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Abstract

This report concerns the prediction of the elastic moduli and the internal stresses within the
unit cell of a fabric reinforced composite. In the proposed analysis no restrictions or assumptions
are necessary concerning yarn or tow cross-sectional shapes or paths through the unit cell but the
unit cell itself must be a right hexagonal parallelepiped. All the unit cell dimensions are assumed
to be small with respect to the thickness of the composite structure that it models..

The finite element analysis of a unit cell is usually complicated by the mesh generation
problems and the non-standard, adjacent-cell, boundary conditions. This analysis avoids these
problems through the use of preprogrammed boundary conditions and replacement materials (or
elements). With replacement elements it is not necessary to match all the constituent material
interfaces with finite element boundaries. Simple brick-shaped elements can be used to model the
unit cell structure. The analysis predicts the elastic constants and the average stresses within each
constituent material of each brick element. The application and results of this analysis are
demonstrated through several example problems which include a number of composite
microstructures.
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I. Introduction

A unit cell of fabric reinforced composite is any small, closed, polygonal volume of
inhomogeneous material (often brick shaped) which, when reproduced and similarly aligned, can
be stacked , (side by side, top to bottom, and end to end) and joined together (as in solid brick
construction) to approximate a varicty of simple structural components whose minimum external
dimensions are much larger than any unit cell dimension. Furthermore, it is desired that the
thermo-mechanical response of the component and the unit cell assembly be similar. A variety of
different unit cells and analyses have successfully predicted fabric reinforced composite moduli
(Ref. 1) and average thermal properties (Ref. 2) but the resolution of the detailed internal stress
distribution within a unit cell has been more difficult.

The ability to resolve the stresses within the unit cell of a fabric reinforced composite has
at least three areas of applicability. Problems of crack growth within the microstructure are the
most challenging of the three. The capacity to resolve the stress details must be very high in this
application. Another level of usefulness is the prediction of the initiation and propagation of
yielding or plastic flow (usually in the matrix phase) within the microstructure. This still requires
a detailed knowledge of the internal stresses but it is not necessary to superimpose crack induced
stresses on top of an already complicated stress field. A third, and much less demanding, level of
usefulness is in material ranking and trade off studies. This level of engineering rates the
likelihood of different fabric microstructures to perform satisfactorily in specific applications.
Here the performance criteria can be quite simple and the demand for stress accuracy and detail
can be significantly less than in the two prior applications. The large number of material and
microstructural parameters available to the designer (or selector) of a fabric reinforced composite,
coupled with the expense of experimentally characterizing these materials, makes initial screening
by mechanical analysis more attractive. It was this application that was of most concern in the
development of this analysis method. Numerical accuracy was clearly sacrificed to reduce
modeling complexity in a manner consistent with material screening and comparison study
requirements.

The three-dimensional stresses within a unit cell of a fabric reinforced composite can be
predicted by the application of a general purpose finite element code. However, the associated
boundary conditions on the unit cell surface and the mesh generation problems can be difficult.
The program described in this report avoids these difficulties through the use of preprogrammed
boundary conditions and replacement elements. With replacement elements it is not necessary to
match all the internal material interfaces with finite element boundaries. Thus, simple, uniform,
parallelepiped elements can be applied to a unit cell structure whose boundaries are themselves a



parallelepiped. Most of the common reinforcing microgeometries can be modeled with this shape
of unit cell. The analysis predicts both the stresses (and strains) within each homogeneous
element, and the average stress (and strain) within each dissimilar material contained in each
replacement element. Conventional yield or failure criteria can then be applied to each material in
each element, as in conventional stress analysis.

The proposed analysis places no restrictions on fabric microgeometry within the unit cell
except that the fibers all be continuous, the fiber packing within any tow remain relatively
constant, and the microgeometry be deterministic.

The key to the usefulness of this analysis is the performance of the replacement elements.
This performance will be investigated for several sample problems of increasing complexity.
These sample problems also help to explain the analysis and its application. The discussion begins
with a simple one-dimensional tension bar problem. At this level the analysis seems almost trivial.
The extension to two and three-dimensional problems is not trivial. In some of the sample
problems the exact solution for the internal stresses is known. The plain weave unit cell is the most
complex of the sample problems. For comparison, another numerical solution to this problem is
available from an earlier study.

The two and three-dimensional problems require a computer analysis. The final version
of this numerical analysis, as it evolved from a sequence of programs directed at each sample
problem, is a Fortran program written for the Sun Spark station 1. All of the equations and
derivations for the two and three-dimensional analyses, along with the program listing and
input/output descriptions, appear in the Appendices.

This analysis method and the related Fortran program, REPLACE, are considered to be an
update of the earlier analysis program, FABNEW, which was developed about four years ago
(Ref. 1). However, the earlier program has a thermal expansion prediction capability that could
not be incorporated into REPLACE due to time and schedule limitations.



II. One Dimensional Analysis

In this section, the application and characteristics of replacement finite elements will be
introduced at the simplest level, namely one-dimensional clastic analysis. Through the example of
a tension bar, the convergence of various finite element models for the elastic deformations will be
investigated and compared to the known solution. The proposed replacement element analysis is
also capable of predicting average stresses in cach constituent material within each clement. The
accuracy of these stress predictions are considered. There is no direct computational advantage to
the use of replacement elements to model such a simple problem but it is instructive to initially
consider the use of these elements at this elementary level.

Sample Problem #1

Consider the tension bar of Figure 1 in which the left hand half is made from a
homogeneous isotropic material with modulus E and cross-sectional area A. The other half has
the same cross-sectional area but the material is five times stiffer. From elementry considerations
the total elongation of the bar (3) is given by the sum of the elongations of the two halves.

=2+ sie(s) -2 5

AE\2/ BSAE\2 5 AE

where P is the axial load and L the total length of the bar. The axial stress () and strain (€ ) in
each material are given by

P
O = Op = A
- S
where subscripts r.L designate right and left.

The same results could also have been obtained using finite element analysis as long as one
of the finite element nodes coincided with the material discontinuity. In that case all of the
clements would be homogeneous and their stiffness matrices precise, as long as the assumed
displacement mode shapes included a constant and a lincar term. The stiffness matrix [k] relevant
to the axial forces and displacements at the end points of the bar is given by

_SAE| 1 -
(k) = =T [-u ‘]



If the material discontinuity does not coincide with a node point then one element will be
inhomogeneous, as shown in Figure 1, and the finite element solution will be an approximate one,
as long as the assumed displacements are simple polynomials. The accuracy and convergence
depends on the choice of mode shapes. For example, consider a linearly varying displacement
within each element and an internal node placement at the 1/3 and 2/3 points along the bar length,
as shown in Figure 1. Each subsequent refinement of the finite element grid divides each prior
clement into three equal segments. The middle element of the model will always be
inhomogeneous as the element size decreases. The stiffness matrices for the homogencous elements

are given by

_AE -
(k=9 [—I 1]

where 1 is element length.

The stiffness matrix for the single inhomogeneous element could be obtained from the
general energy formula (Ref. 3)

L
tk]=[ffBTDde = AfBTDde ()
0

VoL
where B is the strain/displacement matrix and dx (dv) is an increment of length (volume) along the
bar. D is the local material stress/strain relation. Supercript T designates transpose of a matrix.
The resulting inhomogeneous bar stiffness matrix is given by

_3AE| ! -
(k) = =5 [_l |].

Figure 2 is a plot of the error in the bar elongation prediction as element size diminishes. The
predicted end displacement approaches the known solution monitonically as the influence of the
single inhomogeneous element error diminishes with element length. However, the error in the -
average strain of the center element persists at a high level (80%). This error can be reduced by
resorting to higher order elements; but there isno accepted method for obtaining either the average
or the detailed strains or stresses in the constituent materials within the inhomogeneous element.




Now consider a different approach to the same problem. Instead of applying the energy
formula for the stiffness matrix, replace the inhomogeneous material with a fictitious homogeneous
material that matches the axial response of the inhomogeneous materials. The center element is
obviously a case of "stiffness in series”, for which an equivalent modulus (E) can be obtained from
the rule of mixtures for stiffnesses in series (Ref. 4):

ELER
VLER"’ VREL

E =

where v j stands for fractional length of the i th segment of the element . For the particular
example at hand where E=E, =Ep/5and v, = Vg = 0.5

= _ S5E

E =33
If this equivalent modulus is used for the center element the exact solution results. What is better,
the "stiffness in series” model can be used to compute the average and local stresses and strains in
the various materials of the inhomogeneous element from the nodal displacement solution. In
particular, from Figure 1,

- _ P _ _ P

which is the correct result.

This process of substituting equivalent homogeneous elements in place of inhomogeneous
ones is termed the "replacement element” method.

Of course, if the "element in series” results were known, a priori, there would have been no
need to resort to a finite element solution. However, in more complicated two and three-
dimensional problems, knowing the local solutions for series and parallel stiffness models is not
equivalent to solving a global problem that involves their use in place of inhomogeneous elements.
For example, if the tension bar of Figure 1 were part of a redundant truss problem a truss analysis
would still be required.

The error inherent in the use of the general energy formula, in combination with a low
order displacement mode shape assumption, arises from the formula's inability to distinguish
between series and parallel stiffnesses. For one-dimensional problems, with linear displacement
assumptions, the energy formula presumes a "stiffnesses in parallel” situation, whether that is the
case or not. The introduction of higher order displacement modes permit the general energy
formula to make the necessary distinction. However, for polynomial mode shapes and
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discontinuous material propertics, the convergence rate improvements are slow and detailed stress
and strain determination problems remain.



III. Two Dimensional Analysis

This section applics the concept of substituting replacement homogeneous elements
in place of inhomogeneous ones at the generalized plane strain level of two-dimensional
analysis. As in the one-dimensional case, the approach is first illustrated through a specific
example for which the exact solution is easily obtained.

There are several different notions that should be introduced in the transition from
one to two dimensions. The first is the unit cell concept. Much of the earlier work (Ref. 5)
on the resolution of detailed stress fields in unidirectional materials (and laminates built up
from unidirectional plies) used this type of idealization to make a large random
microgeometry amenable to deterministic analysis. The unit cell approach looks for the
simplest essential volume of composite microstructure from an analysis viewpoint. In
two-dimensional analysis this selection is usually easy. Ref. 5 considered some convenient
unit cells for square and hexagonally packed unidirectional composites. Each of the three
sample problems in this section will begin by defining one or more unit cells for subsequent
analysis. There are an infinite number of possible unit cells for a typical composite
microstructure so the final choice is often somewhat personalized. The smallest unit cell is
not always the most convenient one if the boundaries are non-rectangular.

Another basic difference between one and two-dimensional problems is the
mathematical nature of the replacement element idealization. In one dimension the material
interfaces are discrete points. Continuity of normal stress and the geometric relationship
between average element normal strain and average constituent normal strains are the only
relevant concerns. In two-dimensional analysis the constituent material interfaces are
assumed to be linear (or planar) with several local stress and strain components of concern.

The physical nature of the replacement element process also changes from series
and parallel bar or rod models to parallel plate models. The use of the general energy
formula from Eq. 1 (as applied to a two-dimensional finite element) in combination with
low order displacement mode shapes lead to the tacit assumption that each constituent
material is arranged in a stacking of thin plates parallel to the plane of the analysis. The
dissimilar material plates have their thicknesses in proportion to their respective volume
fractions in the element. In reality, the constituent material interfaces are not parallel to the
analysis plane but normal to it. The replacement element process corrects this
inconsistency by rotating the same stacking of plates 90° about the material interface such
that the final set of interfacial planes, between the parallel plates, preserves the original
angle of the interface in the plane of the analysis. This procedure can only be applied to
two constituent materials at a time whose interface is a single straight line in the



planc of the analysis. Thus, while the energy formula preserves only the constituent material
volume fraction, the replacement element process preserves both the constituent volume fraction
and the direction of the interface. Only the order or sequence of constituent material positioning
across an interface is lost in the idealization. This process is best understood by considering the
specific examples that follow.

Sample Problem #2

Figure 3 shows a laminated composite consisting of parallel bonded sheets of two
different homogencous isotropic materials. On & gross scale this assemblage of plates may be
considered to be a composite material with a plane of isotropy parallel to the material interfaces.
The principal axes of the composite are any pair of axes in the plane of isotropy with a third axis
normal to that plane. In the principal axes, or natural coordinates of the composite, the elastic
constants can be established from the application of elementry mechanics principals to the unit cell
structure. Also, the same elementry model can be used to obtain the equations for the internal
stresses in each contitutent material corresponding to any remotely applied state of uniform
composite stress or strain. The elastic constants and the detailed stresses and strains can then be
transformed into any global reference system: in particular, the one shown in Figure 3 where one of
the natural coordinates correspond to the z-axis of the global reference system.

The isotropic properties of the two sets of parallel plates can be chosen to match the
properties of aluminum and epoxy from Table 1. The volume fractions of both constituents are
0.5. From elementry mechanics considerations the elastic constants of the composite, in the
principal axes, can be obtained as follows. Consider the unit cell of Fig. 3 in the 1,2,3 coordinate
system. From equilibrium and resolution of forces the average composite stresses (5‘; ,7” ) are
related to the constituent stresses (T .k ) 7;:‘ ) by

0, = 0'2:' = 05°
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where v; designates volume fraction of the i th constituent and Ep and AL designate epoxy and

aluminum respectively. The corresponding strains ( € - ‘7” , e‘; , ’yk ) are related by
[}

geometry and compatability as follows )
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These 12 equations plus the individual stress/strain laws for the two constituent materials form a
system of 20 equations that can be solved for the composite stress/strain relation and the individual
constituent stresses and strains corresponding to any applied composite stresses or strains (see
Appendix A). From the composite stress/strain relations the composite elastic constants are

E, =E; =525x 106 psi
E,=1.39x 106 psi

G =0.354x 106 psi
Vg =Vyy =0325

Vi3 = 0.255

From these principal values the enginecring constants in another coordinate system, obtained by a
rotation about the 3-axis of Figure 3, can be calculated from the appropriate 2-D transformation

equations (given in Appendix B). In particular, for a rotation of 459 about the 3-axis of Figure 3
the elastic constant are

Ex=Ey=111x106psi
E,=5.25x 106 psi
Gyy=0.968 x 106 psi
Vyy = 0.566

Vxz = Vyz = 0.067

Tyx = Thay,y = -0.296
Tixyz=0.034



For an average composite tensile stress of one psi in the x-direction (with all the other
average stress components equal to zero) the stresses in the constituent materials are given by

Aluminum Epoxy
Oy 1.103 0.897
Oy 0.103 -0.103
C, -0.251 0.251
Txy 0.103 -0.103

These stress and moduli predictions from elementry analysis are exact because they can be shown
to satisfy all the local and global conditions of equilibrium and compatibility.

As in the one-dimensional example, these results can also be obtained by conventional
finite element analysis using various types of elements and grids. The unit cell can be analyzed in
the principal coordinates of the material, as shown in Figure 4, using rectangular or constant
strain triangular elements without violating element material homogeniety. The applied unit stress
in the x-direction can be resolved into its components in the 1,2,3 coordinates of Figure 4 by either
a Mohr's circle or the use of the stress transformation equations of Appendix B. The resulting
composite moduli and constituent stress predictions can then be transformed back into the global
x,y,Z coordinate system. These results agree precisely with the results of the elementry analysis.

Alternatively, using the unit cell and grid of Figure 5A, with constant strain triangular
elements, the exact results can be obtained from homogeneous elements without the necessity of
transforming the input and output from one coordinate system to another.

It is interesting to also consider the application of inhomogeneous finite elements to the
analysis of the same unit cell. Figure 5B shows this unit cell of the composite and one possible
subdivision of the unit cell into rectangular elements. Some of the elements are homogeneous and
some inhomogeneous. Using 4-node, isoparametric, brick elements (Ref 3); generalized plane
strain analysis; the 25-node finite element grid shown in Figure 5B; and the general energy
formula (Eq. 1) for the stiffness matrix of the inhomogeneous elements, the analysis
overestimates the x and y moduli by almost 100%. Refinement of the grid leads to the moduli
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estimates of Figure 6. The convergence is slow. Furthermore, there is no effective method of
obtaining constituent material stresses within the inhomogeneous clements.

Now consider replacing the inhomogenceous elements in this example problem with
replacement elements. To make this substitution in two dimensions first consider a subelement of
the inhomogeneous material, shown in Figure 7. The sides of this subelement are cither parallel or
normal to the material boundary plane. The volume fractions of the two materials are the same in
the subelement as in the element that contains it. Assume that the replacement homogeneous
material for the subelement and the whole element are the same. The derivation of Appendix A
then can be applicd to establish both the replacement homogeneous material moduli and the
average constituent material stresses, once the average element strains are established. The physical
nature of the homogeneous-inhomeogeneous replacement process is now evident. The
inhomogencous element of Figure 7 is replaced by a homogeneous composite element consisting of
parallel plates bonded together in the same volume fraction as the inhomogeneous element and
having the same orientation of the material interfaces. With the 25-node finite element grid the
substitution is of the nature shown in Figure 8. For simplicity let the rectangular element
stiffness matrix be made up of the sum of two constant strain triangular elements. (There is no
need for higher order elements in this example.) The same replacement material substitution is
done for both of the constant strain triangles that make up the rectangular element. The stress
predictions for the constituent materials in the rectangular element are the average values from the
two triangles.

The results from the 25-node finite element analysis are not the same as the exact solution
for either the moduli or the constituent stresses. The Young's modulus in the loading direction is
31% high as a result of the use of the replacement elements. This is a considerable improvement
over the 100% error using the same finite element grid with the general energy formula for element
stiffness. This error diminishes to less than 14% if the rectangular grid is changed from 4x4 to 8x8
as shown in Figure 9. Since the replacement element analysis also provides constituent stresses it
is of interest to compare the stresses in the 4x4 replacement elements to the known results. The
following table makes this comparison.

i Phase _ Epoxy Phase
Replacement Replacement
Element Exact Result Element Exact Result
Ox(psi) 0.906 1.103 0.677 0.898
O y(psi) 0.168 0.103 -0.081 -0.103
O z(psi) -0.264 -0.251 0.189 0.251
T xy(psi) 0.155 0.103 -075 -0.103
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The peak stresses from the replacement elements are about 20% lower than the exact values.
Unfortunately, as in the one-dimensional case, these constituent stress errors do not diminish with
grid refinement. These errors must be reduced by the use of improved elements. The stresses in the
homogeneous elements away from the replacement elements do converge rapidly to the exact
results with increasing grid refinement.

As was true in the tension bar example, the use of the general energy expression for the
inhomogeneous element stiffness matrix, in combination with low order displacement mode
shapes, favors an "elements in parallel” model of behavior rather than an "elements in series”
model as is sometimes more appropriate. Figure 10 illustrates this tendency of an inhomogeneous
plane stress element (by reference to a lattice or framework model). If the upper and lower halves
of the element, as shown in Figure 10A , were made of dissimilar isotropic materials then good
engineering judgment would dictate the lattice representation of Figure 10B, where lattice members
that cross the material boundary are modeled as "elements in series” while those that do not cross
the material boundary are simply homogeneous. The low order energy formula leads to a lattice
structure of the type shown in Figure 10C. If there is not much difference between the stiffness of
the constituent materials the two lattice models do not differ significantly. But if the constituents
are very different, elastically, then the two models differ widely.

Sample Problem #3

This sample problem involves the determination of the extensional moduli and fiber/matrix
stress concentrations for-a unidirectional composite consisting of a square packed array of glass
fibers in an epoxy matrix. These stiffnesses and stress concentrations are well established from
several earlicr micromechanics investigations. It will be shown that finite element analysis based
on the substitution of orthotropic replacement elements for the inhomogeneous elements can yield
approximately the same results for both moduli predictions and stress analysis even though the
stresscs within any constituent material in the unit cell model are not uniform.

The specific problem concerns a 50% fiber volume fraction of unidirectional E glass in an
epoxy matrix. Figure 11 shows the square packed array of fiber cross-sections and a single unit
cell of the composite. At most, only one quadrant of the unit cell needs to be analyzed due to
structural and load symmetry. The constituent material properties are given in Table 1.

The 5 x 5 rectangular finite element grid of Figure 12 is superposed on the fiber/matrix
geometry. The rectangular, generalized plane-strain, element stiffness matrices are formed from a
pair of constant strain triangular elements, using the same replacement material properties in each
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triangle of the rectangle. This leads to the material model of Figure 13 in which the plate thickness
and spacing within each originally inhomogencous element reflects the true constituent volume
fractions and the approximate interfacial geometry (with the cylindrical interfacial surfaces
replaced by flat planes).

Figure 14 contains contour plots of the stresses in the epoxy matrix due to a remote unit
average tensile stress normal to the fiber principal axis. The stress distributions in the glass fibers
are somewhat featureless. The stresses in the inhomogeneous elements were treated the same as the
homogeneous element stresses in preparing the contour plots. For comparison, the same
distribution of matrix stresses is also given in Figure 15 from Reference 5. The latter stresses
were established using a conventional finite element analysis in which all the elements were
homogeneous and isotropic. The stress distributions are essentially the same except for a slightly
higher replacement element stress concentration at the fiber/matrix interface along a line of closest
approach of adjacent fibers in the loading direction. This shows that the replacement scheme can
give accurate stresses when the stresses and strains within the constituent materials are nonuniform.
Furthermore, it is not necessary to resort to more refined grids in order to obtain comparable stress
predictions.

The transverse Young's modulus prediction from the replacement element solution was 1.8
million psi. This also compares favorably with other published values for the same square-packed
array of glass fibers. For example, Reference 4, lists a value of 1.7 million psi for a 50% fiber
volume fraction glass/epoxy with similar constituent properties using conventional finite element
analyses.

Sample Problem #4

This sample problem also represents a 2-D generalized plane-strain analysis in which the
‘constituent material stresses are not uniform. However, the geometry of the reinforcement phase
was chosen to resemble that of a wavy tow. This microgeometry has sometimes been chosen as
representative of woven fiber unit cell microgeometries (References 4, 6 ). Figure 16 shows the
idealized composite structure and a unit cell of that structure. The reinforcing phase consists of
stacked layers of corrugated aluminum sheets separated by similar layers of epoxy. Perfect
bonding is assumed between the two phases. The dimensions of the microstructure are given in
Figure 17. The Young's modulus of the composite normal to the plane of Figure 16 can be
predicted adequately by the rule of mixtures for elements in parallel, but the Young's moduli in the
x or y- directions require a finite element analysis. This analysis will also consider the
deformations and stresses in the unit cell as a result of some average strain in the x-direction, with
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all other average strain components held to zero. The constituent material properties are given in
Table 1. The volume fraction of the aluminum is 56%. From symmetry of the mlcroslmctune and
loading only half of the unit cell needs to be analyzed.

In order to have a basis of comparison for the approximate analyses a detailed finite
clement analysis was performed on this microstructure using the NASTRAN code (Ref. 7) and the
two grids shown in Figure 18. The coarse grid contans 20 elements. The refined grid has 676
elements. All the elements were homogeneous isotropic CHEXA2 or CWEDGE elements. Three
independent unit strain cases were run in order to obtain average composite extensional properties
and the corresponding stresses and deformations. The average strain case {é x=10, € y= € z
= 7yz = ')’xz = ')'xy = 0.0} gave the required internal deformations and stresses. The strain
cases {€ z=10,€Ex= € y="Yyz="Yxz="TYxy=00}and { Ex= € y= € z=10

'}’ yz= ')’ Xz = '}’ xy = 0.0} gave sufficient information to establish the extensional
moduh. The last strain case was obtained by specifying that all average strains vanish and that
both constituent materials have a unit coefficient of thermal expansion while the unit cell is subject
to a one degree change in temperature. This was necessary to avoid the occurrence of constant
displacement terms in the multi-point constraint equations at nodes that were located on surfaces of
the unit cell where symmetry conditions did not apply (Ref. 7).
The generalized plane strain, extensional, elastic constants from the NASTRAN models are

Coarse Grid Fine Grid
Ex psi (x106) 3.55 3.09
Ey psi (x106) 1.48 1.43
Ez psi (x106) 581 5.83
Vax 0.25 0.26
Vay 0.32 0.32
Vyx 0.20 0.24

The results from the fine grid are used as the basis of comparison for this example problem.
Figures 19 and 20 contain plots of the unit cell surface normal deformations and internal stress
components for the €x# 0 strain case. Many of the stress details of the fine grid are not evident
in the coarse 20-clement solution. Even with the refined grid it is not certain whether some of the
peak stresses have been accurately quantified. The large amount of periodic local bending and
shearing deformations in the reinforcing sheets are evident in the deformation plots. Large local
bending stress gradients through the aluminum sheets are also evident in the stress plots. In brief,
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the task of characterizing the response of this microstructure is a more complex problem than the
previous example problem and represents a stiff test of the replacement element method.

First consider the inhomogeneous element modeling of this microstructure using the 4 x 4
grid of Figure 21 and the general energy formulation for the inhomogeneous element stiffness
matrices. Using four-node, isoparametric, generalized plane strain elements, with the 16-clement
grid the extensional moduli estimates are

E, = 4.90 x 106 psi
Ey = 3.12 x 106 psi
E; = 584 x 106 psi

Except for Ez these estimates deviate significantly from the NASTRAN results. If the grid is
refined from 4 x 4 to 8 x 8 as shown in Figure 21 the moduli values improve somewhat to

Ex = 3.95 x 106 psi
Ey = 2.32 x 106 psi
Ez = 5.88 x 106 psi
However, both the Ey and Ey moduli estimates remain beyond the desired bounds of engineering

accuracy, and no internal stress data accompany these stiffness estimates. Both of these
shortcomings can be remedied by the use of replacement elements.

From the NASTRAN stress results it is obvious that the 4 x 4 grid will not give sufficient
detail to present any kind of comprehensive picture of the true stress distributions, no matter how
accurate the replacement element results may be. Thus the 10 x 10 grid of Figure 21 is applied to
the current problem with the same type of rectangular replacement element that was used in the
previous sample problem. With this grid 18% of the elements are inhomogeneous. The resulting
moduli estimates are

Ex = 3.21 x 106 psi
Ey = 1.62 x 106 psi
E, = 5.89 x 106 psi

These values compare favorably to the base line NASTRAN results. Figure 22 presents the stress
contours and unit cell surface normal deflections from the 10 x 10 replacement element analysis of
the Ex # 0 strain case. The approximations are remarkably consistent with, though slightly less
detailed than , the fine grid NASTRAN results in Figure 20. The approximations are a major
improvement in detail over the coarse NASTRAN stress results.
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IV. Three Dimensional Analysis

The previous sections and example problems have hopefully established the credibility of
the replacement element method at the one and two-dimensional analysis levels. This section
extends the method to the 3-D level. Figure 23 shows a parallelepiped element containing two
diffcrent constituent materials. The geometric configuration can be described by specifying the
volume fraction of one (or both) constituent and the direction of a normal to the interfacial plane.
The sequence in which the constituent materials appear, as an observer moves along the normal to
the interfacial plane, is irrelevant to the replacement element method. Figure 23 illustrates the
two spherical angles \J/, /5 that specify the direction of the normal to the interfacial plane. These
two direction angles also serve to locate a set of local coordinates (X,y,Z) parallel and normal to the
interfacial plane. The ¥ and Z axes lie in the plane. X is normal to it. The replacement element
concept rearranges the two bulk constituents into a series of parallel plates with the plate surfaces
paralleling the original interfacial plane. Normal and tangential shear stress continuity is preserved
across the interface. Compatability of normal strain in the y and z-directions and shear strain in
the yZ plane (of Figure 23) is maintained across the interfaces.

Constituent material properties are treated more generally than in the 2-D case. Each
constituent is assumed to be orthotropic with a plane of isotropy normal to the principal
reinforcing direction. The principal reinforcing direction must be specified, by means of two
spherical angles, | and @5. These angles are referenced and measured in the same sense as the
/1 and Y 2 angles of Figure 23 with the interfacial normal direction replaced by the grain (or
fiber) direction of the constituent material. Usually the principal reinforcing direction will parallel
the interfacial plane but this is not assumed in the analysis.

To form the stress/strain law for the replacement element a number of stress and strain
transformations must be carried out. Each constituent material has its stress/strain relations
initially specified in the natural coordinates of the material. These properties must be transformed
into the x,y,z global coordinates first and then transformed into the X,y,Z interfacial coordinates.
The replacement analysis then yields the replacement material stress/strain law in the X,3,Z
coordinates. Finally, these properties are transformed back into the global x,y,z coordinates for use
in constructing the element stiffness matrix. This sequence of transformations is retraced (after the
finite element analysis of the unit cell yields node point deflections and average element strains in
the global coordinates) in order to get constituent material stresses in the natural coordinates of the
materials. Appendix C derives the replacement element stress/strain equations in the interfacial
coordinates. Appendix D gives the transformation equations.
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The 3-D stress and strain transformations are accomplished by a pair of essentially 2-D
transformations. Each transformation accounts for each spherical angle of rotation that specifies
either the direction of the normal to the interfacial plane or the fiber direction.

Sample Problem #5

As in the 1-D and 2-D case, the first 3-D sample problem is an elementry one for which a
solution is available. However, in this case the known solution is not exact. The problem concerns
the "3-D weave" or "XYZ" composite construction (see Figure 24) in which there are three
orthogonal fiber directions (Ref 8) . The fibers remain essentially straight. The volume fraction of
fibers in each of the orthogonal directions usually vary to match the design requirements. The
types of fibers may also vary with direction. Figure 24 shows one unit cell of the composite
microstructure. Symmetry considerations reduce the essential part of the unit cell that must be
analyzed to one eighth of the total unit cell volume. This reduced volume is shown in Figure 25. It
has a 25% volume fraction of interstitial bulk matrix, a 25% volume fraction of unidirectional
composite with fibers in the x-direction, a 37.5% volume fraction of composite in the y-direction
and a 12.5% volume fraction of composite in the z-direction. The unidirectional material is taken
to be graphite/epoxy with the properties listed in Table 2 under material A. The bulk epoxy
properties are the same as in the prior sample problems. Using conventional, homogeneous, eight-
node, isoparametric brick elements and the finite element grid of Figure 26A, the extensional
composite elastic constants are

Ex = 5.49 x 106 psi
Ey = 755x 106 psi

E, = 343 x 106psi
\Y =

yz = 0.128

Viez = 0131

Vyy = 0.055

The average normal stress in the x-direction in each element as a result of an applied average tensile
stress of 1000 psi in the global x-direction is given in Figure 27. The results are approximate
because the stresses are not constant within each brick element.

The same problem can also be addressed using the replacement element approach. For
cxample, if the finite element grid of Figure 26B were applied to the XYZ microgeometry there
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would be three of the eight, equal -sized, brick elements that were inhomogeneous. Using the
replacement element analysis of Appendix D the pairs of inhomogeneous material in each of these
three elements can be resolved into three different replacement materials. Using one of these
replacement materials in each of the inhomogeneous brick elements the finite element analysis can
proceed as a homogeneous element analysis and the composite stiffnesses and average element
strains obtained. The same replacement material model may then be used to obtain average
constituent stresses and strains within each element. These stress predictions are given in Figure
28. A comparison of Figures 27 and 28 shows that the approximate results from the replacement
clement analysis are of considerable engineering value. The moduli predictions from the two

models compare as follows:

Homogencous Elcments Replacement Elements
Ex 5.49 x 100 psi 5.46 x 100 psi
Ey 7.55 x 106 psi 7.55 x 106 psi
E, 3.43 x 106 psi 3.44 x 106 psi
Viyz 0.128 0.128
Vxy 0.055 0.054

There are no stiffness discrepancies of any note between the models. The details of the input data
are given in Appendix E where this sample problem is used to demonstrate the input data
sequences for the interactive use of the replacement element computer code.

Sample Problem #6

The next 3-D sample problem represents a composite comprised of solid glass spheres in an
epoxy matrix. The volume fraction of the glass reinforcing phase is 25%. The spheres are all the
same size and are assumed to be packed in a cubic array as shown in Figure 29. The ratio of
sphere diameter to the spacing distance between centers of adjacent spheres (in the direction of
closest approach) is 0.684. The problem is the prediction of both the principal Young' modulus in
the x-direction of Figure 29 and the peak normal matrix stress along the line of closest approach
of adjacent spheres when the composite has an average remotely applied tensile loading of one psi
in the x-direction, with all other average stress components equal to zero.

The problem has no known exact solution but a numerical solution could be obtained with
any general purpose, 3-D, finite elements code based on the use of conventional, homogeneous,
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isotropic clements. However, it is of current interest to obtain a solution using rectangular grids
and replacement elements.

From symmetry considerations only one octant of a unit cell of the composite needs to be
analyzed. Figure 30 divides this octant into cubic elements with the 4x4x4 subdivision shown.
Each element is designated by an i j,k combination of integers. The i integer indicates the element
number along x-axis starting at the origin of Figure 30. j and k are the corresponding element
counts along the y and z-axes respectively. The 1,1,1 element has one corner on the origin and the
4,44 element is the farthest one from the origin. Table 3 contains the spherical angles (Y 1, 2)
that designate the direction of the outward pointing normals from the surface of the glass sphere in
each element. The table also contains the element volume fractions that are glass and epoxy. This
is all the input data that is necessary to compute the principal moduli of the composite and the
stresses in each material of each element using replacement elements. In this example there are 16
inhomogeneous elements out of a total of 64. Each element is modeled as an 8-node,
isoparametric, cubic element. The constituent propertes are given in Table 1. The predicted
Young's modulus in any of the global coordinate directions of Figure 30 is 0.86x106 psi. The
corresponding Poisson's ratio is 0.29 and the shear modlus is 0.26 x 106 psi. The peak normal
stress concentration in the matrix is 2.5. It occurs at the glass/epoxy interface.  The stress
concentration at the same point in a continuous fiber reinforced composite with the same ratio of
fiber diameter to adjacent fiber spacing is 1.80. The stresses within the constituent materials of the
replacement clements appeared to be consistent with the stresses in the neighboring isotropic
elements. The distribution of normal stress along two faces of the unit cell is shown in Figure 31.

Sample Problem #7

The last example of the use of the replacement element analysis considers the plain weave
unit cell and microgeometry of Figure 32 subjected to uniaxial tension in a reinforcing direction.
In this model the resin-impregnated and cured tows are considered to be non-circular tubes of
homogeneous orthotropic material that are woven together. These undulating tubes are bonded
together at all areas of contact and bonded to the bulk matrix pockets which fill all the interstitial
gaps between the tubes. The dimensions of the resin filled tows, the tow spacings and the other
geometric details were chosen to best match the microgeometries observed in photomicrographs of
woven graphite/epoxy composites (Ref. 1). The analysis was done for the purposes of (a)
predicting the cxtensional stiffness properties of a thick laminate made from symmetrically stacked
layers of plain-weave reinforced composite and (b) predicting the detailed stresses and strains
within one unit cell of this laminate when it is subject to a simple uniaxial tensile stress in one of
the principal tow reinforcing directions.
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By the use of structural and load symmetry the essential portion of the unit cell that needs
to be analyzed can be reduced in volume and complexity. Figure 32 shows one unit cell of the
plain weave microstructure with four planes of symmetry of both load and structure. Only the
fraction of unit cell volume between the four planes of symmetry needs to be considered. This
enclosed volume is shown in Figure 33 with a set of coordinates that parallel the edges of this
regular hexahedron of essential structure. The origin of the coordinates is at the centroid of the
hexahedron. These three coordinate axes are also axes of 1809 rotational symmetry of both load
and structure. Hence, only one quarter of this volume is essential to the analysis. Figure 34 shows
this reduced volume which represents only one sixteenth of the original unit cell volume. Further
symmetry exists for the structure but not the loading. Figure 34 also shows a simple retangular
finite element mesh superposed on the essential structure The use of replacement elements permits
the application of this grid without much regard for the internal boundaries between the two tow
materials and the bulk matrix. The mesh has been graded to give added stress detail near the
crossover point of the upper and lower tows (at the origin of Figure 34). The number of finite
clements in the smallest essential volume is 64 with 125 node points and 375 degrees of freedom
prior to the enforcement of the boundary conditions. Examination of the microstrcture within each
finite element shows that six, or 9.4% of these elements, contain all three constituent materials.
(The two tows are considered to be made from two different materials for bookkeeping
convenience.) Fourteen, or 21.9% of the elements, contain only one constituent material. The
remaining 44, or 68.7%, contain two constituent materials. This high percentage of replacement
elements (78.1%) makes this sample problem different from the previous ones which only required
a small number of replacement elements. Another essential difference is the presence of elements
containing three constituents. These special elements are treated as follows.

First, note that the two tow materials are in dircct contact with each other in each element,
rather than being separated by a layer of bulk matrix. Thus, the reinforced portion of each element
that contains tow material can be treated as a subelement that contains only two constituent
materials. Application of the replacement element logic can then be used to combine these two tow
materials into a single anisotropic replacement material. One new factor in this reasoning is that
the subelement containing the two constituents is, in general, no longer a right hexahedron. This
does not appear to invalidate the replacement process. After both tow materials have been lumped
together into a new replacement material then the process can be repeated, combining the new tow
replacement material with the bulk matrix material. The only new factor in the latter application
of the method is that the combined tow material may be generally anisotropic. This possibility is
covered in Appendix C. With these generalizations in place there does not appear to be any reason
to prevent the repeated application of the replacement material logic as many times as necessary in
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any given clement as long as a "trec diagram” of constituent material combinations, as shown in
Figurc 35A, can be described. Each outer branch @, @, ® of the tree diagram represents a
constituent material. Each junction of two materials @ , represents an application of the
replacement material logic. The lower trunk of the tree diagram @ represents the final
replacement material that is used to form the stiffness matrix for the element. The present analysis
code (Appendix F) is only general enough to handle the tree diagram of Figure 35A. No more
complexity was required for this sample problem.

As examples,consider the microgeometry of a few of the elements from the current sample
problem. The element designated in Figure 34 contains only one constituent material, the bulk
matrix. The tree diagram for this element is a single trunk of one material with no branches or
junctions. No replacement element analysis is required.

The element designated in Figure 34 contains two constituent materials, the bulk
matrix and one tow material. Figure 35B isolates this clement and shows its tree diagram. The two
constitucnt material branches combine at the single junction to form the trunk material. A single
application of the replacement logic suffices for this element. Figure 35C isolates element
from Figure 34. This element contains all three constituent materials: the bulk resin and both tow
materials. Its tree structure is identical to Figure 35A. The replacement logic is applied to the two
tow materials (1) and () at junction (B initially to form the new material (. Material @
and bulk matrix material (3) are then combined at junction ® to form the trunk material ®
via the second application of the replacement logic.

Some comments on the complex mixed boundary conditions on the six surfaces of the plain
weave structural model are appropriate. Node points on surfaces normal to the z-axis of Figure 36
have the customary symmetry conditions of zero normal displacements® and zero shear forces.
The same conditions also apply on the two sides that are at once normal to the x-axis or y-axis but
not containing cither axis. However, on the two sidcs containing the coordinate origin the
rotational symmetry conditions prevail. Node points along either the x or y-axes cannot displace
normal to the axisand must have a zero applied force component along the axis. A node point
along either of these two sides (but not on the x or y-axes) must have a corresponding node point
that is its mirror image on the obposite side of the coordinate axis that is contained within the side
in which the original node point is located (see Figure 36). The tangential displacements at these
two image nodes must be the mirror image of each other (across the intervening coordinate axis).
The normal displacement must be equal but opposite. The nodal force components normal to the
side must be mirror images of each other. The nodal force components parallel to the side must be

* except for rigid body and constant strain displacements
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equal but oppositely directed from their mirror image across the coordinate axis. Along the edges
of essential structure a combination of the conditions from the intersecting surfaces apply with the
displacement conditions prevailing over any contradicting force conditions in any specific
coordinate direction. Along the z-axis of Figure 36 the displacements normal to the z-axis vanish,
along with the force component parallel to the z-axis. At the coordinate origin all displacements
vanish. Comner displacements are determined by the particular strain case being studied, except
for displacements conditions at corners A,B,C,D of Figure 36. There the aforementioned mixed
rotational symmetry conditions apply to forces and displacements normal to the faces containing
the x or y-axis.

Table 4 contains all the geometric information required for each element. These values
were all obtained by viewing composite photomicrographs and making many sketches of planar
cuts through the essential structure. It is a chore that would lend itself well to preprocessing.
However, it is a matter of only a few days work as opposed to the weeks of work associated with
sctting up and checking out a finite element mesh based upon homogeneous elements.

The tow composite properties used are typical of unidirectional, intermediate modulus,
graphite/epoxy prepreg. Most prepregs cure out to about 65% fiber volume fraction. The fiber
volume fraction within a tow of a fabric reinforced composite is generally in the 70% to 75%
range. This could justify using higher tow composite moduli in the analysis. However, the loss in
properties due to the weaving process have never been established. The use of the lower properties
(associated with 65% fiber volume fraction) is an attempt to compensate for fiber breakage,
misalignment, and other weaving and processing damage. The overall fiber volume fraction for the
analysis model was 64% with 15% interstitial bulk matrix volume fraction and 85% tow volume
fraction. The constituent material properties correspond to the epoxy properties of Table 1 and the
graphite/epoxy A properties of Table 2. The predicted extensional elastic constants are, with
reference to the coordinates of Figure 33,

Ex = Ey =788 x100psi

E, = 169 x106psi

Vxz = Vyz = 0321

Vxy = Vyx = 0.048

As a reference point, the moduli from test data reported in Ref. 1 are

E, = 9.13x100psi (warp)

= 8.83 x 106 psi (fill)
Vxy = 0.1
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With conventional laminate theory, for a cross-ply laminate with a 15% thick layer of bulk resin,
the result would be

Ex = Ey = 9.68x106psi

Vxy = 0.050

The stress results are more interesting than the moduli predictions. For a unit remotely
applicd stress in the warp direction, with all other average stresses held at zero, the peak warp tow
stress has a value of about 4, giving a stress concentration factor of the same amount. This stress
occurs inside rather than on the surface of the unit cell and away from the cross over point of the
adjacent tows. It occurs as a result of high bending plus axial strain in the tow that roughly
parallels the load direction. Figure 37 contains contour plots of the stress in the fiber direction on
the primary load carrying tow surface. The axial stress in the fill tows are insignificant. Figure
37 also contains a plot of the axial fiber strain concentration factors based on the ratio of fiber
longitudinal strain divided by average composite strain in the load direction. These values differ
significantly from results reported in Ref. 9. The peak fiber strain concentration from the current
analysis is about 1.5 compared to 2.6 reported in Ref. 9. Also, the location of the peak strains do
not coincide. The peak strain occurs on the curved portion of the tow surface away from the edges
of the tow and away from the inflection point of the principal axis of the tow. In Ref. 9 it occurs at
the edges of the tow at the adjacent tow cross-over point. Plots of the other stress and strain
components also differ significantly. The two sets of analyses should not be duplicates of each
other because there were various differences in the models, the constituent properties, the degree of
mesh refinement, the order of the elements, etc. However, the differences in the results seem larger
than expected. Differences in tow cross-sectional variation along the tow axis may account for
much of the discrepancy. In the current analysis very little tow thickness variation was permitted
because very little was seen in composite photomicrographs. However, in Ref. 9 significant
nccking of the tow thickness (at the sides of the tow) was built into the analysis model near the tow
crossover point. Some of the strain concentrations could have been the result of these differences
in cross-sectional modeling.

In summary, the stress predictions for the sample problem appear to adequately reflect all
the major combined bending, stretching and shearing effects that were anticipated in the plane
weave tension analysis. The causes for some of the local strain differences between this analysis
and that of Ref. 9 remain to be resolved.

The rotational symmetry boundary conditions that were used with this sample problem are
not used frequently and were not included in the computer program listed in Appendix F. They
were used in this problem simply to avoid the necessity of inverting stiffness matrices larger than
300 square. The program in Appendix F has the more common conditions of geometric unit cell
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surfacc symmetry plus load symmetry (and asymmetry) built into it. The same results could have
been obtained using the program in Appendix F with some of the larger array dimensions increased
four fold, and one quarter of the unit cell volume analyzed rather than one sixteenth of the volume.
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V. Conclusions

The three-dimensional elastic analysis of complex composite microstructures is made
difficult by the constraint imposed by conventional finite element analysis on the correspondence
of internal material interfaces and element boundaries. The concept of a replacement element is
introduced for the purpose of relaxing this constraint. The replacement element combines the
constituent materials within an inhomogeneous element into a single anisotropic material to which
the established finite element procedures may be applied. This constituent material combination
depends on simple composite mechanics models for parallel bonded plates. This procedure
involves a physical rearrangement of the materials within the element and therefore represents an
idealization or approximation of the truc material interactions. It has been shown that the use of
these replacement elements can incur errors on the order of 20% in the predicted stresses within the
constituents. However, in the more complex problems in which the replacement elements occur
less frequently the errors in stiffness and internal stress predictions appear to be within a range that
is acceptable for some engineering applications; namely, trade-off studies that lead to the ranking
or selection of specific reinforcement microgeometries to meet specific structural requirements.

Through the use of several example problems of increasing complexity both the application
and results of the replacement element method are observed. The application is simpler and easier
than the conventional finite element method in complicated 3-D problems such as those posed by
many fabric reinforced composite microgeometries. The results are less accurate and less reliable,
but still acceptable, in view of the statistical variation in unit cell microgeometries and their
boundary conditions. A large number of finite elements are still required to model a complex
microstructure but beyond that point the mechanical analysis is much easier to automate and
eventually merge with computerized unit cell microgeometry generators, preprocessors and
postprocessors. The use of replacement elements still requires some skill in the selection of
rectangular grids which minimize both the number and complexity of the replacement elements.

It remains to establish guidelines for the use of replacement elements so as to minimize the
approximation errors, and also to improve upon the process itself to make it more sensitive to the
details of the constituent material distribution within an element. The latter tasks could not be
undertaken within the seven man-month scope of this effort.
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Table 1: Isotropic Constituents

Ex 106psi Vv Gx 106psi
Aluminum 10.0 0.30 4.0
E Glass 10.0 0.25 4.0
Epoxy 0.5 0.35 0.18
Table 2: Orthotropic Constituents
Ejx106psi | EpE3x100psi | wvypvy3 Vo3
GR/EP A 18.0 1.5 0.23 0.35
GR/EP B 21.0 1.7 0.23 0.30
G12,G13, x 106 psi Gy3 x100 psi
GR/EP A 0.7 0.7
GR/EP B 0.7 0.7
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Table 3: Microgeometry Data for Sample Problem #6