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SUMMARY

This research program has dealt with the theoretical development and computer implemen-
tation of reliable and efficient methods for the analysis of coupled mechanical problems that
involve the interaction of mechanical, thermal, phase-change and electromagnetic subprob-
lems. The focus application has been the modeling of superconductivity and associated
quantum-state phase-change phenomena. In support of this objective the work has ad-
dressed the following issues: (1) development of variational principles for finite elements,
(2) finite element modeling of the electromagnetic problem, (3) coupling of thermal and
mechanical effects, and (4) ~omputer implementation «nd solution of the superconductivity
transition problem.

The research was carried cut over the period September 1988 through March 1993. The
main accomplishments have been: (1) the development of the theory of parametrized and
gauged variational principles, (2) the application of those principled to the construction
of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of elec-
tromagnetic finite elements with thermal and superconducting effects, and (4) the first
detailed finite element simulations of bulk superconductors, in particular the Meissner
effect and the nature of the normal conducting boundary layer.

The grant has fully supported the thesis work of one doctoral student (James Schuler, who
started on January 1989 and completed on January 1993), and partly supported another
thesis (Carmelo Militello, who started graduate work on January 1988 completing on
August 1991). Twenty-three publications have acknowledged full or part support from this
grant, with 16 having appeared in archival journals and 3 in edited books or proceedings.
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1. INTRODUCTION

Many engineering applications of interest to NASA require the solution of coupled me-
chanical problems. A coupled problem consists of two or more subproblems that can be
separately characterized by virtue of their physical nature. Simulation of coupled problems
is complicated by the two-way nature of the interaction between the subproblems. This
interaction has to be cons:dered when seeking steady-state or transient solutions. The
treatment of subproblems as a coupled problem, as opposed to considering them as a sin-
gle, indivisible problem, arises from the different physical nature of each subproblem. Such
differences encourages customized treatment, from modeling through computer implemen-
tation. Examples of coupied problems in aerospace are: design of propulsion systems
(coupling structures, flow, thermomechanics and combustion), active vibration control of
space structures (coupling structures and control), prediction of flutter in turbomachinery
(coupling structures, combustion, and gasdynamics) and airplane wings (coupling struc-
tures and aerodynamics).

The work reported here dezls with coupled problems that contain an electromagnetic field
as one of their subproblems. The research has addressed both theoretical and application
components. The theoretical component deals generally with methods for finite element
modeling of electromagnetic, thermal, mechanical annd phase-change effects individually
and then considering their interaction in coupled problems. Because the domain of appli-
cations that lead to such problems is extremely wide and as yet remains largely unexplored,
the application component of the research was focused on the particular problem of super-
conductivity.

Superconductivity involves primarily the interaction of electromagnetic and thermal fields.
It may secondarily interact with mechanical effects such as motion or couling fluid flow.
Transition from normal to superconducting state is a phase change phenomenon that in-
volves quantum-mechanics effects. For conventional Type I and II bulk superconductors
transition is largely controlied by magnetic field intensity and temperature. Consequently
the transition problem displays three of the four effects addressed in the theoretical com-
ponent of this work.

The following narrative outlines the main developments and accomplishment of this re-
search project. Details are provided in the attached publication material.

2. DEVELOPMENT OF THERMOMECHANICAL ELEMENTS

Initial effort over the period September 1988 through February 1989 was focused on the
variational basis for constructing high-performance mechanical and thermal elements. This
primarily theoretical effort was carried out by one of thie P.I.s (CAF) with the assistance of
Carmelo Militello (a doctoral graduate student mainly supported by a research fellowship).
The point of departure was previous research, funded by ONR and NRL, on the free-

formulation variational prir.ciples reported in References [1-3]. '
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A more general variational formulation for the mechanical elements, which includes the
assumed natural strain (ANS) formulation, was established and reported in References [5—
7,9]. One key byproduct of this work was the Assumed Natural Deviatoric Strain (ANDES)
formulation, which is as a modification of the ANS that satisfies a priori the patch test.
The ANDES formulation was reported in References [5,10,18]. It became eventually a
focus of Militello’s thesis [15], and the basis for constructing several high-performance
mechanical plate and membrane elements [14,20-22].

New representations of thermal fields were not addressed as standard formulations were
considered adequate for the coupled-field phases of this research. The framework of
parametrized variational principles was extended, however, to encompass incompressibility
[16,17], micropolar elasticity [23,24] and electromagnetodynamics [25].

3. DEVELOPMENT OF ELECTROMAGNETIC ELEMENTS

3.1 Theoretical Developments

Early in this research phase it was decided to base the development of electromagnetic
(EM) finite elements on variational principles that utilize electric and magnetic potentials
as primary flelds rather than on the EM field intensity and/or fluxes (as done in most
of the existing EM finite element technology). It was felt that this choice provides for a
generality of application that encompasses both normal and superconducting materials as
well as taking care automatically of boundary and interior interfaces. These advantages
more than compensate two difficulties: no general variational formulation of this finite
element class existed, and potential fields are less physically meaningful than intensity and
flux fields. The first obstacle was effectively removed by the developments outlined below.
The difficulty with physical meaning of potentials impacts primarily a priori understanding
on how to specify boundary conditions, and can be overcome by solving a range of practical
problems.

Early work on this subject, carried out by one of the P.Is (CAF) from September 1988
through August 1989, was exploratory in nature. The scalar potential formulation of acous-
toelastic fluid fields, which satisfy the same governing equations as the electric-potential
field, was investigated in collaboration with R. Ohayon of ONERA (France). This re-
search, reported in References [4,8], did clarify the way to obtain general potential-based
variational principles than can be procedurally translated to the far more complex EM
case, which involves vector potentials.

3.2 Normal-Conducting Or.e-Dimensional EM Elements

On January 1989 James J. Schuler, a first-year graduate student, started his Ph. D. research
in electromagnetic finite elements with full support from this grant. By late 1989 a new
class of electromagnetic finite elements based on a four-potential variational principle had
been formulated and tested. The development steps are summarized below, a.nd described
more fully in a journal article [11].

[SV]



A variational statement for the electromagnetic equations (Maxwell equations) in an arbi-
trary material was obtained. The primary variable of this principle is the four-potential,
which integrates the scalac electric potential with the vector magnetic potential. The
principle derived here generalizes those previously published in the literature, which are
restricted to free space. Because of its generality. it can serve as a basis to model
ferromagnetic, semiconductor and superconducting materials. The principle was ini-
tially constructed using the canonical decomposition method formerly validated for the
acoustoelastic-fluid potential by Felippa and Ohayor [4,8]. A simplified formulation for
non-polarizable materials was found later “working backwards” from the general principle
and is the one presented in Reference [11].

The variational principle is applicable for one, two and three space dimensions. It is
applicable to both static aud dynamic analysis under harmonic or transient loading. To
quickly validate the application to finite elements, the principle was specialized to normal
conductors with one-dimensional axisymmetric geometry. A finite element model with
linear variation of the radial potential component in space was developed and implemented
in straightforward fashion. The development of the forcing function, however, was more
involved. The resulting implementation was tested on the static problem of the field
associated with a cylindrical conductor and excellent agreement with the analytical solution
was obtained [11].

3.3 Normal-Conducting Two-Dimensional EM Elements

Extension of the methodology outlined in 3.2 to multiple space dimensions brought sur-
prises. In two and three dimensions it was found that the Lorentz gauge constraint was
not automatically enforced by the finite element shape functions. The constraint was
added through a Lagrangian multiplier, thus producing the so-called “gauged potential
variational principle” presented by Schuler and Felippa [13]. The modification delayed the
development of multidime:isional EM elements for several months while several ways of
discretizing the gauged potential were tried and evaluated. Eventually it was decided to
treat the multiplier as an c¢lement-level degree of freedom that enforces gauge interaction
in a mean sense over each ~lement.

The multidimensional EM clements were incorporated into a program that can solve prob-
lems with arbitrary axisymmetric geometry. The program is restricted to treat static
(time-independent) problems with a known current density distribution. Excellent results,
reported in Reference [13], were obtained for two problems of simple geometry.

3.4 Current Predicting EM Elements

For the envisioned extension to superconductivity it was realized that the problems de-
scribed in Sections 3.2 and 3.3 were overly restricted in that the distribution of the electric
current is assumed known a prior: and is uniform throughout a conductor. In general,
temperature gradients wituin a conductor and a conductor’s geometry cause the current
distribution within a cond ictor to be non-uniform and therefore unknown. To accurately
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capture the effects of thermal-electromagnetic &)upling it was therefore necessary to con-
struct an electromagnetic finite element that could predict electric current densities given
the total electric current. This task was started on June 1991 by Schuler and Felippa and re-
quired further modifications of the four-potential variational principle. A one-dimensional
time-independent axisymmetric geometry element was tested on a variable current prob-
lem with known analytical solution. Values for the current density as computed by the
finite element method agreed well with analytical predictions. These developments are
reported in References [19,25,26].

3.5 Superconducting EM Elements

This task also started in 1991. The generality of the previously outlined four-potential
variational formulation allowed for the straightforward extension of this method to Type
I and II bulk superconductors treated by the Ginzburg-Landau model. Only the time-
independent one-dimensional case was explored because of the extremely nonlinear nature
of the problem and the presence of extremely high gradients that necessitates highly graded
meshes to treat boundary layers. The nonlinearities are in part due to the boundary type
behavior of the current density stream that occurs within a bulk superconductor.

Initial attempts using the potential based variational approach predicted desired EM quan-
tities but numerical problems surfaced that caused the investigators to suspect the validity
of the numerical solutions. These problems and the original formulation of the problem
are described in a preliminary report [18]. These numerical difficulties were eventually
overcome through the use of a highly graded finite element mesh, a reformulation of the
quantum mechanical wavefunction %, and a four-part scaling scheme. The resulting fi-
nite element was eventually thermally coupled through temperature dependent material
parameters as discussed in Section 4 below.

4. THE COUPLED PROBLEM

4.1 Thermomechanical Interaction

One of the P.I.s (KCP) contributed his expertise in partitioned analysis methods to the
development and testing of an unconditionally-stable, second-order accurate, staggered
time integration procedure for treating thermomechanical coupling. This research was led
by Professor C. Farhat, who was supported by other sources, and is reported in Reference
[12]. The method described in this article is the basis for ongoing work in thermomechanical
coupling for supersonic atmospheric and reentry vehicle structures.

4.2 Thermoelectromagnetic Interaction

On May 1992, work on a suitable finite element model for thermal conduction in a normal
conductor was started. A conventional heat conduction finite element was used and heat
convection boundary conditions were assumed. The main difference with respect to usual
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heat conduction analysis is that material properties of the normal conducting finite element
were allowed to be temperature dependent. the temperature of the conductor, and that
the internal heat source is coupled to the EM current intensity via by Ohm’s law. The
conducting wire problem was used as test for the computer implementation. Insertion of
actual values for material properties gave a highly ill conditioned system of equations for
the independent variables. The ill-conditioning was overcome by use of a specialized finite
element mesh and matrix scaling techniques. These techniques as well as results for the
thermal elements are discussed in Reference [25].

4.3 Modeling of Quantum-State Phase Changes

After developing EM finite elements for the normal and superconducting phases of a con-
ductor and adding thermal effects to each element separately, they were used to form a
comprehensive program that could choose the correct quantum-state (QS). The correct
state is determined by checking whether the critical temperature of the conductor and
the critical magnetic field Lave been exceeded. If they are, the program uses the current-
predicting element discussed in Section 3.3, coupled with the thermal element of Section
4.2. Otherwise the the program uses the Ginsburg-Landau superconducting finite element
discussed in Section 3.5. In the most general case these conditions hold over different
regions of a partly-superconducting system.

4.4 Analysis of Fully Coupled Problem

The coupled EM-thermal-QS finite element models were first tested on a one-dimensional
time-independent Type I superconductor cylindrical wire carrying a specified total current.
Even for this highly idealized situation there is no available analytical solution. The
finite element performed extremely well in that several important physical phenomena
were predicted. First and foremost was the identification of the Meissner effect, which is
the almost total expulsion of the magnetic field from the superconducting interior of the
conductor. The phenomenon is caused by the current density stream traveling in a thin
(skin) boundary layer at the conductor’s surface, an expected physical behavior that was
also clearly displayed by the finite element solution. The value of the magnetic field at the
conductor’s surface can be determined by analytical ineans and the finite element model
correctly predicted that condition.

Finally, the finite element inodel of the foregoing problem was tested using a variety of
temperature and current lcads. These tests also followed expected physical behavior —
as either the current load or the temperature of the system was increased, the depth
of the boundary layer increased to accommodate the increasing energy of the system.
The complete program performed well and determined the correct equilibrium state, as
expected, for a varity of thermal and current loadings. These results, as well as the
tracing of the nonlinear equilibrium path using incrernental-iterative solution procedures
with arclength control are are discussed in detail in Schuler’s thesis [26].

The main shortcoming of the one-dimensional model is that it cannot determine the actual
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distribution of EM quantities at the transition point when the partly-superconducting wire
suddenly transitions to being a normal conductor. At such a branching point, the system
effectively becomes two-dimensional thus transcending the modeling capabilities of the
one-dimensional finite elements. Time constraint on the reported research activity did
not allow for the extension of the one-dimensional elements to include this case. Such
an extension is to proceed under separate (NSF) funding as part of a Grand Challenge
Applications project.

5. CONCLUSIONS

The main accomplishment of this research can be summarized as follows.

1. A general variational framework to construct finite elements for a wide range of ap-
plication problems (mechanical, thermal, fluid and electromagnetic) was developed.

2. A comprehensive set of electromagnetic finite elements for normal and superconduct-
ing media was developed and validated. This set includes thermal coupling and
current-prediction effects.

3. The first detailed simulation of partly superconducting bulk superconductors by finite
element methods. Key physical effects, notably the Meissner effect and the changes
in the depth and distribution of the normal-conducting boundary layer were clearly

identified.

These accomplishments open the door to the application of the finite element method
to more complex coupled EM problems. In particular: more spatial dimensions, time
dependency, frequency-state-dependent material properties, high-temperature supercon-
ductivity, and EM interaction with mechanical effects.
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COMMUNICATIONS IN APPLIED NUMERICAL METHODS, Vol. 5, 7988 (1989)

PARAMETRIZED MULTIFIELD VARIATIONAL
PRINCIPLES IN ELASTICITY: I. MIXED FUNCTIONALS

CARLOS A. FELIPPA

Department of Aerospace Engineering Sciences, and Center for Space Strucrures and Controls, University of Colorado,
Boulder, CO 80309—-0429, U.S.A.

SUMMARY

A one-parameter family of mixed variational principles for linear elasticity is constructed. This family
includes the generalized Hellinger—Reissner and total potential energy principles as special cases. The
presence of the free parameter offers an opportunity for the systematic derivation of energy-balanced
finite elements that combine displacement and stress assumptions. It is shown that Fraeijs de Veubeke’s
stress-assumption limitation principle takes a particulary elegant expression in terms of the parametrized
discrete form. Other possible parametrizations are briefly discussed.

GOVERNING EQUATIONS

Consider a linearly elastic body under static loading, occupying volume V. The body is bounded
by the surface S, which is decomposed into S: S4U S,. Displacements are prescribed on Sq,
while surface tractions are prescribed on S;. The outward unit normal on § is denoted by n = n;.
The presence of internal natural or artificial interfaces is not treated in this paper.

The three unknown volume fields are displacements u = u;, infinitesimal strains e = e;; and
stresses o = o;;. The problem data include the body force field b= b; in ¥V, prescribed
displacements d = d; on Sq, and prescribed surface tractions t=/ onS.

The relations between the volume fields are the strain—displacement equations

=}(Vu+Vu)=Du or e;=;(i, +u,) inV (N

the constitutive equations )
o=Ee or gj;=Eijuen inV )

and the equilibrium (balarce) equations
-dive=D%s=b or gj,+b=0 inV (3)

in which D* = - div denores the adjoint operator of D= }(V+ V7).
The stress vector with respect to a direction defined by the unit vector n is denoted as

On=0.N, OF Oni=JiiNnj 4)

With these definitions the traction boundary conditions may be stated as

on=t or oymj=1f; onsS, (5)

and the displacement boundary conditions as

u=d or wui=d; on &4 (6)
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NOTATION
Flield dependence

In variational methods of approximation, we do not of course work with the exact fields that
satisfy the governing equations (1)—(3), (5) and (6), but with independent (primary) fields,
which are subject to variations, and dependent (secondary, associated, derived) fields, which
are not. The approximation is determined by taking variations with respect to the independent
fields.

An independently varied field will be denoted by a superposed tilde; for example . A
dependent field is denoted by writing the independent field symbol as superscript. For example,
if the displacements are independently varied, the derived strain and stress fields are

e“=}(V+V)i=Dii, o¢"“=Ee"=EDi @)

An advantage of this convention is that u, e and o may be reserved for the exact fields.

Integral abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted parentheses
and square brackets, respectively, around the integrand; for example

def

SS FdS, [f1s%

de def

OVE| rav, s

def

| sas, 2| sas @
Sa 5

If f and g are vector functions, and p and q tensor functions, their inner product over V is
denoted in the usual manner as

f, g jy f.gdV= jyf.-gi av,  (pay jyp.q v = SV Py dV 9)

and similarly for surface integrals, in which case square brackets are used.

Domain assertions
The notation
(a=20b)y, [a=0b]s, [a=0b]s, [a=0b]s, (10

is used to assert that the relation a = b is valid at each point of V, S, Sq and S,, respectively.

THE HU-WASHIZU PRINCIPLE

There are several essentially equivalent statements of the Hu—Washizu functional of linear
elasticity. The starting form used in this paper is the four-field functional presented by
Washizu: '

Mw(@,&,6,1)= (% &)y + (5,e" — &)y — P (1D
where P'is the ‘forcing’ potential
Pi@, 0 =(b, @)y + [{,0-d)sa+ [T,0)s, (12)

The functional (11) will be called t-generalized (traction-generalized) in the sense that the
volume fields @, é, & and the surface field T are subject to independent variations. whereas in
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the conventional form of the principle the relation [t=dn]s, is enforced a priori. The
superscript t is used to distinguish it from the d-generalized variant

% (@, &,3,d) (13)
in which the surface displacements d are varied independently from the volume dispiacement
field @. Functionals of the form (13) require the introduction of internal interfaces and are

studied more extensively ir a sequel paper.2
Application of the divergence theorem

(a,e")y = —(div g, u)y + [on, uls (14)
to transform the (&, 5e") term yields the first variation of (11) as

ST = (0. — &, 08)y + (" — €, 6d)y — (div 0 + b, 50);

(= 60] s — [~ @, 60)sa - [T =, 001 50 (13)

Setting 811w = 0 yields the Fuler field equations and boundary conditions satisfied by the exacrt
solution:

(c=Ee)y, (e=e" )y, (diva+b=0), (0.=1]s. lon=ts, [(u=dls, (16)

A PARAMETRIZED MIXED VARIATIONAL PRINCIPLE

Constraining the Hu—Washizu functional by selectively enforcing field equations and boundary
conditions a priori yields six functionals listed in Chapter 4 of Oden and Reddy’s monograph. 3
Of particular interest for the present study are the t-generalized Hellinger—Reissner functional

k@, a0 = —;(&,e")y+(&,e")v— P! an
and the t-generalized potential energy functional
(i, 1) =" e — P (18)
In addition, Oden and Rzddy list an ‘unnamed’ functional whose t-generalized version is
I (. 3, 1) = (", ey - }(@,€" )y - (5. € )y = P' (19)
These three functionals are special cases of the followiny parametrized form:
I14(@.5.0) = (1 —y)(a" e")y = y(a, €" ) + v(0, e")y— P' (20)

where v is a scalar. For y = 1,0 and — 1 we obtain the functionals [Tk, [T and Iy, respectively.
The first variation of (20 is

STI., =/ (e" — €%, 60 )y — (div g" + b, o)

(L=}, 80 ]s, — (- a3, 608)s, — u—d,ofls, @b
in which o” and ¢} dencte the y-weighted stresses
(1 =)o, ok, + (1= y)eh 22)
If v#0, thé Euler equations and natural boundary conditions are
(e“ =e" v, (div o7 + b =0)v, [ah =) 5., (u=d]s, (23)

The constitutive equations do not appear since they are enforced a priori in .. If y=0, the
first Euler equation drops out.
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ENERGY BALANCING
Distances

Let U(e) = }(Ee, €)v denote the strain energy associated with field . We may rewrite (20) as
a potential-energy deviator

I, = Th - yU(e" - &%) (24)

because

t Tt
H7 ZHP= (&’ ea - eu) - (6’— o,ll, e")V
v/ (25)
= (au - &, eu - ea)y= (Ee" - Eea, eu - ea)y

If E is positive-definite, U(e"-¢°) >0 and consequently
I, < if y>0 (26)

If @ is kinematically admissible, [Tk exceeds the e€xact potential energy, as shown below. [t
follows that to improve solutions in energy we expect to take v > 0. Thus principles associated
with v < 0 have limited practical interest.

Let IT(u) denote the exact potential energy

IT(w) = 3(a,e)v = (b, u)y - (i, u]3, (27)

where ¢ and e denotes the exact stress and strain field, respectively. If i is kinematically
admissible and thus satisfies [u=d]s,, then the energy distance from ITh(ik) to the exact
functional (27) is (Section 34 of Gurtin?)

l'I}a—-I'I=§(a"—a,e"—e)y=U(e”—e) (28)

Optimal approximation
To derive an ‘energy balanced’ approximation we impose the condition IT}, = [T, which yields

_Ue"-e) _ (6" ~a,e"-¢)

Yopt U(en_ea) (0’”—&, eu_eo)

For example, if we assume that the exact stresses and strains lie halfway between the approxi-
mate fields,

(29)

"+ a), e=;(e"+e") (30)

then yop = 1.

THREE-FIELD DISCRETIZATION

To construct a three-field finite element approximation based on IT!, it is assumed that,
globally, +

(B=Nq)y, (3=Aa), [f=Ss]s, @3n

————

t Following the ususal practice in finite element work, the components of o and e will be arranged as column vectors,
and the moduli in E as arranged as a square symmetric matrix.
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Here the matrices N, A and S collect generalized displacement shape functions, internal stress
modes and boundary traction modes, respectively; whereas the column vectors q, a2 and s
collect generalized displacements,t stress mode amplitudes and surface traction amplitudes,
respectively. The derived fields are

(¢*=DNq=Baq)y, (¢"=EBq), (e=E 'a=E'Aa) (32)
Inserting these expressions into [T}, we obtain the algebraic form
M., q.5) =1 -v)a"K.g - }ya'™Ca+vq"Qa - q'fo —s"Rg - s'f, (33)

The matrices Ko, C, Q and R that appear in (33) are called the displacement-stiffness,
compliance. leverage and boundary-dislocation matrices, respectively, and are given by

.=(B'EB), C=(ATE™'), Q=(@BTA), R=[S'N]s (34)
Both K, and C are symmetric. The forcing vectors are
fo=(NTb)y+ [NTi]s, f=-[STd]s, (35)

The vector f, contans generalized forces (conjugate to q), whereas f; contains generalized
displacements. Making (33) stationary yields the linear system

-+C QT 0 a 0
Q (-vy)K. -RT| {q}=1if (36)
0 -R 0 s f

The first matrix equation is the discrete analogue of (e” = e”)y in (23), and expresses internal
compatibility. The second one is the discrete analogue of the next three relations, and expresses
equilibrium. The last relation is the discrete analogue of [u=ii]s, and enforces boundary
compatibility.

Since there is no force term in the first matrix equation, the stress amplitude vector a can
be readily condensed out if C is nonsingular, and we obtain

K -R q\f_ fq
[—R oms,‘s‘{n} 7

K=(-7)K.+vQC'QT = (1 - v)Ki + 7K, (38)

where

is the effective stiffness matrix. This is a y-weighted combination of the displacement assumed
stiffness matrix K, and the stress-assumed stiffness matrix K, = QC~'Q". If the assumed
displacements satisfy T =d]s,, the contribution from [{,ii —dls, vanishes and we are left
with the conventional stiffness equations

LIMITATION PRINCIPLE
The famous limitation principle of Fraeijs de Veubeke® takes on a particularly striking

algebraic representation in terms of the parametrized matrix system (36). This principle applies

t If q are nodal displaczments, N contains conventional shape functions, but for the present purposes we need not
specialize to that level.
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when the derived stress field ¢" is contained in the assumed stress field §:
30" =EDua (40)
This inclusion can be expressed in matrix form as

X

Here a, contains the same number of entries as q whereas A, contains ‘excess’ stress modes.
Inserting (41) in (36) and with Q.= (BT A,)y and C,, = (AT E"'A,)s, we obtain

-vK, —-+Q; vK. 0 a, 0

-vQ! —4Cu +vQF 0 a (_} 0 @)
7K. ¥Qr (1- v)K. -R T q fq
0 0 -R 0 s fs

The first two matrix equations give a, = q and a, = 0. Dropping the equations associated with
the extra stress modes reduces (42) to

-vKe  vKa 0 q 0
vKe (1-9y)Ky -RT|{q p={f, (43)
0 -R 0 5 f,

which obviously condenses to (37) with K = K, for any vy. The solution (q, a,s) becomes
independent of v. In other words, it is useless to inject additional degrees of freedom in the
stresses beyond ¢ if the three-field variational principle is used. Furthermore, if ¢" = g there
is no point in using anything other than the potential energy principle v =0.

In fact the limitation principle expresses nothing more than the algebraic identity, valid for

any v,

X
-yYT ~5Z yYT 0)=4 0 (44)
X
where X is symmetric, and Y and Z are arbitrary.

Constant stress assumption

If the derived field ¢" varies over V, assuming a constant stress field & for & is a safe way
to get around the limitation principle. In this case it is convenient to take a=& and A = [ (the
identity matrix) in (31) so that (& = @)y. Then the stress-assumed stiffness matrix is

K, = vB"EB (45)
where v denotes the total volume v =(1)y, and B and E are the volume averages
B =(B)/v, E-'"=E")v (46)

The effective stiffness matrix (38) is a weighted average of K, and K.. Since K, is typically rank
deficient, y =1 is excluded.
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TWO-FIELD DISCRETIZATION

If the relation [t = a.]s is imposed a priori as an essential boundary condition, t is no longer
an independently varizd field, and I} becomes a two-field functional. The last finite element
assumption of (31) is rgplaced by

[t°=0n=Ana]s, (47)
where A, denotes the normal projection of A on Sq, and the finite element equations become
T
[v(Q 7+CP) Y(iQ—:)Plz ] m ) m @
with
P=[NTAdls, Fo= [NTdls, (49)

A range analysis such as performed in the previous subsection reveals that the limitation
principle does not generally apply if [u # d]s,. The effect of the additional stress modes is to
improve the satisfaction of boundary compatibility. But if the assumed displacements satisfy
[u=d]s,, P and f, vanish and the limitation principle again holds.

RELATED FINITE ELEMIEINT MODELS

The parametrized functional I1¥ may be used to construct finite element models by treating each
element as a body of volume V and the element boundary as S. These elements differ from
conventional ones in the appearance of the parameter y. The element type will depend on the
number of independent fields and the interelement continuity imposed on them. The most
useful combinations are listed in Table 1.

NUMERICAL EXAMPLE

The application of tne preceding theory to finite element development is illustrated with a
simple two-dimensional element that belongs to the first class listed in Table [. Consider a
rectangular 4-node piane-stress element referred to the x = x, and y = x; axes located along
the rectangle sides. The element has constant thickness h, x-dimension L and y-dimension
H=pL, and is made of isotropic elastic material wirh elastic modulus £ and Poisson’s ratio
v. The internal displacement field (¥ = uy, v=uz) is constructed by the usuai bilinear
assumption, which satisfies interelement continuity. The internal stress field (o« = o1,

Table [. Some finite element models derivable from IT',

Number of Intereiement
independent  continuity onf  Connected Condensed Resulting Limitation
fields a ¢ t freedoms freedoms FE model principie applies?
2 c ¢ X q a Stress relaxed
displacement Yes
2 d < 1 s q Continuous-stress
traction-connected hybrid No
3 d a C s q.a Discontinuous-stress
traction-connected hybrid Yes

t+ ¢ = continuous, d = dis:ontinuous, x = not needed, | = linked t> & via equation (47).
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Oyy ™ 022, Tyy = 012, Others zero) is constant. An independent surface traction field is not
needed. The question investigated here is the value of v that optimizes the behaviour of the
element in pure in-plane bending along the x axis.

The element freedom arrangement is

T=(u| Uy Us Ug V1 V2 U3 Uy ), aT=(Uxx0yy Txy) (50)
The exactly integrated conventional displacement stiffness is given by

[k k2 ks ke ks ke ko ks ]
ki ks ky ks ki ke ks
ki ka ki ks ks ke
ki ke ks ks k7

v = ke kio ki ki Gl
ke ki ki
ke ko
i symmetric ko ]
where
k,=@(1—u+2p2), k2=§ﬁ(1—u—4p2), k;=—ﬂ-(l—v+2pz)
6p 120 120
ko= =22 000, k=-Eh., k== E (-3,
6p 8 8
(52)
k7=—El(l+V), /cs=—@(1+3p), k.,=—£l(2+(1—u)p2)
8 8 6p
h Eh h
ko= = 2 (==Y, ku=-ZL 24 1-up?), k= - EL 21— )
6p 12p 120
The stress-assumed stiffness K, is given by (45), in which
[ L R 0 0 o
B=i 0 0 0 0 =l -1lo 1fp 1o
=lle =1p 1o 1fp -1 1 I -1
(53)
_ E 1 » 0
E=E=1—|» 1| 0 . v=hHL=phL?
VLo oo la-v)

and K is the weighted combination (38). The test displacement field is that of pure bending
about x:

u= - xxy, v=xx? (54)

where x is the deformed beam curvature under the displacement field. Calculation of the energy
ratio (29) over the element through MACSYMA yields

1-v»

_ 5
l-»v+2p° (53)

Yopt =

For a square element, p = 1 and v,y varies from 5 to § as v changes from 0 to }. This result
was checked by solving the classical 4:1 cantilever beam problem (Reference 6, p.49) for v =0
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Table [I. Computed/exact tip-displacement ratios
for cantilever problem (v =0)

Mesh ¥ Constant moment End shear

1x4 0-0 0- 6666 0-6631
1/3 1-0000 0-9794
2/3 2-0000 1-9291
1-0 - oot oot

2x8 0-0 0-8889 0-8841
1/3 1-0000 0-9911
2/3 1-1142 1-1280
1-0 1-3333 1-3118

t Rank deficient.

with meshes of square clements. The values listed in Table 11 pertain to the two load cases of
pure bending moment and parabolically-varying end shear, and are reported as the ratio of the
computed to the exact tip displacement. It is seen that this ‘stress relaxed’ displacement model
verifies (55) in that y = | yields significantly better accuracy. However, the fact that the optimal
v depends strongly on the element aspect ratio makes this ‘weighted stiffness’ approach of
dubious practical value for elements of arbitrary shape. The formulation discussed in Part 112
attacks the optimali-element problem in a more general way through field decomposition and
energy orthogonality arguments.

OTHER PARAMETRIZATIONS

A one-parameter familv of strain—displacement mixed variational principles derived from the
Hu-Washizu functional (11) by eliminating the stress field can be represented as

M5@. 6 0) =1 - B)(a",e") = } B(o5 &)y + Blo® &)y — P! (56)

where 3 is a scalar. For 8 =0 we recover 1%, whereas if 3 =1 we obtain the Reissner-type
strain—displacement principle listed in Oden and Reddy”, generalized with an independent i

5@, é,8) = — (0%, &)+ (¢", ")y — P! (57

Continuing along this path, a two-parameter, four-field family that embeds both IT} and IT};
is easily constructed:

Y, (@, &, 6, 1) = }(1 = 8 = y)(e", eI+ (1 - B)y( (3, ") = 20, €%)v ]

+ (1= y)BL(a" ey = (o &)} = P' (58)

This functional yields stress—displacement principles for 3=0 and strain—displacement
principles for y = 0. Finally, the Hu—Washizu principle itself may be embedded in a three-
parameter form:

Mgy = (1 — a)Tw + ally, (59)
which obviously reduces to T for a =1 and to ITj, for a =0.

The superiority of cne parametrized form variational principle over another as regards the
construction of energv-balanced finite elements is not clear at this time.
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CONCLUDING REMARKS

The parametrization (20) of the stress—displacement variational principles provides a unifying
framework for the development of finite elements. This framework embodies the potential
energy and Hellinger—Reissner principles, and encompasses displacement-assumed elements,
conventional mixed elements and traction-connected hybrid elements. But it does not cover
developments such as displacement-connected hybrid finite elements, incompatible elements or
the free formulation.” To accomplish that one has to continue the process by introducing a
d-generalized version of (20), internal boundaries, internal field energy-orthogonal splitting,
and selective kinematic constraints. These extensions are covered in a sequel paper.?
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PARAMETRIZED MULTIFIELD VARIATIONAL
PRINCIPLES IN ELASTICITY: II. HYBRID FUNCTIONALS
AND THE FREE FORMUILATION

CARLOS A. FELIPPA

Department of Aerospace Engineering Sciences and Center for Space Structures and Controls, University of Colorado,
Boulder, CO 80309-0429, U.S.A.

SUMMARY

A one-parameter family of d-generalized hybrid/mixed variational principles for linear elasticity is
constructed following a domair. subdivision. The family includes :he d-generalized Hellinger—Reissner
and potential energy principles as special cases. The parametrized principle is discretized by independently
varied internal displacements, stresses and boundary displacements. The resulting finite element equations
are studied following a physically motivated decomposition of the siress and internal displacement fields.
The free formulation of Bergan and Nygard is shown to be a special case of this element type, and is
obtained by assuming a constant internal stress field. The paramecter appears as a scale factor of the
higher-order stiffness.

INTRODUCTION

This paper continues a study, initiated in Part [!, of parametrized stress—displacement
variational principles in linear elastostatics. The boundary value problem is as follows. We
consider an elastic body of volume V and surface S: S, U S4. Surface tractions t are prescribed
on S,, whereas displacements d are prescribed on S¢. The internal (volume) fields are
displacements u, stresses o, strains e and given body forces b. The internal field equations are
e=Du, s=Eeand D*a =bin V, where D = }(v+ V"), D* = - div and E is the elastic modulus
operator. The boundary conditions are u=d on Sq and oq =t on S.

The reader is referred to Part ' for additional notational conventions. In Part [ the following
paramertrized functional was introduced:

4@, 6,0 =51 —y)o" e")v—}v(a,e")v + y(d,e" ) - P! (1
where v is a scalar, and P' is the forcing potential
P, D= (b, 0+ ([ d-uls, + [T, (2)

In this functional the volume fields @, € and & and the surface field t are subject to independent
variations.

This functional ‘interpolates’ the t-generalized Hellinger—Reissner and total potential energy
functionals ITk and IT%, which are obtained for v =1 and vy =0, respectively. The qualifier
‘t-gcaeralized” means that the surface traction field { is varied independently whereas in the
conventional form of those principles, the constraint [t = 0.]s is enforced a priort.

0748-8025/89/020089—-10%$05.00 Received April 1988
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] S¢U54

Figure I. Example of internal interface

Internal interfaces

In the section that follows an alternative version of (1) is constructed, in which boundary
displacements d can be varied independently rather than boundary tractions ¢, These
displacements play the role Lagrange multipliers that relax the internal displacement continuity
requirement. Variational principles of this form will be called d-generalized.

The choice of d as the independent field is nor variationally admissible on Sq4 or . We must
therefore extend the definition of boundary to include inrernal interfaces, collectively
designated as S;. Thus

§:84U S US; (3

On S; neither displacements nor tractions are prescribed. A simple case is illustrated in
Figure I, in which the interface S; divides V into two subvolumes, ¥* and ¥~. An interface
such as S; in Figure | has two ‘sides’, called S;* and S;” » which identify S; viewed as boundary
of V* or V-, respectively. At smooth points of Si the unit normais n* and n- point in
opposite directions.

The integral abbreviations of Part I may be generalized as follows, with reference to Figure
. A volume integral is the sum of integrals over the subvolumes:

(/)y"é‘jy+ fdv+ f fdv (4)

V-

An integral over S; includes two contributions:
def + -
(815 | ¢ as+ | g~ as (5)

where g¢* and g~ denote the value of the integrand gon S and S, respectively. These two
values may be different if g is discontinuous or involves a projection on the normals.

PARAMETRIZED d-GENERALIZED MIXED PRINCIPLE

Variationat principle
The d-generalized counterpart of I, is

T3, 6,d) = (1 = y)(0", ")y = 1y(5, &%)y + 7(3, ")y — po (6)
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This agrees with (1) except for the forcing potential, which is
PO, 5,d) = b, i)y + [Gn, 0 —d)s,+ [ it]s + [Gn, 0= dis @)
Defining the y-weighted stresses
g (1 -y)e" inV, AZydm+(l-y)oh onS (8)

the Euler equations and natural boundary conditions for y # 0 are found to be

@ =€)y, (@iva+b=0y, [ah=ils, [on=dilsn [u= dls, ©)
(o3 + oa =015, [03” +0a =015, (u” =u” =d]s, [ogn +0n =0]s,
If v =0 the first equation, (e” = e%)y, drops out.
Modified forcing potential
Substituting d for u in the potential (7),
P, 3,d) = (b, @)y + [0, d— 815, + (Ed]s + [Fn 8~ dls, (10)

is not variationally admissible because incorrect Euler equations result. A correct potegtial that
resembles (10) can be obtained in two stages. First, surface terms [&n, @ —d]s, and
{Gn, 2 —d] s, are added and subtracted to produce

PUis, 5, d) = (b, @)v + [0, d— A5, + (Gn =T 0)s + (L d)s + [Fn T - dls (D

Second, t is assumed to be in the range of &, and the condition [@a =1]s, satisfied a priori,
reducing (11) to

P, 3 d) = (b, @)y + [, 6 = d}s, + [L,d] s + [Gn 01 = dls (12)

This expression differs from (10) in that all-important surface dislocation integral is taken over

S _ratper than S;. Further simplification results if the displacement boundary conditions
(d =d]s, are exactly satisfied:

P, 5, d) = (b, @)+ (T,d]}s + [Gmi—dls (13)

This expression of PY is used below, as modifications required to account for the case
{d # d]s, are of minor importance.

FINITE ELEMENT APPROXIMATIONS
In this section the finite element discretization of ¢ is studied. Assume formally
(i=Na), (3=Aa)y, [(d=Vvis (14)

Here the matrices N, A and V collect generalized displacement shape functions, internal stress
modes and interface displacement modes, respectively; the column vectors q, a and v collect
generalized internal displacemenis, stress mode amplitudes and generalized interface
displacements, respectively The assumed volume fields need not be continuous across Si. The
derived fields are

(¢“=DNgq - Bq)y, (¢"=EBa)y, (e=E 'g=E 'Aa)y (15)
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Inserting these expressions into I1¢ with the forcing potential (13), we obtain the algebraic form
$(a, q,s) =1 - v)a'K.q - }va"Ca + vq'Qa -~ q™Pa+vTLa - qTf, - vTE, (16)
where
K.=(B'EB)y=Ki, C=@ATE'A)=C', Q= (BTA)y
L=[V'Anls, P=[N"Auls, f,=(Nb),, f, = INTi] s,

The matrices K,, C, Q, L and P are called intemal-displacement-stiffness, compliance,
leverage, force-lumping and boundary dislocation matrices, respectively. Making (16)
stationary yields the linear system

)

-vC ¥QT-PT LT] (a 0
L 0 0 v f,

The first matrix equation is the discrete analogue of the first, fifth and eighth relations in (9),
and expresses internal and boundary compatibility. The third equation is the discrete analogue
of the last relation in (9), and expresses equilibrium across Si. The second equation is the
discrete analogue of the remaining relations in (9), and expresses internal and boundary
equilibrium. We now proceed to reinterpret these equations in terms of hybrid elements.

HYBRID ELEMENTS

Approach

The preceding treatment is relevant to the construction of displacement connected hvbrid
elements. Hybrid elements based on more restricted assumptions were originally constructed
by Pian and co-workers.2"* The principal features of the hybrid approach are:

(i) The domain is subdivided into elements before the variational principle is established.

(i) Continuity requirements across element boundaries are relaxed by introducing boundary
tractions or boundary displacements as Lagrange multiplier fields.

(iit) All stress and internal-displacement degrees of freedom are eliminated (by either static
condensation or kinematic constraints) at the efement level.

Feature (i) says that hybrid functionals are effectively mesh-dependent, since the domain
subdivision process introduces element boundaries which must be treated as internal interfaces,
and therefore become part of the boundary portion §;. Previous developments remain valid if
we reinterpret ‘body’ as ‘individual element’, ‘volume’ as ‘element volume’ and ‘surface’ as
‘interelement boundary’.

Continuity and connectors

The internal fielas . and i may be discontinuous across elements. The boundary
displacement field d, however, must be continuous on Si, i.e. it must have the same value on
adjacent elements. This conditions may be satisfied if d on an interface separating two elements
is uniquely interpolated by nodal values as entries of v, which automatically becomes the vector
of connected node displacements or connectors.
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FIELD DECOMPOSITION

In this and subsequent sections we work with an individual element, unless otherwise noted.
The element volume ¥ and the element surface is S: SqU S U S.. The v subvector contains the
element-connector degrees of {reedom; q and a contain internal freedoms. To gain further
insight into the structure of the element equations and to link up eventually with the free
formulation, we proceed to decompose both internal element fields as follows.

Stress decompostion

The assumed stress field & is decomposed into a mean value, d, and a deviator:

=0 + 0y = 0 + Al (19

Qe

in which
a=(0)v/v, (An)r=0 (20)

where v = (1), denotes the element volume. The second relation in (20) is obtained by
integrating (19) over ¥ and noting that ay is arbitrary.

Internal displacement decompostion

Next, the @ assumption is decomposed into rigid body, constant strain, and higher-order
displacements:

i = Neqr + Nc@Qc + NuGn (2
Applying the strain operator D = v+ v") to i, we obtain the associated strain field:
e'=DNq,+ DNq. + DNngh = Br‘]r +B.qc+ Bugn (22)

But B, = DN, vanishes because N, contains only rigid-body modes. We are also free to select
B. = DN, to be the identity matrix [ if the generalized coordinates q. are identified with the
mean (volume-averaged) strain values &". Then (22) simplifies to

+ Bngn , (23)
in which

qc = 8" =(e")fu, (Br)y =1 24

Equation partitioning

Assume that all elastic moduli in E are constant over the clement. The degree of freedom

partition
={:1 q= {&" (25)
h
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induces the following partition of the element equations:

[-vE™ 0 BT Lu-BT  _pr [ () (o)

0 “vC -PL -PL  4Qf-PL LT||a, 0

-F. P., 0 0 0 0 4 g B0 L
yl-B. P, 0 (1-+)E 0 0 [Ye[ ™)t

-Pn  yQu- P 0 0 (I -v)Kan 0 Qn fon
| L L, 0 0 0 oJv) (&)

where

Co=(ARE™'An)y,  Qu=(BiAn), Kon = (BIEB,),
P.=[NRLls, x=r,c,h, Puc= [NJAm]s, x=r,c,h @2n
L=[Vils, Lu=[V'Am]s for=(Nib)y, x=r,c,h

Integral transformations
Application of the divergence theorem to the work of the mean stress on e* vields
(@.€")y = (3,&" + Buan)v = va"e" + 5T (By)yqy < v5Ta"

= (0w 815 = (50, Nea + N+ Nnan] s = 57 (BTg, + Bl2" + Blq,) (28)

Hence,

P. =0, P. = ul, P.=0 29

A similar analysis of the stress-deviator work (ay,, e“)y does not vield simple forms for the |
matrices unless oy, is divergence-free, in which case

Pn =0, Pw. =0, Pun = Qy (30)

Assuming (30) to hold, the element equations (26) simplify to

[~ yE~! 0 0 —(1-)l 0 JLCT (&) (07

0 -vCh 0 0 1 -v)Qf| L | a, 0

0 0 0 0 0 0 J a | _ J for o
(=)l 0 0 (1-+)vE 0 0o Jef foe [

0 -(1-9)Q 0 0 (I=v)Kan| 0 |aqp £an
I L. 0 0 o Jo (V] L+, J

TLz stress freedoms & and an may be eliminated by static condensation. To eliminate qr, a
kinematic transformation that uniquely determines the rigid body motion from the element
interface motion is constructed:

¢ = Hv (32)
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where H, is a rectangular matrix (derived in the Appendix). Elimination of a, an and q; gives

Ll 9 0 _ 1=y g7
¥ Y e’ £
0 (1 = v)Kqn + YKon Kun ¢ = Ean (33)
- v fv + H
_l=vgg Kquh 7~ 'Ky !
L b -
where
— 2 - oy
Koo =" QG 08 Ke= 2 LiCi'QL Ko=Ku+Ken
i ] (34)
K,=v"'LELT, Kon = LuCi 'LE

Mean strain elimination
The subvector é* may be climinated in two ways. Static condensation gives

(1 = v)Kgn + YKon K Qn) _ fon
74 -1 - T -7 (35)
Kquh Ky, + Y Kes v fv + He fq{ + v quc

On the other hand, if " is eliminated through the k_inematic constraint é“ = Hcv derived in the
Appendix, we obtain a similar equation but with K, replaced by

K, =v"'Ky + -y (vHIEH. - HIELT - LEH,) (36)
Y

and the force subvector f, premultiplied by H! The two methods furnish identical results if
Ho=v LT (37)

As discussed in the Appendix this relation may be obtained from the first matrix equation in
(30) if either v = 0, or e" = &’ = E™'g. The last condition is obtained in the limit of a converged
solution, as verified by the patch test analysis mentioned below.

Patch test

A constant-stress, cancelling-tractions patch test performed on a two-element configuration
(V*, V7~ )illustrated in Figure | shows® that this element class passes the test for any value
of ~.

THE FREE FORMULATION

The free formulation of Bergan and Nygard® was originally conceived as an incompatible
displacement model that passes a cancelling- tracuons version of the patch test which Bergan
and Hanssen called the individual patch test’. Here the formulation is reinterpreted in the
context of a displacement-connected hybrid vananonal principle.

First, assume that the internal stress field is constant, so there are no a, parameters. Then

(35) reduces to
(I - v)Kan 9 an) _ fgn _ (38)
0 K. (v f,+ HTf, + v 'L
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The equation for g, uncouples. Consequently static condensation of qn will not change the
solution. We have run into a displacement limitation principie. This leads to the second
assumption: the higher-order internal displacement modes are eliminated by kinematic
constraints that link qn to the boundary displacements:

qn = Hypv ‘ 39

The matrix Hy, is derived in the Appendix. Application of this constraint to (38) furnishes the
final stiffness equations

Kv=[Ko+ (1 =y)Kn]v=" (40)
where
Ks = K, Kn = H{K nHp, f=f+H%+ 0 'Ly + Hufn 41

In the free formulation, Ky and Ky are called the basic and higher-order stiffness matrices,
respectively. A ! scaling of K, derived from energy-balancing studies was recommended by
Bergan and Felippa® for a plane stress element. This corresponds to taking v = 1.

Extensive numerical results using the scaled form of the free formulation are reported in
References 8 and 9.

CONCLUDING REMARKS

It is known® that the basic-stiffness part of the free formulation can be interpreted as a
constant-stress hybrid element. But the interpretation of the higher-order stiffness within a
variational framework has been difficult. A key result of this paper is that this can be
accomplished by a parametrized mixed-hybrid variational principle. Note that the free
formulation cannot be obtained within the d-generalized Hellinger—Reissner principle (y = 1),
since then the higher-order stiffness vanishes and K=K, is generally rank deficient. And
choosing v = 0 does not account for the fact that the higher-order stiffness can be scaled by
a nonzero coefficient.

The variational framework is important because it allows consistent extensions of the free
formulation that are not obvious from a physical standpoint, for example : allowing more
internal  displacement  degrees of freedom than  boundary freedoms, i.e.
m =dim(q) - dim(v) > 0. Examinations of (35) shows that m additional higher-order
divergence-free stress fields have to be retained so that the coupling stiffness Kqn does not
vanish. The reduction of qu can be then performed by a combination of static condensation
and kinematic constraints.

8
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APPENDIX: KINEMATIC CONSTRAINTS

One of the principal assumpt:ons invoked in the free formulation is that the dimension of q
is the same as that of v, and that the latter are physical node displacements. If so, evaluation
of the expansion i = Nq on the element boundary S establishes the transformation

v=G0q (42)
where the matrix G is square. Furthermore, suppose that G is nonsingular and can be inverted:
g=G 'v=Hv (43)
or, in partitioned form
Qs H.
q=§{ 4 { = H. | v (44)
Gn Hn

The first matrix equation (the discrete compatibility equation) in (18) can be presented as
Je'-¢, Aw=LTv-Qla=(LT-QH)y= (L'G-QMa 45)
Setting v = 0 forces the constraint '
LT=Q™H or L'G=Q' (46)

to be satisfied. The same constraint emerges if v # 0 and the finite element solution has
converged in the sense that e" = e° is constant over the element. Now, carrying out the freedom
partition (25) and assuming divergence-free higher-order stresses soO that (30) holds, the
constraint (46) partitions as

_ H -

LT 0 vl O ’ LT 0 vl 0
= Hc Gr Gc =

{HE] [0 0 QE} al {LK}[ Gl [o 0 Qﬁ]
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from which follows the relations
L'G,=0, L'G.=vl, LT=uH, L'G,=0
LiG=0, L{G:=0, LI=QH. LIG,= "
The first four relations were obtained through other means by Bergan!® and Bergan and

Nygard® who called them the Jorce orthogonatity conditions on account of the physical
interpretation of L as a ‘boundary nodal force lumping’ matrix.

(48)
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The free formulation of Bergan and Nygérd (1984) has been successfully used in the
construction of high-performance finite elements for linear and nonlinear structural
analysis. In its original form the formulation combines nonconforming internal
displacement assumptions with u specialized version of the paich test. The original
Sformulation is limited, however, by strict invertibility conditions linking the as-
sumed displacement field to the nodal displacements. The present paper lifts those

restrictions by recasting the free formulation within the framework of a mixed-
hybrid functional that allows internal stresses, internal displacements, and boundary
displacements to vary independently. This functional contains a free parameter and
includes the potential energy and the Hellinger-Reissner principles as special cases.
The parameter appears in the higher-order stiffness of the element equations.

1 Introduction

Bergan and Nygird (1984) have develuped the so-called free
formulation (FF) for the construction of displacement-based
incompatible finite elements. This work consolidated a decade
of research of Bergan and co-workers at Trondheim,
milestones of which may be found in Bergan and Hanssen
(1976), Hanssen et al. (1979), and Bergan (1980). The products
of this research have been finite elements of high perform-
ance, especially for plates and shells. Linear applications are
reported in the aforementioned papers as well as in Bergan
and Wang (1984), Bergan and Felippa (1985), and Felippa and
Bergan (1987); whereas nonlinear applications are presented in
Bergan and Nygird (1985) and Nygdrd (1986). By *‘high per-
formance’’ it is meant that solution of engineering accuracy
can be obtained with coarse meshes of simple elements, and
that those elements exhibit low distortion sensitivity.

The original FF was based on nonconforming displacement
assumptions, the principle of virtual work and a specialized
form of Irons’ patch test that Bergan and Hanssen (1976)
called the individual element test. A key ingredient of the FF is
the separation of the element stiffness matrix into the sum of
two parts, called basic and higher-order stiffness, respectively.
The basic part is constructed for convergence and the higher
order part for numerical stability and (in recent work)
accuracy.

An intriguing question has been: Does the FF fit in a varia-
tional framework? This was partly answered by Bergan and
Felippa (1985), who showed that the basic stiffness part was
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equivalent to a constant-stress hybrid element. But persistent
efforts by the present author to encompass the higher-order
stiffness within a hybrid variational principle were unsuc-
cessful until the development of parametrized mixed-hybrid
functionals in Felippa (1989a, 1989b). With the help of these
more general functionals it is possible to show that the FF is a
very special type of mixed-hybrid element which does not fit
within the classical Hellinger-Reissner principle. In retrospect,
the classification of FF elements as hybrids is not surprising.
Under mild conditions studied in the Appendix, hybrid
elements satisfy Irons’ patch test a priori, and the FF develop-
ment has been founded on that premise.

To encompass the FF within the hybrid framework, the
following assumptions must be invoked.

(1) A specific hybrid functional, identified as I17 in the se-
quel, is constructed. This functional depends linearly
on a parameter vy.

(2) Three fields are assumed over each element:

(a) a constant stress field,

(» an internal displacement field u defined by n,
generalized coordinates collected in vector q, and

(¢) a boundary displacement field d defined by n,
nodal displacements collected in vector v. Both d and u
must represent rigid body motions and constant strain
states exactly.

(3) The number of generalized coordinates, n,, equals the
number of nodal displacements, n,., and the square
transformation matrix G relating v = Gq is
nonsingular.

In Felippa (1989b) it is shown that substituting the finite ele-
ment expansions into H;", rendering the functional stationary
with respect to the degrees-of-freedom, and eliminating both
internal fields by a combination of static condensation and
kinematic constraints, leads to the FF stiffness equations in
terms of the nodal displacements v. The parameter y appears
as a coefficient of the higher-order stiffness. These stiffness

1



equations can be readily implemented into any displacement-
based finite element code.

This variational pathway to FF is of interest for two
reasons. First, it explains the behavior of FF elements as
regards convergence, stability, and accuracy. Second, it opens
up the door to extensions that are not obvious from a physical
standpoint. Two such extensions involve: retaining higher-
order stress fields, and allowing more internal displacement
modes than nodal displacements, that is, n, > n,. The main
purpose of this paper is to study these two extensions, which
are shown to be closely related. The resulting framework for
deriving finite elements in elasticity is called the extended free
formulation (EFF).

2 Governing Equations

Consider a linearly elastic body under static loading that oc-
cupies the volume V. The body is bounded by the surface S,
which is decomposed into S: S, U S,. Displacements are
prescribed on S, whereas surface tractions are prescribed on
S,. The outward unit normal on S is denoted byn = n,.

The three unknown volume fields are displacements u = u;,
infinitesimal strains e = ¢, and stresses o= o;;- The problem
data include: the body force field b = b, in V, prescribed
displacements d on S,, and prescribed surface tractions {m 1
onS,.

The relations between the volume fields are the strain-
displacement equations

=—(Vu+v7u)=Du or &—(u,;+u;;) in V, (1)

the constitutive equations
o=Ee or ﬂij =E,jk,ek, in V, (2)

and the equilibrium (balance) equations

—dive=D*¢=b or o;;+b;=0in V, (3)

in which D* = ~ div denotes the adjoint operator of D = 1/2
(v+97).

The stress vector with respect 10 a direction defined by the
unit vector v is denoted as ¢, =g.v, or 0, = 0;0;. On S the
surface-traction stress vector is defined as

0, =0.0, OF 0,,=0;n;. C))]
With this definition the traction boundary conditions may be
stated as

o,=toro,n,=i onsS, (5)
and the displacement boundary conditions as
u=doru=d onS§,. (6)

3 Notation

Field Dependency. In variational methods of approxima-
tion we do not work, of course, with the exact fields that
satisfy the governing equations (1)-(3), (5)-(6), but with in-
dependent (primary) fields, which are subject to variations,
and dependent (secondary, associated, derived) fields, which
are not. The approximation is determined by taking va... ‘~us
with respect to the independent fields.

An independently varied field will be identified by a super-
posed tilde, for example, @i. A dependent field is identified by
writing the independent field symbol as superscript. For exam-
ple, if the displacements are independently varied, the derived
strain and stress fields are

¢— (V + V7)i=Di, ¢* = Ee* = EDi. )

An advantage of this convention is that u, e, and ¢ may be
reserved for the exact fields.
Integral Abbreviations. Volume and surface integrals will

See Sy

Fig. 1 Intemai interface example

be abbreviated by placing domain-subscripted parentheses and
square brackets, respectively, around the integrand. For ex-
ample:

0vE | rav. e sas, in;,%

[ /951, J,sas ®)

If f and g are vector functions, and p and q tensor functions,
their inner product over Vis denoted in the usual manner

def
o= | tgav={ sgav.

def
(p.9)y= SV p.gdV= SV pyqidv, (9)

and, similarly, for surface integrals, in which case square
brackets are used.

Domain Assertions. The notation
@=b)y, la=bs, la=bs, la=b];, (10)

is used to assert that the relation @ = 5 is valid at each point of
V, S, S4. and S,, respectively.

Internal Interfaces. In the following subsections a varia-
tional principle is constructed, in which boundary
displacements d can be varied independently from the internal
displacements u. These displacements play the role of
Lagrange multipliers that relax internal displacement continui-
ty. Variational principles of this form will be called
displacement-generalized, or d-generalized for short.

The choice of d as independent field is not variationally ad-
missible on S, or S,. We must therefore extend the definition
of boundary to include internal interfaces collectively
designated as S;. Thus,

5:5,US,US,. (11

On §; neither displacements nor tractions are prescribed. A
simple case is illustrated ‘n Fig. 1, in which the interface S;
divides V into two subvolumes: V* and V- . An interface such
as §; on Fig. 1 has two “‘sides”” called S;* and S;; which iden-
tify S; viewed as boundary of V* and V- , respectively. At
smooth points of S;, the unit normais n* and n- point in op-
posite directions.

The integral abbreviations (8)-(9) generalize as follows, us-
ing Fig. 1 for definiteness. A volume integral is the sum of in-
tegrals over the subvolumes:

(/),,°="§V+de+ Sv_de. (12)

Transactions of the ASME



An integral over S; includes two contributions:

def

(8lsi = (13)

5 'g*dS+S o dS,
Si SI

where g* and g~ denotes the value of the integrand g on §;
and S;; respectively. These two values may be different if g is
discontinuous or involves a projection an the normais.

4 The Hu-Washizu Principle

There are several essentially equivalent statements of the
Hu-Washizu functional of linear elasticity. The starting form
used here is the four-field functional

M%(5,8,6,d) = (0*,&)y + (864 =8y = P4, (14)

where P9 is the ‘‘forcing’’ potential .
Pd(ﬁvavd.)=(boﬁ)l/+ [&ntﬁ— J]Sd + [isﬁ]Sl + [anﬂﬁ— d-]Si (15)

The function II%is called d-generalizec in the sense that the
volume fields @, &, 4, and the surface displacement field d are
subject to independent variations, whereas in the conventional
form of the principle the relation [d= s s, is enforced a
priori. The superscript d is used to disunguish it from the r-
generalized variant

W(,8,3,0=— (0% &)y + (5,64 - &)y — P, (16)
in which the surface tractions t are varicd independently from
the internal stress field 4. This is the starting form in the
classical textbook of Washizu (1968). Parametrized versions
of (16) are studied in further detail in Felippa (1989a).

Functionals that are not d or (-generalized will be called
conventional. The three versions differ only in the forcing
potential term.

S Parametrization

Constraining the Hu-Washizu functional (14) by selectively
enforcing field equations and boundary conditions a priori
yields six functionals listed (in their conventional form) in
Chapter 4 of the monograph of Oden and Reddy (1983). Of
particular interest for the present studyv are the d-generalized
Hellinger-Reissner functional

N3(@,6,d) = —— (3. + (3.4), =P, (n
as well as the d-generalized potential energy functional
Hf;(ﬁ.&):%{a“,e“)y--P”. (18)

These two functionals are special cases of the following
parametrized form

(i, a,d) = (1 - 7)(e* )y

~Y(@.e%)y +(@,e4)y — P, (19
where v is a scalar. If ¥ = 1 and 0 we obtain the functionals
1% and I1%, respectively. Parametrized forms, such as (19), of
the elasticity variational principles were studied by Chien
(1983).

First Variation. Defining the y-weighted stresses

def

"% yg+ (1 -v)e* in V, 7% v, +(1 -y)e¥ on S (20)

the first variation of (19) can be written
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812 =y (e* —e?,68), — (div o7 + b, b0),
- (i~ a},88l5, - [3, — 33,605, — [u~-d.5d,]s,
- [6"' - &:’Héﬁlsi - [ﬁ - d-véﬁnlsl - [6n t‘Sd-]Si .
Since d is unique on §; whereas @ and & are generally discon-
tinuous on it, the interface integrals in (21) split as follows:

@1

CARE AT R LAS AN T RS PIRE S (R L S B
[ - d,5a)s, = [a* —d,68,] .+~ - d,85;]__,
i i

[6,.8d]5, = [a,:,ad']&+ + [a;,ad']s_ =[3;~5,,5d]s,.

(22)

Setting the first variation to zero and taking (22) into account,
the Euler equations and natural boundary conditions for y#0
are found to be

(" =€)y, (div o7 +b=0), (o} =1]s ,
lo, =03ls,, [u=dls,, [0}~ —a;=0l5,

(o5 —0;=0l5, u” =u- =dl5,, o7~ 0;=0ls,.

(23)

The constitutive equations do not appear since they are en-
forced a priori in I19. If ¥ =0, the first equation (e¥ = e),,
drops out.

Substituting d in lieu of u in

Modified Forcing Potential.
the forcing potential (15)

P(,d,d) = (b,d), + [3,,d—d]g, +(td]s, +[5,0-dl5, (29

is not variationally admissible because incorrect Euler equa-
tions result. A correct potential that resembles (24) can be ob-
tained in two stages. First, surface terms [d,, @ —dls, and [7,,
i—d] s, are added and subtracted to produce

PA(ii,3,d) = (b,8), +[3,,d - d]s, — (3, - il +[5,,a-ds.
(25

Second, t s assumed to be in the range of &, and the condition

[6, =t] s, satisfied a priori, reducing (25) to

P4(ii,5,d) = (b, i)y +[5,.d- &]sd + [f.d-ls, +(3,,0—d]s. (26)

This expression differs from (24) in that the all-important sur-

face dislocation integral is taken over S rather than S;. Further

simplification results if the displacement boundary conditions
[d= d]sd are exactly satisfied:

P4 (a,5,d) = (b,ii), +[L,d]s, + (&, -d]s. 2N
This expression of P? is used in the sequel, as modifications
required to account for the case [d#d]sd are of minor
importance.

6 Energy Balancing

Distances. Let U(e) = 1/2 (Ee,e),- denote the strain energy
associated with field e. We may rewrite (19) as a potential-
energy deviator

M4 =M%-vyU(e —e%), (28)
because
Hd_nd
—*7/2—”= (5.6° ~ €)= (G- 0*,e“)y
=(o% —d,e¥ —e?), = (Ee* —Ee’ e" —e’),.. (29)

If E is positive definite, U (e¥ —e°) = 0 and, consequently,

¢ <113 if v >0. (30)

If @ is kinematically admissible, IT1% exceeds the exact potential
energy as will be shown. It follows that to improve solutions in

3



energy, we expect to take y = 0. Thus, principles associated
with ¥ < 0 have limited practical interest,
Let I1(u) denote the exact potential energy
Muy=—-(a.e)y - (b,u), - [{,ul;, 31
where o and e denotes the exact stress and strain field, respec-
tively, If 4 is kinematically admissible and thus satisfies
(u=d] 4> then the energy distance from IIZ(4) to the exact
functional (31) is (see, e.g., Section 34 of Gurtin (1972))
M-Tl=— (0" ~0.e" —e), = Ue* —e). (32)
Adjusting y. To derive an ‘‘energy balanced’’ approxima-
tion we impose the condition II.‘,’ =[I, which yields

Ule’—e) _ (0"—0,e¥—e)
Ule“~e) ~ (0" —g,ev—e%)
For example, if we assume that the exact stresses and strains
lie halfway between the approximate fields,

(33)

Yo =

0= (0" +3), e=—L(e"+e), (34)
then v, =1/4. But, as the exact stresses and strains for the
elasticity problem are not generally known in advance, the
practical determination of 7 has been based on application of
(33) to element ‘‘patches’’ under simple load systems, as
discussed in Bergan and Felippa (1985) and Felippa and
Bergan (1987).

Error Estimates. The strain difference e« —e¢ may be used
as a pointwise measure of solution accuracy, and the
associated ‘‘dislocation work’’ {/ (e* —e°) as an energy error
measure for applications such as adaptive mesh refinement.

7 Finite Element Discretization

In this section the finite element discretization of H;’ is
studied. Following usual practice in finite element work, the
components of stresses and strains are arranged as one-
dimensional arrays whereas the elastic moduli in E are ar-
ranged as a square symmetric matrix. The FE assumption is
globally written

(=Nqg),, (¢=Aa),, [d=Vv];. (35)

Here, matrices N, A, and V collect generalized-displacement
shape functions, internal stress modes, and interface displace-
ment modes, respectively, whereas column vectors q, a, and v
collect generalized internal displacements, stress mode
amplitudes, and generalized interface dispiacements, respec-
tively. The assumed volume fields § and u need not be con-
tinuous across S,. The derived fields are
(e*=DNq=Bgq),, (¢“ =EBq),, (e°=E- '6=E"'Aa),.
(36)
Inserting these expressions into N with the forcing potential
(27), we obtain the algebraic form

I5(2,4,8) = (1~ 1)a"K,q - ——aCa

+vq'Qa-q’Pa+vTLa— q'f, —v1,
where

K, = (B'EB), =K, C=(A’E"'A);,=CT, Q=(B7A),,
L=[V7A,l5, P=INA,]s, f,=(NTb),, £, = [NTi

The matrices K,, C, Q, L, and P are called internal-
displacement stiffness, compliance, leverage, nodal-force
lumping, and boundary dislocation matrices, respectively.
Making (37) stationary yields the linear system

(38)

4

IF ~vyC Q7T -PT L7 J’a 0)
| vQ-P (1-y)K, o q =<1, & (39)
L o o v i, |

The first matrix equation is the discrete analog of the first,
fifth, and eighth relations in (24), and expresses internal and
boundary compatibility. The third matrix equation is the
discrete analog of the last relation, and expresses equilibrium
across S;. The second matrix equation is the discrete analog of
the remaining relations, and expresses internal and boundary
equilibrium.

It is shown later (in Section 9) that if the assumed stress
modes in A are divergence free (self-equilibrating), then
P=Q, and (39) simplifies to

-vC -(1-yQ7T LT a 0
—“1-v)Q (I-vyK, 0 q)=41, (40)
L 0 0 v f

t

These results are now reinterpreted in terms of hybrid
elements.

8 Hybrid Elements

Approach. The preceding treatment is relevant to the con-
struction of displacement-connected hybrid elements. Hybrid
elements based on more restricted assumptions were originally
constructed by Pian and co-workers (see Pian, 1964; Pian and
Tong, 1969; Pian, 1973). From current perspective, the prin-
cipal features of the hybrid formulation are:

(4) The domain is subdivided into elements before the
variational principle is established.

(B) Continuity requirements across element boundaries
are relaxed by introducing boundary tractions or boundary
displacements as Lagrange multiplier fields.

(C) All stress and internal-displacement degrees-of-
freedom are eliminated (by either static condensation or
kinematic constraints) at the element level.

(A) says that hybrid functionals are effectively mesh-
dependent, because the domain subdivision process introduces
element boundaries which must be treated as internal inter-
faces, and therefore become part of S;. Previous develop-
ments remain valid if one reinterprets “body’’ as ‘‘individual
element,” ““volume’’ as ‘“‘element volume,’’ and “‘surface’’ as
‘“‘interelement boundary.’’

Continuity and Connectors, The internal fields  and ii
may be discomin_uous across elements. The boundary
displacement field d, however, must be continuous on §,, i.e.,
it must have the same value on adjacent elements. This condi-
tion may be satisfied if d on an interface separating two
elements is uniquely interpolated by nodai values on thar inter-
face. 1t is natural to take such nodal values as entries of v,
which automatically becomes the vector of connected node
displacements or connectors.

9 Kinematic Relations

In this and subsequent sections we work with an individual
element unless otherwise noted. The element volume is V and
the element surface is S: 5S4 U S, U S,. The v subvector con-
1ains n, element-connector degrees-of-freedom, whereas q and
a contain n, and rn, internal freedoms, respectively. We shall
assume that n, = n,.

The first matrix equation (the discrete compatibility equa-
tion) in (39) can be interpreted as the dislocation-energy
balance statement
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—1(3,e“ ~e°),—aT (PTq~L7v), =0. @1
Setting v =0 and observing that a is arbitrary, (41) forces the
kinematic constraint

PTq=L"v 42)

to be satisfied. The same relation emerges if ¥ #0 but the ele-
ment displacements are forced to obey

(43)

as an optimality condition which says that the work of the
strain error over the assumed stress field vanishes for arbitrary
element motions. The constraint (42) plays a key role in subse-
quent derivations. An immediate consequence is that the first
matrix equation in (39) reduces to the equivalent of (43),
namely ya” (- Ca+Q7q) = 0, thus, if v = 0,

a=C-'Q7q,ora=C~'LTv fP=Q. (44)

Next, suppose that q and v are connected by the linear
algebraic relations

(&,e“ —ea)y=0

(45)
(46)
where G is an, x n, transformation matrix and His a n, x
n, transformation matrix. The determination of these

matrices and their connecting relationships is discussed later.
Using (45)-(46) the constraint (42) may be stated in two ways:

v=Gq,
q=Hy,

Internal Displacement Decomposition. Next, the u
assumption is decomposed into rigid body, constant strain,
and higher-order displacements:

i=N,q, + N.q. + N,q,. (53)

Applying the strain operator D = 1/2 (9 + ¥7) to it we get
the associated strain field:

¢*=DN,q, + DN.q. + DN,q, =B.q, +B.q. + B,q,. (54)

But B, = DN, vanishes because N, contains only rigid body
modes. We are also free to select B, = DN, to be the identity
matrix I if the generalized coordinates q, are identified with
the mean (volume-averaged) strain values &. Consequently,
(54) simplifies to

e“=¢" +e =é" +B,q,, (55)
in which
(56)

qC=éu=(eu)V/vr (Bh)V=0

Equation Partitioning. Assume that all elastic moduli in E
are constan: over the element. The degree-of-freedom parti-
tion

a (q
a= s q= < e s, 57
ay qp

PT=L7G, PPH=L" &7 ipduces the following partition of the general element equa-
tions (39)
[ —yvE-! ~-P7 yI-PI -P] LT] (&) (O
0 -G, -Pl, -PL Q]-P, L] ay 0
-P, -P,, 0 0 0 0 q, £,
yl-P. =Py 0 (1-y}E 0 o | Je [7) fo
- pn YQh =P 0 0 (1-vKg, 0 qn Eon
| L 0 0 0 0, Lv ) Uf,

Elimination of a and q in (39) through (4-})-(46), with account
taken of the second of (47), yields the ex:ernal stiffness equa-
tions

Kv=f, (48)
in which
K=y[LC-'Q’"H+H'QC-'L"-LC-'L’]
+(1-y)H'K,H, f=f, +Hf,. 49)
If P = Q, system (40) reduces to (48) but with
K=vyLC-'L"+(1-y)H'K_H. (50)

10 Internal Field Decomposition

To gain further insight into the structure of the element
stiffness equations (48) and eventually link up with the free
formuiation, we proceed to decompose both internal element
fields as foilows.

Stress Decomposition. The assumed stress field, 4, is
decomposed into a mean value, 4, and a ceviator:
d=a+0d,=0+A,a,, 51

in which
a=(d)y/v, (Ay)y=0, (52)

where v = (1), denotes the element volume measure. The
second relation in (52) is obtained by in:egrating (51) over V
and noting that a, is arbitrary.
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where
Cyv=(AJE 'A,)y, Q.= (BJA,),, K, = (BJEB,),,
l;,\' = [NIn]Sr x=r,c,h, Ph_x = [N(Ahn]Sv X=f,C,h,
i-'= [VZ]S’ Lh = [VTAPM]S’ qu = (N\Z-b)lfv X=f.C.h. (59)

Integral Transformations. Application of the divergence
theorem to the work of the mean stress on e yields

(&‘e“)y= (6,6“ + th )y= U&ré“ + l-lT(Bh) via =U&Téu
h
= [anvﬁ]S = [a'n»qur + Ncéu + NthlS

= ‘-’T(prqr + lscéu + P_hqh)' (60)

Hence,

P,=0, P.=ul, P, =0. (61)

A similar analysis of the stress-deviator work (d,, e“), does
not yield simple forms for the P,, matrices unless &, is

divergence-free, in which case
P, =0,P,.=0 P, =Q,. (62)

Hence, P = Q as claimed in Section 7. Inserting (61)-(62) into
(58) yields the partitioned form of (40):



[ —yuE~! 0 0 —(1-yl 0 LT
0 -y¥C, 0 0 -(1-vQf L]
0 0 0 0 0 0

—-( -yl 0 0 (1-yE 0 0
0 -(1-v)Q, 0 0 (1-vK, 0

L L, 0 o 0 0|

Orthogonality Conditions. If the higher-order stresses are
divergence free so that Pm Q, the relations (47) partition as

0ul O L7
= [G, G, G,],
oo o) Lit)

r

0ul 0 { LT:I
H | = ) (64)
00 Q] Ly
H,
whence the relations
I-JTG,=0. I-..TGC= l, LTG =0' LT= H .
4 " b e (65)

L[Gr=0; Lz-Gc=0! L[Gh=Q[1 LI7|-=QZH’I'

The first four were obtained through other means by Bergan
(1980) and Bergan and Nygird (1984), who called them the
Jorce orthogonality conditions on account of the physical in-
terpretation of L as a ‘‘boundary nodal force lumping”’
matrix in the free formulation studied next.

If the higher-order stresses are not divergence-free, the last
four of (65) are replaced by

LiG =P}, LIG =P], L[G,=P],

(66)
L]=Pl, H,+PLH.+PLH,.

11 The Free Formulation

The free formulation of Bergan and Nygdrd (1984) was
originally conceived as an incompatible finite element
displacement model that passes a cancelling-tractions version
of the patch test which Bergan and Hanssen (1975) called the
individual patch test. Here the formulation is reinterpreted in
the context of the hybrid principle (19). The assumptions that
lead to the FF are listed in the Introduction and will be studied
in further detail.

Constant Internal Stress. The internal stress field is con-
stant. Consequently, there are no a, parameters, reducing (63)
to

[ —yE-" 0 —(1-yul 0 L7 &)
0 0 0 0 0 q,
(=71 0 (1-yE 0 0 | { & ;=
0 0 0 (1-yK, 0 Q%
L o 0 0 0] v )
0
£,
foe 0. (67)
£
f,

& 0

a, 0
M (63)
& foe

q, fqh

v f, )

Invertible G. Matrix G in (45) is constructed by nodal col-
location, that is, by evaluating the expansion i = Ngq at the ele-
ment boundary nudes. This establishes the transformation

q,

V= Gq = [Gr G(‘ Gh] e (68)

Qn

According to the assumptions listed in the Introduction,
matrix G is square and nonsingular so inverting (68) we get

q=G '=Hv or

q" Hr H"
q=< € + = | H, | v= vILT v (69)
q, H, H]

The FF Stiffness Equations. Eliminating ¢ and q from
(67) yields the FF stiffness equations

Kv=[K, +(1-y)K,}Jv=f, (70)
where
Kb=U-li¢E-liT, Kh'—'H[thHIn
f=f, +HTf, + v 'LE, + H,f,,. n

In the free formulation, K, and K, receive the name basic and
higher-order stiffness matrices, respectively. A 1/2 scaling of
K, derived from energy-balancing studies was recommended
by Bergan and Felippa (1985) for a plane-stress element. This
corresponds to taking y=1/2. But in general the value of ¥
can be expected to be dependent on the type and geometry of
the element.

As K, is rank-deficient (except for the simplex elements)
choosing y=1, which corresponds to the d-generalized
Hellinger-Reissner functional (17), is not admissible.

12 The Extended Free Formulation

In the extended free formation (EFF) the number of internal
displacement freedoms, n,=dim(q), is ailowed to exceed the
number of nodal displacement connectors n, =dim(v). We can
esi..” * the relation (68) as before, but matrix G will now be
rectangular and cannot be directly inverted. One way of cir-
cumventing this difficulty is to retain n, —n,=dim(a,) higher-
order stress modes; an alternative procedure is discussed in
Section 13. The stress modes are assumed to be divergence-

free so (62) holds. The available relations are
v=Gq, C,a,=L]lv=Q]q,, (72)

which can be combined to form the matrix system
v Gr Gc Gh q,
= et (73)
a, 6 o0 C;'Qf q,
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The matrix on the right side is square, and invertible if G, C,,
and Q, have full rank. Solving for q and eliminating a, one
obtains

q, H 0
v
=149 = H 0 =
ay
Qn H, I,
H, H,
H, v=| H, |+, (74)
H, +J,C;'Qf H,

where H, and J,, result from the inversion process. Since H,
G, + 3, C;' Q] = I, we can express H, as
H, =H; +1- H/G,. 7%

Having H available, replacing into (48)--(50) we obtain the
EFF stiffness equations

Kv=[K, +K,, + (1-y)K,]v=f, (76)
where K, K, and f are the same as in (71). and
Kbh = L,,C,,‘ ! L{ (77)

Is ¥ = I now admissible? If K, + K,, has correct rank, yes!
Curiously enough, if the body force field b vanishes and vy =
1, (76) are precisely the stiffness equations for the original
equilibrium-stress-assumed hybrid elements of Pian (1964),
which can, of course, be constructed without any internal
displacement assumptions.

13 Hierarchical Connector Augmensation

An alternative approach to building an invertible transfor-
mation such as (73) consists of augmenting v with 2, — n1, con-
nector degrees-of-freedom collected in subvector v,. These
must be selected to give a square transformation of the form

q
\J G, G, G,
= é >, (78)
v, 0 0 G,
q; |

If this approach is followed, it is importunt to choose v, in
hierarchical fashion so that the expanded G has the structure
just shown. In other words, v, must not be “‘excited’’ by rigid
body or constant strain motions. Otherwise the interelement
compatibility of boundary displacements is generally violated
for such motions, and the patch test discussed in the Appendix
fails.

Inversion of (78) provides the H matrix. The FF stiffness
equations (70) can be constructed with the strain-energy con-
tribution from v, flowing to the higher-order stiffness K,.
Finally, the v, freedoms can be statically condensed.

Which EFF approach is better? The decision seems to be
element-dependent. The choice primarily hinges on whether it
is easier to choose divergence-free stress inodes than hierar-
chical connectors while preserving element invariance. If both
approaches appear equally feasible, there is not presently
enough experience to decide which one is 2referable.

14 Concluding Remarks

The qualifier free in ‘‘free formulation’’ was meant to em-
phasize ‘‘freedom from conformity requirements’’ that are a
pervasive part of the conventional displacement formulation,
and the possibility of constructing the basi: and higher-order
stiffness contributions through largely independent assump-
tions. But when the FF is studied from a variational stand-
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point, severul constraints become immediately apparent. The
extended FF releases the most troublesome one at the cost of
buying more complicated stress assumptions, or additional
hierarchical :onnectors. So it is fair to state that the admirable
goal of absolute freedom has not yet been attained.

The development of the EFF as reported here was motivated
by difficulties encountered in the construction of the following
elements:

3-Node Plane Stress Triangle with Nodal Rotations.
Similar to the element constructed by Bergan and Felippa
(1985), but with a fully quadratic internal dispiacement field.
Thus, n, = 9, n, = 12 and three additional self-equilibrating
stress fields are needed.

4-Node Tetrahedron with Nodal Rotations. The extension
of the previous element to three dimensions has 7, = 12, n, =
18 and six additional stress fields are needed.

Assuming fully-quadratic internal displacement fields
eliminates the higher-order mode selection difficulties dis-
cussed by Bergan and Felippa (1985). Progress in the deriva-
tion of these elements will be reported in subsequent papers.
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APPENDIX A

The Cancelling-Traction Patch Test

It is instructive to study whether this element class passes the
patch test for an arbitrary v. To investigate this question we
use the sketch of Fig. 1 and view the subvolumes ¥* and V-
as two elements connected along S; with an external traction
boundary S,. Both elements are in a state of constant stress o,.
The prescribed surface tractions are [t=ay,] s, and the body
forces b vanish.

First, take (63) to be the governing discrete equations for the
two-element assembly. The only nonzero forces are f, =
[VTt]s,. The key observation is that

L=(VI;=(V]s,, 79

because the integral over S; vanishes as (V, =V_)s, on ac-
count of the interface compatibility conditions stated in Sec-
tion8,and n* = — n~. Now, for any v it can be verified that
the solution of (63) is that demanded by the patch test, namely

d=g,=0d", a, =0, q, =arbitrary,
(80)
In checking this assertion one finds that the following rela-
tions, listed in (65), must be satisfied:
L'G,=0, L’G,=ul, L]G, =0, L,G,=0. 81)
If instead we take the more general equations (59), verification
of the solution (81) demands that
P,=0, BP.=ul, P, =0, Pl =L]G,,
Pl =L]G,, P}, =L]G,. (82)
The first three follow from the divergence theorem as shown
in (60). But the last three, listed in (66), are a consequence of
the kinematic constraint (43), which is thus directly correlated
to satisfaction of the patch test.
As noted by Fraeijs de Veubeke (1973), the physical mean-
ing of this form of the patch test is that the interface virtual

work is zero when the element patch is in a constant stress
state.

éu=E_l‘-70, qh =0, V=LT&O +G,q,.
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DEVELOPMENTS IN VARIATIONAL METHODS
FOR HIGH PERFORMANCE PLATE AND
SHELL ELEMENTS

C. A. Felippa and C. Militello
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ABSTRACT

High performance ¢lements are simple finite elements constructed to deliver engineering
accuracy with coarse arbitrary grids. This paper is part of a series on the variational founda-
tions of high-performance elements, with emphasis on plate and shell elements constructed
with the free formulation (FF) and assumed natural strain (ANS) methods. In this paper, we
study parametrized variational principles that provide a common foundation for the FF and
ANS methods, as well as a combination of both. From this unified formulation a variant of
the ANS formulation called the “assumed natural deviatoric strain” (ANDES) formulation,
emerges as an important case. The first ANDES element, a high-performance 9-dof trian-
gular Kirchhoff plate banding element, is briefly described to illustrate the use of the new
formulation.

1. INTRODUCTION

For 25 years researchers have tried to construct “best” linite element models for problems
in structural mechanics The quest appeared to be nearly over in the late 1960s when high
order displacement elements dominated the headlines. But these elements did not dominate
the marketplace. The overwhelming preference of finite element code users has been for ssmple
elements that deliver engineering accuracy with coarse meshes. These will be collectively called
high performance clements, or HP elements.

1.1 Attributes of HP Flements

Approaching that general goal gives rise to a myriad of more concrete requirements which
are supposed to be addressed in some degree during element development. Such requirements
are listed in Table 1.

Some of these requirements are obvious. For example, low distortion sensitivity is a
consequence of trying to achieve satisfactory accuracy with arbitrary meshes. But other
items listed in Table 1 «:all for some explanation.
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Table 1 - Target Requirements for High-Performance Elements

e Simple: few freedoms, all physical, preferably at corners only
s Convergent

o Frame invariant

e No locking

o Rank sufficient: no spurious. modes

¢ Balanced stiffness: not too rigid, not too flexible

e  Stresses as accurate as displacements

s Low distortion sensitivity

¢ Mixable with other elements

¢ Economical to form

¢ Easily extendible to nonlinear and dynamic analyses

* Effective local error estimator for mesh adaptation

The first and foremost requirement is that the element be as simple as possible. This
is in sharp contrast to the “baroque FE period” of 1965-1975 that lauded luxuriantly ornate
elements and culminated with the development of very complex models, including elements
with nonphysical degrees of freedom. One source of this retrenchment has been feedback
from users of general purpose, finite element programs. As use of these programs expanded
to more engineers without deep knowledge of “what’s inside the black box™ the trend in
finite element model construction veered toward the “simplest elements that will do the job.”
Further impetus is provided by the gradual realization that high accuracy of complex elements
in linear elastostatics does not necessarily carry over to dynamic and nonlinear analyses.

The balanced stiffness requirement also deserves comment. It follows from the goal of
attaining reasonable accuracy with coarse meshes. This is illustrated in Fig. 1, which shows
a convergence study of a classical model problem: the bending of a simply supported square
plate under a concentrated central load. The mesh contains 2 X ¥ x N triangles over a plate
quadrant. A target “accuracy band” of +1% is taken, somewhat arbitrarily, as representative
of engineering accuracy for this rather simple problem. The convergence characteristics of
several triangular elements are taken from the extensive study reported in Ref. 2. Although
most elements converge, some are too stiff, while others are too flexible, and generally do
not enter the accuracy band until the mesh is fairly refined (N > 8). On the other hand,
the results labeled ‘FF’, obtained with a plate element based on the free formulation (FF)
discussed later, lie within the band for all meshes.

The balanced stiffness requirement should not be confused with fast asymptotic conver-
gence for fine meshes. Simple elements cannot effectively compete with higher order elements
in this regard, and are not effective in applications demanding very high accuracy. What is
important is how good are the results for coarse meshes.
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% Error in Central Deflection

Fig. 1 - Convergence study of several plate bending triangular elements
as reported in Ref. 2. The FF results are from Ref. 8.

1.2 Constructing HP Elements

The search for HP elements began seriously in the mid-1970s and now represents an
important area of finite element research in solid and structural mechanics. Many ingenious
schemes have been tried: reduced and selective integration, incompatible modes, mixed and
hybrid formulations, stress and strain projections, the (FF) formulation, and the (ANS)
formulation. Mazny researchers are developing such elements. The common theme of the
investigations is:

Abandon the conventional displacement formulation

Several tecliniques researchers use in their quest to buila vetter elements are itemized
in Table 2. Many of these were introduced over 20 years ago, but only recently a concerted
effort has been made to combine several tools to produce HP elements. For example, the
present work driws on items 1, 2, 3, 8, 10, 11, and 12 of Table 2.

193



Table 2-  Toois of the Trade

Technique Year Introduced
1. Incompatible shape functions early 1960s
2. Patch test 1965
3. Mixed and hybrid variational principles 1965
4. Projectors 1967
5. Selective reduced integration 1969
6. Uniform reduced integration 1970
7. Assumed strains 1970
8. Energy balancing 1974

Directional integration 1978
10.  Limit differential equations 1982
11.  Free formulation 1984
12.  Assumed natural strains 1984

1.3 Objective of Present Work

This paper is part of a series {Refs. 9-12, 15-16) describing how several HP element
construction methods can be embedded within an eztended variational framework using
parametrized hybrid functionals. Particular attention is focused on merging the last two
items in Table 2.

The general plan of attack for this unification is flowcharted in Fig. 2. Box connections
indicated with dashed lines are not dealt with in this paper. The variational extensions, shown
on the left of Fig. 2, involve parametrization of the conventional elasticity functionals and
treatment of element interfaces through generalizations of the hybrid approach of Refs. 20-23.

The effective construction of HP elements relies on devices, sometimes derisively called
“tricks” or “variational crimes,” that do not fit a priors in the classical variational framework.
The range of tricks spans innocuous collocation and finite difference constraints to more dras-
tic remedies such as selective integration. Despite their unconventional nature, tricks are an
essential part of the construction of high-performance-elements. Collectively, they represént
a fun-and-games ingredient that keeps the derivation of HP finite elements a surprisingly
enjoyable task.

The present treatment “decriminalizes” kinematic constraint tricks by adjoining La-
grange multipliers, hence setting out the ensemble on proper variational foundations. Placing
formulations within a variational framework has the great advantage of supplying the general
structure of the stiffness matrices and forcing vectors of high performance elements, and pro-

viding theoretical coherence for the systematic derivation of element classes by a combination
of techniques.
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Fig. 2- Progrum of attack on the variational formulaition of HP elements

2. THE ELASTICITY PROBLEM

Consider a linearly eiastic body under static loading that occupies the voiume V. The
body is bounded by the surface S, which is decomposed into S : S4U St. Displacements are
prescribed on §4, whereas surface tractions are prescribed on S;. The outward unit normal

on S is denoted by n = n,.

The three unknown volume fields are displacements u = v, infinitesimal strains e = e,j,
and stresses o = 0y;. The problem data include: the body force field b= b;in V, prescribed

displacements d= d on Sy, and prescribed surface tractions t=1; on 5.
The relations between the volume fields are the strain-displacement equations:

= 3(Vu + VTu) = Du or ei; = 3(un; +uz,) inV,
the constitutive equations:

og=Ee or Oij; = E:‘jklekl in V,
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which will be assumed to be invertible, and the equilibrium (balance) equations:
~dive=D‘¢e=Db or gy +bi=0 inV, (3)
in which D* = —div denotes the adjoint operator of D = 3(V+ V7).
The stress vector with respect to a direction defined by the unit vector v is denoted as
Oy = 0.V, O Gy = 0y;V;. On S the surface-traction stress vector is defined as
o, =o0.n, OF O = 0yjn;. (4)
With this definition the traction boundary conditions may be stated as:
on=t or ain;=14 on Sy, (5)

and the displacement boundary conditions as

-

u=d or u; =d; on Sy. (6)

3. NOTATION

3.1 Field Dependency

In variational methods of appraximation we do not, of course, work with the exact fields
that satisfy the governing Egs. 1-3 and 5-6, but with independent (primary) fields, which are
subject to variations, and dependent (secondary, associated, derived) fields, which are not.
The approximation is determined by taking variations with respect to the independent fields.

Following the notation introduced in Refs. 9 and 10, an independently varied field will be
identified by a superposed tilde, for example ii. A dependent field is identified by writing the
independent field symbol as superscript. For example, if the displacements are independently
varied, the derived strain and stress fields are:

e*=3(V+VT)i=Dd, o*=Ee*=EDd. )

An advantage of this convention is that u, e and & may be reserved for the ezact fields.

3.2 Integral Abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted paren-
theses and square brackets, respectively, around the integrand. For example:

(v & /V fav, [fls /S fds, |fls, fs fds, |fls, /& fds. (8

If f and g are vector functions, and p and q are tensor functions, their inner product over V
is denoted in the usual manner:

(f.g)v & /V fgdV = /V figidV,  (p,qv ¥ /v p.qdV = jv Pijqi;dV,  (9)

and similarly for surface integrals, in which case square brackets are used.
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Sy U Sy

Fig. 3 - Internal interface examyple.

3.3 Domain Assertions

The notation:

(a = b)v, [a = b]s, [a=b|s,, [a=1b]s,, (10)
is used to assert that the relation a = b is valid at each point of V', S, S4 and S, respectively.

3.4 Internal Ipterfaces

In sections 4-5 we :onstruct Aybrid variational principles in which boundary displace-
ments d can be varied independently from the internal displacements u. These displacements
play the role of Lagrange multipliers that relax internal displacement continuity. Variational
principles containing d will be called displacement-generalized, or “d-generalized” for short.

The choice of d as independent field is not variationally admissible on S4 or S;. We
must, therefore, extend the definition of boundary to include internal interfaces collectively
designated as S;. Thus:

S:854U S US;. (11)

On S; neither displacements nor tractions are prescribed. A simple case is illustrated in
Fig. 3, in which the interface S; divides V into two subvolumes: V' + and V. An interface
such as S; on Fig. 3 has two “sides” called S’;" and S;”, which identify S; viewed as boundary
of V* and V —, respectively. At smooth points of S; the unit normals n* and n~ point in
opposite directions.

The integral abbreviations of Eqs. 8-9 generalize as follows, using Fig. 3 for definiteness.
A volume integral is the sum of integrals over the subvolumes:

(f)y % / fav+ [ gav. (12)
v+ v-
An integral over S; includes two contributions:
g]s. & / gtds +/ g~ 48, (13)
sr s-

where ¢ and g~ denote the value of the integrand g on S;" and S, respectively. These two
values may be different :f ¢ is discontinuous or involves a projection on the normals.

The appearance of S; is a consequence of allowing elements with discontinuous displace-
ments. Following a finite element discretization, the union of interelement boundaries becomes
S:. This boundary is generally nonphysical because it depends on the discretization.!

! If there are physical internal interfaces — for example, a sudden thickness or material change
— it is common practice to select the mesh so that these natural interfaces are also interelement
boundaries.
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4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are based on functionals of the form:
N=U-P, (14)

where U characterizes the internal energy stored in the body volume and P includes other
contributions such as the work of applied loads and energy stored on internal interfaces. We
shall call U the generalized strasin energy and P the foreing poteniial.

The functionals in this section include independently varied displacements. The class
of “equilibrium” functionals without independent displacements, such as the complementary
energy, are briefly covered in section 5.5 for completeness, but ars not required in the finite
element developments of sections 6-11.

4.1 Generalized Strain Energy

The generalized strain energy has the following structure:
U= 351(3,e%)v+512(5,8)v +713(8,e")v + 1422(0%, &)v + jas (0%, e¥)v + L jas (0%, &%)y (15)

where j1, through ja3 are numerical coefficients. For example, the Hu-Washizu principle
is obtained by setting ji1; = —1, jj3 = 1, Ja2 = 1, all others being zero. The matrix
representation of the general functional Eq. 15 and the relations that must exist between the
coefficients are studied in section 5.1.

4.2 Hybrid Forcing Potentials

Variational principles of linear elasticity are constructed by combining the volume in-
tegral of Eq. 15 with the forcing potential P. Two forms of the forcing potential, called
P? and Pt in the sequel, are of interest in the hybrid treatment of interface discontinuities.
The d-generalized forcing potential introduces, as described in section 3.4, an independent
boundary displacement field d over S

Pd(ﬁv 6,3) = (b,ﬁ)v + [an!ﬁ - a]s‘ + [E,l‘l]s' + [&’Uﬁ - alsd‘ (16)

The t-generalized (traction generalized) forcing potential introduces an independently
varied traction displacement field t over S

P'(d,5,t) = (b,d)v +[t,d - s, + [£,d]s, + [£, d]s,. (17)

The conventional form P¢ of the forcing potential is obtained if the interface integral
vanishes and one sets [t = o,]s. If so P* and P9 coalesce into P*, which retains only two
independent fields:

P¢(d,5) = (b, )y + [aa, 0 ~ d]s, + [E,4]s,. (18)

4.3 Modified Forcing Potentials

Through various manipulations and assumptions detailed in Ref. 10 the forcing potential
P? may be transformed to

P¥(d,5,d) = (b,d)v + [t,d]s, + (6,1 - d]s. (19)

where the all important surface dislocation integral is taken over S rather than S;. One of
the assumptions is that displacement boundary con.. * s, Eq. 6, are exactly satisfied on Sq.
This expression of P¢ is used in the sequel. A similar technique can be used to adjust Pt,
but that modified formula will not be required in what follows.
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4.4 Complete Functionals

Complete elasticity functionals are obtained by combining the generalized strain energy
with one of the forcing potentials. For example, the d and t generalized versions of the
Hu-Washizu functional are:

Mg =Uw - P4, 0% =Uw -- P (20)
where Uy is obtained by setting 722 = 713 = 1, f12 = —1, others zero, in Eq. 15.

5. MATRIX REPRESENTATION OF ELASTICITY FUNCTIONALS

The generalized strain energy of Eq. 15 can be presented in the matrix form:

Ju Nz N3 e’
U=3 / (6 o o) J22  Jas e »dv. (21)
v symm Jas et

The symmetric matrix?
Ju n2 53
J=|J12 Jaz J2s (22)
J13 J23 Ja3
characterizes the volume portion of the variational principle. Using the relations ¢* = Ee,
o* = EDii, e = E™ ¢, ind e* = Dii, the above integral may be rewritten in terms of the
independent fields as:

mE™Y gl 3D a
U=4 / (¢ @ a)| jnal Jn2E 721ED é o dv. (23)
v 713DT  j2sDTE j2.DTED | | @
5.1 First Variation of Generalized Strain Energ_z_
The first variation of Eq. 15 may be presented as:
8U = (Ae,80)y + (Ao, b8)y — (dive',éd)y + [a], 515, (24)

where ) o
Ae = 17 + j128 + Jize”,

A0 = 120 + j320° + Ja0”, (25)
o' = j13G + j236° + jazot.
The last two terms combine with contributions from the forcing potential variation. For
example, if P = P¢, the complete variation of TI¢ = U — P€ a:

8TI¢ = (Ae,63)v + (A, 58)y — (dive’ +b,66)y + |0 — &, 6i]s, — [ — d, 65n]s,. (26)

Using P® or P* does not change the volume terms. The first variations of TI¢ and It
are studied in Refs. 9-11 for a more restrictive class of functionals, namely IT,. The Euler
equations associated with the volume terms

Ae =0, Ao =0, dive’ + b =0, (27)

2 To justify the symmetry of J note, for example, that J1a(G,e%)v = 513(0, e v +151a(e”,0%)y,
and so on.
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are independent of the forcing potential. A “weighted residual” interpretation of Eqs. 27 in
terms of the field equations is given in section 5.4. For consistency of the Euler equations
with the field equations of section 2 we must have Ae = 0, Ae =0 and ¢’ = o if the assumed
stress and strain fields reduce to the exact ones. Consequently,

Ju+na+na=0,

Niz+J22+ )23 =0, (28)
Niatjaa+tiaa=1

Because of these constraints, the maximum number of independent parameters defining
the entries of J is three.

5.2 Specific Functionals

Expressions of J for some classical and parametrized variational principles of elasticity
are tabulated below. The subscript of J is used to identify the functionals, which are listed
roughly in order of ascending complexity. The fields in parentheses after the functional name
are those subject to independent variations in V.

Potential energy (ii):

0 0O
Jp=]0 0 0 (29)
0 01
Stress-displacement Reissner, also calied Hellinger-Reissner, (7, a):
-1 01
Je={ 0 0 0 (30)
1 00
Unnamed stress-displacement functional listed on p. 116 of Ref. 18 (7, d):
1 0 -1
Ju=| 00 of. (31)
-1 0 2
Strain-displacement Reissner-type as listed on p. 116 of Ref. 18 (e,8):
0 00
Js={0 -1 1 (32)
0 1 0
Hu-Washizu® (7, 8, d):
0 -1 1
Jw={-1 1 of. (33)
1 0 o0

One-parameter stress-displacement family (&, ) that includes Up, Uy and Uy as special
cases (Refs. 8-10)

-7 0 v
J,={0 0 o (34)
v 0 1-4+

* There are several functionals that carry this name, transformable from one to another through
integration by parts. That corresponding to Juw is the third form listed in section 2.3 of Ref. 24.
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Fig. 4- Graphical representation of the J, 34 functionals

One-parameter strain-displacement family (&,1) that includes Up and Ug as special

cases (Ref. 9):
0 0 0
J,,=[o 5 s } -
0 A 1-8

Two-parameter family (&,&, 1) that includes Ug and U, as special cases (Ref. 9):

Jor= (1=B) 7+ (1= Ig=(1 =B =")Tp

I:—"I(l - B) 0 7(1 - 8) ] (36)
= 0 -B(1-1) AL =)
v(1-8) B(1-v) 1-B-v+284

Three-parameter (a, 8, v) family (#,8,14) that includes Uy and Up, as special cases
(Ref. 9):

Japy = adw + (1 - a)Jg,

[ =71~ B)(1 - a) —a e+1(1-B)(1-a) jl (37)
= -a a-81-4)1-a) Bl-7)(1-«a) .
a+v(1-B)(1-a) Bl-7(1-a) (1-F-7+281)(1-0)

The last form, which contains three independent parameters, supplies all matrices J
that satisfy the constraints of Eq. 28. It yields stress-displacement functionals for a = § = 0,
strain-displacement functionals for @ = 4 = 0, and three-field (stress-strain-displacement)
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functionals otherwise. A graphic representation of this functional in (a, 8,7) space is given
in Fig. 4.
The specialization y =1, § =0 of J af~ is of particular interest:

a—1 —-a 1
Ja = -« a 0], (38)
1 0 0

The associated functional IT, might be called the generalized Hu-Washizu functional
because it reduces to Jw for @ = 1. But because of its special relation with the ANDES
formulation covered in section 8-11, Il will be herein referred to as the ANDES functional.

5.3 Energy Balancing

A prime motivation for introducing the J coefficients as free parameters is optimization
of finite element performance in the balanced stiffness sense of Table 1. The determination of
“best” parameters for specific elements relies on the concept of energy balance. Let Ue) =
-%(Ec, €}y denote the strain energy associated with the strain field ¢. If E is positive definite,
U(e) is nonnegative. We may decompose the generalized strain energy into the following sum
of strain energies:

U=U(e") +w,l(e - &) + wyll(d —e¥) + wyll(e* - e9), (39)
where U p(e") = Up is the usual strain energy, and*
wr = $(Ju+jaz~Jjas+1), wy= 3(=u+ina+isa-1), wy= 3(f11—J22+Js3—1). (40)

Eq. 39 is equivalent to decomposing J into the sum of four rank-one matrices:

000 1 -1 0 0 0 o 1 0 -1
J=10 0 0f+wy|~1 1 0|+ws|0 1 -1]+ws| 0 0 0. (41)
001 0 00 0 -1 1 -1 0 1

Decompositions of this nature can be used to derive energy-balanced finite elements by
considering element “patches” under simple load systems. This technique is discussed for the
one-parameter functionals generated by J ~ in Refs. 6 and 8-11. It is important to note that
the j coefficients may vary from element to element.

5.4 Interpretation of Euler Equations

Eqs. 27 gain physical meaning if they are rewritten as

Ae = w)(e” — &) + wy(e® —e?) = 0,
Ao = wy(0 - 0°) + wy(0* ~a%) =0, (42)
divo’ = div [0* + wy(o® — 0¥) + wa(e* - 3)] = —b,

where the w; are given by Eqs. 40. But e -6 = E~'5—é = 0 aswellas 6—-0°=6—-Eé =0
are representations of the constitutive equations, Eqs. 2. Likewise, 0¢—o* = E(é-Di)=0is
a representation of the strain-displacement equations, Egs. 1. Finally, e¥—e® = Di-E~15 =
0, as well as 0% — & = 0, are combinations of Egs. 1-2. Thus, we conclude that the Euler
equations Ae = 0 and Ag = 0 are weighted forms of the k.- ~matic and constitutive field

* As shown in section 5.4, these coefficients may be interpreted as field equation residual weights,
hence the notation. It is conjectured that for stability the s coefficients should be confined so
that w; > 0, but this remains to be proven.
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equations. On the other hand, dive’ + b = 0 is a weighted combination of the equilibrium
equations, Egs. 3, and the other two.

If the j coefficients are such that a weight vanishes (see also Footnote 4), that particular
field equation drops out from the Euler equations and must be viewed as being satisfied a
priori. For example, in the potential energy functional, wy = wz = ws = 0, and only the
equilibrium condition in terms of 0% remains in the Euler equations. This interpretation
points the way for constructing U of Eq. 15 by the method of weighted residuals.

5.5 Functionals without Independent Displacements

The foregoing theory applies to functionals where the displacements u are independently
varied. Although this case includes the more practically important functionals for our pur-
poses, for completeness we present the general parametrization of stress-strain functionals.
Decompose U of Eq. 15 as U + U, where U, contains the strain energy due to displacement-
derived strains:

U, = (110 + Ja3o® + %J-aadu, ey = (div o, u)y - [a',‘,u]s. (43)

If we now assume that the equilibrium equations divo + b = 0 and traction boundary
conditions ¢, = t hold a priors, U, may be dropped and we are left with the generalized
complementary energy functional

U— U= 3m(d.e)v +12(5,8)v + 1j22(0%, @)y (44)
Taking account of the a priors conditions, the first variation becomes:
§U. = (jue" + J12€ + e“,&&)v + (jnd -+ jzgde,&é)v, (45)

and for consistency we must have jiy + ji2 = -1, iz + 72z = 0. It follows that U, may be
represented as in the matrix form of Eq. 21 with a J that depends on a single parameter:

p-1 —-p O
J,=| -» » 0}. (46)
0 0 O

Here p = 0 gives the classical principle of total complementary energy whereas p =1
gives the functional N{4,8&) listed on p. 117 of Ref. 18.

6. FINITE ELEMENT DISCRETIZATION

In this section assumptions invoked in the finite element discretization of the functional
TT¢ for arbitrary J are stated. Following usual practice in finite element work, the components
of stresses and strains are arranged as one-dimensional arrays while the elastic moduli in E
are arranged as a square symmetric matrix. In the seque!, and unless otherwise noted, we
consider an individual element of volume V and surface S : S U SqU S, where S; is the
portion of the boundary in common with other elements.

6.1 Boundary Displacement Assumption

The. boundary displacement assumption is:
[a = Ndvls. (47)

Here matrix N collects boundary shape functions for the boundary displacements d
while vector v coilects the “visible” degrees of freedom of the element, also called the connec-
tors. These displacements must be unique on common element boundaries. This continuity
condition is met if the displacement of a common boundary portion is uniquely specified by
degrees of freedom located on that boundary. There are no derived fields associated with d.
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6.2 Internal Displacement Assumption

The displacement assumption in the interior of the element is

(ﬁ = NuQ)Va (48)

where matrix N, collects the internal displacement shape functions and vector q collects
generalized coordinates for the internal displacements. The assumed i need not be continuous
across interelement boundaries. The displacement derived fields are

(e* = DNq = Bq)y, (e* = EBq)y. (49)

To link up with the FF and ANS formulations, we break up the internal displacement
field as follows. The assumed i is decomposed into rigid body, constant strain, and higher
order displacements:

G =N,q, + N.q, + Njq,. (50)

Applying the strain operator D = %(V + VT) to G we get the associated strain field:
e =DN,q, + DN.q. + DNuq, = B.q, + B.q, + B,q,. (51)

But B, = DN, vanishes because N » contains only rigid body modes. We are also free
to select B, = DN. to be the identity matrix I if the generalized coordinates q. are identified
with the mean (volume-averaged) strain values &*. Consequently Eq. 51 simplifies to

e =8" + e} =8 + Baq,, (52)

in which
q. =" = (e")y /v, (Ba)v =0, (53)
where v = (1)y is the element volume measure. The second relation is obtained by integrating
both sides of Eq. 52 over V and noting that q, is arbitrary. It says that the mean value of

the higher order displacement-derived strains (also called the deviatorie displacement-derived
strains} is zero over the element.

6.3 Stress Assumption

The stress field will be assumed to be constant over the element:
(@ =39)y. (54)

This assumption is sufficient to construct high performance elements based on the free
formulation developed in Refs. 4-8. As discussed in Ref. 11, the inclusion of higher order
stress modes (deviatoric stresses) in Eq. 56 is computationally effective if these modes are
divergence free, but such a requirement makes extension to geometrically nonlinear problems
difficult. The only derived field is

(e” =& = E~'3),. (55)

6.4 Strain Assumptions

The assumed strain field & is split into a mean constant strain & and a higher order
variation (the deviatorse strains):

(e=€+es=0+ Aga)y, (56)

where @ = (&) /v, matrix A4 collects deviatoric strain modes with mean zero value over the
element:

(Ad)v = 0, (57)
and a collects the corresponding strain mode amplitudes. The only derived field is:
(0*=Eé =Es+ EAja)y. (58)
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7. UNCONSTRAINED FINITE ELEMENT EQUATIONS

We shall assume that all elastic moduli in E are constant over the element. Inserting
the above assumptions into I1% with the modified forcing potential of Eq. 19, we obtain a
quadratic algebraic form which is block-sparse because of the conditions stated in Egs. 53
and 57. Rendering this form stationary yields the finite element equations.

[ juvE™! il (] -PT jivI-PT -PT LTy (7 0
juvl jngE o 0 jgsvl 0 0 ) 0
0 0 122Kqd 0 0 jz3R,T 0 a 0
-P, 0 0 0 0 0 0 q, =< for 2,
jmvl - Pu J.zgvl 0 (1} jaavE 0 0 e fqu
-P, 0 hsR 0 0 JasKan O qy fon
L L 0 1] 0 0 0 0 | v ) { fy, )

(59)

where:

Ken = (BREBa)y =KJ,, Kai=(AIEAyv =K];, R =(BfEA4)v,
L= [NIn}S’ P, = [NTnIS! P.= [an].‘h P, = [N}Tn]s’ (60)
f.=(N7b)y, f,=(NIb)y, fn=(Nibjy, f,=[Nils,
in which N4, denotes the projection of shape functions Ny on the exterior normal n, and

similarly for N,, N, and N,. Those coefficient matrix entries that do not depend on the j
coefficients come from the last boundary term in Eq. 19.

7.1 The P Matrices

Application of the divergence theorem to the work of the mean stress on e* yields:

(7,e%)v = (7,8" + Baqy)v = vaTa* + 3’ (Bh)vq, = vi'a* (61)
= [Gn, 0|5 = [Fa,N,q, + N.8* + Naapls = FT(P,qr +P2" + Prqy).
Hence P, =0, P. = vl, P, = 0, and the element equations simplify to:
[ vE™' jipvl 0 0 (is-1vI 0 LT (7 0 )
J1zvl J22vE 4] V] J2avl 0 0 e 0
(1] 0 7122Kaa O g jzaRT 0 a 0
0 0 0 o 0 0 0 L b =4 £, (62)
(513 = vl jagul 0 0 javE 0 0 g fou
0 0 JjaR 0 0 JaaKqn O qn fon
L L ] 0 0 0 0 0 | v L fo

The simplicity of the P matrices is essentially due to the mean-plus-deviator splitting
of Eq. 52 for e*. If this decomposition is not enforced, P, = 0 but P, = (B.)y = vB, and
P, = (Ba)v.

8. KINEMATIC CONSTRAINTS

The “tricks” we shall consider here are kinematic constraints that play a key role in the °

development of high-performance FF and ANS elements. These are matrix relations between
kinematic quantities that are established independently of the variational equations. Two
types of relations wiil be considered.
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8.1 Constraints Between Internal and Boundary Displacements

Relations linking the generalized coordinates q of Eq. 48 and the connectors v were
introduced by Bergan and coworkers in conjunction with the free formulation (FF) of finite
elements (Ref. 5). For simplicity, we shall assume that the number of freedoms in v and q is
the same; removal of this restriction is studied in Ref. 11. By collocation of u at the element
node points one easily establishes the relation:

v =G,q, +G.q, + Gaq, = Gq, (63)

where G is a square transformation matrix that will be assumed to be nonsingular. On
inverting this relation we obtain

qr Hr
q=G™'=Hv, o q={&%=|H,]|v. (64)
Qa H,

The foliowing relations between L (defined in Eq. 60) and the above submatrices hold
as a consequence of the individual element test described in section 9.3:

L7G,=0, L7G.=vl, vH,=LT. (65)
If the splitting of Eq. 52 is not enforced, however, the last two become:
LTG,=vB.,, PH.+P,Hy=LT or P,= LTG.. (66)

Since P = vB,, these relations coalesce (see Ref. 5).

8.2 Constraints Between Assumed Deviatoric Strains and Boundary Displacements

Constraints linking & to v are fundamentally important in the ANS formulation. The
effect of these constraints in a variational framework is analyzed in Refs. 15 and 16. In
the present study we depart from previous work in that only the deviatoric strains, ey, are
assumed linked to v, whereas the mean strains @ are obtasned varigtionally. Consequently,
we shall postulate the following relation between assumed deviatoric strain amplitudes and
nodal displacement connectors:

a=Qv, (67)
where Q is generally a rectangular matrix determined by collocation, least squares or other

fitting methods. An example of the construction of Q is given in section 11.4. The individual
element test described in section 9.3 requires that Q be orthogonal to G, and G.:

QG,=0, QG.=0. (68)

8.3 Limitation Principles

Strain assumptions made concurrently with displacement assumptions .. - ~onfined by
limitation principles similar to those stated by Fraeijs de Veubeke for stress-displacement
mixed elements (Ref. 13). This issue was discussed in Ref. 15 for 2 more restricted strain
displacement hybrid formulation. Limitation principles for the general formulation presented
here remain to be studied.
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9. VISIBLE STIFFNESS EQUATIONS

On enforcing the constraints a = Qv, q, = H,v,q.=H,v= v-iLTv, and q, = Hyv,
through Lagrange multiplier vectors Aas Ar Ac, and Ay, respectively, we get the augmented
finite element equations

- juvE™' jiavI 0 0 (u-1I 0 ©0 0 0 O L* .\ ( FW (0 1
suavl  JaavE O 1] jasvl L] 0o o0 0 L] ] e ]
0 0 juKu 0 0 jmRT -1 0 0 0 O a 0
0 0 o o 0 o o0 -I o o o q, for
(ia—1)vI jasvl 0 O  jssvE o o0 -1 o o ® L fou
0 0 Jas 1] [1] jsaKesa O O 0 -1 1] W qa = ﬁ for ? -
0 0 -1 o 0 o 0 0 o 0 Q Ao 0
1] 0 o -1 0 0 o 0 o0 o0 H, A, 0
0 0 o o -1 o 0 0 o0 o v'L? Ao 0
0 0 o 0 0 -1 0 0 0 o0 H, An (1]
L L o o o ] 0 QTHTv 'LH{ o0 Lv‘ | T
(69)

Condensation of all degrees of freedom except v yields the visible® element stiffness
equations:

Kv=(Ky+Kpv=1 (70
where
K, = v_'LELT, (T1)
Kp = jssHTK o Hy + f20(HIRQ + QTRTHA) + 722Q7KadQ, (72)
f=1f, + Hf, + v LT + Bifon. (73)

Following the nomenclature of the free formulation, we shall call K, the bastc stiffness
matriz and K, the higher order stiffness matriz.

9.1 Relation to Previous HP Element Formulations

EJ=J,0fEq.33. faa=1-7, Jaz2 = F23 = 0, and we recover the scaled free formulation
stiffness equations considered in Refs. 6, 8 and 10:

Ky=(1-7BIKaHs 1-7>0 (74)

On the other hand, if we take J = J, as given in Eq. 38, j22 = @, Jjaz = J23 = 0 and we
obtain:

Kr=aQTK.,Q, a>0, (75)

which is similar to the stiffness produced by the ANS hybrid variational formulation studied
in Refs. 15-16, in which the forcing potential P! was used instead of P%. The variant of ANS
considered herein will be called the assumed natural deviatoric strain (ANDES) formulation
in the sequel. The name is apt in the sense that what is being assumed are deviatoric rather
than total strains, and that this assumption only affects the higher order stiffiness.

But the term with coefficient j23 in Eq. 72 is new. It may be viewed as coupling the FF
and ANDES formulations. It is not known whether Eqgs. 70-73 represent the most general
structure of the visible stiffness equations of HP elements.

® The qualifier “visible” emphasizes that these are the stifiness equations other elements “see”,
and, consequently, are the only ones that matter insofar as computer implementation on a
displacement-based finite element program.
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9.2 Recovery of Element Fields

For simplicity suppose that the body forces vanisk and so do fors f4c and £y, because of
Egs. 60. If v is known following a finite element solution of the assembled system, solving
Eqs. 69 for the internal degrees of freedom yields:

6=v‘lLTv, o=FEe, a=Qv, q, =H,v, &' =g, q, = Hyv,

) . ) . (76)
Aa = (722K 04Q +7.RTH)v, A, = 0, A:=0, Ax=(j33RQ+ JasK s Hy)v.

Eq. 76 show that the mean strains €, @ and e” = E~17 coincide, and, of course, so do
the mean stresses. But if the body forces do not vanish, the mean stresses and mean strains
recovered from different fields will not generally agree.

We also note that a nonzero Lagrange multiplier vector flags a deviation of the associated
fields from the variationally consistent fields that would result when using the unconstrained
Egs. 62 without “tricks”.

9.3 The Individual Element Test

To conclude the general formulation, we investigate the conditions under which HP ele-
ments based on the foregoing setting pass the individual element test of Bergan and Hanssen
described in Refs. 3-6. To carry out the test, assume that the “free floating” element® under
zero body forces is in a constant stress state g, which, of course, is also the mean stress,
Insert the following data in the left-hand side vector of Eq. 69:

G=09=0"% &=E"lg,, ap =0, q,=arbitrary, e% =g" = ) Ot q, =0,
Aa=0, A, =0, A, =0, A=0, v= G.q, + G.& = G,q, + G.E"l0,.
(17)
Premultiply by the coefficient matrix and demand that all terms on the right-hand side
vanish except for f, = Log. Then the orthogonality conditions in Eqs. 65 and 68 emerge.
This form of the patch test is very strong, and it may well be that relaxing circumstances
can be found for specific problems such as shells.

10. DISCUSSION

At this point it is useful to recapitulate key points and connect this material with some
of the techniques of Table 2. The chief property of HP elements constructed with present
methods is the decomposition of the element stiffness equations displayed in Egq. 70; a property
that of course subsists at the assembly level.

state introduced in Eq. 54, K, depends only on the assumed boundary motions. It can be
constructed (and programmed) once and for all for each element type. As emphasized in
Ref. 5, the main function of K, is to provide convergence.

The higher order stiffness in Eq. 72 serves two other functions: stability and accuracy.
The basic stiffness is generally rank-deficient” because its rank cannot exceed that of E;
thus a key function of K, is to stabilize K by raising its rank to the correct one. The

¢ Mathematically, the entire element boundary is traction-specified, i.c., § = S..
7 Except in simplex elements, for which K = Ks.
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10.1 The Free Formulation

The present methodclogy was initially pursued to justify variationally the original FF
(7 = 0) of Ref. 5, as well a3 the scaled FF (v # 0) of Refs. 6-8. Thus, it is not surprising that
those element construction techniques fit naturally in the present variational framework by
simply taking J = J4. The extended FF described in Ref. 11 aims to remove the restriction
that the dimension of vectors q and v be the same. One of the techniques advocated to
allow dim(q) > dim(v) involves extending Eq. 54 with deviatoric stress assumptions, and
thus requires a generalization of Eqs. 59 and 62. Whether such a generalization is practically
worthwhile is unclear.

10.2 The ANS Formulaticn

The conventional ANS formulation as presented in Refs. 1 and 19 constructs total strain
fields & (not necessarily integrable into displacements u®) gaged through generalized strain
coordinates a as @ = Aa. These coordinates are eventually linked to the connectors v
via matrix expressions of the form a = Qv, leading to an element stiffness of the form
K= QTK,.Q, where K, is the generalized stiffness in terms of a. The restriction to deviatoric
strains in section 6.4 is motivated by two interrelated factors: (a) the strain assumed stiffness
“Hows” to the higher order stiffness, where it can be naturally scaled by using J = J,, and
even intermixed with FF contributions as Eq. 72 shows; and (b) the basic stiffness of the
element, derived separately, can be used to insure convergence.

10.3 Projectors and S/R Integration

The so-called “B-bar” approach is based on expressing the element strains as®

e=Bv (78)

where B, which cuts off the “harmful” portion of B, is constructed by various ad-hoc devices
such as strain projection, selective, and/or uniform reduced integration. These time-honore_é
schemes are well covereé in Ref. 14. They are easily included in the present setting if B
admits the decomposition

B=B+A4Q, (79)

where Q is not position dependent and @ = Bv provides the mean strains, which are discarded
in favor of Eq. 76. This decomposition can be usually carried out in several ways.

11. EXAMPLE: A 9-DOF ANDES PLATE BENDING TRIANGLE

The first element constructed with the ANDES formulation is a three-node Kirchhoff
plate-bending flat triangle with the usual nine degrees of freedom. The derivation is briefly
covered to illustrate the essential steps in forming the higher order stiffness of such elements.
These steps are outlined in “recipe” form in Table 3, which restates the arguments of section
6.4 in a more physically oriented sense closely aligned with the terminology of Ref. 19.

11.1 Geometric Relatiors

The triangle has straight sides. Its geometry is completely defined by the location of its
three corners, which are labeled 1,2,3, moving counterclockwise. The triangle is referred to a
local Cartesian system (z, y) which is taken with origin at the centroid 0, whence the corner
coordinates z;, y; satisfy the relations z; + 23 + 72 =0 and y; + ya2 + ya = 0. Coordinate

$ This is a siight variation from the usual notation, necessituted by the use of the single overbar
to denote average or mean values.
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Table 3- Construction of K, by the ANDES Formulation

Step 1. Select reference lines (in 2D elements) or reference planes (in 3D
elements) where “natural straingage” locations are to be chosen. By appropriate
interpolation express the element natural strains € in terms of the “straingage
readings” g at those locations: :
€= A.g, (80)

where € is a strain field in natural coordinates that must include all constant
strain states. (For bending elements the term “strains” is to be interpreted in a
generalized sense, viz, curvatures.)

Step 2. Relate the Cartesian strains & to the natural strains:
é=Té=TAg=Ag (81)

at each point in the element. (Ife=¢ orifitis possible to work throughout in
natural coordinates, this step is skipped.)

Step 8. Split the Cartesian strain field into mean (volume-averaged) and devi-
atoric strains:
é=%+es= (A +AJg, (82)

where A = {TAJv/v, and eq = A g has mean zero value over V. (This step
may also be carried out on the natural strains if T is constant, as is the case for
the element derived here.)

Step 4. Relate the natural straingage readings g to the visible degrees of
freedom

g8=Qv (83)

where Q is a straingage-to-node displacement transformation matrix. Techniques
by which this is accomplished vary from element to element and it is difficult
to state rules that apply to every situation. In the element derived here Qis
constructed by direct interpolation over the reference lines. (In general there is
no internal displacement field u® such that & = Du?*, so this step cannot be done
by simply integrating the field of Eq. 81 over the element and collocating u* at
the nodes.)

Step 5. The higher-order stiffness matrix is given by

Kin=aQTK,4Q, where K, = / ATEA 4V, (84)
\ 4

where a > 0 is the scaling coefficient supplied by the functional of Eq. 38.

differences are abbreviated b

by the formulas:

and we require that A > 0. We shall also make use of dimens
§1s §2, ¢3 linked by the constraint Sit4r+¢3=

24 = z3,y3; - T31Y21 = T33Y12 — T12y32 = T13Y23 — T23V13,
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y writing z,; = z, - z;, etc. The signed triangle area A is given

ionless triangular coordinates
1. The following well known relation between



the area and centroid-originated Cartesian coordinates of a straight-sided triangle is noted:
1
G = ﬂ(
where ¢, j and k denote positive cyclic permutations of 1, 2 and 3; for example, ¢ = 2, 7=3,
k = 1. Therefore 8¢;/82 = y;x/2A and 8¢;/dy = Zx;/2A. Other intrinsic dimensions and
ratios used below are

Lj = /2% + %, ay = 24/LG, by = (ziza+ viya) [bys by = L = by
Xij = bij/ti; = (Zijzor + viww) [ (3h + h)s Ay = b5/l = 1= Aig,
where £;; denote the triangle side lengths, a;; are triangle heights, bi; and bj; are projections

of sides ik and jk onto s:de 17, respectively, and the s are ratios of these projections to the
side lengths.

T:yk — ThYj + TYik + YTk;s), (86)

(87)

11.2 Displacements, Rotations, Side Coordinates

Because we are dealing with a Kirchhoff element, its displacement field is completely
defined by the transverse displacement w(z,y) = w(¢1,2,¢3), positive upwards. The midplane
rotations about z and y are §, = dw/dy and 8, = —dw/3z. The visible degrees of freedom
of the element collected in v are:

vIi=|w, 8: 08y w2 0z2 8,2 wy 0.3 0y3]. (88)

Over the three sides 1-2, 2-3 and 3-1, traversed counterclockwise, we define the dimen-
sionless side coordinates i3, 23 and ua; as follows: over side 1-2, xy; varies from u12 =0
at corner 1 to g2 = 1 at corner 2. Thus, g2 = ¢z when ¢3 == 0. Relations for the other sides
follow from cyclic permutation of subscripts. Then:

2 9z _ 4 Sz .

£ 21, £ 32 £ 12, ()
dy dy dy

T =¥

pd = Y32 > = W3-
Cuyz Ouaa ' dun

11.3 Natural Curvatures
The second derivatives of w with respect to the dimensionless side directions will be called
the natural curvatures and denoted by x,; = aﬂw/aufj. Note that they have dimensions

of displacement. The natural curvatures can be related to the Cartesian plate curvatures
Kez = 0%w/822, Ky, = d*w/Ay? and k., = 20%w/3zdy, by chain-rule application of Egs. 89:

2
o, 4
X12 6‘;12 3, vh Tuya 62‘:
w -
X={Xm =350 (= z3; vl zaaya: %j@ =T 'x. (90)
X31 2 ¥y yi; ziavnis ) 92w
duz, dzdy
The inverse of this relation is:
azw azw
ot out,
52 1 Y23y13 Yy31¥21 V12¥32 az”
w w
= — 23T T31T T2T R
a—yr 1A2 23713 31721 12Z32 m;
32w Y23%31 + Taz¥13a  Ya1Ziz + Tiay¥21 VizTa3 + T21Y32 FL
237 w
zoy du3y

or, in matrix form
e =Tx. (92)
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11.4 Curvature Sampling

The reference lines referred to in Table 3 are the three triangle sides. The natural
curvatures are assumed to vary linearly over each reference line, an assumption which is
obviously consistent with cubic beam-like variations of w over the sides. A linear variation on
each side is determined by two straingage sample points, which we chose to be at the corners.

On each triangle side chose the isoparametric coordinates {i; that vary from —1 at corner
1 to +1 at corner 5. These are related to the u,; coordinates as £ = 2u¢; — 1. Ther the
natural curvature over side ¢; is given by the beam formula

w;
Ot 8¢y ~6¢;; Oni

X = BT = & [7'-;‘- -1 % 36+ 1] w; [ (93)
bnj

where 8, denotes the rotation about the external normal direction n on side 5 7. Evaluating
these relations at the nodes by setting & = 1 and converting normal rotations to z-y
rotations, we build the transformation

([ wy

[/
Xaaly ~6 —dyy;  4zy 6 -2y, 21z, O 0 0 0“
xul2 6 2y2; -2z, -6 4yz; —4zy, 0 0 0 t:l
X 23}, - 0 0 0 -6 -—d4y3,; 432 6 -2y3; 2z, g 22
X33|g 0 0 0 6 2ysz -2z33 -6 dys; —4zg 0: r
xa‘ls 6 —2y;3 2113 0 0 0 -6 —4y,3 4113 !:3

-6 -4 0 0 0 6 2 -2

Xa1l, 4y1a3 Z13 V13 Z13 9:3J

0ya

(94)
The left hand side is the natural strain-gage reading vector called g in Table 3 and so

We can express this as the matrix relation
g=Qv. (95)

11.5 Curvature Interpolation

The six gage readings collected in g provide curvatures along the three triangle side
directions at two corners. But nine values are needed to recover the complete curvature
field over the element. The three additional values are the natural curvatures at the missing
corner. We obtain these values by adopting the following rule: Cyiindrical bending with
linearly varying curvature along a side direction is to be ezactly represented. Another way of
stating this is: the side curvature Xi; is to be constant along lines normal to side ¢5. This
makes the element insensitive to bad aspect ratios on “strip bending” if each element has a
side oriented in the direction of the strip.

To apply this rule consider side 1-2. The natural curvature y;; = 8%*w/du?, along this
side is defined at nodes 1 and 2 by the first two rows of Eq. 94. For node 3 take

2

‘w
Xzls = Ewen M A21 X12l; + A1z X125, (96)
3

where A13 and );; are defined in Eq. 87. As we now know the values of X12 = 3*w/dul, at
the three corners, we can use the standard linear interpolation over the entire triangle:

X12 = X12ly 61+ Xazlp 62 + X12lz¢a = X1z2ly ($1+ Aziga) + X123 (€2 + A126a). (97)
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Proceeding analogously for the other two sides, we construct the matrix relation:

X12 €1+ Azrcs $2+ Aras 0 0 0 0
X23 ¢} = 0 0 ¢a +Asz¢1 ¢3+ A0 o 0 g
X31 0 0 0 0 3+ Az G+ Aag
(98)
or
X =A,g, «=TA,g {99)

Because T is constant we can do Step 3 of Table 3 directly on the natural curvatures.
Now A (¢1,$2,¢3) is a linear function of the triangular coordinates. Consequently, the mean
natural curvatures can be simply obta.ine_m_'i_ by evaluating Ay at the centroid ¢, = ¢ =¢3 =
1/3. Let the corresponding matrix be A,. Then ¥ = A,g, and the natural deviatoric
curvatures are given by:

Xq=(Ayx— Ix) £, {100)

which transformed to deviatoric Cartesian curvatures £4 = & — € gives finally:
ka=T(Ay—Ay)E=A4g. (101)

11.6 The Element Stiffness Matrix

The basic stiffness matrix K; is the same derived in Ref. 8 using the conventional FF
and need not be rederived here. The higher order stiffness matrix is given by Egs. 84, which
for a plate bending eleraent specializes to

Kn = aQTK..Q = 2Q7T U AIDA, dA] Q, (102)
A

where D is the Cartesian moment-curvature constitutive matrix raulting from the integration
of E through the plate thickness:

Mze Dy Dy Dia j Kzz
m =: Myy = D12 ng Dga Kyy = D«. (103)
Myy Dy3 D2z Das t Kzy

Because A 4 varies linearly, if D is constant we could numerically integrate K, in Eq. 102
exactly with a three point Gauss rule, for example the three midpoint formula. The formation
of the element stiffness is dominated by these calculations and it is of interest to derive K,4
in closed form. Such a derivation is found in Ref. 17.

11.7 Preliminary Evaluation

As of this writing, only a sketchy evaluation of the first ANDES element is available. We
have found that for triangles with good aspect ratio their behavior is similar to that of the
scaled FF element of Ref. 8, which is known to be an excellent performer. But the ANDES
element shows less distortion sensitivity for high aspect ratio elements, as can be expected
from its construction. Additional evaluation details will be reported in Ref. 17.

These preliminary results are encouraging in that we now have two good stand-alone
components (FF and ANDES) of K4. Thus, it is plausible that a weighted mix of these

formulations as per Eq. 72 can be used to squeeze the ultimate in performance for this very
simple element.
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12.

CONCLUSIONS

The results presented in this paper may be summarized as follows:

The classical variational principles of linear elasticity may be embedded in a parametrized
matrix form.

The elasticity principles with independently varied displacements are members of a three-
parameter family. Those principles without independent displacements are members of
a one-parameter family.

Finite element assumptions for constructing high performance elements may be conve-
niently investigated in this family using hybrid forcing potentials.

Kinematic constraints established outside the realm of the variational principle may be
incorporated through Lagrange multiplier adjunction.

The FF and ANS methods for constructing HP finite elements may be presented within
this augmented variational setting. A variant of ANS, called ANDES, fits naturally
in the decomposition of the stiffness equations into basic and higher order parts. In
addition, combined FF/ANDES forms emerge from the general parametrized principle.
The satisfaction of the individual element test yields various orthogonality conditions
that the kinematic constraints should satisfy a priors.

The first ANDES element based on this formulation displays an encouraging stand-alone
performance regarding distortion sensitivity. The weighted combination of this element
with its FF counterpart remains a topic for further investigation.
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Abstract—The assumed natural strain (ANS) formulation of finite elements has undergone rapid
development over the past five years. The key formulation step is the replacement, in the potential energy
principle. of selected displacement-related strains by independently assumed strain fields in element natural
coordinates. These strains are not generally derivable from displacements. This procedure was conceived

as one of several competing methods with which to so

lve the siement locking problem. Its most noteworthy

feature is that. unlike many forms of reduced integration, it produces no rank deficiency; furthermore,
it is easily extendible to geometrically non-linear problems. Many original formulations were not based
on a variational principle. The objective of Part [ is to study the ANS formulation from a variational
standpoint. This study is based on two hybrid extensions of the Reissner-type functional that uses strains
and displacements as independent fields. One of the forms is a genuine variational principle that contains
an independent boundary traction field, whereas the other one represents a restricted variational principle.
Two procedures for element-level elimination of the strain field are discussed, and one of them is
shown 1o be equivalent to the inclusion of incompatible displacement modes. In Part 11 [C. Militello and
C. A. Felippa. Comput. Struci. 34, 439-444 (1990)), the four-node C° plate bending quadrilatera] element

is used to illustrate applications of this theory.

i. INTRODUCTION

The assumed natural strain (ANS) formulation of
finite elements is a relatively new development. A
restricted form of the method was introduced in 1969
by Willam {1}, who constructed 1 four-node plane-
stress element by assuming a constant shear strain
independently of the direct strains and using a
strain—displacement mixed variauonal principle. A
different approach advocated by Ashwell {2] and co-
workers regarded ‘strain elements’ as a way to obtain
appropriate displacement fields by integration of
assumed compatible strain fields. These and other
forms of assumed strain techniques were overshad-
owed in the 1970s by developments in reduced and
selective integration methods, but have recently be-
gun to attract attention [3-7]. The primary motiv-
ation behind recent work has been the construction
of simple and efficient finite elements for plates and
shells that are locking-free, rank sufficient and distor-
tion insensitive, yield accurate answers for coarse
meshes. fit naturally into displacement-based pro-
grams, and can be easily extended to non-linear and
dynamic problems. Elements that attain these at-
tributes are collectively known as high performance
elements.

Over the past 20 years investigators have resorted
to many ingenious devices to construct high-
performance elements. Among the most successful
ones we can mention patch-test-verified incompatible
displacement models. reduced and selective integra-
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tion, mixed and hybrid formulations, stress projec-
tors, the free formulation, and assumed natural
strains. The underlying theme is that although the
final product may look like a standard displacement
model so as to fit naturally into existing finite element
programs, the conventional displacement formu-
lation is abandoned. (By ‘conventional’ we mean the
use of conforming displacement assumptions into the
total potential energy principle.)

Another common historic trend is that certain
deviations from the conventional formulation were
initially made without variational justification and in
fact labelled as ‘variational crimes’ by applied math-
ematicians. In some cases, such as reduced numerical
integration, reconciliation was achieved later after
surprisingly good resuits prompted explanation. In
other cases. notably non-conforming elements and
the patch test, a comprehensive mathematical theory
is still in the making.

The present paper secks to interpret the assurmned
natural strain (ANS) formulation from a variational
standpoint. The justification is based on hybrid ex-
tensions of the Reissner-type functional that uses the
strains and displacements as independent fields. We
restrict our considerations to linear elasticity
although the straightforward extension to geometric
non-linearities is one of the strengths of the ANS
formulation. In Part II, the four-node C° plate-
bending quadrilateral is used as a specific example to
illustrate the application of the present variational
interpretation.
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2. PROBLEM DESCRIPTION

2.1. Governing equations

Consider a linearly elastic body under static load-
ing that occupies volume V. The body is bounded by
the surface S, which is decomposed into S: S, U S,.
Displacements are prescribed on S, whereas surface
tractions are prescribed on S,. The outward unit
normal on S is denoted by n=n,.

The three unknown volume fields are displace-
ments u = u,, infinitesimal strains ¢ = €, and stresses
o =0,. The problem data include: the body force
field f = £ in V, prescribed displacements i = i, 0n S,
and prescribed surface tractions t =7, on S,.

The relations between the volume fields are the
strain—displacement equations

€ =4Vu+V7u)=Du
or
& =u, +u,) inV M

(where superscript T denotes transposition), the
constitutive equations

o =E¢
or

6,=E 6 inV, (2)
and the equilibrium (balance) equations

—~divoe =D*s =f

or

o,,+5,=0 inV, (3)
in which D* = —div (divergence) denotes the adjoint
operator of the symmetric gradient D =}V + V7).
On § the surface stress vector is defined as
g,=a°n or o,=on, (4)
With this definition the traction boundary conditions
may be stated as

g,=t or on §,, (5)

and the displacement boundary conditions as

u=8 Oor u=ag

on S,. (6)

+ There are several equivalent statements of this func-
tional. differing from one another in transformations based
on the divergence theorem. For example in Gurtin 8, p. 122
the stress divergence appears. Some authors attribute this
specific functional to Fraeijs de Veubeke. who indeed pub-
lished a version of it in 1951, four years before Hu and
Washizu.
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2.2. Novational conventions

An independently varied field will be identified by
a letter without superscript, for example u, ¢, 0. A
dependent field is identified by writing the indepen-
dent field symbol as a superscript. For example, if the
displacements are independently varied. the derived
strain and stress fields are denoted by

o“=Ee¢“ = EDu. @)

Given a finite element subdivision of ¥, quantities
pertaining to the eth element will be identified by
superscript (e), for example u, wherever appro-
priate. At the interface between two elements e and
/. superscripts (ef) and (fe) will identify interface
quantities considered as part of e and /, respectively.

3. THE HU-WASHIZU AND REISSNER FUNCTIONALS

In the conventional Hu-Washizu functional the
displacements u, stresses ¢ and strains ¢ are indepen-
dently varied. Arranging the strain and stress com-
ponents as vectors, and the elastic moduli in E as a
matrix, the functional may be expressed ast

L(u,c.a)=J- [3¢"Ee +a7(e“ ~¢) — fTu]dV
v

—j (@,)(u—a)dS -J tudS. (8)
S S,

From L one obtains the conventional stress—
displacement  Hellinger-Reissner  functional by
eliminating ¢ through the inverse of eqn (2), namely
¢ =¢"=E"'a. Another Reissner-type, strain—
displacement functional is obtained by eliminating o
through the constitutive relations (2), namely
o =g¢g' = Ee. which yieids

R(u.e):J~ [—1¢"Ee + € Ee* — fTujdV
4

—J (dﬁ)r(u—ﬁ)dS—f uds. (9)
Su M

Setting ¢ =¢“ reduces R to the potential energy
functional

P(u) =f B(e") Ee* — fTu)dV
.
—J (" f(u—ﬁ)ds—l tTudS. (10)
Su JS

generalized with an S, term over its usual expression.
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4. HYBRID FUNCTIONALS

4.1. Independent boundary tractions

If the functional (9) is used to construct finite
elements, the displacement field 'u should be continu-
ous in V because of the presence of ¢“, whereas the
assumed strain field may be discontinuous. To ac-
count rigorously for displacement discontinuities it is
necessary to add the interelement surface tractions t
as a new independent field which plays the role of
Lagrange multiplier. Let S, denote the union of
interelement boundaries traversed twice (one for each
adjacent element); on S, neither displacements nor
tractions are prescribed. Then R expands to the
hybrid functional

H(u, c,t)=R(u,¢')—j t'uds. (n

Si

For later reference we not: the specialization € = ¢“
of eqn (11) to the generalized potential energy func-
tional of Jones [9]

P(u,t)= P(u) —J- tuds, (12)

5
where P(u) is given by eqn (10).

The meaning of the integrals in H may be illus-
trated by the two-dimensional mesh of Fig. I:

-
= + +
v e Jno nn ) )
P
s, Jso s on s
s st Jsih e s
"
Xl o= + [ +1 o+,
S efJdsi sun sen Si) SO

where element identification conventions stated in
Sec. 2.2 have been followed. It is seen that in the
integrals over ¥, S, and S, cach element appears once,
whereas in S, adjacent elemnents appear twice.

i
~ 1

(13)

]
™M

/%u&

Fig. 1. Simple finite element mesh to illustrate computation
of integrals in H.
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4.2. First variation
The first variation of H,
0H=38,H+6H+4,H, (14)

yields the Euler equations and interelement linking
conditions, which are underlined in the expressions
below. The three components of dH are

5 H =J (Va* — )T sudV
v

+f (ot = )7 SudS
S

+L (o4= 7 suds (s
5lH=J‘yE(£Le_)_’5¢’dV

_L (u—1i)" 5(Ee), dS (16)
5,H=L£5td8. (17

Note that there are two contributions to the element
interface integrals, one from J, 4 and another from
8, H. Putting the parts together and decomposing into
element-pair contributions we obtain

J. [(e: — )T du+u” it} dS
S

ol o "
=Z‘[ {4 su® — g Sut/) — £V Syt
e.f J SN

— T 4 g S + T S dS. (18)
In the absence of appiied internal tractions, interele-
ment equilibrium requires ' = —t°, which substi-
tuted into eqn (16) reduces the right-hand side to

r T T
a:(n 6u(tl_o.:lf) 6ulﬁ__t(¢f) J(H(rl_ulﬂ)
X + (u(e) —uN )T st

}dS. (19)

If we assume a compatible displacement field,
u = /", the above equation reduces to

T[ enoavaees. e
ef JSen

which means that the interelement equilibrium con-
dition appears as the Euler equation corresponding
to the variation of the interface displacements.
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4.3. A restricted variational principle

If the displacement field is incompatible we should
in principle retain t as an independent boundary
traction field satisfying ¢ = — ¢ over interelement
boundaries. One way to achieve this is to assume a
continuous stress field o * over element boundaries, so
that

tH=g* 9= d.:(e)

t‘f"=a‘-n‘n=a"-(—-n‘")= _a:u)' 2n
The presence of an independent boundary traction
field is computationally disadvantageous because ad-
ditional degrees of freedom must be retained on
elements sides. This contradicts one of the tenets of
high-performance element construction noted in the
Introduction. It would be more convenient if *
could be identified with the strain-derived stress field,
that is, * = ¢' = Ee on S|, because we would have
only two independent fields, u and ¢, as in eqn (9).
The strain freedoms can be eliminated at the element
level as explained in Sec. 6, and we are left with
standard displacement connectors. The correspond-
ing functional is

B{u,¢)=R - J (¢%)"udsS, (22)
Si

but in general o¢ is not continuous between elements.
One can argue, however, that continuity is achieved
in the limit of a converged solution. A variational
statement such as & =0 is called a restricted vari-
ational principle [10, Chapter |1] because the govern-
ing field equations of Sec. 2.1 are only satisfied at the
exact solution. Away from it, 64 =0 generally
violates interelement equilibrium field equations
although it may provide satisfactory numerical
approximations.

Stress—displacement (rather than strain—displace-
ment) functionals of this form have been used by
Pian and Chen (11, 12}, who transform the interface
integral into an element volume integral and in doing
so introduce a stress divergence term.

4.4, Finite element classification

Finite element models derivable from R, A and #
may be classified into several types according to the
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number of independent fields and the continuity
conditions on those fields. Following are some gen-
eral comments on the most interesting combinations,
which are summarized in Table 1.

(1) Continuous displacements. The independent
boundary fieid t is not needed, and we can work with
the mixed functional R. If the strain field is discon-
tinuous, strain freedoms may be eliminated at the
element level as explained in Sec. 6. Continuous
strains are in principle possible but impractical in
general structural applications where material inter-
faces, plasticity, and sudden thickness or area
changes may occur.

(2) Discontinuous displacements. The displacement
field contains conforming and non-conforming
portions. Assumed strains are discontinuous and may
be eliminated at the eclement level. Displacement
degrees of freedom associated with non-conforming
modes may also be eliminated if separable. The
governing functionals are 4 or 4. With the latter an
independent traction field t is required: degrees of
freedom associated with t must be retained at the
assembly level.

In practice elements are often constructed as a
combination of these types with conventional dis-
placement models. Thus part of the strain field may
be considered as completely derivable from displace-
ments and part as independently assumed, as dis-
cussed in Sec. 8. This was in fact the scheme originally
used by Willam {1). The C° plate bending quadrilater-
als studied in Part II provide another important
example.

5. DISCRETIZATION

5.1. Assumptions

In this section the finite element discretization of
the hybrid functionals A and A is studied. That is,
we focus attention on element types labeled (I1I) and
{IV) in Table 1. In the following it will be assumed
that the displacement boundary conditions are ident-
ically satisfied by u, whence the strain-displacement
hybrid functionals reduce to

H(u, e t) =f [e"E(e* — 1€) — fTu)dV
14

—J‘ tuds —J tludS
S, S,

23

Table 1. Assumed strain finite clement models derivable from R. H and &

Interelement Element Element
Element Governing Independent continuity ont connected condensable
type functional fields u € t fields fields
h R u, € c d u €
(1D R u€ c c u ¢
(11D A u, ¢ d d ul €
vy H ‘w6t d d < wit €

t ¢ = continuous, d = discontinuous.
1 Conforming part only if separable as per eqn (33).
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B, ¢) =J [TE(e* - i¢) = flu]dV

—J ttuds —J (@9)udS. (24
S S

The framework used here a:commodates both con-
tinuous and discontinuous displacements. The FE
assumption may be written

ga=Nv mnV
e=Aa nV
t=Ts on S, (25)

Here matrices N, A and T collect displacement shape
functions, assumed natural strain functions and inter-
face traction functions, respectively, whereas column
vectors v, a and s collect ncdal displacements, strain
amplitudes, and interface tractions amplitudes, re-
spectively. The derived fields in V are

¢“=DNv=Bv
¢’ =EBy
a‘ = Ee¢ == EAa. (26)

5.2. Discrete equations

On inserting the assumptions (25) and (26) into
(23) and (24) we obtain the bilinear algebraic forms

Hiv.a,s)=—'a’Ca+ a’Pyv—v'Ls—v'p (27)

A(v,a)= —1a’Ca+a’(F ~Ryv—v'p

= ~-aTCa+a’Bv—vTp, (28)
where
C=| ATEA4V =CT
Jv
.
P=| ATEBJV
JV
L=| N'TdS
PR
R= j (EA) NS
s
P=P-R
p=j NTfdV +j N7t dS. (29)
v S

Observe that eqn (28) resuits on substituting Ls by
RTa in eqn (27). Making these forms stationary yields
the linear systems

-C P 0 |{a 0
PP 0 —LKvy=<p (30)
0 -L7T 0 |ls 0
-C P(a 0
(o ol o

for eqns (27) and (28), respectively. In both cases the
first matrix equation is the discrete analog of eqn (16),
and expresses internal compatibility. The second
matrix equation is the analog of eqn (15) and
expresses internal and boundary equilibrium and, in
the case of eqn (31), approximate boundary compat-
ibility. The third matrix equation in eqn (30) is
the analog of egn (17) and expresses boundary
compatibility.

5.3. Displacement field decomposition

With a view to further developments the assumed
displacement field is decomposed as
u=u, +u,, (32)
where u, is continuous (compatible. conforming) inV
and u, discontinuous (incompatible, non-conform-
ing) on S;. It will be further assumed that this
decomposition can be effected in terms of the shape
functions, i.e.
u=N.v.+Nyv,, (33)
where the v, freedoms are defined element-by-element
and may in principle be condensed out. This assump-
tion holds for elements in which non-conforming
shape functions are ‘injected’ over a compatible
set. For the H functional, as shown in Sec. 4.2,
the S, integral vanishes exactly for the conforming

displacements:
J tu, =0.
S

On the other hand, for A the corresponding S,
integral aiso vanishes at the converged solution.
Taking this into account, eqns (30) and (31) expand
to

(34)

—cp. P, 07(a) (0
proo o o |lvl_Jel g5
Pl 0 0 -L,i|v Pa
o o -LT o Jls 0
-C P, P/](a 0
PT 0 0 [vi={P.} (36)
T 0 0](v, P,
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in which B,=P,—R,, and where c- and d-sub-
scripted matrices and vectors are given by integrals
similar to (29) in which N is replaced by N_ and N,
respectively.

6. STRAIN ELIMINATION

The strain degrees of freedom may be eliminated at
the element level by static condensation or by enforc-
ing kinematic constraints. These two techniques are
studied below.

6.1. Static condensation

This is a well known variationally consistent pro-
cedure which will be illustrated for the system (30).
From the first matrix equation get a at the element
level:

a=C 'Pv=Q,v. 37N
Substitution into the second equation gives
K ~L|{v P
=¢ 5, 8
R EE

where K=P'C-'P=P'Q,=Q7CQ, is a stiffness
matrix. Similarly, eqn (31) condenses to

Kv=p, (39)
where R = PTC-'B=Q7CQ, and @, =C-'P. The
separable non-conforming degrees of freedom v, if

present, may be condensed out following a similar
procedure.

6.2. Kinematic constraints

A second elimination procedure has been used
recently in the construction of ANS C? plate and shell
elements. It will be described by considering the
system (35) that displays separable conforming and
non-conforming displacement shape functions. A
kinematic constraint that links strain to displacement
degrees of freedom is established:

a=Qyv +Q,v,. (40)
This relation may be constructed by collocation,
least-square fitting or some other means. Often
Q,=0. For example, in the Bathe-Dvorkin ele-
ment (3] studied in Part II collocation of natural shear
strains is done at the quadrilateral midpoints,

If the following conditions hold:

(a) the dimensions of v,and a are the same so that
P, is square;

(b) matrix P,— CQ, is non-singular;

t One obtains K* = Q'(2P, + 2P,W — CQ) which simpli-
fies 1o eqn (44) because P,W = CQ-rpP.
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then the relation (40) may be interpreted as a vari-
ationally-consistent constraint on non-conforming
displacements. In effect, the first equation of (35)
becomes

(P( - CQc)vc + (Pd - CQd)vd = 0" (41)

whence
Vo= —(P,—CQ,) (P, - CQ,)v. = Wy,
a=(Q,+Q,W)v = Qv 42)
If (as often happens) Q, =0, Q =Q.. Replacing the

constraints (42) into the discrete form H(a,v., v, 1)
and setting its first variation to zero yieldst

s s .
[ S e
where
K*=Q'CQ
L*=W'L,
P*=p. +W'p,. (44)

Similarly, for eqn (34) we get the stiffness equations

K*v, = p*, (45)
where K = Q7CQ, in which Q, results on replacing P,
by P, in eqns (41) and (42),

Note that condition (a) above may be relaxed if the
dimension of v, exceeds that of a by selecting a subset
of v, that satisfies (b), and statically condensing out
the remainder.

6.3. Relation to the strain projection approach

If the dimension of a exceeds that of ¥, (in particu-
lar, if the assumed displacement field is conforming)
the constraint (40) is in general inconsistent with a
strain—displacement variational principle. In such a
case a connection with other techniques for improv-
ing element performance can sometimes be estab-
lished. For example, suppose that the assumed strains
€ are constant and equal to ¢ over each element, and
that the displacements are continuous. We can
choose a=¢ and A=1 so that eqn (40) may be
written

é =Bv. (46)
This is the strain projection approach. also called
averaged-B or the B approach. If B is determined by
collocation at the element center, eqn (46) is equiva-
lent to one-point reduced/selective integration on the
potential energy functional; see e.g. Hughes's text-
book {13, Chapter 4].
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7. LIMITATION PRINCIPLE

The famous limitation principle of Fraeijs de
Veubeke [14] was originally stated for stress—
displacement mixed finite elements, but holds for
many strain—displacement elements as well. The prin-
ciple is applicable when the displacement-derived
strain field ¢* is contained in the assumed strain field
€

¢2¢“=Du= Bv. 47

This inclusion can be expressed in matrix form as

e=Aa=Ba +A.a = [BA,]{:'}. (48)

Here a, contains the same number of entries as v
whereas A,, which may be empty, contains ‘excess’
strain modes. Consider elements of type (I11) based
on the functional H. Inserting eqn (48) into (30) we
obtain

—Crr -C, C. 0 » a, 0
T T
—Crx —Cxx CT‘ 0 a, = 0 . (49)
C. C. o -L[]v[ e
0 0 -L7T 0 s 0
where
cr,,=J' BTEBAV
v
Cr,=J’ BTEA, dV
v
C"=J‘ ATEA, dV. (50)
v

The first two matrix equations give a, =vand a, =0.
Hence the system is equivalent to eqn (38) in which
K = C,. is simply the potential energy stiffness matrix.
Consequently the stiffness equations may be directly
constructed from the generalized potential energy
functional (12) and the independent strain assump-
tion has no effect. Of course the conclusion only
applies if the strain degrees of freedom are solved for
in a manner consistent with the variational equations
(49); for example by static condensation. If the
derived field ¢* varies over ¥, assuming a constant
strain field € for € is a safe way to guard against the
limitation principle.

A similar analysis of type (IV) elements on the
f-derived system (31) shows that the limitation
principle does not generally hold uniess Rv = 0. For
arbitrary v this implies that the interface integral
vanishes. in which case H reduces to the mixed
functional R.

8. PARTIAL STRAIN ASSUMPTIONS

It is common practice to assume only part of the
strains to be independent fields. For example. in the
C? plate bending element studied in Part II indepen-
dent assumptions are only made for the transverse
shear strains, whereas the bending strains are entirely
derived from displacements. The partial strain
assumption may be expressed as

‘d

&)
where independent strain assumptions are made only
for ¢, = Aa. For ¢, one has ¢, =¢%. The R and H

functionals require obvious modification in the
volume term; for example,

E, E. |fe:—ie
R \ = T r aa ab a 2%a
(“ ‘a) jy [("a €p >[EM Ebbjl{ li([,

- f’u] dV + surface terms, (52)

(b

while for A an additional adjustment in the S, integral
is required. The resulting principles take a particu-
larly simple form if the constitutive coupling terms
E,, and E,, vanish, in which case

R =R,(n &)+ Pyu) (53)
where R, is a mixed strain—displacement principle
involving ¢,, and P, is a potential energy principle
involving the ¢} strain energy.

9. CONCLUSIONS

The key results of the present study may be sum-
marized as follows.

(1) The mixed strain-displacement functional of
Reissner type, R, can be expanded to two hybnd
functionals. 4 and H. to account for incompatible
displacements. Whereas 6R =0 and 6H =0 are
genuine variational principles, 8A =0 represents a
restricted variational principle.

(2) Several types of assumed strain finite elements
may be constructed using R, H or H. The most
practical elements for inclusion into existing displace-
ment codes are those (a) in which strain and non-
conforming-displacement degrees of freedom can be
eliminated at the element level and (b) which avoid
surface lraction connectors.

(3) Strain degrees of freedom may be eliminated by
static condensation or through kinematic constraints.
The latter technique can be presented in a variation-
ally consistent form if the conditions stated in Sec. 6.2
hold. in which case it can be jnterpreted as a con-
straint on non-conforming displacements. Special
versions of this technique are closely related to the
strain projection approach.
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(4) Fraeijs de Veubeke’s limitation principle
applies to finite element models derivable from func-
tionals R and H if the strain elimination procedure
is variationally consistent.

(5) The present variational formulations may be
readily modified to account for partial assumptions
on the strain field.
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Abstract—In Part II the four-node C° plate bending element is used to explore some of the possibilities
opened by the theory presented in Part I [C. Militello and C. A. Felippa, Compui. Struct. 34, 431-438
(1990)]. This element is chosen because the version presented by Bathe and Dvorkin [Ini. J. Numer.
Meth. Engng 21, 367-383 (1985)], MITC4, can be considered the simplest assumed natural strain element
that allows several possibilities to be studied in a straightforward manner. Attention is focused on the
governing functionals R and H presented in Part I, assuming independent strain fieids only for the
transverse shear strains. Besides MITC4, three formulations (two mixed and one hybrid) are considered
that collectively represent a vaniational justification for the assumed strain technique. In addition. reduced
and selective-integration clements are examined to compare their behavior with that of the present
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assumed strain elements.

I. INTRODUCTION

1.1. Four-node C® bending plate element formulation

We start with the formulation of the four-node
Reissner-Mindlin piate element whose degrees of
freedom (d.o.[) are the transverse displacement w
and the two rotations 8, and 8, about the x and y
axes, respectively, as shown in Fig. 1. We expand the
displacement field in the usual way:

w=Nd(r.s)w
6\' = N[(r' J)On
9,.=Ni(’,5)9‘.,, (l)

where

Nir,s)=¥1+rr)(I+5s5), i=1,234, (2

are bilinear shape functions. The strain field derived
from the displacement field is

€lo=—20,

€. =4(0,,-0,.)

Pe=w, =0,

yi=w, +0. 3)

We take advantage of the cecoupling between
bending and shear energies by using different assump-
tions for each one. We assumc that the bending

strains coincide with the bending strains computed
from the displacement field:

e!x =€ :J
€, = €5,
€q = €y @

The shear strains components in the Cartesian
basis x, y, = derived from the diplacement field are

7‘:: = w.‘ + 67\'
yh=w, =0, )
After some manipulations we can obtain the co-

variant components of the shear strains in terms of
the natural coordinates r and s as

yre=w,+B, (6)
ye=w,+8, M
where
BV = -oxy.l + ol‘x.f (8)
Bv= —ory.:+9,\'x_r' (9)

1.2. The assumed covariant shear strain

We consider two different assumptions for the
covariant shear strains:

(I—s)+ (1+53)

3 @3 (10)

T =&

439



440
97{ “
Y s 1
2
t
4
3 —r
Ztwm X 8
Fig. |. Element coordinate system and notational
conventions.
(1—=r) (1+r)
Ve = +a 11
7s: = @y > T (n
and
7!: = al (lz)
Tz =y (l 3)

The bilinear assumption (10), (11) is of the same form
as that proposed in (1]. The constant strain assump-
tion (12), (13) i1s studied to see whether there are
connections to the selective reduced integration (SRI)
technique discussed by Hughes [2].

2. MIXED ELEMENT BASED ON THE
FUNCTIONAL R(u,¢)

Up to now we are working with a compatible
displacement field and a discontinuous strain field.
Hence we use the functional R(u, ¢) presented in Sec.
3 of Part I [3]. No boundary field is necessary and the
constants g, can be obtained at the element level.

The element displacement field is

u=:43, (14)
8,
which can be expressed as
u=Nyv,, (15)
where
N O 0 ... N, O O
N={0o N O ... 0 N, 0| (16
0 0 N ... 0 0 N,
vVi=(w, 6, 8, ... wy 0, 8. (D
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The strain fields derived from the displacements
are:

(a) bending strains

€xx
e={ ¢ =By, (18)
2,
(b) shear strains
Y
yr={lE =By (19)
bil

The independently varied strains are:

(a) bending strains: the same as obtained from the
displacement field, i.e. eqn (18);
(b) shear strains:

Ye:
y=<"5>=DB%.
{?} ’

Substituting (18), (19) and (20) into functional R
and carrying out the integrations at the element level,
we obtain

20

R(v.,a) = WKv, — fa7C* + vI L —v7p,, (21)
where
Toop
Ki=| (B{)'E,BjdV (22)
Ve
.
C*=| (BS)’E,B:dV (23)
L ve
Le=| (B)'E,B*dV (24)
¥
p=| NIfdv +J. NTtdsS. (25)
Jve st

Here vector f collects applied distributed forces con-
jugate to w, 8, and 6,. On performing the variations
we obtain the matrix equation

K;r Lcn vr _ p(

(Lo’ —c=|laf |of
From the second equation we obtain the shear strain
coefficients

(26)

a=(C " '(LYv, =Q.v,, 27)

which substituted into (26) gives the statically con-
densed system
(Ki +Q/C*Q,)v. = p'. 28)

Here K{' is the bending stiffness matrix, which is also
obtainable from the potentiai energy principle, and
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Table 1. Bending test (FEM/theory--Fig. 2)

MITC4 SRI P! P4
a Node w g, w 0, w 9, w 6,
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
i 5 1.0C 1.00 0.90 1.00 1.00 0.44 0.44
6 1.0( 1.00 1.10 1.00 197 1.00 0.47 0.47
2 5 1.00 1.00 0.80 1.00 0.74 1.00 0.23 0.23
6 1.0¢ 1.00 1.20 1.00 1.06 1.00 0.28 0.29
Table 2. Shear test (FEM/theory—Fig. k) 0 >
MITC4  SRI P! P4 .y ‘
a Node w w w w 2 y - /Q‘
s 1.00 100 00 100 N o
6 1.00 100 1.00 1.00 —
y)
! 5 1.00 L0 140 100 f= > S
6 1.00 1.00 0.85 1.00 . A
2 5 1.00 1.00 3.06 1.00 Fig. 2. Bending test.
5 1.00 1.00 0.99 1.00

Q7 C¥Q, stands for the new shear stiffness matrix:
cf. Sec. 8 of Part [[3].

Equation (27) can aiso be cbtained by minimizing
the following shear energy error norm:

1
I'[,=§J‘ (y =y (y =y dV,
Ve

where the vector y collects the independent shear
strains (10), (11) or (12), (13), and y* collects the
shear strains evaluated from the displacement field.
eqn (19). The minimization of this norm using an
independent stress field instead of a strain field was
proposed by Barlow [4] as a way of deriving assumed
stress hybrid elements.

We have implemented two elements based in the
form (21) and the assumptions (10}(11) and
(12)«13), which will be identified as P4 and P1.
respectively, in the following. The resuits obtained for
the simple shear and bending tests illustrated in Figs
3 and 3 are summarized in Tables 1 and 2. We have
compared these results to those obtained using SRI
and MITC4 elements. The results indicate that Pl

Nd= 0 0
0 0

and P4 behave poorly when elements are distorted
and that P1 is not equivalent to SRI.

An interesting result is that if we use one point
reduced integration to compute L, both elements P1
and P4 yield the same results obtained using SRI.

We can obtain another expression for Q,, called
Q* in the following, from the field proposed by
Bathe and Dvorkin [1] for the covariant shear strains.

This expression relates four strain coefficients a to
the nodal degrees of freedom v.. The elements of QF
are given in Appendix A. It is important to realize
that Q, obtained for element P4 matches the matrix
Q* only for rectangular shapes. Consequently,
the variational principle based on the functional R
justifies the assumed natural strain technique for
rectangular shapes. However, what can we say about
distorted shapes? We need Q, = Q? for all possible
configurations to generalize that justification.

3. INCOMPATIBLE DISPLACEMENTS.
THE FUNCTIONAL H(u, & t)

Following the general procedure outlined in Sec.
6.2 of Part [ [3] we add to the transverse displacement
w the four midside incompatible shape functions
of an eight-node element. In this way the bending
behavior is unchanged. We denote by v, the nodal
values associated with these ‘injected’ incompatible
shape functions. The new displacement field can be

K 4+r)(1-s) 1=n0=5) Y1+ -r) K =s)=r)

written as
u=[N Nd]{"}, (29)
\Z
where
0 0 (30)
0 0
a
!’// ) Oy: 8y: 0
'I
l‘,:/ / .
/
ya ;
te

Fig. 3. Shear test.
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The bending strains do not change, and for the
displacement derived shear strains we have

y'= {’;’}= Bv, +Biv,. 31
7z

If we introduce the new strains into the variational
principle, we must use the functional H(u,¢,t) be-
cause the displacement field will be discontinuous.
Then, we have to introduce a traction field t over
the boundary. This traction field is a (line) shear
resultant, and for simplicity we shall assume that it
is constant on each element side. On performing the
variations, the following expression at the element
level is obtained:

Kr 0 pe

0 0 pe

Py (P —C=

(La)r (Ldl)f 0

where

P = J (BS)TE,Br dV (33)
ye

P“'=J (BY)TE,B*dV (34)
ve

L= f N7ds (35)
Set

L = j NIds (36)
Sel

= J. NItdS + j NIfds. (37)
s ve
Now imposing the relation
a=Qy, (38)
we obtain
v, = (P*)"T(C™Qr — (P“) )y, =W,v,. (39)

Replacing both relations in the variational principle
and taking variations with respect to v, and t, the
following expression at the element level is obtained:

Ki + Q?"C~0?
(Lt‘l + w(. Ldu)r o

The stiffness matrix proposed in (1] for the plate
element, namely, Ki+ Q*’C*Q?*, can be clearly
identified in the preceding expression. It is not neces-
sary to compute the contribution L because it comes
_ from the compatible displacement and will cancel
with the contribution of the neighboring element.
On the other hand. the contribution L from the

Lu + w(_ Ldl 2

C. MiLITELLO and C. A. FeLiPPA

10

3.5 |
Y
Y y
J )
/I
) 6

t:
Fig. 4. Cantilever beam discretization.

incompatible mode does not vanish. If t vanishes the
stiffness matrix reduces to that of [1] but the nodal
force vector will generally be different. Thus it is
worth emphasizing that the variational principle gives
a consistent treatment for distributed loads.

Lrl vr pr
Ldl v d
i _ p , 32)
0 a 0
0 t 0

The matrix P* is singular for rectangular elements,
but we know that in this case Q, is equal to QF
and there is no need to introduce the incompatible
displacement field.

4. NUMERICAL EXAMPLE

To check the behavior of the functional H(u, e t)
we analyze a cantilever beam with two distorted
elements, as depicted in Fig. 4. The assumed in-
dependent shear strain corresponds to eqns (10) and
(11). We are interested in two load cases: a uniform
bending moment at the tip (Fig. 2); and a uniform
transverse load at the tip (Fig. 3). In both cases
Poisson’s ratio is set to zero to compare the results to
those obtained through the Euler-Bernoulli beam
theory.

4.1. Uniform bending moment

The theoretical solution for this problem requires
a linear variation for 6, and a quadratic variation for
the transverse displacement w. As shown in Table 3,
the results obtained with MITC4 coincide with the
theoretical results. So do those obtained with the

P+ Wip?
e[ 0 ' “0

present formuiation labeled ANSH (for Assumed
Natural Shear Hybrid).

The value obtained for t is of roundoff error order
(107*2). Then, in this case, both formulations are
equivalent and the work absorbed by the incompati-
bility can be disregarded.
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Table 3. Normalized displacements (FEM/theory) for
bending, t=10"" :

MITCH4 ANSH
Node w . w .
5 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00

The external load vector is the same for both
formulations because the external bending moment
does not interact with the transverse displacement.

4.2. Uniform transverse load

The theoretical solution requircs a quadratic vari-
ation in 8, and a cubic one in w. In this case we
must expect the computed solution to be approxi-
mate. The results obtained are shown in Table 4.
Clearly the ANSH formulation 1s less sensitive to
element distortion. The lack of symmetry can be
observed at the third decimal position. The con-
vergence and symmetry for the rotation is excellent.
The value obtained for t is not regligible. Note that
in this case the external load vector is not the same
for the MITC4 and ANSH formulations.

5. CONCLUSIONS

We have illustrated the theory presented in Part
1 [3] through the study of several four-node C° plate
elements with independently assumed shear strains.
The following conclusions emerge from this study.

(1) Elements Pl and P4 based on the mixed func-
tional R(u.e¢) are variationally impeccable. P1 be-
haves well in the bending test and P4 passes the shear
patch test. Their performance deteriorates markedly,
however. if the element geometry departs from the
rectangular one.

(2) The MITC4 element imposes a shear strain—
displacement relation [eqn (38)] obtained by midpoint
strain collocation. This kinematic relation is not a
priori derivable from a mixed variational principle
such as 4R =0.

(3) A variationally consistent modification of
MITC4. named ANSH, is obtained by introducing
incompatible displacement mecdes and an indepen-
dent surface traction t (in this case a shear line force),
and using the hybnd functional H(u.e.t) for the
shear energy portion. The resuits are similar to those
of MITC4. Although this element is more expensive
to form. it does provide a consistent treatment of
applied distributed loads.

Table 4. Normalized displacements (FEM/theory) for

shear. t = —2.227
MITC4 ANSH
Node w 8, w 09,
s 0.930 1.077 0.892 1.003
6 0912 0.920 0.891 1.002
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(4) The MITC4 element stiffness matrix is
recovered by setting the boundary traction field t
of ANSH to zero. However, the nodal load vector for
distributed applied forces will generally be different.

The techniques illustrated here are obviously
applicable to the construction of other types of
assumed strain elements based on the various func-
tionais presented in Part I(3]. In particuiar, the use
of the restricted hybrid principle A, in which the
boundary tractions are not retained as independent
degrees of freedom, remain unexplored.

A key result of this investigation is that any change
in the strain -displacement interpolation from the
variationally consistent interpolation must be associ-
ated in some way to the addition of incompatible
displacement modes. This property is closely linked
to the limitation principle stated in Sec. 7 of Part 1 [3].
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APPENDIX A

Bathe and Dvorkin [1] proposed the same kind of shear
strain interpolation as we have used in egns (10) and (11).
To determine the coefficients a, they imposed the following
midpoint—collocation relations:

R+

o ==

TH+ e
a=—

vy
ay = 3

T+

dy= ————

2

where superscripts 1, 2,3.4 indicate the node where expres-
sions (6) and (7) must be evaluated; see Fig. {. Through the
application of the relations of Sec. | and after some algebra
we obtain

a=Q'v,.
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where
'T;(“l a a a,)
VZ: (w 8“ 9“ - 9,‘)
FO.S u X'_—XZ —-0.5 = Xx-x 0 0 0 o . .
4 3 =
o o 0 0 0 0 05 BTH NTH o onmN x-x
. 2 N - -
(3
Al Ya— W X —x,
. 0 0 0 0 0 —0s5 YHh x-x
05 = - o : :
0 0 0 0.5 BTN BTH o n-n n-x ) ) .
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A general three-field variational principle is obtained for the motion of an acoustic fluid
enclosed in a rigid or flexible container by the method of canonical decomposition applied
to a modified form of the wave equation in the displacement potential. The general
principle is specialized to a mixed two-field principie that contains the fluid displacement
potential and pressure as independent fields. This principle contains a free parameter a.
Semidiscrete finite-element equations of motion based on this principle are displayed and
applied to the transient response and free-vibrations of the coupled fluid-structure
problem. It is shown that a particular setting of « yields a rich set of formulations that can
be customized to fit physical and computational requirements. The variational principle is
then extended to handle slosh motions in a uniform gravity field, and used to derived
semidiscrete equations of motion that account for such effects.

1. INTRODUCTION

AN ELASTIC CONTAINER (the structure) is totally or partly filled with a compressible liquid
or gas (the fluid). The fluid structure system is initially in static equilibrium in a steady
body force field such as gravity or centrifugal forces. We consider small departures
from equilibrium that result in forced or free vibratory motions. To analyze these
motions the fluid is treated as a linear acoustic fluid, i.e. compressible but irrotational
and inviscid. The purpose of the present work is to:

(i) derive variational equations of motion based on a mixed variational principle for
the fluid subsystem; and

(ii) obtain semi-discrete equations of motion following- spatial discretization of the
coupled problem by the finite element method.

The derivation of the mixed variational principle for the fluid is based on the method of
canonical equations advocated by Oden & Reddy (1983) for mechanical applications.
The most general dynamical principle derived in this paper contains three primary
variables: the pressure-momentum vector, the dilatation-velocity vector., and the
displacement potential.

The general principle is specialized to a two-field functional of Reissner type that has
pressure and displacement potential as primary variables, as well as a free coefficient

0889-9746/90/010035 + 23 $03 00 © 1990 Acadermc Press Limited
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that parametrizes the application of the divergence theorem. The coupled variational
equations are discretized by the finite element method, and semidiscrete equations for
a rigid container established. Linkage with the structure is then made to establish
coupled semidiscrete equations of motion for a flexible container. By appropriate
selection of the coefficient a a continuum of finite element formulations results. One
particular setting yields a rich set of symmetric and unsymmetric formulations for the
transient and free-vibrations elastoacoustic problems. From this set, selections can be
made to satisfy various physical and computational criteria. The implications of these
selections as regards efficiency and numerical stability are discussed.

The variational formulation is then extended to cover slosh motions in a uniform
gravity field. It is shown that the surface slosh equations may be incorporated as
Galerkin terms in several forms, and that one of these forms merges naturally with the
mixed variational principle to form an augmented functional. Semidiscretization of this
functional produces finite element equations of motions that may be used for a rigid or
flexible container.

2. GOVERNING EQUATIONS

The three-dimensional volume domain occupied by the fluid is denoted by V. This
volume is assumed to be simply connected. The fluid boundary § consists generally of
two portions

S:5,US,. ey

Sz is the interface with the container at which the normal displacement d, is prescribed
(or found as part of the coupled fluid-structure problem), whereas S, is the “free
surface” at which the pressure p is prescribed (or found as part of the “fluid slosh”
problem). If the fluid is fully enciosed by the container, as is necessarily the case for a
gas, then S, is missing and S =S,. The domain is referred to a Cartesian coordinate
system (x,, x,, x5) grouped in vector x.

The fluid is under a body force field b which is assumed to be the gradient of a time
independent potential f(x), i.e. b= VB. All displacements are taken to be infinitesimal
and thus the fluid density p may be taken as invariant,

We consider three states or configurations: original, from which displacements,
pressures and forces are measured; current, where the fluid is in dynamic equilibrium
at time ; and reference, which is obtained in the static equilibrium limit of slow
motions. Transient motions are the difference between current and reference states. It

TaBLE 1
Notation for fluid states

Quantities Domain Original Reference Current Transient
Displacements v 0 d° d d=d' -d°
Velocities 14 0 d° d& d=d -d°
Boundary displacements* S 0 d d, d,=d-d&
Displace.cut potential v 0 y° Y y=y—-y°
Pressures (+ if compressive) v 0 p° ! p=p' —-p°
Body forces v 0 b=v§g b=Vg
Density 14 o P p

* Positive along outward normal
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should be noted that in many situations the original configuration is not physically
attainable. Table 1 summarizes the notation used in relation to these states.

2.1. FieLb EQUATIONS

The governing equations of the acoustic fluid are the momentum, state and continuity
equations. They are stated below for the current configuration, and specialized to the
reference configuration later. The momentum (balance) equation expresses Newton’s
second law for a fluid particle:

pd' =—-Vp'+b=-Vp'+ V. )

The continuity equation may be combined with the linearized equation of state to
produce the constitutive ¢quation that expresses the small compressibility of a liquid:

p' = —KVd = - pc’Vd, (3)

where K is the bulk modulus and ¢ = VK/p the fluid sound speed. If the fluid is
incompressible, K, ¢— . This relation is also applicable to nonlinear elastic fluids
such as gases undergoing small excursions from the reference state, if the constitutive
equation is linearized there so that K = po(dp /dp)e-

The boundary conditicns are

4'=d, on S;, p'=p on S, 4)

where d', is either prescribed or comes from the solution of an auxiliary problem as in
fluid-structure interaction, and j may be either prescribed or a function of d, and b, as
in the surface-wave (“‘slosh’) problem.

2.2. INTEGRAL ABBREVIATIONS

In the sequel the following abbreviations for the volume and surface integrals are used:

(e[ rav, g j gas. gl 545, e 5)

That is, domain-subscripted parentheses (square brackets) are used to abbreviate
volume (surface) integrals. Abbreviations for function inner-products are illustrated by

4|

Gov[ v, gpwE[ [frva el ] [ masa e

(6)
3. THE DISPLACEMENT POTENTIAL
3.1. THE REFERENCE STATE
Taking the curl of both sides of equation (2) yields
curl & = 0. Q)

The general integral of this equation for a simply connected domain is

d=Vy'+a+bi, (8)
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where y' = y'(x,t) is the displacement potential, g = a(x) and b=b(x) are time-
independent vector functions, and ¢ denotes the time. If accelerationless motions (for
example, rigid body motions) are preciuded by the boundary conditions, then a and b
vanish. Replacing d = V4" into the momentum equation (2) we get

Vp'=~-pVy' + V8, 9)
which, when spatially integrated, gives
P'=—py'+B+C(), (10)

where the scalar C(r) is not spatially dependent. Next, integrate the constitutive
equation (3) over V and apply the divergence theorem to Vd:

() +(pc™Vd')y = (p")y + [pcd!)s = 0. (11)
Inserting p’ from (10) into the above equation furnishes a condition on C(t) from which

2 2 —
0= dh+ 2 - =Ll 4T -5, (1

where v = (1) is the fluid volume and F=(f)v/v denotes the volume average of a
function f defined over V. Substituting C(¢) into (10) we get

2
P'==p( =)+ (8- B - . (13)

In the static limit of very slow motions, the inertia terms may be neglected and we
recover the reference solution

2
= (6-B - (a3, (14)

For an incompressible fluid [dn]s =0 but ¢ — o; thus, it would be incorrect to conclude
that p°=8-4 A counterexample to this effect is provided by Ohayon & Felippa
(1988).

3.2. TRaNSIENT MoTiONS
Subtracting the constitutive relations at the current and reference states we get
P = —pc*Viy = pcls, (15)
where s = -V%y is called, following Lamb (1945), the condensation. Subtracting
equation (14) from (13) yields :
p==p(¥ -9 —“{[dnls. (16)

On equating (15) and (16) we get modified forms of the wave equation that account for
mean boundary surface motions:
p-9 1 P
s=v2¢=%”+;[d,]s, or AV -TTg)=p -7 17
The second form follows from -v$ =[d,]s, which is a consequence of the divergence

theorem. For an incompressible fluid, c¢— and [d.]s=0, and from the first of
equations (17) we recover the Laplace equation Viy =0.
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3.3. ADIJUSTING THE DISPLACEMENT POTENTIAL
If the transient displacement potential is modified by a fuaction of time,

y=y+P@), (18)
is the potential of equations (8)-(17), we may choose P(t) so that
cy=Vy=—§forany/ then we obtain the classical wave equation

cVy=vy, or (58:_2 - c2V2>w =0. (19)

In the sequel it is assumed that this adjustment has been raade. If so, C(t) vanishes and
equation (16) reduces to

p=-py. (20)
4. MIXED VARIATIONAL PRINCIPLES

4.1. CaNONICAL DECOMPCSITION

In this section we derive multifield variational principles for the fluid domain following
the canonical decomposition method advocated by Oden & Reddy (1983). This method
is applicable to self-adjoint boundary value problems (BVP) of the form

Au=f inD, (1)

where u is the unknown function, f the data, A a symmetric linear operator, and D the
domain of existence of the solution. For time-dependent problems D is the tensor
product of the time domain (typically O to ) and the volume V. To apply this method,
the operator A is factored as

Au=W*EWu=f, (22)

where W and E are linear operators in V and W* is the adjoint of W. This is called a
canonical decomposition This decomposition may be represented as the operator
composition sequence

Wu=e, Ee =0, W*o=f, (23)

where e and o denote intermediate field variables in D The three equations (23) are
called the kinematic, constitutive and balance equations, respectively, in mechanical
applications. The canonical representation of boundary conditions on the surface
S§S=5,US,is

Byus=g on S, Bjos=h on S,. 24

where B and By are surface operators, g and h denote boundary data, and us = ysu
and g = I'so are extensions of u and o to the boundary S. The extension operators ys
and &y often involve normal derivatives.

4.2. THE WAVE EQUATION

The classical wave equation (19) is not a good basis for the canonical decomposition
(22). Its principal drawback is that the pressure field does not appear naturally as an
intermediate variable in equations (23). A better form for our purposes is obtained by
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taking the Laplacian of both sides of (19), and muitiplying through by the density p:

.. az
PV (Y —c*V*y) =0, whence A= sz(ﬁ - CZVZ). f=0. (25)

A suitable canonical decomposition is A = W*EW, where

3

v 10

w=| "V E=p[ ,
_y? 0 ¢

3

| _;
]’ w ['vat

vz] = —WT, (26)

in which i = V—1. Boldface symbols are used for W and E because these are 4 X 1 and
4 X 4 matrices, respectively. The operator product sequence (23) becomes

e ivu}]_[iv] _ _[ ipVey _[im]
°‘w""[—v2w “Lst o=Ee= —pc2v2w}' pl

W*e=pVy — pc?V*'y =0. (27)

The intermediate fields e and @ are 4 x 1 column vectors. These vectors are partitioned
into their temporal and spatial derivative subvectors for convenience in subsequent
manipulations. Note that the transient préssure p appears naturally as the spatial
component of ¢. The temporal components of e and o are the complex velocity iv and
complex specific momentum /m, respectively.

The boundary portions S, and S, of equations (24) are relabeled S, and Sp»
respectively, to match the notation (1). Boundary and initial conditions may be stated
as

By(x, 1) =g(x, ) on S,, B*o(x, t) = h(x,t) on Sy,
d(x, o) =do(x) or m(x,t) =mg(x),  d(x,t,)=dy(x) or m(x, 1;) = my(x). (28)
Here B and B* are time-independent 4 X 1 and 1 x 4 vectors, respectively, related to.
the canonical Bs and B operators of (24) by B =B, and B* = BT, where ys (a

scalar) and Is (a 4 X4 matrix) are boundary extension operators for Y and o,
respectively. Comparison with (4) and the use of Green'’s function reveals that

. 3
Bf=-Bi=[0001], g'=[0004d,), vs=3-, Ts=1, h=—-p (29

4.3. THRee FIELD PRINCIPLE

The most general variational principle for the canonical decomposition (26) allows the
three fields: y, e, and @, to be varied independently. The principle may be stated as
OL(y, e,6) =0, .“~e the functional L is (Oden & Reddy, 1983)

L(u, r, o)=Ly + Ls= Z(Ee’/e)"xl + (o, Wy — Y)vxe = (fr 'p)er
+ (0’5, BW - g)s‘xr - (h! 1pS)S,,xn (30)
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where L, and Lg coliect volume and surface terms, respectively. On inserting
equations (27-29) into (30) we get

LV = %(Ee, e)er + (o, ww - eiVx:
= f j [Bp(=vTv + c*s?) - m'(Vy —v) — p(V?y +5)] dV ds,
n 'V

Lo= 05, B9~ s.cm O wlgr= || | p(5-d:) as+ [ p5ras]an 6v

The body force term (f, ¥)y . vanishes and does not contribute to Ly.

4.4. Two FIELD PRINCIPLES

A two field principle of Reissner type can be derived from the functional L by
enforcing the inverse constitutive equations e = E~'¢ a priori. The resuiting principle,
which allows y and @ to be varied simultaneously, is 6R(y, 6) =0, where

R('!p, 0) = RV + Rs = "‘%(E—lc, 0)V><( + (0'9 WW)VXJ - (f: w)Vx:
+ (05, Bil’ - g)del = (h, Ws)s,x:- (32)
where Rg = L, and

Rv(‘l’» 0') = -%(E_lns o)sz + (0, WW)er

“ 1 + PZ Ty, 2)
= 2 m'm-2——m™Vy - pViy ) dV dr.
L [ (g5 mm = 5= m Ve =¥y (33)

The specific momentum disappears as an independent field if we enforce m= pVy
a priori, whereupon the functional R becomes a function of ¥ and p only and the
volume term contracts to

1 ) A 1 p:'
= ~1 Yy ———s—pV?
R = [ [ (2009 ve -5 Eimpru)av (34)

To check R = Ry (v, p) + Rs we form its first variationt

. 1 3y 3p
=—(pV?y + V?p, m_<__1 vy, ) - [ <+ ]
OR =—-(pVy Sy)v sp+Vy, op mf 3. 3n oy o
s a_W] [?2_- ] (o4 .
‘.p p o, S’m+ 5, ~ 4 0P e (pVy, 8Vy)y [ (35)

Setting R =0 provides the field equations, boundary and initial conditions.

+ The variation of the kinctic energy integral term may be expressed in two different ways,

BPTH, Vil ar= (075, W)= [02L, 69| + (0¥ 6T0 I3,
§xe

. . - y - .
BEVHT TPy = (076, 89)vst [PDE, 89] - (0T B [
Sxr
depending on whether integration by parts is performed first in time or space, respectively. The first form,
which provides physically significant initial conditions, is used in constructing equation (35).
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4.5. PARAMETRIZATION

A one parameter family of variational principles can be obtained by transforming all or
part of the last term in (34), viz. pVy, by the divergence theorem (Green’s first
formula for the Laplace operator)

fszlpdV+f (Vw)TVpdV=fp§EdS=f p—dS+f pa—wdS. (36)
v v s" dn Sq S, on

Let 0=<a =<1 be the portion of that term to be transformed. Insert pPVy = apViy +
(1 - a)pV?y in equation (35) and apply the relation (36) to apV*y to get

g N
R, = f { f (gp(vw)w - EP—Z +a&(Vy)™Vp — (1 - a)pvzw) dv
to v pc
- L PP f v ]
a[s‘pands a'sppan ds{de (37)

Finally, replace the Laplacian V?y left over in (37) by c™%y to arrive at the
parametrized two-field functionalt

(£ X i 1 2 -
Ra(y, p)=Rav +Rs =f U (—%p(Vw)TVw - Ep_z +a(Vy)'Vp - (1-a) @) dv
[? v pc c

+[s‘p[(1—a)Z—;”-Jn]dS+L(ﬁ—ap)z—;”dS] dr. (38)

The highest spatial derivative index for both primary variables y and p is 1, except if
a=0, in which case it is only 0 for p. The two interesting limit cases are of course
a=0and a =1, for which

. - re _1p2 py
= -1 T - -
Riv.p)= [ [ (~tovirs 3es=oF)av

+J;p(.aip_¢in)ds+£p'2—rd5]dt, (39)

., \on .

Ritv. )= ['[[ (~1090r95 - 12+ 7yyp) av

-Lp‘i"ds_j;p(p—p_)z—:zpds]dt' (40)

5. FINITE ELEMENT DISCRETIZATION

5.1. DiscremzaTiON OF R,

In the following we derive semidiscrete finite-element equations of motion based on
the R, functional (38). The volume V is subdivided into fluid finite elements. Over
each fluid element the state is represented by the primary variables y and P, which are
detiicd as functions of position in the usual shape-function interpolation procedure.

tIf a#1, 3R, =0 is a restricted variational principle because the substitution V2y = €72y holds only at
the exact solution,



MIXED VARIATIONAL FORMULATION OF F. E. FLUID-STRUCTURE INTERACTION 43

The finite element interpolation in V may be expressed as
y(x, ) =N, (x)¥(), p(x,0)=N,x)p(), (41)

where W and p are computational column vectors that contain r,, and n, nodal values
of ¢y and p, respectively, and N, and N, are corresponding row-vector arrays of
dimensionless shape functions. The specified displacement over S, is interpolated by

d,ix,t) =n"d(x, t) = n"Ny(x)d, = NL,(x)d, (42)

where n is the external-normal unit vector on S,;, N, contains the displacement shape
functions of the enclosing container, N,, are these shape functions projected on the
outward normal m on S;, and d contains nodal displacement values. For now the
container displacements will be assumed to be prescribed, hence the superposed tilde.

In the following three Sections, 5-8, we shall assume that the prescribed-pressure
boundary conditions are exactly satisfied by the finite element interpolation, i.e. p=p
on §,. If so, the S, integral of R, simplifies to

3
L (1— a)p gl‘,f ds, (43)

which vanishes for & = 1. Inserting expressions (41) and (42) into the functional (38),
with the simplified S, integral (43), yields the semidiscrete quadratic form

R.('P.p)
= -JYTHWY - il—p p'Gp + aWFp + (1 — a)[W'Vp - ¥™Dp + WL, | — p™Td, (44)
where

H= L UNIVN, dV =HY, F= fv VNIVN,dV, G-= Lc-ZN;N,, dv =GT,
D= JV NN, AV, V= | (V.N,)TN, dS, (45)

T'=| NIN,dS, f,= L pV.N, dS.

Sa

The integration with respect to time is dropped as it has no effect on the variation
process described below.

5.2. CoNTINUITY REQUIREMENTS

The interelement continuity requirements of the shape functions of y and p depend on
the index of the highest spatial derivatives that appear in R,. If a #0, this index is 1
for both y and p and consequently C° continuity is required. It is then natural to take
the same shape functions for both variables,

N, =N, (46)

with both vectors W and p of equal dimension and evaluated at the same nodes. Then
some of the matrices in (45) coalesce as

H=F, G=D=D". (47)

The case a =0 is exceptional in that no spatial derivatives of p appear. One can then
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choose C~' (discontinuous) pressure shape functions; for example, constant over each
fluid element. If this is done, obviously

N, #N, (48)

because y must be C° continuous. Furthermore, the dimensions of p and ¥ will not be
generally the same.

5.3. SINGULARITY OF H

For later use, we note that matrix H (as well as F if different from H) before the
application of any essential boundary conditions at fluid nodes, is singular because

He =0, (49)

where e denotes the vector of all ones. This follows from (45) and expresses the fact
that a constant potential generates no pressures or displacements.

6. TRANSIENT RESPONSE EQUATIONS

6.1. THE RiGID-CONTAINER EQUATIONS OF MoTtion

Since R, contains time derivatives of order up to 2 in W, the appropriate Euler-
Lagrange variational equation is

3R, B3R, & 3R, 3R.
S| ——— e — —O0p=
R« (atv 3t oW  ar aw)‘w+ ap PO (50)

which applied to (44) yields
[oHY + aFp — (1~ a)Dp + (1 - a)Vp + (1~ a)f,]6W =0,
[-p7'Gp+ aF "W — (1 - &)D™W + (1 - a)VTW - TTd)6p = 0. (51)

These equations can be presented in partitioned matrix form as

LaZonr "R LA @

where J = (1 - a)V + oF.

6.2. THE FLEXIBLE-CONTAINER EQUATIONS OF MoTion

If the fluid is enclosed in a flexible container, the boundary displacements d are no
longer prescribed on S, but must be incorporated in the problem by including them on
the left-hand side of the equations of motion. In the sequel, vector d collects all
structural node displacements, of which d is a subset on S4. Matrix T, suitably expanded
with zeros to make it conform to d, becomes T. We shall only consider here the case in
which the container is modeled as a linear undamped structure for which the standard
mass/stiffness semidiscreiw. . gr.ation of motion is

Md+Kd=f, +Tp, (53)

where M is the mass matrix, K the tangent stiffness matrix at the reference state, Tp is
the pressure force on the structure, and f, is the externally applied force on the
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structure. Note that K in general must account for container prestress effects through the
geometric stiffness. Combining equations (52) and (53) we get the coupled system

M 0 0 (d
0 pH -1-a)D R ¥
0 -(1-a)DT 0 Lp
K 0 -T d £,
+ 0 0 J Y=< —(1-a), ¢ (54
| -TT J* -p7'GJ{p 0
If =0, then
M 0 o0]|(d K 0 -T d f,
0 pH D[|J¥;+| 0 o0 \Y W= —f, . (55)
0 DT 0 ]JLp -TT VI —p7'G J(p 0

There is little than can be done beyond this point, as the shape functions for p and y
will be generally different. Although the pressure may be constant over each element,
no condensation of p is possible in the dynamic case.

If «a=1, then
M 0 0|4 K 0 -T d f,
0 pH 0[sW, +| 0 0 F Wor=40 ¢ (56)
0 0 o ]jLp -TT F* -p~'Glp 0

Note that all these systems, (54) through (56), are symmetric.

6.3. IDenTicaL SHAPE FUNCTIONS

Further progress in the case a =1 can be made if we assume, as discussed in Section
5.2, that the shape functions for p and y coincide. Taking then (47) into account,
equation (56) simplifies to

M 0 offd K 0 -T d £,
0 pH 0 R¥,:+| 0 0 H Poe=20¢. (57)
0 0 o jLp -TT H -p~'G]lp 0

The second matrix equation gives pHW + Hp = 0. Since H is non-negative definite we
must have

p=—pW. (58)

This is the discrete analog of the continuous relation (20) for the dynamic over-
pressure. For future use note that if the container is rigid, (57) reduces to

-p~'Gp+ HP = G¥ + HY = T"d. (59)

6.4. UNSYMMETRIC ELIMINATION

If equation (58) is used to eliminate the pressure vector from (57) we obtain

v Slel+ 5 alfel-(6} @
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Conversely, eliminating the displacement potential vector gives

e ol wliel-1% d
pT" Gllp 0 HIllp) lo) 1)
Unlike previous systems, both (60) and (61) are unsymmetric. Thus, the straightfor-
ward elimination of a field variable, be it P or y, causes symmetry to be lost. These

forms will be called unsymmetric two-field forms, or U2 for short. System (60) reduces
to (59) if the container is rigid.

7. REFORMULATIONS OF THE TRANSIENT RESPONSE EQUATIONS

7.1. S3 Forwms

Starting from equations (57) and (58) it is possible to derive three more symmetric
forms that are formally equivalent. One is obtained by differentiating the last matrix
equation twice in time, transforming the first equation via (58), and finally including
(58) premultiplied by p~'G as third matrix equation:

M T o](d K0 o d £,
pT" —pH G |{W:+]0 0 o ¥i=1<0,. (62)
0 G 0 ]lp 0 0 p7'G]p 0

Another one is obtained by integrating the first matrix equation of (57) twice in time,
using (58) to eliminate the pressure, and including Kd — Kd = 0 as trivial equation:

00 o(d -M  -pT -K]|(d -,
0 G 0[{Wr+] —pT" pH 0 Ye=4 0 o, (63)
0 0 K|ld -K o0 o |9 0

where superposed stars denote integration with respect to ¢. Finally, differentiating the
first matrix equation of (63) twice in time, moving pT"d to the left, and including
Md — Md = 0 as trivial equation, we get

0 0 -M d M 0 o0](d 0
0 pG -pT"[{Wo+[0 pH 0jdwi={ o } (64)
-M -pT -K |ld 0 o o]fld —f,

The four symmetric forms, (57), (62), (63) and (64), will be called symmetric three field
forms, or S3 forms for short. It should be noted that there is no symmetric S3 form
with a state vector consisting of d, p and d.

7.2. S2 ForwMs

Each of the S3 forms has a statically condensable matrix equation that allows one field
to be eliminated. For example, the last matrix equation of (57) is ~T'd + HW —
P~ 'Gp = 0 which can be solved for the pressure vector p if G is nonsingular. Assuming
that all 1>~trix inverses indicated below exist (more will be said about this later), the
condensation process yields four two-field symmetric forms:

[M o]{a} [K+p’l’G"‘TT pTG"H]{d}={fd}’

0 pHIY pHG™'TT pHG 'HIlw 0 (65)

L 4
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M+pTH'T"T TH''G J(d] [K 0 1fd}_[f
| o[ Y N T M
GH YT  p 'GH™'GIJlp 0 p-'Gllp 0

[pG o]{ti'!}+[pﬂ+p’*rTM-‘T p'l’TM“K'{:l:}____[pTT
0 klld pKM™'T KM 'K Ild K
MK™'M PMK™'T ]{a} [M 0-]{d} [M] "

g =- K™'f,. 68
[pTTK-‘M pG + p*TTK™'T] ¥ 0 pHIlW pTT * (68)

]M-"fl, 67)

These will be called symmetric two-field forms, or S2 forms for brevity. The
condensation process reduces the number of degrees of freedom but is detrimental to
matrix sparsity. The last property may be recovered to some extent by taking
advantage of factored forms of the matrices affected by the inverses; for example

[K+pTG"TT pTG“H]_[I T][K 0 ][1 o] 69)
pHG™'IT pHG™'H 0 HIL0O pG'LT" HT

Corresponding expressions for the matrices in (66)—(68) are given by Felippa (1985).

7.3. ADVANTAGES AND RESTRICTIONS

The eight symmetric forms (S3 and S2), plus the two unsymmetric forms (U2),
represent ten formulations of the R,-based fluid-structure interaction problem for the
identical-shape-function case. Although formally equivalent, they may have different
behavior in terms of numerical stability and computational efficiency. The following
items may affect the choice among the various forms.

* Matrix sparseness retention. Matrices G and M are often diagonal. The S2 forms that
involve G™! and M~', whether in direct or factored form, are (other things being
equal) preferable to the others.

o Existence of inverses. If the fluid does not have a free surface, H is singular on
account of (49), and consequently (65) does not exist. If the container has some
unsuppressed rigid body modes, K is singular and consequently (68) does not exist.

* Applied force processing. Forms (63) and (67) require that the applied structural
forces, f,, be integrated twice in time before being used. Both S2 forms (67) and (68)
require additional matrix-vector operations on the force vectors. These disadvan-
tages, however, disappear in the free-vibrations case discussed in Section 8.

» Explicit versus implicit time integration. If M and G are diagonal, both unsymmetric
forms (60) and (61) are attractive for explicit time integration because the leftmost
coefficient matrices are upper and lower triangular, respectively. Therefore, equa-
tions may be solved directly in a forward or backward direction without prior
factorization. No symmetric form exhibits a similar property.

o Physical limit conditions. Those collected in Table 2 are of interest in the
applications. Recommended forms, if applicable, are preferable because of numeri-
cal stability or suitability for perturbation analysis. Of all conditions listed in Table 2
the incompressible fluid case is of central importance. There must be a free surface
S,, else the contained fluid would behave as a rigid body. Consequently H is
nonsingular. Setting G =0 in equation (66) we obtain the so-called added mass
equations

M, d+Kd=f, (70)
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TaBLE 2
Limit conditions

Matrix Recommended
Limit condition expression form(s)
Incompressible fluid (¢ — =) G—0 (60), (61), (62), (66)
Cavitating fluid (¢ —0) . Go= (57), (65)
Stiff container K- (64), (68)
Hyperlight container M—0 (64), (68)

where M, is the added mass of the coupled system,
M, =M+ pTH™'T". (71)

* Preservation of structural rigid body motions. This is discussed in more detail in
Section 8.5 in conjunction with the free-vibration eigenproblem. It is sufficient to say
that forms (63)-(64) and (67)-(68) do not generally preserve such motions and are
inappropriate for treating unsupported structures (for example, liquid tanks in
orbit).

* Presence of constant potential mode (CPM). This is covered in detail in Section 8.6.
If the fluid is totally enclosed by the container so that there is no free surface, forms
(57) and (65) should not be used.

8. FREE VIBRATIONS

To obtain the elastoacoustic free-vibrations problem, we make the standard
substitutions

d=ue'™, W=ge'™, p=re” [,=0, (72)

where i = V=1 and o is the circular frequency, into the transient response equations.
Thus we obtain ten algebraic eigenproblems, eight symmetric and two unsymmetric,
which are displayed below. General properties of these eigensystems are summarized
in the Appendix. In the following eigenproblem statements, subscript m is a mode
index. The following eigenvector relations should be noted:

'~ = = PG, ‘u‘,,, =w i, (w,#0). (73)

For the unsymmetric forms given in Section 8.3 one must distinguish between left and
right eigenvectors. Superscript L is applied to left eigenvectors wherever necessary;
otherwise right eigenvectors are assumed.

8.1. S3 Forms
The four eigenproblems that correspond to the systems (57), (62)—(64) are
M 0 0](u, K 0 -T |(u,
wi| 0 pH 0|4q.¢=] 0 0 H Nq./, (74)
¢ 0 O0]ir, -TT" H -p7'G|lrn.
M pT 0 u,, K 0 0 | (u,,,
wh| pTT —-pH G |{gq.¢=[0 0 0 [{q.¢, (75)
0 G 0 lr, 0 0 p7'G|Lr,
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0 0 0](u, - M -pT -K | un
w30 G 0 9n (= -pT" pH 0 4 ( (76)
0 0 KJj{u, | —-K 0 0jlu,
0 0 -M |[un. M 0 0](u,
wi] 0 pG -pT" [{qmp=|0 pH 0|1Qm (7N
-M -pT -K L'u‘,,. 0 o ojlw,
8.2. S2 Forms
The four eigenproblems that correspond to the systems (65)—(68) are
,[M 0 7fu, K+ pTG™'T* pTG 'H(u,
w,,,[ ]{ }= 1T -1 s (78)
0 pHlig, pHG™'T pHG ™ 'Hl\q,,
) M+pTH'TT TH™'G ][un K 0 u,,
wm[ ~1pT 10—l { }= -1 ) (79)
GH™'T pT'GH™'Gllr, 0 p  Gilr,
2[pG 0]{q,,}_[pﬂ+p2’l‘TM"T pTTM“K]{q,,.} (80)
Lo kllu, pKM™'T KM 'K Jlm, )
2[MK"M pMK™'T ]{um}_[M 0]{11,,} 81)
Om| ;TK-'M  pG+p T K 'Tllg.) L0 pHilg,)
8.3. U2 Forms
Finally, the two eigenproblems that correspond to the systems (60) and (61) are
v ella)-[ 5 ulle)
2 i
“""[o G llg. ) " L-17 ullg,) (82)

e Jit-lo Wl @

8.4. CoMPUTATIONAL CoONSIDERATIONS

The considerations of Section 7.3 apply for the most part to these ten eigensystems.
However, matrix symmetry is more important in free vibrations than in the transient
response problem. This is because eigensolution extraction methods that take
advantage of sparsity are more highly developed for the symmetric eigenproblem than
for its unsymmetric counterpart. An up-to-date exposition of those methods is given by
Parlett (1980).

The presence of zero eigenfrequencies (w, =0 roots) may cause serious numerical
difficulties in some eigensystem formulations. Two sources of such roots may be
distinguished: rigid body structural modes, and the constant-potential mode.

8.5 Ricm-Bopy STRUCTURAL MODES

If the container is not fully supported, Ku, = 0 for structural rigid body eigenmodes u,.
If H is nonsingular eigensystems (74)—(75), their condensed versions (78)—(79), as well
as the two U2 eigensystems, preserve such modes. To verify this assertion, substitute

e,=uw, q.=-H'Tw, r.=0 (84)

Q-2



50 C. A. FELIPPA AND R. OHAYON

into the Rayleigh quotients (A.12) or (A.15) of the eigensystems. If H is singular, form
(79), which contains H™?, does not exist, whereas (74) preserves the modes if there
exist q, modes such that Hq, + Tu, = 0. Eigensystems (76)~(77) and (80) do not
generally preserve rigid-body modes, whereas (81), which contains K™*, does not exist.

8.6. CoNSTANT POTENTIAL MODE AND SPECTRUM CONTAMINATION

Suppose the container is supported so K is nonsingular but the enclosed fluid has no
pressure-specified surface S,. If so, H is singular because of (49). Both U2
eigensystems then possess an @ = 0 root which conventionally will be assigned modal
index 0. This root is associated with the following left/right eigenvectors

Eigensystem (82):  u,=0, gy=e, uy=K'Te, qf=e, (85)
Eigensystem (83): u,=K™'Te, r,=e, u=0, ri=e. (86)

This statement is readily verified by taking the Rayleigh quotients (A.12). The
eigenpairs (85-86) are collectively called constant potential mode or CPM. The
existence and computational implications of this mode have been discussed by Geradin
et al. (1984). The mathematical interpretation of (85) is “dual” to that of a structural
rigid-body mode. Under a rigid-body motion the displacements are nonzero but the
strains and stresses vanish. Under the CPM the potential is nonzero but fluid
displacements and dynamic pressures vanish. But unlike rigid-body modes, the CPM
has no physical significance: it is spurious.

According to the eigenfunction theory summarized in the Appendix, all non-CPM
modes (u,,, g, r,) or (82) and (83) for m#0, w,, #0 satisfy the bi-orthogonality
conditions

0

(0 eT)[pl':'lT G]{ :"} =e"(pT"u,, + Gr,,) = 0, 87)
pT® .

G

As regards the symmetric forms, eigensystems (74) and (78) are adversely affected by
the singularity of H and should not be used. This is because substituting the CPM left
eigenvector (85) into either one, with r. =0 for (74), produces a Rayleigh quotient for
 of the form 0/0. This means that both coefficient matrices have a common null space
(the CPM) and every w is an eigenvalue. Such an eigenproblem is called defective (see
Appendix). If one attempts to numerically solve “untreated” defective eigenproblems,
nonsensical results can be expected because the whole spectrum is likely to be
contaminated.

(eTTK™! eT) [ l:;l ]{::} =e"(T'K™'Mu,, + pT'K"'Tq,, + Gq,)=0. (88)

9. SLOSH MOTIONS IN A GRAVITY FIELD

A liquid with a free surface in equilibrium in a time-independent acceleration field may
exhibit surface waves, informally called “slosh” motions. From an applications
standpoint the most important acceleration fields are gravity and rotational motion, the
latter being of interest in rotating tanks. In this section we shall be content with
formulating slosh effects in a uniform gravity field. More general fields, including
time-dependent body forces, may be variationally treated by the method of canonicai
decomposition of the non-homogeneous wave equation, but that general method will
not be followed here as it is not necessary for the gravity case.



MIXED VARIATIONAL FORMULATION OF F. E. FLUID-STRUCTURE INTERACTION 51

The fluid volume V is in equilibrium in the reference state discussed in Section 3.1
under the time-invariant body force per unit of volume b= Vf, where B is a potential
field. As noted above we restrict developments here to a gravity field of strength g
uniform in space and time. The boundary S, is then the equilibrium free surface normal
to the gravity field. The axes (x4, X3, x3) are selected so that g acts along the —x,= -2
axis. Hence, B = —pgz + B, where B is an arbitrary constant. If we chose B so that
vanishes at the free surface z = z,, then

= —pg(z — Z). (89)

In the so-called hydrostaiic approximation for small-amplitude gravity waves (Kinsman,
1965), sloshing is considered equivalent to a free surface pressure

3
p=p+pgd,=p +pgn, where n=d,,=a—1: on S,. (90)

Here p, as before, denotes the prescribed part of the pressure (for example.
atmospheric pressure) and 7 is called the elevation of the liquid with respect to the
equilibrium free surface. This approximation assumes that the displacements are
infinitesimal and that the z-acceleration of the slosh motion is negligible.

9.1. VARIATIONAL PRINCIPLE

For the variational derivation of ‘“‘slosh equations™ it is advantageous to choose the
elevation n as an independently varied field. This choice simplifies the reduction to
surface unknowns as well as the treatment of more complex interface conditions such
as capillary effects.

To incorporate slosh effects into the mixed variational principles based on the
functionals studied in Section 4, it is convenient to follow a Galerkin technique by
adding weighted forms of (88) to their first variation. The following combinations may
be considered:

- 31#) (311’ ) ( . aw) (aw )
i(p p—pgn, 0~ s,i 3" on 5 \p—p-prgn. o3, s?t 3. oP X
) 2, aw _ aw
—p—pgn, & (S,Y_, __>, — 5 - pen, (__, )
*(p—p—pgn, op)s, i 6811 ; t(p—p—pgn, Op)s, £ 3n " on N
+(p—p— én) i("ﬂ_ ) ) +(p-p- én) i(.a_y._ 58_?)
p—p—pgn, Om)s k- —n, op N p—p-pgn dms (-~ Mmoo .

(1)

Of these the first expression, with signs — and +, offers two advantages: (i) it is
derivable from a functional, and (ii) it combines naturally with the S, integral in the
first variation (35). Of the “base’ parametrized functional R, the most computationally
advantageous choice is again o = 1. The expanded functional (40), denoted as R,, in
the sequel, is

£y . a
Ri(p, s m=Ru = [ [[ pdias+ [ (o5 pgn) SE+tpgnas|an o2)
[¢ Sq Sp

0

where R,y is the volume integral of (40). Note that setting n = 0 restores R,.
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9.2. FINITE ELEMENT DISCRETIZATION
In addition to the assumptions (41), (42) and (46) we interpolate n as
=N on §, (93)

where column vector n contains n, fluid elevations at nodes on Sp» and row vector N,
contains the corresponding elevation shape functions. The semidiscrete quadratic form
for (92), again excluding the time integral, is

Rlﬂ (‘p? P9 ")
. . 1 o
= ~1pWTHWY - % P'Gp+p (H-Q,.)¥ ~p'T"d+ pgn™(Q,. ¥ - iSn) - ¥7L,, (94)

where

Q.= fs, N, VN, dS, Q.= J;' N;VN, dS,

T T T = (95)
S=| NIN,dS=ST, c,=LVN,,p.

S

The + subscripts in Q, . and Q,. convey that the nonzero, “surface” portion of these
matrices is augmented with zeros to conform to vectors W and p- To display this
structure, ¥, p and related matrices are partitioned as

m={;',':}, p={::}, Q,.=[Q, o],

%7 o} m=[ al ©9

where W, contains potentials at n,,, nodes of elements connected to S,, and p, contains
ny pressures on S,. The dimensions of Q, and Q, are ny X nyy. In general n, <n,,, (in
fact, about one half). Also typicaily n, « ny =n, as the latter pertain to a volume
mesh. If 7 is interpolated by the same surface functions as p, ie. Ny =N, on S, then
Q 0]

Q,=Q,=Q, Q,.=[Q 0], Q,+=[0 .

o7

9.3. THE Ricip CONTAINER

The following equations of motion for the rigid but mobile container are obtained on
rendering (94) stationary:

pH 0 0| ¥ 0 H-Q,. Q.| w £,
0 00y p ¢+|H-Q,, —p'G 0 p p=1Td;. (98
0 0 0lpgi Q,. 0 =S {lpgn 0

Assuming G and S to be nonsingular and identical p and 7 shape functions so that
equation (97) holds, the nodal pressures and elevations may be statically condensed
from (98) thus producing the single matrix equation

PHW + (P +R.)¥ =1, + p(H - Q,.)G™"I"q, (99)
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where

et _[QTST'Q O]_[R 07_ ¢
R.=Q..S IQ"*’[ 0 o] [0 o]'R*’
P=p(H-QL)G '(H-Q;. )G '(H-Q,.)=P" (100)

The rank of R, and R is the same as that of S, that is, n,. For most real liquids,
acoustic and slosh motions take place in very different time scales. This is the basis for
the common assumption in slosh analysis that the fluid is incompressible, i.e. c—®,
G— 0 and R— . If G— 0 the response of the above system tends is forced to occur in
the displacement-potential subspace defined by the second matrix equation of (98):
(H-Q,.)¥=Td. (101)

For simplicity let us assume that the container is not only rigid but motionless, that is,
d = 0. The incompressible-fluid equations become

o wlle) o allw)-(5)

. = s 1
"[n:,, H,l¥,] Lo ollw) lo 1
subject to the constraint (H— Q,.)¥ = 0. Subvector ¥, may be statically condensed
from these two relations which may be combined as the system

ol b R PPl NI

4+ = .

[ 0 ollj, H. -Q 0 Ay 0 (103)
where A, are Lagrangian multipliers (in fact, the pressures at nodes of ¥,), and

H=H-HHH,  o=[]] (104

If d+ 0 the force term in (103) must be appropriately modified.

9.4. THE FLEXIBLE CONTAINER

For a flexible container the equations of motion accounting for fluid compressibility are

M 0 00 d K 0 -T 0 d fa
0 pH 0 0 P + 0 0 H-QI, Q. Yl_J6&
0 0 00 p -7 H-Q,., -p’'G 0 p 0
0 0 0 0]pgi 0 Q,- 0 -S 1pgn 0
(105)
Eliminating n and p by static condensation yields
M 0ijfd K., -Y]jd f
[0 pH]{'i'}z[—YT P+R]{'¥}={f:,}’ (106)
where
K,=K+pTG™'T", Y=pTG '(H-Q,.). (107)

System (106) is the counterpart of (65). If the fluid is treated as incompressible, a
subspace reduction procedure similar to that used in Section 9.3 can be invoked.
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9.5. SLOSH VIBRATIONS

Algebraic eigenproblems to investigate slosh vibrations may be constructed following
essentially the same techniques as in Section 8, and reduced to S, node elevations and
pressures. We illustrate the reduction technique for the incompressible fluid held in a
motionless rigid container. The eigenproblem associated with (103), suppressing the
modal index m for simplicity, may be written as

A% Jet=[ute Ny (108)

where q, and r,, are the modal amplitudes of W, and A, respectively. The last matrix
equation in (98) provides QW, =8n, or Qq, =Sz, where z is the vector of modal
amplitudes of 1, ie. n=ze Using these relations we can transform the eigen-

problem (108) to
A% i =leSe ¥y Nz (109)

C=QH;'Q" (110)

in which

and r, are Lagrange-multiplier modal amplitudes at nodes of M. This generalized
symmetric eigensystem of order 2n,, provides n,, solutions to the slosh eigenproblem. A
similar technique may be followed for the flexible container case. This finite element
reduction-to-surface technique provides an alternative to boundary integral methods
(see Khabazz, 1970; DeRuntz & Geers, 1978).

10. CONCLUDING REMARKS

Displacement-potential formulations are of practical interest in fluid-structure

transient-response and vibration analysis as they provide the basis for effective

numerical computations. Some recent applications are presented by Felippa & DeRuntz

(1984), Geers & Ruzicka (1984), Geradin et al. (1984), Morand & Ohayon (1979),

Nicolas-Vullierme & Ohayon (1984), Ohayon (1987) and references therein. The

preceding treatment unifies a number of previous continuum-based and algebraic

statements of the coupled problem given by Morand & Ohayon (1979), Ohayon &

Valid (1984), Felippa (1985, 1986, 1988) and Ohayon (1987). Other potentiai-based

finite element formulations of the coupled problem have been studied by Olson &

Bathe (1985) and Liu & Uras (1988). Olson & Bathe used the velocity potential ¢ = y,

which introduces gyroscopic terms. Liu & Uras (1988) proposed a functional identical

to R in V but with a different S, boundary term. (As noted in Section 4.5 » Ry supplies
only a restricted variational principle.)
The present derivation may be further extended in the following directions:

(1) The inhomogeneous wave equation ¢*V’y — y=f, f£0, when the body force
field b(x, ¢) is time-dependent and V2 = 0. Additional forcing terms appear in the
equations of motion. These are of interest for slosh of fluids in rotating containers
and in the seismic analysis of tanks.
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(2) Retaining the specific momentum m as independent field in functional (33).
(3) Inclusion of additional physical effects: capillarity, cavitation and viscosity.
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APPENDIX A: THE GENERALIZED ALGEBRAIC EIGENPROBLEM

Some facts about the algebraic eigenproblem are collected here for convenient reference. These
facts are relevant to the study of the free vibrations of the coupled fluid-structure system.

A.l. THE STANDARD UNSYMMETRIC EIGENPROBLEM

The standard eigenproblem for a real unsymmetric square matrix A may be stated as
Ax, = A,x,, (A.1)

where A, are the eigenvalues (which may be complex), and X, the corresponding right
eigenvectors normalized to unit length. The eigenproblem for the transposed matrix is

ATy, = Ay, (A.2)

This problem has the same eigenvalues but in general the eigenvectors y, will be different. The \
are called left eigenvectors of A because they satisfy the problem ¥/ A = Ay,; this in turn explains
the qualifier ‘right’ applied to x,. The system of left and right eigenvectors of A satisfies
bi-orthogonality relations:

0 ifisj
T, = »
Yix {p, ifi=. (A.3)
This g, is called the condition number of A, with respect to the eigenproblem (A.1); it is always
less or equal than 1 in absolute value, and may be zero in pathological cases. (The closer to 1,
the better conditioned A is.)

Premuitiplying (A.1) by y, and assuming that B 0 yields
A= y:TAx«/m = TATYJ/I‘:. (A.9)

which is the Rayleigh quotient for unsymmetric matrices. If #, =0 and y[Ax, =0, (A.4) takes the
undetermined form 0/0 so every A, is an eigenvalue. In such a case the eigenproblem (A.1) is
said to be defective.

A.2. THE STANDARD SYMMETRIC PrROBLEM

If A is symmetric, then x, =Y, #=1 and equation (A.3) reduces to the usual orthogonality
condition

0 ifi#j
Ty — ' AS
o {1 ifi=]. (A.5)
whereas equation (A.4) becomes the usual Rayleigh quotient for a unit length vector:
A =x[Ax,. (A.6)

A.3. THE GENERALIZED UNSYMMETRIC EIGENPROBLEM
The generalized unsymmetric eigenproblem is

ij = ).,BX, N (A.7)

where A and B are unsymmetric real matrices. Assuming that B~ exists, this problem can be
reduced to the standard problem

Cxl = A’lxh (A~8)

in which C = B™'A. The transposed problem is
C2,=A"B""z, =14, (A.9)
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Defining By, =z, this eigenproblem can be transformed to
ATy, =ABy. (A.10)

The bi-orthogonality conditions (A.3) become

0 ifi#j
Ty = TB = TBT ={ » .
LX; Y: ‘j X; yi " if i =j. (A 11)
The Rayleigh quotient (A.4) generalizes to
T T
yiAx;, y; Ax,
h=io e A12
" yiBx o A-12)

As in Section A.1, if (A.12) takes on the form 0/0 for some 1, every A, is an eigenvalue and the
cigenproblem (A.7) is said to be defective; mathematicaily, A and B share a common null space.
A defective eigenproblem cannot be solved numerically by conventional root-extraction methods
because the 0/0 roots contaminate the entire spectrum.

A.4. THE GENERALIZED SYMMETRIC EIGENPROBLEM

If both A and B are symmetric,

x=y, #u=B'y. (A.13)
and we recover the usual orthonormality conditions
0 if i #j
TB = { »
x, Bx, “ ifim=) (A.14)

In mechanical vibration problems for which B is the mass matrix, u, is called the generalized
mass. Finally, (A.12) reduces to the usual Rayleigh quotient
X Ax,

A= i
‘" xBx,

(A.15)
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Abstract—High-performance (HP} elements are simple finite elements constructed to deliver engineering
accuracy with coarse arbitrary grids. This paper is part of a series on the variational basis of HP elements.
with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS)
methods. The present paper studies parametrized variational principles that provide a foundation for the

FF and ANS methods, as well as for a combination of both methods.

1. INTRODUCTION

For 25 years researchers have tried to construct
*best’ finite element models for probiems in structural
mechanics. The quest appeared to be nearly over
in the late 1960s when higher order displacement
elements dominated the headlines. However, these
elements did not dominate the marketplace. The
overwhelming preference of finite element code users
has been for simple elements that deliver engineering
accuracy with coarse meshes. The search for these
‘high-performance’ (HP) elements began in the early
1970s and it now represents an important area
of finite element research n solid and structural
mechanics. Many ingenious schemes have been tried:
reduced and selective integration. incompatibie
modes. mixed and hybrid formulations. stress
and strain projections. free formulation (FF) and
assumed natural strains (ANS).

The present paper is part of a series (1-5] that
studies how several high-performance element con-
struction methods can be embedded within an ex-
tended variational framework that uses parametrized
hybrid functionals. The general plan of attack is
sketched in Fig. 1. Heavily-lined connections are
those emphasized in the present paper. The exten-
sions. shown on the left, involve parametrization of
the conventional elasticity functionals and treatment
of element interfaces through generalizations of the
hybrid approach of Pian and co-workers [6-8].

The effective construction of HP elements relies
on devices. sometimes dersively called ‘tricks’ or
‘variational crimes’. that do not fit a priori in the
classical variational framework. The tricks range
from innocuous collocation and finite difference
cons'raints to more drastic remedies such as selective
integration. Despite their unconventional nature.

t Dedicated to Professor T. -{. H. Pian. on the occasion
of his 70th birthday.

tricks are an essential part of the construction of
HP elements. They collectively represent a fun-and-
games ingredient that keeps the derivation of HP
finite elements as a surprisingly enjoyable task.

The present treatment ‘decriminalizes’ kinematic
constraint tricks by adjoining Lagrange multipliers.
hence placing the ensemble in a proper variational
setting. Placing formulations within a variational
framework has the great advantages of supplying the
general structure of the stiffness matrices and forcing
vectors of high-performance elements. and of allow-
ing a systematic derivation of classes of elements by
an array of powerful techniques.

Note the reliance of the program of Fig. 1 on
hybrid functionals. The original 1964 vision of Pian
[6] is thus seen to acquire a momentous significance.
It is perhaps appropriate to quote here the prediction
of another great contributor to finite elements [9}:

T. H. H. Pian responded to the problem of plate
bending by inventing the “hybrid formulation™.
which avoids the problem of slope continuity. He
assumed that the element responds not according
to shape functions but according to element stress
fields. These communicate with the outside world via
the boundaries . . .. Hybrid elements can be the most
competitive and we betieve that the future lies in that
direction. However, the formulation is more compli-
cated. Therefore we advocate that researchers should
try to cajole their formulation into shape function
form. so that users do not have to struggle. In the
form. hybrid elements are no more difficult to use
than the iso-P elements.... Unfortunately at the
time of writing we have no uniform technique to
achieve this.

Fulfillment of the prophecy appears to be near.

2. THE ELASTICITY PROBLEM

Consider a linearly elastic body under static loading
that occupies the volume V. The body is bounded by
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Fig. |. Program of attack for variational formulation of HP elements.
the surface S. which is decomposed into S :$,US,. and the equilibrium (balance) equations
Displacements are prescribed on S, whereas surface
tractions are prescribed on S,. The outward unit —dive =D% =b
normal on S is denoted by n=n,. or
The three unknown volume fields are displace- 6,,+b:;=0 inV, 3)

ments v = v, infinitesimal strains e = €, and stresses
o =0,. The problem data include: the body force
field b=, in V, prescribed displacements d on Sa
and prescribed surface tractions ¢ = fonsS,.

The relations between the volume fields are the
strain—displacement equations

e= %(VII +V7u) = Du
or
e, =i, +u,) inV, (I

the constitutive equations

=Ee
or

g,= E.,u"u

in V, (#4)

in which D* = —div denotes the adjoint operator of
the symmetric gradient D = H(V+ V7).

The stress vector with respect to a direction defined
by the unit vector v is denoted as g, =0 -v, or
9« =0,0. On S the surface-traction stress vector is
defined as

0,=06°'n or o,= aun;. 4)
With this definition the traction boundary conditions
may be stated as

8,=t or o=/ on S, 5
Il

and the displacement boundary conditions as

u=d or u=

a

on S,. (6)
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3. NOTATION

3.1. Field dependency

In variational methods of approximation we do
not, of course, work with the exact fields that satisfy
the governing equations (1-3, 5 and 6), but with
independent (primary) fields. which are subject to
variations. and dependen: (secondary, associated,
derived) fields, which are not The approximation is
determined by taking variations with respect to the
independent fields.

An independently varied field will be identified by a
superposed tilde, for example i. A dependent field is
identified by writing the independent field symbol as
superscript. For example. if the displacements are
independently varied. the derived strain and stress
fields are

e =4V +Vi=Da,

o' = Ee* = EDu. N
An advantage of this convention is that u, e and o
may be reserved for the exact fields.

3.2. Integral abbreviations

Volume and surface integrals will be abbreviated
by placing domain-subscripted parentheses and
square brackets, respectively, around the integrand.
For example:

(fhgjjﬂV.lfngfd&
v s

Uhgﬁfﬁ.Uhgjfﬁ. @®)
¢ S

If f and g are vector functions, and p and q tensor
functions, their inner product over V is denoted in
the usual manner

(f.z)vgj f-gdb =J‘f,-g.-dV.
12 v

(3 q).}":J'Vp'qu =J 249, 4V, 9)
14

and similarly for surface ntegrals, in which case
square brackets are used.

3.3. Domain assertions

The notation

(@a=b), [a=b]s |u= b]s. la = b]s.

is used to assert that the relation a = b is valid at each
point of V, S, S, and §,, rzspectively.

(10

3.4. Imternal interfaces

In the following subsections we construct hybrid
variational principles in which boundary displace-
ments d can be varied independently from the internal

Sy U Sy

Fig. 2. Integral interface example.

dispiacements u. These displacements play the role of
Lagrange muitipliers that relax internal displacement
continuity. Variational principles containing d will be
called displacement -generalized. or d-generalized for
short.

The choice of d as independent field is nor vari-
ationally admissible on S, or S,. We must therefore
extend the definition of boundary to include internal
interfaces collectively designated as S,. Thus

S:S,US,US. (1)
On S, neither displacements nor tractions are pre-
scribed. A simple case is illustrated in Fig. 2, in which
the interface S, divides ¥ into two subvolumes V'*
and ¥~. An interface such as S, on Fig. 2 has two
‘sides’, S* and S;, which identify S, viewed as the
boundary of V* amd V-, respectively. At smooth
points of S; the unit normals n” and n- point in
opposite directions.

The integral abbreviations (8) and (9) generalize
as follows, using Fig. 2 for definiteness. A volume
integral is the sum of integrals over the subvolumes:

(f)ﬂ-i-‘j fdwf dv. (12)
V> [
An integral over S, includes two contributions:
[gls,défj g*dS+J g dSs. (13)
s s

where g and g - denotes the value of the integrand
g on S; and S/, respectively. These two values
may be different if g is discontinuous or involves a
projection on the normals.

Foliowing a finite element discretization, the union
of interelement boundaries becomes S,.

4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are
based on functionals of the form

N=U-P, (14)
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where U characterizes the internal energy stored in
the body volume and P includes other contributions
such as the work of applied loads and energy stored
on internal interfaces. We shall call U the generalized
Strain energy and P the forcing potential.

It must be pointed out that all functionals con-
sidered here include independently varied displace-
ments. Thus. the class of dual functionals such as
the complementary energy are nor included in the
following study.

4.1. Volume integrals

The generalized strain energy has the following
structure:

U=1ji(d.€°), +ji2(d. &), + j. (6. &),

+ %j::“’"- €), + jnloc, e*), + %j;s(“"v €),., (15)

where j;, through j,, are numerical coefficients. For
example. the Hu-Washizu principle is obtained by
seuting ji, = —1. j,, = L. j»n =1, all others being zero.
The matrix representation of the general functional
(15) and the relations that must exist between the
coefficients are studied in Sec. 5.1.

4.2. Hybrid forcing potentials

Variational principles of linear elasticity are con-
structed by combining the volume integral (15) with
the forcing potential . Two forms of the forcing
potentual, called P¢ and P’ in the following, are of
interest in the hybrid treatment of interface dis-
continuities. The d-generalized (displacement-gener-
alized) forcing potential introduces an independent
boundary displacement field d over S,

PY(i.d.d) = (b, ), +[d,. i~ d,,
+[tils +[6,.i~d). (16)
The t-generalized (traction-generalized) forcing
potential introduces an independently varied traction
displacement field t over S,
P@.4.0 = (b.), +[T.0—d]s, +[i. i, + [T d] .
7)
The “conventional’ form P* of the forcing potential
is obtained if the interface integral vanishes and one
sets [t = g,];. If s0. P" and P coalesce into P, which
retains only two independent fields .
PH(@.d)=(b.a) +(d,. 0 ~d, +[ta];. (18)

4.3. Modified forcing potentials

Through various manipulations and assumptions

t To justify the symmetry of J note. for example, that
n(d. e =1 (6., +1jn(e".6*),. and so on.

detailed in [2] the forcing potential P¢ may be
transformed to

PY(ii.d.d) = (b, @), + (. d]; +(4,.d — ;. (19)

where the all-important surface dislocation integral is
taken over S rather than S,. One of the assumptions
is that displacement boundary conditions (6) are
strongly satisfied. This expression of P is used in the
sequel. A similar technique can be used to modify P,
but that expression will not be required in what
follows.

4.4. Complete functionals

Complete elasticity functionals are obtained by
combining the generalized strain energy with one of
the forcing potentials. For examplie, the d- and i-
generalized versions of the Hu-Washizu functional
are

My =0, - P My =U, - P, (20)
where U, is obtained by setting jp, = jj; =1, j,,= —1,

others to zero, in eqn (15).
5. MATRIX REPRESENTATION OF
ELASTICITY FUNCTIONALS

The generalized strain energy (15) can be presented
in matrix form ast

I n TnIG
U=5f (da‘a*) Ja Ja|s€rdV. (2D
‘ | Symm. Jul e
The symmetric matrix
r jll jl'.‘ jl]q
J= Ja Jn (22)
| Symm. J3

characterizes the volume portion of the variational
principle. Using the relations o"=Ee, ¢“=EDi,
e’ =E"'a, and e*=Du, the above integral may be
rewritten in terms of the independent fields as

I
U== 7 ed
2ﬁ<a >
InET" il JuD é
I el jmE  uED [{&bdv. (23)
D™ jyD'E ;,,D'ED ||

5.1. First variation of generalized strain energy
The first variation of the volume term (15) may be
presented as
0U =(Ae, 66), + (Ag, 58),
—(ive’, i), + [o,, dil), (24)
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where
Ae = & + € ~ €
Ac =j,,d + jna' +jna*

g’ =j,0 + )y +jn06" (25)
The last two terms combine with contributions from
the variation of P. For example, if P =P the
complete variation of [I"=U ~ P is

STIF = (Ae. 66), + (Ad, 5&),. - (dive’ +b. od),
+[a, -1, dils - [§—d. 5], (26)

Using PY or P' does not change the volume terms.
The Euler equations correspending to P¢ and P’
are studied in [3, 4] for a more restrictive form of
functionals U.

Since the Euler equations associated with the first
two terms are Ao =0 and Ae =0, these quantities
may be regarded as deviations from stress-balance
and strain-compatibility, respectively. For consist-
ency of the Euler equations with the field equations
of Sec. 2 we must have Ae=0 Ac =0and ¢ =0 if
the assumed stress and strain fields reduce to the
exact ones. Consequently

Jn+he+in=0
Jutia+ju=0

Jutintin=1 2N

Because of these constraints, the maximum number

of independent parameters that define the entries of
J is three.

5.2. Specific functionals

Expressions of J for some classical and
parametrized variational prinuples of elasticity are
tabulated below. The subscript of J is used to identify
the functionals, which are listed roughly in order of
ascending complexity. The fields included in paren-
theses after the functional name are those subject to
independent variations.

Potential energy (a):

00
0 0} (28)
0 1

Stress—displacement Reissner. also called Hellinger-
Reissner (4. i)

-1 0 1
J:=1 0 0 0} 29)
1 00
Unnamed stress—displacement {unctional listed in
Oden and Reddy [10] (4. @):

1 0 -1
Jo=| 0 0 0l (30)
-1 0 2
Strain-disp/acement Reissner-type [10] (&, i):
o 0 0
Jg=|0 -1 1}/ 30
L0 1 0
Hu-Washizu (4. &. u):
0 -1 1
Jy=|—1 10y 132)
l 0 0

One-parameter stress—displacement family (4. ) that
includes U,, Uy and U, as special cases [1-3]:

-+ 0 -
J=10 0 0 (33)
7 0 1 =7

One-parameter strain—displacement family (€. @) that
includes U, and Uj as special cases {2]:

[0 0 0
Jy={0 —-§ B

lo g 1-8

(34)

Two-parameter strain—displacement family (4. &, )
that includes U, and U. as special cases [2]:

Jy=(1 =B + (1 =)y = (1 =F =7)J,

-v(t=p 0 (1= B)
= 0 - =7) Bl ~7) .
Hl=-5 Bl =7) 1 —=f—y+28y

(35)

Three-parameter (x. 8. ;) family (4. &. 0) that includes
U, and U, as special cases [2]:

7=/l —x)
J,,,:.=1Ju<+(| _I)Jn; = -

a+ (=l —2a)

2= 31 = 7)1 - 2)
B =71 =)

x4+ 701 =)l —2)
Bl =7)(1 =)
(1 =8 =»+280 —-2)

-2

(36)
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Q

| ® Hu-Washizu

O g Potential Energy

Strain-Dispiacement
Reissner

B

Reissner

Y

Fig. 3. Graphical representation of the J,. functionals.

The last form. which contains three independent
parameters. directly supplies matrices J that satisfy
the constraints (27). It yields stress—displacement
functionals for x = § =0, strain-displacement func-
tionals for x =3 =0, and three-field functionals
otherwise. A graphic representation of J.pin (a, B, )
space is given in Fig. 3.

5.3. Energy balancing

A prime motivation for introducing the ; co-
efficients as free parameters is optimization of finite
element performance. The determination of ‘best’
parameters for specific elements relies on the concept
of energy balance. Let #(¢) =1(Ee,¢), denote the
strain energy associated with strain field ¢. If E is
positive definite. #(¢) is non-negative. We may
decompose the generalized strain energy into the
following sum of strain energies:

U=#(e")+ c, (e —§)

+ W€ —e) + c, (e —¢°), (37)

where #,(e")= U, is the usual strain energy, ¢, =
U+ =y + 1. G=i—ju+ju+jy—1), and

¢ =10y — ju +js — 1). Equation (37) is equivalent
to decomposing J into the sum of four rank-one
matrices

000 1 -1 0
J=/0 0 Of+¢/-=1 1 0
00 1 0 0 0
0 0 o 10 —1
+c{0 I =1]+c| 0 0 0] (38
0 -1 1 -1 0 1

Decompositions of this nature can be used to derive
energy balanced finite elements by considering ele-
ment ‘patches’ under simple load systems. This tech-
nique is discussed for the one-parameter functionals
generated by eqn (33) in[1, 11, 12].

6. FINITE ELEMENT DISCRETIZATION

In this section assumptions invoked in the finite
clement discretization of the functional [ for
arbitrary J are stated. Following usual practice in

Stress-Displacement
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finite element work. the components of stresses and
strains are arranged as one-dimensional arrays
whereas the elastic moduli in E are arranged as a
square symmetric matrix. In the following we shall
consider an individual element of volume V and
surface S:S,U S,U S, where S, is the portion of the
boundary in common with uther elements.

6.1. Boundary displacement ussumption

The boundary displacement assumption is

[d = N,vs. (39)
Here matrix N, collects the baundary shape functions
for the boundary displacement d. whereas vector v
collects the degrees of freedom of the element, aiso
called the connectors. These boundary dispiacements
must be unique on common element boundaries.
This condition is verified if the displacement of the
common boundary portion 1s uniquely specified by
degrees of freedom located on that boundary. There
are no derived fields associated with d.

6.2. Internal displacement assumption

The displacement assumption in the interior of the
element is
(5 =N,q)y, (40)
where matrix N, collects the internal displacement
shape functions and vector q collects generalized
coordinates for the internal displacements. The as-
sumed @ need not be continuous across interelement
boundaries.
The displacement derived fields are
(e =DNq =Bq),,

(o“ = EBq), . (41)

To link up in Sec. 9.1 with the FF and ANS
formulations, we proceed to split the internal dis-
placement field as follows. The assumed 4 is decom-

posed into rigid body, constant strain, and higher
order displacements

a=N,q +N.g +Nq,. (42)
Applying the strain operator D=4V + V') to i we
obiain the associated strain field

¢ =DN,q, + DN g + DN,q,

=B,q, +B q, ~B,q,. (43)

However, B, = DN, vanishes because N, contains
only rigid-body modes. We are also free to select

B, = DN, to be the identity matrix I if the generalized
coordinates q, are identified with the mean (volume-

averaged) strain values &. Consequently eqn (43)
simplifies to

e=¢+e,=¢+B,q,. (44)

in which

g =& =(e")/v., (B =0. (45)

where v := (1), is the element volume measure. The
second relation is obtained by integrating eqn (44)
over V and noting that q, is arbitrary. It states that
the mean value of the higher order displacement-
derived strains is zero over the element.

6.3. Stress assumption

The stress field will be assumed to be consrant over
the element

(46)

(@ =3),.

This assumption is sufficient to construct HP ele-
ments based on the free formuiation [2-3.12-17).
Higher order stress variations are computationally
effective if they are divergence-free [3], but such a
requirement makes extension to geometrically non-
linear problems difficult. The only derived field is

@ =E"'a),. 47

6.4. Strain assumptions

The assumed strain field & is decomposed into a
mean constant strain € and a higher order variation

(€ =&+ Aa),, (48)

where € == (&), /v, A collects higher order strain modes
with mean zero value over the element

(A)y =0, (49)

and a collects the corresponding strain amplitude
parameters. The only derived field is

(0° = Eé = Ee + EAa),.. (50)

7. UNCONSTRAINED FINITE ELEMENT
EQUATIONS

For simplicity we shall assume that all elastic
moduli in E are constant over the element. Inserting
the above assumptions into I1“ with the forcing
potentiai (19), we obtain a quadratic algebraic form,
which is fairly sparse on account of the conditions
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(45) and (49). Making this form stationary yields the
finite element equations
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~

[ jwrE™" jawl 0 —pr Juel=P] -P[ L7] (& (0
Jacl jatE 0 0 Juarl 0 0 e 0
0 ¢ j.C, 0 0 JoRT 0 a 0
-P, 0 0 o 0 0 o0 {q F - ) o (51)
Jotl=P, juel 0 0 j0E 0 0] |& f,,
-P, 0 /uR 0 0 JnKy 0 q, f
L L o o0 o 0 o o] (v Lt
where
K, =(B/EB,), =K], C,=(ATEA),=CJ FF and ANS elements. These are matrix relations
O L nenn e e e b o
P.=[N']s  P,=[Nlls f£=(N'b), of relations will be studied.
f, = (N/b), fy = (N/b), =[N E]Sv’ (52) 8.1. Constraints between internal and boundary

in which N, denotes the projection of shape func-
tions N, on the exterior normal n, and similarly for
N.. N, and N,. Coefficient matrix entries that do not
depend on the js come from the last boundary term
in egn (19).

7.1. The P matrices

Application of the divergence theorem to the work
of the mean stress on ¢ yields

(0.¢"), =(4.8"+ B,q,), = v6"e +"(B,),q,
= l.&réu = [Eu' ﬁ]i = [Eu' qur + N( & + thh]S

=é"(P,q, + P& +P,q,). (53)

Hence P.=0. P =l P,=0. and the element
cquations simplify to

displacements

Relations linking the generalized coordinates q and
the nodal connectors v were introduced by Bergan
and co-workers in conjunction with the free formu-
lation (FF) of finite elements {14, 15]. For simplicity
we shall assume that the number of freedoms in v and
q is the same: removal of this restriction is discussed
in [3]. By collocation of u at the element node points
one easily establishes the relation

v=G,q,+G.q +G,q,=Gq, (55)

where G is a square transformation matrix that will
be assumed to be nonsingular. On inverting this
relation we obtain

q=G ' =Hyv

-

[ AE T el 0 0 Go=hel 0 L7 (& (0
jiatl jtE 0 0 Juel 0 0 3 0
0 0 ;xC, 0 0 /3R 0 a 0
0 0 0 0 0 0 0 Jq,r=4 fwr. (54)
o= Del el 0 0 JutE 0 0 & f.
0 0 /aR 0 0 K, 0 9, fon
L 0 o0 o 0 0 o0 J vy Lt J
}
The simplicity of the P matrices comes from the
mean-plus-deviator expression (44) for e*. If this ©F
decomposition is not enforced. P, = 0 but P, = (B), q, H,
and P, = (B,), . g=<& >=H, |v. (56)
q, H,

8. KINEMATIC CONSTRAINTS

The “tricks’ we shall consider here are kinematic
constraints that play a key role in the development of

The following relations between L and the above
submatrices hold as a consequence of the individual
element test performed in Sec. 9.3.
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L’G, =0, L'G,=¢l. vH.=L" (57
If the decomposition (44) is not enforced, the last two
should read L’ G, = vB,, a relauion first stated in [15],
and PH. +P,H,=L"

8.2. Constraints between assumed higher order strains
and boundary displacements

Constraints linking é, to v are of fundamental
importance in the assumed natural strain (ANS)
formulation. The effect of these constraints in a
variational framework is analyzed in some detail
in [4, 5]. Here we shall simply postulate the following
relation between the higher order strain parameters
of (48) and nodal displacements:

a=Qv, (58)

where Q is generally a rectangular matrix determined
by collocation and/or interpolation. The individual
element test in Sec. 9.3 requires that Q be orthogonal
to G, and G,:

QG, =0, QG =0. (59)

The constraint (58) still leaves the independently
varied mean strain € to be determined variationally.

9. VISIBLE STIFFNESS EQUATIONS

Enforcing the constraints a=Qv, q,=H,yv,
q.=H,y=0v""'L"v, and g, = H,v, through Lagrange
multiplier vectors 4,, 4,, ., and 4,, respectively,
we obtain the augmented finite element equations

where
K,=v 'LEL" (62)
K, = i H/K,H, + /,,(HTRQ + Q"R'H,)
+/»Q7C,Q (63)
f=f +Hf,+c 'Lf, +HI,. (64)

Adopting the nomenclature of the free formulation
[15], we shall call K, the basic stiffness matrix and K,
the higher order stiffness matrix.

9.1. Relation 10 previous HP element formulations

IfJ=J. ofeqn (33), j;; =1 — 7, jos =2, =0, and we
recover the scaled FF stiffness equations studied in
[2,3,11,12]

K, = (1 -»)H[K,H,. (65)
If we take J = J,, of eqn (32), then jo. = 1. jj; = =0
and we obtain

K,=Q’C,Q. (66)
This is similar to the stiffness produced by the ANS
hybrid variational formulation studied in[4, 5], in
which the potential P’ was used instead of PY.
However, the term with coefficient /., in eqn (63) is
new. [t may be viewed as coupling the FF and ANS
formulations. It is not known at this time whether

[ jweE™" jaol 0 0 (y-1pl 0 0
Jiovl JjotE 0 0 el 0 0
0 0o ,;.C, 0 0 JaRT ~1
0 0 o0 0 0 0 0
Un=Dol jyel 0 0 jcE 0 0
0 0 JuR 0 0 juK, 0
0 0 -1 o 0 0 0
0 0 0 -1 o 0 o0
0 0o o0 o0 -I 0 o
0 0 0 0 0 -1 0
. 0 0 o0 0 0 Q7

0 o0 o LT ](&) (0]
0 0 o0 o0 & 0
0 0 o o a 0
-1 0 o0 0 q f,
0o -1 0 o & f,
0 0 -1 0 [<q p=<f,5 (60)
0 0 o Q i, 0
0 0 0 H i 0
0 0 0 o'L7| |4 0
0 0 0 H, A, 0
H 'L H o | [ v Cf )

Condensation of all degrees of freedom except v
yields the visiblet element stiffness equations

Ky = (K, +K,)v =T (61)

* The qualifier visible emphasizes that these are the stiff-
ness equations other elements ‘see’, and consequently are the
only ones that matter insofar as computer implementation
on a displacement-based finite element program.

eqns (61)—(6+) represent the most general structure of
the visible stiffness equations of HP elements.

9.2. Recovery of element fields

For simplicity suppose that the body forces vanish
and so do f,. f, and f, If v is known following
a finite element solution of the assembied system.
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solving eqns (60) for the internal degrees of freedom
yields

€=¢"'L’v, §=FEe. a=Qv
q, =H,yv, &=8 q,=H,v
4,= (2 CQ+/uRTH,)Y

i =0, 4. =0

4 =(j»RQ + /5 K Hy)v. (67)

It is seen that the mean strains &, & and @ =E-'5
agree. and so would the mean stresses. This is not the
case. however. if the body forces do not vanish. It is
also worthwhile to mention that a nonzero Lagrange
multiplier vector flags a deviation of the associated
fields from the cariationally consistent fields that
would result on using the unconstrained FE eqns (54)
without “tricks’.

9.3. The individual elemen: test

To conclude the paper. we investigate the
conditions under which HP elements based on the
foregoing general formulation pass the individual
element test of Bergan and Hanssen (1 3-15]. To carry
out the test. assume that the ‘free floating’ elementt
under zero body forces is in a constant stress state g,
which of course is also the mean stress. Insert the
following data in the left-hand side vector of (60):

d=0,=4g" €=E'g,
a,=0 q, = arbitrary
¢=e=E"qd, q,=0

4, =0 A=

A = i,=0

v=G,q +G&=Gq+GE'g,. (68)
Premultiply by the coefficient matrix. and demand
that all terms on the right-hand side vanish but for
f. = La,. The orthogonality conditions in eqns (57)
and (59) then emerge. This form of the patch test is
very strong. and it may well e that relaxing circum-
stances can be found for specific probiems such as
shells.

10. CONCLUSIONS

The results of the present paper may be summar-
ized as follows.

I. The classical variational principles of linear
elasticity may be embedded in a parametrized
matrix form.

. The elasticity principles with independently varied
displacements are members of a three-parameter-
family.

(5]

t Mathematicaily. the entire element boundary is trac-
tion-specified, ie. S= S,

3. Finite element assumptions for constructing HP
elements may be conveniently investigated on this
family.

4. Kinematic constraints established outside the
realm of the variational principle may be incor-
porated through Lagrange multiplier adjunction.

5. The FF and ANS methods for constructing
HP finite elements may be presented within this
variational setting. In addition. combined forms
emerge naturally from the general parametrized
principle.

6. The satisfaction of the individual element test
yields various orthogonality conditions that the
kinematics constraints should satisfy a priori.

The construction of HP elements based on a weighted
mix of FF and ANS ‘ingredients’ will be examined
in sequel papers, and specific examples will be given
to convey the power and flexibility of the present
methods.
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functional are developed in Militello and Felippa [C. Militello and C. A. Filippa. The first ANDES
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SUMMARY. - ANDES is an acronym for Assumed Natural DEviatoric Strains. This is a brand new variant of the Assumed
Natural Strain (ANS) formulation of finite elements, which has recently attracted attention as an effective method for
constructing high-performance plate and shell elements for ilnear and nonlinear analysis. The ANDES formulation is based
on an extended parametrized variational principle developed in recent publicationa. The key concept is that only the
deviatoric part of the strains is assurned over the element whereas the mean strain part is discarded in favor of a constant
stress assumption. Unlike conventional ANS clements, ANDES elements satisfy the individual element test (a stringent
form of the patch test) a priori while retaining the favorable distortion-insensitivity properties of ANS elements. The -
first application of this new formulation has been the development of several Kirchhoff plate bending triangular elements
with the standard nine degrees of freedom. Numerical experiments indicate that one of the ANDES element is relatively
insensitive to distortion compared to previously derived high-performance piate-bending eiements, while retaining accuracy
for nondistorted elements.

INTRODUCTION into existing finite element programs, the conventional dis-

) placement formulation is abandoned. (By “conventional”

Defplte almost three decades of work, plates and sheils re- we mean the use of conforming displacement assumptions
main a important area of research ir finite element meth- into the total potential energy principie.)

ods. Challenging topics include:

1. The construction of high perforinance elements. Table 1. Tools for Constructing HP Elements

2. The modeling of composite and stiffened wall construc-

tions. Technique Year
3. The treatment of prestress, imy:~rfections, nonlinear, introduced
dissipative and dynamic effects. 1.  Incompatible shape functions 1961
4. The development of practical error estimators and 2. Patch :est 1965
adaptive discretization methods
3. Mixed and hybrid principles 1965
5. The interaction with nonstructural components, for
example external and internal fuids. 4. Projecrors 1967
This paper reports progress in the first challenge, although 5. Selective reduced integration 1969
it must be recognized that advances in this direction are
shaped to a large extent by thinking of the others. 6. Uniform reduced integration 1970
The main motivation behind our recent finite element work . . .
has been the construction of simple and efficient finite el- 7. Partial strain assumptions 1970
ements for plates and shells that are lock-free, rank suffi- . -
) h L o . 8. Energy balancing 1974
cient and distortion insensitive, yield accurate answers for
coarse meshes, fit nat.u_ra]ly into displa:eme.m.-based pro- 9. Dirtectional integration 1978
grams, and can be easily extended to nonlinear and dy-
namic problems. Elements that pessess these attributes 10. Limit lifferential equations 1982
to some noticeable degree are collestively known as high
performance or HP elements. 11.  Free formuiation 1984
Over Lhe past three fiecades mvesugAators have resorted to 12, Assumed natural strains 1984
many ingenious devices to construct HP elements. The

most important ones are listed in Table 1. The under-
lying theme is that although the fisal product may look
like a standard displacement model so as to fit naturally
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Box 1 Decomposition of the Element Stiffness Equations

Let K be the element stiffness matrix, v the visible element degrees of freedom (those degrees of freedom in
common with other elements, also called the connectors) and f the corresponding element node forces. Then
the element stiffness equations decompoee as

Kv=(Ki+K))v=f. (1)

Ky and X, are called the dasic and higher order stiffness matrices, tespectively. The basic stiffness matrix,
which is usually rank deficient, is constructed for convergence. The higher order stiffness matrix is constructed
for stability and (in more recent work) accuracy. A decomposition of this nature, which also holds at the
assembly level, was first obtained by Bergan and Nygird (1984) in the derivation of the free formulation.

In the unified formulation presented by Felippa and Militello (1989, 1990a, 1990b) the following key properties
of the decomposition (1) are derived.

1. K, is formulstion independent and is defined entirely by an assumed constant stress state working on
element boundary displacements. No knowiedge of the interioe displacements is necessary (Box 2). The
extension of this statement to C° plate and shell elements is not straightforward, however, and special
considerations are necessary in order to obtain K, for those elements.

2. K\ has the general form
Ki = juKia + j22Kaze + juKazs. (2)
The three parameters jg3, Jaa and j33 characterize the source variational principle in the following sense:
(a) The FF is recovered if Ja=jis=0and jag=1- v, where v is a K, scaling coefficient studied in
Bergan and Felippa (1985) and Felippa and Bergan (1987). The original FF of Bergan and Nygird
(1984) is obtained if ¥ = 0. The source variational principle is a one-parameter form that includes

the potential energy and stress-displacement Reissner functionals as special cases; see Felippa (1989a,
1989b, 1989c¢).

(b) The ANDES variant of ANS is recovered if J22 = ja3 = 0 whereas jos = ais a scaling parameter. The
source variational principle is a one-parameter form that includes Reissner’s stress-displacement and
Hu-Washizu’s functionals as special cases; see Felippa and Militello (1989, 1990a, 1990b).

Such a combination remains unexplored.

(c) If jaa is nonzero, the last term in (2) may be viewed as being produced by a FF/ANDES combination.

A Unified Varational Framework

Table 1 conveys the feeling of a bewildering array of tools.
The question arises as to whether some of them are just
facets of the same thing. Limited progress has been made
in this regard. One notable advance in the 1970s has been
the equivalence of reduced/selective integration and mixed
methods achieved by Malkus and Hughes (1978).

The present work has benefited from the unplanned conflu-
ence of two unification efforts. An initial attempt to place
the free formulation developed in Bergan and Hanssen
(1976), Bergan (1980), Bergan and Nygard (1984), within
the framework of parametrized hybrid variational princi-
ples was successful, as reported in Felippa (1989a, 1989b,
1989¢c). The free formulation in turn “dragged” incom-
patible shape functions, the patch test, and energy bal-
ancing into the scene. Concurrently a separate effort was
carried out to set out the assumed natural stran (ANS)
(as well as related techniques such as projection meth-
ve | . amixed/hybrid variational framework as described
in Militello and Felippa (1990a, 1990b). Comparison of

the results led to the rather unexpected conclusion that
a parametrized variational framework was able to encom-
Pass ANS and the free formulation as well as some hitherto
untried methods; see Felippa and Militello (1989, 1990a,
1990b).

The common theme emerging from this unification is that
a wide class of HP elements can be constructed using two
ingredients:

(1) A parametrized functional that contains all variacional
principles of elasticity as special cases.

(2) Additional assumptions (which are sometimes called
“variational crimes” or “tricks) that can be placed
on a variational setting through Lagrange multipliers.

As of this writing it is not known whether the “wide class”
referred to above encompasses all HP elements or at least
the most interesting ones. Some Surprising coal'escences,
such as DKT and ANS bending elements, however, have
emerged from this study.



Box 2

Step B.1.

the element boundary S.

Step B.2.  Assume bound
node displacements v (also called the connectors) as

y displ

and constant-strain motions axactly.

Step B.S.

Step B.4.

A:

Matrix Computation’ section

Construction of the Basic Stiffness Matrix K,

Assume a constani stress field, 7, inside the element. (This should be the element stress field
that holds in the couvergence limit; for structural elements the
resultants. ) The associated boundary tractions are o = F.n, where n denotes the unit external normal on

d, over S. This field is described in terms of the visible element

d=Ngv,
where Ng is an array of boundary shape functions. The boundary motions (3} must satisfy intereiement

continuity (or at least, zero mnean discontinuity so that no energy is lost at interfaces) and contain rigid-body

Construct the “lumping matrix” L that consistently “lumps” the boundary tractions 7, into
element node forces, T, conjugate to v in the virtual work sense. That is,

f= / NynFndS = L7,
s

In the above, N4, are boundary-system projections of N4 conjugate to the surface tractions Fn.
The basic stiffness matrix for a 3D element is
K, = v'LEL7,

where E is the stress-strain conatitutive matrix of elastic moduli, which are assumed to be constant over the

element, and v = fv dV is the element volume measure.

For a Kirchhoff plate bending element, stresses, strains and stress-strain moduli become bending moments,

curvatures and moment-curvature moduli, respectively, and the integraticn is performed
K, = A"'LDL7,

where D is the matrix of moment-curvature moduli. Specific examples for L are provided in the ‘Stiffiness

assumption would be on independent stress

3

(4)

(8)

over the element area

(6)

The Assumed Natural Strain Formuiation

The assumed natural strain {ANS) formulation of finite
elements is a relatively new devsiopment. A restricted
form of the assumed strain method (not involving natu-
ral strains) was introduced by Willam (1969), who con-
structed a 4-node plane-stress element by assuming a con-
stant shear strain independently of the direct strains and
using a strain-displacement mixed variational principle.
(The resulting element is identica; to that derivable by se-
lective one-point integration.) A different approach advo-
cated by Ashwell (1974) and cowcrkers viewed “stramn ele-
ments” as a convenient way to generate ‘good’ displacement
fields by integration of appropriately assumed compatible
strain fields. (In fact, this was the technique originally used
by Turner ef al. (1956) for deriving the constant-strain
membrane triangle in their celebrated paper.]

These and other forms of assumed-strain techniques were
overshadowed in the 1970s by cevelopments in reduced
and selective integration methods The assumed strain ap-
proach in natural cootdinates, however, has recently at-

tracted substantial attention: particularly in view of its
effectiveness in geometricaily nonlinear analysis. Impor-
tant contributions have been made by Bathe and Dvorkin
(1985), Huang and Hinton (1986), Jang and Pinsky (1986).
MacNeal (1978), Park (1986), Park and Stanley (1986),
and Simo and Hughes (1986).

As noted above, the unification achieved by Felippa and
Militello (1989 1990a. 1990b) merges two HP element con-
struction schemes: the free formulation (FF) of Bergan
and Nygird (1984), and a variant of ANS called AN-
DES (acronym for Assumed Natural Deviatoric Strains}
described in further detail below. The stiffness equations
produced by the unified formulation enjoy the fundamental
decomposition property summarized in Box 1.

In the ANDES variant of ANS, assumptions are made only
on the deviatoric portion of the element strains. namely
that portion that integrates to zero over each element.
This assumption produces the higher order stifiness labeled
Kazz in Box 1. The mean strains are left to be determined
variationally and have no effect on the stiffness equations



Box 3 Canstruction of K, by the ANDES Formulation

Step H.1.  Select reference lines (in 2D elementa) or reference planes (in 3D elements) where “natural strain.
gage” locations are to be chosen. By appropriate interpolation express the element natural strains € in terms
of the “straingage readings” g at those locations:

e=A.g, 7

where ¢ is a strain field in natural coordinates that must include all constant strain states. (For structural
clements the term “strain” is to be interpreted in a generalized sense.)

Step H.2.  Relate the Cartesian strains e to the natural strains:
e=Te=TA.g= Ag (8)

at each point in the element. (If @ = ¢, or if it is possible to work th ghout in natural coordinates, this step
is skipped.)
Step H.3.  Relate the natural straingage readings g to the visible degrees of freedom

gE=Qv, (9)

where Q is a straingage-to-node displacement transformation matrix. Techniques for doing this vary from
clement to element and it is difficult to state rules that apply to every situation. In the elements derived
here Q is constructed by direct interpolation cver the reference lines. (In general there is no unique internai
displacement field u whose symmetric gradient is e or €, 30 this step cannot be done by simply integrating the
strain field over the element and collocating u at the nodes.)

Step H.4. Split the Cartesian strain field into mean (volume-averaged) and deviatoric strains:
e=E+es=(A+AJg, (10}

where A = fv TA,dV/v, and eq = A, g has mean zero value aver V. This step may also be carried out on the
natural strains if T is constant, as is the case for the elements here.

Step H.5. The higher-order stiffness matrix is given by
Ki=aQTK.Q, with K4= / AJEAaV, (11)
v

where a = j33 > 0 is a scaling coefficient (see Box 1).

It is often convenient to combine the product of A and Q ioto a single strain-displacement matrix called (as
usual) B, which spiits into B and B,:

e=AQV=(X+A‘)QV=(§+B¢)V= Bv, (12)

in which case
Ky = / BTEB,4V. (13)
v

The notation B, = A,Q is also used in the sequel.




Box 4
Steps 5.1 t0 S.3.
is omitted.
Step S.4. The element stiffness matrix is given by

K =Q7K.Q,

or, if B = AQ is readily available

The equivalence may be checked by requiring that

Construction of K by the Conventional ANS Formulation

Identical to the first three steps A.1 through .3, in Box 3. The fourth step: strain splitting,

with K,= / ATEA V.
v

K= / BTEBAV.
v

In general this stiffness matrix does not pass the individual element test of Bergan and Hanssen (1976), which
is a strong form of the patch test that demands pairwise cancellation of node forces between adjacent elements
subjected to conatant stress states. For this to happen, K must admit the decomposition

K = K, + Ky = v"'LELT + Ky,

where L is a force-lumping matrix derivable as per Box 2 and K, is orthogenal to the rigid body and constant
strain test motions. In other words, the ANS element must coalesce with the ANDES formulation with o = 1.

B=AQ=v"'LT,
where A is the mean part of A (see Box 3). At the present there are no known general techniques for explicitly
constructing strain fields that satisfy these conditions a priori.

If the patch test is not satisfied, one should switch to the ANDES formulation by replacing the basic stiffness
constructed from constant stra:n, namely u-B—rEﬁ, with one constructed from constant stress as in Box 2.

(19

(15)

(16)

(17)

The basic steps in the construction of K and K, for a gen-
eral three-dimensional element are summarized in Boxes 2
and 3, respectively. For justification of these “recipes” the
reader is referred to Felippa and Militello (1989, 1990a,
1990b).

The derivation of the element stiffncss matrix for conven-
tional ANS elements is summarized in Box 4. [n this case
there is no splitting into basic and higher order parts.

This paper reports briefly (because of space constraints) on
the construction and testing of the first ANDES elements.
These are Kirchhoff plate-bending triangular elements with
the standard 9 degrees of freedom (one displacement and
two rotations at each corner). Thia choice is made because
of the following reasons:

1. High-performance three-node triangular plate bend-
ing elements, whether based on Kirchhoff or Reissner-
Mindlin mathematical models. have not been pre-
viously obtained through the ANS formulation.
[Although the DKT element presented by Batoz,
Bathe and Ho (1980) and Batoz (1982) qualifies as
high-performance and is in fact an ANS element as
shown later, it had not been derived as such.] The sit-
uation is in sharp contrast Lo f-ur-node quadrilateral
bending elements, for which HP elements have been
constructed through a greater variety of tools; see e.g.
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Bathe and Dvorkin (1985), Crisfield (1983), Hughes
and Tezduyar (1981), Kang (1986), MacNeal (1978)
and Park and Stanley (1986).

2. High performance elements of this type have been ob-
tained through the FF and ancestors of the FF as de-
scribed in Bergan and Hanssen (1976), Bergan (1980),
Bergan and Nygard (1984) and Felippa and Bergan
(1987). These elements are considered among the best
petformers available. It is therefore intriguing whether
elements based on the ANDES variant can match or
exceed this performance,

THE TRIANGULAR PLATE ELEMENT

Geometric Relations

We consider here an individual triangle with straight sides.
Its geometry is completely defined by the location of its
three corners, which are labeled 1,2,3, traversed counter-
clockwise. The element is referred to a local Cartesian
system (z, y) which is usuaily taken with origin at the cen-
troid 0, whence the corner coordinates z;, y; satisfy the
relations

T +z:+23=0, n+n+ya=0 (18)

Coordinate differences are abbreviated by writing z;; =
zi — z;, and ¥i; = ¥ — Yj- The signed triangle area A is



given by
1 1 1
24=|z; 22 z3|=2zym - zayn
n on (19)

= Tz — Tiays: = gty — s,

and we require that A > 0. We shall make use of di-
mensionless triangular coordinates ¢,, ¢z and (3, linked by
{1+(2+C(3 = 1. The following well known relations between
the triangular and Cartesian coordinates of a straight-sided
triangle are noted for further use:

=21+ 223G + 230, y=91C + wla+ sy, (20)

G= ﬁ [tih = zayy + (2 = Zo)ypa + (v — Vo)h;], (21)

in which i, j and & denote positive eyclic permutations of
1,2 and 3; for example, i=2,j=3, k= 1. (If the origin
is taken at the centroid, zo = yo = 0.) It follows that

2«4'—'8(1 =yn, 24—8(1 =y, M—aﬁ =na,
Oz 8z Oz (22)
2/

2Aa—(yl = Z33, QA‘;C—; =23, 2/1‘;(—; =23.

Other intrinsic dimensions and ratios of use in future
derivations are

Gi == [z +ul, o =cilly, sy = /b,

o = 24/, by = (ziizan + yrignd)/ s = L = by,

Ay = b3/l = (zizan + vy (2 + ui),

4\,’.‘ =]~ /\(i = bﬁ/l.’,'.

(23)

Here &;; = ¢;; is the length of side i-j and ¢ij and 3;; the
cosine and sine, respectively, of angle (i — ,2). Further-
more b; and by; are the projections of sides i~k and k-j,
respectively, onto i~j; Aj; and Aj; being the corresponding
projection ratiocs.
On each side i-j, define the dimensionless natural coordi-
nates u;; as varying from 0 at i to 1 at j. The coordinate
pi; of a point not on the side is that of its projection on
i-j. Obviously

o _ . 9
allij = &ji

(24)

Displacements, Rotations, Curvatures

As we are dealing with a Kirchhoff element, its displace-
ment field is compietely defined by the transverse dispiace-
ment w(z,y) = w((1,{2,(s), positive upwards. In the
present section we assume that w is unique and known in-
side the element; this assumption is relaxed later. The mid-
plane (covariant) rotations about z and y are #, = dw/dy
and 6, = -0w/dz, respectively. Along side i-j with tan-
gential direction t and external-normal n the tangential
and normal rot: *~ns are defined as

dw
9,. = F = 0,5,‘,‘ - 0'6.',',
w (25)
8 = -E = 3,C.',' +0,a;,~.

KM

The visible degrees of freedom of the element collected in
v (see Baxes 2-3) are

VT = (w) 841 8y1 wa b,y Oyz wy Ou3 Oy3].  (26)
The Cartesian second derivatives are given by
B’_w - B’w 0(‘8_(L Sw a’c.' - 1 3zw .
8z ~ 8(idC; 9z Bz © 8 0x3 | 4A7 B, VY
Puw 8w 3o  dw 8% 1 8w
— + = YirZix,
Ozdy — 8(.8¢; 8z dy B¢ BzBy ~ 4437 8¢;0¢;
i!g_ 8’!0 8(.84(, +0w8’(.r _; 8’w "
0y* ~ 8Gi8¢; 9y By T B¢ By?  4AT G0, *";")
27

since 8%(}/8z7, 8%(?/82z8y and 8°¢?/By® vanish on a
straight-sided triangle, cf. Eq. (21).

Natural Cxrvatures

The second derivatives of w with respect to the dimension-
less side directions defined above will be called the nat-
ural curvatures and denoted by Xij = 8’w/0p?i. Note
that these curvatures have dimensions of displacement.
The natural curvatures can be related to the Cartesian
plate curvatures k.. = Pw/d23, x,, = 0w/By® and
%y = 20%w/8xdy, by chain-rule application of Egs. (24):

2 &g
X12 an h v T Oz
Xz} = g;,% =|zh vh zam éﬁy‘i‘ .
X3 2 3 Vs Ziawa 0 2%
3#,, 0zoy
(28)
or x = T~'x. The inverse of this relation is
iy
[
: 1 ya3p1s Biyn
L‘f- = —— Zy3z zy 2
oy A 23213 31221
VaaZst + Z3ady YTz + Tigyn

230:1%

Y12¥32 8';"
T12%3 .
Buis
WaZs + 21y 2
Su3, :
(29)
or, in compact matrix notation
n=Tyx. (30)

At this point we relax the requirement that the curvatures
be derivable from a displacement field w; consequently the
partial derivative notation will be discontinued. However,
the foregoing transformations will be assumed to hold even
if the curvature fields x and x are not derivable from w.



DIRECT CURVATURE INTERPOLATION

The Straingage Resdings

ANS and ANDES plate bending eleinenta are based on di-
rect interpoiation of natural curvatures. All elements dis-
cussed here adopt the three triangle sides as the reference
lines defined in Box 3. The natural curvatures are assumed
to vary linearly over each referencs line, an assumption
which is obviously consistent with cubic beam-like varia-
tions of w over the sides. A linear variation on each side
is determined by two straingage sample points, which we
chose to be at the corners.

Over each triangle side chose the isoparametric coordinates
€ij that vary from —1 at corner i to -+1 at corner j. These
are related to the natural y;; coordinates by §i; = 2u — 1.
The Hermite interpolation of w over i~j is

w=d[(1 =622+ &) 341~ &) +6&))

(1+&6)%2-&;) =361 +6)2(1-&))] Y,
Onj
(31
where 8, denotes the rotation about the external normal n
on side ij. The natural curvature over side ij is given by

v
Xij=:9u—_?,-
ol 6
= (86 3t(6is — 1) ~66 346, + IS 4 0.
Baj

Evaluating these relations at the nodes by setting §;; = £1
and converting normal rotations tc z-y totations through
(25), we build the transformation

th

-6 —4yy 424 6 —2yn
Xl:l’ 6 2y 2 -6 dyn
xaly | _| 0 0 0 -6 -dysn
il B P T
-2y 2143
xaily -6 413 —4113 1] 0
anl
;"‘ (33)
2y 0 0 0 9"
—4211 0 0 0 uv'l
dzyy 6 -2y m a’
—21’31 -8 4V3’ ~'4232 0‘2
0 -6 —4ya 42y v3
0 6 2wa -2 ;’3
3
0131

The left hand side is the natural straingage reading vector
called g in Box 3 and thus we can express (33) as

g=Qv. (34)
This relation holds for all elements discu-zed here.

The six gage readings collected in g provide curvatutes
along the three triangle side directions at two corners. But
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nine values are ceeded to recover the complete curvature
field over the element. The three additional values are the
natural curvatures xa3, xa1 3od x)3 at corners 1, 2 and 3,
respectively. Three possibilities for the missing values are
discussed below.

The Average-Curvature Rule

To each corner & assign the average natural curvature x;; of
the opposite side. This average is given by (34) evaluated
at & = 0. For example

x12ls = $xaal; -+ Xaaly) = y21(Fez =01} + 212(0y2 = y1).

(35)
The natural curvature now can be interpolated linearly over
the triangle:

X12 = X124, 1 + x12l2$2 + x12ls$a
= xaai (G + $63) + x1202 (G2 + 4Ga).

It is readily verified that under this rule the natural curva-
ture x12 is constant over lines parallel to the triangle me-
dian that passes through node 3. Formulas for the other
curvatures follow by cyclic permutation, from which we
construct the matrix relation

(36)

X12 G+ GG 0
X2 ¢ = 0 0 G+
X31 0 0 0
0 0 0
3+ 1G 0 0 ] g
0 G+i G+iG

a1 (3 —yn (31a + Dzn
= \] 0 0

s (s + s (3 - s
62 (3n + Dyn (312 — Ly
6(a2 (Ka2—Dyaz (Kaa+ )z

0 1] 0

0 0 1]
6(3 (3Caa+ Dysz (3¢ — Lz | v,
613 (313 =Dwma (3a +1)z1s

in which ;3 = {; = (3, etc. In the notation of Box 3,

X = Ayg= AwQv =By v (38)

where subscript a identifies the “averaging” rule (35). Since
the natural curvatures vary linearly over the triangle, their
mean values are obtained by evaluating (37) at the centroid

G=C=0G=1/%

S
X =94 X

Xat

0 -y zn 0 yn -zn
=10 (] 0 0 -y 2zn
0 wis —-za 0 O 0

0 0 0
0 w2 —232] v=B,v
0 -y1a 213
(39)
Finally, the Cartesian curvatures are given by
x =TB,,v = B,v, (40)



An explicit expression of these relations is easily obtained,
but not required in what follows; however, that of the mean
Cartesian curvatures X = TF,.V =B.v (a relation valid
because T is constant over the triangle) is enlightening:

Res 19 0 w2 0 0 yys
Ryy =ﬂ 0 za2 0 0 23 O

0 wms z3 0y zw

3

41
0 0 um - (41)
0 z1 0 |v=B,v.
0 w2 =z

The Projection Rule

To each corner k assign the natural curvature xij of its
projection onto the opposite side. This resuits in Xij be-
ing constant along lines normal to side ij. For equilateral
triangles this agrees with the averaging rule, but not oth-
erwise. The underlying motivation is to make the element
insensitive to bad aspect ratios in cylindrical bending along
side directions.

To illustrate the application of this rule consider side 1-2.
For node 3 take

9w
X2l = Tl = Az Xzl +An x12ly,  (42)
(it BFY

where 12 and Ay, are defined in Eqs. (23). Proceeding in
the same manner along the other sides we construct the
matrix relation

{Xu} [C\*f"\lz(a S+ AnGs 0
= 0

X33 0 {2+ A2s(y
X5t 0 0 0
0 0 0
(3 + A2y 0 0 g
0 G+Anls G+
(43)
or
X=Axg, x=TA,g, (44)

where subscript p identifies the “projection” rule. Asin the
preceding rule, since T is constant we can do the strain-
splitting step of Box 3 directly on the natural curvatures
by evaluating at the centroid:

Ay =Ry + Axdp)

i+ Hi+ay) 0
= [ 0 0 d(1+An)
0 0 0
0 0 0
%(1 + Asz2) 0 0 J
0 21+2s) 31+ 2m)
Cio+ A12(a0 a0+ Ancao 0
= [ 0 0 Ca0 + A2aio
0 0 0
0 0 0
$a0 + Aaz(10 0 0 ]
0 (a0 + Aalzo  Cio + A1aCao

(45)

in which {jo = ¢; ~ 1. Then

B, =TA,Q=T(Ay +A4)Q =B, +B,,. (46

The explicit expression of these matrices is not revealing.
For the construction of the stiffness matrix it is better to
leave (46) in product form and to carry out the operations
with a symbolic algebra package such as MACSYMA. The
explicit expression of Ky, obtained in this manner is pre-
sented in Appendix B of Militello and Felippa (1989). Ob-
serve that if all A coefficients are 4, which happeuns for the
equilateral triangle, the expressions reduce to those of the
averaging rule.

The ‘Sliding Beam’ Rule

This is a refinement of the average-curvature rule. Consider
a fictitious beam paralle] to side i~ j sliding towards corner
k. The end displacements and rotation of this beam are
obtained by interpolating w cubically, &, quadratically, and
0; linearly, along sides i~k and j-&. Compute the mean
natural curvature of this beam and assign to node k the
limit as the beam reaches that corner.

The required calculations can be simplified if we observe
that the mean curvature of the sliding beam varies linearly
as it moves from i-j, where it coincides with (35), to corner
k. At one third of the way this mean is the natural cen-
troidal curvature, which can then be readily extrapolated
to k. These centroidal curvatures are given by ¥ = Ex,v,
where subacript s identifies the ‘sliding’ rule. A symbolic
calculation yields the explicit form

2A13 =2(Az1 + Aa1) 213 ]
ac13 a3¢21 + @1€13 asczy
az83 G383 + az613 a3871
- 2233 22 =2(Mz2 + Asg)
B, = aicx ascn a1c32 +aseny |,
ags33 assn a1837 + azsy
—2{A3 + Az3) 2Ay P2 YN
2613 + @1€33 a3¢13 €32
L a2813 + @183 a2813 a1532 i

(47)

where a;, c;; and s;; are defined in Eqgs. (23). Extrapolating
to the opposite corners and interpolating over the triangle
we construct x = B,, v, with



[ 8(=C1 + (3 + Auxls) ~8(An + An )Gy 6(¢s ~ G1 + M2(a)
211(1 = 3(1) + 3azc13(Cs (3ayen + Jazcrs)y 2113(3¢1 — 1) + 3asen (s
2291 (3¢ — 1) + 3aasrs(as (3aasa + Jaza13)1 2z13(1 - 3(1) + 3ass21(z
6($1 = G + Anna) 8(—Ca + (s + Any) ~6(M2+ An2)Ca
BT, = | 21m(3G — 1) +30iemls  2um(1 = 3G2) + asenCs (3are32 + 3asen )2 (48)
2233 (1 = 3¢2) + 3a10m(s  2233(3(2 — 1) + 3asen(y (3ay832 + 3a38n)(3

—6(Azs + Mis)(s
(3a3¢13 + 3a1633)Cs
[ (303013 + 3ay853Ks

It should be noted that Ay and Q are inextricably en-
meshed in the above formuis and cannot be easily sep-
arated. Prumhlplutmby'l‘y\eldnn-ﬂv Eval-
nation of B, at the centroid yields B, = L7/A, where
L' = ATH,, is the farce lumping mmx;xvenm Eq. (54).
A variation on the sliding-bean theme would consist of
interpolating the normal rotation #, along i~k and j-k lin-
early rather than quadratically. This scheme turns out to
be identical, however, to the average curvature rule and
thus it provides nothing new.

The ANS Elements

Three ANS elements based on the preceding interpolation
rules may be constructed by followiag the prescription of
Box 4. Their stiffnesses are identified 28 K,, K,, and X,,
for averaging, projection, and sliding-beam, respectively.
The following properties hold for these elements.

Patch Test. Assuming that the element has constant thick-
ness and material properties, K, and K, pass the individ-
ual element test, but K, does not. This claim can be ao-
alytically confirmed by upplymg the criterion of Eqs. (16)-
(17), and noting that B, = LT /4 and B, = L7 /A, where
L, and L, are the force lumping matrices (51) and (54).

Equivelence with DKT. K, turna out to be identical to the
stiffness matrix of the Discrete Kirchhoff Triangle (DKT)
element, which was originally constructed in a completely
different way tirat involves assumed rotation fields; see Ba-
tos, Bathe and Ho (1880). TAus DK'T is an ANS clement,
and also (b of the equival noted below) an AN-
DES eclement. This equivalence provides the first varia-
tional justification of DKT, as weil as the proof that DKT
passes the patch test without any numerical verification.

ANS/ANDES Equivalence. If the basic stiffness matrices
Ku and K,, derived in the next section are used in con-
junection with the sveraging and sliding-beam rules, and
a = 1, the ANDES formulation yields the same results
as ANS if the element has constant thickness and ma-
terial propertios. (If the element has varisble thickness,
or the material properties vary, the equivalence does not
hold.) The ANDES formulation used with the projection
rule yields two elements, called ALR and AQR in the se-
quel, which differ in their basic stiffnesses. Both of these
elements pass the patch test and are ot equivalent to the
ANS formulation.

2z93(1 -

6(C3— (s + An1)
2yx(3(s = 1) + 3a2c15G1
Xs) + 382013,
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6(—C3 + (1 + An(a)
2t3(1 = X3) + 3a1602(2
2213(3(3 — 1) + Ja1232(3

STIFFNESS MATRIX COMPUTATION

The Basic Stiffness

As explained on Box 2, the basic stiffness is obtained by
constructing the lumping matrix L. In our case this is a
9 x 3 matrix that “lumps” an internal constaat bending-
moment field (W5, Tilyy, Mgy) to node forces f conjugate
to v.

On each element side, the constant moment fieid produces
boundary moments M, and 7, referred to a local edge
coordinate system n, t are

} (49)

n,
Tine i Si3Ci;  —8ijCij l?,- —c?,— _
The boundary motions d conjugate to ma, and mgq are

ey

dw/én = ~b, and Jw/8t = 8. Given the degree of free-
dom configuration (26), the normal siope dw/dn = -6,
along side i-j can at most vary linearly (it could be also
taken as constant and equal to (dy; + 8;;) but the results
are the same as for a linear variation).

For the tangential slope (the rotation about the normal)
Bw/8t = 0, thete are three options: constaat, linear and
quadratic variation. But a constant 8, = (w; — wi)/&;
turns out to be rquivalent to the quadratic variation and
a constant 9, = 3(0n; + ;) equivaient to the linear vari-
ation. Consequently only the linear and quadratic cases
need to be examuned.

Linear Normal Rolation. The variation of §; and 8, along
each side is linear:

wy
6“
0'\1
wy
By,
Bn;
(50)
where £ = &;. Under this assumption Felippa and Bergan
(1987) obtained the lumping matrix

0 0 ya2 0 0 w3 0 0 yn
0 232 0 0 z3 0 0 zzn O |,
0 ws Z23 0 vy 2z 0 yz zi2

(51)

_uf0 1-€ 0 0 1+€ 0
oo 0 1-g 0 0 14

T
Ll=§



where superscript £ stands for ‘linear 9.’ The correspond-
ing basic stiffness is

Ku = A-'L,DLT, (52)

where D is the Cartesian moment-curvature constitutive
matrix resulting from the integration of E through the plate
thickness. This matrix been used as component of the free
formulation (FF) element presented in that reference.

Quadratic Normal Rotation. A quadratic variation of 8n
can be accommodated in conjunction with the cubic vari-

—C13812 + Cy183;
Yedazra + 53 201)

—cCaads + cia0
L' = %(J?,Zu + Sgatn)

—c3183 + Ci3823
%(Sgsl‘zs + Jg,:ax)

The corresponding basic stiffness matrix is denoted by

Ky, = A'L,DL]. (55)

The Higher Order Stiffness

The higher order stiffness for the ANDES elements de-
scribed previously is

Kis = aQ K4, Q

=aQT [/ Alpa,, dA] Q= a/ BLDB,, d4,

a A (56)
where z = a,p,s for the average, projection and sliding-
beam rules, respectively. (The last expression is appro-
priate when By, is not easily factored into AeQ, 28 in
the sliding-beam rule.) Since Ay, varies lineactly, if D is
constant we could numerically integrate Ky, in (56) ex-
actly with a three point Gauss rule; for example the three-
midpoint formula. But as the element stiffness formation
time is dominated by these calculations it is of interest to
derive K, in closed form. This is done in Appendix B of
Militello and Felippa (1989) for Kap, which from the nu-
merical experiments discussed below appears to be the best
performer,

NUMERICAL EXPERIMENTS

An extensive set of numerical experiments has been run
to assess the performance ¢ the new ANDES elements
based on the projection rule (Air and AQR) and to com-
pare them with other existing high-performance elements.
These experiments are reported in Militello and Felippa
(1989). Four elements were considered in this study:

—C€31831 + C12813
$(chiz1a + cdiza)
~3edaum + st ins) -3(cdam + )

=C12812 + C33823
Hehhzia + cdyzas)
~Hshaum + shwma)  —(chyum + chyym)

—€713823 + 3193
$(cazas + cdyzs1)
L—$(sdsvma + shivia)  ~L(cdyyar + By )
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ation of w along the side:

(od, = tae e '5° et
B fog ~ 2133 -1)/¢ 0 LBE+1)E-1)

wi
Bei
0 1+¢ 0 ] Bni
-n/e 0 E-pE+D] ) w
9”'
9,‘,‘
(53)
where { = §; and ¢ = &;. Then the resulting lumping
matrix can be presented as

(231 = ) = (s — ) ]
ayn + s
—siyziz - 123
(o33 = cly) — (ady — c&y)

v + chyys (54)
—vf,zu - 3-3.3373
('gs - c§3) — (a3, - ‘-'51)

3avsa + s
—8dyz23 — 83,23 J

ALR Stiflness defined as K = K, + 1.5Knp. This com-
bines the linear-rotation basic stiffness (52) with the
higher order stiffness given by the projection rule.
The value a = 1.5 was established through simpie
energy balance techniques similar to those discussed
in Felippa and Bergan (1987) for the free formula-
tion elements.

AQR Stiffness defined as K = K, + Kap. This combines
the quadratic-rotation basic stiffness (55) with the
higher order stiffness given by the projection rule.
The coefficient o is unity.

DKT Stiffness defined as K = Ky, + Ki,. As previ-
ously noted, this combination is identical to the weil
known Discrete Kirchhoff Triangle (DKT) element.

FF  The free formulation triangle described in Felippa
and Bergan (1987), with multiparameter scaling of
the higher order stiffness matrix. The basic stiffness
matrix is K,

All of them qualify as high performance elements in the
standard plate bending “obstacle” problems.

Traditionally tests for new finite elements are reported in
the following sequence:

(I} Patch tests, usually carried out numerically on ar-
bitrarily chosen mesh configurations.

(1)  Regular-mesh tests such as circular, square, skew
and cantilever plates under concentrated and dis-

tributed loads.

(IT)  High-aspect ratio and geometric distortion tests.



For the present investigation (I) was unnecessary because
all elements pass the patch test (in lact, a strong form of
it) a priors by construction.

As for (II)-(III), the traditional order was reversed. First
all four elements were subject to highly demanding distor-
tion tests. This decision was taken to “weed” consistently
weak performers and thus reduce the number of test runs
on batch (II). The approach paid off in that AQR and
DKT (the two elements that use the quadratic-rotation
basic stiffness) consistently outperformed ALR and FF on
distorted meshes, with AQR exhibiting an edge in extreme
distortion cases.

Then a “run off” contest between AGR and DKT was car-
ried out on the regular-mesh tests (II). On these the perfor-
mance was similar with an advantage to AQR in problems
involving concentrated loads. These resuits are reported in
detail in Militello and Felippa (1989).

CONCLUSION®

The main conclusions of the present study can be summa-
rized as follows.

1. The ANDES formulation represents a variant of the
ANS formulation that merits serious study. The key
advantages of ANDES over ANS are:

(a) a prior satisfaction of the patch test. Although
this advantage is less clear for elements where
ANS and ANDES coalesce for constant thickness
and material properties, it reappears for more
general cases.

{b) The separation of the higher order stiffness al-
lows the application of a scaling parameter. Fur-
thermore it opens the possibility for the energy-
balanced combination with other formulations as
per Eq. (2), although this possibility presentiy re-
mains unexplored.

2. The study of plate bending elements shows that the
widely used DKT element is both an ANS and AN-
DES element. This discovery orovides a variational
foundation hereto lacking and analytically proves (be-
cause of the ANDES connection: that DKT passes the
patch test.

3. The numerical results clearly iemonstrate that the
choice of basic stiffness is of paramount importance
in the behavior of elements based on the ANDES for-
mulation. Of the two elements sharing the quadratic-
rotation basic stiffness, namely AQR and DKT, the
former has excelled in geometric distortion tests and in
convergence studies that involve concentrated forces.
For other cases the performance of AQR and DKT is
similar, and superior to those »lements that use the
linear-rotation basic stiffness

The numerical experiments have not addressed questions of
materal sensitivaty such as element performance for highly
anisotropic and composite plates. This behavior, as well as
the possibility of applying this technology to C? bending
elements, is currently under investigation.
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Abstract. We derive electromagnetic finite elements based on a variational principle that uses the electromag-
netic four-potential as primary variable. This choice is used to construct elements suitable for downstream
coupling with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems
that involve superconductors. The main advantages of the four-potential as a basis for finite element
formulation are: the number of degrees of freedom per node remains modest as the problem dimensionality
increases, jump discontinuities on interfaces are naturally accomodated, and statics as well as dynamics may be
treated without any a priori approximations. The new elements are tested on an axisymmetric problem under
steady-state forcing conditions The results are in excellent agreement with analytical solutions.

Introduction

The present work is part of a research program for the numerical simulation of electromag-
netic/ mechanical systems that involve superconductors. The simulation involves the interac-
tion of the following four components:

(1) Mechanical fields: displacements, stresses, strains and mechanical forces.

(2) Thermal fields: temperature and heat fluxes.

(3) Electromagnetic (EM) fields: electric and magnetic field strengths and fluxes, currents and
charges.

(4) Coupling fields: the fundamental coupling effect is the constitutive behavior of the materials
involved. Particularly important are the metallurgical phase change phenomena triggered
by thermal, mechanical and EM fields.

Finite element treatment

The first three fields (mechanical, thermal and electromagnetic) are treated by the finite
element method. This treatment produces the spatial discretization of the continuum into
mechanical, thermal and electromagnetic meshes of finite number of degrees of freedom. The
finite element discretization may be developed in two ways:

(1) Simuitaneous treatment. The whole problem is treated as an indivisible whole. The three
meshes noted above become tightly coupled, with common nodes and elements.

(2) Staged treatment. The mechanical, thermal and electromagnetic components of the problem
are treated separately. Finite element meshes for these components may be developed
separately. Coupling effects are viewed as information that has to be transferred between
these three meshes.

0168-874X/90,/$3.50 © 1990 - Elsevier Science Publishers B.V.
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The present research follows the staged treatment. More specifically, we develop finite
element models for the fields in isolation, and then treat coupling effects as interaction forces
between these models. This “divide and conquer” strategy is ingrained in the partitioned
treatment of coupled problems (5,16}, which offers significant advantages in terms of computa-
tional efficiency and software modularity. Another advantage relates to the way research into
complex problems can be made more productive. It centers on the observation that some
aspects of the problem are either better understood or less physically relevant than others.
These aspects may be then temporarily left alone while efforts are concentrated on the less
developed and /or more physically important aspects. The staged treatment is better suited to
this approach.

Mechanical elements

Mechanical elements for this research have been derived using general variational principles
that decouple the element boundary from the interior thus providing efficient ways to work out
coupling with non-mechanical fields. The point of departure was previous research into the
free-formulation variational principles presented in Ref. [4]. A more general formulation for the
mechanical elements, which includes the assumed natural strain formulation, was established
and presented in Refs. [6,7,14,15]. New representations of thermal fields have not been
addressed as standard formulations are considered adequate for the coupled-field phases of this
research.

Electromagnetic elements

The development of electromagnetic (EM) finite elements has not received to date the same
degree of attention given to mechanical and thermal elements. Part of the reason is the
widespread use of analytical and semianalytical methods in electrical engineering. These
methods have been highly refined for specialized but important problems such as circuits and
waveguides. Thus the advantages of finite elements in terms of generality have not been enough
to counterweight established techniques. Much of the EM finite element work to date has been
done in England and is well described in the surveys by Davies [1] and Trowbridge [22]. The
general impression conveyed by these surveys is one of an unsettled subject, reminiscent of the
early period (1960-1970) of finite elements in structural mechanics. A great number of
formulations that combine flux, intensity, and scalar potentials are described with the recom-
mended choice varying according to the application, medium involved (polarizable, dielectric,
semiconductors, etc.) number of space dimensions, time-dependent characteristics (static,
quasi-static, harmonic or transient) as well as other factors of lesser importance. The possibility
of a general variational formulation has not apparently been recognized.

In the present work, the derivation of electromagnetic (EM) elements is based on a
variational formulation that uses the four-potential as primary variable. The electric field is
represented by a scalar potential and the magnetic field by a vector potential. The formulation
of the variational principle pre~eeds along lines previously developed for the acoustic fluid
problem (8,9].

The main advantages of using potentials as primary variables as opposed to the more
conventional EM finite elements based on intensity and/or flux fields are, in order of
importance:

(1) Interface discontinuities are automatically taken care of without any special intervention.
(2) No approximations are invoked a priori since the general Maxwell equations are used.
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(3) The number of degrees of freedom per finite element node is kept modest as the problem
dimensionality increases.

(4) Coupling with the mechanical and thermal fields, which involves derived fields, can be
naturally evaluated at the Gauss points at which derivatives of the potentials are evaluated.
Following a recapitulation of the basic field equations, the variational principle is stated.

The discretization of these principle into finite element equations produces semidiscrete

dynamical equations, which are specialized to the axisymmetric case. These equations are

validated in the simulation of a cylindrical conductor wire.

Electromagnetic field equations
The Maxwell equations

The original Maxwell equations (1873) involve four spatial fields: B, D, E and H. Vectors
E and H represents the electric and magnetic field strengths (also called intensities), respec-
tively, whereas D and B represent the electric and magnetic flux densities, respectively. All of
these are three-vector quantities, that is, vector fields in three-dimensional space (x, = x, x, =
Vs X3 =z ):

E, D, E, H,
E=(E), D={D;, E=({E;), H=_(H,). (1)
E, D, E; H,

Other quantities are the electric current three-vector j and the electric charge density p (a
scalar). Units for these and other quantities of interest in this work are summarized in Tables 1
and 2.

With this notation, and using superposed dots to denote differentiation with respect to time
t, we can state Maxwell equations as

B+9V XE=0, vxH-D=j,

2
v -D=p, v-B=0. (2)

The first and second equation are also known as Faraday’s and Ampére—Maxwell laws,
respectively.

The system (2) supplies a total of eight partial differential equations, which as stated are
independent of the properties of the underlying medium.

Constitutive equations
The field intensities £ and H and the corresponding flux densities D and B are not

independent but are connected by the electromagnetic constitutive equations. For an electro-
magnetically isotropic, non-polarized material the equations are

B=uH, D=cE, (3)

where p and € are the permeatility and susceptibility, respectively, of the material (other names

! Some authors, for example Eyges [}, include 4« factors and the speed of iight ¢ in the Maxwell equations. Other
textbooks, e.g. Rojanski [19) and Shadowitz [20), follow Heaviside's advice in using technical units that eliminate such
confusing factors.
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Table 1

List of electric and magnetic quantities

Quantity Symbol MKS-Weber units
Electric charge density P C/m?

Electric field intensity E N/C

Electric flux density D C/m?

Electric resistance R Q

Electric conductivity g mho (=Q~1)
Displacement current density b C/s m?
Susceptibility * 3 C/I'm

Current J C/s

Magnetic fieid intensity H N/Wb or A/m
Magnetic flux density B Wb/m?

Magnetic permeability ° B Wb/Jm or H/m

* Also called capacitivity and permittivity,
® Also called inductivity.

are often used, cf. Table 1). These coefficients are functions of position but (for static or
harmonic fields) do not depend on time. In the general case of a non-isotropic material both I
and e become tensors. Even in isotropic media u in general is a complicated function of H; in
ferromagnetic materials it depends on the previous history (hysteresis effect).

In free space u = i1, and €= ¢, which are connected by

ca=1/peko, (4)
where ¢, is the speed of light in a free vacuum. In MKS-A units, co=3x%10° m/s and

Bo=4mX107'H/m,  ¢=pg'cy = (36m) " x 10~ 152/ (Hm). (5)

The condition u = p, holds well for most practical purposes in such media as air and copper;
in fact u,; = 1.0000004u, and B copper = 0.999991,,.
The electrical field strength E is further related to the current density j by Ohm’s law:

j=2E, (6)

where g is the conductivity of the material. Again for an non-isotropic material g is generally a
tensor which may also contain real and imaginary components; in which case the above
relation becomes the generalized Ohm’s law. For good conductors g > ¢; for bad conductors
8 < ¢ In free space, g=0.

Table 2

Equivalence between various MKS-Giorgi units

Unit Equivalent
newton, N kg m/s?
joule, J Nm
watt, W 1/s
coulomb, C As
voit, V W/A
ohm, 2 V/A
farad, F c/v
henry, H Vs/A

weber, Wb Vs
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Maxwell equations in terms of E and B

To pass to the four-potential considered in the next section it is convenient to express
Maxwell’s equations in terms of the electrical field strength E and the magnetic flux B. In fact
this is the pair most frequently used in electromagnetic work that involve arbitrary media. On
eliminating D and H through the constitutive eqns. (3) we obtain

B+V XE=0, U XB-peE=pj,

7
V-Eap/c, V-B=O_ ()

The second equation assumes that ¢ is independent of time; otherwise ¢E = e¢d E /dt should be
replaced by d(eD)/d:. In charge-free vacuum the equations reduce to

B+vx£=0,x7x8—%£=m

Co (8)
v -E=0, v -B=0.

The electromagnetic potentials

The electric scalar potential ® and the magnetic vector potential A4 are introduced by the
definitions

E=-v0-4, B=vXA. (9)

This definition satisfies the two homogeneous Maxwell equations in (7). The definition of 4
leaves its divergence v - .4 arbitrary. We shall use the Lorentz gauge [13]

V-A+ped=0. (10)

With this choice the two non-homogeneous Maxwell equations written in terms of ¢ and A
separate into the wave equations

V0 —ped=—pye, VA —ped = —pj. (11)

The electromagnetic four-potential

Maxwell’s equations can be presented in a compact manner (a form compatible with special
relativity) in the four-dimensional spacetime defined by the coordinates
X, =x, X, =y, Xy =2, Xq=1ict (12)

where x,, x,, x; are spatial Cartesian coordinates, iZ= —1 is the imaginary unit, and ¢ =
1/ ,/p—e is the speed of EM waves in the medium under consideration. In the sequel Roman
subscripts will consistently go from 1 to 4 and the summation convention over repeated indices
will be used unless otherwise stated.

The field strength tensor

The unification can be expressed most conveniently in terms of the field-strength tensor F,
which is a four-dimensional aniisymmetric tensor constructed from the components of E and B
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as follows:
0 F, F; Fy 0 ¢By —cB, -iE
~F 0 F Foyldet | —cB 0 cB -1 E
F=| '» S =71 Bt R O L)
-y Ry 0 B B, =-cB 0 —1E,

Here B8 is an adjustment factor to be determined later. Similarly, introduce the four-current
vector J as

J1 cu B
Sl der |enjy B

J= = . = C . 14
/5 A Cit J3 A B J3 (14)
Ja ip/e iyp/ep

Then, for arbitrary B, the non-homogeneous Maxwell equations, namely ¥ X B — ueE = pj
and V - E = p/¢, may be presented in the compact “continuity” form (the covariant form of
these two equations):

aﬁk/axk=f,~. (15)
The other two Maxwell equations, Vv -B=0and v X E + B = 0, can be presented as

aF, oF,, dF,,

F: + Txk + a;, = 0, (16)

where the index triplet (i, k, m) takes on the values (1,2,3),4,2,3),(4,3,1) and (4, 1, 2).

The four-potential

The EM “four-potential” ¢ is a four-vector whose components are constructed with the
electric and magnetic potential components of 4 and @-

| A,
¢2 def CAZ
=4 = 17
P4 P
It may then be verified that F can be expressed as the four-curl of ¢, that is
39, _ 39,
Fi= 3%, ~ o, (18)
or in more detail and using commas to av._~"ate partial derivatives:
0 P17 %12 b3 by g
- 0 - -
Fe P12~ P2 P2" P13 P2 Pyg . (19)
P13~ P11 D3Py, 0 a3~ P4
Pra=" a1 Pra— Py Dyg— sy 0
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The ungauged Lagrangian

With these definitions, the basic Lagrangian of electromagnetism can be stated as 2

3, 3¢, \’
L=3FFy—Jo = %/32(5;':# - Wk) = Ji9,
2p2 N BZ . . .
= 1B%(’B 'E‘)‘T(hAl +thdy + jA;—pd), (20)
in which
B*=B'B=B{+B}+B}, E*=EE=E!}+E}+E} (21)
Comparing the first term with the magnetic and electric energy densities [2,19,20]
u,=4B"H= 2—1#31, u,=1D'E=}¢E?, (22)
we must have 8% = 82 /(u¢) = 1/p, from which
B=Ve. (23)
Therefore, the required Lagrangian is
1 , . .
L= T#BZ‘%fEZ‘(hAl +hAy + Ay - p®). (24)
The associated variational form is
f
R= L d¥V dq, 25
L), (25)

where V' is the integration volume considered in the analysis. In theory V extends over the
whole space, but in the numerical simulation the integration is truncated at a distant boundary
or special devices, such as infinite elements, are used to treat the decay behavior at infinity.

The gauged Lagrangian

If the fields 4 and @ to be inserted into L do not satisfy the Lorentz gauge relation (10) a
priori, this condition has to be imposed as a constraint using a Lagrange multiplier field A(x,),
leading to the modified or “gauged” Lagrangian:

Ly=L+A(V - A+ ped). (26)

The four-field equations

On setting the variation of the functional (24) to zero we recover the field equations
(15)—(16). Taking the divergence of both sides of (15) and observing that F is an antisymmetric
tensor so that its divergence vanishes we get

aJ; .
—8T=cp(v-]+p)=0, (27)

? Lanczos (12] presents this Lagrangian for free space, but the expression (24) for an arbitrary material was not found
in any of the textbooks on electromagnetism listed in the References. The zauged Lagrangian (26) has not. to our
knowledge, been developed previously.
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The vanishing term in parenthesis is the equation of continuity, which expresses the law of
conservation of charge. The Lorentz gauge condition (10) may be stated as v - ¢o=0.
Finally, the potential wave equations (11) may be expressed in compact form as

Q¢ = -, (28)
where O denotes the “four-wave-operator”, also called the D’Alembertian:

def aZ aZ . 32 . aZ 82 (29)
9x, dx,  9x? x?  x?  cTarl”

Hence each component of the four-potential ¢ satisfies an inhomogeneous wave equation. In

free space, J, =0 and each component satisfies the homogeneous wave equation.

The axisymmetric test example

The simplest example for testing the finite element formulation based on the four-potential
variational principle is provided by the axisymmetric magnetic field generated by a uniform,
steady current flowing through a straight, infinitely long conducting wire of circular cross
section. In the present section we derive expressions for the magnetostatic field outside and
within the conductor. These analytical solutions will be later compared with the finite element
numerical solutions.

The free-space magnetic field

To take advantage of the axisymmetric geometry we choose a cylindrical coordinate system
with the wire centerline as the longitudinal z-axis. The vector components in the cylindrical
coordinate directions 7, # and z are denoted by

4,, By, E; in the r direction,
A4,, By, E, in the 8 direction,
A;, By, E; in the z direction.

The electromagnetic fields will then vary in the radial direction ( r) but not in the angular )]
and axial (z) directions. Similarly, the cursent density that flows in the wire has only one
nonzero component acting in the positive or negative z direction; conventionally we select the
positive direction.

In Cartesian coordinates the radial component of the electrostatic potential in free space can
be calculated from the expression (see, e.g. [2,10,18-20))

o J3

A== g )T

: av, (30)
where [r| is the distance between the elemental chaige j; dV and the point in space at which
we wish to find the field potential. The integral extends over the volume containing charges.
This expression serves equally well in cylindrical coordinates. In fact, the transformation of :
components will be one to one if the center of the systems coincide.

As noted above the only non-vanishing component of the current vector is /3dS where dS
is the elemental cross-sectional area of the conductor and j; is the current density in the :
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direction. If d/ represents the differential length of the wire, then [/, dV = fcj;dSdli=1dl
=Jdz and |r| =Vr®+z%. Substitution into eqn. (30) yields
pol oo dz
A= ——. 31
3(r) aq f_m m (31)
This integral diverges, but this difficulty can be overcome by taking the wire to have a finite

length 2L symmetric with respect to the field point, that is large with respect to its diameter.
Integrating between —L and + L we get

+L
ol gL dz pol 2. .2
A3(r)—z?f_L;m=WM(z+ re+z ) —L. (32)

Expanding this equation in pcwers of 7/L and retaining only first-order terms gives
pol
A3=-(%)mr+ C, (33)

where C is an arbitrary constant. For subsequent developments it is convenient to select
C=(uol/27)n Ry, where R is the “truncation radius” of the finite element mesh in the
radial direction. Then

4= ‘(‘2?)1"( Tr) (34)

With the normalization 4, =( at r = R. Taking the curl of A gives the B field in cylindrical
coordinates:

104, 04,
By |5 T "% 0
04 a4 34
B=vxd={8 =(B)=\ -3 =\ -3 (35)
19(rd,) 1 94,
BsJ . I?T‘?To‘ 0
It is seen that the only non-vanishing component of the magnetic flux density is
04 mol
By=By=poHy=~ 52 =31 (36)

This expression is called the law of Biot—Savart in the EM literature.
Magpnetic field within the conductor

Again restricting our consiceration to the static case, we have from Maxwell's equations in
their integral flux form

¢CH-ds=£y"B ds = {j-ds, (37)

where C is a contour around the field point traversed counterclockwise with an oriented
differential arclength ds and dS is the oriented surface element inside the contour. The term
for the electric field disappears in this analysis because £ = 0. From before we know that the
right-hand side of eqn. (37) is equal to the normal component of the current that flows through
the cross sectional area evaluated by the integral. In the free space case, this is the total current
that flows through the conducior. But in the conductor the amount of current is a function of
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the distance r from the center. Again using [ to represent the total current carried by the
conductor, and R the radius of the conductor, and assuming an uniform current density
J3=1/(mR?), the right-hand side of eqn. (37) becomes

fsj-ds=fsjsds=;%j;ds=1é. (38)

Evaluating the left-hand side of the integral and solving for B, gives:
- r? ulr
2‘“"’1 le=lF, BZ:TRZ

Comparing with eqn. (36) we see that if M= p, then B, is continuous at the wire surface r = R
and has the value po//(2nR). But if B #* pg there is a jump (u ~ #o)l/(27R) in B,.

The magnetic potential A, within the conductor is easily computed by integrating — B, with
respect to r:

(39)

wlr?
e C. (40)

The value of C is determined by matching eqn. (34) at r= R, since the potential must be
continuous. The result can be written

A=

A3=2—’,;[%n(1—;—22)—u0 m(Ri)] (41)

The preceding expressions (34)-(41) for A could also be derived in a somewhat more direct
fashion by integrating the ordinary differential equation VA, =r"Y3(ro4 3/01)0r)=puj, to
which the second of eqns. (11) reduces.

Finite element discretization
The Lagrangian in cylindrical coordinates

For simplicity, in the sequel we shall use the original “ ungauged” Lagrangian (24) rather
than the gauged one (26) and then discuss briefly the consequences of doing so. To construct
finite element approximations we need to express

L= %Bz—icEZ— (i - 09), (42)

in terms of the potentials written in cylindrical coordinates. For B? we can use the expression
of the curl (35)
2

184y 34,\% /34, 034.\? 19(rd,) 1 04
SR it Bt 1 _ 743 St ek AN et |
B—(r 08 az) (Bz 8r)+(r or raﬂ)' (43)
For E? we need the cylindrical-coordinate gradient formulas
E, E %$+A‘l
13 .
E=(E )=(E}=- T30 t42) (44)
E, E, %—f+,43
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so that

Y aA‘)2 (1 o0 8A2)2 (a<1> 8A3)2 (45)

2 fTp (92 %4 109 04, 9P | 0943

E’EE(ar"az T T az t
In the axisymmetric case, 4, =4, =0; furthermore 4, = 4, is only a function of the radial
distance from the wire. Therefore 34,/36 = 94,/3z = 0. From symmetry considerations we
also know that the electric field cannot vary in the # and : directions, which gives 0®/0z =
39,36 = 0. Finally, the only nonvanishing current density component is J,. Consequently the

Lagrangian (42) simplifies to

r=5(%2) ic[(i‘?) +(%)2]—(13A3—p¢). (46)

Constructing EM finite elements

To deal with this particular axisymmetric problem a two-pode “line” finite element extend-
ing in the radial r direction s sufficient. In the following we deal with an individual element
identified by superscript e. The two element end nodes are denoted by i and j. The electric
potential ¢ and the magnetic potential 4, = A_ are interpolated over each element as

D¢ = Ny d°, A7 = NjAS, (47)

Here row vectors N§ and V] contain the finite element shape functions for ®° and A%,
respectively, which are only functions of the radial coordinate r:

Ng = (Ngi(r) Ng.(r)).,  Ni=(Ni(r) N (r)), (48)

and column vectors ®° and .15 contain the nodal values of ® and A;, respectively, which are
only functions of time ¢:

P,(1) A5,(1)
&° = , A5 = . 49
{«»,(r)} ; {A3,(,) (49)
Substitution of these finite element assumptions into the Lagrangian (46) and then into eqn.
(25) yields the variational integral as sum of element contributions R = I, R¢, where

e (v L(3ND NP [raNg NP faNg Lyl
R ’f,o f,,.z—p(‘a;‘f!s) - ¢ (V") +(—a?‘A3)

= (N[4S — pNg®°) dV* ds, : (50)

in which V' denotes the volume of the element. Taking the vanation with respect to the element
node values gives

e LY erT 1 aN' TaN' e T aye se . T
°R =-/1- /V'(SAJ) l:—( arA) arA A5+ e(N7) NIAS — js(N])

o 1
ONg\TaNg
+(6¢‘)T[—c(ﬁ) —aT°<P'+p(N;)T] dve d:. (51)

On applying fixed-end initial -onditions at ¢ = Iy and t=1t, and the lemma of the calculus of
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variations, we proceed to equate each of the expressions in brackets to zero. From the first
bracket we obtain for each element the following second-order dynamic equations for the
magnetic potential at the nodes, which are purposedly written in a notation resembling the
mass—stiffness—force equations of mechanics:

MAS + K345 =ff, (52)

where

LA
i) o v, (53)

e _ e\T nre e e _
Mi= [ «(NDN;ave Ki=f
ti= [ s ave (54)

From the second bracket we obtain for the electric potential a simpler relation which does not
involve time derivatives, i.e., is static in nature:

Ked° =f5, (55)
where
INS\TaNg
K= [ o[ 52) 52 v, 5= [ p(NG)T ave. (56)

Assembling these equations in the usual way we obtain the semidiscrete master finite element
equations:

M A, +KA,=f,, KDp=f,. (57)

Consequences of using the ungauged Lagrangian

The assumption 4, =0, 4, =0, A3 =A4(r) forces V - 4 = 0. The Lorentz gauge condition
(10) then implies that & =0; that is, the electric field is static. Removing this constraint
requires allowing a more general spatial dependence in 4. It follows that the ungauged
Lagrangian is primarily useful in magnetoelectrostatics, as discussed next.

The static case

In time-independent problems, the term A, disappears from egn. (57) and the master finite
element equations of electromagnetostatics become

K 4, =fi K9P = fo. (58)

If the current density and charge distributions are known a priori then these two equations may
be solved separately. If only the charge distribution p is kn*m then the second equation
should be solved first to obtain the electric field E as gradient of the computed electric
potential @; then the current density j can be obtained from Ohm’s law (6) and used to
computed the force vector f, of the first equation, which is then solved for the magnetic
potential. Conversely, if only the current density distribution is known a priori the preceding
steps are reversed.

For the present test problem the current distribution is assumed to be known, and we shall
be content with solving the first equation for the magnetic flux.
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An alternative semidiscretizaiion

If upon setting the brackets of the variation (51) to zero we mulitply them through by u and
1/¢, respectively, the expressions for the mass, stiffness and force matrices become

e 1 e\ T are e e _ aNAe TaNAe e
M; =/rc—2(NA) Nidve, K —fw(T) - dve,
T . NG\ " aNG . 1T
fi= [ piNgT v, Ko=f,,.(—a§) o Ve f=[ ce(N) av.

(59)

The matrices M and K above are quite similar to the capacitance and reactance matrices,
respectively, obtained in the potential amalysis of acoustic fluids {8,9]. Another attractive
feature of egns. (59) is that K, = K, if the shape functions of both potentials coalesce, as is
natural to assume. These advantages are, however, more than counterbalanced by the fact that
“jump forces” contributions to f, and f, arise on material interfaces where & and € change
abruptly, and the proper handling of such forces substantially complicates the programming
logic. Note that this issue does not arise in the treatment of homogeneous acoustic fluids.

Applying boundary conditions

The finite element mesh is necessarily terminated at a finite size, which for the test problem
is defined as the truncation radius R alluded to previously. [n static calculations the material
outside the FE mesh may be viewed as having zero permeability u, or, equivalently, infinite
stiffness or zero potential. It follows that the potential value at the node located on the
truncation radius may be prescribed to be zero. This is the only essential boundary condition
necessary for this particular problem.

Numerical validation
Finite elemental model

The test problem consists of a wire conductor of radius R transporting a unit current
density. For this problem the finite element mesh is completely defined if we specify the radial
node coordinates r¢ = ¢ and ri =rs., for each element e. If the mesh contains N, elements
inside the conductor, those elements are numbered e =1, 2, ... +N,.andnodes n=1,2,..., N.,
+ 1 starting from the conductor center outwards. The first node (n=1) is at the conductor
center r =0 and node n = N, + 1 is placed at the conductor boundary r = R. The mesh is then
continued with N,, elements into free space. The last node is placed at r = Ry, at which point
the free space mesh is truncated: usually Ry =4R to 5R. Although the mesh appears to be
one-dimensional, a typical element actually forms a “tube” of longitudinal axis z, internal
radius 7 and external radius rf, extending a unit distance along :z.

For the present study the magnetic potential was linearly interpolated in r, using the linear

shape functions
Ni=(31(1-¢) 1(1 +¢)), (60)

where £ is the dimensionless isoparametric coordinate that varies from —1 at node i to +1 at
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node ;. This interpolation provides for C° continuity of the potential inside the conductor and
in free space.

For the calculation of the element stiffnesses and force vectors, it is assumed that the
permeability p and the current density J are uniform over the element. Then analytical
integration over the element geometry gives

1 -1 l(Zr.‘+r.‘)
Bro | slen
K¢=_ , ¢=1 s 61

where r, = 3(r’ +rf) is the mean radius and {=rf-r the radial length. For the test
problem, u is constant inside the conductor whereas outside it p = p, was assumed to be unity.
The longitudinal current density is j, = I/(mR?) inside the conductor whereas outside it j,
vanishes.

The master stiffness matrix and force vector were assembled following standard finite
element techniques. The only essential boundary condition was the setting of the nodal
potential on the truncation boundary to zero, as explained previously. The modified master
equations were processed by a conventional symmetric skyline solver, which provided the value
of the magnetic potential at the mesh nodes. The magnetic flux density B,, which is constant
over each element, was recovered in element-by-element fashion through the simple finite
difference scheme

. 0A A5 = A5
Bz==—-w3=—1—j. (62)

This value is assigned to the center of element e.
Numerical results

The numerical results shown in Figs. 1-6 pertain to a unit radius conductor (R=1), with
the external (free space) mesh truncated at Ry =35. The element radial lengths rf — r¢ were
kept constant and equal to 0.25, which corresponds to 4 internal and 16 external elements,

The computed values of the potential A; are compared with the analytical solution given by
eqns. (34) and (41). As can be seen the agreement is excellent. The comparison between
computed and analytical values of the magnetic flux density B, shows excellent agreement
except for the last element near the wire center, at which point the difference scheme (62) loses
accuracy. The permeability of free space is conventionally selected to be unity. Figures 1, 3, and
5 illustrate the case where the wire permeability p . . is set to 10.0, whereas Figs. 2, 4, and 6 are
for the case in which pu,_ is 1.0, that is, same as in free space. (The value of the susceptibility ¢
does not appear in these magnetostatic computations.) Figures 1 and 2 show computed and
analytical magnetic potentials. The slope discontinuity at » =1 in Fig. 1 is a consequence of the
change in permeability u from the wire material to free space.

Figures 3 and 4 show the computed and analytical magnetic flux densities. As noted above,
the jump at r=1 in Fig. 3 is due to the change in permeability x from the material to free
space. Figures 5 and 6 show the computed and analytical magnetic flux densities in free space
with more detail. Note that Figs. 5 and 6 for r> 1 are identical; this is the expected result
because the free-space magnetic flux field depends only upon the current enclosed by a surface
integral around the wire and not on the details of the interior field distribution.

In summary, the finite element model performed very accurately in the test problem and
converged, as expected, to the analytical solution as the size of the elements decreased.
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Conclusions

The results obtained in the one-dimensional steady-state case are encouraging, and appear to
be extensible to two- and three-dimensional static problems without major difficulties, The
electric field remains effectively decoupled from the magnetic field except through Ohm’s law.
Care must be taken, however, in modeling the forcing function terms so as to avoid the
appearance of discontinuity-induced forces at physical interfaces.

The dynamic case is expected to introduce additional complications since the use of the
gauged Lagrangian (26) will be generally required. The Lagrangian multiplier field will

If encouraging results are obtained in the dynamic case, thermocoupling effects will be
added to the code. References [3,17,23] discuss several different approaches applicable to
various contexts (e.g. eddy currents) and these will have to be investigated for suitability for
capturing the couplings effects that are relevant to the superconducting problem.

After modeling the coupling effects, the next step will be to model the superconducting
fields. The feasibility of using the current model for superconductor applications is high, as the
current density of a superconductor can be approximated by the standard current density
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An unconditionaily stable second order accurate implicit-implicit staggered procedure for the finite
element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is
stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the
superiority of the proposed computational strategy to other conventional staggered procedures.
Numerical examples of one- and two-dimensional thermomechanical coupled problems demonstrate
the accuracy of the proposed numerical solution aigorithm.

1. Introduction

Transient response prediction of thermally loaded structures is of considerable importance
in many aerospace engineering problems, and it has been the subject of intense research.
Finite element formulations of the classical heat conduction problem without mechanical
coupling have been presented by Wilson and Nickel [1]. Ritz type methods for the solution of
linear dynamic problems in coupled thermoelasticity were given by Nickell and Sackman [2].
Oden [3] has formulated finite element models for the analysis of a class of nonlinear problems
in dynamic coupled thermoelasticity, and Oden Armstrong [4] have developed explicit
quadratic numerical schemes for the integration of nonlinear unpartitioned systems of
difference equations arising from the analysis of dynamic coupled thermoviscoelastic prob-
lems. Recently, Ting and Chen [5] have introduced a unified numerical approach for the
analysis of thermal stress waves. They have derived their algorithm from the concept of heat
displacement and a variational formulation in Lagrangian form. They have proposed to
integrate the resulting semi-discrete equations with conditionally stable explicit schemes. Liu
and Zhang [6] have described an implicit—explicit procedure for the prediction of thermal
stress waves in coupled thermoelasticity problems. They have adopted the explicit rational
Runge-Kutta method (7, 8] for approximately solving the heat conduction equation and have
claimed that their solution procedure is unconditionally stable. However, their computational

0045-7825/91/303.50 © 1991 — Elisevier Science Publishers B.V. (North-Holland)
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strategy requires the manipulations of a full matrix. In a sequel note, Liu and Chang [9] have
slightly modified the original procedure of Liu and Zhang to involve a banded rather than a
full matrix, and have numerically verified the unconditional stability on one-dimensiona]
problems.

However, several practical issues must be resolved before unconditionally stable explicit
rational Runge-Kutta schemes can become suitable for the analysis of real thermomechanical
coupled problems. First, when unconditional stability is achieved for explicit time integra-
tion algorithms, typically consistency becomes conditional (see for example Hughes and
Belytschko [10]). Second, most rational Runge-Kutta algorithms involve some divide oper-
ations by the difference between intermediate solution quantities, which can significantly
damage accuracy. Finally, these algorithms do not appear to accommodate staggered solution
procedures for thermal/structure interaction problems, as they are not implemented in many
existing production-level thermal computer programs.

The semi-discrete equations governing soil-pore fluid interaction dynamic problems and
those resulting from a mixed pressure-velocity formulation for fluid/structure problems are
similar to those governing thermoelastic coupled transient problems. In this sense, the work of
Liu and Chang [11] and the very recent work of Zienkiewicz et al. [12] could be extended to
the response analysis of thermally loaded structures.

In the present work, we present an unconditionally-stable and robust implicit-implicit
partitioned procedure for the solution of transient thermoelastic coupled problems. In Section
2 we briefly review the basic equations for the linearized coupled thermoelasticity theory. A
conventional implicit—implicit staggered solution procedure is summarized in Section 3. The
thermal coupling term in the structuraj dynamics equation is treated as an applied force.
However, while being very simple to implement, the resulting time integration algorithm

[13] and two-dimensional Youngdahl-Sternberg (14] problems. For both problems, the results
generated by the proposed stabilized procedure are shown to be in excellent agreement with
the analytical ‘exact’ solutions.

2. Finite element formulation
Let B denote the body of the structure to be analyzed, and 4B = dB,U3B, U4B, U 9B, the
surface enclosing it. The basic equations for the linearized isotropic coupled thermoelasticity
theory are
piu=dive+b inB,

b ~div(-k V8) ~ a(3A + 2u)0,tr(é)+r inB ,
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o=2ue+ A(tr e){ — a(3A+2u)(0 — §,)1

£={(Vu+ Vu')
and (1)
u=a ondB, , on=§ ondB,,

-

0=0 ondB,, -kV8@=4 ondB_,

where u, €, o, 0, 6, b and r are the displacement, strain, stress, temperature, reference
temperature chosen such that (8 — 6,)/6, << 1, body force and heat supply fields, respectively,
while u, A, ¢, a, p, k and n are the Lamé moduli, the shear modulus, the specific heat, the
coefficient of thermal expansion, the mass per unit volume, the thermal diffusivity and the
normal to the surface at a given point, respectively. I is the identity tensor. The dot and t
superscripts denote a time derivative and a transpose operation, and tr denotes the trace of a
given tensor.
If we now express the dependent variables u and @ by suitable shape functions as

u=Nu and 0==1\7§,

then a standard Galerkin procedure transforms (1) in the following algebraic coupled system
of differential equations:

Mi+Dui+Ku—CO=f, 00+ HO+6,C'u=r, (2)

where M, D and K are the usual mass, damping and stiffness matrice, f is the prescribed
structural loading vector, and Q, H and r are the capacity and conductivity matrices
and the nodal source vector, respectively. If L denotes the differential operator
corresponding to strain, the coupling matrix is expressed as C= [z (u(3A+2u)/
(A + w)a(LN)'[1,1,1,0,0,0]N dB.

3. Conventional implicit-implicit procedure

In many applications, the coupling term C'u that appears in the heat equation and is
induced by the effect of the strain rate is negligible. Therefore, one expects the second part of
(2) to remain parabolic and the temperature response to remain close to the uncoupled
solution. Consequently, the dependent variable @ is easier to predict than the displacement u,
so that the most natural way of solving (2) would be

<1+ * P
Man+l+Dul 1+Kun l=fn+l+C0n+l

: (3)
Qon*l + Hon«-l — rn+l _ GUC'u'"H
n+ P . . . .
where 8" is the predicted temperature. Unfortunately, the above numerical procedure is
only conditionally stable, even when each field is integrated with an unconditionally stable
algorithm. Proofs of this result are given by Dubois-Pelerin [15] for various consistent
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predictors. Next, we introduce an augmentation technique that stabilizes the staggered
solution of (2).

4. An augmented implicit-implicit partitioned procedure

Park et al. have introduced a differential augmentation concept that was successfully used in
the stabilization of staggered solution procedures for fluid-structure interaction problems.
Basically, one of the coupled equations is injected into the other in order to ‘soften’ the
system, either by reducing the large eigenvalues of the uncoupled stiff equation, or by
introducing some damping into it. Here, we adopt a different strategy. We perform a
semi-algebraic augmentation—that is, we augment one of the two coupled equations while
integrating both fields. :

First, the structural equation is integrated with the trapezoidal rule:

dn+l:dn+ %At(u"“-*-u")

=a" + L A@"+ M - Dat — Ryt co" 'y,

(4)
="+ A + g
=u"+Ara"+ L AC[E MUV - Dt — Kyt 4 co"™)
and the velocity vector is extracted as
(I+ 3 AtM™DYa™" = 4" + 4 A" + M7~ Kut + co" ). (5)
Next, the heat equation is also integrated with the trapezoidal rule:
0" =0"+1A40""" + ¢7)
=0"+ 140"+ Q7' (r" — HO"! -6,C'a" . (6)
Finally, the system is augmented by recasting (5) in (6) to obtain
0" =0"+ L A0+ Q' [r ~ Ho ! - 6,C'(I+4AtM™'D)!
x(zi"+%At(ﬁ"+M_1(f"”—Ku"“+C0"”)))]}. (7)
Substituting (5) into the second part of (4) and ce-arranging (7) leads to
(I+1 A7 BANM ™ 'Kyu""' - | A BanM™'ce" ' = F!
(8)

(-3 AF° QAK) "' + (1+ } AcQ'H + YA 9AC)0" ! = R
where

A=Q7'cmM™',
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Ba)=(1+3iAatM™'D) !,
F'l'=u"+1 Al + B(AD)u" + 4 AC(B(ANE" + M~ 'B(ANf""") (9)

R '=0"+1A40"+Q7'(r""" - 0,C'B(ANG™)]
-1 AP°[0,07'C(B(ANE" + BANM ™'Y .
Now, a displacement predicted staggered procedure for the solution of (8) is

1. Predict the displacement field:

= (10)
2. Solve for the temperature field:

(I+3ArQ7'H+ 1 A2 0,4C)0" " =R + L AP g AKu™ " . (11)
3. Correct the displacement field:

(I+ 1A BAOM 'K)u""'=F"*' + 1 A B(AM ™'Cco™" . (12)
4. Compute velocity, acceleration and flux fields:

"= BAN{a" + Y Ada" + M7 - K" + oY),

@t =M 400" - Du" - Ku'TY) | (13)

"t = Q—l(rn+l _ ooccdn-o-l _ H0n+l) '
REMARK 1. The predictor «"* Yis simply the previous step solution. It has been found (see,
for example, [17]) that this is the most stable predictor when used in conjunction with the

trapezoidal rule, while still maintaining a second-order accuracy.

REMARK 2. The injection of (5) into (6) is not arbitrary. It will be shown in Section 6 that
this is more economical than injecting (6) into (5).

REMARK 3. Equations (13) define the computational path of the staggered procedure.

5. Stability and accuracy analyses

In this section, we establish that (10)~(13) result in an unconditionally stable second order
accurate transient algorithm for the time integration of the coupled system (2). To avoid
lengthy expressions, we consider the undampled (D = 0) and unforced ( f= r =0) case. Note
however that even when D = 0, the quantity €8 still transmits a rate dependent damping effect
to the structural equation.
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STABILITY. The stability of the proposed staggered procedure can be examined by seeking
a nontrivial solution in the form

un+l = un

n+1 -n

u u

an+l = it; an (14)
0n+l 0"

én+l 0'1

and determining under what condition the real part of z is positive. Substitution of (10) into
(11) and (14) into (11)-(13) yields, after some algebraic manipulations,

[ I+ AP MK -1A M~ 'C Hu"}_[o}

2 2 - ) 15
~(1-2)4 4 AK 1+l ArQ 'H + ) Al gAaC|| 0 0 (13)

Therefore, the characteristic equation associated with (15) is

|M2’ + VM A2 + (K + 0,60 7'C + L A 6CQT'CM K AF 2+ VKL AP =0,

(16)
where

V=CUuc', uU=Q 'H(C'C)"!

and | | denotes the matrix determinant. If the matrices M, K, Q and H are positive definite,
and the coupling matrix C has full column rank, then U, V and each matrix coefficient of the
deteriminant expression (16) is positive definite. If C is column rank deficient. U and V are
positive semi-definite. In any case, all coefficients of the stability polynomial are non-negative,
Consequently, the first part of the Routh—~Hurwitz criterion (18] for unconditional stability is
satisfied. In order to check the second component of this criterion, we consider a 2-dof mode]
problem for (2). The corresponding scalar form of (16) is

4,2’ +a,2’ +a,z+a,=0, (17)

where

_ _ Ath _Af[ 2 o(,cz( Ar? 2)] _APhR
a; =1, a, = 27 a, = 