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Abstract

The problem of determining the acoustic field in an inviscid, isentropic

fluid generated by a solid body whose surface executes prescribed vibrations

is formulated and solved as a multiple scales perturbation problem, using the

Mach number M based on the maximum surface velocity as the perturbation

parameter. Following the idea of multiple scales, new "slow" spacial scales

are introduced, which are defined as the usual physical spacial scale

multiplied by powers of M. The governing nonlinear differential equations

lead to a sequence of linear problems for the perturbation coefficient

functions. However, it is shown that the higher order perturbation functions

obtained in this manner will dominate the lower order solutions unless their

dependence on the slow spacial scales is chosen in a certain manner. In

particular, it is shown that the perturbation functions must satisfy an

equation similar to Burgers' equation, with a slow spacial scale playing the

role of the time-like variable. The method is illustrated by a simple

one-dimensional example, as well as by three different cases of a vibrating

sphere. The results are compared with solutions obtained by purely numerical

methods and some insights provided by the perturbation approach are discussed.
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1. Introduction

We wish to describe the acoustic field in an inviscid, isentropic fluid

generated by a solid body whose surface executes prescribed vibrations. When

the Mach number M, based on the maximum surface velocity is small, it is

natural to consider a perturbation approach to the problem. Crow (1970)

carefully analyzed a general class of problems of this type, including

Lighthill's (1952, 1954) acoustical analogy approach, involving quadrupole

sources, and Ribner's (1962) approach, based on monopole sources. He showed

how this class of problems could be treated as a singular perturbation problem

by the method of inner and outer asymptotic expansions. Whitham (1956, 1974)

examined this problem in the high frequency limit by using a perturbation

approach similar to Lighthill's (1949, 1961) method of strained coordinates.

He essentially "strained" the time coordinate and obtained expressions for the

acoustic field valid in the far field for high frequency excitations. The

approach we shall use is not restricted by the high frequency assumption,

although our results do reduce to Whitham's results (to leading order in M) in

the far field and at high frequencies. In addition, the analysis we shall

present, being based on multiple spacial scales, provides insight into the

effects of the nonlinearity on the form of the solution, as well as insights

into the interaction of the value of the Mach number and the angular

dependence of the solution (see section 9).

In section 2 we formulate the mathematical problem we wish to solve and

then outline the multiple scales approach in section 3. We apply our method

to a simple one-dimensional example in section 4. In section 5 we formulate

the problem for a vibrating sphere and then determine the leading terms in the

multiple scales expansion in sections 6 and 7. In section 8 we apply our

results to three different vibrating spheres and then discuss our results in

section 9.

2. Problem Formulation

We wish to describe the acoustic field in an inviscid, isentropic fluid

generated by a solid body whose surface executes prescribed vibrations. To

begin, we let the origin of a Cartesian coordinate system (Xl,X2,X3) be fixed

at some convenient location inside the body. Then, in terms of these



coordinates, the equations of conservation of massand momentumare

(2.1) ap/at + _.(p_) = o,

(2.2) )ap/ax i + p /at + (u. u i = o, i=1,2,3

In (2.1) and (2.2) p, ui, p, and t represent the fluid density, the fluid

velocity component in the positive x. direction, the fluid pressure, and the
1

time coordinate, respectively. Also, u = Ul_ 1 + u2i 2 + u3_ 3 and _ =

_l(a/_x 1) + _2(a/Ox 2) + _3(a/Ox3) , where _j is a unit vector in the positive

x. direction. We also let p = kp if, where k and ff are known constants, and
J

define

(2.3) c2(p) _ dp/dp = kff(p) if-1.

We let PO' U, and L be typical (constant) values for the density,

velocity, and length scales, respectively, associated with the flow, and

define nondimensional variables (denoted by a "^" above the quantity) by

^ _ ^

(2.4) P = P/PO' u = u/U, p = (p-po)/(PoU2),

^ ^

xj = x./L] (j=1,2,3), t = t/(L/co),

where PO = kp_ and c O = C(Po). We now rewrite equations (2.1) and (2.2) in

terms of these variables and then omit the ,,a- above the various quantities to

obtain the relations

(2.5) ap/at + : O,



MOui 2 -_ )ui)(2.6) c3p/cgxi + p2-'7 /Ot + M (u._ = O, i=1,2,3 ,

where M _ U/c 0 is the Mach number of the flow.

We now seek approximate solutions to equations (2.5) and (2.6), subject

to appropriate boundary and initial conditions, which will be formally valid

for small values of M.

3. A multiple scales perturbation solution of the basic equations

Following the method of multiple scales (see e.g. Nayfeh(1973), Chapter

_(k)
5), we introduce the spacial scales (variables) x , k = O, 1, 2 .... ,

related to x by

(3 1) _(_x'k'• = M x, k = O, 1, 2 .....

-.x

Thus x(O)= x, x(1)= M_, x (2) M2x etc We then assume that u and p are

functions of these new scales, as well as functions of t and M, i.e. p =

_(2) _ _(2)
p(t,_(O),_(1),x ,...,M) and _ = u(t,_(O),_(1),x .... ,M)

'x (k) } asThe method of multiple scales now treats all of the variables t i

independent variables and seeks to determine p and u as functions of these

variables• In particular, for "small" values of M, we look for solutions in

the form

(3•2)

p = i + Mp (I) + M2p (2) + ...

_(o) M_(1)U = U + + M2_ (2)
+ . ° ,

00

= _. p(J)M j , with p(O)_ 1,

j=O

O0

-'_ -_(j)Mj-- U

j=O



_(')jHere each of the coefficient functions p(J) and u is independent of M, but,

in general, will depend upon t and the spacial scales x (k) i e p(J)• _ • •
1

_(0),_(1) _ ") _(j) ,_(0) _(1)p(J)(t,x ,...) and u (J = u (t ,x 7...)

To determine these coefficient functions, we substitute the expansions

(3.2) into equations (2.5)-(2.6) and use the relation

(3.3)

where

= _(0) + M_(1) + NI2V(2) + ... ,

_(k) _ il(a/0x_k) ) + 2(0//_ x k)) + i3(0/O x k))

We then collect coefficients of like powers of M on the left side of each

equation and, hence, express the left side of each equation as a power series

in M. We then equate to zero the coefficient of each power of M, since the

right side of each equation is zero• In this way, we obtain the following

-'(j').system of equations satisfied by the coefficient functions p(J) and u

(3.4a)

(3.4b)

Op(1)/Ot + _(0) _(0)O_ _ O,

Op(1)/Ox(O)+ 0u(0)/0t 0, i 1, 2, 3
1 1

(3.5a)

(3.5b)

0p(k+l)/ot + _(0),_(k) = F(k),

(0)+ /}u!k)/at = G!k) i = 1, 2, 3, k,210P(k+l)t0xi ] 1 '

(Equations (3.4) follow from the terms in equations (2.5)-(2.6) which are

O(M), while equations (3.5) follow from the terms in these equations which

are o(Mk+l).) Here the functions F (k) and G! k) depend only upon p(J) with
1

j<k+l and u (J) with j<k. In particular, we find

(3.6a) F (1) =-(_(0).(p(1)u(0)) + _(1))u(0)),

4



(3.6b) G!I) + p(1)0u( += -_u .v . (2-7) 0)/0t •
1 1 ] 1

To solve equations (3.4), we set

(3.7) p(1)= -0_/0t and _(0)= _(O)p .

Then equations (3.4b) are satisfied for any choice of 9, while equation

(3.4a) yields the requirement that p must satisfy the linear wave equation

(3.8) 02p/Ot 2 - A(0)_ = 0,

where A (0)- (0/Ox_0)) 2 _0))2 _0))2= + (0/0x + (O/0x is the usual Laplacian

operator in the variables {x (0)}
i '

From the structure of equations (3.5), we see that these equations can

(in principle) be solved recursively, starting with k=l. In particular,

equations (3.5) are a system of linear equations for the unknowns p(k+l) and

_(k)
• Consequently, we can express the solution to these equations as the

superposition of a particular solution and a homogeneous solution to these

equations. The homogeneous solution has the same form as the solution to

equations (3.4) (see equations (3.7) and (3.8)). The particular solution

will, of course, depend on the index k, as well as on the solutions for the

lower order perturbation coefficients. In general, these particular solutions

have the property (as we shall demonstrate explicitly in the following

sections) that they tend to decay more slowly in magnitude as [_[-_ than p(1)

and u (0). Consequently, if this decay were to be left unchecked, the

perturbation expansions (3.2) would become invalid as ]_[-_. However, as we

p(k+l)shall show, it is possible to satisfy the requirement that and u (k)

should decay at least as fast as p(1) and _(0) as [_[-_ by properly choosing

p(k+l _the dependence of ) and u (k) on the "slower" spacial scales x (1) _(2)

etc. Thus, this method will yield a perturbation expansion (3.2) which will

5



be uniformly valid as [_[-_¢oand, consequently, will correctly represent the
far field behavior of the acoustical radiation.

In the following section we shall demonstrate someof these ideas with a

simple, one-dimensional example, and then proceed to a class of three-

dimensional problems in sections 5-8.

4. A Simple One-Dimensional Example

As a simple example to illustrate the general ideas of our approach, we

consider first a flow which varies in only one spacial coordinate, such as

one-dimensional flow in a semi-infinite tube. We let this one spacial

coordinate be denoted by x 1 = x, so that equations (2.5)-(2.6) become

(4.1) Op/Ot + M(0/cOx)(pu) = 0 ,

Op/Ox + p2-ff(MOu/Ot + M2u(_u/gx)] =(4.2) 0
\ ]

We shall assume that u is a specified function, say f(t), at x=0 for all t20,

and that ambient conditions prevail at t=0 for all 0<x<_, i.e.

x_-o-- t--0--0''l t--0--1,for x>0

Following the method of multiple scales outlined above, we find it

convenient to define the differential operators Di by

(4.4) D. _ 0/c0x (i)
1

, i = 0, 1, ....

We then look for solutions for p and u in the form of (3.2), where, in

particular, p(1) and u (0) satisfy equations (3.4). Then the general solution

to equation (3.8) is given by p = F(t-x) + G(t+x), where F and G are

arbitrary functions of their arguments and may also depend on the spacial

scales x (1) x (2) Since we shall restrict our attention to solutions



which propagate only in the positive x direction, we set G _ 0 and write

(4.5) p(1) = u(0) = f(t-x, x (1) x (2) )
9 ' " " " '

where the exact form of the function f will be determined from the boundary

and initial conditions (4.3) of the problem.

Using the solutions (4.5), equations (3.5) with k=l for p(2) and u (1)

become

(4.6)

i)p(2)/cOt+ D0u(1) :-(Dlf + D0(f2) )

0u(1)/c_t + D0p(2) = -(Dlf + ((_/-l)/2)D0(f2)).

The general solution to (4.6) for p(2) and u (1) can be written as

(4.7)

p(2)

(1)
U

=-XCDlf + ((1+_/)/4)D0(f2)) + fl(t-x, x (1)

=-X(Dlf + ((l+'_)/4)D0(f2))

+ ((_/-3)/4)(f 2) + fl(t-x, x (1)

, x (2) )
• • • J

, x (2) )
y , • • °

In'(4.7), fl is an arbitrary function of its arguments, which will eventually

be determined by the initial and boundary conditions of the problem.

In order for p(2) and u (1) to grow no faster that p(1) and U (0) '

respectively, as x becomes large, we must require that the term in brackets in

equations (4.7) vanishes, i.e.

(4.8) Dlf + ((l+ff)/4)D0(f2) = 0 .

Condition (4.8) is an equation to determine the "x (1) behavior" of f and,



hence, the x(1) behavior of both p(1) and u (0). Equation (4.8) can be

expressed in terms of Burgers' equation, with ((l+ff)/4)x (1) playing the role

of the "time" variable and x playing the role of the spacial variable. In

particular, the solution to (4.8) which satisfies the "initial" condition that

f = f(t-x) when x(1)=0 can be expressed as

(4.9) f = f(r), where r = t-x + ((ff+l)/2)x(1)f(r).

As an application of these results, we let the (dimensional) fluid

velocity at x=0 be u = Usin(w_). We then use U as the typical velocity of the

flow and let L = Co/W be the typical length associated with the flow. (Note

that k = 1/L = w/: 0 is the linear wave number for this example.) Then the

boundary condition for the flow, when expressed in terms of the nondimensional

variables (2.4), becomes

(4.10) u = sin(t), at x=0 , for all t_0 (boundary condition).

Using the expansions (3.2) in (4.10) we find that the individual coefficients

U (k) and p(k) satisfy the initial and boundary conditions

u (k)= o }(4.11) at t=O (for all x_O) for k = O, 1, 2 .... ,
p(k+l)= 0

(4.12)

u(O)= sint

at x=0 (for all t_0) for k = 1, 2, 3, ....
u (k) o )

From equations (4.5), we find

(4.13) u(0) _ p(1) = f(t-x, x (1), x (2) • • o) •

8



If we were to terminate our perturbation expansion at this point and set x "i'(_

for i_l equal to zero, then the conditions (4.11)-(4.12) would yield the

results

u(O) _ p(1) = (sin(t-x), for O_x_t(4.14)
0 , for x>t

This, of course, is just the classical wave solution of linear acoustics.

However, if we continue the perturbation solution outlined above and use the

solution (4.9), we find

(4.15a)

(4.15b)

where

u(O) = p(1) = I sin(r), for O_x_t ,

0 , for x>t ,

r = t-x + ((w+l)/2)x(1)sin(7)

With p(1) determined from (4.15), we find that the expressions (4.7) for

p(2) and u (1), which satisfy conditions (4.11) and (4.12), reduce to

(4.16)

p(2) = ((3__)/4)sin2(t_x),

u (1) = ((_/-3)/4)(sin2(r) - sin2(t-x)),

for O_x_t, with p(2) = u(1) _ 0 for t>x.

Combining the expressions we have obtained for p(1) and p(2), we can

write

(4.17) p = 1 + Msin(r) + M2((3-?)/4)sin2(t-x) + O(M 3) + O(M4x),

u = sin(r) + M((_/-3)/4)(sin2(r) - sin2(t-x))



+ O(M2) + O(M3x),

for 0£x£t, and p=l and u=0 for x>t. Here r is defined by equation (4.15b).

To illustrate these results, in Figure 1 we have plotted approximations

to (p-l) as a function of distance from the source at a fixed time. The

multiple scales approximations (solid lines) were obtained using the first

three terms on the right side of the first equation in (4.17) and are plotted

for two different values of M. In Fig. l(a), M=0.01 and the resulting wave

lies close to linear solution (4.14) (short dashed lines), with only a small

distortion due to the nonlinearities in the governing equations being visible.

In Fig. l(b), M has been increased to 0.04. For this case, the gradual

steepening of the wave as x increases is evident, with the wave apparently

approaching an "N-wave" as x increases. An approximation based on Whitham's

(1974) first order approximation, obtained using essentially the method of

strained coordinates, is very close to (but not identical to) the multiple

scales solution, and hence is not shown on these plots. In these figures we

have also plotted a solution (circles) to the basic equations (4.1)-(4.2)

obtained by purely numerical means. This numerical solution was obtained by

writing the basic equations in characteristic form and then using a MacCormack

predictor-corrector technique on the resulting equations. (We thank Dr.

Willie R. Watson of the NASA Langley Research Center for carrying out these

calculations for us.) As the figures illustrate, there is very good agreement

between the multiple scales solution and the numerical solution for these

values of the Mach number. We shall comment further on these results in

section 9.

5. Three-Dimensional Flow - The Vibrating Sphere

We now wish to describe the acoustic field in an inviscid, isentropic

fluid outside a spherical region, when the normal component of the fluid

velocity is specified on the surface of this region. It is convenient to

think of this spherical region in one of two ways. First, we may regard it as

an actual sphere, whose surface executes prescribed vibrations, with the

boundary conditions applied on the time averaged surface of the sphere. Under

this interpretation, the results which follow are extensions of several

10



"classical" problems in acoustics. Alternatively, we may regard the region as

a (mathematical) sphere which encloses a bounded region of "complicated" fluid

flow. With this interpretation, our results may be applicable to the problem

of determining the acoustic field radiated from bounded (perhaps turbulent)

fluid flows. In particular, our results will show that only the normal

component of the flow velocity needs to be specified on this spherical surface

in order to determine the radiated acoustical field.

To begin, we let the origin of a (nondimensional) Cartesian coordinate

system (Xl,X2,X 3) coincide with the average position of the center of the

sphere, whose average radius is a constant a. We then introduce spherical

coordinates (r,0,¢) (see Figure 2(a)) related to (Xl,X2,X3) by the relations

xl= rsin(0)cos(_), x2= rsin(0)sin(_), x3= rcos(0). (Here all lengths have

been nondimensionalized by referring them to the average radius a of the

spherical region.) Then, in terms of these coordinates, equations (2.5)-(2.6)

become

(5.1)

(5.2)

(5.3)

(5.4)

Op/Ot + M((1/r2)(O/Or)(r2pUr ) + (I/rsin(O))(O/OO)(sin(O)pu 0)

+ (1/rsin(O))(O/c_)(pu¢)) = 0,

+ p2-q(M0Ur/at + M2(Ur(O_Ur/0r) + (uo/r)(OUr/OO)
ap/Or

+ (u_/rsin(0))(0Ur/0_) - (u0)2/r - (u_)2/r)/ = 0,

+ rp2-qtMOuo/Ot + M2(Ur(0U0/ar) + (uo/r)(Ouo/00)
OplaO

+ (u_/rsin(O))(OUo/C_b) + (UrU0)/r - (u_)2cot(0)/r]) = 0,

+ (rsin(O))p2-_(MOu_/Ot + M2IUr(0U_/0r) + (UO/r)(Ou_/aO)
Op l i_/

+ (u¢/rsin(0))(th¢/_) + (UrU¢)/r + (u0u¢)cot(0)/r)t = 0.

]

11



In (5.1)-(5.4), ur, u0, u¢ represent the fluid velocity components in the

positive r, 0 and ¢ directions, respectively.

We shall assume that u is a specified function, say V(0,¢,t), at r=l for
r

all t_0, and that Ur, u0, u_ and p-1 are all specified to be zero at t=0 for

all l<r<_, i.e.

(5.5)

= V(0,_,t), (Ur,UO,U_) I = (0,0,0) andUr r=l t=0

t20 r>l

p = 1
t=0
r>l

Following the method of multiple scales, we introduce the spacial scales

ri, i = O, 1, 2, ... , related to r by

(5.6) r 0 . = Mlr i = 1, 2,= r, r 1 , ....

Then, for "small" values of M, we look for solutions for the density and

velocity components in the form

(5.7)

05

p = 1 + Mp(1) + M2p (2) + ... = p(J)M j , with p(0)_ = 1,

j=0

00

U (0) Mu (I) M2u (2) u(J)MJ= + + + .. = _jUr r r r " __ r '

j=O

with analogous expressions holding for u 0 and u_. Here each of the

coefficient functions p(J), u r(j), etc., is independent of M, but, in general,

i.e. p(J)=will depend upon t and the spacial scales ri,

P(J)(t,r0,r I r 2 ) u(J)= u(J)(t,r0,rl,r 2 )' '''" ' r r '''" ' ....

To determine these coefficient functions, we substitute the expansions

12



(5.7) into equations (5.1)-(5.4) and use the relation

(5.8) 0/0r = DO + MD1 + M2D2 + .... where Dj _ 0/0rj

We then collect coefficients of like powers of M on the left side of each

equation, as described in section 3, and find the following system of

equations satisfied by P(J)' u(J)r , u_ j), and u_ j)-

(5.9a)

(5.9b)

(5.9c)

(5.9d)

( 2 (o)_
Op(1)/Ot + (1/r2)DoLr u r J + (1/rsin(O))(O/OO)(sin(O)u_ 0))

+ (1/rsin(0))Ou_0)/o%_ = 0,

D0p(1) + Ou(0)/Ot = 0,r

Op(1)/O0 + rau_0)/0t = 0,

Op(1)/O¢ + rsin(0)0u_0)/0t = 0;

(5.10a) op(k+l) /ot + (1/r2)D0(r2u(rk))

+ (1/rsin(O))(O/OO)(sin(O)u_ k)) + (1/rsin(0))0u_k)/_b = F (k),

(5.10b) D0p(k+l) + 0u(k)/0t = G (k)
r r

(5.10c)

(5.10d) 0p (k+l)/0_b + rsin(0)0u_ k)/0t = G_k) for k=l, 2 .....

(Equations (5.9) follow from the terms in equations (5.1)-(5.4) which are

O(M), while equations (5.10) follow from the terms in these equations which

are o(Mk+l).) Here the functions F(k)' G(k)r , G_k) and G_k) depend only upon

p(J) with j<k+l and u(J)r , u_ j), and u_ (j) with j<k.

In the next sections we shall show how equations (5.9)-(5.10) can be

solved recursively.

13



6. Solution for the lowest order perturbation coefficients

The form of equations (5.9) suggests that we look for a solution for the

lowest order perturbation coefficient functions in the form

(6.1) p(1) = -0p/0t, u(0)= 0p/0r,
r

u_O)= (1/r)_p/O0, u_O)= (1/rsin(O))_/O_,

where p is a smooth function of its arguments, which still needs to be

determined. Using equations (6.1), we see that equations (5.9b)-(5.9d) are

satisfied for any choice of 9, while equation (5.9a) leads to the requirement

that p must satisfy

(6.2) 02p/0t 2 = (1 / r2) (0/0r) (r20p/0r)

+ (1/r2sin(O))(O/OO)(sin(O)o_p/O0) + (1/r2sin2(0))02p/o_b2,

which is just the usual (linear) wave equation. (Here we have used the

relation DO _ 0/0r 0 = 0/0r.) This equation has solutions of the form

(6.3) p = Fn(r,t)P_n(COS(0))cos(m¢-fl) , for n = 0, 1, 2, ... ,

and m = 0, 1, ... , n,

where pm is the associated Legendre polynomial p is an arbitrary constant,n

and Fn satisfies the differential equation

02Fn/Ot2 = (1/r2)(0/0r)(r2a_Fn/0r) - (1/r2)n(n+l)F.

The outgoing solution for F can be expressed as
n

14



(6.4)

a _ -1,

n,1

n+l

f(n+l_j ) (t_r+l)/rj(r t) = an, jFn ,

j=l

an,j+ 1 = ((n+l-j)(j+n)/(2j)lan,j, j = 1, 2, ... , n,

where f is an arbitrary (smooth) function of its argument.

If we now apply the boundary condition (5.5)

V(0,¢,t)
-Ur(r'O'_b't)lr=l = _--:'Mjur (j)(rO' rl' r2,

j=O

...,0,¢,t) ,
r=l

we see that we can set

(6.5)

u(0)J = V(0,¢,t), for j=0,
r Ir=l

u(J)l" = 0 , for j21
r Ir=l

We shall assume that V can be expressed as (a linear combination of terms of

the form)

(6.6) V(0,¢,t) = Q(t)P_(cos(0))cos(m¢-fl),

where Q(t) is a specified function of t, and n and m are non-negative

integers, with 0_m_n. Using this expression for V, along with the condition

(6.5) on u (0) as well as the expressions (6.3) for p and (6.1) for u (0) we
r ' r '

find that f must satisfy the condition

(6.7) f(n+l)(t) -

n

j=l

) .f(n+l-J)(t)(j(j+l)+n(n+l))/(2j) an, ]
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- (n+l)an,n+lf(t) = Q(t)

Equation (6.7) is an inhomogeneous, linear ordinary differential equation of

order n+l, with constant coefficients, for the unknown function f(t). For a

few small values of n this equation becomes

(6.8)

n=0:

n=l:

n=2:

n=3:

n=4:

f'+ f = Q(t);

f"+ 2f' + 2f = Q(t);

f'"+ 4f"+ 9f'+ 9f = Q(t);

f .... + 7f"'+ 27f"+60f'+ 60f = Q(t);

f ..... + llf .... + 65f"'+ 240f"+ 525f'+ 525f = Q(t).

Once f has been determined, we can express the solution for p as

(6.9) f(n+l-J)(t')/rJ (cos (0)) cos (m_b-fl)
= an, j

j=l

where t' _ t-r+l. In general, f will also depend on the "slow" spacial scales

r 1, r 2, ..., although this dependence has not been denoted explicitly.

As an illustration of these results, we consider the special case when

Q(t) = sin(wt). Then the steady state (periodic) solution to (6.7) (which

can be viewed mathematically as a particular solution to this equation) can be

expressed as

(6.10) f(t) = Asin(wt-a), when Q(t) = sin(wt),

where, for a few small values of n, A and a are given by

n=O- A = (l+w2) -I/2

n=l: h = (4+w4) -I/2

, a = tan -l(w),

, a = tan-l(2w/(2-w2)),
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n=2:

n=3:

n=4:

A = (81+9w2-2w4+w6)-1/2, a = tan -I Cc_(9-_2)/(9-4w2) 1 ,

A = (3600+360w2+9w4-5_6+w8)-i/2,

a = tan -1 Iw(60-7w2)/(w4-27w2+60)l,

A = (275625+23625c_2+900cj4-5w6-9w8+wlO)-I/2,

a = tan -I (w(525-65cj2+w 4)/(525-240w2+llw4) 1 .

Solutions to the homogeneous version of equation (6.7) are of the form f(t) =

At
e , where the real part of A is negative. Hence the corresponding solutions

for f(t) are not periodic in t and, in fact, they all decay to zero as time

increases.

Before we consider the higher order perturbation coefficients, we can use

the results above to calculate a first approximation to the radial component I

of the sound intensity, defined by

(6.11)
2

I = PoCoU<Mp,ur>,

where the symbol "<g>" denotes the time averaged value of the quantity g.

Using the expressions (6.1), (6.3) and (6.4) above we find, for the case when

Q is given as in (6.10), that

.2 2m+2.2(.jn, ]2I = P0C0 u w a _rn_COS(0))cos(m_- fl) /2r 2 + O(1/r3), as r-_.

For w _ ka << 1, we find that the maximum intensity of I, which we denote by

In' for different values of n, is given by

n=0:

n=l;

Io = (PoCoU2(ka)2/2)(a/r)2 + O((ka)4/r2) + O(1/r3);

( oco 1(a/r) (ka)2/2 2 + O((ka) 6 ^2= /r ) + O(1/r3);
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( 0c0 2 ka )̂ 2( )2/2 (a/r) (ka)4/32 ^2n=2: I2 + O((ka)8/r ) + 0(1/r3)"

In general, for any positive integer n, the ratio of the maximum intensity
n

to the maximum intensity I0 of the pulsating sphere approaches (ka)2n/(n+l)2

as ka approaches zero.

7. Solutions for the higher order perturbation coefficients

Equations (5.10) with k=l can be written as

(7.1a) Op(2)/_t + (1/r2)D0(r2u(rl))

+ (1/rsin(O))(_/OO)(sin(O)u_ 1)) + (1/rsin(0))_u_l)/o_k =

-((1/r2)D0(r2p(1)u(0))r + D1u(0)r

+ (1/rsin(O))(i)/c90)(sin(O)p(1)u_ 0))

+ (1/rsin(O))(O/_b)(p(1)u_O))),

(7.1b) D0p(2) + Ou(1)/atr =

(7.1c)

(7.1d)

_(u(0)D u (0) 1)au(0)/0 t + Dlp(1)k r 0 r + (2-_)P( r

+ (u00)/r)(OU(r0)/O0)+ (u_ 0)/rsin(0))(ou(0)/oc)r

_ (u_0))2/r _ (u_0))2/r),

0p(2)/00 + rOu_l)/_t =

-r ((2-ff)p(1)0u_ 0)/0t+ u(0)D0u00)r

+ (u_0)/r)(Ou_0)/O0)+ (u_0)/rsin(0))(Ou_0)/o_)

,(0) (0) _0) )+ tur u 0 )/r - (u )2cot(0)/r ,

c9p(2)/0¢ + rsin(0)0u_l)/ot =

18



( ( u(0)D u
-(rsin(O))_(2-_)P(1)ou_ O)/_t + r 0

+ (u_0)/r)(ou_0)/00)+ (u_0)/rsin(0))(ou_0)/0¢)

+ (u(0)u(0)r_ )/r + (u(0)u(0))c°t(0)/r)0_b

To begin our construction of solutions to equations (7.1), we first

examine the behavior of the right sides of these equations as r-_¢0. Using

equations (6.1), (6.3), and (6.4) we find

(7.2)

p(1) = -oSp/Ot = (1/r)f(n+l)pm(cos(0))cos(m¢-fl) + O(1/r 2)
n P

u (0) = o_p/ar = (1/r)f(n+l)pm(cos(0))cos(m_-fl) + O(1/r2),
r n

u_ 0) = (1/r)0!a/00 = (1/r2)f(n)Pm'(cos(O))(sin(O))cos(m¢-fl) + O(1/r 3)n

_o)u = (1/rsin(0))o_p/o_

= (m/r2sin(0))f(n)pm(cos(0))sin(m¢-_) + O(1/r3), as r-_.
n

(Here it is understood that the argument of f is t'=t-r+l.) Then, using these

expressions, we can write equations (7.1) as

(7.3a)

(7.3b)

(7.3c)

( 2 (1)]
Op(2)/at + (1/r2)D0(r u r )

+ (1/rsin(O))(O/OO)(sin(O)u_ 1)) + (1/rsin(0))ou_l)/0¢ =

2

-D u (0) 2/r2)f(n+l)f(n+2)(l_n )1 r + ( (cos(0))cos(m¢-_) + 0(1/r3),

D0p(2) + 0Ur(1)/_t =

2

-Dlp(1) + ((_-l)/r2)f(n+l)f(n+2)(p_(cos(0))cos(m_-_)) + O(1/r3),

0p(2)/00 + rou_l)/0t =
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(7.3d)

((l__/)/r 2)(f(n+l))21_n(cos(0))P_n,(cos(0))sin(0)cos2(m¢_/_) + O(1/r3),

Op(2)/c_, + rsin(0)0u_l)/cgt =

m( ('_-l)/r 2) (f(n+l)P:n(cos(O) )) 2cos(m¢-p)sin(m_b-_) + O(1/r3).

We now examine the effect on the solutions p(2) u(1) etc of each of
' r ' '

the terms on the right sides of equations (7.3). In particular, we must first

examine the behavior of the terms Dlp(1) and _ u (0)Ul r as r-_¢o. Now, if we assume

that Dlp(1) and D u (0)1 r are O(1/r) as r-_0, then these terms will give rise to

terms in p(2) and u (1) which are O(log(r)) as r-_0. However, since p(2) must
r

decay at least as fast as p(1), which is O(1/r) as r-_¢o, we see that this

cannot be allowed. Consequently, we shall now require that Dlp(1) and D1u(0)r

are O(1/r 2) as r-*¢o, and we will show that this assumption allows us to

determine the quantities of interest in a consistent manner. Using (7.2), we

can express this assumption as

Dlp(1) = D u (0)1 r + O(1/r3)

= (1/r2)(rDlf(n+l))l_n(COS(0))cos(m_b-p)+ O(1/r3),

where rDlf(n+l) is bounded as r-_. Also, as we shall show below, it is

convenient to think of the argument t' of f as being replaced by a new

argument, say, r = r(t-r+l,0,_,rl,r2,...,M), which must be determined.

we can write

Then

(7.4a) Dlf(n+l)(T) = f(n+2)(T)(Dlr ).
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Furthermore, the angular dependence of the terms on the right sides of

that Dlr should be proportional to P_(cos(O)),equations (7.3) suggests

cos(m_-_). Thus, we write

(7.4b) DIT = h(r)P:(cos(O))cos(m¢-fl),

where h(r) must be determined. With these assumptions, we see that all of the

terms on the right side of (7.3) are O(1/r 2) (at least) as r-_¢0, as required.

Thus, we can express the (particular) solutions for p(2), u(1)r, u_ 1), and u_ 1)

in the form

(2)
= ((1/r)log(r)F_- (1/r2)log(r)Fo + (1/r2)F1}

2

• (l_n( cos (0) cos (m_-fl)) + O(1/r3),

u(1)r = ((1/r)log(r)F_ + (1/r2)F2)

(7.5) "(P_n(COs(O)cos(m_b-fl ))

u_l) = ((1/r2)log(r)Fo + (l/r3)F3)

2
+ O(1/r3),

"2P:(cos(S))P_'(cos(0))sin(0)cos2(m_-_) + O(1/r4),

u_ 1) = ((1/r2sin(0))log(r)F0 + (1/r3sin(O))F4)

2

"2m(P_n(COS(O))) cos(m_b-p)sin(m_-fl) + O(1/r4),

where each F. = F.(r,r) is a function to be determined and the primes denote
J J

differentiation with respect to r. Substituting the expressions (7.5) into

equations (7.3), and using (7.4), we obtain the relations:
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(7.6a)

(7.6b)

F 0 = ((ff+l)/2)f(n+l)f (n+2) - rf(n+2)h(r) + O(1/r),

F 1 = F2 + ((3-_)/2)f(n+l)f (n+2) + O(1/r),

(7 6c) FA F2 + ((7_37)/2)_f(n+2)j2r_• = + O(l/r),

(7.6d) F4 F2 + ((7__/)/2)[f(n+l)j2r_' = + O(1/r).

In (7.6), the function F2 can be determined by examining the terms in

equations (7.3) that are O(1/r3). From the form of the solution (7.5), we see

that we must demand that F0 = O(1/log(r)), as r-_, since otherwise p(2) will

not decay as fast as the O(1/r) rate of decay of p(1). Using this condition,

we see that the right side of equation (7.6a) must be O(1/log(r)), as r-)_.

Using the relation (7.4b), this condition can be written as

(7.7) Dl(g) + ((_+l)/4)P:n(COS(0))cos(m¢-_)(1/r2)D0(r2g 2) = O(1/(r21og(r))),

as r-)x, where g _ f(n+l)
/r. (Here we have assumed that D0r = -1 +

O(1/log(r)) and ar/0t = 1 + O(1/log(r)), as r-*_. See equations (7.9) below.)

Equation (7.7) is the major result of this section and it serves to

determine the behavior of p(1), u(0)r , u_ 0), and u_ 0) as functions of r 1. It

can be interpreted as a "spherical" Burgers' equation in the "time-like"

((7+l)/2)P_(cos(0))cos(m¢-p)r 1. In particular, we can express thevariable

solution of (7.7) which satisfies the "initial" condition g = f(n+l)(t+l-r)/r

when M=0 as

(7.8a) g = f(n+l)(v)/r, where
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(7.8b) r = t-r+1 + ((_+l)/2)Fn(r,rl)P:(cos(O))cos(m_-fl),

N

(r,r) =Fn 1

n+l

an,j.f(n+2-J)(r)MJf_l(1/s)Jds

j=l

n+l

= _-_- f(n+2-J ) (r) ((M/rl) J-l-1 )Mf(n+l)(r)log(rl/M) + M an, j

j=2

where a .= a ./(j-l), j = 2, 3, ... , n+l.
n,j n,j

Thus, both the r 0 and r 1 behavior of p(1), u(0)r ' u00)( , and u_ 0)( are completely

determined by equations (6.9), (6.1), with t' replaced by r, and (7.8b).

Before we consider some specific applications of these results, we note

that, from its definition in (7.8b), r has the following properties:

(7.9a)

(7.9b)

(7.9c)

(7.9d)

and

r _ t-r+l, as M-*0;

r _ t-r+l, as r_l;

Ov/Ot = 1 + O(1/log(r)), Ov/Or = -1 + O(1/log(r)), as r-*_;

Or/O0 = O(M), and Or/O¢ = O(M), as M-*0;

(7.9e) D1r = ((_+l)/2)P_(cos(O))cos(m¢-_)f(n+l)(r)/r + O(1/r2), as r-_0.

Properties (7.9a) and (7.9b) insure that the linear solution is recovered,

either as M-*0 or as we approach the surface of the sphere. Property (7.9c)

shows that our definition of r is consistent with the assumptions made above,

while property (7.9d) shows that the angular variation of r is "small" and,

hence, will be described by the next level of the perturbation expansion.

Property (7.9e) shows that Dlr is O(1/r), as r-*_, and hence r satisfies the

requirement that rDlr is bounded as r-_. We shall comment further on the

properties of r in section 9.
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8. Applications

a) The Pulsating Sphere

As our first application, we consider the pulsating sphere (see Figure

2(b)). In this case, the (nondimensional) radial component of the velocity of

the surface of the sphere is given by V = sin(wt) and hence we set n=0 and m=0

in our results from sections 6 and 7. Then the steady state solution for f(t)

is given by (6.10) with n=0, and p is given by (6.9) with n=0, i.e.

(8.1) f(t) = (l+w2)-l(sin(wt) - wcos(wt)) and p = -f(r)/r,

where F is determined by (7.8b) with n=m=0, i.e.,

(8.2) r = t-r+l + ((_+l)/2)Mf'(r)log(rl/M).

Using these definitions in equations (6.1) and (7.1) we find for this case

p(1) = (w/((l+w2)r))(cos(wr) + wsin(wT)),

p(2)

(8.3)

and

= 2b3wcos(2wr)/r - 2b2wsin(2wT)/r

- 1/(4r4(l+w2)) + (1-_)w2/(4r2(l+w2))

+ ((17+q)w2/(16r3(l+w2) 2) - (13-3ff)(w2-1)/(64r4(l+w2) 2)

+ (5+_)w2(w2-1)/(Sr2(l+w2)2))cos(2wT)

+ ((13-3_)w/(32r4(l+w2) 2) - (5+_)w3/(4r2(l+w2) 2)

+ (17+_)w(w2-1)/(32r3(l+w2)2))sin(2wF)

+ O(1/r5),

b 2 = -3w2(14-2_+17w2+gw2)/(16(l+w2)2(l+4w2)) ,
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b3 = w(29-3_-17w2+15qw2-64w4)/(32(1+w2)2(1+4w2)).

(The corresponding expressions for the perturbation coefficient functions

(o) u(1)u and for the radial component of the velocity are listed in the
r r

appendix.)

In Figure 3, we have plotted r(p(1)+ Mp(2)) (solid lines) as a function

of r at a fixed time for w=1.25 and for two different values of M. Here it is

convenient to think of p(1)+ Mp(2) as our approximation to the normalized,

nondimensional acoustical density field (p-1)/M (from equation (3.2)). In

Figure 3 we have also plotted the approximation to r(p-1)/M based on Whitham's

(1974) first order solution (long dashed lines), the classical linear solution

(short dashed lines), and a solution obtained by purely numerical methods

(circles). This numerical solution was obtained using a MacCormack

predictor-corrector scheme on equations (5.1)-(5.4). As Figure 3 illustrates,

there is very good agreement between the multiple scales perturbation

solutions and the numerical solutions, even for a Mach number of 0.3, where

the gradual steepening and asymmetry of the wave is apparent.

b) The Oscillating Sphere

As a second application, we consider the oscillating sphere (see Figure

2(c).) In this case, the radial component of the velocity of the surface of

the sphere is given by V = cos(8)sin(wt) and, hence, we set n=l and m=0 in our

results from sections 6 and 7. Then the steady state solution for f(t) is

given by (6.10) with n=l, and @ is given by (6.9) with n=l, i.e.

(8.4) f(t) = (4+w4) -l((2-_2)sin(Wt) - 2wcos(wt)),

@ = - cos(O)(f'(v)/r + f(v)/r2),

where r is now determined by (7.8b) with n=l and m=0, i.e.
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(8.5)

Using these expressions in equations (6.1) and (7.1), and using Wolfram's

(1991) symbolic computation system Mathematica, we find for this case

p(1)= (w(2_.w2+2rw2)cos(wT)/r2 + w2(2_2r+rw2)sin(wr)/r2)cos(O)/(4+w4),

p(2)= (2W(fosCOS(2WT)_focSin(2wr))/r _

+ 3w2(f2cCOS(2WT)+f2sSin(2wv))/r 2

(3w/2)(f2sCOS(2Wv)+f2cSin(2wT))/r3

+ 2w3(f2sCOS(2Wr)-f2cSin(2wr))/r

+ (1-_)w2(4+w4)/8r 4 + (1-q)w4(4+w4)/8r 2

+((323+3_)w2(2-w2)/64r 5 - (7+ff)w4(2--w2)/2r 3

- (259+19_)w2(4-8w2+w4)/192r 4 + (5+_)w4(4-8w2+w4)/16r2)cos(2wv)

+((5+ff)wS(2--_2)/4r 2 - (259+19ff)w3(2--w2)/48r 4

+ (7+_)w3(4-Sw2+w4)/8r3

- w(323+3_)(4-Sw2+_4)/256r5)sin(2wr))/(4+w4) 2

+ cos(20)((9w/2)(-f2sCOS(2Wr)+f2cSin(2wr))/r3

- 9w2(f2cCOS(2wr)+f2sSin(2_r))/r 2 + 6w3(f2sCOS(2Wr)-f2cSin(2wr))lr

+ (3-ff)w2(4+w4)/8r 4 + ((1-ff)w4(4+w4)/8r 2

+ (3(33+_)w2(2-w2)/32r5 - (17+_)w2(4-8w2+w4)/16r 4

- 3(9+ff)w4(2-w2)/8r 3 + (5+q)w4(4-8w2+w4)/16r2)cos(2wT)

+ ((5+_)w5(2-w2)/4r 2 - (17+_)w3(2-w2)/4r 4

+ 3(9+q)w3(4-8w2+w4)/32r3 +
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- 3w(33+q)(4-Sw2+w4)/128r5)sin(2wr)l/(4+w4)2 + O(1/r5).

The constants f0s' f0c' f2s' and f2c which appear in the definition of p(2)

are related to the homogeneous solution to equations (7.1) and are defined in

01)arethe Appendix (The form of the solutions for u (0) u 0) u(1) and u• r ' ' r '

also presented in the Appendix.)

The form of these expressions allows us to make an interesting

observation concerning the angular dependence of the sound radiated from an

oscillating sphere. Specifically, it is interesting to examine the density

p(l (0)and velocity in the 0=_r/2 direction. In this direction, both ) and u r

are zero, while u_ 0) is nonzero. In contrast, for
p(2)this direction both

and u (1) are nonzero while u_ 1) is zero (since it contains a factor ofr

sin(20)). Thus, there is a "small" (O(M2)) amount of sound radiated in this

direction, which has a characteristic frequency of 2w. In particular, in the

far field we can use the expressions above to write

p(2)= u(1)+ O(1/r 2)
r

= (2w/r)((2f2sW2-fos)COS(2Wr) + (f0c-2f2cW2)sin(2wT)) _ + O(1/r2),

along 0=_/2.

In addition, we find that the expressions for u (1) and u_ 1)( correspond to a
r

rotational flow, even though u (0) and u_ 0) correspond to an i r rot at i onal flow.
r

The presence of vorticity in the flow can be interpreted as being due to

tangential acceleration of the fluid at the boundary, as discussed by Morton

(1984). This vorticity appears only very near the sphere and is given by
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_×_ = _Msin(20)(((_+l)w4/(4(4+w 4)))(log(r))/r 3

+ (w4(4-8w2+_4)/(4+_4)2)cos(2wTl/r 3

+ (4w5(2-w2)/(t+w4)2)sin(2wr)/r3 + O(1/r4)}.

In Figure 4, we have plotted approximations to r(p-1)/(Mcos(O)) as a

function of r at a fixed time for 0=0 and 0=_/3, as well as r(p-1)/M 2 at

0=_/2, with w=1.25 and for two different values of M. These approximations

are the multiple scales solution r(p(1)+Mp(2))/cos(O) (solid lines), the

classical linear solution (short dashed lines), and a solution obtained by

purely numerical means (circles). For this case, we found that numerical

approximations based on a Jameson type Runge-Kutta finite volume scheme,

which is second order accurate in both space and time, gave better agreement

with the multiple scales solution than numerical approximations based on the

MacCormack scheme, as in the case of the pulsating sphere. (We thank Mr.

David Lockard and Dr. Kenneth Brentner of the NASA Langley Research Center for

carrying out these calculations for us.) Again, the agreement between the

multiple scales solutions and the numerical solutions is qualitatively good.

c) A "Squishing" Sphere

As a third example, we consider the case when the radial component of the

surface velocity of the sphere is given by V = sin2(0)sin(2_)sin(wt) (see

Figure 2(d)). Thus, we set n=2 and m=2 in our results of sections 6 and 7,

and find from (6.10) with n=2 that the steady solution for f(t) is given by

(8.7) f(t) = (3(81+9w2-2w4+w6)) -l((9-4w2)sin(wt) - w(9-w2)cos(wt)),

while the solution for p is given by (6.9) with n=2, i.e.,

(8.8) p =-(f"(r)/r + 3f'(r)/r2 + 3f(r)/r313sin2(0)sin(2_b),
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with r determined by (7.8b) with n=2, i.e.,

r = t-r+l + (('/+l)/2)F2(r,rl)3sin2(0))sin(2¢),

F2(T,rl) = M(f"'(r)log(rl/M) - 3f''(T)((M/rl)-i )

- (3/2)f'(r)((M/rl)2-11).

Using these expressions we find

p(1) = sin(2¢)sin2(0)(

((27w-12w3)/r3+(27w3-3w5)/r2-(9w3-4w5)/r)cos(wr) +

((27w2-3w4)/r3-(27w2-12w4)/r2-(9w4-w6)/r)sin(wr))/(81+9w2-2w4+w6),

u (0) u_ 0) and u_ 0) as well as the form of the nextwhile expressions for r ' ' '

order perturbation coefficient functions, are given in the Appendix.

In Figure 5 we have plotted approximations to r(p-1)/(Msin2(O)sin(2¢))

as a function of r at a fixed value of time with M=0.6 for _ = r/12, _/6, and

r/4 at (a) 0=_/4 and (b) 0=_/2, using the multiple scales solution

rp(1)/(sin2(O)sin(2_)) (solid lines) and the classical linear solution

(dashed lines). Due to the excessive storage requirements for this fully

three-dimensional, time dependent problem, no numerical approximations were

computed.

9. Conclusions and Discussion

In this section we shall first make some general observations concerning

the perturbation approach we have employed to the problem of sound generation

by vibrating bodies, and then comment specifically on the insights gained from
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the exampleswe have presented.

Wenote first that the multiple scales perturbation approach has allowed

us to "capture" manyof the salient nonlinear features of acoustic wave
motion. For example, as the Machnumber increases, the nonlinear

characteristics of the gradual steepening of the waves, the asymmetries due to

"second harmonic" terms, as well as the convergence of the wave to an "N-wave"

profile, are all evident in the exampleswe have considered. These phenomena,

of course, are not predicted by linear theory. Thus, it appears that the
method has allowed us to obtain approximate analytical solutions which are

valid for (much) larger values of M than are the classical linear acoustic

solutions. In addition, the solutions assumea rather simple form, being

essentially of the sameform as the classical linear solutions, but with a

different argument. That is, the classical retarded time t+l-r in the linear

solution has simply been replaced by r, where v is defined implicitly. Other

perturbation approaches to this problem have resulted in more involved

expressions for the quantities of physical interest (cp., e.g., Crow (1970)).

(We should note that, if the present method of analysis were to be continued

to a higher order than that presented here, various terms of the form

k

MJllog(M))'_ should be added to the expansions (5.7). However, since the

present analysis was terminated at terms which are O(M2), these terms were not

needed and, hence, were not shown explicitly.)

The general form of the equation for T also provides an insight into the

interplay between the effect of the Much number and the angular variation of

the acoustical source on the form of the acoustic wave. For example, if M=0

or if the term pm(cos(0))cos(m¢-fl) is zero (corresponding, say, to a
n

particular value of 0 or 4), then from (7.8b) we see that v=t-r+l and, hence,

our solution (to leading order) reduces just to the linear acoustic solution.

However, if M_0, but the angular term Pm(cos(0))cos(m_-fl) is zero, then our
n

solution (to leading order) again reduces to the linear solution and hence the

nonzero Much number has only a second order (i.e. O(M2)) effect on the form of

the solution. These observations motivate us to define an "effective" Mach

number Meff. by
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Meff. _ MP:(cos(O))cos(m_-p).

Thus, it is the (angularly dependent) effective Mach number Meff. , and not

just M, which determines the magnitude of departure of the wave from its

linear form. This phenomena is illustrated in Figure 4 for the example of the

oscillating sphere, for which n=l and m=0 in the formulas above, and also in

Figure 5, corresponding to n=2 and m=2. In Figure 4(a), for example, the

linear form of the wave is clearly seen, even for nonzero Mach numbers, when

cos(0) approaches a value such that Meff. is zero.

In comparing our results with Whitham's (1974) results, we note that for

spherically symmetric disturbances (for which n=0) our equations (7.8) reduce

to his results. However, in more general problems (for which n>0), our

results differ from Whitham's equations. In the far field, where the log term

in the expression for F dominates the remaining terms, equation (7.8b)
n

reduces to

T = t-r+l + ((q+l)/2)f(n+l)(r)log(rl/M)MP_(cos(0))cos(m¢-p).

For n=0, this equation is equivalent to Whitham's equation for r. For n>0,

we use rl/M = r to note that this equation is the same as Whitham's result

when we replace M in his formula by Meff..

For n>0, the definition of T involves terms, through the definition of

Fn' which are negligibly small in the far field. However, these terms

appear to have an interesting (and vital) interpretation. In particular, the

terms other than the log term in Fn give rise to terms in D1T which are

O(1/r 2) (at least) as r-_0, which, in turn, give rise to terms on the right

sides of equations (7.1a,b) which are O(1/r3), as r+¢0. However, without these
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terms present, no steady state, periodic (particular) solution exists for

p(2), u(1)r , u_ 1), and u_ 1) To see this, we note first that, if a periodic

solution with period, say, T, for these quantities does exist, we can

integrate equations (7.1b)-(7.1d) over a complete period in t and, with a

little manipulation, obtain the relations

T T

0 = (a/00)_ (right side of (7.1b))dt- D0f (right side of (7.1c))dt,

0 0

T lb))dt0 = (O/o_k)_ (right side of (7. -D0fT(right side of (7.1d))dt.

0 0

The first term on the right side of each of these relations involves Dlp(1),

while the second terms in each relation is independent of Dlp(1). For

example, in the case of the oscillating sphere, the first of these relations

yields the requirement

0 = (_1,2 + 1)(7+l)w4/(8r3(4+w4))"

Thus, if a periodic solution is to exist, we must have al, 2 = -1 = al, 2, as

stated in equation (7.8b). Similar equations hold for n_2, which led to the

definition of Fn which appears in equation (7.8b).particular

It is also interesting to note how the distortion of the acoustical wave

from a linear wave varies with the parameter n. In Figure 6 we have plotted

rp(1)_ r(p-1)/M at M=0.3 for (a) the pulsating sphere (n=0), (b) the

oscillating sphere at 0=0 (n=l), and (e) the squishing sphere at 0=r/2 and

_=_/4 (n=2). (In (b) and (c) the angular variables were chosen so that the

distortion of the wave was maximum.) As the figure illustrates, for a given

value of M the amount of distortion decreases as n increases. Intuitively,

we may think of this as being due to the increasing number of "degrees of
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freedom" of the wave. Alternatively, to obtain the same amount of distortion

in the wave as n increases, the value of M would also have to be increased.

This observation is consistent with our one-dimensional example (which can be

thought of as a very "confining" flow), since for this example there was

significant distortion of the wave at a much lower value of the Mach number.

We also note that the analysis presented here may provide some insight

into the derivation of appropriate non-reflecting boundary conditions to be

used at artificial computational boundaries for a purely numerical simulation

of acoustical waves generated by general (arbitrary) sources. For example,

the rather simple form of our final results allows us to express the far field

behavior of the waves in a concise form. This expression, when used with some

of the ideas of Bayliss and Turkel (1980), for example, may allow us to derive

the required boundary conditions. Investigations along these lines are

continuing.
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Appendix

In this appendix we record the form of the perturbation coefficient

functions for the velocity components, as well as various constants,

associated with the examples presented in section 8.

Pulsating sphere:

u(0)=r ((r-1)w/((l+w2)r2)) c°s(wr) + (1/(1+w2))( W2/r+ 1/r2) sin(wr)'

u (1) = (b2/r 2 + 2b3w/r)cos(2wT) + (b3/r2 - 2b2w/r)sin(2wv)r

+ ((29-3ff)w2/(16r3(l+w2) 2) + w2(w2-1)/(r2(l+w2)2))cos(2wv)

- ((l+_)w21og(r))/(4r2(l+w2))

+ ((29-3ff)w(w2-1)/(32r3(l+w2) 2) - 2w3/(r2(l+w2)2))sin(2wT)

+ O(1/r4).

Oscillating sphere:

u(0)=r (2(r-1)w(2+rw2)c°s(_r)/r3 + (4-2w2+4rw2-2r2w2+r2w4)sin(wr)/r3)

.cos(0)/(4+_4),

u_0)= ((w(2r-2-rw2)cos(wr ) /r3 + (2-w2+2rw2)sin(wv ) /r3) sin( O) / ( 4+w4) ,

u(1)= R0(r)+Rl(r)cos(2wv)+R2(r)sin(2wT) +r

S0(r)+Sl(r)cos(2wr)+S2(r)sin(2wT))cos(20),

u_l)= (T0(r)+T l(r)cos(2wT)+T2(r)sin(2wr))sin(20),
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fOc= w2(2120+72_+(llO6-430_)w2+(519+7_)w4+(408+24_)w6)/(384(l+4w2)),

fOs = -w(2028-20_+(344-680_)w2-(1037-499_)w 4

+(360+104ff)w6-512w8)/(768(l+4w2)),

f2c = w2(-2106+198_-(141-563_)w2+(407-553_)w4-(280+lO4_)w 6

+(408+24ff)w8)/(24(81+36w2-32_4+64w6)),

f2s = w(4140-468_-(6136+248_)w2-(4261-3291_)w4+

(96-480_)w6-(2512+336_)w8+512wlO)/(96(81+36w2-32w4+64w6)).

Here each Rj, Sj and Tj can be expressed as a multiple of (log(r))/r and a

power series in the variable (l/r), beginning with a term proportional to 1/r.

u(O)=
r

Squishing sphere-

sin(2_)sin2(O) (((4¢aS-gw3)/r +(36w3-4¢aS)/r 2

+(81w-36w3)/r3-(81w-gw3)/r4)cos(wt) +

((81-36w2)/r4+(81w2-gw4)/r3-(36w2-16w4)/r2-(9w4-w6)/r)sin(wT)))

/(81+9w2-2w4+w6),

u_O)= 2sin(2_b)sin(O)cos(O)(

( (27w-3w 3)/r4-(27w-12w 3)/r3-(gw3-ta 5)/r 2) cos (wr) +

( (-27+12w 2 )/r4+(9w2-4w 4 )/r2-(27_2-3w4)/r 3) sin(w_)) / (81+9w2-2w4+w 6) ,

u_O)= 2cos(2_b)sin(O)(
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((27w-3w3)/r4-(27w-12w3)/r3-(9w3-w5)/r2)cos(wr) +

((-27+12w2)/r4+(9w2-4w4)/r2-(27w2-3w4)/r3)sin(wr))/(81+9w2-2w4._o6),

p(2)=

2 1

k=O "j =0

2 1

r

k=O "j =0

u_l)=

2 1

_s in(2k0) (j--_oC°S (4J _b) (Tk' J+TCk' J c °s (2wr) +TSk' J s in(2w_')) } 'k=l

uil)=

+ Uk,o+UCk,ocOS(2W_)+USk,osin(2w_')}.

Here each of the coefficients Rk,j, RCk,j,

multiple of (log(r))/r and a power series

with a term proportional to 1/r.

... , USk, j can be expressed as a

in the variable (l/r), beginning
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Figure 1: Approximations to (p-1)/M for the simple one-dimensional

example plotted as a function of distance from the source (at x=0) for
t=42.44, using the multiple scales approximation from equation (4.18) (solid
lines), the classical linear solution (4.15) (short dashed lines), and a
solution to equations (4.1)-(4.2) obtained by purely numerical means
(circles), with (a) M=0.01 and (b) M=0.04.
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Spherical Coordinates (r,0,_)

(a)

/ \

/ \
/ "l

\ /"
\ /

Pulsating Sphere (l-D)

(b)

Z

N 7
\ /

(c) Oscil]ating Sphere (2-D) (d) "Squlshin¢" Sphere" (3-D)

Figure 2: (a) An illustration of the Cartesian and spherical coordinate

systems used in sections 5-8. Also, an indication of the vibrations of the

sphere for the three examples considered in section 8: (b) the pulsating

sphere; (c) the oscillating sphere; and (d) the "squishing" sphere, indicating
the motion of the sphere in the plane 0=_/2.
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Figure 3: Approximations to r(p-1)/m for the pulsating sphere plotted as

a function of distance from the center of the sphere at t=50 and for w=1.25

using the multiple scales solution r(p(1)+ Mp(2)) (solid lines), the
classical linear solution (short dashed lines), the approximation based on

Whitham's (1974) first order solution (long dashed lines), and a solution
obtained by purely numerical methods (circles), for (a) M=0.1 and (b) M=0.3.
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Figure 4: Approximations to r(p-l)/(Mcos(0)) for the oscillating sphere

for 0=0 and 0=r13, as well as approximations to r(p-1)/M 2 at 0=_12 plotted as

a function of distance from the center of the sphere at t=25 and for w=-1.25

using the multiple scales solution (solid lines), the classical linear

solution (short dashed lines), and a solution obtained by purely numerical

means (circles), for (a) M=0.1 and (b) M=0.3.
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Figure 5: Approximations to r(p-l)l(Msin2(O)sin(2_)) for the "squishing

sphere" example plotted as a function of distance from the center of the

sphere at t=50 with w=1.25 and M=0.6, for (a) 0=r/4 and (b) 0=_/2, at _ =

r/12, _/6, and _/4, using the multiple scales solution rp(1)/(3sin2(O)sin(2_)

(solid lines) and the classical linear solution (dashed lines).

(b)
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(a) Pulsating Sphere
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Figure 6: Comparison of rp(1)_ r(p-1)/M with M=0.3, t=50, and w=1.25 for:

(a) the pulsating sphere, (b) the oscillating sphere at 0=0; and (c) the

squishing sphere at 0=_/2 and ¢=r/4. In each case, the corresponding linear
solution is plotted as a dashed line.
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