-
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netic field computation capability (3D-FE programs), which allows one to compute
3D magnetic field distributions throughout the entire magnetic circuit of this class
of MLAs. This 3D-FE computation model can be applied to these MLAs at any
desired machine operating conditions (different magnetic saturation levels) with the
comprehensive capability for changing various dimensional (geometric) and material
(B — H characteristics) parameters for design synthesis and optimization purposes.
Such magnetic field computations were to be performed under a series of rotor posi-
tions with respect to the stator. These rotor positions cover the entire ac cycle of the
associated machine steady state operation. The 3D-FE magnetic field solutions yield
the machine winding self and mutual inductances as functions of the rotor position
angle. These inductances are used as key parameters in a time-domain, natural abc-
frame of reference state model (state-space network programs) to simulate various
machine performance characteristics. Such an integrated 3D-FE and state-space net-
work computer-aided modeling is anticipated to form a powerful means for the design
and analysis, as well as prediction of performance of the MLAs in space station solar
dynamic power generation applications. To the best of this author’s knowledge, such
an effort of global 3D-FE magnetic field computation throughout the complete mag-
netic circuit of a rotating electric machine coupled to detailed machine performance

calculations was carried out in this investigation for the first time.

The basic concept of this computer aided modeling can be used to calculate (pre-
dict) instantaneous voltages and currents of electric machinery under any steady state
and dynamic conditions. However, the research effort in this dissertation is mainly
focused on the simulation of the periodic, yet non-sinusoidal, voltage and current
waveforms associated with the MLA’s various windings, as well as electromagnetic

torque profiles, under MLA steady state operating conditions.

The concepts and package of computer programs developed in this research was
tested by their practical applications to a Y-connected, 4-pole, 36 stator slots, 1200
Hz, 36,000 r/min MLA, rated at 14.3 kVA, 0.75 lagging PF, 120 V (L-N). Comparisons
between the computed results and laboratory test results {3] are presented in this
dissertation whenever possible. The main design data of the example 14.3 kVA MLA
is listed in Table (1.3.1) and illustrated in Figures (1.3.1) through (1.3.4). Further
details on this example 14.3 kVA MLA can be found in references [2] and [76].

As an initial step towards the development of a successful 3D magnetic field com-

putation model, a thorough investigation of existing 3D-FE magnetic vector potential
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Table (1.3.1): Main Design Data of the Example 14.3 kVA MLA

A Number of Poles 4
Rated Speed 36,000 r/min
Frequency 1200 Hertz
Rated Terminal Voltage 120 Volts (Line to Neutral)
Rated Output 14.3 kVA (0.75 P.F.)
Total Weight 51 Pounds
Electromagnetic Weight 35 Pounds

B Stator
Circuits 4
Slots 36
Conductor 5 Strands - No. 24 AWG
Turns per Coil 9
Number of Slots Between

Coil Sides Plus One 6
Line to Neutral Resistance 0.0322  (Measured)
Stack Length 1.65 Inches

C Rotor
- Weight 11 Pounds and 15 Ounces
Outside Diameter 3.26 Inches
Pole Length 1.65 Inches

D Fields
Conductor No. 17 AWG
Total Turns 722
Resistance 4.85 Q1 (Measured)

E Airgaps
Length of Main Airgap 0.02 Inches
Length of Auxiliary Airgap 0.02 Inches

D Materials
Rotor Poles SAE 4340
Rotor Interpole Section Inconel 718
Stator Laminations 0.004 Inch AL 4750
Frame Annealed 1010 Steel
Conductors Copper
Non-Magnetic Separator Copper

13
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(MVP) formulations was carried out. Experimental computations were performed us-
ing three existing methods [32, 33, 34, 38, 37] to assess their validity and accuracy.
It was found by this author that among the three existing 3D-FE MVP formulations
only the unconstrained curl-curl formulation [32, 33, 34] yielded stable solutions for
problems which involve the side by side presence of air and iron materials. Fur-
thermore, this author found some numerical difficulties associated with the use of the
first-order finite elements in the solution of the unconstrained curl-curl MVP method.
Thus, these existing 3D-FE MVP formulations cannot be directly employed as the
basic computation method for the MLA problem at hand. Details on these aspects

can be found in Section 2.1 of Chapter 2 in this dissertation, as well as in references
[77] and [78].

An investigation of the existing 3D-FE MSP formulations was also carried out to
assess the possibility of using existing MSP based 3D-FE formulations for this MLA
problem. The advantage of the MSP based formulations is that there is only one
unknown at each node in a resulting finite element grid, which leads to approximately
one third of the number of unknowns that must be computed in solutions based on
MVP FE formulations. However, due to the difficulties stemming from the inherent
incapability of handling volume current distribution in the MSP formulations, the
existing MSP methods introduce extreme difficulties in their applications to problems
involving very complex geometries and volume current distributions, which is precisely
the case in rotating electric machines of the type at hand. A thorough study centered
on the two scalar potential method [27] is given in Section 2.2 of Chapter 2 in this

dissertation.

Hence, an innovative method of combined use of magnetic vector and scalar
potentials, which will be referred to from this point forward in this dissertation as the
combined MVP-MSP method, was developed to form the core of this computer-aided
modeling effort. In this method, the unconstrained curl-curl MVP formulation with
second-order finite elements is used to compute the curl component of the magnetic
field intensity in the current-carrying regions of the MLA, while the concept of MSP
is used throughout the entire solution region to complete the total magnetic field
computation. This innovative method takes advantage of the desirable characteristics
of both the exclusive MVP and MSP based formulations. This combined MVP-MSP
method was found to be most suited for large scale 3D magnetic field problems in
rotating electric machines. The theoretical development of this combined MVP-MSP
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method, as well as the implementation of the associated finite element formulation,

were carried out in this research, and are detailed in Chapter 3 and Chapter 4.

The developed 3D-FE model is required to have the ability to handle magnetic
material nonlinearities and anisotropies. This is because the magnetic circuits of such
MLAs are saturable, and the armature cores of such machines are laminated, which
results in unequal magnetic permeances in axial versus circumferential and radial
orientations. Meanwhile, methods of 3D-FE gridding must be studied and developed
to discretize the global solution volume including the extremely difficult geometries
of the bimetallic rotor and armature winding end-turn region in this class of MLAs.
Also, gridding methods which allows the linking of the stator and rotor 3D-FE grids
at any desired rotor to stator relative position needed to be developed in the course
of this work, see Chapters 5 and 6. Details on the application of the combined MVP-
MSP based 3D-FE model to the computation of magnetic fields in the example 14.3
kVA MLA are given in Chapters 6 and 7.

Again, the main interest of this research is in the simulation of the periodic, yet
non-sinusoidal, voltage and current waveforms, as well as the other performance char-
acteristics of such MLAs under various operating conditions. Based on the literature
review in the previous section, the concept of time-domain, abc-frame of reference
state modeling was adopted to form the basis of the machine performance simulation
model. Such an abc-frame of reference state model allows a full inclusion of the space
harmonics associated with machine parameters as obtained from the global 3D-FE
magnetic field solutions, as well as the time harmonics in the current and voltage
waveforms of the various computed results. Flux linkages were used as the state
variables in the simulation model of this investigation. Accordingly, non-sinusoidal
winding currents and voltages were calculated from the resultant flux linkages. De-
tails on the development of this state space model are given in Chapters 8 and 9. Also,
methods of calculation of electromagnetic torque profiles including torque ripples are
detailed in Chapter 9.

This developed state space model was used to compute the open-circuit and
short-circuit characteristics, as well as the rated and over-rated load performances
of the example 14.3 kVA MLA. Results and experimental verifications are given in
Chapters 7 through 9. Finally, conclusions and recommendations for future work are
defined in Chapter 10 of this dissertation.
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Chapter 2

Survey of 3D Magnetic Field

Finite Element Formulations

Basic formulations of 3D-FE magnetostatic field computations have been introduced
since the late 1970s. Among these formulations, are two magnetic potential proce-
dures, the magnetic vector potential approach, MVP, and the magnetic scalar poten-
tial approach, MSP. In both formulations the continuity of the normal component of
the flux density, B, and the tangential component of the field intensity, H. are sat-
isfied automatically throughout the solution region (volume). This is accomplished
without having to force such continuities at the interfaces between different material

regions when the magnetic field is solved for directly.

In Maxwell's equations, which form the basis of both formulations, the mag-

netostatic flelds are expressed in terms of flux density, B, and field intensity, H, as

follows:
VxH=1J (2.0.1)
V-B=0 (2.0.2)

where J is the source current vector. The constitutive relations between the magnetic

flux density and the magnetic field intensity can be written as follows:

H=

<Hl

‘B (2.0.3)

B ‘H (2.0.4)

i
=l



where 7, and T, are tensors describing the general inhomogeneous, anisotropic reluc-

tivity and permeability of the medium, respectively.

Mathematically, the solenoidal nature of Equation (2.0.2) allows one to express

flux density, B, by a curl operating on another vector field. In this case the vector
field is the MVP, A. Thus, B, can be expressed in terms of ‘A as follows:

B=VxA (2.0.5)

By substituting for B from Equation (2.0.5) into Equation (2.0.3), and further sub-
stituting the result into Equation (2.0.1), one obtains the following:

Vx (7 -VxA)

J (2.0.6)

Equation(2.0.6), in conjunction with appropriate boundary conditions, defines the
magnetic field problem in terms of the MVP. Final determination of the magnetic
flux density, B, can be achieved through Equation (2.0.5) by solving for the vector
potential A. Equation (2.0.6) is referred to henceforth as the curl-curl MVP equation,
which serves as the basis for various 3D-FE MVP formulations that will be reviewed
in Section 2.1. The disadvantage of a MVP based FE solution, as compared with a
MSP based approach, is that three degrees of freedom have to be computed at every
node of a given FE grid, which requires much longer computer time and larger storage

(memory) requirements than the MSP methods.

Meanwhile, the concept of MSP was introduced into magnetic field computa-
tions in a similar manner to that by which the electric scalar potential was introduced
in electrostatic field problems. In a solution region where the excitation current den-

sity, J, equals zero, Equation (2.0.1) becomes
VxH=0 (2.0.7)

Equation (2.0.7) is characteristic of irrotational vector fields. Since any irrotational
vector field can be mathematically described as a gradient of a scalar field, one can
write the following:

H=-Y¢ (2.0.8)

where, ¢ is the MSP. By substituting Equation (2.0.8) into Equation (2.0.4), and



further substituting the result into Equation (2.0.2) one obtains the following:
V- (@Ve¢) =0 (2.0.9)

Equation (2.0.9), which is in the form of Laplace’s equation, together with the ac-
companying boundary conditions, defines the MSP boundary value problem. This
formulation is attractive for FE solutions because it is written in terms of only one
variable (one degree of freedom) at each node. Unfortunately, most practical en-
gineering problems involve some electric current distributions in the establishment
of a magnetic field. In such cases Equation (2.0.9) cannot be used directly to solve
such problems, unless approximations regarding the volume distribution of the source

currents or other special treatments are undertaken.

A survey of existing finite element MVP based and MSP based formulations was
performed. As a complementary part to this survey, several test problems were com-
puted using the formulations which seemed to have potential as candidate methods
for the main 3D magnetic field problem which is the focus of this work. Results, as
well as theoretical and/or numerical difficulties explored during this survey activity

are reported, and discussed in the following sections of this chapter.

At the end of this chapter, as a culmination of this survey and the exploratory
examples, an innovative concept is introduced. It consists of a mix of magnetic vector
and scalar potentials. This concept enables the solution of large scale 3D magnetic
field problems which involve extremely complex physical geometries, and difficult
material topologies, such as the 3D magnetostatic field within the class of MLAs
conducted in this research.

2.1 Three Dimensional Finite Element Magnetic

Vector Potential Formulations

2.1.1 Three Existing 3D-FE MVP Formulations
(Demerdash’s, Coulomb’s, and Chari’s Formulations)

As mentioned earlier (Section 1.2), there are three well known MVP formulations for

finite element computation of 3D magnetic field problem, see references 32, 33], [38],

&%)
o



and [37].

The first formulation was developed by Demerdash et al, in 1980 {32, 33]. In
Demerdash’s 3D-FE formulation, the curl-curl MVP equation, in conjunction with the
associated boundary conditions, was used to solve the magnetic field problem. This
equation, without any constraint on the divergence of the MVP, can be re-written

here as follows:

VUx(T-VxA)-J=0 (2.1.1)

where, again, 7 is the tensor of magnetic reluctivity, and 7 is the distributed source
current density vector. The functional used in Demerdash’s 3D-FE formulation,
whose minimum corresponds to the solution of Equation (2.1.1), can be written as
—_ 1 — — - —

F(A):/v[;(H-B)—J-A]dv. (2.1.

[SV]
—t
o
~—

-

This 3D-FE approach is referred to henceforth as the unconstrained curl-curl MVP
formulation. In Demerdash’s work, first order tetrahedral finite elements were used for
discretization of the global solution region, V. Excellent agreement between the com-
putational and experiment results was reported by the authors in their applications
to linear magnetic problems (without magnetic material saturation) [34]. Excellent
results were subsequently reported in cases involving nonlinear magnetic materials
[35, 36]. Anisotropic reluctivity due to laminated iron-cores was easily accommo-
dated in this formulation by setting of the reluctivity tensor along and perpendicular

to the planes of the magnetic core laminations.

Applications of this unconstrained curl-curl formulation to magnetic field prob-
lems in electrical machines were also reported by other investigators [72]. This first
attempt by Demerdash and his colleague to solve linear and nonlinear magnetic field
problems using 3D-FE methods was followed by several discussions and rebuttal pa-
pers on the question of the unigness of the vector potential, ‘A, obtained from this
curl-curl formulation and the associated solutions. This uniqueness issue will be dis-

cussed in Section 2.1.3.

The second formulation was reported by Coulomb (no relation to the well known
Coulomb of the Coulomb’s Law and Coulomb’s Gauge) in 1981 [38]. Coulomb’s for-
mulation makes use of an approach in which one imposes a constraint that seeks to en-

force zero divergence of A in the curl-curl MVP formulation. Accordingly, Coulomb’s
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functional is of the form (compare with Equation (2.1.2))
— 1 — — - — —2
F(A):/;,[E(B.H)—J-Ant)\(V-A) ] dv (2.1.3)

where A is a parameter, commonly referred to as a penalty factor, which sights to set

the Coulomb Gauge condition, V . A =0, in the solution.

Coulomb and supporters [39, 40] claimed that adding such a divergence term to
the functional of the original unconstrained curl-curl MVP formulation is equivalent
to forcing a zero divergence of ‘A throughout the field solution region, and hence, a
unique solution of A can be guaranteed. Despite the fact that Coulomb’s formulation
has been referred to in numerous papers, to the best of this author’s knowledge, no
numerical results on any practical engineering problem, which contains a mix of air

and iron materials, has ever been reported in the literature.

The third MVP finite element formulation was presented by Chari, et al [37],
in 1981. In Chari’s formulation, the medium material was assumed to have homo-
geneous and isotropic permeability. This allows one to move the reluctivity term
(v) in Equation (2.1.1) outside the curl-curl operation. Division of both sides of the

equation by v, vields the following:

V x (V x A)

uJ (2.1.4)

Equation (2.1.4) can be further split into two parts by the vector identity operation

as follows:

Vx(VxA)=V(V.-A)-V¥A=pJ (2.1.5)

The term, V(V - 4), in the above equation was removed by Chari et al by a claim
that the zero divergence condition, V - A = 0, must hold for any magnetic potential

in engineering problems.

Obviously, the assumption about homogeneous and isotropic permeability re-
stricts Chari’s formulation from applicability to many electrical machinery problems
which necessarily involve nonlinear material permeabilities due to magnetic satura-
tion, as well as anisotropy due to the presence of laminated iron cores. Besides,
contrary to Chari's declaration, zero divergence is not a necessary condition for the

solution of the type of bounded magnetic vector potential problems for which his 3D
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finite element formulation was intended. This will be shown in Section 2.1.2.

The removal of the divergence term in Equation (2.1.5) reduces the curl-curl

equation to a vector Poisson’s equation as follows:

VA = —uJ (2.1.6)
The functional utilized by Chari in his formulation can be written as follows:
F(A) = /V[ %(VAI VA, +VA, VA, +VA, VA)-T - A]dv  (21.7)

Element equations of the above three FE formulations, which are used to form the
global linear systems in the following finite element examples, are listed for reader’s

convenience in Appendix (A).

2.1.2 Test Computations and Comparisons on Existing
3D-FE MVP Methods

The above methods are now applied in the solution of some test examples. A similar
work of such comparison, but performed only on a simple air-core problem, was
reported by Hoole et al [43].

The first example is a coil problem, the detailed design of which is found in
reference [80]. This coil is surrounded by air (free space) as shown in Figure (2.1.1).
The solution region covered by the 3D-FE grid in Figure (2.1.1) is taken as one
octant of the whole coil structure and its surrounding air. Three approaches, namely
Demerdash’s [32, 33], Coulomb’s [38], and Chari’s [37], are applied to this problem.
Results of the computation of the magnetostatic field of this coil at an excitation
current, I = 5A, are reported in Table (2.1.1). In addition, Figure (2.1.2) shows the
plots, on the grid surfaces, of the equipotential lines, | ‘A |, obtained from the three
above mentioned methods.

The calculated results in Table (2.1.1) include the following physical quantities
and parameters:

(1) The total magnetic energy computed by %fvﬁ - J dv,

(2) The total magnetic energy computed by %fv B-H dv,
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Table (2.1.1): Coil Results (1 =25.0 A)

Formulation Demerdash’s | Coulomb’s Chari’s
Energy from 0.1167 01142 | 0.1142
3JA-Jdv(J)
Energy from -
- = 0.1167 0.1142 0.1142
%fB - Hdv (J)
Maxi
A 0.03977 | 0.04014 | 0.04014
|V xA|(T)
Maximum
— 0.01303 0.00499 0.00499
|V AL(T)
Max. | &2 5.88 2.23 2.23
Ave. | =4 0.533 0.239 0.239
Calculated -
0.0746 0.0726 0.0726
Inductance (H)
Measured Value of Inductance: 0.0734 (IT)
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(3) The highest value of calculated elemental flux density, Max. | V x 4 |,
(4) The highest value of calculated divergence of the vector potential, Max. | V-A [,

(5) The highest value of the ratio of the divergence to the curl of the vector potential,
Max. | (V- A)/(V x A4) |, calculated at the centroids of the elements,

(6) The weighted average value of the ratio of the divergence to the curl of the
vector potential, Ave. | (V- A)/(V x A) |, calculated at the centroids of the

elements (the weighting factors are the elemental volumes), and

(7) The terminal inductances.

The values of the divergence of A shown in Table (2.1.1) are calculated from
the resultant vector potential at the centroid of each element. The following is the

equation used for the divergence calculation:
4
V-A = SV (NAia: + Nidya, + NiAié:)
=1

4 01\",4 01\7.' 0 -Ni
= Z(—O—.-L‘—Aiz + WAW + —a—z—A,z) (2.1.8)

i=1
where A,;, Ay, and A;, are the components of the calculated nodal vector potentials,
and the N;’s are the finite element shape functions calculated at the centroids of the

elements.

It can be seen that the three methods yield similar results on total stored mag-
netic energy and on maximum flux density magnitude, Max. V x A. The coil induc-
tances deduced from stored energy are in agreement with the laboratory test value
obtained {80] within a reasonable error margin. However, the maximum divergence
(V-7A) has a non-negligible value (nearly 38.5% of that obtained in solutions based on
Demerdash’s method) in both the Chari and Coulomb solutions. A zero divergence
is a basic condition on both of these formulations.

The second example isa 1.5 kVA, 120/277 V, shell-type transformer, the detailed
design of which can be found in references [34, 80]. The structure of the transformer,
and the tetrahedral grid which occupies one octant of the whole transformer mag-
netic circuit region, are shown in Figure (2.1.3). Since Chari’s method [37] does not
include magnetic material saturation, a lower excitation current of about 20% of its

rated magnetizing current was chosen to represent an unsaturated iron core condition.

29



/X

PUD HJ 1PPIQ-Isilg s3] pue Jouuojsuel], dAL-[PYS VAN §'T (£1°¢) 231y

bommem—— - 4

2t

30



A further limitation of Chari's formulation is the fact that the inherent anisotropy
introduced by the presence of iron lamination on material permeability cannot be
included. That meant the iron reluctivities in the x, y, and z directions have to be

taken equal, that is v; = vy = v; = Viron.

The same set of physical quantities and parameters previously calculated in
the case of the coil example, namely the flux densities, stored energy and device
inductances, were calculated in this example. The results are summarized in Table
(2.1.2). The MVP equipotential lines, | 4 |, computed from Demerdash’s formulation,

are shown in Figure (2.1.4).

As can be seen in Table (2.1.2), Demerdash’s formulation gives a result for
the unsaturated magnetizing inductance of the transformer which is in reasonable
agreement with the measured inductance value from the laboratory test. However,
the other two methods (38, 37] yield totally unreasonable values of the stored energy,
the flux density, (B = V x A), and the unsaturated magnetizing inductance. It is
obvious that both Coulomb’s [38] and Chari’s [37] methods totally break down in iron

cores of the type given in this transformer problem.

The third example is a simplified magnetic circuit of the 14.3 kVA Modified
Lundell Alternator discussed earlier in Chapter 1. A cut-away picture for one half
axial length of the magnetic circuit geometry is shown in Figure (2.1.5). This magnetic
circuit consists of an iron rotor, an iron outer casing, and two ring-shaped field coils
mounted at the stator side (casing) towards the two end-bells. In between the rotor
and the inner holes of the end bell (casing) there are two identical airgaps at the two
ends of the machine to allow the rotor to rotate. Because of symmetry, only a quarter
of the total magnetic circuit volume needs to be taken as the solution region. The

3D tetrahedral grid covering the solution region is also shown in Figure (2.1.5).

Since the permeability of the iron material has a much higher value than the
air permeability, almost all the magneto-motive force due to the excitation of the two
field coils is expected to be consumed across the airgaps. In this case an estimation
of the radial flux density component, B,, in the airgap can be obtained by simple

computation, using the following equation:
B, = uo(2I N)/(20) = poIy Ny /1 (2.1.9)

where I;N; is the ampere-turns of one field coil, and [ is the radial length of one
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Table (2.1.2): 1.5kVA Transformer Results (I=025A)

Inductance (H)

Formulation Demerdash’s | Coulomb’s Chari’s
Energy f
nergy from 9 774%10-% | 0.0083x10-2 | 0.0010x10-3
LA Tdv (J)
2
Energy {
1ne_r§“__r°m 9 774%10-2 | 0.014x10-3 | 0.0035%10-2
1 (B Hdv (J)
Maximum
_ 2.0992 0.0072 0.0015
|V xA|(T)
Maxi
aximum 5.571 0.00412 0.00091
|V-A|(T)
Max. | 25 | 66.0x10° 23.01 65.68
Ave. | =& 0.114x10° 0.814 0.780
7 X A
Calculated _
0.7102 0.0037 0.0009

Measured Inductance : 0.737 (H},
from Open Circuit Test at I = 0.25 ()




of Magnitude of MVP on Grid Surface
33

of 1.5 kVA Transformer

Figure (2.1.4) Plot of Equipotential Lines
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alrgap.

The estimated value of the radial flux density component, B,, for this test
example is shown in Table (2.1.3), together with the results computed by means of
the three methods. Naturally, one would expect the value of B, obtained from 3D-FE
computation to be close to this estimate. Again, as can be seen from the table, only
Demerdash’s formulation yields a reasonable answer. The other two methods yield

totally unreasonable (meaningless) results.

From the above test computations, one can conclude that the curl-curl formu-
lation without explicit constraint on (V - A) is the only reliable method among the
existing MVP formulations, particularly when a mix of air and iron cores is encoun-
tered. Moreover, one can also see that divergence of A in a vector potential boundary
value problem does not naturally assume a zero value. The non-zero values of (V-A)in
the results of Demerdash’s method did not affect the accuracy of the numerical result

of the flux densities and other dependent quantities such as energy and inductances.

The non-zero (V - A) values in the results of the other two methods (38, 37]
shown in Table (2.1.1-2.1.3) indicate that these formulations failed to enforce the
zero divergence condition, which is a basic condition of both formulations. The fact
that (V - A) is not equal to zero in the results obtained from Coulomb’s and Chari’s
methods is a direct violation of the necessary V x (vV x A) = J condition in their
approaches. This explains why Coulomb’s and Chari’s formulations do not succeed in
certain types of magnetic field problems, particularly in those applications involving

more than one type of material within the global solution volume.

2.1.3 Theoretical and Numerical Difficulties in
the Curl-Curl MVP Formulation

As stated in Section 2.1.1, Demerdash’s unconstrained curl-curl MVP formulation is
based on the curl-curl MVP equation without any explicit constraint on the divergence
of the MVP. However, according to Helmhotz theorem [86] a vector field is defined
only if both its curl and divergence components have been defined. Thus, a uniqueness
question arises with regard to the results of the magnetic vector potential obtained
from Demedash’s formulation. Many investigators [41, 43, 75] have acknowledged

the fact that the non-uniqueness of A does not affect the validity of the resulting
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Table (2.1.3): Simplified Magnetic Circuit - Modified Lundell

Alternator Results

Formulation Demerdash’s | Coulomb’s Chari’s
Energy from
L= = 0.05862 0.01043 0.00411
s A Jdv (J)
Energy from
L = o 0.05862 0.01489 0.00269
3/ B-Hdv (J)
Maximum
— 1.3636 0.3288 0.0376
|V xA|(T)
Maximum
— 2.3985 0.1316 0.0335
VAT
Max. | & 5.78x10° 30.20 1.83
Ave. | T4 | 0.14 x10° |  0.692 0.0355
B, in
0.2901 0.0700 0.0045
Airgap (T)

Airgap B, Calculated from §H- dl = Lciosed:
0.28 < B, < 0.30 Tesla
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flux density vector, B. All along, correct values of B are our main objective in field
computation in applications of the type at hand. However, if the uniqueness of A
is not guaranteed, the resultant linear global system of FE equations based on the
unconstrained curl-curl formulation may lead to an infinite number of solutions. That
is, the global system of equations may be nearly singular (highly ill-conditioned), thus
resulting in a numerically unstable system. The description of the unigness problem

can be explained below.

Consider the curl-curl boundary value problem stated as
Vx(wVxA)=7 in V (2.1.10)
A |s= Constant Vector on S (2.1.11)

where V is the 3D solution region, and S is the boundary of the region, V. In addition,
the reluctivity, v, is a constant throughout the solution region. Assume that both
A, and Ay, A4, # ‘A, satisfy the curl-curl equation, Equation (2.1.10), as well as the
boundary condition, Equation (2.1.11). The difference between these two solutions

can be expressed as

A=A, -4, #£0 (2.1.12)
It can be seen that this non-zero §A4 is subject to the following conditions:

Vx6A=Vx (A, -A,)=B-B=0 inV (2.1.13)
and

A ls= A |s Ay |s=0 on S (2.1.14)

The irrotational nature of the field 4 as expressed by Equation (2.1.13) is a necessary
and sufficient condition for the existence of a scalar function, ¢, whose gradient equals

SA. That is, one can express 8A as follows:

A=V (2.1.15)
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At the boundary, such a scalar function, ¢ satisfies the following:
6A=V¢=0 on S (2.1.16)

According to the definition of B =V x A, 4; and A4, must be differentiable, so 8A,
or V¢ must also be differentiable. Thus, by taking the divergence of V¢, this scalar

function can be further expressed as follows:

V.V¢=p(z,y,2z) #0 in'V (2.1.17)
Meanwhile, on the boundary one has

Véls=0 on S (2.1.18)

Equation (2.1.17), in conjunction with Equation (2.1.18), is a boundary value problem
defined by Poisson’s equation in the same solution region as the MVP problem of
Equation (2.1.10) and Equation (2.1.11). Here, the constraint of non-zero value for p
is used to exclude the trivial case of a constant ¢ distribution from various possible
solutions to this Poisson’s type of problem. (The constant ¢ distribution leads to a

zero V¢, or a zero §A, which violates the original assumption of Equation (2.1.12),
that is §4 # 0)

For any other nontrivial ¢ which satisfies the boundary value problem defined by
Equations (2.1.17) and (2.1.18), a non-zero V¢ = 6A, subject to Equations (2.1.13)
and (2.1.14), must exist. In such case, A, defined by the curl-curl boundary value

problem of the Equations (2.1.10)-(2.1.11), would not be unique.

Now, we show that such a nontrivial solution of ¢ can be described in a unit
sphere. Consider an MVP boundary value problem defined by Equations (2.1.10)
and (2.1.11), where the solution region is a sphere of unit radius. Also, consider the

following scalar function in this spherical region:
é=(r=1)" n=2734,.. (2.1.19)

where ¢ is defined in the spherical coordinate system. The (V), and (V - V) vector
operations on ¢ (Equations (2.1.17) and (2.1.18)), yields the following:

Vé |pz1=2nr(r2 = 1)* |,0y=0 (2.1.20)
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Table (2.1.6): Results of the Simplified Magnetic Circuit of 14.3 kVA MLA

Grid | Number Type of Number of | Calculated | Calculated
of Nodes Element Unknowns | Energy (J) Br (T)

#1 3458 first order 8208 0.05862 0.2901
#2 3458 first order 8208 0.05030 0.2469
#1 4425 second order 11088 0.05882 0.2899
#2 4425 second order 11088 0.05867 0.2889

Estimated B, from § H - dl = Lnciosea : 0.28 < B, < 0.30 Tesla
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(b) Grid #2

(a) Grid #1

(2.1.9) Second-Order FE Grids for 1.5 kVA Transformer Problem

Figure
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Figure (2.1.10) Second-Order FE grids for the Simplified MLA Problem
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2.2 Three Dimensional Magnetic Scalar Potential

Formulations

In the category of 3D-FE MSP methods, one of the earliest successful applications,
without replacing current density volume distribution by approximations, was pre-
sented by Zienkiewicz, et al [26]. It is called the reduced scalar potential formulation.

In this approach the magnetic field intensity, H, is computed by superposition of two
fields, H,, and V¢, as follows:

H=H,-V¢ (2.2.1)

In Equation (2.2.1) the field H, is the rotational, or curl, part of the total magnetic
field intensity, and is calculated by Biot-Savart’s law as:

1 - _1
- — z 9.9.
a, 47r/vawr)dv (2.2.2)

where r is the distance from the integration point to the observation point, Figure
(2.2.1), and the volume integration extends over all the solution space. The rotational
property of H,, V x H, = 7. is insured by Biot-Savart’s law in Equation (2.2.2). The
remaining part of the field intensity, which is irrotational, is computed by magnetic
scalar potential using 3D finite elements. It should be pointed out that, on the basis
of Equation (2.2.1), V x H = V x H,-Vx(V¢)=V x H,.

The name, “reduced scalar potential”, is introduced for ¢ because the gradient
of this potential only represents part of the total field intensity. The zero divergence
condition of flux density, V- B = 0, is then used to obtain the governing equation for
the reduced scalar potential, which yields the following:

V. u(Ve) =0 (2.2.3)

This reduced scalar potential approach is seldom used because a severe numerical
discrepancy in the value of H occurs in magnetic material regions due to the super-
position of the two components given in Equation (2.2.1). It is found that results of
H, and (~V¢) in magnetic material regions have very large magnitudes which are
close to each other in value, but are in opposite directions. The net field has to be

calculated by superposition according to Equation (2.2.1). Thus, the cancellation of
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Figure (2.2.1) Biot-Savart’s Law
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two quantities close in value which are not computed to precisely the same degree of

accuracy reduces the overall precision of the results [82].

A solution to this numerical problem was introduced by Simkin and Trowbridge
[27], and is referred to as the “two scalar potential” solution method. In the two
scalar potential approach, the solution region, €, is divided into two subregions, 1,
and Q. The subregion, Q; contains all the electric current sources, but it should not
include any magnetic material with g >> po. The magnetic field and its associated
MSP problem in € are described in the same way as the reduced scalar potential

method, Equation (2.2.1). Therefore, in subregion 2, one can write the following:

V- (uVd)=0 in O (2.2.5)

where, again, H, is obtainable via numerical integration by Biot-Savart’s law.

The subregion 2, covers all the remainder of the 3D solution space. It does
not contain any electric current source, but includes all magnetic materials. In this
region H is irrotational. That is, a scalar potential, ¢,, can be directly introduced to

calculate the field intensity, where
H=-Vé¢, in (2.2.6)

Here, ¢, is called the total scalar potential because its gradient defines the entire field
intensity. That is, no superposition is required. Since H is formulated differently
in subregions Q;, and ,, respectively, the continuity of normal component of the
flux density, B,, and the tangential component of the field intensity, H,, have to
be explicitly forced at the interface between the two subregions. These continuity

conditions can be written as follows for the continuity of B.:
l‘l(ﬁs — V1) Ay = —pa(Vey) - My (2.2.7)
and for the continuity of H,:

(ﬁs—-v¢1)'f=-(v¢2)'f (

[
o
o0

S’



where 7, is the normal unit vector on the ; — 2, interface pointing from ), to Q,,
and { is any unit tangential vector on the interface. Equation, (2.2.7) can be further
rearranged as follows:

O 0¢y = .
ula—nl- - pg—a—n—l =uH, ny (2.2.9)

This equation shows that the discontinuity of the (19¢/dn) term has to be forced at
the interface of Q; and € to insure the continuity of the normal component of the

flux density. Meanwhile, from Equation (2.2.8), one obtains the following:
Vé, 1 -V -t+H, - 1=0 (2.2.10)

Consider a line integration of the left side of this equation on the £, — 2 interface

from an arbitrary point A to an arbitrary point B. It yields the following:

B - B - B__ -
/ V¢2-dl—/ v¢1.d1=_/ H,-dl (2.2.11)
A A A
or
B__ _
(625 — 624) = ($18 — ¢1a) = = [ H.-dl (2.2.12)
One can set the point A in Equation (2.2.12) as a reference point at which ¢; is equal
to ¢,. It then follows from Equation (2.2.12) that
B __ _
b~ 5= [ H,.d (2.2.13)
A

Note that Equation (2.2.13) holds for any point B on the interface between {3 and
Q),. Therefore, in order to guarantee the continuity of the tangential component of
the field intensity, the discontinuity between ¢, and ¢, (the potential jump), which is
explicitly expressed by Equation (2.2.13), has to be forced (imposed) on the interface.

In this two scalar potential method, the superposition of field intensity, shown by
Equation (2.2.4), is carried out only in Qy, the region without any magnetic material.
This effectively avoids the numerical problem associated with subtracting of two large
numbers one from the other (the cancellation problem) as found in the reduced scalar
potential approach alluded to earlier in this section. It should be pointed out that
H, in Equation (2.2.4) can be obtained by methods other than the Biot Savart’s

33



integration. In fact, any vector field with its curl component equal to the electric
current distribution can be considered as a suitable H,. Under certain circumstances,
H, can be obtained by very simple hand calculations, as demonstrated in earlier work
done by this author, see reference [28].

The disadvantage of the two scalar potential formulation, as compared with the
vector potential formulation, is its inconvenience in applications. The subregion, Q;,
has to be chosen with extreme care and judgement so that it includes all currents, but
it cannot contain any portions of iron material such as laminated cores or cast and
forged ferromagnetics, etc. This requirement will force ©2; to extremely difficult con-
tours and geometry in most practical engineering problems. For example, a problem
of any electric machine armature winding with its coil sides embedded in iron-core

slots would immediately lead to difficult contours for subregion, ;.

In many instances the current-carrying subregion, (1;, has to be a multiply-
connected region in order to satisfy the partition requirement, such as the shell-type
transformer problem shown in Figure (2.2.2). In this case, ¢, in subregion §; may
become a multi-valued scalar distribution. This can be further explained through the
following integration which describes the nature of the magnetic scalar potential in
Q,, that is

¢z=/bV¢2‘d7=—/b”ﬁ-d7 (2.2.14)

where point a is the reference point and point b is the location at which ¢, is con-
sidered. Multi-values can happen if the integral path laps around the currents in
by one or more times, see Figure (2.2.2). To avoid this situation, one has to set up a
barrier, or branch cut (to use more precise mathematical terminology), in 2, so that
any closed path in ; cannot enclose currents in Q;. However, after the barrier is
set, another potential discontinuity has to be forced on the barrier with respect to ¢,
at its two sides; for further details Straton [86] should be consulted. This adds addi-
tional difficulties to the process of determination of potential discontinuity conditions
at various interface boundaries.

Therefore, although the two scalar potential solution method allows one to avoid
the cancellation problem, it poses extreme geometric contour difficulties in dealing
with magnetic field problems having practical current-carrying region such as machine

windings, as well as current-iron mutually chain-linked geometries (see Figure (2.2.2)).
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Chapter 3

A Combined Magnetic Vector and
Scalar Potential 3D Finite Element

Analysis Procedure

The foregoing survey of existing 3D FE formulations discloses that 3D FE magnetic
field computations for electric machines and devices, such as the modified Lundell
alternator (MLA) problem, cannot be a straightforward effort of simply adopting an
available solution method. The second-order curl-curl MVP formulation is a suitable
candidate because of its accuracy in results and its convenience in application. This
method, however, yields a huge number of unknowns in the global FE system of
equations; in the hundreds of thousands for the MLA problem being investigated in
this research. On the other hand, the two scalar potential method [27], poses extreme
difficulties in dealing with machine armature geometry and current distribution in
the presence of armature slotting and end-turn configurations as well as overlaps.
This is despite the fact that the resulting size of the computational work in a real
engineering problem using the two scalar potential approach does not seem to be
beyond the capability of the newly developed super-computers such as the Cray-II
and Cray-YMP.

Under these circumstances, a new technique based on a combination of the
second-order MVP formulation and the MSP approach, has been developed. This
new approach will be demonstrated to be especially useful for the computation of
3D magnetic fields in electrical devices with complex magnetic circuit and winding
geometries, such as the MLA.
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3.1 Description of the Combined MVP-MSP
Approach

In this combined MVP-MSP approach, the entire solution region (volume), £, is dis-
cretized by first-order finite elements. The second-order finite element MVP solution
is first applied locally on current-carrying regions to obtain the curl component of
the magnetic field intensity. This is done just once. Then, nonlinear MSP finite
element analyses are performed throughout the entire solution region to carry out
the magnetic field computations under all possible practical combinations of current

excitations and rotor positions in the MLA.

To apply the MVP and MSP solutions separately, the entire grid region Q2 is
partitioned into two sets of subregions. One is the current-carrying subregion, ;. The
other is the remaining part, {2, of the original global region, such that QU =0,
Here, Q; is a general notation for the current-carrying subregion, since more than one
current-carrying sub-subregions are allowed within @ to effectively accommodate
various excitation windings (coils). Furthermore, it should be pointed out that the
subregion ©; not only contains conductors with current distributions, but also can
include iron material, which cannot be present in the two scalar potential method

(see Section 2.2).

At this stage of the partition of § there are certain absolute constraints that
govern the geometries of the subregions, 2, and Q,. They can be summarized as

follows:

(1) There should be no possibility of a closed magnetic path entirely enclosed in

Q,, within which there exists any net current (non-zero current) from subregion

Q.

(2) No electric current should exit or enter the outer surface of the subregion ;.

The ability to include iron material in £y, which is a characteristic of this new ap-
proach, is very important. It allows one to easily satisfy the above absolute constraints
in practical engineering problems. Figure (3.1.1) shows a possible partition pattern
for an example shell-type transformer problem. In this example, the current-carrying
subregion {); contains the whole transformer coil, as well as the portion of the lam-

inated iron core within the coil structure. One can see from the example of Figure
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(3.1.1) that any closed path in {; cannot enclose the current in the transformer coil.

It will be shown later in detail that the first constraint guarantees a single
valued MSP in §2;, and the second constraint guarantees a single valued MSP jump
distribution (function) on the surface of ;. The advantage of a single valued potential
in Q,, and a single valued potential jump distribution on the surface of Q;, renders
the new approach a much more effective and preferable method than the two scalar

potential method.

In this MVP-MSP approach, the magnetic field intensity, ‘H, within the current-
carrying region, ), can be expressed as follows:

H=H,,-Vé in (3.1.1)

where H .y, is the curl component of the total magnetic field intensity. As mentioned
earlier in this section, the curl component of the field intensity, H ., is computed

within €, through use of the curl-curl MVP second-order finite element formulation.

It should be pointed out again that the first-order finite element grid is first
established throughout the solution region, €, which includes 2; and Q,. The second-
order finite element grid in subregion ; for the MVP computation can be obtained
by adding extra nodes on the edges of the original first-order elements. The governing
equation for this stage of MVP computation (Equation (2.0.6)) is rewritten here for

the reader’s convenience
Vx(vWWxA) =17 (3.1.2)

Experience suggests that the boundary condition of A for this stage of the MVP
computation is A = 0, which physically means that all calculated magnetic fields are
bounded within €, [32]. As will be seen later, such a bounded magnetic field (flux)
pattern simplifies the MSP jump distribution on the outer surface of ;. This MSP
jump distribution, as will also be seen later, is the main forcing function for the MSP
part of the whole MVP-MSP solution.

When subregion ©; includes iron materials, the preferred choice is to use ex-
tremely high values of permeability for the iron material portions in the MVP part
of the solution. These permeabilities should not be confused with the final saturated

values which will emerge as a result of the MSP part of the solution.
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In discussing this matter, the part of Q; occupied by materials with air perme-
ability is denoted as Q2'; and the part of {;, occupied by iron materials is denoted
as inron.

In an example analysis of a problem with iron material in (0, a relative iron
permeability, g, = 10%, was used by this author at this stage for the elements which
belong to the sub-subregion Qir°". From knowledge of magnetic fields, the calculated
field intensity in the region with the extremely high permeability will be extremely
small, and for all practical purposes near zero value. This allows one to further express
H pnop in Q7° and in Q5 as follows:

_ﬁmup = l/g?mvp = yo(V x 71-) in Q‘l’" (3.1.3)
Hpypyp =0 in Qo (3.1.4)

In view of Equations (3.1.3) and (3.1.4), Equation (3.1.1) can be rewritten in sub-

subregions Q" and Qi7°", as follows:

H=H,,-V¢ in Q8 (3.1.5)
H=0-V¢=-Vé in Qe (3.1.6)

Therefore, the field variables, _ﬁmvp, and (—V¢), which form the complete field in-
tensity, H, in subregion Q;, will simultaneously have non-zero values only within the
non-magnetic sub-subregion ¢". Hence, the numerical cancellation problem in the
iron material region associated with the reduced scalar potential method [26}, which
results from the superposition of two extremely large numbers with opposite signs,
does not occur here.

The field intensity H in Q%, described by Equation (3.1.5) satisfies the curl
constraint on the magnetic field intensity in Ampere’s part of Maxwell’s equations.
This can be shown as follows:

VxH=VxHpnyp~Vx(Ve)
and, with V x (V¢) = 0 and with _H,m.p = uoﬁmvp and Fm,,p =VxA
VxH=Vx(unVxA) in Q2
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The computed A satisfies Equation (3.1.2), thus one obtains
VxH=1J in Q%7 (3.1.7)

Similarly, by taking the curl of the H in sub-subregion Qi"°", which is defined by

Equation (3.1.6), one can write the following:
VxH=Vx(=-V¢)=0 in Q" (3.1.8)

In sub-subregion Q2¥7°" the excitation current density has a zero value, hence, Equation
(3.1.8) shows that the field intensity, H, in Qy°" defined by Equation (3.1.6) also

satisfies Maxwell’s equations.

In addition to the above curl requirement on the field intensity, H, the flux
densitv. B, must satisfy the zero divergence constraint, V - B = 0. By applying this
constraint to the flux density, with B = poH, and Equation (3.1.5), one obtains the
following:

V-B=V"|uo(Hmyp— Vo)
=V (poHmw) = V- (10V9)
=V (Bmup) = V- (10V9)
=V (VxA) =V (oVe) =0 in Q2 (3.1.9)

Upon substituting the vector identity, V - (V X A) = 0, into Equation (3.1.9) one
deduces the following constraint on the MSP, ¢, in Q‘{’":

V. (V) =0 in Q27 (3.1.10)

Equation (3.1.10) is the governing equation for the MSP in Q§".

Similarly, by applying the zero divergence constraint to the flux density, B, in
Qiren, where B = TH, and upon substituting for H from Equation (3.1.6), one can
write the following:

V-B=V-[(-Ve)]=-V-(AVs) =0 in Qio"
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Here, T is the permeability tensor which enables one to include anisotropic properties
of the magnetic media, such as laminated iron cores in electrical machinery. By

multiplying both sides of the above equation by (-1), one obtains
V. (EVe4) =0 in Qiro" (3.1.11)

Equation (3.1.11) is the governing equation for the magnetic scalar potential in sub-

: iron
subregion y7°".

Meanwhile, in subregion, Q,, which is free from current-carrying conductors,
the field intensity, H, is defined directly in terms of the magnetic scalar potential, ¢,

as follows:

H=-V¢ in (3.1.12)
Upon applying V- B =0 in Q,, one can write the following:

V.- (ZV¢)=0 in (3.1.13)

From the above equations, Equation (3.1.10), (3.1.11), and (3.1.13), one can
see that the MSP, ¢, in Q%" and Qiron, as well as in £y, is governed by Laplace
type equations. Therefore, one can join these separate MSP problems within 9",
Qironas well as Q, together into one global MSP problem encompassing the entire
solution region, . This is accomplished by imposing the necessary field boundary
conditions on the interfaces between these subregions. The mechanics of this step in

the MVP-MSP approach are explained next.

As discussed earlier in Section 2.2 with regard to the two scalar potential
method, two types of discontinuity conditions, the discontinuity of the MSP, and
the discontinuity of the derivative of the MSP, have to be forced on certain interfaces
within the global solution region, Q. In the case of this MVP-MSP method, the
magnetic field intensity in §'" is obtained by the superposition of H.p and (—V9)
as given in Equation (3.1.5), and the magnetic field intensity in {2 and Qiren is only
from (—V¢) as given in Equation (3.1.6) and Equation (3.1.12). Accordingly, discon-
tinuity conditions have to be imposed at the interface between €); and 22, denoted
here as the surface, ['15, as well as the interface between Q%'" and Qy°", denoted as
the surface, I'$".



In order to help the reader visualize these types of interfaces (surfaces), consider
the example transformer problem of Figure (3.1.1), which is illustrated here again in

Figure (3.1.2) through a cut-away picture for its current-carrying subregion, 2.

The derivation procedure discussed in detail in section 2.2 for the two scalar
potential method is used here to determine the MSP discontinuity conditions on I';3,
and I'#*. The derived equation which is in the same pattern as Equations (2.2.9) and

(2.2.13) shown earlier in Section 2.2, are given here in a general form as follows

B__ .
628 — b1 = -/ Homop - dI on Ty; and T% (3.1.14)
A

do dos

g T Mg = 1 Homep - 11 on Ty, and T¢ (3.1.15)

where the point A is a reference point on the associated interface, at which the
potential discontinuity has a zero value; (¢;5 — ¢18) is the MSP jump to be imposed

at the point B on that interface. Meanwhile, pyHpm,p - 7y is the MSP derivative

discontinuity to be imposed on the associated interface.

As was stated earlier in this section, the MVP part of this MVP-MSP method
is performed in ©; under an outer boundary condition of zero MVP. The computed
normal component of the field intensity, ﬁmu,,, at the outer surface of ; must there-
fore be zero. In the case of the transformer problem, such a calculated flux pattern
can be drawn on a structurally symmetric cross-section of the transformer, shown in
Figure (3.1.3). On the interface between Q; and Q; (I';;), one only needs to impose
the discontinuity of the MSP given in Equation (3.1.14). This discontinuity condition

can be rewritten on the interface, I'1,, as follows:

B__
25 — b1 = _/A Hoop - dl on T1z (3.1.16)

Again, in the above equation, point A is a reference point on the surface, I'y2, and the
line integral from point A to point B can be carried out through any possible path

on the surface, I'y,.

As noted previously, the MVP in the subregion, {2, is computed by assigning
the permeability of the iron material in sub-subregion Q{"°" an extremely high value.
As a result of this high permeability, the computed field intensity Fm,,p, in Q2" must
be perpendicular to the air-iron interfaces. Such a property of the field intensity, H,
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near to the interface between Q2" and Qir°", that is I'{*, can be seen in Figure (3.1.3)
of the transformer example. In this case, the tangential component of H ., is zero all
over the interface and no MSP jump has to be forced on this interface. However, the
discontinuity of the MSP derivative which was previously given in Equation (3.1.15),

must be imposed on the surface, I'?'.

This MSP derivative discontinuity is restated here on I'{', for the reader’s con-
venience, as follows:

d d - A as
ﬂo:lg:ll — ﬂgg(i—? = /—lOHmup = Bmvpﬂ on Fl (3117)

In Equation (3.1.17), po is the air permeability of the nonmagnetic material in Qo
p2 is the iron permeability of the iron material in Q37°". Meanwhile, ¢, is the MSP in
Q‘l""; @2 1s the MSP in Q§'°”; and 7 is the normal unit vector on interface 'y, pointing
from Q‘l’"’ to Qi”’". Here, B.pn is the value of the MSP derivative discontinuity on
re,

Values for the discontinuity conditions expressed in Equations (3.1.16) and
(3.1.17) have to be calculated before the global MSP solution can proceed. The
values of discontinuity of the MSP derivative, yoH myp - 21, in Equation (3.1.17) can
be directly obtained from the second order MVP solution at the associated elemental

surfaces.

The method of calculation of the values of the MSP discontinuity along I'y2
requires further discussion. The current-carrying subregion, §;, is chosen in such
a way (see the partition absolute constraints discussed earlier in this section) that
any closed path on I';; cannot enclose net electric current within ;. Therefore, by

magnetic Ampere’s law, lenciosed = fﬁ . dl, the following closed loop integral must

hold:

fﬁm dl=0 on Tz (3.1.18)

®on

where, “c” can be any closed path on I'j;. Equation (3.1.18) indicates that the tan-
gential component of ﬁm,,p on I'y,, which is denoted here as -ﬁmvpt, has a conservative
nature [86]. Thus, ﬁm,,pt can be expressed as the gradient of a single valued scalar

function distributed on T'j;. Using the notation A¢ for this single valued scalar po-
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tential on I';2, one can write the following
—V(A¢) = Hpupt on I'12 (3.1.19)

Again, H o,y in Equation (3.1.19) is computed from the previous MVP part of this
MVP-MSP approach.

It should be pointed out that Equation (3.1.19) is the differential form of the
integral expression in Equation (3.1.16). Therefore, the single valued scalar function,
A¢, in Equation (3.1.19) is the MSP jump distribution denoted by (¢25 — ¢15) in
Equation (3.1.16). In order to effectively calculate this single valued MSP jump
distribution, A¢, a surface finite element analysis is introduced and carried out at

this stage throughout the surface, I'y2, to numerically solve Equation (3.1.19).

The functional to be minimized in this surface FE analysis, which is based on

applying the least square residual rule to Equation (3.1.19), can be written as follows:
F(A)= [ 19(86) + Huupe [* da (3.1.20)

where the integration is carried out all over surface, I'y2. In this functional, ﬁmv,,t is
obtained from the previous MVP solution, while A¢ is the unknown variable to be
solved for at every grid node on T'j,. At this stage, the surface grid of the original
first-order 3D FE grid on Ty, can be directly used for this FE computation. Details

of this surface FE computation will be given in Chapter 4.

These concepts and ideas regarding the combined MVP-MSP 3D-FE formula-
tion can be summarized into three major FE computation steps. These three steps

are as follows:

(1) The 3D second-order finite element computations based on the curl-curl MVP
formulation in the current-carrying region, §;, to calculate the curl component
of the field intensity.

(2) The surface finite element computation on the outer surface of ;, that is I';2,
which takes the resultant H ., from the MVP solution in step (1) as the input
data, and calculates the MSP jump distributions, A, on Ty, which are the

forcing function input data for the next step of computation.

(3) The first-order 3D-FE Laplace’s MSP computations in the entire solution region
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to complete the task of the nonlinear magnetic field solution.

These FE computation steps, as well as the data transfer in between these steps, are
demonstrated by a flow chart shown in Figure (3.1.4). It should be emphasized again
that in the MVP stage of this MVP-MSP approach, the permeability for the iron
material in ©; should be set to an extremely high constant value. Moreover, in a
practical machine problem containing more than one excitation winding, it is often
required to compute 3D magnetic fields under various combinations of field excitation
currents in these windings. In such a case, one can perform the MVP-FE computation
in Q; and the surface FE computation on ', with only unit excitation current in
each one of these windings singly (not simultaneously), one at a time. That is, one
repeats the same FE computations with every winding singly energized, one after

another.

The results from these computations, namely A@, Bpmypn, and the elemental
H nyp, which are to be used as the input data for the later stage of MSP computa-
tions, are stored in a series of data files. Thus, for any given set of winding current
excitations, one is able to calculate the values of A¢, B,pn, and the elemental _f_{_mv,,
due to this given set of excitations, by a simple linear combination of the data values
previously stored in the data files. Accordingly, the MVP-FE and the surface FE
computations mentioned above are only required to be carried out once for a given
machine design geometry. The global nonlinear 3D-MSP computations will have to
be repeatedly performed under all possible and practical combinations of current ex-
citations, as well as rotor positions. Also, the magnetic material nonlinearity, and
anisotropic permeability due to laminated iron cores in machinery, are fully included
in the MSP part of this combined MVP-MSP approach. The implementation of var-
ious types of finite element analysis mentioned above will be further discussed in
Chapter 4 of this dissertation.
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Figure (3.1.4): Flow Chart of the Combined MVP-MSP 3D-FE Solution Method
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3.2 Application of the Combined MVP-MSP
Approach to a Demonstration Example -
1.5 kVA Shell-Type Transformer

In this section, an application of the combined MVP-MSP method to a demonstration
example, namely the 1.5 kVA shell-type transformer of Chapter 2, is given. The
computed results from the MVP-MSP method will be compared with the results
from the second-order finite element MVP method whose validity was demonstrated
earlier in Chapter 2. This comparison will provide necessary evidence for the validity
of the new combined MVP-MSP approach .

The structure of the 1.5 kVA, 120/277 V, shell-type transformer which was given
earlier in Figure (2.1.3) is shown here again in Figure (3.2.1). Magnetic field compu-
tation was carried out in one octant of the transformer structure and its surrounding
space. The global solution region shown in Figure (3.2.1) is denoted as Q. In order to
apply the combined MVP-MSP method, the transformer winding coil, including the
portion of the iron core laminations within the coil structure, was chosen as the MV P
subregion, Q; (see Figure (3.2.1)). A first-order FE grid was generated by computer
which covers one octant of the entire solution space, {1, as shown in Figure (3.2.2-a).
This global first-order FE grid contains 1440 tetrahedral elements and 378 nodes. The

portion of the grid which covers the MVP subregion is shown separately in Figure

(3.2.2-b).

Two Fortran program routines were generated and used to solve this transformer
problem using the new combined MVP-MSP method. The first computer program
includes a series of subroutines which generate a second-order FE grid by adding
extra nodes at the middle of each edge of the first-order tetrahedral elements in ;.
The same program is used to solve for the MVP within ©;, and perform surface FE
computation to obtain the MSP jump distributions on the associated interfaces. The
second computer program is used to solve the global MSP problem on the entire
solution region, Q. Again, the forcing functions, or the excitations used in the second
Fortran program are the MSP jump and MSP derivative discontinuities, which result

from the running of the first computer program.

The total excitation current in the transformer winding was kept as its earlier

value of 0.25 A as given previously in Chapter 2. The computed energy, and cor-
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responding magnetizing inductance are given in Table (3.2.1). The computed flux
densities at the grid surface, (z-y) plane, are plotted by arrows in Figure (3.2.3-a). In
this figure, the lengths of the arrows are proportional to the magnitudes of the flux
densities, and the directions of the arrows show the directions of the flux density vec-
tors. Table (3.2.2) shows some typical values of the flux density calculated in the iron
core and conductor; the locations associated with the tabulated values are indicated

in a companion figure, Figure (3.2.4).

Meanwhile, another global second-order MVP FE computation for the same
transformer was carried out. The second-order grid for this computation is generated
by adding extra nodes at the middle of every edge of the first-order FE grid which
was used originally for the combined MVP-MSP computation. The computed energy,
inductance, typical flux densities, as well as the flux density plots, are shown in
Tables (3.2.1) and (3.2.2), as well as Figures (3.2.3-b) and (3.2.4-b), side by side
with the results from the MVP-MSP method. Comparison between the two sets of
results shows excellent agreement between these two methods. Also, the calculated
inductances of 0.742 H resulting from the combined MVP-MSP FE method, and 0.731
H resulting from the second-order MVP FE method, are in excellent agreement with

the measured inductance value of 0.737 H. These comparisons give strong evidence
of the validity of the combined MVP-MSP FE formulation.

To study the numerical sensitivity of the MVP-MSP computed results to grid
geometry alterations, a revised first-order FE grid was generated with a grid line shift
pattern similar to those shown earlier in Figure (2.1.7) of Chapter 2. This revised
grid is given in Figure (3.2.5). The calculated result of inductance from this revised
grid, using the combined MVP-MSP approach, is 0.742 H. The computed inductance
value in this case is almost unchanged from the value computed by the original grid in
Figure (3.2.2). This shows the insensitivity of the computed global results to the grid
geometry, which further verifies the efficacy and reliability of the combined MVP-
MSP FE formulation. This formulation and method are therefore less vulnerable to
grid ill-conditioning which was demonstrated earlier in Chapter 2 for the first-order
MVP formulation.

In this demonstration example, the effect of iron lamination on the material
reluctivity of the iron core is fully included. Because of the lamination, v, has a much
lower value than v, and v,. However, since the excitation current is low, the magnetic

saturation of the iron material is almost nonexistent, and therefore has not been taken
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Table (3.2.1): Computed Energies and Inductances Versus Test
Values for the 1.5 kVA Transformer (1=0.25A)

Method of Stored Energy Inductance
MVP (Second- || 2.857 x 10-3 (J) 0.731 (H)
Order Elements)
Combined 2.897 x 1072 (J) 0.742 (H)
MVP-MSP
From Laboratory || 2.879 x 1073 (J) 0.737 (H)
Measurement
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Figure (3.2.5): First-Order FE Grid for the 1.5 kVA Transformer with
Shifted Grid Lines
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into account. Meanwhile, at higher excitations and corresponding pronounced degrees
of saturation, the nonlinearity in the magnetic field can be computed during the MSP
stage of the combined MVP-MSP method by use of the Newton-Raphson iterative
technique. Such applications involving magnetic material saturation will be given
later. Applications of this combined MVP-MSP approach to a large scale nonlinear
magnetic field problem, that is the magnetic field computation of the 14.3 kVA MLA,

will be reported in detail in later chapters.
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Chapter 4

Three-Dimensional Finite Element

Formulations for the Combined
MVP-MSP Solution Method

This chapter details the finite element formulations used in the new combined MVP-
MSP solution method. As stated in Chapter 3, this combined MVP-MSP method
consists of three consecutive FE computation steps. The first step is the MVP compu-
tation using second-order finite elements in the current-carrying subregions to obtain
the curl component of the magnetic field intensity, _ﬁmvp. The second step is the sur-
face FE computation performed on the outer boundary surface of the current-carrying
subregion to obtain the MSP jump distribution. Finally, the MSP computation is
performed using first-order finite elements in the entire solution region, including the
current-carrying subregions. The first and the second steps of the FE computations
are required to be carried out only once for a given machine design geometry; the
third step of the MSP-FE computation is to be performed repeatedly for each new
combination of current excitations and rotor positions. The variational problems
which underlie these three different FE computations, and the finite element equa-
tions resulting from minimization of the corresponding functionals, are given in the

following.
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4.1 The Curl-Curl MVP Second-Order Finite

Element Formulation

4.1.1 The Variational Problem Associated with the
Curl-Curl MVP Formulation

The variational problem associated with the curl-curl MVP boundary value problem
was detailed in the previous work by Demerdash et al (32, 33, 34]. This problem is
described here again in a compact math form (using vector operators in equations)
as a complementary effort. The pertinent energy functional, F(A), which is to be

minimized within the solution volume, V, can be written as: (see Equation (2.1.2))

L evxA) . (VxA) =T Aldv (4.1.1)

2
2l
Il
I
<l
iy

In general, when magnetic saturation of iron material is encountered, the material
reluctivities, v, vy, and v, of the term, 7, in F(Z) are functions of the flux density,
B = V x A, hence they must be functions of A. However, nonlinear magnetic
field problems caused by nonlinearity of the material property are usually solved
by iterative technique such as the saturation iteration method [35] or the Newton-
Raphson method [36] in conjunction with the FE computations. Fixed reluctivities
are used in each iteration step of the associated FE computation. Therefore, at the
stage of derivation of the variational problem of the curl-curl MVP FE formulation,
the reluctivities, v, vy, and v, can be treated as quantities independent of the vector
potential, A.

The variational problem described by the functional of Equation (4.1.1) must
be solved under given magnetic field boundary conditions. In practical engineering
problems, the commonly used outer boundary conditions are either: (a) the normal
component of the flux density is equal to zero (B, = 0), which means that all cal-
culated magnetic fields are bounded within the solution region, or (b) the tangential

component of the field intensity is equal to zero (H, = 0), which means the calculated

S0



fields are perpendicular to the boundary surface. These two types of field boundary
conditions at the outer boundary, S, of the solution volume, V, can be described
through the MVP, A, as follows:

tol
N
I

o

a=0 or

at Sp (4.1.2)
H =0 or FVxA)xn=0 at Sy (4.1.3)

where SgUSy=S, SpNSy=0, and 7 is the normal unit vector at the outer boundary,

SH.

According to variational principles, minimization of the above mentioned func-
tional, Equation (4.1.1) can be achieved by setting the first variation of the functional

to zero. This can be stated as follows:

1 - —

5F(Z)=/[1(7\7x52).(VXZ)+ TV x A) - (V x 64) — J - §A]dv

V2 5(
:v/;'[-lr;('fvXZ)-(Vx62)+%(7Vx2).(vxéz)_j.é—fﬂdv

=/;[(7VxZ)-(VxéZ)—j-&Z]dv=0 (4.1.4)
By using the following vector identity,
V. (@axb)=(Vxa) b—a-(Vxb) (4.1.5)

with a correspondence of @ to 64, and b to (TV x A), one can expand Equation (4.1.4)
as follows:

§F(A) = /V{v.[aﬁx BV x A)] + [V x (FY x A)]- 64T - 64} dv
=0 (4.1.6)
According to Gauss’s theorem, for a volume V whose outer surface is a, one can

write [, (V- D)dv = §, D - d5. The first term of the volume integration in Equation

(4.1.6) can therefore be replaced by a closed surface integration. Thus one obtains
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the following:

5F(K)=fsazx(?VXZ).MH/V[VX(EVXZ)—j]-b‘Zdv
=0 (4.1.7)

Furthermore, by substituting (H = 7B =7V x A) into the closed surface integration
of Equation (4.1.7), and by changing the position order for the terms 6A, H, and #
in the integrand of the surface integral part of Equation (4.1.7), one can re-arrange

this closed surface integral, using vector algebra, as follows:

f;éAx(VVxA)-nds:fg(éAxH)-nds:—fs(nxH)-éAds
=j£(ﬁxﬁ).5zds=f(ﬁ, x 71) - 64 ds (4.1.8)
S )

From Equation (4.1.2) A [s,= 0 since the magnetic vector potential on Sp is fixed;
and from Equation (4.1.3) H, |s,= 0. Thus, the closed surface integral in Equation
(4.1.8), which is on the outer boundary, § = SpUSy, must vanish when the boundary
conditions are imposed. Hence the variational, §F(A), in Equation (4.1.7) can be

further reduced to the following:

6F(K)=/V[V>< (FV x A) =T §Adv =0 (4.1.9)
According to variational principles, 6 F(A) stipulated by Equation (4.1.9) must vanish
for any possible variation of the MVP, that is, for any 8A in Equation (4.1.9). The
necessary condition for the vanishing of §F(A) is therefore that the term, [V x (TV x
‘A)—J], in Equation (4.1.9) must be equal to zero. Accordingly, the A subject to the
boundary conditions in Equations (4.1.2) and (4.1.3), which minimizes the functional

of Equation (4.1.1) must satisfy the curl-curl MVP equation,

In the finite element method, one solves the curl-curl MVP boundary value
problem through numerical minimization of the energy functional, F(A), given in
Equation (4.1.1). In the case of the MVP part of the new combined MVP-MSP

method, the minimization of the functional is to be achieved by the use of second-
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order finite elements.

4.1.2 Element Equations for Second-Order Tetrahedral

Finite Elements

Second-order tetrahedral elements, see Figure (4.1.1), are used as the building blocks
for the geometric discretization in applications of the MVP-MSP method described
herein. The second order polynomial in three dimensions consists of 10 terms. Thus
ten nodes are located at the vertices and on the edges, of the tetrahedron. Also, the
edges of the element can be of quadratic shape, which better fits the solution regions

that have curved boundaries.

In this finite element formulation, the MVP, 4, within one element is approxi-
mated by an interpolation in between the elemental nodal MVP values, ‘Ai's. Here,
the MVP at the i-th node of an element, A;, can be generally stated as

Ay = (Airar + Ay + Aizéy) (4.1.10)

where, @, @,, and &, are the unit directional vectors; Aiz, A;, and A;. are the
directional components of the nodal MVP, A4;. The interpolation polynomial of Ain

the element can be written as follows:

10 10
A= Z NeAg = Z Ni(Agrar + Akyfly + Ag.a.) (4.1.11)
k=1 k=1

where N is the coefficient of the interpolation, or “shape function”. In second order
finite elements, these interpolation coefficients can be expressed explicitly as second-
order polynomials in local coordinate systems, which will be further explained later
in Section 4.1.3.

By substituting A of Equation (4.1.11) into Equation (4.1.1), one can describe

the volume integration of the functional, F(A), by a summation of volume integrations

in every element. This yields the following:

NE NE
1o - _
FZX_:IFC=;/‘;[§(UVX‘4)-(V><A)_J.A]dv



Figure (4.1.1) A Second-Order Tetrahedral Type Element
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NE 1 _ 10 . 10 _ _ 10
= Z/ [EV x 3 NeA) (VY x 3o NA) =T -3 A dv (4112)
e=1""¢ < k=1 k=1 k=1

where, NE is the total number of elements in a given FE grid. Therefore, the func-
tional F(A) is approximated by a function of the nodal values of three directional
components of the MVP. The total number of the nodal value components is 3xNN
for a given FE grid with total nodes of NN.

From knowledge of the differential calculus, the minimization of the function in
Equation (4.1.12) can be achieved by setting its first derivatives with respect to these
3x NN nodal variables to zero. Namely, one equates the following derivatives to zero:

OF _ OF _ = OF
0A=  0A, = 0As

=0, fori=1,2.NN  (41.13)

The differential operations stated in Equation (4.1.13) are taken for every element
one after another. For each element it yields a set of elemental equations (element
equations). Then the total NE sets of element equations can be assembled into a
global system of equations. Solving the global system of equations, one obtains the
nodal MVPs as well as the other related magnetic field quantities. Therefore, the key
to the implementation of the curl-curl MVP FE analysis using second-order elements

is the element equations. This is discussed next.

In one second-order tetrahedral element, the partial derivative term, 0F/0A;; =
0, in Equation (4.1.13) can be expanded and rearranged as follows (the number of

nodes in an element, nn, is equal to 10 in the case of second-order tetrahedral element):

aF nn _ _ nn _
{5 [‘v X ST(NAD] [V x SS(NAR)) = T - 3 (Vi) } v
3An 04.1 v 13 Z ¢ 2 (Ve 2 (N
a nn _
= {V[V X AkAk ] 1V Ak ] - (N A )}dv
/ Z aA * aA,,,:Z1 ko

{[Z TV % (NeAr)] - [V x (Nigz)] — NiJ - a.}dv
Ve k=1

ON;,. N,
_/ {[Z 7Y x (iAW) - (-4 - 5, ) = NiJa}do
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—Z {——[qu (N A - -—[‘v (N A)] - az}dv—/ NiJ, dv

2Ny, O ON, AN, N, ,. 0N

‘2/, 37 gy Ak = v Ake) = (v Ay = vimg A dv

—/ NiJp dv

Ve
ON,dN,  ON: 9N, aN, 8Nk
_ Z{[ N R - LU L / e L
AN, AN, ,
- [‘/;,e( y a~ ar )dl]Akz} _/ 1\ J dv = 0
for 1=1,2,...,nn (4.1.14)

Again, nn is the general notation for the number of total nodes in an element, in the
case of second-order tetrahedral element nn is equal to 10. Similarly, the other two
partial derivative terms in Equation (4.1.13), dF/0A;, = 0, and dF/0A;; = 0 can be
expanded and rearranged, within one elemental volume, as follows:

A = 9A, ./v{ [_sz (NicAy)] [VXZ NiAy)) Z (NeAy)}dv
1y ty =

e a

_ nn _ n _ _ 8 nn —
= [ 9 x L (NA)] (NA] =T - 5= S (M)}
Ve k=1 =1 =
=/ {[z (NeA] - [V x (Nid,)] = N.T -, }d
_ aN{, ai\t‘
_/ { va rkAk)]'(g:;-az— 55 0 - NJ,}dv

i 8Ni —_ R (?N,- — _— .
= kZ_jl V,{'aT[W X (NkAy)] - a. — —ajWV x (NAg)] -z} dv — /V N.J, dv

N N, N, 0N, N,
- Z /‘ ,

(Vz Aky - VZE/_A)CI) - Ez_(ur—ay_Akz 0 4ky)] dv
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-AM@@

BN ONk dN; ON; ON; ON;
= Z{ [/ Jdv] Ak + ['/;/2(1/JC %7 02 + v, 5 Oa Ydv] Ay
aIV 6Ak r _
- [ ( > oy )dU]Akz}—/ N.J,dv=0

for 1=1,2,...,nn (4.1.15)

and

aF nn _ __ nn _
= 5BV x (N [V x T (NA)) = T+ 3 (NeAk) o
9A. aA,,/ Z xA) ; ko ;f;. H

- nn rv— a nn . _ _ a nn Jp—
= -/Ve{l/[v X g(JVkAk)] . (?A,-z [V X kzz:l(]\kAk)] -J- m kZﬂ(l\kAk)}dv
{[Z TV x (N AR)] - [V x (Via.)] = NoJ - a, }dv
3 IN;, 3\’“
/e{[kzlva ) (G = ) = N e
IN;
- Z {—rv X (N )] - e = SV x (NA)] - &) do -/V N,J, dv

ON ON ON. N ON
—Z/e ay(uz LY akAky) 6x(unyA uyakAkz)]dv

- /V N.J, dv

0N ax’Vk

_E{ [/,Uy(?:zr Ydv]Akr — [/ ur

ON; ON,
5 A

[/ IN; 6Nk oN, Of\k

O T v do]Akz}—/]\Jdv=0
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for i=1,2,....,nn (4.1.16)

In the case of second-order tetrahedral type finite element Equations (4.1.14) through
(4.1.16) yield 30 simultaneous algebraic equations associated with 30 unknown vari-
ables, Ay, Aiy, Aiz, for i=1,2,...,10. These 30 simultaneous equations are called the
element equations. Generally, the set of element equations can be written in a com-

pact matrix form as follows

S.A =1, (4.1.17)

where, the S, is a (30x30) square matrix, commonly referred to as the element co-
efficient matrix; and the I, vector is commonly referred to as the element forcing
function vector. The various terms in the element coefficient matrix, S., and the
column vectors, A., as well as the column vector, I., in Equation (4.1.17) can be fur-
ther expressed by means of sub-matrices and sub-column-vectors. That is, Equation

(4.1.17) can be written as follows:

r 1 3 ( 3

-5-1,1 51,2 ﬁ-l,3 ettt ﬁl.nn Al

ﬁ?,l §2,2 e e e S'ZJUI A2 12

Yoo =y (4.1.18)

In
A

ﬁnn,l 57111,2 e tectooot e -*Snn,nn Ann ) \ lnn )

\

- ol

where, the general term, S, , in the element coefficient matrix is a (3x3) sub-matrix
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which is given by,

L

AN; 8Ny
V 8z 8z d
Ve z / 3N, ON; / ON; N,
- v, ———dv | — Yy ———dv
AN, ON; V., dy oz Ve dz Oz
+ / y, i O
v. Oy 0y
AN; 8N,
u:—a oy dv
8N; 8N, . 92 ON; BN,
Y 7R ALY Y AL \LYN
Ve 9z 9y AN; ON, V. 9z Oy
+/ v, ———d
v, Oz Oz
AON; 8N,
Vy——a e d
/ 31\’,‘ 8.‘va d / a‘\r" a“de Ve z T
- v, ——""dv | - | v;———dv
v. oz AT / IN; 0N
Yy —— ———
V. 0y 9y

(4.1.19)

Here, the general term, A;, in the column vector, A, is a (3x1) sub-column-vector

given by
Air
Ai =9 A,'y
Aiz
\ J

(4.1.20)

and the general term, /; in the element forcing function is a (3x1) sub-column-vector

which can be written as follows:

/ N.J.dv

Ve

/ N:J,dv
Ve

/ N.J,dv
\ Ve y

3

Notice that the sub-matrix S, ; is exactly equal to the transpose of the sub-matrix

Sk, thus the element coeflicient matrix is symmetric.
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It should be pointed out here that the element equations in Equation (4.1.18-
4.1.21) are written in a general form, applicable to any type of element. This general
form also takes into account anisotropic reluctivity of the medium. As the MVP
computation in the new combined MVP-MSP method is carried out only in regions
with media of constant isotropic reluctivity, the three diagonal terms of the reluctivity

tensor have identical material reluctivity values.

4.1.3 Coordinate Transformation and Numerical

Integration

In order to calculate the element coefficient matrix and the element forcing function
vector given in Equation (4.1.18), (4.1.19), and (4.1.21), one needs to compute various

elemental volume integration terms. These integrations can be summarized as

and

Here, u and w can be either z, y, or z and V. is the volume of a given tetrahedral
element. Considering v and J, to be known within the element, one can further

express these two types of integrations in a general form as follows:

<7 9z * Jy ' Oz

Int= [ G(N. %52 % Sy do (4.1.22)
Ve

Generally, a second-order tetrahedral type element can have irregular shape
with curved edges and curved surfaces as shown earlier in Figure (4.1.1). In this
case, it is extremely difficult to obtain an uniform pattern of an analytical algorithm
to compute the integration in Equation (4.1.22) for every element. Accordingly,
a technique which involves coordinate transformation and numerical integration is
used here to calculate these volume integrations, and consequently, to obtain the
element coefficient matrices and forcing function vectors. This technique of coordinate
transformation and numerical integration can be found in numerous text books on

the finite element method [83] [84] [85]. However, a brief summary of this technique,

90



especially on the application to second-order tetrahedral type elements, is given next.

The basic idea of this technique is that one maps every tetrahedral type element,
which may have irregular shape under the global coordinate system, into a fixed vol-
ume of a right tetrahedron, such that the integration defined by Equation (4.1.22) can
be calculated using a uniform numerical integration algorithm. The right tetrahedron
used in coordinate transformation in this research is shown in Figure (4.1.2). The
locations of the ten nodes of this right tetrahedron are described by (a, 8,7), which

will be referred to as local coordinates.

A ten node interpolation is used to approximate a given function, u, over the
right tetrahedron by means of the local coordinate system. This interpolation can be

expressed as follows:

10

u= Z Nie(a, B, v)ux (4.1.23)

k=1

where uy is the value of the function at k-th node, and Ni(a.3,v) is the coeflicient

for the interpolation. By using the following notations

h=l-a-8-17
fi=a
=3
fa=n
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the interpolation function, N, can be written as follows:

ACA-DN=(0-a-B-7)(1-2a-28-2y) k=1

f2(2f2 = 1) = a(2a - 1) k=2
fi(2fs-1)=B(28-1) k=3
fi2fa=1)=(2v-1) k=4
ififs=4a(l —a—B—7) k=5
4fifs=4B(1-a—-5-7) k=6
dfifai=4(l-a-8-17) k=17
4fafs = d4af k=S8
4f:fa = day k=9
| 4fafa =408y k=10
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The partial derivatives of Ny with respect to a, 8, and v, which will be used

later when the discussion is carried on further, can be written here as follows:

(1—4f1=4a+4ﬁ+4'y—3 k=1

4f;—1=4a -1 L=29

0 k=3

0 k=4

ONy 4(f)—4f2 =401 -2a -5 -7) k=5
B =) (4.1.25)

—4f; = —43 k=6

—4f, = —4y P

4fy =43 o3

4fy = 4y o

L0 k=10
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S

I -

)
o

(

l-4fi=4a+48+47-3

0

Afs—1=48—1

0

—4f, = ~1a
A(fi)—4fs=41-a-28-19)
Cify =4y

1fy = da

0

4fs =4y
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k=2
k=3
k=4
k=25
k=6
k=17
k=8
k=9
k=10

(4.1.26)



4/ —dat 484473 k=1
0 k=2
0 k=3
4fs—1=4vy-1 k=4
%j:i =1 THa=de k=5 (4.1.27)
_ify = 48 k=6
4(f) - 4fs = 41 —a = B — 47) k=T
0 k=8
if, = da k=09
 4fa =43 k=10

In order to establish the mapping between the element in the global coordinate
system and the right tetrahedron in the local coordinate system, one substitutes z, y,

and z for u in Equation (4.1.23), respectively. Namely, one can write the following:
3

10
z =) Nila,B,7)z

k=1

10
y= > Ni(e,8,7V)ur {( (4.1.28)
k=1

10

z=Y Ni(a, B,7)zk
k=1 /

Equation (4.1.28) enables one to locate any given point in (r,y,z) in the global

coordinate system, whose corresponding image point in the local coordinate system

has coordinates (a,3,v). Meanwhile, approximation of the MVP within the right

tetrahedral can be obtained by substituting the nodal MVP components for u in
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Equation (4.1.

10

= Z 17 ALI
10

Ay = Z Nk(a?IB’ 7)Aky
k=1

10
A, = Z ]Vk(a7 B, 7)Akz

23). This yields the following:

\

7

(4.1.29)

Notice, in Equation (4.1.28) and (4.1.29) both geometry transformation and MVP

interpolation are described by the same set of parameters of Ni(a,B,7). Such a

representation is called “isoparametric”.

Hence the elements are called isoparametric

elements, and the transformation is called isoparametric transformation. Details of

this topic can be found in references [84] and [85].

Since Equation (4.1.28) describes a point to point mapping between (z, y, z)

and (a, B, 7), it implies that a, 3, and v can be considered as functions in z, y, and

z. Thus, by chain rule differentiation, one can write the following:

ON; 0N Oz 9N Oy
da ~ Oz da Oy Oa
81V 8’\’ 61’ + 01\’i£?“1/‘
93 ~ 0r a8 ' 9y 98
ON: _9ON:idz 9N 9y
gy 0z Oy Oy Ov

ON; 0z
9z da

aN,- Q::
0z 03

31\ aZ
0z 37

N\

/

2,...10 (4.1.30)

Equation (4.1.30) can be further written into a compact form as

4

L Oy

on,
Jda

| o
a3

dN;

\

Jz

da

oz

a8

%
dvy

%

Ja

%
93

9y
v

0z

da

dz

a8

9z
v
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ox.

Oz

8 AVi

Oy

AN,
dz

5\

(4.1.31)



where the 3 x 3 matrix is a Jacobian matrix, referred to as J. By taking differential
operations on z, ¥, and 2z in Equation (3.1.28), with respect to a, 3, and %, and

inserting the results into this matrix, one can write the Jacobian matrix as follows:

k=1 aa ¢ k=1 aa o k=1 aa ¢
8Nk 0Nk 10 81Vk
= — 4.1.32
J Z 25 Zaﬁyk Ewu ( )
8Nk 0Ny X ON;
_E zavykgav‘k-
Furthermore, by multiplying both side of Equation (4.1.31) by J~1, one obtains the
following:
( 3 _ -1 ¢
ON; 0N RONe AN ][ 2N W
R 2o LY L et 5
an $ 10 aj\rk 10 aN’k a\k a‘\rt_ L
* e} = - - ™ —_— (4133)
By f‘:ﬂaﬂ";ﬂaﬁ“gaﬂk \ %3
10 Apr 10 10
AN, Nk ONy N ON;
- k . Yk %k _
\ az J L kz=:1 07 kz=:1 87 kz::l 07 J \ 0'7 J

It should be pointed out that each term at the right hand side of Equation (4.1.33)
is a combination of 9N,/0a, ON;/38, and ON;/dv, which are the functions explicitly
given in Equation (4.1.25) through (4.1.27). Accordingly, values of dN;/0c, ON;/03,
and ON;/9z, are calculable for any given set of (o, 3, ). Hence, the values of the

integrand in equation (4.1.22) can be determined for any given (a,8, 7).

Meanwhile, from differential geometry formulation and nomenclature (see {85]),
the unit volume, dv, in Equation (4.1.22) can be written in the global coordinates, as

well as in the local coordinates as follows:
dv =drdydz =| J | dadB dvy (4.1.34)

where | J | is the determinant of the Jacobian matrix for a given element, which was
expressed in Equation (4.1.32). Thus, using the local coordinates, the integration
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given in Equation (4.1.22) can be rewritten as follows:

Int:/v G(N;, 2, 8Ne 2Ny gy,

1y 9z 81/ ' 8z
1 fl=a pl-a-p
= 8N, 3N, 9N
_/0 ./o _/0 G(N"EL’E,L’E‘L) | L | dedB dy

_ /01 da /Ol'a d,@/ow-ﬁ G™(a, B, 7)dy (4.1.35)

where, G*(a, 3,7) = G(N;, %", %V!;‘! ?a—IZL) | LI

Gaussian quadrature is used here to numerically integrate Equation (4.1.35). In
order to apply the standard Gaussian quadrature algorithm, which is valid only in
case that the integration volume is a cubic region centered at the origin with its edge
length equal to 2 units, Equation (4.1.35) has to be rearranged through a series of

integration variable substitutions. This substitution procedure is as follows:

(1) Let o= =e=flixt) gy = U=a-fl gy,

Int = /da/ladJ/ G*(a, 3,7)dv
- /01 da’/ol_a dﬁf_llg%—ﬁ)c'(a»@&w)dt

(1-a)(1 —a
(2) Let g=U=2llitt) gg— U-algy,

1 l-a 1 —_ —
1nt=/0 da/o dﬂ/_l U-o=f) z E)G'(a.ﬁ,L—M—l‘“"-i i)y dt

_ /1 da jl /1 (l -_— G);(l - tj)G-(a, (l—a)z(l+t_,), (1—0)(1—4t,)(1+tk))dtj dty
0 -1J-1

(3) Let o= da=1d,

It /1 i /1 /1 (1-— a);(l - tj)G‘(a, (1-a)(1+:1), (1-a)(1-4z1)(1+:,‘))dtj dt,
0 -1J-1

2

2/1 /1 /1 (l—t,)gi )G"( @ :)(1+t,) (1=t,)(1~ t, ”“‘))dt dt, dty
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(4.1.36)

At this stage, a standard Gaussian quadrature, with an order of three in each
coordinate direction, is applied to Equation (4.1.36). This yields the following:

ENCAC N (1= t2(1 = 1) ei1ge, (-0)041) (-8)(1-1,)041)
Int =33 S {WiW; W, o G*(4h, =, 5 )}

i=1 j=1k=1

(4.1.37)

where W;, W;, and W, are the weighting factors, and t;, t;, as well as t; are the
stations, of the Gaussian quadrature. The values of these weighting factors and
stations are given in Table (4.1.1). A simpler form for Equation (4.1.37), which is the

actual formula used in the computer program, can be written as follows:

3.3 oo (L=t =) o iin =t)(48) (1=t)(1-t)(1+t)
Int=S3 S {W,W, Wy G (1 : C—

2 4 *
1=1 j=1 k=1 64

27

= 3 WiG™ (am By ¥m) (4.1.33)

m=1

where, 1?2 is the modified weighting factor, and am, Bm, as well as ym are the modified
stations. Values of the modified weighting factors and stations calculated from the
following equations:

— $.)2 _}.
we = iy, L1 = )
64

1+¢
Ay = 2
(=) +¢)
Bm = 1
= (1 —t)(1=¢,)(1 + )

8

for m=1, 2...., 27, with respect to the corresponding subscripts of z, j, and % in
Equation (4.1.38), are listed in Table (4.1.2).

100



Table (4.1.1): Weighting Factors and Stations of

Gaussian Quadrature (n = 3)

k Wi Tk
1 5/9 -V/15/5
2 8/9 0
3 5/9 V15/5
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Table (4.1.2): Weighting Factors and Stations Used in the

Modified Form of Gaussian Quadrature

] Gk | W | om | Bn | m |
1 ((1,1, 1) || 0.0149728 0.1127017 | 0.1000000 | 0.0887298
2 1 (2,1, 1) || 0.0076072 0.5000000 | 0.0563508 | 0.0500000
3 1(3,1, l) 0.0002416 | 0.8872983 | 0.0127017 0.0112702
4 1(1,2,1) 0.0134996 | 0.1127017 | 0.4436492 | 0.0500000
51(2,2,1) 0.0068587 | 0.5000000 | 0.2500000 | 0.0281754
6 |(3,2,1) 0.0002178 | 0.8872983 | 0.0563508 | 0.0063508
7T1(1,3,1) 0.0019018 | 0.1127017 | 0.7872984 | 0.0112702
8 1(2,3,1) 0.0009662 | 0.5000000 | 0.4436492 | 0.0063508
9 1(3,3, 1) 0.0000307 | 0.8872983 | 0.1000000 | 0.0014315
10| (1,1, 2) 0.0239564 | 0.1127017 | 0.1000000 0.3936492
11 (2,1, 2) {1 0.0121714 0.5000000 | 0.0563508 | 0.2218246
12 1 (3,1, 2) |t 0.0003865 0.8872983 | 0.0127017 | 0.0500000
131 (1,2, 2) 0.0215994 | 0.1127017 | 0.4436492 0.2218246
141(2,2,2) 0.0109739 | 0.5000000 | 0.2500000 0.1250000
151 (3, 2,2) | 0.0003485 0.8872983 | 0.0563508 | 0.0281754
16 ((1,3,2) 0.0030429 | 0.1127017 | 0.7872984 0.0500000
171(2,3,2) 0.0015460 | 0.5000000 | 0.4436492 | 0.0281754
181(3,3,2) 0.0000491 | 0.8872983 | 0.1000000 | 0.0063508
191(1,1,3) 0.0149728 | 0.1127017 [ 0.1000000 | 0.6985685
20((2,1,3) 0.0076072 | 0.5000000 | 0.0563508 | 0.3936492
211(3,1,3) 0.0002416 | 0.8872983 | 0.0127017 | 0.0887298
221(1,2,3) 0.0134996 | 0.1127017 | 0.4436492 | 0.3936492
231(2,2,3) 0.0068587 | 0.5000000 | 0.2500000 0.2218246
24 1 (3, 2, 3) 0.0002178 | 0.8872983 | 0.0563508 | 0.0500000
251(1,3,3) 0.0019018 | 0.1127017 | 0.7872984 | 0.0887298
26 | ( 2,3, 3) 0.0009662 | 0.5000000 | 0.4436492 0.0500000
27 1 ( 3, 3, 3) 0.0000307 | 0.8872983 | 0.1000000 | 0.0112702
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Again, as stated earlier in this section, G* is calculable for any given set of («, 8,
7), hence the summation in Equation (4.1.38) is calculable. Therefore, computations
of various terms in the element coefficient matrix and forcing function vector, which
was given by Equations (4.1.18), (4.1.19), and (4.1.21), can be implemented using the
numerical integration algorithm in Equation (4.1.38) with its weighting factors and

stations given in Table (4.1.2).

4.2 The Surface Finite Element Analysis

In this section, the formulation of the surface finite element analysis involved in the
MVP-MSP approach is discussed in detail. This surface FE analysis is for computa-
tion of the MSP jump distribution on the outer surfaces of the current carrying MVP
subregions. As described in Section 3.1, this is the intermediate step which links the
prior MVP portion and the later MSP portion of the combined MVP-MSP magnetic
field solution approach.

4.2.1 Derivation of the Element Equation

To avoid possible confusion associated with the mathematical notations used here,
the MSP jump distribution, which was previously denoted by A¢ in Section 3.1, is
denoted by T throughout this section. The governing partial differential equation,
Equation (3.1.19) of Section 3.1, for this surface FE problem can be written in terms

of T as follows:
VT = ﬁmupt on I'yy (4.2.1)

where, I';, is the outer surface of any current carrying MVP subregion under con-
sideration, H .y is the tangential component of the field intensity on I'y; computed
from the previous MVP solution.

The functional associated with this surface FE analysis is chosen as

F(T):/F | VT 4+ Hope |7 ds (4.2.2)
12
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where ds is a differential surface area on I'y2. This functional is non-negative, with
its minimum equal to zero. Accordingly, the minimum (zero) of F(T) in Equation
(4.2.2) can be reached only if the integrand function, | VT + H oyt |?, is equal to zero
everywhere on I'y;. Apparently, this condition is equivalent to that VT + Hppt =
0. Thus, the function, T, which minimizes the functional, Equation (4.2.2), must
satisfy the partial differential equation, Equation (4.2.1). Accordingly, the MSP jump
distribution can be obtained by minimizing the functional, F(T'), in Equation (4.2.2).

The surface finite element grid is the outer surface grid of the 3D-FE tetrahe-
dral grid of the MVP subregion. The magnetic scalar potential jump distribution is
computed at every grid node in the surface finite element analysis. As will be seen
later, this type of nodal MSP jump value can be directly applied as a forcing function
to the later stage of the global MSP computation.

Figure (4.2.1) shows a surface triangular element with its three nodes numbered
as [, m, and n. Within this triangular element, first order interpolation is used to
approximate the variable MSP jump function, T'. This interpolation can be written

as follows:
T=NT + NI + N, T (4.2.3)

where, N, N,., and N, are interpolation coefficients, and T}, Trn, as well as T, are the
nodal values of T, at the three nodes I, m, and n, respectively. In the surface finite
element problem, a triangular element can have an arbitrary orientation with respect
to the global coordinate planes. Thus, using a local coordinate system for element
analysis is more eflective and convenient than directly formulating the problem in
terms of the global 3D coordinate system. Figure (4.2.1) shows the local coordinate
system, u, v, and w, for the surface FE analysis. In this system, the u-axis is chosen
along the edge Im of the triangle, the v-axis is chosen in the plane of the triangle and
in quadrature with the u-axis, and the w-axis is normal to the plane of the triangle
such that u, v, and w follow the right hand rule of the coordinate notation. Details on
the formation of the local coordinate axes, as well as the coordinate transformation
are given later in this section. Under this chosen local coordinate system, T is a
function of u and v, and the interpolation coefficients, N;, N, and N, are functions

(first order polynomials) in u and v. Meanwhile, the forcing function vector Hoppe in
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Figure (4.2.1) Surface Finite Element Grid

105



the plane of the element can be expressed as follows:
-H-mvpt = Huéu + Hvau (424)

where @, and &, are unit vectors in the u and v directions, respectively. Here, H,
and H, are directional components of H ., expressed in terms of the chosen local

coordinate system.

The global integral of the functional in Equation (4.2.2) can be expanded as a
summation of a series of integrations on each element. Namely, one can write the
following:

NE
F(T)=/F | VT + Hpupe |* ds =Z/S | VT + Hopupe |* ds (4.2.5)
12 e=1 <

where S. is an elemental surface area and NE is the total number of the surface
elements. Furthermore, using the local coordinate system for each element, and

Equation (4.2.4), one can rewrite the functional as follows:
NE _
F(T) = E/ l VT(U,U) + Hmupt(u, v) |2 dudv
e=1"75e

'E
= 2\: [(a—T—+-Hu)2 +(8—]:+Hu)2] dudv (4.2.6)
= Js. Ou dv
At this stage, Equation (4.2.3) is substituted for T in Equation (4.2.6). The deriva-
tives of this functional with respect to each nodal variable must be equated to zero to
meet the requirement of functional minimization. This procedure leads to a general
form for the element equations of this surface FE analysis. The derivation is detailed

as follows:

5, oT

91T, aT
0T,‘ Se 611,

H,)* + (5; + H,)*}dudv

d d
=77 /S ([ (N Ty + N T+ NoT3) + H.

9
+ (5o (NTi + N 4 NoTo) + H,)*}dudv
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aJ .0 Nz ON, ON,

oom Z-n 2
{ Tit =" Tn+ 5 —Tn + Hi]
3 aNl aNm aNn 2
YaT Gy Tt Ty Tt gy Tt il ddudy
{- [BuT+ Ou Tm+8uTn+H"]

ON; ON, ON,, ON,

—Tn + T, + H,]}dudv

ozt Lin
te dv [ dv T+ dv dv
1\7 0 N a.N,‘ 8N, 01"\’,' ON m ON; 81Vm
=2 e T 3 T G T e e T
ON;ON, ON;ON, ON,; ON;
+ Ju Ju * dv Ov )Tn+_é—?71—H t o dv 7y Hvldudv
=0 fori=1 m, n (4.2.7)

Because of the first order nature of the interpolation function in these triangular
elements, the derivative terms in Equation (4.2.7), IN;/Ou, ON;/Ov, for it = I, m, n,
are constants in each element. Thus, from Equation (4.2.7), one obtains the following:

ON;ON; ON,0N, ON;ON,, ON,ON,,

2. 2

22( Jdu Ou + dv Ov )T+ 23( du Ju + dv Ov )T
3 x‘V,‘ (9Nn a.“V,' ijn

9,
+2a( du Ju dv du )T
= —QA(%H,, + a;’\iHv) fori=1m,n (4.2.8)

du Jv

where, A is the area of the triangular element. This element equation can be further

expressed in matrix form as follows:

r 1 ¢ R r 3y
Su Sim  Sin T, C
Sml Smm Smn Tm f = 9 Cm ? (4 2 9)
Sni Snm Snn { Tn Cn




where

8]\/1 8N1 01’\"1 BN,)
Ju Ju + dv Jdv

Su = 2A(

ON,, ON,, + ON., BNm)
Ju Ou ov OJv

S = 2A(

ON, ON, 0N, é)Nn)
Ju Ou + Jdv Ov

Sun = 2A(

0N, ON,, + ON, 0N,

= =;)
Stm = Smi = 23( du Ou dv (?v)

IN,ON, + ON; ON, )
Jdu Ju dv v

Sin = Snr = 24(

ON, ON, ON, 9N,

Sma = Sam = MG =+ 5 T )
and

C = —QA(%%HU + %Hu)

Co = 44.(%’211“ + %I[U)

Cn = —2A(%Hu + %%Hv)

By repeating Equation (4.2.9) for every surface element, and assembling these element
equations, one obtains the global system of equations for the surface 2D-FE analysis.
Solving the global equations, one accomplishes the computation of the MSP jump
distribution T, or A¢ as denoted in Section 3.1.

As discussed in Section 3.1, a reference point is needed for the relative MSP
jump distribution. In this case, one needs to enforce a zero value of A¢ on one grid

node. This node can be arbitrarily chosen from the surface finite element grid.



4.2.2 The Element Equation Under a Local Coordinate
System

The element coefficient matrix and forcing function vector in Equation (4.2.9) are
given in terms of the local coordinate system shown in Figure (4.2.1). These terms
are combinations of partial derivatives of element interpolation coefficients with re-
spect to the local coordinates, u, and v. To obtain the element interpolation co-
efficients (shape functions) and consequently their derivatives, one needs to know
the local coordinates of each triangular vertex. This is done by a special coordinate

transformation described next.

For a given triangular element, see Figure (4.2.1), the local coordinate axis,
u, is directed along the eclemental side, {m. The unit directional vector, é@,, can be

therefore defined as follows:

N Tmi N Ymi N Zml "
Gu = 2 2 7 0= + 2 2 2 + 2 2 2
\/$m1+ym1+zml \/Im1+yml+zml \/‘Tml+yml+zml

where, Ty = T — T4y Yl = Ym — Yis Zml = Zm — 21, €tcC.

The w-direction, which is normal to the plane of the triangle, can be obtained
by a cross-product of any two vectors in that plane. One of these vectors is chosen as
the vector from node [ to node m, the other vector is chosen as the vector from node !
to node n. From vector algebra, the cross-product of the two vectors has a magnitude
(length) equal to twice of the triangular area, A. Thus the unit directional vector a,,

can be written as follows:

~

Ay =

1
ﬁ Tm — T Ym —Yi Zm — 2

Tn — X1 Yn—Y <Zn—2

- YmiZnl — ZmilYni . + EmiTal — Tmisnl ., TomilYnl — ymlxnlé

2A Uz 2A ay + oA :

(4.2.11)
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where A is the area of the triangular element, and 2A can be calculated using the
following equation:

20 = \/(ymzznl — zmi¥nt)? + (2miTat = Tmizn)? + (Tmiynt — YmiZTni)?

Finally, the v-axis can be obtained as the cross-product of a,, and a,. That is,

one can write the following:

dy, = Ay X Ay

1 (ymlznl (zml-rnl (-Tmlynl

QA\/IEM -+ yrznl + 2;")"1 —Zrnlynl) ’_rmlznl) _ymlxnl)

Tml Yml Zml

zml(zmlrnl - Imlznl) - yml(Imlynl - ymlxnl) .
.2 2 2
QA\/l‘ml + Ymi + Zmi

I

$ml($mlynl - ymlxnl) - zml(ymlznl - zmlynl)d

+
2’—\\/333}11 + Y+ 2o

Y

m mi< -z n — Tl ZmiTnl — Tmilnl) .
Ymi(YmiZal — ZmilYni) (ZmiTnl I z)aI (4.2.12)
2A\/x3n: + i+ 2k

+

The three unit vectors described above can be written in a general form as follows:

N

dy = UzGz + Uyay + u.a,
Gy = Ugls + Vyby + V28, (4.2.13)

Gy = Wzaz + Wyay + w.a,

s

where, u;, uy, ..., were detailed in Equations (4.2.10) through (4.2.12). Physically,
each of these terms is the cosine of the angle between a local coordinate axis and a

global coordinate axis.
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Having Equations (4.2.10) through (4.2.13), the local coordinates of the triangu-

lar vertices, u; and v;, can be calculated by the following coordinate transformation:

-
u; Ur Uy U, L '
= \ vi—w fori=1l, m, n (4.2.14)
v; vr Uy U,
\ Li—a Y,

The local coordinate w;, for : = I, m, n has not been included in the above equa-
tion. This is because the computation of the element matrix and forcing function
is a two-dimensional process under the chosen local coordinate system, hence the

w-coordinates are not needed.

Meanwhile, consider that H, and H, are the projections of qup, on the u and

v axes respectively, one can calculate the values of H, and H, using the following:

H Hmtpt au
(4.2.15)

H, = Hopyp - @,

The remaining work on the element matrix and forcing function vector is straight-
forward. The element shape functions, as well as their derivatives, of the first order
triangular elements can be adopted from well established two-dimensional finite ele-

ment work. The following is the formulation:

\

1
N = —A(pz + qu + rv)
1
Nm = 55 (Pm + gt + o) [ (4.2.16)
N, = -Q}Z(pn + gnu + 1,v) ‘
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N _ oM _
du 24 v 2
BN,,, _ dm 8Nm _ Tm
ou ~ 2A° v 27’
aNn _ qn aNn _ Tn
ou 24’ ov 24
where
DI = UpUp — UpVUp, QI = Um — Uy,
Dm = UpV] — U Vg, qm = Un — Uy,
D= Wom — Unty, dn = U — Um,

TN=1Up — Un

Tm = U — Uy

Th = Um — Uy

(4.2.17)

(4.2.18)

Finally, by substituting Equations (4.2.16) and (4.2.17) into Equation (4.2.9),

the element equation can be written as follows:

L

o
L

‘
]

_QIHU. - rle

=ﬁ "‘]mHu_rmHv (

_anu - 7"nIJv

\

qqr + iy Qqm + TiTm

dnqi + ramy GnQm + Talm

qiqn + rry

admqi + T dmdm + rmrm gmdn + rmTn

QnQn + rﬂrﬂ

-

Equations (4.2.18) and (4.2.19), in conjunction with the coordinate transformation
described in Equations (4.2.10) through (4.2.14), complete the formulation of the

element equation of the surface finite element analysis. The MSP jump distribution

is computed by this surface finite element procedure. Again, as stated earlier in
Section 3.1, this computed MSP jump distribution will be the main forcing fur~tion
in the MSP portion of the combined MVP-MSP approach. Implementation of the
MSP-FE formulation will be discussed next.
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4.3 Magnetic Scalar Potential 3D-FE

Formulation Using First Order Elements

The 3D magnetic scalar potential finite element formulation of the MVP-MSP ap-
proach is discussed in this section. The solution region of the MSP part of this ap-
proach is the entire magnetic field solution volume. This region includes the current-
free subregion as well as the current carrying MVP subregion. On the interfaces
between these two subregions, the MSP jump distribution has to be enforced to guar-
antee the continuity of the tangential component of the field intensity along these
interface boundaries. Meanwhile, on the interfaces between the air and iron within
the MVP subregion, the discontinuity of the normal derivative of the MSP has to
be enforced to guarantee the continuity of the normal component of the flux density.
The physical aspects of these two discontinuity conditions were discussed in Chap-
ter 2 and Chapter 3 of this dissertation. The enforcement of these discontinuities is
carried out within the confines of the MSP FE formulations.

In general, magnetic field problems in electric machinery can be nonlinear due to
magnetic saturation in the iron material, and these problems can contain anisotropies
due to machine iron core laminations. Such features can be fully included within the
MSP-FE computation stage in the combined MVP-MSP approach subject of this
research. The procedure of the MSP-FE problem with material magnetic anisotropy
is given in Section 4.3.1. The enforcement of the MSP discontinuity conditions, which
is established through the element equation of the MSP-FE analysis, 1s expressed in
Section 4.3.2. The MSP field problem involving material magnetic nonlinearity will
be discussed later-on in Chapter 5.

4.3.1 The MSP FE Problem with Material Anisotropy

In the MSP problem, the governing partial differential equation, which was discussed

in Section 3.1, can be rewritten here for the reader’s convenience as follows:

V. (EVe) =0 (4.3.1)
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Generally, the outer boundary conditions of the magnetic fields in the MSP problem

associated with electric machines can be expressed as

H, =0, or ¢ = Constant, at Sy (4.3.2)
and
B,=0, or gq_ﬁ =0, at Sp (4.3.3)
on

where Sg U Sy constitutes the entire outer boundary surface of the solution volume.
Equations (4.3.1) through (4.3.3) specify the MSP problem over the solution region
with a single type of medium, in which B, H, and 7 are continuous everywhere.
The condition of Equation (4.3.2) can be enforced by assigning a constant potential
value to the nodes on the boundary Sy. That is, the nodes on the outer surface Sy
are treated as known nodes in the FE formulation. While the boundary condition
of Equation (4.3.3), as will be seen, is the natural boundary condition of the FE

formulation.

The element equation of the MSP-FE analysis can be obtained through either
a variational method, or the method of weighted residual with Galerkin criterion
[84]. Both methods yield the same finite element formulation. The derivation of the

element equation using the method of weighted residual is used here to develop the
MSP-FE formulation.

In each first order tetrahedral element, the scalar potential ¢ can be approxi-
mated by an interpolation between its nodal potential values. This interpolation can

be written as

4
o= Nidi (4.3.4)
k=1
where N is a first order polynomial in terms of the coordinate variables, commonly
referred to as a shape function. The subscripts in Equation (4.3.4) are numbered
locally in each element. Notice, an important property of the shape function Ny is
that it equals one at node k, zero at all other nodes.
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Applying Equation (4.3.4) to every element, with the nodes numbered globally,

one can write the expression for ¢ over the whole solution region as follows:

NN
é=Y Nidi (4.3.5)
k=1

where NN is the number of total grid nodes.

Since ¢ in Equation (4.3.5) is an approximation of piecewise continuous polyno-
mials to the true solution, its substitution into the governing partial differential equa-
tion, Equation (4.3.1), will result in a residual. One then seeks the “best” solution,
by minimizing the residual throughout the whole solution volume. This minimization
is done by attempting to force a series of weighted integrals of residuals to zero. In
the Galerkin method (the method of weighted residual with Galerkin criterion), the
element shape functions, NV;, are chosen as the weighting functions to these residual

integrals. Thus for each N;, one can write the following:

NN
/V NV TS Nedi) dv =0 (4.3.6)
k=1

This constitutes a set of algebraic equations from which the nodal MSP values, ¢,
¢2, ... can be obtained. Because the nodal MSP on Sy is known, Equation (4.3.2),
the number of the nodal MSP variables to be solved for using Equation (4.3.6) is less
than the total number of grid nodes, NN. In this case, in order to have a nonsingular
system of algebraic equations, one only sets Equation (4.3.6) by use of the weighting
functions N; associated with the unknown nodes. Therefore, the total number of the

algebraic equations resulting from Equation (4.3.6) is equal to the number of the total
unknown nodes in the MSP-FE grid.

By applying the vector identity V- (fF) = f(V-F) + F - (Vf), with a corre-
spondence of f to NV;, and F to TV ¢, one can expand Equation (4.3.6) as follows:

_ NN
/ N,V RV Ny do
v k=1

NN NN
. /V VN, [EV S Nedw)] dv + /V V. INE(VS Nedw)]dv =0 (4.3.7)
k=1

k=1
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Notice that, by Gauss’s theorem; f,(V - D)dv = §5 D - d3, the second volume integra-
tion term in Equation (4.3.7) can be replaced by a closed surface integral. Thus, one

obtains the following:

AL erNm]dH](N pVZNuﬁk c7ds =0
=1

where S is the outer boundary of the solution volume. Multiplying the above equation
by (-1), and making use of the definition that V¢ -7 = d¢/0dn, yields the following:

- NN aQS _
/v TN - HI(V; Nidi))dv — fs Nifinze ds = 0 (4.3.8)

where y, is the permeability along the normal 7 direction to the surface.

Notice, Equation (4.3.8) is written for every unknown node, thus the values of
N; at the nodes on the surface Sy, which is the portion of the outer boundary with the
known nodes, are always equal to zero. Hence, the surface integral term in Equation
(4.3.8) appears only on the surface Sg, which is the portion of the outer boundary
with unknown nodes. It is obvious that substituting the boundary condition on Sg
of Equation (4.3.3) into Equation (4.3.8) eliminates the surface integral from the

equation. Therefore, the MSP-FE discretization equation can finally be written as

NN
/V N [J(Y S Neg)ldv =0 (4.3.9)
k=1

Again, this equation has already included the outer boundary condition of Equation
(4.3.3). In other words, the outer boundary condition in Equation (4.3.3) is inherently

satisfied, thus it is a natural boundary condition.

Here, it should be pointed out that Equation (4.3.9) is also valid for problems
involving more than one type of material. In this case, B, H, and T are no longer
continuous throughout the whole solution region, thus Equation (4.3.8) has to be
simultaneously applied to each single-medium subregion of the problem. On the in-
terface boundaries between these subregions, and in the absence of surface currents,
# must be continuous. This guarantees the continuity of the tangential components
of the field intensity across the interface boundaries. Meanwhile, a surface integral
similar to that in Equation (4.3.8) has to be taken into account on the outer bound-

aries of each single-medium subregion. Hence, on the interface boundaries in between
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different material regions, the surface integral term emerges on both sides. Notice
that B, = —pd¢/dn on both sides of the interface boundary must be equal for the
reason that B, must be continuous across such a boundary. Also, notice that the
surface integrals from each side are carrying opposite signs when one uses the same
normal direction, 7, in their integral expressions. The contributions of the surface in-
tegrals from the two sides to the global system therefore cancelled each other. Hence,
the surface integral of Equation (4.3.8) on the interface boundary of the multi-media
problem is not needed. However, the total contribution of this surface integral term
may not be zero when a discontinuity in u6¢/9n on the interface boundary needs
to be enforced. This condition may happen in the MSP portion of the combined
MVP-MSP approach, and will be further discussed later in this section.

The volume integral in Equation (4.3.9) can be expressed by a summation of
a series integrals in every tetrahedral element. This allows one to rewrite Equation
(4.3.9) into the following form:

NN

NE
Z{/V VN [E(V 3 Nig)]dv} =0 (4.3.10)
e=1 ¢ k=1

where 1, is the volume of a given tetrahedral element, NE is the total number of
tetrahedral elements. Notice, within a given tetrahedral element, only four shape
functions, which are those shape functions related to the four nodes of that element,
have non-zero values. Thus, the contribution to the global system from one of the

elemental volume integrals in Equation (4.3.10) can be written as follows:
4
/V VN B (VY Nedw)]dv =0 fori=1,2,3,4 (4.3.11)
€ k=1

Equation (4.3.11) is the element equation of the MSP-FE analysis.

The above element equation can be further expanded and rearranged as follows

/V VN [V Negw) dv = /V UN, - [SFEV N i) dv
° k=1 e =

k=1

4
= Z V‘N{ . ([__LVJVA-)(;S;; dv
k=17Ve



_ ON; ONy IN; ON; ON; ON;
- ,‘zz:l/ve(mr dzr Or iy dy Jy tH 0z 0z J9x dv
=0 fori=1,2,3,4 (4.3.12)

For first order tetrahedral elements, the derivatives of the shape functions are con-
stants, hence they can be taken outside the integral. Accordingly, the element equa-

tions can be written into a compact matrix form as follows:

r 1 ¢ ) ¢ W
811 S12 S13 Si4 ol 0
S21 S22 823 S84 b2 0
| (4.3.13)
S$31 832 S33 S34 ¢3 0
S41 S42 S43  Sq4 \ o 0
L A 7 \ 7

where

s = ( 8Ni BM + a‘N,‘ aka + ON,- aNk
= MaTpr o M dy Oy #9202

) Vol
and

Vol = Volume of a given Tetrahedral Element

The calculation of the derivatives of the shape functions in Equation (4.3.13) is
adopted from previous work on the 3D magnetic vector potential formulation by
Demerdash et al [33]. For completeness these derivative terms are listed in Appendix
(B) of this dissertation. Next, the forcing function part of the element equation

stemming from the enforcement of the interface boundary conditions is discussed.

4.3.2 The FE Formulation Including the MSP
Discontinuities at the Interface Boundary

The two types of MSP discontinuity conditions, the MSP jump, A¢, on the outer
boundary of the current-carrying subregion, and the discontinuity of 49¢/0n, on the
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air-iron interface within this MVP subregion, can be included in the element equations
of the MSP-FE analysis. Again, as stated in the previous sections, A¢ is obtained
from the MVP computed results using the surface FE procedure. Also, the pd¢/dn

distribution is obtained from the same MVP computed results.

Consider the two adjacent tetrahedral elements located on both sides of the
outer boundary of the MVP subregion, Figure (4.3.1). Because of the MSP jump dis-
tribution, the MSPs on each side of the interface between the two elements may have
different values. The difference is A¢. In order to avoid increasing the total number
of unknown variables in the FE computation, the scalar potential value computed at
the 3D FE grid node is considered to be the MSP value on the side of the current-free
region. Consequently, on the side of the MVP subregion, the MSP at node ¢, ¢,, can

be expressed as follows:
¢ = ¢7°% — Agy (4.3.14)

where, ¢7°% is the nodal MSP at the opposite side of the MSP subregion computed
directly from the 3D-FE computation, and A¢, is the MSP jump value at the node,
i. Accordingly, the element equation (Equation (4.3.13)) for the element on the side
of the MVP subregion becomes

[ 1 3
S11 812 813 S14 ¢?°d° A
821 S22 S23 Sy node _ Ady o (4.3.15)
= 3.15
831 832 S33 S34 ¢rode — Agy
] S41 S42 S43 S44 ] .T;wde — Agy )

For the grid node which is not on the outer boundary of the MVP subregion, the
associated term, Ad, in Equation (4.3.15), should assume a zero value. For instance,
Ad¢, for the element in Figure (4.3.1) is zero.

By moving A¢’s to the right hand side of Equation (4.3.15), one obtains the
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The Element at the Side of the
Current-Carrying MVP Subregion
(¢; = % — Agy)

\

The Interface Between the
MVP Subregion and the

Current-Free Subregion

The Element at the Side of
the Current-Free Subregion

(6 = 7o)

Figure (4.3.1) Two Adjacent Tetrahedral Elements on Each Side of
the Outer Surface of the MVP Subregion
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following

3 1 ¢ 3 r 7 ¢ )
S11 S12 Si13 Su4 ¢T°de S11 812 813 Su4 Ady
S21 S22 S23 S24 ) ppode  _ S21 822 823 S24 ) Ady r
831 832 S33 S34 ¢§°d° 831 832 S33 S34 Ads

i S41 S42 843 S4y 1 ¢2°d8 ) i S41 842 843 S44 IR Agy )

(4.3.16)

Equation (4.3.16) is the element equation for the elements on the side of the MVP
subregion. It can be seen that the enforcement of the MSP jump distribution results
in the forcing function term at the right hand side of the element equation. Equation
(4.3.16) can be easily extended to use for all elements in the MSP solution region.
This application is done by assigning zero values for A¢’s at all interior FE nodes of
the MVP subregion, and at all nodes in the current-free subregion. This extension

has greatly simplified the computer program structure of the MSP-FE computation.

Another interface boundary condition, which has to be enforced through the
FE formulation, is the discontinuity of ud$/dn on the air-iron interface within the
MVP subregion. Figure (4.3.2) shows a case with two adjacent elements located on
each side of the air-iron interface. From the discussion in Chapter 2 and Chapter 3,
this discontinuity can be written as

0 0
/‘06_?_:' - ﬂnﬁ(i_z = Bmvpn (4317)

where, ¢; is the MSP on the air side of the interface boundary; ¢, is the MSP on
the iron side of that boundary; n is the normal direction unit vector on that interface
boundary pointing from the air side to the iron side; u, is the permeability of the iron
region along the n-direction; and Bpypn is the normal component of the flux density
computed from the MVP part of this combined MVP-MSP approach.

As discussed earlier in this section, in the case of multi-media problems, Equa-
tion (4.3.8) should be applied separately to the air and iron subregions, and the

magnetic field boundary condition needs to be examined on the interface between the
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Current-Carrying MVP Subregion

The Element at
the Side of Iron

/
The Element at

the Side of Air

'\

The Interface between the

Iron Side and the Air Side

Figure (4.3.2) Two Adjacent Tetrahedral Elements on Each Side of
the Air-Iron Interface Within the MVP Subregion
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air and iron. Thus, by applying Equation (4.3.8) in both subregions, the resultant

contribution to the global system can be written as follows:

o d¢1 0da
/VVM . [ﬁ(vgm)]dv—(/;f\/mo—a—n— ds —/SN,p,,%)ds =0 (4.3.18)

where S is the interface between the air and iron, and its normal direction 7 points
from the side of air to the side of iron. By substituting the interface boundary
condition of Equation (4.3.17) into the surface integral terms in Equation (4.3.18),
the total contribution of the surface integrals to the global system can be written as

. O v 0,
/;AHUO ds —/SA\,;LH Em ds

dn
o 0
= N‘-(,uo-g—l — ity aq:)ds
= /s N:Bumupn ds (4.3.19)

This leads one to rewrite Equation (4.3.18) into the following form:

NN
/szxzﬁ(vl;qsk)] dv = fSMBmupn ds (4.3.20)

Again, the surface integral term in Equation (4.3.20) is carried out at the outward
surface of the air side with its normal direction pointing from the air to the iron. It
is obvious that this surface intergal becomes part of the forcing function in the MSP

finite element analysis.

In a given tetrahedral element, the surface integral term in Equation (4.3.19)
may occur on any one of its four surface triangles. Since one surface triangle contains
three nodes, the forcing function term due to the surface integral on that triangle
should be contributed to the three element equations corresponding to the three
related nodes. In order to include this into a general form of element equation, a
fixed connection pattern of elemental nodes and elemental surface triangles is used
for every element. This connection pattern is shown in Figure (4.3.3). Using this
connection pattern, with the notations s; for the i-th surface triangle in Figure (4.3.3),
and B}, . for the normal component of the flux density computed from the MVP at

the i-th surface triangle, the associated forcing function of the element equation can
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Surface Triangle #3
Node: 2, 3, 4

Surface Triangle #4
Node: 3, 1. 4

\

Surface Triangle #2
Node: 1, 2. 4

Surface Triangle #1
Node: 1.3. 2

Figure (4.3.3) Connection Pattern of Elemental Nodes and Surface Triangles



be written in a vector form, P., as follows:

'Pl | /Nl mvpnds+/ M m.,pnd8+/ MB mvpndsw

_ ] P2 _ | /Nz m,,,mds+/ N, ,m,pnds+/ N;B}, nds +
e P3 /N:;Bmpnds+/ NgBmands+/ N3B} . ds

o) | NiBhupads + [ NiBds + [ NiBtupnds

The integral terms in the above column vector can be further simplified using the
formulation of the area integration [84]. Here, the B}, terms are constants, so they

can be taken outside of the surface integrals. The area integrations used here are in

the following form:

A
~/3, des = ?

where A; is the area of the i-th surface triangle of the tetrahedral element. Hence,

the above vector form of the forcing function can be rewritten as follows:

() ( W
n Brln'upnAl + BgnvpnAZ + BmupnA
P2 1 BrxnupnAl + BrznvpnAz + ngpnA3
F=9 (=39 } (4.3.21)
p3 B:nvpnAl + ngpnA3 + Br;vpnA4
L D4 ) B,prnAz + ngpnA3 + leu;:mA

Finally, adding the above vector to the right hand side of Equation (4.3.16)

leads to the complete element equation enforcing the MSP discontinuities across the
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elemental surfaces, which can now be written as follows:

-

S11

$21

831

S41

812

S22

$32

S42

(2N
—

7 '4 3 r
node
813 Si4 ¢1 S$11 Si12
node
$23 824 2 ? $21 S22
node
833 534 3 831 S3a2
node
843 S44 4 ) S41 S42
\
1 2 1
BmupnAl + BmvpnA'Z + BmvpnA4

B A+ B> A+ B2 _Aj

muvpn mupn mupn

Br];wpnAl + Bswpn

As+ B A,

mupn

B? .02+ B}

mupn muvpn

A, + B4

mupn

Ay

S13

S23

833

$43

S14

824

834

S44

Ady
Ad,
Ads

Ay

P +

(4.3.22)

This is also the general form for the tetrahedral element formulation of the MSP
portion of the MVP-MSP FE approach at hand. In this form the MSP discontinuity

conditions become the forcing function of the element equation. The computation

of the terms in the coefficient matrix was detailed in Equation (4.3.13). When this

form is used for the elements within the iron portion of the MVP subregion, the

Binupn terms in the equation must assume zero values. When this form is used for the

elements in the current free subregion, the whole forcing function part at the right

hand side of the element equation must equal zero.



Chapter 5

Newton-Raphson Method in
Nonlinear MSP Problems

In general, magnetic field problems in electrical devices and machines are of nonlinear
nature due to magnetic saturation in ferromagnetic materials used in the construction
of the cores of these machines. The main magnetic flux path of the MLA at hand
consists of the stator armature iron core laminations, rotor shaft and poles, as well
as the end-bells and casing. The magnetic saturation in these iron portions has
substantial effects on the global and local magnetic field distributions in such MLAs.
Also, the magnetic saturation affects various MLA machine parameters such as the
winding inductances, the required field excitations, and the induced armature emfs
under different machine operating conditions. Therefore, the nonlinearity problem
related to the magnetic material saturation has to be taken rigorously into full account
in computation of magnetic fields in such MLAs. This is in addition to the fact that
the magnetic properties of these iron portions can be anisotropic due to the laminated

nature of portions of the iron core laminations.

In the combined MVP-MSP 3D finite element method, the magnetic anisotropy
and nonlinearity related to the ferromagnetic materials can be included within the
MSP part of the solution method. As was discussed in Section 4.3, the resultant
global system of equations of the 3D-FE MSP analysis can be written as follows:

S-¢=5-(Ad)+£L (5.0.1)

where, S is a coefficient matrix, ¢ is a column vector containing the unknown MSPs,
(A¢) is a column vector containing the MSP jumps at the FE grid nodes, and P

is a column vector containing the terms resulting from the enforcement of the MSP
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derivative discontinuity. The associated element equations were detailed in Equations
(4.3.13) and (4.3.22) of Section 4.3. Notice that the coefficient matrix, S, contains
the material permeability terms, yz, iy, and ., see Equation (4.3.13). These perme-
ability values within the iron cores depend on the magnitude of the field intensity (or
flux density), consequently they are functions of the unknown MSP variable, ¢. In
such a case, the coefficient matrix, S in Equation (5.0.1) becomes a function of the

unknown MSP variable, ¢, hence, (5.0.1) is a set of nonlinear equations.

In solving this nonlinear problem, a Newton-Raphson iterative method is used.
The associated 3D MSP finite element formulation in conjunction with the Newton-
Raphson procedure is detailed in this chapter. Also, relaxation factors applied in the
process of updating the permeability derivative terms, dur/0Hr, and Ou1/9¢k, were
used in the Newton-Raphson iterative procedure, which successfully improved the
quality of convergence of the method for the nonlinear MSP problem. Application of
these relaxation factors to the MSP-FE formulation is discussed in Section 5.2. In this
chapter, the notation ¢ refers to the nodal MSP values in the 3D-FE global system
of equations. This ¢ represents the actual MSPs at the nodes within the current
free subregion. Meanwhile, the actual MSPs at the nodes within the current-carrying
MVP subregion are expressed by (¢ — Ad), where A¢ is the MSP jump at the nodes

on the outer surface of the MVP subregion.

5.1 The Newton-Raphson Iterative Procedure
for the 3D-FE MSP Problem

In order to derive the Newton-Raphson iterative algorithm, consider the following

column vector, F(¢):

I
Fn

E(¢) 6-3-(Ad)-P

i
kn

(¢-289)-L (5.1.1)
where S, ¢, A¢, and P are the same as those used in Equation (5.0.1). If one

substitutes a column vector, ¢, equal to the exact solution of Equation (5.0.1) into

Equation (5.1.1), F(¢) in Equation (5.1.1) becomes a null (zero) vector.
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Using a curtailed (truncated) Taylor expansion for F(¢) with respect to ¢, at

#,, one can write the following:

E(8)=F(¢,) +L(,) - (8- ¢,) (5.1.2)

where J is a global Jacobian matrix. The associated element matrix form of this

Jacobian matrix can be written as follows:

0f 0fi 0fi Oh
d¢y O0¢y 0Ods 0¢s
Of» 0f, 0fs 0f
J, = | 901 9¢2 O¢s 091 (5.1.3)
- 0fs O0fs 0fs 9fs
dp1 0¢; 0¢3 0¢,
0fs Ofs Ofs 0fy
| 0¢1 0¢2 0d3 0¢s |

-

Assume a case in which ¢, is a column vector that is very close to the exact solution
of Equation (5.0.1), ¢. The resulting F from the above Taylor expansion is expected
to be nearly the exact F at ¢. That is, based on Equation (5.1.1) the left hand side
of Equation (5.1.2) becomes a null column vector. Thus, one can rewrite Equation
(5.1.2) as follows:

L(d,) - (& - 8,) = —E(3,) (5.1.4)

or

JL(8,) 66 = —E(8,) (5.1.5)

5_=Q—Q0 and ¢=Qo+5j§

In this case, one can solve Equation (5.1.5) for 6¢, and use (¢ = ¢ + §¢) to obtain
the exact solution of the nonlinear Equation (5.0.1).

However, if ¢, in Equation (5.1.5) is not close enough to the exact solution of
Equation (5.0.1), solving Equation (5.1.5) may not result in a solution which exactly

satisfies Equation (5.0.1). In this case, one can use the computed ¢ as an updated
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&, to set up a new linear system of equations as given in Equation (5.1.5). One then
solves this new linear system of equations to obtain a new set of nodal MSPs which
is a better estimate than the previous one (closer to the exact solution of Equation

(5.0.1)). This process can be repeatedly used until a satisfactory solution is obtained.

The iterative method described above is called the Newton-Raphson iterative
procedure. The theory of the Newton-Raphson method can be found in numerous
text books [87). The convergence of this iteration can be tested by checking whether

the norm of F in Equation (5.1.2) approaches zero or an insignificant number.

The Newton-Raphson procedure used in this research for solving the nonlinear

MSP problem can be mathematically expressed as follows:

J(&) 8¢' = —E(¢) |
fort =0,1,2,... (5.1.6)

Qi+1 ____9i+éﬁ5i

where Qi is the MSP nodal value computed from the previous step of iteration, M
is the variable to be solved in the i-th step of the Newton-Raphson iteration, and
_cﬁ_‘“ is the updated MSP nodal value after the i-th iteration. Here, ég should not be
confused with Aé which is the MSP jump computed from the surface FE part of this
combined MVP-MSP method. The initial guess, ¢, can be chosen as a zero column
vector. In each step of this iteration, the Jacobian matrix, J(¢'), and the right hand
side, —_E(Qi), can be obtained based on the most recently updated MSP. Thus, in each
step of the Newton-Raphson iteration, one solves a set of linear algebraic equations.
The various terms in the Jacob