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SUMMARY

This research program has dealt with the theoretical d,_velopment and computer implemen-

tation of reliable and efficie_xt methods for the analysis of coupled mechanical problems that

involve the interaction of mechanical, thermal, phase-change and electromagnetic subprob-

lems. The focus application has been the modeling of superconductivity and associated

quantum-state phase-change phenomena. In supporz of this objective the work has ad-

dressed the following issues: (1) development of variational principles for finite elements,

(2) finite element modeling of the electromagnetic problem, (3) coupling of thermal and

mechanical effects, and (4) :'omputer implementation and solution of the superconductivity

transition problem.

The research was carried c_lt over the period September 1988 through March 1993. The

main accomplishments haw; been: (1) the developmellt of the theory of paxametrized and

gauged variational principles, (2) the application of those principled to the construction

of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of elec-

tromagnetic finite element_ with thermal and super,'onducting effects, and (4) the first

detailed finite element simulations of bulk superconductors, in particular the Meissner

effect and the nature of th_ normal conducting boundary layer.

The grant has fully supported the thesis work of one doctoral student (James Schuler, who

started on January 1989 and completed on January 1993), and partly supported another

thesis (Carmelo Militello, who started graduate work on January 1988 completing on

August 1991). Twenty-thr(_e publications have acknowledged full or part support from this

grant, with 16 having appeared in archival journals aad 3 in edited books or proceedings.
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1. INTRODUCTION

Many engineering applications of interest to NASA require the solution of coupled me-
chanical problems. A coupled problem consists of two or more subproblems that can be
separately characterizedby virtue of their physical nature. Simulation of coupled problems
is complicated by the two-way nature of the interaction between the subproblems. This
interaction has to be considered when seeking steady-state or transient solutions. The
treatment of subproblems as a coupled problem, asopposed to considering them as a sin-
gle, indivisible problem, ari:_esfrom the different physical nature of eachsubproblem. Such
differencesencouragescustomizedtreatment, from modeling through computer implemen-
tation. Examples of couped problems in aerospaceare: design of propulsion systems
(coupling structures, flow, thermomechanicsand combustion), active vibration control of
spacestructures (coupling .,,tructures and control), pr,,diction of flutter in turbomachinery

(coupling structures, comb_tstion, and gasdynamics) and airplane wings (coupling struc-

tures and aerodynamics).

The work reported here de_ls with coupled problems that contain an electromagnetic field

as one of their subproblem,,;. The research has addres'._ed both theoretical and application

components. The theoretical component deals generally with methods for finite element

modeling of electromagnetic, thermal, mechanical arid phase-change effects individually

and then considering their interaction in coupled problems. Because the domain of appli-

cations that lead to such problems is extremely wide and as yet remains largely unexplored,

the application component of the research was focused on the particular problem of super-

conductivity.

Superconductivity involves primarily the interaction of electromagnetic and thermal fields.

It may secondarily interact with mechanical effects such as motion or couling fluid flow.

Transition from normal to _uperconducting state is a phase change phenomenon that in-

volves quantum-mechanics ,_ffects. For conventional Type I and II bulk superconductors

transition is largely controlicd by magnetic field inten:_ity and temperature. Consequently

the transition problem displays three of the four effects addressed in the theoretical com-

ponent of this work.

The following narrative outlines the main developments and accomplishment of this re-

search project. Details are provided in the attached publication material.

2. DEVELOPMENT OF THERMOMECHANICAL ELEMENTS

Initial effort over the period September 1988 througt_ February 1989 was focused on the

variational basis for constructing high-performance mechanical and thermal elements. This

primarily theoretical effort was carried out by one of tile P.I.s (CAF) with the assistance of

Carmelo Militello (a doctoral graduate student mainly supported by a research fellowship).

The point of departure was previous research, funded by ONR and NRL, on the free-

formulation variational principles reported in Referen,'es [1-3].



A more general variational formulation for the mechanical elements, which includes the
assumednatural strain (ANS) formulation, wasestablishedand reported in References[5-
7,9]. Onekey byproduct of this work wasthe AssumedNatural Deviatoric Strain (ANDES)
formulation, which is as a modification of the ANS that satisfies a priori the patch test.

The ANDES formulation was reported in References [5,10,18]. It became eventually a

focus of Militello's thesis [15], and the basis for constructing several high-performance

mechanical plate and membrane elements [14,20-22].

New representations of thermal fields were not addressed as standard formulations were

considered adequate for the coupled-field phases of this research. The framework of

parametrized variational principles was extended, however, to encompass incompressibility

[16,17], micropolar elasticity [23,24] and electromagnetodynamics [25].

3. DEVELOPMENT OF ELECTROMAGNETIC ELEMENTS

3.1 Theoretical Developments

Early in this research phase it was decided to base the development of electromagnetic

(EM) finite elements on variational principles that utilize electric and magnetic potentials

as primary fields rather than on the EM field intensity and/or fluxes (as done in most

of the existing EM finite element technology). It was felt that this choice provides for a

generality of application that encompasses both normal and superconducting materials as

well as taking care automatically of boundary and interior interfaces. These advantages

more than compensate two difficulties: no general variational formulation of this finite

element class existed, and potential fields axe less physically meaningful than intensity and

flux fields. The first obstacle was effectively removed by the developments outlined below.

The difficulty with physical meaning of potentials impacts primarily a priori understanding

on how to specify boundary conditions, and can be overcome by solving a range of practical

problems.

Early work on this subject, carried out by one of the P.I.s (CAF) from September 1988

through August 1989, was exploratory in nature. The scalar potential formulation of acous-

toelastic fluid fields, which satisfy the same governing equations as the electric-potential

field, was investigated in collaboration with R. Ohayon of ONERA (France). This re-

search, reported in References [4,8], did clarify the way to obtain general potential-based

variational principles than can be procedurally translated to the far more complex EM

case, which involves vector potentials.

3.2 Normal-Conducting Or.e-Dimensional EM Elements

On January 1989 James J. Schuler, a first-year graduate student, started his Ph.D. research

in electromagnetic finite elements with full support from this grant. By late 1989 a new

class of electromagnetic finite elements based on a four-potential variational principle had

been formulated and tested. The development steps are summarized below, and described

more fully in a journal article [11].
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A variational statement for the electromagnetic equations (l_axwell equations) in an arbi-

trary material was obtaine_:i. The primary variable of this principle is the four-potential,

which integrates the scalar electric potential with the vector magnetic potential. The

principle derived here gene, ralizes those previously published in the literature, which are

restricted to free space. Because of its generality, it can serve as a basis to model

ferromagnetic, semiconductor and superconducting materials. The principle was ini-

tially constructed using the canonical decompositioi_ method formerly validated for the

acoustoelastic-fluid potenti',d by Felippa and Ohayor_ [4,8]. A simplified formulation for

non-polarizable materials was found later "working backwards" from the general principle

and is the one presented in Reference [11].

The variational principle is applicable for one, two and three space dimensions. It is

applicable to both static alld dynamic analysis under harmonic or transient loading. To

quickly validate the application to finite elements, thr principle was specialized to normal

conductors with one-dimensional axisymmetric geometry. A finite element model with

linear variation of the radial potential component in space was developed and implemented

in straightforward fashion. The development of the forcing function, however, was more

involved. The resulting implementation was tested on the static problem of the field

associated with a cylindrical conductor and excellent a_reement with the analytical solution

was obtained [11].

3.3 Normal-Conducting Two-Dimensional EM Elements

Extension of the methodoh)gy outlined in 3.2 to multiple space dimensions brought sur-

prises. In two and three dimensions it was found that the Lorentz gauge constraint was

not automatically enforced by the finite element shape functions. The constraint was

added through a Lagrangi_m multiplier, thus produ,'ing the so-called "gauged potential

variational principle" presented by Schuler and Felipl:,a [13]. The modification delayed the

development of multidime:_sional EM elements for several months while several ways of

discretizing the gauged po_ential were tried and evaluated. Eventually it was decided to

treat the multiplier as an _Jlement-level degree of freedom that enforces gauge interaction

in a mean sense over each _lement.

The multidimensional EM ¢;lements were incorporate([ into a program that can solve prob-

lems with arbitrary axisymmetric geometry. The program is restricted to treat static

(time-independent) problems with a known current d_nsity distribution. Excellent results,

reported in Reference [13], were obtained for two problems of simple geometry.

3.4 Current Predicting; EM Elements

For the envisioned extensi'_n to superconductivity it was realized that the problems de-

scribed in Sections 3.2 and 3.3 were overly restricted in that the distribution of the electric

current is assumed known a priori and is uniform throughout a conductor. In general_

temperature gradients witain a conductor and a conductor's geometry cause the current

distribution within a cond lctor to be non-uniform and therefore unknown. To accurately



c_

capture the effects of thermal-electromagnetic coupling it was therefore necessary to con-

struct an electromagnetic finite element that could predict electric current densities given

the total electric current. This task was started on June 1991 by Schuler and Felippa and re-

quired further modifications of the four-potential variational principle. A one-dimensional

time-independent axisymmetric geometry element was tested on a variable current prob-

lem with known analytical solution. Values for the current density as computed by the

finite element method agreed well with analytical predictions. These developments are

reported in References [19,25,26].

3.5 Superconducting EM Elements

This task also started in 1991. The generality of the previously outlined four-potential

variational formulation allowed for the straightforward extension of this method to Type

I and II bulk superconductors treated by the Ginzburg-Landau model. Only the time-

independent one-dimensional case was explored because of the extremely nonlinear nature

of the problem and the presence of extremely high gradients that necessitates highly graded

meshes to treat boundary layers. The nonlinearities are in part due to the boundary type

behavior of the current density stream that occurs within a bulk superconductor.

Initial attempts using the potential based variational approach predicted desired EM quan-

tities but numerical problems surfaced that caused the investigators to suspect the validity

of the numerical solutions. These problems and the original formulation of the problem

are described in a preliminary report [18]. These numerical difficulties were eventually

overcome through the use of a highly graded finite element mesh, a reformulation of the

quantum mechanical wavefunction _b, and a four-part scaling scheme. The resulting fi-

nite element was eventually thermally coupled through temperature dependent material

parameters as discussed in Section 4 below.

4. THE COUPLED PROBLEM

4.1 Thermomechanical Interaction

One of the P.I.s (KCP) contributed his expertise in partitioned analysis methods to the

development and testing of an unconditionally-stable, second-order accurate, staggered

time integration procedure for treating thermomechanical coupling. This research was led

by Professor C. Farhat, who was supported by other sources, and is reported in Reference

[12]. The method described in this article is the basis for ongoing work in thermomechanical

coupling for supersonic atmospheric and reentry vehicle structures.

4.2 Thermoelectromagnetic Interaction

On May 1992, work on a suitable finite element model for thermal conduction in a normal

conductor was started. A conventional heat conduction finite element was used and heat

convection boundary conditions were assumed. The main difference with respect to usual

4



heat conduction analysis is that material properties of the normal conducting finite element
were allowed to be temperature dependent, the temperature of the conductor, and that
the internal heat source is coupled to the EM current intensity via by Ohm's law. The
conducting wire problem was used as test for the computer implementation. Insertion of
actual valuesfor material properties gave a highly ill-conditioned system of equations for
the independent variables. The ill-conditioning was overcomeby useof a specialized finite
element mesh and matrix ,;caling techniques. These techniques as well as results for the
thermal elementsare discu:;sedin Reference[25].

4.3 Modeling of Quantum-State Phase Changes

After developing EM finite elements for the normal and superconducting phases of a con-

ductor and adding therma] effects to each element separately, they were used to form a

comprehensive program th_:_t could choose the correct quantum-state (QS). The correct

state is determined by checking whether the critical temperature of the conductor and

the critical magnetic field [:ave been exceeded. If they are, the program uses the current-

predicting element discussed in Section 3.3, coupled with the thermal element of Section

4.2. Otherwise the the program uses the Ginsburg-Landau superconducting finite element

discussed in Section 3.5. In the most general case lhese conditions hold over different

regions of a partly-superconducting system.

4.4 Analysis of Fully Coupled Problem

The coupled EM-thermal-QS finite element models wore first tested on a one-dimensional

time-independent Type I superconductor cylindrical wire carrying a specified total current.

Even for this highly idealized situation there is no available analytical solution. The

finite element performed extremely well in that sew,ral important physical phenomena

were predicted. First and f:_remost was the identification of the Meissner effect, which is

the almost total expulsion of the magnetic field from the superconducting interior of the

conductor. The phenomenon is caused by the current density stream traveling in a thin

(skin) boundary layer at the conductor's surface, an expected physical behavior that was

also clearly displayed by the, finite element solution. The value of the magnetic field at the

conductor's surface can be determined by analytical means and the finite element model

correctly predicted that condition.

Finally, the finite element model of the foregoing pr(,blem was tested using a variety of

temperature and current loads. These tests also followed expected physical behavior -

as either the current load or the temperature of the system was increased, the depth

of the boundary layer increased to accommodate the increasing energy of the system.

The complete program perJ'ormed well and determined the correct equilibrium state, as

expected, for a varity of thermal and current loadings. These results, as well as the

tracing of the nonlinear equilibrium path using increraental-iterative solution procedures

with arclength control are are discussed in detail in S_huler's thesis [26].

The main shortcoming of the, one-dimensional model is that it cannot determine the actual
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distribution of EM quantities at the transition point when the partly-superconducting wire
suddenly transitions to being a normal conductor. At sucha branching point, the system
effectively becomes two-dimensional thus transcending the modeling capabilities of the
one-dimensional finite elements. Time constraint on the reported research activity did
not allow for the extension of the one-dimensional elements to include this case. Such
an extension is to proceed under separate (NSF) funding as part of a Grand Challenge
Applications project.

5. CONCLUSIONS

The main accomplishment of this research can be summarized as follows.

1. A general variational framework to construct finite elements for a wide range of ap-

plication problems (mechanical, thermal, fluid and electromagnetic) was developed.

. A comprehensive set of electromagnetic finite elements for normal and superconduct-

ing media was developed and validated. This set includes thermal coupling and

current-prediction effects.

, The first detailed simulation of partly superconducting bulk superconductors by finite

element methods. Key physical effects, notably the Meissner effect and the changes

in the depth and distribution of the normal-conducting boundary layer were clearly

identified.

These accomplishments open the door to the application of the finite element method

to more complex coupled EM problems. In particular: more spatial dimensions, time

dependency, frequency-state-dependent material properties, high-temperature supercon-

ductivity, and EM interaction with mechanical effects.
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PARAMETRIZED MULTIFIELD VARIATIONAL

PRINCIPLES IN ELASTICITY: I. MIXED FUNCTIONALS

CARLOS A. FELIPPA

Department of Aerospace Engineering Sciences, and Center for Space Struc:ures and Controls, University of Colorado.
Boulder. CO 80309-0429, U.S.A.

SUMMARY

A one-parameter family of m_xed variational principles for linear elasticity is constructed. This family
includes the generalized Hellinger-Reissner and total potential energy principles as special cases. The
presence of the free parameter offers an opportunity for the systematic derivation of energy-balanced
finite elements that combine displacement and stress assumptions. It is shown that Fraeijs de Veubeke's
stress-assumption limitation principle takes a particulary elegant e_pression in terms of the parametrized
discrete form. Other possible parametrizations are briefly discussed.

GOVERNING EQUATIONS

Consider a linearly elastic body under static loading, occupying volume V. The body is bounded

by the surface S, which is decomposed into S: Sa U St. Displacements are prescribed on Sd,
while surface tractions are prescribed on St. The outward umt normal on S is denoted by n mm.
The presence of internal natural or artificial interfaces is not treated in this paper.

The three unknown volume fields are displacements u = ui, infinitesimal strains e =- ee and

stresses o m as_ The problem data include the body force field b = bl in V, prescribed
displacements d = d_ on Sd, and prescribed surface tractions t = _ on S,.

The relations between the volume fields are the strain-displacement equations

e=l(Vu+VTu)=Du or eo=_(tti.j+uj, i) in V (1)

the constitutive equations
o=Ee or a_i=Eij_tekt in V (2)

and the equilibrium (bala_.ce) equations

-divo=D*o=b or oo.j+bi=0 in V (3)

in which D* = -div denotes the adjoint operator of D = l-(V+ Vr).
The stress vector with respect to a direction defined by the unit vector n is denoted as

a. = a.n, or a._ = aijn/ (4)

With these definitions the traction boundary conditions may be stated as

o,.=_ or cronj=_ on S, (5)

and thedisplacementbou_dary conditionsas

u=a or u,=d_ on ';d (6)
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NOTATION

Field dependence

In variational methods of approximation, we do not of course work with the exact fields that

satisfy the goyerning equations (1)-(3), (5) and (6), but with independent (primary) fields,

which are subject to variations, and dependent (secondary, associated, derived) fields, which

are not. The approximation is determined by taking variations with respect to the independent
fields.

An independently varied field will be denoted by a superposed tilde; for example ft. A

dependent field is denoted by writing the independent field symbol as superscript. For example,

if the displacements are independently varied, the derived strain and stress fields are

e" = :_(V + V T )U = Dfi, a" = Ee" = ED6 (7)

An advantage of this convention is that u, e and a may be reserved for the exact fields.

Integral abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted parentheses

and square brackets, respectively, around the integrand; for example

If f and g are vector functions, and p and q tensor functions, their inner product over V is
denoted in the usual manner as

and similarly for surface integrals, in which case square brackets are used.

Domain assertions

The notation

(a=b)v, [a=b}s, [a=b]s_, [a=b]s,, (I0)

is used to assert that the relation a = b is valid at each point of V, S, Sd and S,, respectively.

THE HU-WASHIZU PRINCIPLE

There are several essentially equivalent statements of the Hu-Washizu functional of linear

elasticity. The starting form used in this paper is the four-field functional presented by
Washizu: _

Flk,(fi,_, b, [)=_(a',_)v+(b,e"-_)v- P' (11)

where P_ is the 'forcing' potential

P'(ii,[) = (b, fi)v+ [i, fi-a]sd + [i, iils, (12)

The functional (I 1) will be called t-generalized (traction-generalized) in the sense that the

volume fields 6, _, b and the surface field f are subject to independent variations, whereas in
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the conventional form of the principle the relation [t = b,,]._ is enforced a priori. The

superscript t is used to distinguish it from the d-generalized variant

n_(_,_. _, d) (13)

in which the surface displacements cl are varied independently from the volume displacement

field ft. Functionals of the form (13) require the introduction of internal interfaces and are

studied more extensively iv a sequel paper, z

Application of the divergence theorem

(a,e")v= -(div o,u)v+ [a,,uls (14)

to transform the (8, Be") term yields the first variation of (11) as

81-[_v = (oe- 8, 8_)v + (e" - _, 86)v - (di_, 6 + b, 6_)i
(15)

- [i'-b,,,8_].s,- [_-(],Si]sd- [i- 8",,,Sft].,id

Setting 8FI_ = 0 yields the [-uler field equations and boundary conditions satisfied by the exact

solution:

(a=Ee)v, (e=e")v. (diva+b=0)v. [a.=i]s,. [o.=t]s,,, [u=a]s_ (16)

A PARAMETRIZED MIXED VARIATIONAL PRINCIPLE

Constraining the Hu-Washizu functional by selectively entorcing field equations and boundary

conditions a priori yields six functionals listed in Chapter 4 of Oden and Reddy's monograph. J

Of particular interest for i he present study are the t-generalized Hellirlger-Reissner functional

n_(_,_,i) _ - o p,= -,(o,e )v+(&e')v- (17)

and the t-generalized pot,:ntial energy functional

II_,(_,i) ' " P'= 2(0 , e")).- (18)

In addition, Oden and Reddy list an 'unnamed' functional whose t-generalized version is

l-Ilj (ft, 8, i) = (o", e')v - _(8, e°)v - (6, e")v- P' (19)

These three functionals zre special cases of the following parametrized form:

lI_,(fi, 5, _) = _(1 - 7)(0", e")r- _7(6, e°)) ' + 7(b, e")),- P' (20)

where 7 is a scalar. For 7 = 1,0 and - 1 we obtain the fun(tionals FI_, FI_, and Fib, respectively.

The first variation of (2f>) is

8YI_ = .:(e" - e°, 5b)v- (div o" + b, _),. (21)
- (_ - a;_,,5_]s, - [i - _, _)] :,,, - lu - _1,6f{_,,

in which a _ and 07_denote the _-weighted stresses

_ .),clef _o':_f-/b+ (l 7)0", o,,= 70. + (I- _:)o7, (22)

If -/_ 0, the Euler equations and natural boundary conditions are

(e_=C,) ., (div o"+b=0)v, [a;_=tls,,, [u=cl]s,, (23)

The constitutive equations do not appear since they are enforced a priori in FI_,. If -),= 0, the

first Euler equation drol)s out.
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ENERGY BALANCING

Distances

Let U(e) = _(Et, e)v denote the strain energy associated with field c. We may rewrite (20) as

a potential-energy deviator

! wII, - Flip - 7U(e" - e °) (24)

because

rI_, - FI_________= (b, e ° - e") - (b - a", e")v

3'/2 (25)

= (a _ - _, e" - e°)v = (Ee" - Ee °, e" - e°)v

If E is positive-definite, U(e" - e °) t> 0 and consequently

II_ .<.<FI_, if 3' > 0 (26)

If fi is kinematically admissible, FI_, exceeds the exact potential energy, as shown below. It

follows that to improve solutions in energy we expect to take 3' i> 0. Thus principles associated

with 3, < 0 have limited practical interest.

Let FI(u) denote the exact potential energy

H(u) = _(a, e)v - (b, u)v - [i, u]s, (27)

where a and e denotes the exact stress and strain field, respectively. If _ is kinematically

admissible and thus satisfies [_ = ti]s,, then the energy distance from Fl_,(fi) to the exact

functional (27) is (Section 34 of Gurtin 4)

FI_p - H = _(o" - o, e" - e)v = U(e" - e) (28)

Optimal approximation

To derive an 'energy balanced' approximation we impose the condition FI_, = FI, which yields

U(e" - e) (o" - o, e" - e) (29)
3'o_, = U(e" - e °) = (a" - _r, e" - e°)

For example, if we assume that the exact stresses and strains lie halfway between the approxi-

mate fields,

¢= _(o" + _), e = _(e ° + e") (30)

then 3'op, = _.

THREE-FIELD DISCRETIZATION

To construct a three-field finite element approximation based on FI_, it is assumed that,

globally, t

(fi = Nq)v, (fi"= Aa)v, [f= Ss]s, (31)

t Following the ususal practice in finite element work, the components of o and • will be arranged as column vectors,
and the moduli in E as arranged as a square symmetric matrix.
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Here the matrices N, A and S collect generalized displacement shape functions, internal stress

modes and boundary traction modes, respectively; whereas the column vectors q, a and s

collect generalized displacements, t stress mode amplitudes and surface traction amplitudes,

respectively. The derived fields are

(e# = DNq = Bq)v, (ou = EBq)v, (C = E-l_= E-tAa)v (32)

Inserting these expressions into 1-I_, we obtain the algebraic form

Hi(a, q. s) = _(1 - _,)qTK,,q - _TaTCa + 7qTQa - qTfq _ sTRq _ sTf, (33)

The matrices K,, C, Q and R that appear in (33) are called the displacement-stiffness,

compliance, leverage and boundary-dislocation matrices, respectively, and are given by

K_ = (B fEB)v, C = (ArE - [)v, Q = (BrA)v, R = [SrN] so (34)

Both Ku and C are .,,ymmetric. The forcing vectors are

fq = (Ntb)v+ [Nr{]s,, fs = - [STa]Sd (35)

The vector fq contains generalized forces (conjugate to q), whereas L contains generalized

displacements. Making (33) stationary yields the linear system

[ illil I°l-_Q (1 -_,)K. - r = fo (36)
0 - R fs

The first matrix equation is the discrete analogue of (e" = e°)v in (23), and expresses internal

compatibility. The second one is the discrete analogue of the next three relations, and expresses

equilibrium. The [a._t relation is the discrete analogue of [u = fi]s_ and enforces boundary

compatibility.

Since there is no force term in the first matrix equation, the stress amplitude vector a can

be readily condensed out if C is nonsingular, and we obtain

-R Ls) (37)

where

K = (1 - 7)Ku + 7QC- _Q T := (1 - 7)K,, + 7Ko (38)

is the effective stifftTess matrix. This is a 7-weighted combination of the displacement assumed

stiffness matrix K, and the stress-assumed stiffness matrix Ko=QC-_Q T. [f the assumed

displacements satisfy _ii =also, the contribution from [[,fi- dis, vanishes and we are left

with the conventional stiffness equations

Kq = fq (39)

LIMITATION PRINCIPLE

The famous limitation principle of Fraeijs de Veubeke 5 takes on a particularly striking

algebraic representation in terms of the parametrized matrix system (36). This principle applies

T If q are nodal displac.-ments. N contains conventional shape functions, but for the present purposes we need not
specialize to that level.
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when the derived stress field o" is contained in the assumed stress field $:

_ a" = EDQ (40)

This inclusion can be expressed in matrix form as

_=Aa=EBaq+A_a_=[EB Ax]Ia"l (41)
_ ,)"air

Here aq contains the same number of entries as q whereas A_ contains 'excess' stress modes.

Inserting (41) in (36) and with Qx = (B T A,)v and Cx, = (A_ E- tA_)v, we obtain

The first two matrix equations give aq = q and a_ = 0. Dropping the equations associated with
the extra stress modes reduces (42) to

K,, (1 - 3')K,, - R r q = fq (43)
- R 0 s f_

which obviously condenses to (37) with K = K,, for any 7. The solution (q, a,s) becomes

independent of 3'. In other words, it is useless to inject additional degrees of freedom in the

stresses beyond o" if the three-field variational principle is used. Furthermore, if a" = ?7there

is no point in using anything other than the potential energy principle 7 = 0.

In fact the limitation principle expresses nothing more than the algebraic identity, valid for

any _,,

_ 3'yT - 3'Z 7YT = (44)

3'X 7Y (1 - 3,)X Xx

where X is symmetric, and Y and Z are arbitrary.

Constant stress assumption

If the derived field a" varies over V, assuming a constant stress field # for # is a safe way
to get around the limitation principle. In this case it is convenient to take a=# and A = ! (the

identity matrix) in (31) so that (_ = #)v. Then the stress-assumed stiffness matrix is

go" -_"UB TF, B (45)

where v denotes the total volume v = (1)v, and 13 and F. are the volume averages

= (B)v/v ' _.-t = (E-')v/U (46)

The effective stiffness matrix (38) is a weighted average of K, and K,,. Since K, is typically rank
deficient, 3' = 1 is excluded.
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TWO-FIELD DISCRETIZATION

If the relation [t = a, Js is imposed a priori as an essential boundary condition, t is no longer

an independently varied field, and I-I_ becomes a two-field functional. The last finite element

assumption of (31) is replaced by

It" = a. = A.a} _ (47)

where An denotes the normal projection of A on Sd, and the finite element equations become

_(._ + P) t1 - _,)K,,J Lr_)

with

P = [N r A,]s_, F_ ==[Nra]s,, (49)

A range analysis such as performed in the previous subsection reveals that the limitation
principle does not generally apply if [u ;_ also. The effect of the additional stress modes is to

improve the satisfaction of boundary compatibility. But if the assumed displacements satisfy

[u = also, P and f, vanish and the limitation principle again holds.

RELATED FINITE ELEMENT MODELS

The parametrized functional I-Ivr may be used to construct finite element models by treating each

element as a body ot volume I/and the element botmdary as S. These elements differ from

conventional ones in the appearance of the parameter _. The element type will depend on the

number of independent fields and the interelement continuity imposed on them. The most
useful combinations are listed in Table I.

NUMERICAL EXAMPLE

The application of t_e preceding theory to finite element development is illustrated with a

simple two-dimensional element that belongs to the first class listed in Table I. Consider a

rectangular 4-node plane-stress element referred to the x ----xl and y =-- xz axes located along

the rectangle sides. "l'he element has constant thickl_ess h, x-dimension L and y-dimension

I-1= pL, and is made of isotropic elastic material with elastic modulus E and Poisson's ratio

_,. The internal displacement field (u =, uf, v---u:) is constructed by the usual biiinear

assumption, which satisfies interelement continuity. The internal stress field (a_---a_l,

Table I. Some finite element models derivable from I-l'v

Number of lntereiement

independent continuity on1 Connected Condensed Resulting Limitation
fields _ ,3- { freedoms freedoms FE model principle applies?

2 c ¢ x q a Stress relaxed
displacement Yes

2 d _ I s q Continuous-stress
traction-connected hybrid No

3 d cl c s q ,a Discontinuous-stress
traction-connected hybrid Yes

t c = continuous, d = dis:ontinuous, x = not needed, I = _inked _) _, via equation (47).



86 C. A. FELIPPA

ayy _ aZZ, try '-o_z, others zero) is constant. An independent surface traction field is not

needed. The question investigated here is the value of 3' that optimizes the behaviour of the

element in pure in-plane bending along the x axis.

The element freedom arrangement is

qT = (/,tl U2 U3 //4 Ot V2 /'3 /'4 ), a T = (Oxx Oyy "ix'y) (50)

The exactly integrated conventional displacement stiffness

"k, k2 k3 k4 k5 k6

kl k4 k3 k8 k7

k_ k2 k7 ks

kt k6 k_

k9 kto

k9

Kl# =

symmetric

where

is given by

k_ ks

k_ k5

ks k6

ks k7

kll k,2

kt2 kit

k9 klo

k9

kl =6_h(l - v + 2p2),
Eh

k2 = _ (1 - v- 4p2),
tZp

k3 = _ __Eh (1 - v + 202)
120

ka = Eh (1 - v - a2), k_ = Eh- 67 - T (1 + ,,),
Eh

k6= - "8 (1 - 3.)

k7 = Eh
--T (I+ _),

Eh
k8 = - -_- (1 + 3v),

k9 = - E---_-h{2 + (1 - v)p 2)
6p

k,o= -E'--_h(1 - (I - v)pz), ktt= - E"-_-h(2 + (1 - v)p2),
6p 12p

The stress-assumed stiffness Ko is given by (45), in which

-1 1 1
!i 0 0

_" -lip -I/p llp

e F1 . o

- _ L v I 0t=v._ ___ o o l(l-v)

kl2=- Eh (2-(l-v)p 2)
12p

-1 0 0 0 O'l

0 -lip -lip l/p I/p J1/p -1 1 I -1

, v = hilL =,ohL 2

(51)

(52)

(53)

and K is the weighted combination (38). The test displacement field is that of pure bending
about x:

u = - xxy, v = _xx 2 (54)

where x is the deformed beam curvature under the displacement field. Calculation of the energy

ratio (29) over the element through MACSYMA yields

1-v

3'op_= 1 - v + 2p" (55)

1

For a square element, p = 1 and 3'o_, varies from ] to _ as v changes from 0 to _. This result

was checked by solving the classical 4:1 cantilever beam problem (Reference 6, p.49) for v = 0
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TableII.Computed/exacttip-displacementratios
forcantileverproblem (v= 0)

Mesh 3' Constantmoment End shear

I× 4 0-0 0-6666 0.6631

1/3 1- 00_ 0.9794
2/3 2"0000 1"929 !
1"0 °°t" °oi"

2 x 8 0.0 0.8889 0.8841

I/3 1.0000 0.9911
2/3 1. 1142 1" 1280
1.0 1.3333 1-3118

t Rank deficient.
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with meshes of square elements. The values listed in Table II pertain to the two load cases of

pure bending moment and parabolically-varying end shear, and are reported as the ratio of the

computed to the exact tip displacement. It is seen that this 'stress relaxed' displacement model

verifies (55) in that 3' = i: yields significantly better accuracy. However, the fact that the optimal

3' depends strongly on the element aspect ratio makes this 'weighted stiffness' approach of
dubious practical value for elements of arbitrary shape. The formulation discussed in Part II z

attacks the optimal-element problem in a more general way through field decomposition and

energy orthogonality arguments.

OTHER PARAMETRIZATIONS

A one-parameter famil-/of strain-displacement mixed variational principles derived from the

Hu-Washizu functional (11) by eliminating the stress field can be represented as

l-I_(_), _, i) = _(l - _)(a",e")- ' (56)2B(a_, :.)v + B(ae, e")v - p'

where 5' is a scalar. For :/= 0 we recover Hb, whereas if/3 = I we obtain the Reissner-type

strain-displacement principle listed in Oden and Reddy 3, generalized with an independent i:

r _ ! erI.s(,(Lf) = - + (57)2(a ,_) (a',e")v- P'

Continuing along this path, a two-parameter, four-field family that embeds both II_ and H_,_

is easily constructed:

l-I_,(fi, _, 0, [) = _(1 - 3 - 3,)(a", e")v+ (1 -/3)3,1 (b, e")v - _(b, e°)v)
+ (1 - "/)/31 (a", eU)v - } (o', _)v] - P' (58)

This functional yields stress-displacement principles for B=0 and strain-displacement

principles for V = 0. [ really, the Hu-Washizu principle itself may be embedded in a three-

parameter form:

I'I_,j., = (1 - o_)H_ + _H_> (591

which obviously redu¢es to H_ for _ = I and to I'I_ for (_ = O.

The superiority of one parametrized form variational principle over another as regards the

construction of energy-balanced finite elements is not clear at this time.
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CONCLUDINGREMARKS

Theparametrization(20)of thestress-displacementvariationalprinciplesprovidesa unifying
frameworkfor thedevelopmentof finiteelements.This frameworkembodiesthepotential
energyandHellinger-Reissnerprinciples,andencompassesdisplacement-assumedelements,
conventionalmixedelementsandtraction-connectedhybridelements.But it doesnotcover
developmentssuchasdisplacement-connectedhybridfiniteelements,incompatibleelementsor
thefreeformulation.7To accomplishthatonehasto continuetheprocessby introducinga
d-generalizedversionof (20),internalboundaries,internalfieldenergy-orthogonalsplitting,

z
and selective kinematic constraints. These extensions are covered in a sequel paper.
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PARAMETRIZED MULTIFIELD VARIATIONAL

PRINCIPLES IN ELASTICITY: II. HYBRID FUNCTIONALS

AND THE FREE FORMULATION

CARLOS A. FELIPPA

Department of Aerospace Engineerin _Sciences and Center for Space Structu,es and Controls, Universtty of Colorado.
Boulder, CO 80309-0429, U.S.A.

SUMMARY

A one-parameter family of d-generalized hybrid/mixed variational principles for linear elasticity is
constructed following a domair, subdivision. The family includes he d-generalized Hellinger-Reissner
and potential energy principles as special cases. The parametrized principle is discretized by independently
varied internal displacements, stresses and boundary displacements, rhe resulting finite element equations
are studied following a physically motivated decomposition of the slress and internal displacement fields.
The free formulation of Bergan and Nygfi.rd is shown to be a special case of this element type, and is
obtained by assuming a constant internal stress field. The parameter appears as a scale factor of the
higher-order stiffness.

INTRODUCTION

This paper continues a sttidy, initiated in Part I_, of parametrized stress-displacement

variational principles in linear elastostatics. The boundary value problem is as follows. We

consider an elastic body of volume V and surface S: St U Sa. Surface tractions t are prescribed

on S, whereas displacements a are prescribed on Sd. The internal (volume) fields are

displacements u, stresses a, strains e and given body forces b. The internal field equations are

e = Du, o= Ee and D'a= b in V, where D = _(V+ Vr), D* = -div and E is the elastic modulus

operator. The boundary conditions are u = a on Sd and an = t on S,.

The reader is referred to Part I I for additional notational conventions. In Part I the following

parametrized functional was introduced:

1-I_(fi,_,i')=_(1-3,)((r",e")v-' " ° e" P'27(0, e )v -+-7(o', )).- (I)

where 7 is a scalar, and Pt is the forcing potential

P'(G,i)= (b,_)v+ [i,_-u]_+ [i, fils, (2)

In this functional the volume fields fi, 6 and 8"and the surface field t are subject to independent
variations.

This functional 'interpolates' the t-generalized HelIinger-Reissner and total potential energy

functionals Fib, and FI],,, which are obtained for 7 = 1 and _, = 0, respectively. The qualifier

't-generalized' means that the surface traction field f is varied independently whereas in the

conventional form of those principles, the constraint [t = o,] s is enforced a priori.

0748-8025/89/020089-10505.00

© 1989 by John Wiley & Sons, Ltd.
Received April 1988

Revised July 1988



90 C. A. FELIPPA

Figure 1. Example of internal interface

Internal interfaces

In the section that follows an alternative version of (1) is constructed, in which boundary

displacements d can be varied independently rather than boundary tractions t. These

displacements play the role Lagrange multipliers that relax the internal displacement continuity

requirement. Variational principles of this form will be called d-generalized.

The choice of d as the independent field is not variationally admissible on Sd or 3",. We must

therefore extend the definition of boundary to include internal interfaces, collectively

designated as Si. Thus

S: Sd U S, U Si (3)

On Si neither displacements nor tractions are prescribed. A simple case is illustrated in

Figure I, in which the interface S_ divides V into two subvolumes, V ÷ and V-. An interface

such as Si in Figure 1 has two 'sides', called Si ÷ and S(, which identify Si viewed as boundary

of V ÷ or V-, respectively. At smooth points of Si the unit normals n + and n- point in

opposite directions.

The integral abbreviations of Part I may be generalized as follows, with reference to Figure

1. A volume integral is the sum of integrals over the subvolumes:

{f)v_f lv÷ f dV+ iv_ f dv (4)

An integral over Si includes two contributions:

{g].s._f f g* dS+ f g-dS (5)
S," S(

where g* and g- denote the value of the integrand g on Si* and S(, respectively. These two

values may be different if g is discontinuous or involves a projection on the normals.

PARAMETRIZED d-GENERALIZED MIXED PRINCIPLE

Variational principle

The d-generalized counterpart of FI_, is

FI_(ii, _, d) = _(1 - ./)(a", e")v - _'y(#, e°)v + -y(?r, e")v - pd (6)
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This agrees with (1) except for the forcing potential, which is

Pd(ii, b, d) = _b, fi)v+ [_.,fi- a]s. + [i, fi]s, _- [b..ii- dis, (7)

Defining the -/-weighted stresses

tr_-/?7+(l--/)a " in V, a_f-/b.+(1--/)a_ on S (8)

the Euler equations and natmal boundary conditions for 3, ;_ 0 are found to be

(e" = e°)v, (div a_ ÷ b = 0)v, [aav= i[s,, [a. = a._]s., [u = a]s.
(9)

[a_++a*n =O]s,, [a_-+trg=0]s,, [u+=u-=d]s,, [._* +a; =0],,

If -/= 0 the first equation, (e" = e_)v, drops out.

Modified forcing potential

Substituting d for u in the potential (7),

Pdt_,a,(_) = (b,_)v+ [a.,ti- a]s. + [i.ci]s, + [a.,_- oils, (IO)

is not variationally admissible because incorrect Euler equations result. A correct potential that

resembles (10) can be obtained in two stages. First, surface terms [_.,fi-d]s. and

[_t., ii- ti]s, are added and subtracted to produce

Pd(fi, a,d) = (b. fi),'+ [an, d-a]sd+ [an-i. fi]s,+ [i.d]s, + [a.,[I- Ills (11)

Second, t is assumed to be in the range of an and the condition Jan =t]s, satisfied a priori,

reducing (ll) to

Pd(fi, a,d):. (b, fi)v+ [a.,d- als. + [i,d]:,, + [a.,_t- d]s (12)

This expression differs from (10) in that all-important surface dislocation integral is taken over

S rather than S_. Further _dmplification results if the displacement boundary conditions

{ti= als. are exactly satisfied:

Pd(ti, b, ti) = (b, fi)v+ [i, tl]s,+ [a., fi - ti]s

This expression of pa is used below, as modifications required to

[ti ;_ a]s. are of minor importance.

(13)

account for the case

FINITE ELEMENT APPROXIMATIONS

In this section the finite element discretization of lI_ is studied. Assume formally

(_ = Nq)z, (b= Aa)v, [d = Vv]s. (14)

Here the matrices N, A and V collect generalized displacement shape functions, internal stress

modes and interface displacement modes, respectively; the column vectors q, a and v collect

generalized internal displacements, stress mode amplitudes and generalized interface

displacements, respectively The assumed volume fields need not be continuous across Si. The
derived fields are

(e" = DNq ,: Bq)v, (a" = EBq)v, (e° = E-l_r = E-'Aa)v (15)
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Inserting these expressions into H_ with the forcing potential (13), we obtain the algebraic form

l-l_(a, q, s) = _(! - 7)qrK,,q - _-raTCa + 7qrQa - qrPa + vrLa - qrfq - vr f, (16)

where

K,, = (BIEB)v= K,S, C = (ArE -IA)v= C r, Q = (BIA)v

L= [VIA,]s, P= [NrA,]s, fq = (Nrb)v, fv= [Nri]s, (17)

The matrices K,,, C, Q, L and P are called internal-displacement-stiffness, compliance,

leverage, force-lumping and boundary dislocation matrices, respectively. Making (16)

stationary yields the linear system

•,/Q-- P (1 - _,)K,, = f,_ (18)
0 fv

The first matrix equation is the discrete analogue of the first, fifth and eighth relations in (9),

and expresses internal and boundary compatibility. The third equation is the discrete analogue

of the last relation in (9), and expresses equilibrium across Si. The second equation is the

discrete analogue of the remaining relations in (9), and expresses internal and boundary

equilibrium. We now proceed to reinterpret these equations in terms of hybrid elements.

HYBRID ELEMENTS

Approach

The preceding treatment is relevant to the construction of displacement connected hybrid

elements. Hybrid elements based on more restricted assumptions were originally constructed

by Plan and co-workers, z-4 The principal features of the hybrid approach are:

(i) The domain is subdivided into elements before the variational principle is established.

(ii) Continuity requirements across element boundaries are relaxed by introducing boundary

tractions or boundary displacements as Lagrange multiplier fields.

(iii) All stress and internal-displacement degrees of freedom are eliminated (by either static

condensation or kinematic constraints) at the element level.

Feature (i) says that hybrid functionals are effectively mesh-dependent, since the domain

subdivision process introduces element boundaries which must be treated as internal interfaces,

and therefore become part of the boundary portion Si. Previous developments remain valid if

we reinterpret 'body' as 'individual element', 'volume' as 'element volume' and 'surface' as
'interelement boundary'.

Continuity and connectors

The internal fielos .. and fi may be discontinuous across elements. The boundary
displacement field d, however, must be continuous on Si, i.e. it must have the same value on

adjacent elements. This conditions may be satisfied if ti on an interface separating two elements

is uniquely interpolated by nodal values as entries of v, which automatically becomes the vector

of connected node displacements or connectors.
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FIELD DECOMPOSITION

In this and subsequent sections we work with an individual element, unless otherwise noted.

The element volume V and the element surface is S : Sd k) S_ U S,. The v subvector contains the

element-connector degrees of freedom; q and a contain internal freedoms. To gain further

insight into the structure of the element equations and to link up eventually with the free

formulation, we proceed to decompose both internal element fields as follows.

Stress decompostion

The assumed stress field b i_ decomposed into a mean value, b, and a deviator:

b= _ + _rh= b+ A_ah

in which

(19)

b = (b)v/v, (A_)v = 0 (20)

where v= (1)v denotes the element volume. The second relation in (20) is obtained by

integrating (19) over V and noting that an is arbitrary.

Internal displacement decom_.ostion

Next, the 6 assumption is ,tecomposed into rigid body, constant strain, and higher-order

displacements:

= Nrqr + Ncq¢ + Nhqh (21 )

Applying the strain operator D = _(V + Vv) to _, we obtain the associated strain field:

e" = DN_qr + DNcq¢ + DNhqh = Brqr + B_q¢ + Bhqh (22)

But B, = DNr vanishes because N_ contains only rigid-body modes. We are also free to select

Bc = DN¢ to be the identity matrix I if the generalized coordinates q_ are identified with the

mean (volume-averaged) strain values _". Then (22) simplifies to

in which

e" = _" + e _ = _" + Bhqh

q¢ = _" = (e")v/v, (B,)v = 0

(23)

(24)

Equation partitioning

Assume that all elastic moduli in E are constant over the element. The degree of freedom

partition

a = , q = _" (25)

ah k qh)
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induces the following partition of the element equations:

"--rye -I o - -rvl- -
0 -3'C, _ pr r _ pr c .,/QT_ pr h

-- [ir Phr 0 0 0

7ul - P_ Phc 0 (l - 7)rE 0

- Pa "/Qa - Phh 0 0 ( 1 -- "/)Kqa

f- La 0 0 0

_X] "#"X " 0"_l
L r ah] 0 I

0], q't = [qri (26)

0 6" _ [q¢

0 q:J _qh0 .. _.fv.

where

Ch = (ArE - IAh)v, Q. = (BrA,)v. Kqh = (BrEB,)v

_=[NTIs. x=r.c.h. P_=[NTAh, Is. x=r.c.h

f_= [V.r]s, Lh= [VrAh.]s, fqx=(N_b)v, x=r.c,h

(27)

Integral transformations

Application of the divergence theorem to the work of the mean stress on e_ yields

(#, e")v = (#, 6" + Bhqh)V= u6Te" + #T(Bh)vqh = U#T6''
= {#..ills = {b., N,q, + No6" + Nhqh] s = #T(@Tq_ + _rt,, + lShrqh)

(28)

Hence,

Pr = 0, 1_ = vi, Ph = 0 (29)

A similar analysis of the stress-deviator work (oh, e")v does not yield simple forms for the Ph_
matrices unless oh is divergence-free, in which case

Ph, = 0, Ph_= 0, P_h= Qh (30)

Assuming (30) to hold, the element equations (26) simplify to

-TuE -t 0 0 -(l-y)t'! 0

0 -TCh 0 0 1(1 - -f)Q_

0 0 0 0 0

-(I -3,)ol 0 0 (1 -7)rE 0

0 -(1 - 7)Qh 0 0 (1 -- 7)Kqh

£ Lh 0 0 0

_T e"-' I _" "_r 0

Lhr ah [ 0

0 q, | fq,

"_ _u _ ="0 fq¢

0 qh I fqh

0 ,v J ,.L.,

(31)

Th: _tress freedoms # and ah may be eliminated by static condensation. To eliminate qr, a
kinematic transformation that uniquely determines the rigid body motion from the element
interface motion is constructed:

q, = Hrv (32)
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where H, is a rectangular matrix (derived in the Appendix). Elimination of b, ah and q, gives

where

--_ vE 0 1 -3' E_,I3'

0 (I - 3')Kqh + 3'Koa K_vh

_ 1 -3' LE Kqt,h 3'-IKv
31

f_ + HTfq,.)

(33)

(1 _3')2 Q,_ChIQ_, Kqvh- 1 -3' LhCff_Qh r,Kah = ----T--- - --
3' 3'

Kv = o - I£E£T, Kuh = LhC,; IL_

Kv = Ku + K,,h

(34)

Mean strain elimination

The subvector _" may be eliminated in two ways. Static condensation gives

= r (35)
Kqvh Ku + 3`-lKt*J fv _-Hrfqr + v-|Lfqc

On the other hand, if _" is eliminated through the kinematic constraint _" = Hey derived in the

Appendix, we obtain a similar equation but with go replaced by

K_ = v-'Ko + 1 -3' (vHrEHc_ HrEf. r _ C.EHc) (36)
3'

and the force subvector fq¢ :_remultiplied by H_r. The two methods furnish identical results if

Hc = v- t[-r (37)

As discussed in the Appendix, this relation may be obtained from the first matrix equation in

(30) if either 3' = 0, or e" = _' = E- tfi. The last condition is obtained in the limit of a converged

solution, as verified by the patch test analysis mentioned below.

Patch test

A constant-stress, cancelling-tractions patch test performed on a two-element configuration

(V*, V-) illustrated in FigJre 1 shows 5 that this element class passes the test for any value

of 3'.

THE FREE FORMULATION

The free formulation of Bergan and Nyg_rd 6 was originally conceived as an incompatible

displacement model that passes a cancelling-tractions version of the patch test which Bergan
and Hanssen called the individual patch test:. Here the formulation is reinterpreted in the

context of a displacement-connected hybrid variational principle.
First, assume that the internal stress field is constant, so there are no ah parameters. Then

(35) reduces to

0 go = f_ + HYfo_ ÷ u-Itfq¢
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The equation for qh uncouples. Consequently static condensation of qh will not change the

solution. We have run into a displacement limitation principle. This leads to the second

assumption: the higher-order internal displacement modes are eliminated by kinematic

constraints that link qh to the boundary displacements:

qh = Hhv (39)

The matrix Hh is derived in the Appendix. Application of this constraint to (38) furnishes the

final stiffness equations

Kv = [ Kb + ( I - "y)Kh ] v = f (40)

where

Kb = Kv, Kh = H _KqhHh, f = fe + g r-rfqr + v-l[.fq¢ + Hhfqh (41)

In the free formulation, Kb and Kh are called the basic and higher-order stiffness matrices,

respectively. A _ scaling of Kh derived from energy-balancing studies was recommended by

Bergan and Felippa s for a plane stress element. This corresponds to taking -/= ._.

Extensive numerical results using the scaled form of the free formulation are reported in
References 8 and 9.

CONCLUDING REMARKS

It is known s that the basic-stiffness part of the free formulation can be interpreted as a

constant-stress hybrid element. But the interpretation of the higher-order stiffness within a

variational framework has been difficult. A key result of this paper is that this can be

accomplished by a pararaetrized mixed-hybrid variational principle. Note that the free

formulation cannot be obtained within the d-generalized Hellinger-Reissner principle (1' = 1),

since then the higher-order stiffness vanishes and K = K, is generally rank deficient. And

choosing 3' = 0 does not account for the fact that the higher-order stiffness can be scaled by
a nonzero coefficient.

The variational framework is important because it allows consistent extensions of the free

formulation that are not obvious from a physical standpoint, for example:allowing more

internal displacement degrees of freedom than boundary freedoms, i.e.

m=dim(q)-dim(v)>0. Examinations of (35) shows that m additional higher-order

divergence-free stress fields have to be retained so that the coupling stiffness Kq_h does not

vanish. The reduction of qh can be then performed by a combination of static condensation
and kinematic constraints.
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APPI_NDIX: KINEMATIC CONSTRAINTS

One of the principal assumptions invoked in the free formulation is that the dimension of q

is the same as that of v, and lhat the latter are physical node displacements. If so, evaluation

of the expansion fi = Nq on the element boundary S establishes the transformation

v = Gq (42)

where the matrix G is square. Furthermore, suppose that G is aonsingular and can be inverted:

q = G-iv = Hv (43)

or, in partitioned form

q: qc : Hc v (44)

qh Hh

The first matrix equation (tl-_e discrete compatibility equation) in (18) can be presented as

7(e" - e _, A)v= Lrv- Qrq = (L r_ QT H)v = (LrG- Qr)q (45)

Setting _ = 0 forces the con._,traint

L r=QrH or LTG=QT (46)

to be satisfied. The same constraint emerges if -/;_ 0 and the finite element solution has

converged in the sense that e" = e ° is constant over the element. Now, carrying out the freedom

partition (25) and assuming divergence-free higher-order stresses so that (30) holds, the

constraint (46) partitions as

Hfr = ul0 Qr0 Heh or Lr [Gr G¢ G_] = 0 Q_
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from which follows the relations

[,TGr = 0, [,TG¢ = vl, L T = vHc, LTGh = 0

LhrG,= 0, LTGc = 0, L T= Q_Hh, L_Gh = QT (48)

The first four relations were obtained through other means by Bergan I° and Bergan and

Nygfird 6 who called them the force orthogonafity conditions on account of the physical
interpretation of f_ as a 'boundary nodal force lumping' matrix.
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The ExtendedFree Formulationof
FiniteElementsin LinearElasticity

The free formulation of Bergan and Nyg_rd (1984) has been successfully used in the

construction of high-performance finite elements for linear and nonlinear structural

analysis. In its original form the formulation combines nonconforming internal

displacement assumptions with a specialized version of the patch test. The original

formulation is limited, however, by strict inuertibility conditions linking the as-

sumed displacement field to the nodal displacements. The present paper lifts those

restrictions by recasting the free formulation within the framework of a mixed-

hybrid functional that allows int(.rnal stresses, internal displacements, and boundary

displacements to va_ independently. This functional contains a free parameter and

includes the potential energy anti the Hellinger-Reissner principles as special cases.

The parameter appears in the higher-order stiffness of the element equations.

1 Introduction

Bergan and Nyg_rd (1984) have deveh)ped the so-called free
formulation (FF') for the construction of displacement-based

incompatible finite elements. This work consolidated a decade

of research of Bergan and co-workers at Trondheim,

milestones of which may be found in Bergan and Hanssen

(1976), Hanssen et al. (1979), and Bergan (1980). The products
of this research have been finite elements of high perform-

ance, especially for plates and shells. Linear applications are

reported in the aforementioned papers as well as in Bergan

and Wang (1984), Bergan and Felippa (1985), and Felippa and

Bergan (1987); whereas nonlinear applications are presented in

Bergan and Nyg_rd (1985) and Nyg_rd 11986). By "high per-
formance" it is meant that solution of engineering accuracy

can be obtained with coarse meshes of simple elements, and

that those elements exhibit low distortion sensitivity.

The original FF was based on nonconforming displacement

assumptions, the principle of virtual _ork and a specialized

form of Irons' patch test that Bergan and Hanssen (1976)

called the individual element test. A key ingredient of the FF is

the separation of the element stiffness matrix into the sum of

two pans, called basic and higher-order stiffness, respectively.

The basic part is constructed for convergence and the higher

order part for numerical stability and (in recent work)

accuracy.

An intriguing question has been: Does the FF fit in a varia-

tional framework? This was partly an._wered by Bergan and

Felippa (1985), who showed that the basic stiffness part was

Contributed by the Applied Mechanics Division ,_f THE AMERICAN SOCIETY OF
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equivalent to a constant-stress hybrid element. But persistent
efforts by the present author to encompass the higher-order

stiffness within a hybrid variational principle were unsuc-

cessful until the development of parametrized mixed-hybrid

functionals in Felippa (1989a, 1989b). With the help of these

more general functionals it is possible to show that the FF is a

very special type of mixed-hybrid element which does not fit

within the classical Hellinger-Reissner principle. In retrospect,
the classification of FF elements as hybrids is not surprising.

Under mild conditions studied in the Appendix, hybrid

elements satisfy Irons' patch test a priori, and the FF develop-

ment has been founded on that premise.
To encompass the FF within the hybrid framework, the

following assumptions must be invoked.

(1) A specific hybrid functional, identified as II.a, in the se-

quel, is constructed. This functional depends linearly

on a parameter 7.
(2) Three fields are assumed over each element:

(a) a constant stress field,

(b) an internal displacement field u defined by nq

generalized coordinates collected in vector q, and

(c) a boundary displacement field d defined by n_.

notlal displacements collected in vector v. Both d and u

must represent rigid body motions and constant strain

states exactly.

(3) The number of generalized coordinates, nq, equals the
number of nodal displacements, n_., and the square

transformation matrix G relating v = Gq is

nonsingular.

In Felippa (1989b) it is shown that substituting the finite ele-

ment expansions into II_a, rendering the functional stationary
with respect to the degrees-of-freedom, and eliminating both

internal fields by a combination of static condensation and

kinematic constraints, leads to the FF stiffness equations in

terms of the nodal displacements v. The parameter -y appears

as a coefficient of the higher-order stiffness. These stiffness

Journal of Applied Mechanics 1



equations can be readily implemented into any displacement-

based finite element code.

This variational pathway to FF is of interest for two

reasons. First, it explains the behavior of FF elements as

regards convergence, stability, and accuracy. Second, it opens

up the door to extensions that are not obvious from a physical

standpoint. Two such extensions involve: retaining higher-

order stress fields, and allowing more internal displacement

modes than nodal displacements, that is, n# > n v. The main

purpose of this paper is to study these two extensions, which

are shown to be closely related. The resulting framework for

deriving finite elements in elasticity is called the extended free

formulation (EFF).

2 Governing Equations

Consider a linearly elastic body under static loading that oc-

cupies the volume V. The body is bounded by the surface S,

which is decomposed into S: Sa U S,. Displacements are
prescribed on Sa whereas surface tractions are prescribed on

S,. The outward unit normal on S is denoted by n == n,.
The three unknown volume fields are displacements u # u,,

infinitesimal strains e = e,j, and stresses uu %. The problem

data include: the body force field b == bi in V, prescribed
displacements d on Sa, and prescribed surface tractions t-ti

on S,.
The relations between the volume fields are the strain.

displacement equations

1 I

e=-'_-('_'u+Vru)=Duore:._-(u,j+u_.i) in V, (1)

the constitutive equations

a=Ee or a,j =E,jklekl in V, (2)

and the equilibrium (balance) equations

-div ¢=D'o=b or o,jj+b_=O in V, (3)

in which D* = - div denotes the adjoint operator of D = 1/2
(v + vr).

The stress vector with respect to a direction defined by the

unit vector v is denoted as ¢_=¢.v, or avi = atjv). On S the
surface-traction stress vector is defined as

q, = a.n, or o,, = oi:n:. (4)

With this definition the traction boundary conditions may be
stated as

o, = _ or %nj = _',on S,, (5)

and the displacement boundary conditions as

u = ¢[ or u i = 3, on S#. (6)

3 Notation

Field Dependency. In variational methods of approxima-
tion we do not work, of course, with the exact fields that

satisfy the governing equations (I)-(3), (5)-(6), but with in.

dependent (primary) fields, which are subject to variations,

and dependent (secondary, associated, derived) fields, which

are not. The approximation is determined by taking va: ._ "-,'is

with respect to the independent fields.

An independently varied field will be identified by a super-
posed tilde, for example, ft. A dependent field is identified by

writing the independent field symbol as superscript. For exam-

ple, if the displacements are independently varied, the derived

strain and stress fields are

e=+ ( V + V r)fi ffiDfi, ¢u = F.e" = EDfi. (7)

An advantage of this convention is that u, e, and (y may be
reserved for the exact fields.

Integral Abbreviations. Volume and surface integrals will

S_

Fig. 1 internal interlace example

be abbreviated by placing domain-subscripted parentheses and

square brackets, respectively, around the integrand. For ex-
ample:

(.Ovda f f dV, [j]s_t f _ tier= v s fds, L_Sd =

IsJ as' LOs,°LfI f dS. (s)- St

If f and g are vector functions, and p and q tensor functions,
their inner product over Via denoted in the usual manner

(f'g)v_f S v f.gdV= I vf'g'dV'

dd f v Pt/qiydV'P'q)v= Iv p.qdV= (9)

and, similarly, for surface integrals, in which case square
brackets are used.

Domain Assertions. The notation

(a=b)v, [a=b]s, [a=b]sa, [a=b]s,, (10)

is used to assert that the relation a = b is valid at each point of
V, S, S d, and S,, respectively.

Internal lnleffaces. In the following subsections a varia-
tional principle is constructed, in which boundary
displacements d can be varied independently from the internal
displacements u. These displacements play the role of
Lagrange multipliers that relax internal displacement continui-

ty. Variational principles of this form will be called
displacement-generalized, or d-generalized for short.

The choice of d as independent field is not variationally ad-
missible on S¢ or St. We must therefore extend the definition

of boundary to include internal interfaces collectively
designated as S_. Thus,

S : SdUSrUS _. (11)

On S_ neither displacements nor tractions are prescribed. A
simple case is illustrated _.n Fig. 1, in which the interface S,
divides Vinto two subvolumes: V* and V-. An interface such

as St on Fig. 1 has two "sides" called S 7 and S_ which iden-
tify St viewed as boundary of V + and V-, respectively. At

smooth points of Si, the unit normals n + and n- point in op-

posite directions.

The integral abbreviations (8)-(9) generalize as follows, us-
ing Fig. 1 for definiteness. A volume integral is the sum of in-
tegrals over the subvolumes:

09v _f j_v+ f dV+ J_v-f dr. (12)
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An integral over Si includes two contributions:

" Is,_g[g]Sf e=f tsi.g* dS+ dS,
(13)

where g + and g- denotes the value of the integrand g on Si÷
and S,.; respectively. These two values may be different if g is
discontinuous or involves a projection 9n the normals.

4 The Hu-Washizu Principle

There are several essentially equivalent statements of the
Hu-Washizu functional of linear elasticity. The starting form
used here is the four-field functional

IInw(fi,_,8,d) =--_(o*,_) v + (a,t" -_)v-P a, (14)

where pa is the "forcing" potential

m =(b,a)v+ - dls + [i,.]s, + dls,(15)
The function II_is called d-generalizeC in the sense that the
volume fields fi, _, a, and the surface displacement field d are
subject to independent variations, whereas in the conventional

form of the principle the relation [d= tl]SaOSi is enforced a
priori. The superscript d is used to distinguish it from the t-
generalized variant

II_(6,_,a,t)= +(oe,6)v + (a,e"- 6)v _pt (16)

in which the surface tractions t are varied independently from
the internal stress field a. This is the starting form in the
classical textbook of Washizu (1968). Parametrized versions
of (16) are studied in further detail in Felippa (1989a).

Functionais that are not d or t-generalized will be called
conventional. The three versions differ only in the forcing
potential term.

5 Parametrization

Constraining the Hu-Washizu functional (14) by selectively
enforcing field equations and boundary conditions a priori
yields six functionals listed (in their conventional form) in
Chapter 4 of the monograph of Oden and Reddy (1983). Of
particular interest for the present study are the d-generalized
Hellinger-Reissner functional

I

IIa(fi,a,d) = ---_- (#,eo)v + (6,e_)v-p a, (17)

as well as the d-generalized potential energy functional

P'. (18)

These two functionals are special cases of the following
parametrized form

H_(il,a,4)= -_-(I - -/)(@',e_) v

- -_(a,e °) v + 7(a,e") v - °a, (19)

where -/is a scalar. If -/ = 1 and 0 we obtain the functionals
II_ and II_,, respectively. Parametrized forms, such as (19), of
the elasticity variational principles were studied by Chien
(1983).

First Variation. Defining the-/-wei_:hted stresses

o_<ra +(i --/)o _ in V, o_=aya.÷(1 -7)0_ on S (20)

the first variation of (19) can be written

8H_ = 7(e _ -eO,aa)v- (div a_ + b, _UJv

- [i- o_,6ftlst - [a. - a_,6fi]s# - [u - d,6a.lsd (21)

- {a. - al,Sals, - [fi - d, aa.ls, - [a.,adls,.

Since d is unique on S; whereas _iand a are generally discon-
tinuous on it, the interface integrals in (21) split as follows:

" --r-+ -_,-*- ($_+, - - -
(a.-a_,_ulsi-to.-o. , Is,. +[ag-o_ ,5fz Is.'

- - "* + [fi- -d, Sa_]si_, (22)[U -- d,6O]s i =[U+ d,6o,,]si.

[#..Sdlsi= [#_',(Sd-]si++ [&;,Sdls-= [02-a;,Sd]s_.

Setting the first variation to zero and taking (22) into account,
the Euler equations and natural boundary conditions for "r;e 0
are found to be

(e_ =eO)v, (div o_ +b=0)v, [o_ = ils,,

[o, =O_]sa, [u=d]s d, [o_" -o;=O]s , (23)

[o;_ - _-=0]si, [u + =u- = d]s,, [o;- og=Olsi.

The constitutive equations do not appear since they are en-
forced a priori in Ha. If -/=0, the first equation (e_ = e°)v,
drops out.

Modified Forcing Potential. Substituting d in lieu of u in
the forcing potential (15)

t_(f_,a,d):=(b,fOv+[a.,d-dls, + [i,d]s, +[a.,fi-dls, (24)

is not variationally admissible because incorrect Euler equa-
tions result. A correct potential that resembles (24) can be ob-
tained in two stages. First, surface terms [a., fi- d]s, and [a.,

- d]s ' are added and subtracted to produce

Pa(f_,a,d) = (b,,i)v + [a.,d- dlsa - [a. - i,tils, + {a.,fJ - dis.

(25)

Second, t _sassumed to be in the range of a. and the condition
[0. = t]s ' satisfied apriori, reducing (25) to

P_(/i,a,d) = (b, fi)v + Jan, d- dis a + [i,dls, + ta.,fi- dis. (26)

This expression differs from (24) in that the all-important sur-
face dislocation integral is taken over S rather than &. Further

simplification results if the displacement boundary conditions
[d = d]sa are exactly satisfied:

Pa(f_.a,d)=(b,ft)v+ti,dls,+ {a.,a-orals. (27)

This expressionof pa isused inthe sequel,as modifications
required to account for the case [d_d]sa are of minor
importance.

6 Energy Balancing

Distances. Let U(e) = 1/2 (Ee,e)v denote the strain energy
associated with field e. We may rewrite (19) as a potential-
energy deviator

IIa = Ila-yU(e" -e°), (28)

because

d d

II_ -rip = (#,e ° -e")v - (0- o",e_)v
-//2

=(o _ -a,e . -e°)v = (Ee _ -Ee°,e" - eo) v. (29)

If E is positive definite, U (e_ - e °) > 0 and, consequently,

IIa<r_n if -/>0. (30)

If fi is kinematically admissible, II_. exceeds the exact potential
energy as will be shown, it follows that to improve solutions in
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energy, we expect to take -_ > 0. Thus, principles associated
with 3' < 0 have limited practical interest.

Let H(u) denote the exact potential energy

H(u) = +to,e)v- (b,u) v - [i,U]st, (31)

where ¢ and e denotes the exact stress and strain field, respec-
tively: If ti is kinematically admissible and thus satisfies
[ti=dlsd, then the energy distance from II_(6) to the exact
functional (31) is (see, e.g., Section 34 of Gurtin (1972))

Iia _ 1-/ t _ = U(e _ -e). (32)=-T-(_ -o,e -e)v

Adjusting "r. To derive an "energy balanced" approxima-
tion we impose the condition II_ = II, which yields

U(e" -e) (a" -o,e _ -e)
= (33)

_b= U(e'-e °) (_'-#,e''e*)

For example, if we assume that the exact stresses and strains
lie halfway between the approximate fields,

o----_-(¢_+ #), e=--_-(e°+e"), (34)

then "Yb= 1/4. But, as the exact stresses and strains for the
elasticity problem are not generally known in advance, the
practical determination of "/b has been based on application of
(33) to element "patches" under simple load systems, as
discussed in Bergan and Felippa (1985) and Felippa and
Bergan (1987).

Error Estimates. The strain difference e_ -e* may be used
as a pointwise measure of solution accuracy, and the
associated "dislocation work" U(e "-e °) as an energy error
measure for applications such as adaptive mesh refinement.

7 Finite Element Discretization

In this section the finite element discretization of II_a is
studied. Following usual practice in finite element work, the
components of stresses and strains are arranged as one-
dimensional arrays whereas the elastic moduli in E are ar-
ranged as a square symmetric matrix. The FE assumption is
globally written

(ti=Nq)v, (0=Aa)v, [d=Vvls. (35)

Here, matrices N, A, and V collect generalized-displacement
shape functions, internal stress modes, and interface displace-
ment modes, respectively, whereas column vectors q, a, and v
collect generalized internal displacements, stress mode
amplitudes, and generalized interface displacements, respec-
tively. The assumed volume fields # and fi need not be con-
tinuous across S,. The derived fields are

(e"=DNq=Bq)v, (¢_=EBq)v, (e°=E-tO=E-tAa)v.

(36)

Inserting these expressions into II_ with the forcing potential
(27), we obtain the algebraic form

I_ (a,q,s) = _-(I - 7)qrK_q ---_a rCa

+ 7qrQa _ q rpa + vrLa_ q rfq _ vrf, (37)

where

K_ = (BrEB)v=K r, C=(AIE-IA)v=C r, Q=(BrA)v,

L- [VrA,ls, P= [N rails, fq = (Nrb)v, f_ = [Nri]s,. (38)

The matrices K_, C, Q, L, and P are called internal-
displacement stiffness, compliance, leverage, nodal-force
lumping, and boundary dislocation matrices, respectively.
Making (37) stationary yields the linear system

,c°T,T,TlitI7Q-P (I-_/)K_ 0 = fq i" (39)
|_

L 0 0 f,j

The first matrix equation is the discrete analog of the first,
fifth, and eighth relations in (24), and expresses internal and
boundary compatibility. The third matrix equation is the
discrete analog of the last relation, and expresses equilibrium
across S,. The second matrix equation is the discrete analog of
the remaining relations, and expresses internal and boundary
equilibrium.

It is shown later (in Section 9) that if the assumed stress
modes in A are divergence free (self-equilibrating), then
P-Q, and (39) simplifies to

< fi)I°)- (1 - "y)Q (I - ,y)K u 0 - fq . (40)

L 0 0 fL

These results are now reinterpreted in terms of hybrid
elements.

8 Hybrid Elements

Approach. The preceding treatment is relevant to the con-
struction of displacement-connected hybrid elements. Hybrid
elements based on more restricted assumptions were originally
constructed by Plan and co-workers (see Plan, 1964; Plan and
Tong, 1969; Plan, 1973). From current perspective, the prin-
cipal features of the hybrid formulation are:

(A) The domain is subdivided into elements before the
variational principle is established.

(B) Continuity requirements across element boundaries
are relaxed by introducing boundary tractions or boundary
displacements as Lagrange multiplier fields.

(C) All stress and internal-displacement degrees-of-
freedom are eliminated (by either static condensation or
kinematic constraints) at the element level.

(A) says that hybrid functionais are effectively mesh-
dependent, because the domain subdivision process introduces
element boundaries which must be treated as internal inter-
faces, and therefore become part of S_. Previous develop-
ments remain valid if one reinterprets "body" as "individual
element," "volume" as "element volume," and "surface" as
"interelement boundary."

Continuity and Connectors. The internal fields _ and ii
may be discontinuous across elements. The boundary
displacement field ¢[, however, must be continuous on S_, i.e.,
it must have the same value on adjacent elements. This condi-
tion may be satisfied if ¢[ on an interface separating two
elements is uniquely interpolated by nodal values on that inter-
face. It is natural to take such nodal values as entries of v,
which automatically becomes the vector of connected node
displacements or connectors.

9 Kinematic Relations

In this and subsequent sections we work with an individual
element unless otherwise noted. The element volume is V and
the element surface is S: S_ U S, U S_. The v subvector con-
tains G element-connector degrees-of-freedom, whereas q and
a contain nq and no internal freedoms, respectively. We shall
assume that nq >_ n,.

The first matrix equation (the discrete compatibility equa-
tion) in (39) can be interpreted as the dislocation-energy
balance statement

4 Transactions o! the ASME



--_(#,e"- e°)v-ar(prq- Lrv)v=0. (41)

Setting 7 =0 and observing that a is arbitrary, (41) forces the
kinematic constraint

prq = Lrv (42)

to be satisfied. The same relation emerge_ if 7 #0 but the ele-
ment displacements are forced to obey

(#,e" - e°) v= 0 (43)

as an optimality condition which says taat the work of the
strain error over the assumed stressfield vanishes for arbitrary
element motions. The constraint (42) plays a key role in subse-
quent derivations. An immediate consequence is that the first
matrix equation in (39) reduces to the equivalent of (43),
namely 7a r ( - Ca + Qrq) = 0, thus, if 3, _ 0,

a=C-IQrq, ora=C-_Lrv fP=Q. (44)

Next, suppose that q and v are connected by the linear
algebraic relations

v = Gq, (45)

q = Hv, (46)

where G is a n, x nq transformation matrix and H is a nq x
n_ transformation matrix. The determination of these
matrices and their connecting relationships is discussed later.
Using (45)-(46) the constraint (42) may be stated in two ways:

pr=LrG, PIH= Lr (47)

- 7rE-

0

7vl - Pc

- l_h

L

Internal Displacement Decomposition. Next, the 6
assumption is decomposed into rigid body, constant strain,
and higher-order displacements:

fi= Nrq , + Ncq c + Nhq h. (53)

Applying the strain operator D = 1/2 (_ + v r) to fi we get
the associated strain field:

eu = DN,q r + DNcq c + DNhq h = B.q. + Bcq *+ Bhq h. (54)

But B, = DN r vanishes because N, contains only rigid body
modes. We are also free to select Bc = DNc to be the identity
matrix ! if the generalized coordinates qc are identified with
the mean (volume-averaged) strain values 6u. Consequently,
(54) simplifies to

e" =6 u +e_ =6 u +Bhq h, (55)

in which

qc =6" =(e")v/v, (Bh)v = 0. (56)

Equation Partitioning. Assume that all elastic moduli in E
are constant over the element. The degree-of-freedom parti-
tion

a= , q= _ ,

a_ qh

(57)

induces the following partition of the general element equa-
tions (39)

0

-7C_

- Phr

- Pnc

7Qh - P _h

Lh

_er

0

0

0

0

_pr r r7Qh - Phh Lr

0 0 0

(1 -7)rE 0 0

0 (1--r)Kqh 0

0 0 0

ak

qr

qh

0

0

fqr

f qc

fqh

fv

Elimination of a and q in (39) through (44)-(46), with account
taken of the second of (47), yields the external stiffness equa-
tions

Kv = f, (48)

in which

K=7[LC-IQrH + HrQC-IL r- LC-IL r]

+(1 -',t)HrK_H, f= f_. + Hrfq. (49)

if P = Q, system (40) reduces to (48) but ,vith

K=3,LC-_Lr +(1 - 7)H 7K._H. (50)

10 Internal Field Decomposition

To gain further insight into the structure of the element
stiffness equations (48) and eventually link up with the free
formulation, we proceed to decompose both internal element
fields as follows.

Stress Decomposition. The assumed stress field, #, is
decomposed into a mean value, 0, and a _eviator:

#=#+#h =O+Asas, (51)

in which

O=(#)v/V, (Ah)v =0, (52)

where v = (1)v denotes the element v._lume measure. The
second relation in (52) is obtained by in:egrating (51) over V
and noting that a_ is arbitrary.
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where

Ch = (AhrE- IAh)v, Qh = (BrAh) v, Kqn= (B_rEB_) v,

l$.r= [Nrn]s, x=r,c,h, P_x = [NrA_]s, x=r,c,h,

L= [V_s, Ln = [VrA_.]s, f_x = (N_q)) v, x=r,c,h. (59)

Integral Transformations. Application of the divergence
theorem to the work of the mean stress on e" yields

(#,e")v = (_,e_ + B_q_)v = vote _ + Or(B_) vq_ = v#re_

= [#,,,/i]s = [#,,N_q, + Nc_ u + N_,q_] s

= #r(li_q, + lice _ + l_q,). (60)

Hence,

1_,=0, l_c =vl, I_ =0. (61)

A similar analysis of the stress-deviator work (#n, e")v does
not yield simple forms for the P_ matrices unless #n is
divergence-free, in which case

P_, =0, Pn, =0, P_n =Q_. (62)

Hence, P = Q as claimed in Section 7. Inserting (61)-(62) into
(58) yields the partitioned form of (40):



- _,vE- J 0

0 - 7Ch

0 0

0 -(l--y)vl 0 L r

o o - (l -,y)Q_ L_

0 0 0 0

-(1 -7)vi 0 0

0 - (I - _)Qh 0

L L, 0

(1 - 7)rE 0 0

0 (1 - 3,)Kqh 0

0 0 0

Orthogonality Conditions. If the higher-order stresses are
divergence free so that P- Q, the relations (47) partition as

I:v'°1
0 QT

0 vl0 0

whence the relations

[LT1= [G, Gc G,],

H r

H_

Hh

Lr7= I, (64)
j

LrG,=0, LrGc=vl, LrGh=O, Lr=vHc,
(65)

LrGr=0, LrGc=0, LrGh=Qh r, Lr=QhrH,.

The first four were obtained through other means by Bergan
(1980) and Bergan and NygArd (1984), who called them the
force orthogonality conditions on account of the physical in-
terpretation of L as a "boundary nodal force lumping"
matrix in the free formulation studied next.

If the higher-order stresses are not divergence-free, the last
four of (65) are replaced by

L_,G, = pr, r _ r L_rGh= e_t,,LhGc - Phc,
(66)

T_ T T TLh - Ph,, H, + PhcHe + P_hH,.

11 The Free Formulation

The free formulation of Bergan and Nyg?lrd (1984) was
originally conceived as an incompatible finite element
displacement model that passes a cancelling-tractions version
of the patch test which Bergan and Hanssen (1975) called the
individual patch test. Here the formulation is reinterpreted in
the context of the hybrid principle (19). The assumptions that
lead to the FF are listed in the Introduction and will be studied
in further detail.

Constant Internal Stress. The internal stress field is con-

stant. Consequently, there are no ah parameters, reducing (63)

-'yvE -I 0-(l-7)v[ 0

0 0 0 0

-(l-7)vi 0 (1-7)rE 0

0 0 0 (1 - -y)Kqh

L 0 0 0

tO

L T ,- o

0 I qr

0 _ _

0 qh

0 v

0

i:,67,
fq,

fv

ah t 0

q" t =" fq"
eU I fqc

q_ [ f qh

v J fv

(63)

lnvertlble G. Matrix G in (45) is constructed by nodal col-
location, that is, by evaluating the expansion d = Nq at the ele-
ment boundary nodes. This establishes the transformation

According to the assumptions listed in the Introduction,
matrix G is square and nonsingular so inverting (68) we get

q=G -_ =Hv or

iqrtq= e"= =

qh

a r

a¢ v_

Hh
.rlU "1 I_ T V. (69)

The FF Stiffness Equations. Eliminating # and q from
(67) yields the FF stiffness equations

Kv = [K b+ (1 - 7)Kh]v = f, (70)

where

Kb=v-l[E-ILr, K_ = HrKqhHh,

f = fv + Hrfe, + v- ILfqc + Hhfq,. (71)

In the free formulation, Kb and Kh receive the name basic and
higher-order stiffness matrices, respectively. A 1/2 scaling of
Kh derived from energy-balancing studies was recommended
by Bergan and Felippa (1985) for a plane-stress element. This
corresponds to taking 7= 1/2. But in general the value of
can be expected to be dependent on the type and geometry of
the element.

As Kb is rank-deficient (except for the simplex elements)
choosing 7--I, which corresponds to the d-generalized
Hellinger-Reissner functional (17), is not admissible,

12 The Extended Free Formulation

In the extended free formation (EFF) the number of internal

displacement freedoms, nq = dim(q), is ailowed to exceed the
number of nodal displacement connectors n_ ffidim(v). We can
esu.J" _. the relation (68) as before, but matrix G will now be
rectangular and cannot be directly inverted. One way of cir-

cumventing this difficulty is to retain nq -n_ = dim(a h) higher-
order stress modes; an alternative procedure is discussed in
Section 13. The stress modes are assumed to be divergence-
free so (62) holds. The available relations are

- Lh v - Q, q,, (72)vfGq, Cha h- r _ r

which can he combined to form the matrix system

"-v_ [ Gr G: G, I (qe.._
= . (73)

k ah 0 0 C_"IQr L q* J
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The matrix on the right side is square, and invertible if G, C_,
and Qh have full rank. Solving for q and eliminating ah one
obtains

q=' qc = Hc

qh H_ J_

H_

Hc

H_'+JsC_'IQ r

(')=
ah

H,

V= H c

Hh

_,, (74)

where Hi and 3h result from the inversion process. Since DI_

G_ + Jh Cg't Qr = I, we can express H_ as

Hh = H_ + I- H_h. (75)

Having H available, replacing into (48)--{50) we obtain the
EFT stiffness equations

Kv= [Kb +Kbh + ( 1 -3")Kh]v = f, (76)

where Kb, Kh, and f are the same as in (713. and

Kbh= LhCh- tL r. (77)

Is 3' = i now admissible? If Kb + Kbh has correct rank, yes[
Curiously enough, if the body force field b vanishes and 3' =
1, (76) are precisely the stiffness equations for the original
equilibrium-stress-assumed hybrid elements of Plan (1964),
which can, of course, be constructed without any internal
displacement assumptions.

13 Hierarchical Connector Augmemation

An alternative approach to building an revertible transfor-
mation such as (73) consists of augmenting v with nq - n_.con-
nector degrees-of-freedom collected in s_abvector %. These
must be selected to give a square transformation of the form

= _ . (78)
vx 0 0 Gx

%

If this approach is followed, it is import:mt to choose % in
hierarchical fashion so that the expanded G has the structure
just shown. In other words, vx must not be. "excited" by rigid
body or constant strain motions. Otherwise the interelement
compatibility of boundary displacements i_ generally violated
for such motions, and the patch test discus_,ed in the Appendix
fails.

Inversion of (78) provides the H matrix. The FF stiffness
equations (70) can be constructed with the strain-energy con-
tribution from % flowing to the higher-order stiffness Kh.
Finally, the vx freedoms can be statically condensed.

Which EFF approach is better? The decision seems to be
element-dependent. The choice primarily hinges on whether it
is easier to choose divergence-free stress modes than hierar-
chical connectors while preserving element invariance. If both
approaches appear equally feasible, there is not presently
enough experience to decide which one is 9referable.

14 Concluding Remarks

The qualifier free in "free formulation" was meant to em-
phasize "freedom from conformity requirements" that are a
pervasive part of the conventional displacement formulation,
and the possibility of constructing the basic and higher-order
stiffness contributions through largely inCependent assump-
tions. But when the FF is studied from a variational stand-

point, several constraints become immediately apparent. The
extended FF releases the most troublesome one at the cost of
buying mort: complicated stress assumptions, or additional
hierarchical connectors. So it is fair to state that the admirable
goal of absolute freedom has not yet been attained.

The development of the EFF as reported here was motivated
by difficulties encountered in the construction of the following
elements:

3-Node Plane Stress Triangle with Nodal Rotations.
Similar to the element constructed by Bergan and Felippa
(1985), but with a fully quadratic internal displacement field.
Thus, n V = 9, nq = 12 and three additional self-equilibrating
stress fields are needed.

4-Node Tetrahedron with Nodal Rotations. The extension

of the previous element to three dimensions has n_ = 12, nq =
18 and six additional stress fields are needed.

Assuming fully-quadratic internal displacement fields
eliminates the higher-order mode selection difficulties dis-
cussed by Bergan and Felippa (1985). Progress in the deriva-
tion of these elements will be reported in subsequent papers.
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APPENDIX A

The Cancelling-Traction Patch Test

It is instructive to study whether this element class passes the
patch test for an arbitrary % To investigate this questio_ we
use the sketch of Fig. 1 and view the suhvolumes V+ and V-
as two elements connected along S_ with an external traction

boundary St. Both elements are in a state of constant stress _o.
The prescribed surface tractions are [t=_,]st and the body
forces b vanish.

First, take (63) to be the governing discrete equations for the
two-clement assembly. The only nonzero forces are f_ =

[vr[]s . The key observation is that

[' = [V_s = [¥_sr, (79)

because the integral over S_ vanishes as (V+ = V_ )si on ac-
count of the interface compatibility conditions stated in Sec-
tion 8, and n + -- - n-. Now, for any _, it can be verified that
the solution of (63) is that demanded by the patch test, namely

#= ¢0 = 0% ah= 0, q, = arbitrary,

_' = E- i00, qh = 0, v = LrO0 + G,q,. (80)

In checking this assertion one finds that the following rela-
tions, listed in (65), must be satisfied:

[JG,=0, LrGc=vI, LrGe =0, L_G,=0. (81)

If instead we take the more general equations (59), verification
of the solution (81) demands that

P, = 0, ls_ = vi, lsh ---0, r _ rPh, - LhG,,

prc = LrGc, pr = LrGh. (82)

The first three follow from the divergence theorem as shown
in (60). But the last three, listed in (66), are a consequence of
the kinematic constraint (43), which is thus directly correlated
to satisfaction of the patch test.

As noted by Fraeijs de Veubeke (1973), the physical mean-
ing of this form of the patch test is that the interface virtual
work is zero when the element patch is in a constant stress
state.
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ABSTRACT

High performance elements axe simple finite elements constructed to deliver engineering

accuracy with coarse azt_itrary grids. This paper is part of a series on the variational founda-

tions of high-performazzce elements, with emphasis on plate and shell elements constructed

with the free formulation (FF) and assumed natural strain (ANS) methods. In this paper, we

study paraxnetrized variational principles that provide a commor, foundation for the FF and

ANS methods, as well _ a combination of both. From this unified formulation a variant of

the ANS formulation called the "assumed natural deviatoric strain" (ANDES) formulation,

emerges as an importa_t case. The flint ANDES element, a high-performance 9-dof trian-

gular Kirchhoff plate bending element, is briefly described to illustrate the use of the new

formulation.

1. INTRODUCTION

For 25 years researchershave triedto construct _best_ finiteelement models forproblems

in structuralmechanics The quest appeared to be nearly over in the late Ig60s when high

order displacement elements dominated the headlines. But theseelements did not dominate

the marketplace. The overwhelming preferenceof finiteelement code usershas been forsimple

elements that deliver enqineering aceurac_ with coarse meshes. These will be collectively called

h='gh performance element, or HP elements.

1.1 Attributes of HP E[ergents

Approaching that _eneral goal gives rise to a myriad of more concrete requirements which

are supposed to be addressed in some degree during element development. Such requirements
axe listed in Table 1.

Some of these requirements axe obvious. For example, Ioi#distortionsensitivityis a

consequence of trying _o achieve satisfactoryaccuracy with arbitror_meshes. But other

items listedin Table I callfor some explanation.
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Table 1 - Target Requirements for High-Performance Elements

• Simple: few freedoms, all physical, preferably at corners only

• Convergent

• Frame invariant

• No locking

• Rank sufficient: no spurious modes

• Balanced stiffness: not too rigid, not too flexible

• Stresses as accurate s.s displacements

• Low distortion sensitivity

• Mixable with other elements

• Economical to form

s Easily extendible to nonlinear and dynamic analyses

s Effective local error estimator for mesh adaptation

The first and foremost requirement is that the element be as simple as possible. This

is in sharp contrast to the _baroque FE period _ of 1965-1975 that lauded luxuriantly ornate

elements and culminated with the development of very complex models, including elements

with nonphysical degrees of freedom. One source of this retrenchment has been feedback

from users of general purpose, finite element programs. As use of these programs expanded

to more engineers without deep knowledge of "what's inside the black box _ the trend in

finite element model construction veered toward the "simplest elements that will do the job. _

Further impetus is provided by the gradual realization that high accuracy of complex elements

in linear elastostatics does not necessarily carry over to dynamic and nonlinear analyses.

The balanced stiffness requirement also deserves comment. It follows from the goal of

attaining reasonable accuracy with coarse meshes. This is illustrated in Fig. I, which shows

a convergence study of a classical model problem: the bending of a simply supported square

plate under a concentrated central load. The mesh contains 2 × N × N triangles over a plate

quadrant. A target "accuracy band _ of ±1% is taken, somewhat arbitrarily, as representative

of engineering accuracy for this rather simple problem. The convergence characteristics of

several triangular elements are taken from the extensive study reported in Ref. 2. Although

most elements converge, some are too stiff, while others are too flexible, and generally do

not enter the accuracy band until the mesh is fairly refined (N >__8). On the other hand,

the results labeled 'FF', obtained with a plate element based on the free formulation (FF)

discussed later, lie within the band for all meshes.

The balanced stiffness requirement should not he confused with fast asymptotic conver-

gence for fine meshes. Simple elements cannot effectively compete with higher order elements

in this regazd, and are not effective in applications demanding very high accuracy. What is

important is how good are the results for coarse meshes.
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as reported in Ref. 2. The FF results axe from Ref. 8.

1.2 Constructin_ F[P Elements

The search for FIp elements began seriously ilt the mid-lgT0s and now represents am

important area of finite element research in solid and structural mechanics. Many ingenious

schemes have be,:a tried: reduced and selective integration, incompatible modes, mixed and

hybrid formulations, stress and strain projections, the_(FF) formulation, and the (ANS)

formulation. M_ny researchers are de_'eloping such elements. The common theme of the

investigations is:

Abandon the conventional dinplacemcnt formulation

Several tedtniques researchers use in their quest to brute, _,etter elements are itemized

in Table 2. Man), of these were introduced over 20 years ago, but only recently a concerted

effort has been made to combine several tools to produce HP elements. For exarnple, the

present work dr_ws on items I, 2, 3, 8, 10, 11, and L2 of Table 2.
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Table 2 - TooLs of the Trade

Technique Year lntroducex]

1. lmcompatible shape functions early 1960s

2. Patch test 1965

3. Mixed and hybrid variationalprinciples 1965

4. Projectors 1967

5. Selectivereduced integration 1969

6. Uniform reduced integration 1970

7. Assumed strains 1970

8. Energy balancing 1974

9. Directionalintegration 1978

10. Limit differential equations 1982

11. Free formulation 1984

12. Assumed natural strains 1984

1.3 Objective of Present Work

This paper is part of a series (Refs.9-12, 15-16) describing how several HP element

construction methods can be embedded within an ez_ende,d variational framework using

parametrized hybrid functionais. Particular attention is focused on merging the last two

items in Table 2.

The general plan of attack for thisunificationis flowcharted in Fig. 2. Bex connections

indicated with dashed linesare not dealtwith inthispaper. The variationalextensions,shown

on the leftof Fig. 2, involve parmmetrization of the conventional elasticityfunctionalsand

treatment ofelement interfacesthrough generalizationsof the hybrid approach of Refs. 20-23.

The effectiveconstruction of HP elements relieson devices,sometimes derisivelycalled

"tricks"or _variationalcrimes," that do not fita prioriin the classicalvariationalframework.

The range of tricksspans innocuous collocationand fmite differenceconstraintsto more dras-

ticremedies such as selectiveintegration.Despite theirunconventional nature, tricksare an

essentialpart of the construction of high-performance.elements. Collectively,they represent

a fun-and-games ingredient that keeps the derivation of HP finiteelements a surprisingly

enjoyable task.

The present treatment "decriminalizes"kinematic cortstrainttricks by adjoining La-

grange multipliers,hence settingout the ensemble on proper variationalfoundations. Placing

formulations within a variationalframework has the great advantage of supplying the general

strtLctureof the stiffnessmatrices and forcing vectorsof high performance elements, and pro-

viding theoreticalcoherence for the systematic derivationof element classesby a combination

of techniques.
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Fig. 2 - Pro&'r:_m of _tt._ck on the v_ri._tion_[ formulation of HP elements

2. THE ELASTICITY PROBLEM

Consider a EneaHy e_astic _y under static loading that occupies the volume V. The

body is hounded by the surface S, which is decomposed into S : 5"_ u St. Displacements are

prescribed on S_, whereas surface tractions are prescribed on S_. The outward unit normal

on S is denoted by n =- rz,.

The three unknown volume fields are displacements u _ ,L_-,infinitesimal strains e - e_j,

and stresses _ -_ _. The problem data include: the body force field b - b_ in V, prescribed
displacements d - _ on E_, and prescribed surface tractionst - t_on S_.

The relationsbetween the volume fieldsaxe the strain-displacementequations:

e = ½(Vu +-vru) = Ou or e,_ = ½(u,._ + _i.,) in V, (1)

the constitutive equations:

a = Ee or a_.i = E,i_e_t in V, (2)
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which will be assumed to be invertible, and the equilibrium (balance) equations:

-div u = D'¢ = b or o_jj + b_ = 0 in V, (3)

in which D* = -div denotes the adjoint operator of D = ½(V + _72").

The stress vector with respect to a direction defined by the unit vector v is denoted as

ov = o.v, or or, = o_yvy. On S the surface-traction stress vector is defined as

¢_ = ¢.n, or o._ = o_s=i. (4)

With this definition the traction boundary conditions may be stated as:

¢. = _ or aii,_ = _ on. St, (_)

and the displacement boundary conditions as

u = il or =i = _ on Sd. (6)

3. NOTATION

3.1 Field Dependency

In variational methods of approximation we do not, of course, work with the exact fields

that satisfythe governing Eqs. Io3 and 5-6,but with independent (primaxy) fields,which are

subject to variations, and dependent (secondary, associated, derived) fields, which are not.
The approximation is determined by taking variations with respect to the independent fields.

Following the notation introduced in Refs. 9 and 10, an independently varied field will be

identified by a superposed tilde, for example _. A dependent field is identified by writing the

independent field symbol as superscript. For example, if the displacements are independently

varied, the derived strain and stress fields are:

e" = ½(V + Vr)5 = DS, o u = Ee" = ED5. (7)

An advantage of this convention is that u, e and o may be reserved for the ezact fields.

3.2 Integral Abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted paren-

theses and square brackets, respectively, around the integrand. For example:

(f)v def /v f IS f def/$d def /$,
= dV, If ls def= dS, [f]$d = fd5, [f]s, = fdS. (8)

If f and g are vector functions, and p and q are tensor functions, their inner product over V

is denoted in the usual manner:

(f,g)v _,=! /vf.gdV=/vfigldV, (P, q)v de___ p.q dV = Piyqii dV, (9)

and similarly for surface integrals, in which case square brackets are used.
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V + Si
S t U S d

Fig. 3 - Internal interface example.

3.3 _)omaiD Assertiops

The notation:

(a = b)v, [n = bls, [a = his,, {a = bl_,, (10)

is used to assert that the relation a = b m valid at each point of V, 5', Sd and St, respectively.

3.4 Internal Interfaces

In sections 4-5 we +:onstructhl;bridvariationalprinciple._in which boundary displace-

ments d can be varied independently from the internaldisplacements u. These displacements

play the roleof Lagrange multipliersthat relax internaldisplacement continuity.Variational

principlescontaining d willbe calleddisplacement-generalized,or =d-generalized"for short.

The choice of d as independent fieldis not variationallyadmissible on S_ or St. We

must, therefore,extend the definitionof boundary to include internalinterfacescollectively

designated as S_. Thus:

S : S_ u St u S,. (11)

On Si neither displacements nor tractionsare prescribed. A simple case isillustratedin

Fig. 3, in which the interfaceS_ divides V intotwo subvolumes: V + and V-. An interface

such as S_ on Fig.3 has two =sides"calledS_ and S_, which identifySi viewed as boundary

of V + and V-, respectively.At smooth points of Si the unit normals n + and n- point in

opposite directions.

The integralabbreviations of Eqs. 8-9 generalizeas follows,using Fig. 3 for definiteness.

A volume integralisthe sum of integralsover the subvolumes:

(f)v d,=fIv. f dV + Iv- f dV. (12)

An integralover S_ inck_destwo contributions:

[g]s_ d_=__,_ g+ dS + _s g- _S, (13)
7

where g+ and g- denote the va]ue of the integrand g on 5'+ and S_", respectively. These two
values may be different if g is discontinuous Or involves a plojection on the normais.

The appearance of _ is a consequence of allowing elements with discontinuous displace-

ments. Following a finite element discretization, the union of interelement boundaries becomes

5_. This boundary is generally nonphysical because it depends on the discretization, l

z Ifthereaxe physicalinternalinterfaces_ forexample, & sudden thicknessor materialchange

itiscommon practicetoselectthe mesh so thatthesenaturalinterfacesaxe _Isointerelement
boundaries.
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4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are based on functionals of the form:

N = u - P, (14)

where U characterizes the internal energy stored in the body volume and P includes other

contributions such as the work of applied loads and energy stored on internal interfaces. We

shall call U the generalized strain enercy and P the [orcin¢ potential.

The functionals in thi_ section include indspenden_lll varied displacements. The class

of "equilibrium" function_is without independent displacement1, such as the complementary

energy, are briefly covered in section 5.5 for completeness, but ar_ not required in the finite

element developments of sections 6-11.

4.1 Generalized Strain Energy

The generalized strain energy has the following structure:

U tjl1(_,e_)v-i-jl2(_"," . - u I . ,= e)v+jzs(o,e )v+ _J22(",_)v+J2_(¢',e'),,+ ½./3s(¢',e")v(Is)

where Jll through jas are numerical coefficients. For example, the Hu-Washizu principle

is obtained by setting J'12 -- -1, J13 = 1, J22 = 1, all others being zero. The matrix

representation of the general functional Eq. 15 and the relations that must exist between the
coefficients are studied in section 5.1.

4.2 Hybrid Forcing Potentials

Variational principles of linear elasticity are constructed by combining the volume in-

tegral of Eq. 15 with the forcing potential P. Two forms of the forcing potential, called
P_ and pt in the sequel, are of interest in the hybrid treatment of interface discontinuities.

The d-generalized forcing potential introduces, as described in section 3.4, an independent

boundary displacement field d over S_:

Pd(f,b,d) = (b,5)v + [_.,fi - d}s. + [£,fi]s, + [_,6 - dis,. (16)

The t-generalized (traction generalized) forcing potential introduces an independently

varied traction displacement field t over S_':

The conventional form P= of the forcing potential is obtained if the interface integral

vanishes and one sets [t = o,,]s. If so pt and pd coalesce into pc, which retains only two

independent fields:

PC(fz,¢) = (b,fi)v+ [o'v,,u - d]$._+ [t.,u].%. (18)

4.3 Modified Forcing Potentials

Through various manipulations and assumptions detailed in Ref. 10 the forcing potential
pd may be transformed to

Pd(ll, u,¢l) ----(b,u)v + It, dis, + [un,u - dis- (19)

where the all important surface dislocation integral is taken over S rather than Si. One of

the assumptions is that displacement boundary con-." _:,s, Eq. 6, are exactly satisfied on ,S'd.

This expression of pd is used in the sequel. A similar technique can be used to adjust pt,

but that modified formula will not be required in what follows.
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4.4 Complete Functionais

Complete elasticity functionMs are obtained by combining the generMized strain energy

with one of the forcing _otentials. For example, the d and t generalized versions of the
Hu-Washizu functional axe:

H_, = Uw - p,l ]'[_, = Uw -- P'.

where Uw is obtn_xed by setting 3"22-- 3'm = I, J12 = -I, others zero, in Eq. 15.

(20)

5. MATRIX REPRESENTATION OF ELASTICITY FUNCTIONALS

The generMized strain energy of Eq. 15 can be presented in the matrix form:

=½[._.(_ o' a _) _ _. (21)

,v Ls_mm Js_ e"

The symmetric mat_ ix2

a= i,, (22)
LA3 J2_ J3_J

characterizes the volume portion of the variational principle. Using the relations a c = Ee,

a u = EI)_, e <' = E-I¢, _nd e u = D_, the above integral nmy be rewritten in terms of the

independent fields as:

,rJ"E-'jzzI j22EJ'2I j2aEDJ_aD 1,1"b '1,[
u=½_(_ _ _) _ dr. (23)

dv LAsD r j23DTE j_zDTED 5

5.1 FirstVariation of Generalized Strain Energy

The firstvariationo_ Eq. 15 may be presented as:

_IU = C,_.e,6_)v + (Ao, 56)v - (div o',6fi)v + [a_,6fi]s, (24)

where
Ae = .7"tie_ + Jz2e + Jlse _',

Ao = Jtz_ + j22a" + j23o', (25)

o' = _'la_+ j2so" + j3so'.

The last two terms combine with contributions from the forcing potential variation. For

example, if P -= pc, the complete variation of H e = U - pc ts:

6II = = (Ae,&_)v + (A,,,56)V -- (div a' + b,&5)v + [o" - i,&fls , - [6 - a,_b.]s,. (26)

Using P_ or P_ doe_ not change the volume terms. The firstvariationsof II_ and l'[_

are studied in Refs. 9--11for a more restrictiveclassof functionals,namely If.t. The Euler

equations associatedwith the volume terms

Ae = O, Ao = O, div o_ + b = O, (27)

: To justifythe symmet:7 ofJ note,forex_anple,thatjt_(b,e-)v = .t.'_]ts(o,e"")v + _3ta(e'l'"_',o"]v,
and so on.
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are independent of the forcing potential. A =weighted residual" interpretation of Eqs. 27 in

terms of the field equations is given in section 5.4. For consistency of the Euler equations

with the field equations of section 2 we must have Ae ----O, AO = 0 and a I -- u if the assumed

stress and strain fields reduce to the exact ones. Consequently,

Jl_ + Y12 + Jl3 = 0,

J12 +i22 +/_s = 0,

/ls + J2s + Jss = 1.

(28)

Because of these constraints, the maximum number of independent parameters defining

the entries of J is three.

5.2 Specific Functionals

Expressions of J for some classical and parametrized variational principles of elasticity

are tabulated below. The subscript of J is used to identify the functionak, which are listed

roughly in order of ascending complexity. The fields in parentheses after the functional name

are those subject to independent variations in V.

Potential energy (fi):

Jp = o . (2o1
0

Stress-displacement Reissner, also called Hellinger-Reissner, (_,fi):

--1 0 I]
JR= 0 0 0 .

I 0 0

Unnamed stress-displacement functional listed on p. 116 of ReL 18 (_',_t):

(30)

1 0
Ju = 0 0

-I 0

Strain-displacement Reissner-type as listed on

i]
p. 116 of _-..f. 18 (6,fi):

(31)

Hu-Washizu s (@,6, Q):

Js = -1 .
1

(32)

Jw = - 1 . (ss)
0

One-parameter stress-displacement family (_, 5) that includes Up, UR and Ucr a_ special

cases(Rzfs. 8-10)

,]3_ = 0 0 . (34)
0 1--'l

= There are several functionals that carry this name, transformable from one to aaother through
integration by parts. That corresponding to Jw is the third form listed in section 2.3 of Ref. 24.
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Reissner _,

P

Fig. 4 - Graphical representation of the J_;_'T funct]onak

One-parameter strai_-displacement family (i,5) that includes Up and Us as special

cases (Ref. 9):

J_ = -_ _ . (3s)
_ 1-_

Two-parameter family (_,g,fi)that includes U_ and U_ as special cases (Ref.9):

J#== (I- _)J=+ (I- =)J_- (I- # -._)Jp

F-_(I- _) 0 _/(1- _) 1 (36)

-- | 0 -/]'(1 - "7) _(1 - "7) ,/ .
L =(i-p) _(i-=) l-_-_+2_J

Three-parameter (a, _, _/)family (_,_,5) that includes Uw and U_._ as special cases

(Ref.g):

Ja_'T = aJw + (I - a)J#_

I -'7(l-_a)(l-a) -a _+'7(l-_)(l-a) ] (37)
-- ct- _(1 - "7)(I- ct) #(1 - "7)(1- a) .

La + _(1- _)(I -a) j9(I-'y)(1 - a) (1 --,_- "f÷ 2_"7)(1- ,")

The last form, which contains three independent parameters, supplies all matrices J

that satisfythe constraintsof Eq. 28. Ityieldsstress-displacementfunctionalsfor a = _ = 0,

strain-displacement functionais for a = "7= 0, and three-field(stress-strain-dlspiacement)
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functionals otherwise. A graphic representation of this functional in (a,/_, 7) space is given

in Fig. 4.

The specialization "7 = 1,/3 = 0 of J=_ is of particular interest:

J= = _ . (38)
0

The associated functional Ha might be called the generalized Hu-Washizu functional

because it reduces to Jw for a -- 1. But because of its special relation with the ANDES

formulation covered in section 8-11, Ha will be herein referred to as the ANDES functional.

5.3 Energy Balancing

A prime motiv=_tion for introducing the j coefficients as free parameters is optimization

of Enite element performance in the balanced stiffness sense of Table 1. The determination of

"best" parameters for specific elements relies on the concept of energy balance. Let U (e) =

½(Ee, _)v denote the strain energy associated with the strain field e. If E is positive definite,
/_ (_) is nonnegative. We may decompose the generalized strain energy into the following sum

of strain energies:

u = U(e=)+ =_U(e_"- _.)+ _,2U(,_- e") + ,_3U(e"- e='),

where L/p(e =) = Up is the usual strain energy, and 4

(39)

,_1 = ½(j.+j==-jss+l), _2 = ½(-A_+j==+js-_-l), ,,,s = ½(Ju-j22+jss-1). (40)

Eq. 39 is equivalent to decomposing J into the sum of four rank-one matrices:

[i0!][i i] [i0i]3= 0 +uh -- 1 +iv2 1 - +*as 0 0 0 . (41)
0 0 --1 --1 0 1

Decompositions of this nature can be used to derive energy-balanced finite elements by

considering element "patches" under simple load systems. This technique is discussed for the

one-paxa_neter functionaisgenerated by J._ in Refs.6 and 8-11. It isimportant to note that

the j coefficientsrnal/varl/from element to element.

5.4 Interpret=Ltionof Euler Equations

Eqs. 27 gain physical meaning ifthey axe rewritten as

_xe = tax(e =' - _) + tas(e" - e =') = O,

A¢ = tal(a - u') + ta=(¢' - ¢") = O, (42)

div ¢' = div [¢= + ta,(=r'- ¢=) + ws(-" - _)] = -b,

where the ta_are given by Eqs. 40. But e_-_ = E-l_-_ = 0 as wellu b-=r e -- _-F._ -- 0

are representationsof the constitutiveequations,Eqs. 2. Likewise, a=-¢ _ = E(_-Dfi) = 0 is

a representationof the strain-displacementequations,Eqs. 1. Finally,e =-e _ = Dfl-E- i_ =

0, as well as _ru - _ = 0, axe combinations of Eqs. i-2. Thus, we conclude that the Euler

equations Ae = 0 and A# = 0 axe weighted forms of the k_;-'_fic and constitutive field

• A_ shown in section 5.4, these coefficients may be interpreted u field equation residual weights,
hence the notation. It is conjectured that for stability the j coei_cients should be confined so

thffit uJ_ > O, hut this remains to be proven.
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equations.On the other hand, div a' _- b = 0 is a weighted combination of the equilibrium

equations, Eqs. 3, and the. other two.

If the ] coel_cients are such that a weight vanishes (see _dso Footnote 4), that paxticulax

field equation drops out from the Euler equations and must be viewed as being satisfied a

priori. For exmmple, in the potential energy functional, wl = w2 = ws = 0, and on[y the

equilibrium condition in terms of ¢= remains in the Euler equations. This interpretation

points the way for constructing U of Eq. 15 by the method c)f weighted residuals.

5.5 Functionais without independent Displacements

The foregoing theory applies to functionals where the displacements u axe independently

varied. Although this ca_e includes the more practically important functionals for our pur-

poses, for completeness we present the general paxametrization of stress-strain functionals.

Decompose U of Eq. 15 as Uc -I-U=, where Uu contains the strain energy due to displacement-

derived strains:

U= = (jl._+j2s¢=+ _3sao'l"=, e=)v = (div ¢',u}v - [_r,' U]s. (43)

Ifwe now assume that the equilibrium equations div o + b = 0 and traction boundary

conditions a. = t hold a priori,U. may be dropped and we axe [eftwith the generalized

complementary enewp ftLnctional

U -_ U¢ = l/lt(_,e_)v + j1=(_,e)v _-_kj22(ae,e)v. (44)

Taking account of the a priori conditions, the first vax_ation becomes:

6U¢ = (i_le" + i12_ + e =, 6_)v + (/l=o -_ j:_a', 6_)v, (4S)

and for consistency we must have ]xx + ix= = -I, it2 + ]2"_= 0. It follows that U¢ may be

represented as in the m_trix form of Eq. 21 with a J that depends on a singleparameter:

['o'i]J, = p . (46)
0

Here p = 0 gives the classical principle of total complement_ energy where= p = 1

gives the functional N(ii,_) listed on p. 117 of Ref. 18.

6. FINITE ELEM.EI_T DISCRETIZATION

In thissection assumptions invoked in the finiteelement discretizationof the functional

l'[ d for arbitrary J are stated. Following usual practice [n finite element work, the components

of stressesand strains _re arranged as one-dimensional awrays while the elasticmoduli in E

axe axranged as a squ_e symmetric matrix. In the sequei, and unless otherwise noted, we

consider an individual element of volume V and surface ._ : St u S_ u S_, where S¢ is the

portion of the boundary in common with other elements.

6.1 Boundary Displacement Assumption

The. boundary disvlacement assumption is:

[d = 1NdVIs. (47)

Here matrix Nd (ollectsboundary shape functions for the boundary displacements d

while vector v collects:he _visible"degrees of freedom of the element, alsocalledthe connec-

tors. These displacements must be unique on common element boundaries. This continuity

condition ismet ifthe displacement of a common boundary portion isuniqueiy specifiedby

degrees of freedom )oc_ed on that boundax'l. There axe no derived fieldsassociated w(th d.
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6.2 Internal Displacement Assumption

The displacement assumption in the interior of the element is

(fi = Nuq)v, (48)

where matrix 1Nu collects the internal displacement shape functions and vector q collects

generalized coordinates for the internal displacements. The assumed fi need not be continuous

across interelement boundaries. The displacement derived fields are

(e _ -- DNq = Bq)v, (u u = EBq)v. (49)

To link up with the FF and ANS formulations, we break up the internal displacement

field as follows. The assumed fi is decomposed into rigid body, constant strain, and higher

order displacements:

fi = N,q, + Ncq© + Nhqh. (50)

Applying the strain operator D -- -_(V -t- V T) to d we get the associated strain field:

e u = DN,q, + DNcqc + DNhq_ ffi Brq, + Bcqc + B_q_. (51)

But B, -- DN, vanishes because N, contains only rigid body modes. We axe also free

to select Bc = DN¢ to be the identity matrix I if the generalized coordinates q© are identified

with the mean (volume-averaged) strain v_lues _u Consequently Eq. 51 simplifies to

e u = _u + e_ = _ + Bhq_,, (52)

in which

q== _" = (e'%,/,.,, (B_,)v= o, (53)

where v = (1)v is the element volume measure. The second relation is obtained by integrating

both sides of Eq. 52 over V and noting that qh isarbitrary.It says that the mean value of

the higher order displacement-derived strains(alsocalledthe det_atoricdisplacement-derived

strains)iszero over the element.

6.3 Stress Assumption

The stressfieldwillbe assumed to be cor_tant over the element:

(_= _)v. (s4)

This assumption issufficientto construct high performance elements based on the free

formulation developed in Refs. 4-8. As discussed in Ref. 11, the inclusionof higher order

stress modes (deviatoricstresses)in Eq. 56 is computationally effectiveif these modes are

divergence free,but such a requirement makes extension to geometrically nonlinear problems

difficult.The only derived fieldis

(e_ = v'= S-_)v. (as)

6.4 Strain Assumptions

The assumed strain field_ is splitinto a mean constant strain • and a higher order

variation (the deviatoric strains):

(e = e + ed = "e+ Ada)v, (56)

where _ = (e)vIv, matrix A_ collectsdeviatoricstrainmodes with mean zero value over the

element:

(Ad)v = O, (57)

and a collectsthe corresponding strain mode amplltudes. The only derived fieldis:

(¢e = Ee = E_ + EAda)v. (58)
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7. UNCONSTRAINED FINITE ELEMENT EQUATIONS

We shall assume that aU elastic moduli in E are con,stant over the element. Inserting

the above assumptions into H d with the modified forcing potential of Eq. 19, we obtain a

quadratic algebraic form which is block-sparse because of the conditions stated in Eqs. 53

and 57. Rendering thisform stationaryyields the finiteelement equations.

jnvE -I /,2vl 0 -P_ jt3ul- p_ -p[ L Tl

jnuI j22uE 0 0 j2avI 0 0

0 0 j22K_d 0 0 j2al_. T 0

-P, 0 0 0 0 0 0

ilaul- P. j2avl 0 0 jaauE 0 0

-P_ 0 jI3R 0 0 jzzK qh 0
L 0 0 0 0 0 0

where:

,q, _= fq,

,uf_h
v f_

(59)

Kqh = (B_EB_)v = Kq_, Kaa = (A_F-,A_)v = K.a,r R = (B_'EAd)v,

L [N_.Is ' p, r 7"[N..]s, Pc [N_.]s,= = = [Nc.]s, P_ =

f. = (N_Zb)v, rq = (Nq_b)v, fh = (N_b}v, fv = [N:tls,,

(60)

in which Na. denotes the projection of shape functions Na on the exterior normal n, and

similarlyfor N,, Nc and N_. Those coefficientmatrix entriesthat do not depend on the ]

coef_cientscome from the lastboundary term in Eq. 19.

7.1 The P Matrices

Application of the d_vergence theorem to the work of the mean stresson e u yields:

(_,e")v = (_,_' + B_qh)v = v_ri" + _r(Bh)vqh = v_ri"

= [_,., 5]s = [_.,N.q. + Nc_ _' + Nhqh]s = _r(p.q. + p_ + Phqh).
(61)

Hence P_ = 0, Pc = uI, Ph = 0, and the element equations simplify to:

j**uE -I j,avI 0 0 (J13- 1)uI 0 L r"

j,2uI jnuE 0 0 j23uI 0 0

0 0 j22K_a 0 0 j2aR r 0
0 0 0 0 0 0 0

(J*a - 1)vI j2__uI 0 0 j-_auE 0 0

0 0 ]23R 0 0 ]_Kqh 0
L 0 0 0 0 0 0

'l o]0

a , 0
'|r _ ---- fqr ' •

¢ . f,,

The simplicityof the P matrices isessentiallydue to the

of Eq. 52 for e_. Ifthisdecomposition isnot enforced, Pr = 0

P_ = (B_)v.

(62)

8. KINEMATIC CONSTRAINTS

mean-plus-deviator splitting

but Pc = (Bc)v = vBc and

The _tricks"we shallconsider here axe h'nematic ¢oru_t,aint_that play a key rolein the

development of high-performance FF and ANS elements. These are matrix relationsbetween

kinematic quantities that are established independently of the variationalequations. Two

types of relationswillbe considered.
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8.1 Constraints Between Internal and Boundary Displacements

Relations |inking the generalized coordinates q of Eq. 48 and the connectors v were

introduced by Bergan and coworkers in conjunction with the freeformulation (FF) of finite

elements (Ref. 5). For simplicity,we shallassume that the number of freedoms in v and q is

the same; removal of thisrestrictionisstudied in Ref. 11. By collocationof u at the element

node points one easilyestablishesthe relation:

v = Grq, + Gcqc + Gaqa = Gq, (63)

where C is a square transformation matrix that will be assumed to be nonsin_,--,lar.On

invertingthisrelationwe obtain

q = G -I = Hv, ('IIor q= _u = Hc v. (64)

qh Hh

The followingrelationsbetween L (defined in Eq. 60) and the above submatrices hold

as a consequence of the individual element testdescribed in section 9.3:

LrG, = 0, LrGc = vl, vHc = L r. (65)

If the splittingof Eq. 52 isnot enforced,however, the lasttwo become:

LrGc = vBc, PcHc +PhHa = L r or Pc = LrGc. (66)

Since Pc = vBc, these relationscoalesce (see Ref. S).

8.2 Constraints Between Assumed Deviatoric Strains and Boundary Displacements

Constraints linking 6 to v are fundamentally important in the ANS formulation. The

effectof these constraints in a variationalframework is analyzed in Refs. 15 and 16. In

the present study we depart from previous work in that onlp the deviatoricstrains,ed, are

oJsumed linked to v, u_herea# the mean strains _ are obtained variationallp. Consequently,

we shallpostulate the following relationbetween assumed deviatoricstrain amplitudes and

nodal displacement connectors:

a = Qv, (67)

where Q is generally a rectangular matrix determined by collocation, least squares or other

fitting methods. An example of the construction of Q is given in section 11.4. The individual

eiement test described in section 9.3 requires that Q be orthogonai to G, and Go:

QG, = O, QGc = O. (68)

8.3 Limitation Principles

Strain assumptions made concurrently with displacement assumptions ,.._-onfined by

limitationprinciples similar to those stated by Fraeijs de Veubeke for stress-displacement

mixed elements (Ref. 13). This issuewas discussed in Ref. 15 for a more restrictedstrain

displacement hybrid formulation. Limitation principlesfor the general formulation presented

here remain to be studied.
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9. VISIBLE STIFFNESS EQUATIONS

On enforcing the constraints a = Qv, qr = H,V, qc = HeY = u-ILTv, and qk = Hay,

through Lagrange multiplier vectors A_, At, Ac, and As, respectively, we get the augmented

finite element equations

jr,rE-' jt2vI 0 0 (3,a- 1)vI 0 0 0 0 0 L _"

jl2eI jneE 0 0 _ssvI 0 0 0 0 0 0
0 0 j_K,_ 0 0 jssR r -I O 0 0 0
0 0 0 0 0 0 0 -I 0 0 0

(jt_ - 1)vl jssvI 0 0 j_vE 0 0 0 -I 0 0
0 0 .42aR 0 0 jsaKel. 0 0 0 --I 0
0 0 --I 0 0 0 0 0 0 O Q
0 o 0 -I o o 0 0 0 0 H,
0 0 0 0 -I 0 0 0 0 0 v-tL T

0 0 0 0 0 -I 0 0 0 0 H_

L o o o o o QrHyv-,l, HE 0

q,
b"

q_
A.

A,

A,

A_

V

o
o
0

r,,
r.

= fq_

°/"
0

0
0
f.

(69)

Condensation of all degrees of freedom except v yields the visible s element stiffness

equations:

Kv = (Ks + Xh)v = f, (70)

where

Ks = v-ILEL r, (71)

K_ = ]_HrKqhHh + j23(HrRQ + QTRrHh) + j22QrK_dQ, (72)

f = f. + Hyf,, + v-'Lrf, c + H[fqh. (73)

Following the nomenclature of the free formulation, we shall call Ks the basic stiffness

matriz and Ka the higher order stiffness matrix.

9.1 Relation to Previo,;sHP Element Formulations

IfJ = J_ of Eq. 33. j_ = 1 -"/, J22 = 3"23 = 0, and we recover the scaled/ree formulation

stiffnessequations considered in Refs.6, 8 and I0:

Kh = (1 - _) H_KqhHh, 1 --'7 > 0. (74)

On the other hand, if we take J = J_ as given in Eq. 38, J22 = a, Ja3 = J23 = 0 and we

obtain:

Kh = aQrK_Q, ot > 0. (75)

which is similarto the stiffnessproduced by the ANS hybrid variationalformulation studied

in Refs. 15-16, inwhich the forcingpotentialpt was used instead of pd. The variant of ANS

considered herein will be called the aJaumed natural deviatoric strain (ANDES) formulation

in the sequel. The name is apt in the sense that what is being assumed are deviatoric rather

than total strains, and that this assumption only affects the higher order stiffness.

But the term with coefficient j2_ in Eq. 72 is new. It may be viewed as coupling the FF

and ANDES formulations. It is not known whether Eqs. 70-73 represent the most general

structure of the visible stiffness equations of HP elements.

S The qualifier'_visiblem emphasizes that theseare the stiffnessequationsother elements asee",

and, consequently,_re the only ones that matter insofaras computer implementation on x
displacement-basedfiniteelement program.
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9.2 Recovery of Element Fields

For simplicity suppose that the bodl/forces vanish and so do fqr, fqc and fqh because of

Eqs. 60. H v is known following a finite element solution of the assembled system, solving

Eqs. 69 for the internal degrees of freedom yields:

=-v-ILk'v, #=Ei, a=Qv, q,=H,v, _"=i, qhfHhv,
(76)

A, = (j2_K_Q + jaaRTH_)v, A, -- 0, Ac =- 0, Ah --- (j_sRQ + jssK_hH_)v.

Eq. 76 show that the mean strair_ i, _ and _¢ -- E-I# coincide, a-'rld, of course, so do

the mean stresses. But if the body forces do not vanish, the mean stresses and mean strains

recovered from different fields will not generally agree.

We also note that a nonzero Lagrange multiplier vector flags a deviation of the associated

fields from the variationallll consistent fields that would r_ult when using the unconstrained

Eqs. 62 without "tricks".

9.3 The Individual Element Test

To conclude the genera] formulation, we investigate the conditions under which HP ele-

ments based on the foregoing setting pass the individual element test of Bergan and Hxnssen

described in Refs. 3--6. To carry out the test, assume that the "free floating" element e under

zero body forces is in a constant stress state ¢o, which, of course, is also the mean stress.

Insert the following data in the left-hand side vector of Eq. 69:

=¢o =#_, _--E-ltro, ah=0, qr =arbitrary/, eU=_=E-l#o, qh---0,

Aa=0, A,=0, A_=0, Ah=0, vfG_q,+Gc_ "_=G,q,+GeE-loo.

Premultiply by the coefficient matrix and demand that all terms on the right-hand side

vanish except for f, =L¢o. Then the orthogonality ¢onditious in Eqs. 65 and 68 emerge.

This form of the patch test is very strong, and it may well be that relaxing circumstances

can be found for specific problems such as shells.

I0. DISCUSSION

At this point it is useful to recapitulate key points and connect this material with some

of the techniques of Table 2. The chief property of HP elements constructed with present

methods is the decomposition of the element stiffness equations displayed in Eq. 70; a property

that of course subsists at the assembly level.

The basic stiffnessmatrix has a universal character: as no j coefficientsappear in

Eq. 71, clearlyKb isindependent of specificvariationalprinciples.Given the constant stress

state introduced in Eq. 54, Kb depends only on the assumed boundary motions. It can be

constructed (and programmed) once and for all for each element type. As emphasized in

Ref. 5, the main function of Kb isto provide convergence.

The higher order stiffnessin Eq. 72 serves two other functions: stabilitlland accuracy.

The basic stiffnessis generally rank-deficient7 because its rank cannot exceed that of E;

thus a key function of Kh is to stabilizeK by raising itsrank to the correct one. The

second function,which has gained importance in recent work, isto increasesolution accuracy

for coarse grids. Here is where the j coefficientsplay the important role noted in section

5.3. These coefflcienta mall vary from element to dement, despite the fact that this variation

implies that the variational principle changes from one element to another. Thus, the "element

mixability _ requirement of Table 1 is fulfilled without tears.

G Mathematically,the entireelement boundary m tractlon-specified,Ce.,.q--St.

v Except in simplex elements, for which K -- Kb.

2O8



10.1 The Free Formulatiot_

The present methodology was initially pursued to justify variationally the original FF

('y = 0) of Ref. 5, as well a_ the scaled FF (_ _ 0) of Refs. 6-8. Thus, it is not surprising that

those element construction techniques fit naturally in the present variational framework by

simply taking J = Jr" The extended FF described in Re£ 11 alms to remove the restriction

that the dimension of vectors q and v be the same. One of the techniques advocated to

allow dim(q) :> dim(v) involves extending Eq. 54 with dewatoric stress assumptions, and

thus requires a generalization of Eqs. 59 and 62. Whether such a generalization is practically

worthwhile is unclear.

10.2 The ANS Forrnulatic_n

The conventional AI_S formulation as presented in Refs. 1 and 19 constructs total strain

fields _ (not necessarily integrable into displacements u') gaged through generalized strain

coordinates a _ e = An. These coordinates are eventually linked to the connectors v

via matrix expressions of the form a = Qv, leading to an element stiffness of the form

K = QT'K,Q, where K_ is tl_ generalized stiffness in terms ofa. The restriction to deviatoric

strains in section 6.4 is motivated by two interrelated factors: (a) the strain assumed stiffness

_flows _ to the higher order stiffness, where it can be naturally scaled by using J = J_, and

even intermixed with FF contributions a.s Eq. 72 shows; and (b) the b_ic stiffness of the

element, derived separately, can be used to insure convergence.

10.3 Projectors and S/R Integration

The so-called *B-bar _ approach is based on expressing the element strains u s

e = B-'_ (7s)

where B, which cuts off the _harmful _ portion ofB _, is constructed by various ad-hoc devices

such as strain projection, selective, and/or uniform reduced integration. These time-honored

schemes are well covered in Ref. 14. They are easily included in the present setting if B

admits the decomposition

B = B + A,,Q, (79)

where Q isnot positiondependent and _ = Bv provides the mean strains,which are discarded

in favor of Eq. 76. This decomposition can be usually carried out in severalways.

11. EXAMPLE: A 9-DOF ANDES PLATE BENDING TRIANGLE

The first element constructed with the ANDES formulation is a three-node Kirchhoff

plate-bending flat triangle with the usual nine degrees of freedom. The derivation is briefly

covered to illustrate the essential steps in forming the higher order stiffness of such elements.

These steps axe outlined in _recipe _ form in Table' 3, which restates the arguments of section

6.4 in a more physically oriented sense closely aligned with the terminology of Ref. 19.

11.1 Geometric Relatior_

The triangle has straight sides. Its geometry is completely defined by the location of its

three corners, which axe labeled 1,2,3, moving counterclockwise. The triangle is referred to a

local Cartesian system (z, y) which is taken with origin at the centroid 0, whence the corner

coordinates z_, y_ satisfy the relations zt ÷ z2 ÷ zs = 0 and Yl ÷ Y2 + Ys = 0. Coordinate

a This is a slight variation from the usual notation, neceseit_ted by the use of the single overbar
to denote average or mean v_lues.
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Table 3 - Construction of Kh by the ANDES Formulation

Step 1. Select re/ereneelines (in 2D elements) or referenceplanes (in 3D

elements) where "natural straingage" locationsare to be chosen. By appropriate

interpolation express the element natural strains7 in terms of the "straingage

readings" g at those locations:

7 = A, z, (so)

where 7 is a strain fieldin natural coordinates that must include all constant

strainstates. (For bending elements the term "strains"isto be interpreted in ffi

generalized sense, viz.curvatures.)

Step P.. Relate the Cartesian strains_ to the natural strains:

--- T7 = TAng -- Ag (81)

at each point in the element. (Ife -=_, or ifitispossible to work throughout in

natural coordinates, thisstep isskipped.)

Step _. Splitthe Cartesian strainfieldintomean (volume-averaged) and devi-

atoricstrains:

e e + ed = (X + Ad)g, (82)

where A ---(TAr)v/v, and ed ----Adg has mean zero value over V. (This step

may also be carried out on the natural strainsifT isconstant, as isthe case for

the element derived here.)

Step _. Relate the natural straingage rea_lings g to the visible degrees of
freedom

g = Qv (83)

where Q isa straingage-to-node displacement transformation matrix. Techniques

by which this is accomplished vary from element to element and it is difficult

to state rules that apply to every situation. In the element derived here Q is

constructed by direct interpolationover the reference lines.(In general there is

no internaldisplacement fieldu c such that & = Du e,so thisstep cannot be done

by simply integratingthe fieldof Eq. 81 over the element and collocatingu* at

the nodes.)

Step 5. The higher-order stiffnessmatrix isgiven by

1-

Kh ---aQTK,dQ, where K,d ----/v A_EAa dV,

where a > 0 isthe scalingcoefficientsupplied by the functionalof Eq. 38.

(84)

differencesare abbreviated by writing z;j --z; - z_.,etc. The signed trianglearea A isgiven

by the formulas:

2A = 2:21Z/31 -- Z31Y21 = Z32_/12 -- X12_/32 = ZI3Y23 -- Z23YlS, i_,)

and we require that A > 0. We shall also make use of dimensionless triangular coordinates

_l, Ca, _3 linked by the constraint _l + _'2+ _ = i. The following well known relation between
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the area and centroid-ori:ginated Cartesian coordinates of a ._traight-sided triangle is noted:

+ Pzki), (86)
m

where i, j and k denote positive cyclic permutations of 1, 2 and 3; for example, i = 2, j = 3,

k = 1. Therefore aG/ax = yik/2A and aG/Oy = x_,y/2A. Other intrinsic dimensions and

ratios used below axe

= _ + v_j, ,,,, = 2A/e_i, #_;= (x_jx_ + v_jy,k)/t_ i, bj_ = £_; - b_;,l o (st)
Aq = b_il& i = (x,:ix,a + 9jiYki)l(z_y -+"Y_i)' Adz = bi;,/t<_ = 1 -- Aiy,

where ?.//denote the tria_agle side lengths, aiy are triangle heights, b¢i and byi are projections

of sides ik and jk onto s, de ij, respectively, and the As are ratios of these projections to the

side lengths.

11.2 Displacements, Rotations, Side Coordinates

Because we axe dealing with a Kirchhoif element, its displacement field is completely

defined by the transverse displacement w(z, y) =- ta(fh f2, fa), positive upwards. The midplane

rotations about z and r/axe O= = 0m/0p and Ov = -0w/az. The visible degrees of freedom

of the element collected n v axe:

vr=!w_ O=l Ovl u_2 0_2 Or2 w:_ O_s Oys]. (88)

Over the three side_ 1-2, 2-3 and 3-1, traversed counterclockwise, we define the dimen-

sionless side coordinates m2, _2a and _sl as follows: over side 1-2,/_tu varies from _tz = 0

at corner 1 to Pt2 = 1 at corner 2. Thus, _t2 = fa when ga := 0. Relations for the other sides

follow from cyclic permutation of subscripts. Then:

Jz Ox Oz

O_n xn_, Opns xsn, O_s_ x_a,

OV Oy Oy

11.3 Natural Curvature_

(80)

The second derivatives of w with respect to the dimensionless side directions will be called

the natural curvatures _md denoted by Xi_ = 0Zu'/0P_ • Note that they have dimensions

of displacement. The n_tural curvatures can be related to the Cartesian plate curvatures

_== = Ouw/Ox z, r, vv = O_m/Op _ and '_zv = 2_w/_z_P, by chain-rule application of Eqs. 89:

X : X23 :=
2 Lz_s

X3t

The inverse of this relation is:

On w }

[ yzny_s

On_ 1 / :nazis

2 02w L ,/23znt + Zn'_Y_a

or, in matrix form

Y_I X21_21"

Y_2 Za2932

Y_3 zI3YI3
{°I

20aw

= T-_ _. (oo)

YSlY21

Z31_21

ya_Zl_ -4-ZtsY21 02 w

Y12Y32 l _02_

Zt2Z32 /

Y12Z23 + z21Ya2J 02_

(91)

_=Tx. (92)
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11.4Curvature Sampling

The re/erence iinea referred to in Table 3 are the three triangle sides. The natural

curvatures are assumed to vary linearly over each reference line, an assumption which is

obviously consistent with cubic beam-like variations of w over the sides. A linear variation on

each side is determined by two straingage sample points, which we chose to be at the comers.

On each triangle side chose the isoparametric coordinates _;j that vary from -1 at corner

i to ÷I at comer j. These are related to the _0' coordinates as _,.j = 2p_y - i. Then the
natural curvature over side iy is given by the beam formula

{°'02w

where On denotes the rotation about the external normal direction n on side ij. Evaluating

these relations at the nodes by setting _j = ±1 and converting normal rotations to z-y

rotations, we build the transformation

X1212 6 2p=1 -2z21 -6 4_'21 -4zz_ 0 0 0

X2sl= : 0 0 0 -6 -4y=2 4=32 6 -2ys= 22:a2

X2sl3 0 0 0 6 2ys2 -2:32 -6 4y32 -42:s2|
6 --2Y'13 22:13 0 0 0 --6 --4y13 42:13/

Xsl[a --6 4Yla --42:xs 0 0 0 6 2Yls -2xlsJ
Xsltl

'w1

0=1

#vl

w2
8ffi:

8v2

w3

8=3

,0y3,
(04)

The left hand side is the natural strain-gage reading vector called g in Table 3 and so

we can express this as the matrix relation

g = Qv. (gs)

11.,5 Curvature Interpolation

The six gage readings collected in g provide curvatures along the three triangle side

directions at two comers. But nine values are needed to recover the complete curvature

field over the element. The three additional values are the natural curvatures at the missing

corner. We obtain these values by adopting the following rule: Cylindrical bending with

linearly varldng curvature a/ong a side direction is to be ezact/y represented. Another way of

stating this is: the side curvature Xly is to be constant along lines normal to side ij. This
mak_ the element insensitive to bad aspect ratios on "strip bending" if each element has a

side oriented in the direction of the strip.

To apply this rule consider side 1-2. The natural curvature X12 -- _2w/a._2 along this

side is defined at nodes 1 and 2 by the first two rows of Eq. 94. For node 3 take

a2w

I = _21 x12[i + _x2 x1212, (06)

where )_12 and ),21 axe defined in Eq. 87. As we now know the values of X12 = 02tu/c3/_2 at

the three corners, we can use the standard linear interpolation over the entire triangle:

x_2= x121_i+ x_2]2_'_+ x_Is_'s= x_211(_i+,_) + xI_12(_'=+,_a). (o_)
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Proceeding analogously for the other two sides,we construct the matrix relation:

IX12} I_1+A21C_ f2+A12f= 0 0 0 0 ]
X2s : 0 0 f2 + As2fl _3+ A23fx 0 0 g,

X31 0 0 0 0 _3+ A13f2 fl+ A31f_

(98)

or

X = Axg, g = TA×g (99)

Because T isconstant we can do Step 3 of Table 3 directlyon the natural curvatures.

Now Ax(fl ,f2,f3) isa linearfunction of the triangularcoordinates. Consequently, the mean

natural curvatures can be simply obtained_by evaluating Jk_xat the centroid _'i-- _'2--f3 =

1/3. Let the corresponding matrix be A x. Then _ = Axg, and the natural deviatoric

curvatures are given by

X_ = (Ax - Ax) g, (100)

which transformed to deviatoric Cartesian curvatures zd = g - _ gives finally:

gd = T(Ax -Ax)g = Ad g. (IOI)

11.6 The Element StiffnessMatrix

The buic stiffne_mmatrix Kb isthe same derived in Ref. 8 using the conventional FF

and need not be rederived here. The higher order stiffnessmatrix isgiven by Eqs. 84, which

for a plate bending eleraentspeci&lizesto

(i02)

where D is the Cartesian moment-curvature constitutive m;Ltrix resulting from the integration

of E through the plate thickness:

to**olo,311../m = m_v = |Dl2 D22 D23 _:vv = Dg.

ruffly [D13 D23 D33 _:ffiv

(lO3)

Because Ad varieslinearly,ifD isconstant we could numerically integrateKad in Eq. 102

exactly with a three point Gauss rule,forexample the three midpoint formula. The formation

of the element stiffnessisdominated by these calculationsariditisof interestto derive KGd

in closed form. Such a derivationisfound in Ref. 17.

11.7 Preliminary Evaluation

As of this writing, only a sketchy evaluation of the first ANDES element is available. We

have found that for tri._ngles with good upect ratio their behavior is similar to that of the

scaled FF element of Ref. 8, which is known to be an excellent performer. But the ANDES

element shows less distortion sensitivity for high _pect ratio elements, u can be expected

from its construction. Additional evaluation details will be reported in Ref. 17.

These preliminary results are encouraging in that we now have two good stand-alone

components (FF and ANDES) of Kh. Thus, it is plausible that a weighted mix of these

formulations u per Eq 72 can be used to squeeze the ultimate in performance for this very

simple element.
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12. CONCLUSIONS

The results presented in this paper may be summarized as follows:

1. The classical variational principles of linear elasticity may he embedded in a parametrized
matrix form.

2. The elasticity principles with independently varied displacements are members of a three-

parameter family. Those principles without independent displacements are members of

a one-parameter family.

3. Finite element aasumptions for constructing high performance elements may be conve-

niently investigated in this family using hybrid forcing potentials.

4. Kinematic constraints established outside the realm of the variational principle may be

incorporated through Lagrange multiplier adjunction.

5. The FF and ANS methods for constructing HP finite elements may be presented within

this augmented variational setting. A variant of ANS, called ANDES, fits naturally

in the decomposition of the stiffness equations into basic and higher order parts. In

addition, combined FF/ANDES forms emerge from the general parametrized principle.

6. The satisfaction of the individual element test yields various orthogonality conditions

that the kinematic constraints should satisfy a priori.

7. The first ANDES element based on this formulation displays an encouraging stand-alone

performance regarding distortion sensitivity. The weighted combination of this element

with its FF counterpart remains a topic for further investigation.
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Abstract--The assumed natural strain (ANS) formulation of fimte elements has undergone rapid

development over the past five years, The key formulation step is the replacement, in the potential energy
principle, of selected displacement-related strains by independently assumed strain fields in element natural
coordinates. These strains are not generally derivable from displacements. This procedure was conceived
as one of several competing methods with which to solve the element locking problem. Its most noteworthy
feature is that. unlike many forms of reduced integration, it produces no rank deficiency; furthermore,

it is easily extendible to geometrically non-linear problems. Many original formulations were not based
on a variational principle. Tl_,e objective of Part I is to study the ANS formulation from a variational

standpoint. This study is based on two hybrid extensions of the Reissner-type functional that uses strains
and displacements as independent fields. One of the forms is a genuine variational principle that contains
an independent boundary traction field, whereas the other one represents a restricted variational principle.
Two procedures for element.level elimination of the strain field are discussed, and one of them is
shown to be equivalent to the inclusion of incompatible displacement modes. In Part 11 [C. Militello and

C. A. Felippa. Comput. Struck. 34, 439-444 (1990)], the four.node C Oplate bending quadrilateral element
is used to illustrate applications of this theory.

i. INTRODUCT10'q

The assumed natural strain (ANS) formulation of

finite elements is a relatively new development. A

restricted form of the method was introduced in 1969

by Willam [1], who constructed _ four-node plane-

stress element by assuming a constant shear strain

independently of the direct strains and using a

strain-displacement mixed variational principle. A

different approach advocated by Ashwell [2] and co-

workers regarded 'strain elements' as a way to obtain

appropriate displacement fields by integration of

assumed compatible strain field._. These and other

forms of assumed strain techniques were overshad-

owed in the 1970s by developments in reduced and

selective integration methods, but have recently be-

gun to attract attention [3-7]. The primary motiv-

ation behind recent work has been the construction

of simple and efficient finite elements for plates and

shells that are locking-free, rank _;ufficient and distor-

tion insensitive, yield accurate answers for coarse

meshes, fit naturally into displacement-based pro-

grams, and can be easily extended to non-linear and

dynamic problems. Elements that attain these at-

tributes are collectively known as high performance

elements.

Over the past 20 years investigators have resorted

to many ingenious devices to construct high-

performance elements. Among the most successful

ones we can mention patch-test-verified incompatible

displacement models, reduced and selective integra-

tion, mixed and hybrid formulations, stress projec-

tors, the free formulation, and assumed natural

strains. "/'he underlying theme is that although the

final product may look like a standard displacement

model so as to fit naturally into existing finite element

programs, the conventional displacement formu-

lation is abandoned. (By 'conventional' we mean the

use of conforming displacement assumptions into the

total potential energy principle.)

Another common historic trend is that certain

deviations from the conventional formulation were

initially made without variational justification and in

fact labelled .'ts 'variational crimes' by applied math-

ematicians, ht some cases, such as reduced numerical

integration, teconciliation was achieved later after

surprisingly good results prompted explanation. In

other cases, notably non-conforming elements and

the patch test, a comprehensive mathematical theory

is still in the making.

The present paper seeks to interpret the assumed

natural strain (ANS) formulation from a variational

standpoint. The justification is based on hybrid ex-

tensions of the Reissner-type functional that uses the

strains and displacements as independent fields. We

restrict our considerations to linear elasticity

although the straightforward extension to geometric

non-linearities is one of the strengths of the ANS

formulation. In Part II, the four-node C O plate-

bending quadrilateral is used as a specific example to

illustrate the application of the present variational

interpretation.
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2. PROBLEM DESCRIPTION

2.1. Governing equatwns

Consider a linearly elastic body under static load-

ing that occupies volume V. The body is bounded by

the surface S, which is decomposed into S: S_ u S,.

Displacements are prescribed on S_ whereas surface

tractions are prescribed on S,. The outward unit

normal on S is denoted by n-: n_.

The three unknown volume fields are displace-

ments u =--u, infinitesimal strains ( m t0, and stresses

a _-#0- The problem data include: the body force

field f =-f in V, prescribed displacements ,i = _ on S_,

and prescribed surface tractions t-= t, on S,.

The relations between the volume fields are the

strain--displacement equations

( = _Vu + Yr.) = Du

or

2.2. Notational conventions

An independently varied field will be identified by

a letter without superscript, for example u, _, ¢. A

dependent field is identified by writing the indepen-

dent field symbol as a superscript. For example, if the

displacements are independently varied, the derived

strain and stress fields are denoted by

_ = _V + Vr)u= Du

¢_ = E_" = EDu. (7)

Given a finite element subdivision of V, quantities

pertaining to the e th element will be identified by

superscript (e), for example u_'), wherever appro-

priate. At the interface between two elements e and

f, superscripts (ef) and (fe) will identify interface

quantities considered as part of e and f, respectively.

_,,= _(u,.,+ u.)

(where superscript T denotes

constitutiveequations

¢ --E(

or

in V (1)

transposition), the

o',/ = E,zkjE,z in V,

and the equilibrium (balance) equations

-div_r =D*¢ =f

(2)

3. THE HU-WASHIZU AND REISSNER FUNC'FIONALS

In the conventional Hu-Washizu functional the

displacements u. stresses _ and strains, are indepen-

dently varied. Arranging the strain and stress com-

ponents as vectors, and the elastic moduli in E as a

matrix, the functional may be expressed as*

L(u,_,a)=fv[_rE¢+¢r(¢" _)_fru]dV

- fs (#J(u-a)dS- f,,irudS. (8)

or

#,j., +f = 0 in V. (3)

in which D* = -div (divergence) denotes the adjoint

operator of the symmetric gradient D =_V + vr).

On S the surface stress vector is defined as

From L one obtains the conventional stress-

displacement Hetlinger-Reissner functional by

eliminating _ through the inverse of eqn (2), namely

= ¢° = E-_a. Another Reissner-type, strain-

displacement functional is obtained by eliminating ¢

through the constitutive relations (2), namely

a = ¢' = E(. which yields

a.=a'n or a,.=a0n ,. (4)

R(u.,)= fv [-_E rE( + crE(" - fru]dV
With this definition the traction boundary conditions

may be stated as

- fs fs trudS"
a_=i or _r,,n_=_, on S,, (5) , ,

(9)

and the displacement boundary conditions as

u=6 or u,=fit on S,, (6)

_'There are several equivalent statements of this func-

tional, differing from one another in transformations based
on the divergence theorem. For example in Gur_in [8. p. 122]

the stress divergence appears. Some authors attribute this
specific functional to Fraeijs de Veubeke. who indeed pub-
lished a version of it in 1951. four years before Hu and
Washizu.

Setting _---_" reduces R to the potential energy

functional

P(u) = f,. [_(_")rE(" - fru] d V

-f';,. (a'_)rfu -- ti) dS - ; _rudS'.,
(10)

generalized with an S,, term over its usual expressmn.
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4. HYBRID FLNCTIONALS

4.1. Independent boundary tractions

If the functional (9) is used to construct finite

elements, the displacement field'u should be continu-

ous in V because of the presence of _", whereas the

assumed strain field may be discontinuous. To ac-

count rigorously for displacement discontinuities it is

necessary to add the interelement surface tractions t

as a new independent field which plays the role of

Lagrange multiplier. Let S_ denote the union of

interelement boundaries traversed twice (one for each

adjacent element); on S_ neither displacements nor

tractions are prescribed, l'hen R expands to the

hybrid functional

H(u, _, t) = R(u, _:) - fs, tru dS.
(11)

For later reference we nov: the specialization ¢ = _"

of eqn (11) to the generalized potential energy func-

tional of Jones [9]

P(u, t) = P(u) - fs, tru dS,
(12)

where P(u) is given by eqn (10).

The meaning of the integrals in H may be illus-

trated by the two-dimensional mesh of Fig. 1:

(13)

4.2. First variation

The first variation of H,

6H = 6_H + J,H ÷ 6,H, (14)

yields the Euler equations and interelement linking

conditions, which are underlined in the expressions

below. The three components of 6H are

,_, H ffi fv (Va' - f)r 6u d V

+fs, (a" - i)r 6u dS

+_ (or', - t)r6u dS (15)
.Js ¢

= ;v E(_" - ¢)r 6¢' dV
6,H

-fs, (u - d)r_(E_)" dS (16)

_-- _ ur

6,H js 6tdS. (17)

Note that there are two contributions to the element

interface integrals, one from 6.H and another from

6, H. Putting the parts together and decomposing into

element-pair contributions we obtain

s[(¢" - t)rfu + ur6t] dS

-_--e_f ;Sle/.i [{r _"T _U(e)--._n'/lr _Ul/)__,ef) r ,U (')

- t_/'_r cSu_/I + u_':6¢ `" + W_6¢/'] dS. (18)

In the absence of applied internal tractions, interele-

ment equilibrium requires tS"t_= -t _/'), which substi-

tuted into eqn (16) reduces the right-hand side to

where element identification conventions stated in

See. 2.2 have been followed. It is seen that in the

integrals over V, S, and S, each element appears once,

whereas in S, adjacent elements appear twice.

Fig. I. Simple finite element rmsh to illustrate computation

of integrals in H.

x[ ¢-(._'_-- ._')r 6 t4'r) ]dS. (19)

If we assume a compatible displacement field,

u('_= u/_, the above equation reduces to

f_ (a_" 'l :_)r 6u_" dS,
(20)

which means that the interelement equilibrium con-

dition appears as the Euler equation corresponding

to the variation of the interface displacements.

CA$ _4/3----F
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4.3. A restricted variational principle

If the displacement field is incompatible we should

in principle retain t as an independent boundary
traction field satisfying ta't) ffi -t _/+)over interelement
boundaries. One way to achieve this is to assume a
continuous stress field a* over element boundaries, so
that

(21)

The presence of an independent boundary traction
field is computationally disadvantageous because ad-
ditional degrees of freedom must be retained on
elements sides. This contradicts one of the tenets of

high-performance element construction noted in the
Introduction. It would be more convenient if a*

could be identified with the strain-derived stress field,

that is, #*ffi a'_= Ee on St, because we would have
only two independent fields, u and _, as in eqn (9).
The strain freedoms can be eliminated at the element

level as explained in Sec. 6, and we are left with

standard displacement connectors. The correspond-
ing functional is

?
_(u, e)= R - | (¢_)ru dS, (22)

js

but ingenerala'.isnot continuousbetweenelements.

One can argue,however,thatcontinuityisachieved

in the limitof a convergedsolution.A variational
statementsuch as 6R ffi0 iscalleda restrictedvari-

ationalprinciple[I0,Chapter II]becausethegovern-

ingfield equations of Sec. 2.1 are only satisfied at the
exact solution. Away from it, 6/7 =0 generally

violates interelement equilibrium field equations
although it may provide satisfactory numerical
approximations.

Stress--displacement (rather than strain--displace-
ment) functionais of this form have been used by
Pian and Chen [! 1, 12], who transform the interface
integral into an element volume integral and in doing
so introduce a stress divergence term.

4.4. Finite element classification

Finite element models derivable from R,//and H

may be classified into several types according to the

number of independent fields and the continuity

conditions on those fields. Following are some gen-
eral comments on the most interesting combinations,
which are summarized in Table 1.

(1) Continuous displacements. The independent
boundary field t is not needed, and we can work with
the mixed functional R. If the strain field is discon-

tinuous, strain freedoms may be eliminated at the

element level as explained in Sec. 6. Continuous
strains are in principle possible but impractical in
general structural applications where material inter-

faces, plasticity, and sudden thickness or area
changes may occur.

(2) Discontinuous displacements. The displacement
field contains conforming and non-conforming
portions. Assumed strains are discontinuous and may
be eliminated at the element level. Displacement
degrees of freedom associated with non-conforming

modes may also be eliminated if separable. The
governing functionals are _ or H. With the latter an
independent traction field t is required: degrees of
freedom associated with t must be retained at the

assembly level.
In practice elements are often constructed as a

combination of these types with conventional dis-

placement models. Thus part of the strain field may
be considered as completely derivable from displace-
ments and part as independently assumed, as dis-

cussed in See. 8. This was in fact the scheme originally
used by Willam [!]. The C oplate bending quadrilater-
als studied in Part [I provide another important
example.

5. DISCRETIZATION

5.1. Assumptions

In this section the finite element discretization of

the hybrid functionals H and H is studied. That is,

we focus attention on element types labeled (III) and
(IV) in Table I. In the following it will be assumed
that the displacement boundary conditions are ident-
ically satisfied by u. whence the strain--displacement
hybrid functionals reduce to

(23)

Table I. Assumed strain finite element models derivable from R, H and /'7

lnteretement Element Element
Element Governing Independent continuity on* connected condensable

type functional fields u _ t fields fields

(I) R u,t c d u e
(II) R u,_ c c u.
(III) /'7 u,_ d d u,+
(IV) H "u,_.t d d c u.:t

_"c I. continuous, d ffidiscontinuous.
Conforming part only if separable as per eqn (33).
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R(u, ( ) = fv [( rE(_" - _ ) - fru] d V

- ;s trudS - ;s (a'_) rudS.
(24)

The framework used here accommodates both con-

tinuous and discontinuous displacements. The FE
assumption may be written

u--Nv in V

_-=Aa n V

t ="Is on S_. (25)

Here matrices N, A and T o)llect displacement shape
functions, assumed natural strain functions and inter-

face traction functions, respectively, whereas column

vectors v, a and s collect nodal displacements, strain
amplitudes, and interface ,ractions amplitudes, re-
spectively. The derived fields in V are

_" -- DNv = By

¢r_= EB_

¢' = E_ = EAa. (26)

5.2. Discrete equations

On inserting the assumptions (25) and (26) into

(23) and (24) we obtain the bilinear algebraic forms

H(v, a, s) = -_arCa -_ arpv- vrl.,s - vrp (27)

/q(v, a) = -_arCa + ar(p - R)v - vrp

-_ - :arCa + arpv - vrp, (28)

where

Observe that eqn (28) results on substituting Ls by
Rra in eqn (27). Making these forms stationary yields

the linear systems

I: 'lI'lIll-L v (30)0 --

-L r 0 s

for eqns (27) and (28), respectively. In both cases the
first matrix equation is the discrete analog ofeqn (16),

and expresses internal compatibility. The second
matrix equation is the analog of eqn (15) and
expresses internal and boundary, equilibrium and, in

the case of eqn (31), approximate boundary compat-
ibility. '/'he third matrix equation in eqn (30) is

the analog of eqn (17) and expresses boundary
compatibility.

5.3. Displacement field decomposition

With a view to further developments the assumed
displacement field is decomposed as

u= u_+ ud, (32)

where u, is continuous (compatible. conforming) in V
and u# discontinuous (incompatible, non-conform-

ing) on S. It will be further assumed that this
decomposition can be effected in terms of the shape
functions, i.e.

u = N<v: + Ndv_, (33)

where the % freedoms are defined element-by-element

and may in principle be condensed out. This assump-
tion holds for elements in which non-conforming
shape functions are 'injected' over a compatible
set. For the H functional, as shown in Sec. 4.2,

the S, integral vanishes exactly for the conforming
displacements:

C = Iv ArEA ,t V = C r

P=fvArEB 't V

L = fs, NrTdS

R = fs, (EA)rN dS

P=P-R

P= f NrfdV + fs NqdS', (29)

s, tru* = 0. (34)

On the other hand, for /'7 the corresponding S_

integral also vanishes at the converged solution.
Taking this into account, eqns (30) and (31) expand
to

I °lf'lI:l- C P_ Pd

Pf 0 0 0 v_ = (35)

L.o, o o

[_cPY 0 Ol'_v¢_ = P. , (36)
LP_ o 0JtVdJ P
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in which [_= Pa- R,, and where c- and d-sub-

scripted matrices and vectors are given by integrals
similar to (29) in which N is replaced by N_ and N,,

respectively.

then the relation (40) may be interpreted as a vari-
ationally-consistent constraint on non-conforming

displacements. In effect, the first equation of (35)
becomes

& STRAIN ELIMINATION
(Pc - CQc)v, . 4- (P, - CQd)v_ = 0. (41)

The strain degrees of freedom may be eliminated at
the element level by static condensation or by enforc-

ing kinematic constraints. These two techniques are
studied below.

6.1. Static condensatwn

This is a well known variationally consistent pro-
cedure which will be illustrated for the system (30).

From the first matrix equation get a at the element
level:

a = C-tPv = Q,v. (37)

Substitution into the second equation gives

I K_Lr -L0 l{}={:}vt , (38)

where K= prc-tp=prQ, =QrCQ, is a stiffness

matrix. Similarly, eqn (31) condenses to

Rv = p, (39)

where R=_)rc-t_=(_rC(_, and (_,=C-'P. The

separable non-conforming degrees of freedom v_, if
present, may be condensed out following a similar

procedure.

6.2. Kinematic constraints

A second elimination procedure has been used

recently in the construction of ANS C Oplate and shell
elements. It will be described by considering the

system (35) that displays separable conforming and
non-conforming displacement shape functions. A
kinematic constraint that links strain to displacement

degrees of freedom is established:

a = Q,v c + Q#v_. (40)

This relation may be constructed by collocation,

least-square fitting or some other means. Often

Q,_=O. For example, in the Bathe-Dvorkin ele-
ment [3] studied in Part It collocation of natural shear
strains is done at the quadrilateral midpoints.

If the following conditions hold:
(a) the dimensions of % and a are the same so that

P# is square;
(b) matrix P_- CQ, is non-singular:

t One obtains K* = Qrf2p_ + 2P, W - CQ) which simpli-
fies to eqn (44) because PjW = CQ- P,.

whence

%= - (P_ - CQd)- '(Pc - CQ_)vc = Wv_

a = (Qc + QdW)vc --- Qvc. (42)

If (as often happens) Qa = 0, Q = Q,. Replacing the
constraints (42) into the discrete form H(a. v., %, t)
and setting its first variation to zero yields*

(43)

where

K* = QrCQ

L* = WrL,

P* -= Pc+ wrp.. (44)

Similarly, for eqn (34) we get the stiffness equations

R'v, = _*, (45)

where 1_= 0rct), in which 0d results on replacing P,

by ]sd in eqns (41) and (42).
Note that condition (a) above may be relaxed if the

dimension of vdexceeds that of a by selecting a subset

of v# that satisfies (b), and statically condensing out
the remainder.

6.3. Relation to the strain projection approach

If the dimension of a exceeds that of %(in particu-
lar, if the assumed displacement field is conforming)
the constraint (40) is in general inconsistent with a

strain--displacement variational principle. In such a
case a connection with other techniques for improv-

ing element performance can sometimes be estab-
lished. For example, suppose that the assumed strains
E are constant and equal to i over each element, and

that the displacements are continuous. We can
choose a =_, and A = I so that eqn (40) may be
written

c = By. (46)

This is the strain projection approach, also called
averaged-B or the B approach. If R is determined by
collocation at the element center, eqn (46) is equiva-

lent to one-point reduced/selective integration on the

potential energy functional: see e.g. Hughes's text-
book [13, Chapter 4].
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7. lIMITATION PRINCIPLE

The famous limitation principle of Fraeijs de
Veubeke[14] was originally stated for stress-
displacement mixed finite elements, but holds for
many strain-displacement elements as well. The prin-

ciple is applicable when the displacement-derived
strain field (_ is contained in the assumed strain field

£;

ft. PARTIAL STRAIN ASSUMPTIONS

It is common practice to assume only part of the
strains to be independent fields. For example, in the
C Oplate bending element studied in Part II indepen-

dent assumptions are only made for the transverse
shear strains, whereas the bending strains are entirely

derived from displacements. The partial strain

assumption may be expressed as

_ _" = Du =: liv. (,;7)

This inclusion can be expressed in matrix form as

(48)

Here a_ contains the same number of entries as v
whereas A,, which may be empty, contains 'excess'
strain modes, Consider elements of type (III) based

on the functional H: Insertinb, eqn (48) into (30) we
obtain

-C_, -Ct., C,_

-c r, cL o ,, = .

L? '0 -L r 0 s

(49)

( = , (51)
l(_J

where independent strain assumptions are made only
for (o = Aa. For _b one has _b= _. The R and H
functional:i require obvious modification in the
volume term; for example,

R(u,(=)= fvI(£ r r FEo= Eob]f(_-½_=_">LE r,,j j

- fru I dV + surface terms, (52)

while for/-7 an additional adjustment in the S_ integral

is required. The resulting principles take a particu-

larly simple form if the constitutive coupling terms
E,_ and E0, vanish, in which case

where R = RAu, c_) + eb(u). (53)

BrEB d V

where Ro is a mixed strain-displacement principle

involving G, and Pb is a potential energy principle
involving the _g strain energy.

C_,= :vBrEA_ dV

C_.,=f_, AREA, d V.
(50)

The first two matrix equations give a,. = v and a, = 0.

Hence the system is equivah'nt to eqn (38) in which
K = C,_,is simply the potential energy stiffness matrix.
Consequently the stiffness equations may be directly

constructed from the generalized potential energy
functional (12) and the independent strain assump-
tion has no effect. Of course the conclusion only
applies if the strain degrees (,f freedom are solved for
in a manner consistent with _he variational equations
(49); for example by static condensation. If the

derived field e_ varies over V, assuming a constant
strain field i for £ is a safe way to guard against the

limitation principle.
A similar analysis of type (IV) elements on the

/_-derived system (31) shows that the limitation

principle does not generall) hold unless Rv ----0. For
arbitrary v this implies that the interface integral
vanishes, in which case t] reduces to the mixed
functional R.

9. CONCLUSIONS

The key results of the present study may be sum-
marized as follows.

(1) The mixed strain--displacement functional of
Reissner type, R, can be expanded to two hybrid
function,'ds, H and H, to account for incompatible
displacements. Whereas fir =0 and 6H =0 are

genuine variational principles, 6H = 0 represents a
restricted variational principle.

(2) Several types of assumed strain finite elements
may be constructed using R, H or /-7. The most

practical elements for inclusion into existing displace-
ment codes are those (a) in which strain and non-
conforming-displacement degrees of freedom can be
eliminated at the element level and (b) which avoid
surface traction connectors.

(3) Strain degrees of freedom may be eliminated by
static condensation or through kinematic constraints.

The latter technique can be presented in a variation-
ally con._istent form if the conditions stated in Sec. 6.2
hold, in which case it can be .interpreted as a con-
straint on non-conforming displacements. Special
versions of this technique are closely related to the

strain projection approach.
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(4) Fraeijs de Veubeke's limitation principle

applies to finite element models derivable from func-

tionals R and H if the strain elimination procedure

is variationally consistent.

(5) The present variational formulations may be

readily modified to account for partial assumptions

on the strain field.
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Abstra_--ln Pan II the four-node C Oplate bending element is used to explore some of the possibilities
opened by the th_ry presentcxt in Part I [C. Militello and C. A. Felippa, Comput. Struct. 34, 431-438
(1990)]. This dement is chosen because the version presented by Bathe and Dvorkin lint. J. Nurner.

Meth. Engng 21, 367-383 (1985)], MITC4, can be considered the simplest assumed natural strata element
that allows several possibilities to be studied in a straightforward manner. Attention is focused on the
governing functionals R and H presented in Part l. assuming independent strain fields only for the
transverse shear strains. Besides MITC4. three formulations (two mixed and one hybrid) are considered
that collectively represent a variational justification for the assumed strain technique. In addition, reduced
and selective-integration elen_ents are examined to compare their behavior with that of the present
assumed strain elements.

I. INTRODUCTION

1.1. Four-node C O bending plate element formulation

We start with the formulation of the four-node

Reissner-Mindlin plate element whose degrees of

freedom (d.o.0 are the transverse displacement, w

and the two rotations 0, and 0,. about the x and y

axes, respectively, as shown in Fig, I. We expand the

displacement field in the usual way:

where

w = N,(r, s)w,

0 T= N:(r. s)O,,

0 r = Ni(r, s)O,, (1)

N_(r,s)=_l+r:)(l+s:), i=1,2,3,4, (2)

are bilinear shape functions. The strain field derived

from the displacement field is

C,. = ½:(0,..,- 0_, )

':_: = w, - O,

y_:= w,+O,. (3)

We take advantage of the c:ecoupling between

bending and shear energies by using different assump-

tions for each one. We assume that the bending

strains coincicte with the bending strains computed

from the displacement field:

E'_x _ _ x._

u

_,. = EL- (4)

The shear strains components in the Cartesian

basis x, y, : derived from the diplacement field are

7_:= w _ +O,

?,.:= w,. - 0.,. (5)

After some manipulations we can obtain the co-

variant components of the shear strains in terms of

the natural coordinates r and s as

where

," = + #, (6)_1e." W.r

_,,_= w_ + ,8,, (7)

#, = -O_y: + O,x., (8)

#, = -O,y_ + O,x_. (9)

1.2. The assumed covariant shear strain

We consider two different assumptions for the

covariant shear strains:

(! -s) (i +s)
_, = a, --T-- + a2--T-- (10)

439
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",I

Ziw

Z 4 r

X t)x

Fig. I. Element coordinate system and notational

conventions.

and

7#=a3(_+a+ (l+r)2
(II)

7_=a. (12)

7_=a2. (13)

The bilinear assumption (10), (11 ) is of the same form

as that proposed in [1]. The constant strain assump-
tion (12), (13) is studied to see whether there are

connections to the selective reduced integration (SRI)
technique discussed by Hughes [2].

2. MIXED ELEMENT BASED ON THE

FUNCTIONAL R(n, ( )

Up to now we are working with a compatible
displacement field and a discontinuous strain field.

Hence we use the functional R(u, _ ) presented in Sec.
3 of Part I [3]. No boundary field is necessary and the
constants a_ can be obtained at the element level.

The element displacement field is

I'lu= 0,, (14)

L0,)

The strain fields derived from the displacements
are:

(a) bending strains

_ = _ C,_ = S_vc; (18)
12ELJ

(b) shear strains

?"={Y'_}-B,V_.y,...- (19)

The independently varied strains are:

(a) bending strains: the same as obtained from the
displacement field, i.e. eqn 08);

(b) shear strains:

{7":} = B,a. (20)? = ),:

Substituting (18), (19) and (20) into functional R
and carrying out the integrations at the element level,
we obtain

R(v+,a)= ½v[K_Cvc- _rC_a + vrU°a - vfpL (21)

when:

K_*= fv, (Bg)rEbB_ dV (22)

C" = fv, (B:)rE'B_ dV (23)

U" = r (B_)rE, B,"dV (24)
je

Here vector f collects applied distributed forces con-

jugate to w, 0., and Oy. On performing the variations
we obtain the matrix equation

(U") r -C" = '

which can be expressed as

U = N_ v, (15)

From the second equation we obtain the shear strain
coefficients

a = (C"')-'(L*°)rv_ = Q+v+. (27)

where

[i'°N, = N I 0

0 Nt

v,r=(w_ 0. O.

0 . .

0 N.

0 0 N.

w, 0,, 0,_).

(16)

(17)

which substituted into (26) gives the statically con-
densed system

(K[_+ QrC_'Qc)v¢ = p'. (28)

Here K_f is the bending stiffness matrix, which is also

obtainable from the potential energy principle, and
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Table [. Bending test (FEM/theory--Fig. 2)

441

MITC4 SRI PI I:)4

a Node w 0, w 0> w 0, w 0,.

0 5 i.00 t.00 1.00 t.00 I.O0 1.00 1.00 1.00
6 1.013 1.00 1.00 1.00 1.(}0 1.00 1.00 1.00

l 5 L.IX 1.00 0.90 1.00 0.38 1.00 0.44 0.44
6 1.0( L.00 1.10 1.00 1>17 1.00 0.47 0.47

2 5 1.0(_ 1.00 0.80 1.00 0.74 1.00 0.23 0.23
6 1.0¢, 1.00 1.20 1.00 1.'-)6 1.00 0.28 0.29

Table 2. Shear test (FEM/theory--Fig. 3)

MITC4 SRI PI P4

a Node w _v w w

0 5 1.00 I 00 1.00 1.00
6 1.00 I 00 1.00 1.00

1 5 1.00 [i)0 1.40 1.00

6 1.00 1.00 0.85 1.00

2 5 1.00 1.00 3.06 1.00
6 1.00 1.00 0.99 1.00

QrC'Q, stands for the new ,;hear stiffness matrix:

cf. See. 8 of Part 1[3].

Equation (27) can also be cbtained by minimizing

the following shear energy error norm:

'f,I-I)=_ ,(7-?")rE(?-?")dV,

where the vector ? collects the independent shear

strains (10), (11) or (12), (13), and ?" collects the

shear strains evaluated from the displacement field,

eqn (19). The minimization of this norm using an

independent stress field instead of a strain field was

proposed by Barlow [4] as a way of deriving assumed

stress hybrid elements.

We have implemented two, elements based in the

form (21) and the assumptions (10)--(11) and

(12)-(13), which will be identified as P4 and PI,

respectively, in the following. The results obtained for

the simple shear and bending tests illustrated in Figs

2 and 3 are summarized in Tables 1 and 2. We have

compared these results to those obtained using SRI

Io

/'_t't

Fig. 2. Bending test.

This expression relates four strain coefficients a to

the nodal degrees of freedom vc. The elements of Q_*

are given in Appendix A. It is important to realize

that Q,. obtained for element P4 matches the matrix

Q,* only for rectangular shapes. Consequently,

the variational principle based on the functional R

justifies the assumed natural strain technique for

rectangular shapes. However, what can we say about

distorted shapes? We need Q¢ = Q,* for all possible

configurations to generalize that justification.

3. INCOMPATIBLE DISPLACEMENTS.
THE FUNCTIONAL H(_ (, t)

Following the general procedure outlined in Sec.

6.2 of Part [ [3] we add to the transverse displacement

)v the four midside incompatible shape functions

of an eight-node element. In this way the bending

behavior is unchanged. We denote by va the nodal

values associated with these 'injected' incompatible

shape functions. The new displacement field can be

written as

u=[N, N#] v_ '

and MITC4 elements. The results indicate that PI where

I _l+r)(I--s:) _l--r)(l--s:) _l+s)(1 -°r:) _l-s)(i--rZ) )
N#= 0 0 0 0 .

0 0 0 0

and P4 behave poorly when elements are distorted

and that P1 is not equivalent to SRI.

An interesting result is that if we use one point

reduced integration to compute L'", both elements PI

and P4 yield the same rest_lts obtained using SRI,

We can obtain another expression for Q,, called

Q,* in the following, from the field proposed by

Bathe and Dvorkin [1] for the covariant shear strains.

(30)

Fig, 3. Shear test.
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The bending strains do not change, and for the

displacement derived shear strains we have

{"}
7 s:

(31)

If we introduce the new strains into the variational

principle, we must use the functional H(u, e, t) be-

cause the displacement field will be discontinuous.
Then, we have to introduce a traction field t over

the boundary. This traction field is a (line) shear

resultant, and for simplicity we shall assume that it

is constant on each element side. On performing the

variations, the following expression at the element

level is obtained:

i)_, o L a.5 :]

{, ,/,/_/
t):!

Fig. 4. Cantilever beam discreuzation.

incompatible mode does not vanish. If t vanishes the

stiffness matrix r_duces to that of [I] but the nodal

force vector will generally be different. Thus it is

worth emphasizing that the variational principle gives
a consistent treatment for distributed loads.

where

i.o oo  :Ii.!i:(!I
(L') v (L#') r 0

pc,, = fw (B_')rE'B_ dV (33)

P'_ = f v # a
(B,)rE, B, dV (34)

r

L'" -- fs,, Nr dS (3 5)

L" = fs, Nr dS (36)

#= ; NridS + fv NrfdS. (37)

Now imposing the relation

a = Q,* v,. (38)

we obtain

v# = (P'*')- r(C'Q? --(pc°)r)v_ = W, v,.. (39)

Replacing both relations in the variational principle

and taking variations with respect to v, and t, the

following expression at the element level is obtained:

I K_,"+ Q_*rC"'O,*

(L" + W, L'#) r

(32)

The matrix P'_ is singular for rectangular elements,

but we know that in this case Q_ is equal to Q7

and there is no need to introduce the incompatible

displacement field.

4. NUMERICAl EXAMPLE

To check the behavior of the functional H(u, e, t)

we analyze a cantilever beam with two distorted

elements, as depicted in Fig. 4. The assumed in-

dependent shear strain corresponds to eqns (10) and

(11). We are interested in two load cases: a uniform

bending moment at the tip (Fig. 2); and a uniform

transverse load at the tip (Fig. 3). In both cases

Poisson's ratio is set to zero to compare the results to

those obtained through the Euler-Bernoulli beam

theory.

4.1. Uniform bending moment

The theoretical solution for this problem requires

a linear variation for 0r and a quadratic variation for

the transverse displacement w. As shown in Table 3,

the results obtained with MITC4 coincide with the

theoretical results. So do those obtained with the

(40)

The stiffness matrix proposed in [I] for the plate

element, namely, K'_'+Q?rC'Q*,, can be clearly

identified in the preceding expression, it is not neces-

sary to compute the contribution L" because it comes

from the compatible displacement and will cancel

with the contribution of the neighboring element.

On the other hand, the contribution La' from the

present formulation labeled ANSH (for Assumed

Natural Shear Hybrid).

The value obtained for t is of roundoff error order

(10-t2). Then, in this case, both formulations are

equivalent and the work absorbed by the incompati-

bility can be disregarded.
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Table 3. Normalized displacements (FEM/theory) for
bending, t :,, 10 -_2

MITCH4 ANSH

Node w 0r w 02

5 1.00 1.00 1.00 1.00
6 1.00 L._ L.00 I._

The external load vector is tae same for both

formulations because the external bending moment

does not interact with the transverse displacement.

4.2. Uniform transrerse load

The theoretical solution requm:s a quadratic vari-

ation in O, and a cubic one in w. In this case we

must expect the computed solution to be approxi-

mate. The results obtained are _hown in Table 4.

Clearly the ANSH formulation _s less sensitive to

element distortion. The lack ot symmetry can be

observed at the third decimal position. The con-

vergence and symmetry for the T(_tation is excellent.

The value obtained for t is not r_egligible. Note that

in this case the external load vector is not the same

for the MITC4 and ANSH formulations.

(4) The M[TC4 element stiffness matrix is

recovered by _etting the boundary traction field t

of ANSH to zero. However, the nodal load vector for

distributed applied forces will generally be different.

The techniques illustrated here are obviously

applicable to the construction of other types of

assumed strain elements based on the various func-

tionals presented in Part I [3]. In particular, the use

of the restricted hybrid principle /7, in which the

boundary tractions are not retained as independent

degrees of freedom, remain unexplored.

A key result of this investigation is that any change

in the strain-displacement interpolation from the

variationally t:onsistent interpolation must be associ-

ated in some way to the addition of incompatible

displacement modes. This property is closely linked

to the limitation principle stated in Sec. 7 of Part I [3].
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5. CONCLUSIONS

We have illustrated the theory presented in Part

I [3] through the study of several four-node C o plate

elements with independently as._umed shear strains.

The following conclusions emerge from this study.

(1) Elements PI and P4 based on the mixed func-

tional R(u._) are variationally impeccable. PI be-

haves well in the bending test and P4 passes the shear

patch test. Their performance deteriorates markedly,

however, if the element geometry departs from the

rectangular one.

(2) The MITC4 element imposes a shear strain-

displacement relation [eqn (38)] obtained by midpoint

strain collocation. This kinematic relation is not a

priori derivable from a mixed variational principle

such as 3R = 0.

(3) A vanationally consistent modification of

MITC4, named ANSH, is obtained by introducing

incompatible displacement modes and an indepen-

dent surface traction t (in this case a shear line force),

and using the hybrid functional H(u._, t) for the

shear energy portion. The results are similar to those

of MITC4. Although this element is more expensive

to form, it does provide a consistent treatment of

applied distributed loads.

Table 4. Normalized displacements (FEM/theory) for
shear, t = -2.227

MITC4 ANSH

Node w O, w O,

5 0.930 1.077 0.892 1.003
6 0.912 0.920 0.891 1.002
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APPENDIX A

Bathe and Dvorkin [I] proposed the same kind of shear
strain interpolation as we have used in eqns (10) and (I I).
To determine the coefficients a, they imposed the following
midpoint-collocation relations:

u3
7,:+ 7,:

al = 2

"" + 7_

a., ::= 2

,z + _,,,,3

a] =_ 2

,,ul ,,w4

2

where superscripts 1, 2. 3.4 indicate the node where expres-
sions (6) and (7) must be evaluated: see Fig. I. Through the

application of the relations of See. [ and after some algebra
we obtain

a= Q_v,



C. MILITELLO and C. A. FELIPPA

ar=(av a: a3 aD

•f* (w o,, o,.,...o_)

0.5 Y2--Yl xt--x2 0.5 Y2--Y_ x I-x2
4 4 4 4

0 0 0 0 0 0

0.5 Y4--Yl xl--x4
0 0 0

4 4

0 0 0 0.5 Y3-Y2 x2-x3
4 4

0 0 0

-0.5 Y3-Y, x4-x_
4 4

0 0 0

-0.5 Y3 - Y: xz - x_
4 4

0 0 0

0.5 Y3-Y4 x4-xs
4 4

-0.5 Y4 - Yl xl - x4
4 4

0 0 0



Journal of Fluids and 3tructures (1990) 4, 35-57

MIXED VARIATIONAL FORMULATION OF FINITE

ELEMENT ANALYSIS OF ACOUSTOELASTIC/SLOSH

FLUID-STRUCTURE INTERACTION

C. A. FELIPPA

Department of Aerospace Engineering and Center )#or Space Structures and Controls,

University of Colorado,
Boulder, CO 80309 U.SA.

AND

R. OHAYON

Office National d'_.tudes et de Recherches AErospariales, 92322 C,_tillon, France

(Received 20 March 1989)

A general three-field variational principle is obtained for the motion of an acoustic fluid
enclosed in a rigid or flexible container by the method of canonical decomposition applied
to a modified form of the wave equation in the displacement potential. The general
principle is specialized to a mixed two-field principle that contains the fluid displacement
potential and pressure as independent fields. This principle contains a free parameter or.
Semidiscrete finite-element equations of motion based on this principle are displayed and
applied to the transient response and free-vibrations of the coupled fluid-structure
problem. It is shown that a particular setting of a¢yields a rich set of formulations that can
be customized to fit physical and computational requirements. The variational principle is
then extended to handle slosh motions in a uniform gravity field, and used to derived
semidiserete equationg of motion that account for such effects.

1. INTRODUCTION

AN ELASTIC CONTAINER (the structure) is totally or partly filled with a compressible liquid

or gas (the fluid). The fluid structure system is initially in static equilibrium in a steady

body force field such as gravity or centrifugal forces. We consider small departures

from equilibrium that result in forced or free vibratory motions. To analyze these

motions the fluid is t_eated as a linear acoustic fluid, i.e. compressible but irrotational

and inviscid. The purpose of the present work is to:

(i) derive variational equations of motion based on a mixed variational principle for
the fluid subsystem; and

(ii) obtain semi-discrete equations of motion following spatial discretization of the

coupled problem by the finite element method.

The derivation of the mixed variational principle for the fluid is based on the method of

canonical equations advocated by Oden & Reddy (1983) for mechanical applications.

The most general dynamical principle derived in this paper contains three primary

variables: the pressure-momentum vector, the dilatation-velocity vector, and the

displacement potential.

The general principle is specialized to a two-field functional of Reissner type that has

pressure and displacement potential as primary variables, as well as a free coefficient ct

0689-9746/90/011)035 + 23 $03 _D _ 1990 Academzc Press Limited
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that parametrizes the application of the divergence theorem. The coupled variational
equations are discretized by the finite element method, and semidiscrete equations for
a rigid container established. Linkage with the structure is then made to establish

coupled semidiseret¢ equations of motion for a flexible container. By appropriate
selection of the coefficient _ a continuum of finite element formulations results. One

particular setting yields a rich set of symmetric and unsymmetrie formulations for the
transient and free-vibrations elastoacoustic problems. From this set, selections can be

made to satisfy various physical and computational criteria. The implications of these
selections as regards efficiency and numerical stability are discussed.

The variational formulation is then extended to cover slosh motions in a uniform

gravity field. It is shown that the surface slosh equations may be incorporated as
Galerkin terms in several forms, and that one of these forms merges naturally with the
mixed variational principle to form an augmented functional. Semidiscretization of this

functional produces finite element equations of motions that may be used for a rigid or
flexible container.

2. GOVERNING EQUATIONS

The three-dimensional volume domain occupied by the fluid is denoted by V. This
volume is assumed to be simply connected. The fluid boundary S consists generally of

two portions

S:S_US.. (1)

S_ is the interface with the container at which the normal displacement d, is prescribed

(or found as part of the coupled fluid-structure problem), whereas Sp is the "free
sudace" at which the pressure p is prescribed (or found as part of the "fluid slosh"

problem). If the fluid is fully enclosed by the container, as is necessarily the case for a
gas, then Sp is missing and S _-Sn. The domain is referred to a Cartesian coordinate
system (xl, x2, x3) grouped in vector x.

The fluid is under a body force field b which is assumed to be the gradient of a t/me
independent potential 13(x), i.e. b = V_. All displacements are taken to be infinitesimal

and thus the fluid density p may be taken as invariant.
We consider three states or configurations: original, from which displacements,

pressures and forces are measured; current, where the fluid is in dynamic equilibrium
at time t; and reference, which is obtained in the static equilibrium limit of slow
motions. Transient motions are the difference between current and reference states. It

T_LE I

Notation for fluid states

Quantities Domain .Original Reference Current Transient

Displacements V 0 d° d' d -- d' - do
Velocities V 0 _ d' cl= _i'-
Boundary displacements* S 0 _ d'. d. = d_ - d_
Displace,AJ_:ntpotential V 0 _o _/' v/= _' - _o
Pressures (+ if compressive) V 0 p,, p, p = p, _ pO
Body forces V 0 b = V_ b = V_
Density V 9 P #

* Positive along outward normal
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should be noted that in many situations the original configuration is not physically
attainable. Table I summarizes the notation used in relation to these states.

2.1. FIELD EOUATIONS

The governing equations of the acoustic fluid are the momentum, state and continuity

equations. They are stated below for the current configuration, and specialized to the

reference configuration later. The momentum (balance) equation expresses Newton's

second law for a fluid particle:

I_ = -Vp' + b = -Vp' + Vfl. (2)

The continuity equation may be combined with the linearized equation of state to

produce the consnmrive equation that expresses the small compressibility of a liquid:

p' = -KVd' = -pc2Vd ', (3)

where K is the bulk modulus and c = KV_ the fluid sound speed. If the fluid is

incompressible, K, c---*,,_. This relation is also applicable to nonlinear elastic fluids

such as gases undergoing small excursions from the reference state, if the constitutive

equation is linearized there so that K = po(dp/dp)o.

The boundary conditions are

,:/t,=at. on Sa, p'=_' on St,, (4)

where a_ is either prescribed or comes from the solution of an auxiliary problem as in

fluid-structure interaction, and/_ may be either prescribed or a function of d, and b, as

in the surface-wave ("slosh") problem.

2.2. INTEGRAL ABBREVIAHONS

In the sequel the following abbreviations for the volume and surface integrals are used:

(f)v fvl dV, [g]sd" _ g dS, [g]s,,_' _= Js Js, g dS, etc. (5)

That is, domain-subscripted parentheses (square brackets) are used to abbreviate

volume (surface) integrals. Abbreviations for function inner-products are illustrated by

(f, g)v _=' fg dV, ,f, g)vx, _' fg dV dr, []. gls,×, = I fg dS dr, etc.
•It 0

(6)

3. THE DISPLACEMENT PO'VENTIAL

3.1. THE REFERENCE S_,'ATE

Taking the curl of both sides of equation (2) yields

tmrl a' =0.

The general integral of this equation for a simply connected domain is

d t = Wp' + a + bt,

(7)

(8)
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where _p'= _p'(x, t) is the displacement potential, a = a(x) and b = b(x) are time-
independent vector functions, and t denotes the time. If accelerationless motions (for
example, rigid body motions) are precluded by the boundary conditions, then a and b
vanish. Replacing d' = V_' into the momentum equation (2) we get

Vp' = -pV_' + Vfl, (9)

which, when spatially integrated, gives

p'= +/3 + c(o, (lO)

where the scalar C(t) is not spatially dependent. Next, integrate the constitutive
equation (3) over V and apply the divergence theorem to Vd:

(P')v + (pc2Vd')v = (P')v + [pc2d_,]s = O. (11)

Inserting p' from (10) into the above equation furnishes a condition on C(t) from which

2 +__p 1 pc 2 --C(t) = - pc- [d'.]s (_')v - - (fl)v = - _ [d'.]s + P_' - _, (12)
13 13 li 11

where 11= (1)v is the fluid volume and f = (f)v/v denotes the volume average of a
function f defined over V. Substituting C(t) into (10) we get

p, = _p(_, _ _7) + (fl _ _) _ PC._2 [d',]s. (13)
o

In the static limit of very slow motions, the inertia terms may be neglected and we
recover the reference solution

po_. (fl _ _) _ Pc2 idols. (14)
11

For an incompressible fluid [d.]s = 0 but c---._; thus, it would be incorrect to conclude
that pO_ __/_. A counterexample to this effect is provided by Ohayon & Felippa

(1988).

3.2. TRANSlEICr MOTIONS

Subtracting the constitutive relations at the current and reference states we get

p = -pc2VZlp -- pc2s, (15)

where s =-Vz_p is called, following Lamb (1945), the condensation. Subtracting
equation (14) from (13) yields

pc 2
p = -p(_ - -_) - _ [d.]s. (16)

On equating (15) and (16) we get modified forms of the wave equation that account for
mean boundary surface motions:

s = V2_' = + [d,]s, or c2(V2_ - _F_) = _ _ _. (17)

The second form follows from -11_ = [d.]s, which is a consequence of the divergence
theorem. For an incompressible fluid, c---,_ and [d.]s=0, and from the first of
equations (17) we recover the Laplace equation VZap= 0.
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3.3. ADJUSTING THE DISPL,_CEMENT POTENTIAL

If the transient displacement potential is modified by a function of time,

V = + P(t), (18)

where _ is the potential of equations (8)-(17), we may choose P(t) so that
c2_ -- _ = -_ for any t, then we obtain the classical wave equation

c'V2¥ = _O, or - c2V 2 _ = 0. (19)

In the sequel it is assumed that this adjustment has been rnade. If so, C(t) vanishes and

equation (16) reduces to

p = -p_. (20)

4. MIXED VARIATIONAL PRINCIPLES

4.1. CANONICAL DECOMPGSITION

In this section we derive multifield variational principles for the fluid domain following
the canonical decomposition method advocated by Oden & Reddy (1983). This method

is applicable to self-adjoint boundary value problems (BVP) of the form

Au =f in D, (21)

where u is the unknown function, f the data, A a symmetric linear operator, and D the

domain of existence of _he solution. For time-dependent problems D is the tensor
product of the time domain (typically 0 to t) and the volume V. To apply this method,

the operator A is factored as

Au = W*EWu = f, (22)

where W and E are linear operators in V and W* is the adjoint of W. This is called a

canonical decomposition This decomposition may be represented as the operator
composition sequence

Wu fie, Ee = a, W* o = f, (23)

where e and a denote intermediate field variables in D The three equations (23) are
called the kinematic, constitutive and balance equations, respectively, in mechanical

applications. The canonical representation of boundary conditions on the surface
S=S. uSois

B_us=g on S,, Bias=h on So. (24)

where Bs and B_ are surface operators, g and h denote boundary data, and Us = ysU
and as = Fsa are extensions of u and a to the boundary S. The extension operators )'s
and 6s often involve normal derivatives.

4.2. THE WAVE EOUATION

The classical wave equation (19) is not a good basis for the canonical decomposition
(22). Its principal drawback is that the pressure field does not appear naturally as an

intermediate variable in equations (23). A better form for our purposes is obtained by
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taking the Laplacian of both sides of (19), and multiplying through by the density/7:

_2
pV2(_/-cZV2_p)=O, whence A--pV2(-._-5-c2V2_, f=O. (25)

A suitable canonical decomposition is A = W*EW, where

W = , E = p W* = -iV = -W r, (26)

L-vzJ 0 c2 ' at J

in which i = V/Z"I. Boldface symbols are used for W and E because these are 4 x 1 and

4 x 4 matrices, respectively. The operator product sequence (23) becomes

r,,*1[',]_- [/o,+1 [,-]• = Wlp -- i._V2_pj s ' -pcZV2_pJ p '

W*o = pV2_ - pc2V'_p = 0. (27)

The intermediate fields e and a are 4 x 1 column vectors. These vectors are partitioned

into their temporal and spatial derivative subvectors for convenience in subsequent
manipulations. Note that the transient pressure p appears naturally as the spatial
component of o. The temporal components of e and a are the complex velocity iv and
complex specific momentum ira, respectively.

The boundary portions S_ and S_ of equations (24) are relabeled S_ and Sp,

respectively, to match the notation (1). Boundary and initial conditions may be stated
as

nW(x, t) = g(x, t) on Sd, li'o(x, t) = h(x. t) on S.,

d(x, to) = do(X) or re(x, to) = too(X), d(x, q) -_all(x) or re(x, t0 = ml(x). (28)

Here B and B* are time-independent 4 × 1 and 1 × 4 vectors, respectively, related to

the canonical Bs and B_ operators of (24) by B = Bsys and B*--B_rs, where Ys (a
scalar) and Fs (a 4 × 4 matrix) are boundary extension operators for _ and o,
respectively. Comparison with (4) and the use of Green's function reveals that

a_---a; = [o o o 11, gr = [0 0 0 ,/.1, rs = a,,' rs I, h =-/_. (29)

4.3. Trn_e Ftm._ PRmc'n,t_

The most general variational principle for the canonical decomposition (26) allows the
three fields: _p, e, and a, to be varied independently. The principle may be stated as
6L0P, e, a) = 0, ""re the functional L is (Odea & Reddy, 1983)

L(u, r, a) = Lv + Ls ---½(Eere)v×, + (o, W_p - V)v,, - (f, _O)v,,,

+ (Os, B_ - g)s,x,- (h, Ws)s,_,, (30)
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where Lv and Ls colfect volume and surface ternts, respectively. On inserting

equations (27-29) into (30) we get

Lv = ½(Ee, e)v,,, + (a, W_p - eiv×,

/,if = [_p(-v'.,,+c_,_)-m_(V_,-v)-p(V%+s)ldV_,

Ol,s P_n

The body force term (f, _P)vx, vanishes and does not contribute to Lv.

4.4. Two FIELD PRINCn't._

A two field principle of Reissner type can be derived from the functional L by

enforcing the inverse constitutive equations e = E-_o a priori. The resulting principle,

which allows lp and o to be varied simultaneously, is 6R(_p, a) = 0, where

R(_0, o) = nv + ns = -½(E-la, o),.x, + (o, W_?),,x,- (L V')v_,

+ (Os, B_p - g)s,_, - (h, V/s)s,,,,. (32)

where Rs = L, and

R,.(_, o) = -½(E-_a, o)_, + (o, W_,),._,

=f,,( (lmr m p_._z mTV+ _ pV2ap) dV dr. (33)
J,, N \20 20C 2

The specific momentum disappears as an independent field if we enforce m = pV_

a priori, whereupon the functional R becomes a function of _ and p only and the
volume term contracts to

R_(,,p_= -_o(v_,)'v_, It,:
2 pc' pV21p dV tit. (34)

To check R = Rv(lp, p J+ Rs we form its first variation*

v'xt On ' s×t

- spxt s,_t

Setting 6R = 0 provides the field equations, boundary and initial conditions.

fThe variation of the kinetic energy integral term may be expressed in two different ways,

6V_)v

_)_.,+ [p_, _],_,-(pV,_, 6_0)_I_,6(pV_ r, V(p)vx,= (pV'_,,

depending on whether integration by parts is performed first in time or space, respectively. The first form,

which provides physically significant initial conditions, is used in constructing equation (35).
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4.5. PARAML=TRIZATION

A one parameter family of variational principles can be obtained by transforming all or
part of the last term. in (34), viz. pVZW, by the divergence theorem (Green's first

formula for the Laplace operator)

OV
fvpV2vg dV+ fv (wP)TVP dV = fsP dS--- fs P dS + fs P dS. (36)

Let 0 < a¢=; 1 be the portion of that term to be transformed. Insert pV2v/= apVZ_/+

(1 - 0¢)p_72_ in equation (35) and apply the relation (36) to apV2_ to get

o¢(Vg,)rlTp - (I- ar)pV2W:dV

_Otfs, P._ndS3, -O¢£sp_ na"dS] dt. (37)

Finally, replace the Laplaeian V2_p left over in (37) by c-Z_ to arrive at the

parametrized two-field functionalt

&,(v, p) = R,,,, + R, = _½p(V_)TV+ _ 1 p___+ ,_(VU,)*Vg- (1 - ,_) dV
20c z

+ fs, P [(1-o¢) _u_n- d.] dS+ £s, ('- a'P)_n_ dS] dt. (38)

The highest spatial derivative index for both primary variables lp and p is 1, except if
a:---0, in which case it is only 0 for p. The two interesting limit cases are of course

= 0 and a: = 1, for which

_£'[fv ( 21p2pCzRo(V,,p) = -_t,(v_,)Tv+ P:) dV

_n 3

- fs, Pd"dS- fs, (p-fi)_dS] dt'anJ

(39)

(4o)

5. FINITE ELEMENT DISCRETIZATION

5. I. DISCRE'lnZAanON oF R_,

In the following we derive semidiscrete finite-element equations of motion based on
the R,, functional (38). The volume V is subdivided into fluid finite elements. Over
each fluid element the state is represented by the primary variables _pand p, wh.:ch are

den,cd as functions of position in the usual shape-function interpolation procedure.

t If a _ I, 6R. = 0 is a restrictedvariational principle because the substitution VzVs ffic-a_, holds only at
the exact solution.
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The finite element interpolation in V may be expressed as

_p(x, t) = N_,(x)_(t), p(x, t) = Np(x)p(t), (41)

where • and p are computational column vectors that contain n_, and % nodal values

of _p and p, respectively, and N, and Np are corresponding row-vector arrays of

dimensionless shape functions. The specified displacement over Sd is interpolated by

dnl X, l) = nTd(x, t) = ilTNd(X)d, ---- NTdn(X)d, (42)

where n is the external-normal unit vector on Sd, Nd contains the displacement shape

functions of the enclosing container, Nd, are these shape functions projected on the

outward normal n on S_, and a contains nodal displacement values. For now the

container displacements will be assumed to be prescribed, hence the superposed tilde.

In the following three Sections, 5-8, we shall assume that the prescribed-pressure

boundary conditions are exactly satisfied by the finite element interpolation, i.e. p --/5

on Sp. If so, the Sp integral of R,, simplifies to

alp
s(1 - a¢)/_ dS, (43)

which vanishes for a_ = 1 Inserting expressions (41) and (42) into the functional (38),

with the simplified Sp integral (43), yields the semidiscrete quadratic form

R.(q,, p)

1
ffi -½_rH_ - _ pa'Gp + a:WrFp + (1 - a0[_rVp - _a'Vp + Wa-_] _ prTa' (44)

where

VN_,VN_, dV =: H T, F = VN VN_, dV,

O= fvc-ZN:NpdV, V= fs (V.N_,)TNpdS,

NpN_ dS, fv = /_V,,N,_ dS.
s_

G -- ;v c-2NTNp dV = G T,

(45)

The integration with respect to time is dropped as it has no effect on the variation

process described below.

5.2. CONTtNUrrv REQUIREMENTS

The interelement continulty requirements of the shape functions of _g and p depend on

the index of the highest spatial derivatives that appear in R,,. If a_@ 0, this index is I

for both _ and p and consequently C ° continuity is required. It is then natural to take

the same shape functions for both variables,

N_ = Np (46)

with both vectors _ and p of equal dimension and evaluated at the same nodes. Then

some of the matrices in (45) coalesce as

H = F, G = D = D r. (47)

The case o_= 0 is exceptional in that no spatial derivatives of p appear. One can then
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choose C -1 (discontinuous) pressure shape functions; for example, constant over each

fluid element. If this is done, obviously

N,. (4S)

because 7pmust be C° continuous. Furthermore, the dimensions of p and qs will not be

generally the same.

5.3. SINGULARrrYOF H

For later use, we note that matrix H (as well as F if different from H) before the

application of any essential boundary conditions at fluid nodes, is singular because

He = O, (49)

where • denotes the vector of all ones. This follows from (45) and expresses the fact

that a constant potential generates no pressures or displacements.

6. TRANSIENT RESPONSE EQUATIONS

6.1. THE I_IGID-CO/CrAINEREQUATIONSOF MOTION

Since R_ contains time derivatives of order up to 2 in _, the appropriate Euler-

Lagrange variational equation is

Ca_R.
6R_ = \ aq I

which applied to (44) yields

8 aR_ 8 2 8R.\ _ aR_

at aq, TC"]6q'+ --°' (50)

[pH_ + zl_ - (1 - oOD_ + (1 - aOVp + (1 - oOf_]6_ = O,

[-p-lGp + _FTtP - (1 - ff)Drq] I + (1 - cg)VT_ - i-Tal6p= 0. (51)

These equations can be presented in partitioned matrix form as

where J -- (1 - aOV + oeF.

6.2. THE FI2.XIBLE-CONTAINER EOUATIONS OF MOTION

If the fluid is enclosed in a flexible container, the boundary displacements a are no

longer prescribed on S_ but must be incorporated in the problem by including them on
the left-hand side of the equations of motion. In the sequel, vector d collects all
structural node displacements, of which a is a subset on Sd. Matrix "]',suitably expanded
with zeros to make it conform to d, becomes T. We shall only consider here the case in
which the container is modeled as a linear undamped structure for which the standard
mass/stiffness semidiscrett_ :._,=ation of motion is

Md + Kd = fd + Tp, (53)

where M is the mass matrix, K the tangent stiffness matrix at the reference state, Tp is
the pressure force on the structure, and f_ is the externally applied force on the
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structure. Note that K in general must account for container prestress effects through the

geometric stiffness. Combining equations (52) and (53) we get the coupled system

0

pH -(1 - ac)D

-(1 - ot)D r 0

 Tlt:t( ' }+ 0 = --(1--a_)fv . (54)

-T r -p-_G..I [. p J 0

If er = 0, then

0

pH olf:}i,o: 11 IK 0 . (55)D + =

D r 0 -T r V r -P-IGJ(.PJ

There is little than can be done beyond this point, as the shape functions for p and

will be generally different. Although the pressure may be constant over each element,
no condensation of p is possible in the dynamic case.

If a_= 1, then

E!o o_:lt:ti!}o _ + o o = .

o p -T T VT -p-'G_ILpJ

Note that all these systems, (54) through (56), are symmetric.

(56)

6.3. IDENTICALSHAPE FUNCTIONS

Further progress in the case a_= 1 carl be made if we assume, as discussed in Section
5.2, that the shape functions for p and _, coincide. Taking then (47) into account,

equation (56) simplifies to

0 0 _ + 0 = . (57)

0 0 _ -T T H -p-'GJLpJ

The secondmatrixequationgivespl-l_+ Hp- 0. SinceH isnon-negativedefinitewe

must have

p = -p_. (58)

This is the discrete analog of the continuous relation (20) for the dynamic over-

pressure. For future use note that if the container is rigid, (57) reduces to

-p-_Gp + !t_ = G_ + _ = Trd. (59)

6.4. UNS_tM_TRIC ELIMINATION

If equation (58) is used to eliminate the pressure vector from (57) we obtain

[0M pT]_a / K O]rd IGJt*J+[-T r HJ_..f={_}" (6o)
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Conversely, eliminating the displacement potential vector gives

Unlike previous systems, both (60) and (61) are un._ymmetric. Thus, the straightfor-
ward elimination of a field variable, be it p or _p, causes symmetry to be lost. These
forms will be called unsymmetric two-field forms, or U2 for short. System (60) reduces

to (59) if the container is rigid.

7. REFORMULATTONS OF THE TRANSIENT RESPONSE EQUATIONS

7. i. $3 FORMS

Starting from equations (57) and (58) it is possible to derive three more symmetric
forms that are formally equivalent. One is obtained by differentiating the last matrix

equation twice in time, transforming the first equation via (58), and finally including
(58) premultiplied by p-_G as third matrix equation:

G o/ 0 0 V .pT T -/oH + ----

0 G 0 _i 0 p-tG p

(62)

Another one is obtained by integrating the first matrix equation of (57) twice in time,
using (58) to eliminate the pressure, and including Kd - Kd = 0 as trivial equation:

[ioo]{G 0 @ + -pT r pH 0 = , (63)

0 K d -K 0 0 _]ld J

where superposed stars denote integration with respect to t. Finally, differentiating the
first matrix equation of (63) twice in time, moving pTTd to the left, and including
Md - Md = 0 as trivial equation, we get

ioo .ii I[! olt l{:}0 pG -pT r • + 0 = .

-M -pT -K .Jl.d) 0JI. d ) --i'd

(64)

The four symmetric forms, (57), (62), (63) and (64), will be called symmetric three field

forms, or $3 forms for short. It should be noted that there is no symmetric $3 form
with a state vector consisting of d, p and d.

7.2. $2 FORMS

Each of the $3 forms has a statically condensable matrix equation that allows one field
to be eliminated. For example, the last matrix equation of (57) is -TTd+ [-l_-
p-lGp = 0 which can be solved for the pressure vector p if G is nonsingular. Assuming
that all w,trix inverses indicated below exist (more will be said about this later), the

condensation process yields four two-field symmetric forms:

.n]{,i,}+0 a LIK+pT¢-1T toHG-'Tr ptilii_ii.lljl, tllljpTG-tH'ItFd'I, = {_}, (65,
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These will be called symmetric two-field forms, or S2 forms for brevity. The

condensation process reduces the number of degrees of freedom but is detrimental to

matrix sparsity. The last property may be recovered to some extent by taking

advantage of factored forms of the matrices affected by the inverses; for example

FK+pTG'tTT pTG-_H1 H][0TK 0 I o]. (69)

Corresponding expressions for the matrices in (66)-(68) are given by Felippa (1985).

7.3. ADVANTAGES AND RESTRICTIONS

The eight symmetric forms ($3 and $2), plus the two unsymmetric forms (U2),

represent ten formulations of the R t-based fluid-structure interaction problem for the

identical-shape-function case. Although formally equivalent, they may have different

behavior in terms of numerical stability arid computational efficiency. The following

items may affect the choice among the various forms.

• Matrix sparseness retention. Matrices G and M are often diagonal. The $2 forms that
involve G -t and M -I, whether in direct or factored form, are (other things being

equal) preferable to the others.

• Existence of inverses. If the fluid does not have a flee surface, H is singular on

account of (49), and consequently (65) does not exist. If the container has some

unsuppressed rigid body modes, K is singular and consequently (68) does not exist.

• Applied force processing. Forms (63) and (67) require that the applied structural

forces, fa, be integrated twice in time before being used. Both $2 forms (67) and (68)

require additional matrix-vector operations on the force vectors. These disadvan-

tages, however, disappear in the free-vibrations case discussed in Section 8.

• Explicit versus implicit time integration. If M and G are diagonal, both unsymmetric

forms (60) and (61) are attractive for explicit time integration because the leftmost

coefficient matrices are upper and lower triangular, respectively. Therefore, equa-

tions may be solved directly in a forward or backward direction without prior

factorization. No symmetric form exhibits a similar property.

• Physical limit conditions. Those collected in Table 2 are of interest in the

applications. Recommended forms, if applicable, ale preferable because of numeri-

cal stability or suitability for perturbation analysis. Of all conditions listed in Table 2

the incompressible fluid case is of central importance. There must be a flee surface

St,, else the contained fluid would behave as a rigid body. Consequently E! is

nonsingular. Setting G = 0 in equation (66) we obtain the so-called added mass

equations

M.a + Kd = fn, (70)
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TABLE 2

Limit conditions

Matrix Recommended
Limit condition expression form(s)

Incompressible fluid (c --, o0) G-* 0
Cavitafing fluid (c -* 0) G--_ _o
Stiff container K-_ ®
Hyperlight container M--* 0

(_),(61),(_),(_)
(57),(_)
(_),(_)
(_),(_)

where 1_ is the added mass of the coupled system,

M. = M + pTH-_T T. (71)

• Preservation of structural rigid body motions. This is discussed in more detail in
Section 8.5 in conjunction with the free-vibration eigenproblem. It is sufficient to say
that forms (63)-(64) and (67)-(68) do not generally preserve such motions and are

inappropriate for treating unsupported structures (for example, liquid tanks in
orbit).

• Presence of constant potential mode (CPM). This is covered in detail in Section 8.6.
If the fluid is totally enclosed by the container so that there is no free surface, forms

(57) and (65) should not be used.

8. FREE VIBRATIONS

To obtain the elastoaconstic free-vibrations problem, we make the standard
substitutions

d = ae TM, _ = qei_, P --"re i_, fd = 0, (72)

where i -- _ and _o is the circular frequency, into the transient response equations.
Thus we obtain ten algebraic eigenproblems, eight symmetric and two unsymmetric,
which are displayed below. General properties of these eigensystems are summarized

in the Appendix. In the following eigenproblem statements, subscript m is a mode
index. The following eigenvector relations should be noted:

rm__ " 2 **-pco.,q,., u m = toT.Zu., (corn_ 0). (73)

For the unsymmetric forms given in Section 8.3 one must distinguish between left and
right eigenvectors. Superscript L is applied to left eigenvectors wherever necessary;
otherwise right eigenvectors are assumed.

8.1. $3 Fomvts

The four eigenproblems that correspond to the systems (57), (62)-(64) are

[, o](..)[!o:]of -on ¢ = o
0 G 0 r. 0 p-lG

,-}q_ ,

r_

q_ ,

rm

(74)

(75)
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coz. G = -

[;,o -.,If.-1 [! oolf,,.1°;- --pT -K Jl.VJ

8.2. $2 FORMS

The four eigenproblems that correspond to the systems (65)-(68) are

_,,.,.[M0 1_""I rK+ pTG-tTm P'rG-'Hllu'IpHJ(q_J ffi [. pHG-1T r pHG-1HJ[q,.J '

ta2[M+p'l'H-ITr TH-'G l_'u,,,_ [K 0 l_'u,.,._

.]{.:.}__r..+.'T'--'TL pKM-'T KM-tK J[M,,,J'

,F MK-iM pMK-iT lf"'l 0 If"'l
"'LOT',-'- ,C+,"rq_-'TJti_.J--[_ ,llJti_.J"
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(76)

(77)

(78)

(79)

(8o)

(81)

8.3. U2 FORMS

Finally, the two eigenproblems that correspond to the systems (60) and (61) are

G Jtq,.J L--T T H.ltq,,,J'

2 M
oj.,[pTa.°lf"'"Yffi *.G_Itr,_J [OK HT]{r,_}"

(82)

(83)

8.4. COMPUTATIONAL CONSIDERATIONS

The considerations of Section 7.3 apply for the most part to these ten eigensystems.
However, matrix symmetry is more important in free vibrations than in the transient

response problem. This is because eigensolution extraction methods that take
advantage of sparsity are more highly developed for the symmetric eigenproblem than
for its unsymmetric counterpart. An up-to-date exposition of those methods is given by
Parlett (1980).

The presence of zero eigenfrequencies (oJ,,, = 0 roots) may cause serious numerical

difficulties in some eigensystem formulations. Two sources of such roots may be
distinguished: rigid body structural modes, and the constant-potential mode.

8.5 I:_OID-BODYSTRUC'rURALMOD_

If the container is not tully supported, Ku, = 0 for structural rigid body eigenmodes u,.
If H is nonsingular eigensystems (74)-(75), their condensed versions (78)-(79), as well
as the two U2 eigensystems, preserve such modes. To verify this assertion, substitute

am = u,, q,. = -H-'TTu,, r_ = 0 (84)
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into the Rayleigh quotients (A.12) or (A.15) of the eigensystems. If H is singular, form

(79), which contains H -_, does not exist, whereas (74) preserves the modes if there
exist q, modes such that Hq, +Tu, =0. Eigensystems (76)-(77) and (80) do not
generally preserve rigid-body modes, whereas (81), which contains K -_, does not exist.

8.6. CoNs'rAN'r POTENTIAL MODE AND SPECTRUM CONTAMINATION

Suppose the container is supported so K is nonsingular but the enclosed fluid has no
pressure-specified surface Sp. If so, H is singular because of (49). Both U2
eigensystems then possess an a_---0 root which conventionally will be assigned modal
index 0. This root is associated with the following left/right eigenvectors

Eigensystem (82): no = 0, qo -- e, n_ -- K-_Te, ¢1_- e, (85)

Eigensystem (83): no = K-LTe, re = e, u_ = 0, _ = e. (86)

This statement is readily verified by taking the Rayleigh quotients (A.12). The

eigenpairs (85-86) are collectively called constant potential mode or CPM. The
existence and computational implications of this mode have been discussed by Geradin

et al. (1984). The mathematical interpretation of (85) is "dual" to that of a structural
rigid-body mode. Under a rigid-body motion the displacements are nonzero but the
strains and stresses vanish. Under the CPM the potential is nonzero but fluid

displacements and dynamic pressures vanish. But unlike rigid-body modes, the CPM
has no physical significance: it is spurious.

According to the eigenfunction theory summarized in the Appendix, all non-CPM
modes (n,,,, q,,,, rm) or (82) and (83) for m _0, oJ,,,_:0 satisfy the bi-orthogonality
conditions

(0 eX)[ M 0 ]_'u.,_ = er(pTXn,. + Grin)=0, (87)
pT r GJtrmJ

[0M pT'r]_['"'_ =e'r(TTK-IMu,. + pT'rK-iTq,,, + Gq,,,)--0. (88)(eTTK-! eT) G JLcl_J

As regards the symmetric forms, eigensystems (74) and (78) are adversely affected by
the singularity of H and should not be used. This is because substituting the CPM left
eigenvector (85) into either one, with rm -- 0 for (74), produces a Rayleigh quotient for
oJof the form 0/0. This means that both coefficient matrices have a common null space

(the CPM) and every a_ is an eigenvalue. Such an eigenproblem is called defective (see
Appendix). If one attempts to numerically solve "untreated" defective eigenproblems,
nonsensical results can be expected because the whole spectrum is likely to be
contaminated.

9. SLOSH MOTIONS IN A GRAVITY FIELD

A liquid with a free surface in equilibrium in a time-independent acceleration field may

exhibit surface wa,Jes, informally called "slosh" motions. From an applications
standpoint the most important acceleration fields are gravity and rotational motion, the
latter being of interest in rotating tanks. In this section we shall be content with
formulating slosh effects in a uniform gravity field. More general fields, including
time-dependent body forces, may be variationally treated by the method of canonical
decomposition of the non-homogeneous wave equation, but that general method will

not be followed here as it is not necessary for the gravity case.
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The fluid volume V is in equilibrium in the reference state discussed in Section 3.1
under the time-invariant body force per unit of volume b = V/L where fl is a potential
field. As noted above we restrict developments here to a gravity field of strength g

uniform in space and time. The boundary Sv is then the equilibrium free surface normal

to the gravity field. The axes (xt, x2, x3) are selected so that g acts along the -x, _ -z
axis. Hence, fl = -pgz + B, where B is an arbitrary constant. If we chose B so that fl
vanishes at the free surface z = Zo, then

# = -pg(z - zo). (89)

In the so-called hydrostanc approximation for small-amplitude gravity waves (Kinsman,
1965), sloshing is considered equivalent to a free surface pressure

p=p+pgd_=p+pgr 1, where r/=d. 01p on s,. (90)

Here if, as before, denotes the prescribed part of the pressure (for example,
atmospheric pressure) and r! is called the elevation of the liquid with respect to the
equilibrium free surface_ This approximation assumes that the displacements are
infinitesimal and that the z-acceleration of the slosh molion is negligible.

9.1. VARIATIONAL PRINCIPLE

For the variational derivation of "slosh equations" it is advantageous to choose the
elevation r/ as art independently varied field. This choice simplifies the reduction to
surface unknowns as well as the treatment of more complex interface conditions such

as capillary effects.
To incorporate slosh effects into the mixed variational principles based on the

functionals studied in Section 4, it is convenient to follow a Galerkin technique by

adding weighted forms of (88) to their first variation. The following combinations may
be considered:

±(p-p-pgrl, 6p)s,±\0n rl, 6 s,'

. /_, )±(v-P- pg , = ap ,

/ 8_ \

s,'

+(p - ,-pgrl, rrl)s,± (?- rl, 6 _P_ •
On/s_

(91)

Of these the first expression, with signs - and +, offers two advantages: (i) it is
derivable from a functional, and (ii) it combines naturally with the Sp integral in the
first variation (35). Of the "base" parametrized functional R,, the most computationally

advantageous choice is again tr = 1. The expanded functional (40), denoted as Rtn in
the sequel, is

Rt_(p, U/, rl)fR_v - f,i'[fs Pd, dS + fs,(p-P-PM1)_n + ½Pgrl2dS]dt, (92)

where Rtv is the volume integral of (40). Note that setting r/= 0 restores R t.

"1
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9.2. FINITEELEMENT DISCa_'T_.a'nON

In addition to the assumptions (41), (42) and (46) we interpolate r; as

r/= N,q on Sp, (93)

where column vector 11contains nn fluid elevations at nodes on Sp, and row vector N n

contains the corresponding elevation shape functions. The semidiscrete quadratic form
for (92), again excluding the time integral, is

RI,_(_, p, 11)

1

= _½p_rEl _ _ _ pTGp + p'r(H _ Qp÷)ql _ pTtTa+ pgq.r(Q,_ ÷_F - ½STI)- qP'f_, (94)

where

S ffifs N_rN,_dS = St, _ --"fs _1_,_.

(95)

The + subscripts in Q,+ and Qp+ convey that the nonzero, "surface" portion of these
matrices is augmented with zeros to conform to vectors ql and p. To display this
structure, q_, p and related matrices are partitioned as

{'t {"}ffi _,, ' P = , Q,÷ = [Q,_P,,

H--[H":
Ol,

(96)

where _F, contains potentials at n,_v nodes of elements connected to Sp, and p, contains
n,_ pressures on Sp. The dimensions of Q,7 and Qp are n,1 × n,_,. In general n,, < nn_, (in
fact, about one half). Also typically n, <<n_,--np as the latter pertain to a volume

mesh. If _ is interpolated by the same surface functions as p, i.e. N, ffi Np on Sp, then

Q,_fQp=Q, Q,_÷=[Q 0], QP+=[Q0 _]" (97)

9.3. THE RmtD CONTAINER

The following equations of motion for the rigid but mobile container are obtained on

rendering (94) stationary:

io-00]{.}i 0 -o,0 0 p + H-Qp+ -p-lG

0 0 0 Pgfl Qn÷ 0

(98)

Assuming G and S to be nonsingular and identical p and T/ shape functions so that

equation (97) holds, the nodal pressures and elevations may be statically condensed
from (98) thus producing the single matrix equation

pH_ + (P + R_.)W = f_, + 0(H - Q,,÷)G-_TTa, (99)
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,. _' [So _]=Io_]:,_,=Q_r_ S Q,+-- QT tQ

P = p(H - QT÷)G-X(H - QT÷)G-X(H - Qp÷) = pr (100)

The rank of R+ and R is the same as that of S, that is, n,. For most real liquids,

acoustic and slosh motions take place in very different time scales. This is the basis for

the common assumption in slosh analysis that the fluid is incompressible, i.e. c--_,
G---*0 and R--* 0.. If G---, 0 the response of the above system tends is forced to occur in
the displacement-potential subspace defined by the second matrix equation of (98):

(H - Qp+)W = Yd. (101)

For simplicity let us assume that the container is not only rigid but motionless, that is,
a = 0. The incompressible-fluid equations become

O_llq_,,J

subject to the constraint (H- Qp+)_ = 0. Subvector q_, may be statically condensed
from these two relations which may be combined as the system

where _ are Lagrangiar_ multipliers (in fact, the pressures at nodes of qs), and

If a _ 0 the force term in (103) must be appropriately modified.

(103)

(104)

9.4. THE FLEXIBLECON'fAINER

For a flexible container the equations of motion accounting for fluid compressibility are

o _.olid0 0 tp OK 0 H-Q_. QT÷ qs

0 0 _ 1- - JG 0 p "ooo o -sJl JQ_ ÷ pgll

(105)

Eliminating q and p by static condensation yields

where

0M 0 a Ko -Y d,+.]{.};{,.1,,_.I{.}:[_yT '_ (106)

Ko ;=K + pTG-tT T, Y = pTG-t(H - Qp+). (107)

System (106) is the counterpart of (65). If the fluid is treated as incompressible, a
subspace reduction procedure similar to that used in Section 9.3 can be invoked.
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9,5. SLOSH VIBRATIONS

Algebraic eigenproblems to investigate slosh vibrations may be constructed following
essentially the same techniques as in Section 8, and reduced to St, node elevations and

pressures. We illustrate the reduction technique for the incompressible fluid held in a
motionless rigid container. The eigenproblem associated with (103), suppressing the
modal index m for simplicity, may be written as

oL.}--D, o ,<.,
where ¢lband r_, are the modal amplitudes of _Ps and k_v, respectively. The last matrix
equation in (98) provides QtFs = Stl, or Qq, = Sz, where z is the vector of modal
amplitudes of 9, i.e. _1= zd'_. Using these relations we can transform the eigen-

problem (108) to

in which

°_2[ #_ s =[Q-C 0 ]trsJ':]{:,} c (109)

C = Oil_-tO T (110)

and r, are Lagrange-multiplier modal amplitudes at nodes of tl. This generalized
symmetric eigensystem of order 2n,_ provides n,_ solutions to the slosh eigenproblem. A
similar technique may be followed for the flexible container case. This finite element
reduction-to-surface technique provides an alternative to boundary integral methods
(see Khabazz, 1970; DeRuntz & Geers, 1978).

10. CONCLUDING REMARKS

Displacement-potential formulations are of practical interest in fluid-structure
transient-response and vibration analysis as they provide the basis for effective
numerical computations. Some recent applications are presented by Felippa & DeRuntz
(1984), Geers & Ruzicka (1984), Geradin et al. (1984), Morand & Ohayon (1979),
Nicolas-Vullierme & Ohayon (1984), Ohayon (1987) and references therein. The

preceding treatment unifies a number of previous continuum-based and algebraic
statements of the coupled problem given by Morand & Ohayon (1979), Ohayon &
Valid (1984), Felippa (1985, 1986, 1988) and Ohayon (1987). Other potential-based

finite element formulations of the coupled problem have been studied by Olson &
Bathe (1985) and Liu &Uras (1988). Olson & Bathe used the velocity potential ¢ -- _,
which introduces gyroscopic terms. Liu &Uras (1988) proposed a functional identical

to Ro in V but with a different S, boundary term. (As noted in Section 4.5, Ro supplies
only a restricted variational principle.)

The present derivation may be further extended in the following directions:
(1) The inhomogeneous wave equation c2V2V- _)=f, ]'4=0, when the body force

field b(x, t) is time-dependent and V2b 0: 0. Additional forcing terms appear in the

equations of motion. These are of interest for slosh of fluids in rotating containers
and in the seismic analysis of tanks.
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(2) Retaining the specific momentum m as independent field in functional (33).

(3) Inclusion of additional physical effects: capillarity, cavitation and viscosity.
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APPENDIX A: THE GENERALIZED ALGEBRAIC EIGENPROBLEM

Some facts about the algebraic eigenproblem are collected here for convenient reference. These
facts are relevant to the study of the free vibrations of the coupled fluid-structure system.

A.I. THE STANDARD UNSYMMETRIC EIGENPROBLEM

The standard eigenproblem for a real umymmetr/c square matrix A may be stated as

Ax, = 2,x. (A.I)

where A, are the eigenvalues(which may be complex), and x, the corresponding right
eigenvectors normalized to unit length. The eigenproblem for the transposed matrix is

ATy_ = _IY_. (A.2)

This problem has the same eigenvalues but in general the eigenvectors y+will be different. The y_
are called/eft eigenvectors of A because they satisfy the problem y_A = A+y+;this in turn explains
the qualifier 'right' applied to x_. The system of left and right eigenvectors of A satisfies
bi-orthogona_y relations:

y_xj= fO if i_j, (A.3)
ff i=j.

This/_ is called the condition number of 2_with respect to the eigenproblem (A.1); it is always
less or equal than 1 in absolute value, and may be zero in pathological cases. (The closer to 1,
the better conditioned Atis.)

Premultiplying (A.I) by y_ and assuming that/_ _0 yields

A,= y_Axd/_ = xTA_y+/_,, (A.4)

which isthe Rayleighquotientforunsyrnmetricmatrices.If_ = 0 and y_A_ = 0,(A.4)takesthe
undetermined form 0/0 so every Atisan eigenvalue.In such a case the eigenproblem (A.1) is

said to be defective.

A.2. THE STANDARD SYMMZrmc PROBLEM

If A is symmetric, then xt = y+, _t+= 1 and equation (A.3) reduces to the usual onhogonality
condition

01 if i *j, (A.3)_Txt= if/=].

whereas equation (A.4) becomes the usual Rayleigh quotient for a unit length vector:

_.,= X,TAX,. (A.6)

A.3. THE GF__RAUZ_D UNSYM_mC EmENPROBLEM

The generalized unsymmetric eigenproblem is

Ax, = _,Bx_, (A.7)

where A and B are unsymmetric real matrices. Assuming that B -t exists, this problem can be
reduced to the standard problem

C_ = A,_, (A.8)

in which C -- B-_A. The transposed problem is

C'z,= ATe-tz_ = A.,_. (A.9)
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Defining BTy_ = z, this eigenproblem can be transformed to

ATy,= A,BTy,. (A.10)

The bi-orthogonalitycondilJons(A.3)become

0 if i:#�,zTxj= yTSxj= xTBTyj= /_ if i=/. (A.11)

The Rayleigh quotient (A.O generalizes to

x,= yT_._____ yTAx_.___, (a.12)
yTSx,- _,,

As in Section A.1, if (A.12) takes on the form 0/0 for some 9, every _._is an eigenvalue and the
eigenprohlem (A.7) is said to be d_ectwe; mathematically, A and B share a common null space.
A defective eigenproblem cannot be solved numerically by convent/onal root-extraction methods
because the 0/0 roots contaminate the entire spectrum.

A.4. T_ GE_P.A].JZ_ED S_'TmC EIGeNPROBL._

If both A and B are symmetric,

r_ = y_, z_= B- Lyj. (A. 13)

and we recover the usual onhonormality conditions

[0 if i _/,

/_ if i =/. (A.14)

In mechanical vibration problems for which B is the mass matrix, /_ is ca/led the gener,,tized
morn. F'mally, (A.12) redt_ces to the usual Rayleigh quotient

_.,= r_TAx' (A. 15)
x,rBx_"
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Ahetraet--High-performance (HP) elements are simple finite elements constructed to deliver engineering
accuracy with coarse arbitrary grids. This paper is part of a series _)n the variational basis of HP elements,
with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS)

methods, The present paper studies parametrized variational principles that provide a foundation for the
FF and ANS methods, as well as for a combination of both methods.

I. INTRODU4_'TION

For 25 years researchers have tried to construct

"best' finite element models for problems in structural

mechanics. The quest appe_-red to be nearly over

in the late 1960s when higher order displacement

elements dominated the headlines. However, these

elements did not dominate the marketplace. The

overwhelming preference of finite element code users

has been for simple elements that deliver engineering

accuracy with coarse meshe_. The search for these

'high-performance' (HP) elements began in the early

1970s and it now represents an important area

of finite element research m solid and structural

mechanics. Many ingenious schemes have been tried:

reduced and selective integration, incompatible

modes, mixed and hybrid formulations, stress

and strain projections, free formulation (FF) and

assumed natural strains (AlxIS).

The present paper is part of a series [1-5] that

studies how several high-performance element con-
struction methods can be embedded within an ex-

tended variational framework that uses parametrized

hybrid functionals. The general plan of attack is

sketched in Fig, I. Heavily-lined connections are

those emphasized in the present paper. The exten-

sions, shown on the left, involve parametrization of

the conventional elasticity fimctionals and treatment

of element interfaces through generalizations of the

hybrid approach of Plan and co-workers [6-8].

The effective construction of HP elements relies

on devices, sometimes der, sively called "tricks' or

'variational crimes', that do not fit a priori in the

classical variational framework. The tricks range

from innocuous collocation and finite difference

cons.taints to more drastic remedies such as selective

integration. Despite their unconventional nature.

f Dedicated to Professor T. iq. H Plan. on the occasion
of his 70th birthday.

tricks are an essential part of the construction of

HP elements. They collectively represent a fun-and-

games ingredient that keeps the derivation of HP

finite elements as a surprisingly enjoyable task.

The present treatment "decriminalizes' kinematic

constraint tricks by adjoining Lagrange multipliers,

hence placing the ensemble in a proper variational

setting. Placing formulations within a variational

framework has the great advantages of supplying the

general structure of the stiffness matrices and forcing

vectors of high-performance elements, and of allow-

ing a systematic derivation of classes of elements by

an array of powerful techniques.

Note the reliance of the program of Fig. I on

hybrid functionats. The original 1964 vision of Plan

[6] is thus seen to acquire a momentous significance.

It is perhaps appropriate to quote here the prediction

of another great contributor to finite elements [9]:

T. H. H. Plan responded to the problem of plate
bending by inventing the "hybrid formulation".
which avoids the problem of slope continuity. He
assumed that the element responds not according
to shape functions but according to element stress
fields. These communicate with the outside world via
the boundaries .... Hybrid elements,can be the most

competitive and we believe that the future lies in that
direction. However, the formulation is more compli-
cated. Therefore we advocate that researchers should
try to cajole their formulation into shape function
form. so that users do not have to struggle. In the
form, hybrid elements are no more difficult to use
than _he iso-P elements .... Unfortunately at the

time of writing we have no uniform technique to
achieve this.

Fulfillment of the prophecy appears to be near.

.7..THE ELASTICITY PROBLEM

Consider a linearly elastic body under static loading

that occupies the volume V. The body is bounded by
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the surface S. which is decomposed into S:S4U S,.

Displacements are prescribed on E_ whereas surface

tractions are prescribed on S,. The outward unit

normal on S is denoted by n- n,.

The three unknown volume fields arc displace-

ments u -- u,. infinitesimal strains • ==e, s. and stresses

¢r = o#. The problem data include: the body force
field b i b, in V. prescribed displacements d on S e.

and prescribed surface tractions t -= t_ on S,.
The relations between the volume fields are the

strain-displacement equations

or

e = ½(V=+ V%) = !)_

e,,=}(u,.,+uj.,) in V,

the constitutive equations

or

o=Ee

and the equilibrium (balance) equations

-div _ = D*# = b

or

%_+b_=O in V, (3)

in which D* == -div denotes the adjoint operator of

the symmetric gradient D = ½(V + vT).

The stress vector with respect to a direction defined

by the unit vector v is denoted as _=e-v, or

o, = _rovj. On S the surface-traction stress vector is
defined as

o, = o' • n or o',, = o'_nr (4)

(I) With this definition the traction boundary conditions

may be stated as

_,=i or o'vaj=t_ on S,, (5)

and the displacement boundary conditions as

(2) u=_ or u,=_, on S_. (6)
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3. NOTATION

3.1. Field dependency

In variational methods of approximation we do

not, of course, work with the exact fields that satisfy

the governing equations (I-3, 5 and 6), but with

independent (primary) fields, which are subject to

variations, and dependent (secondary, associated,

derived) fields, which are not The approximation is

detm, mined by taking variations with respect to the

independent fields.

An independently varied field will be identified by a

supcrposed tilde, for example ti. A dependent field is

identified by writing the independent field symbol as

superscript. For example, if the displacements are

independently varied, the derived strain and stress
fields are

¢' ffi _(V + V r _ = Dfi,

_r" = F_.e"= EDti. (7)

An advantage of this convemion is that u, e and

may be reserved for the exact fields.

3,2. Integral abbreviations

Volume and surface integrals will be abbreviated

by placing domain-subscripted parentheses and

square brackets, respectively, around the integrand.

For example:

(f)V_ fvf dV.

If ]s, _ fsf dS,

If f and g are vector

functions, their inner

the usual manner

t"

If ]s _ ] f dS.

[ f ]s, _ f f dS. (8)
d S,

functions, and p and q tensor

product over V is denoted in

(L g)V_fv f' g dl' _fvfg, dV,

(P'q)'v_ fvp'qdl" f fv P°q°dV' (9)

and similarly for surface ntegrals, in which case
square brackets are used.

3.3. Domain assertions

The notation

(a =. b),, [a = his 1. ffihis, [a = his, (10)

is used to assert that the relatton a --- b is valid at each

point of V, S, Sv and S,, respectively.

3.4. Internal interfaces

In the following subsections we construct hybrid

variational principles in which boundary displace-

ments d can be varied independently from the internal

+ siV
tUSd

Fig. 2. Integral interface example.

displacements u.These displacements play the role of

Lagrange multipliers that relax internal displacement

continuity Variational principles containing d will be

called displacement-generalized, or d-generalized for

short.

The choice of d as independent field is not vari-

ationaily admissible on Sa or S,. We must therefore

extend the definition of boundary to include internal

interfaces collectively designated as S,. Thus

s:s_us, us,. (l_)

On S_ neither displacements nor tractions are pre-

scribed. A simple case is illustrated in Fig. 2, in which

the interface S_ divides V into two subvolumes V +

and g-. An interface such as S_ on Fig. 2 has two

'sides', S/ and S,, which identify S, viewed as the

boundary of V + amd V-, respectively. At smooth

points of 5',. the unit normals n" and n- point in

opposite directions.

The integral abbreviations (8) and (9) generalize

as follows, using Fig. 2 for definiteness. A volume

integral i:_ the sum of integrals over the subvolumes:

(f)v_f_fdV+f, fdV, (12)

An integral over S, includes two contributions:

[g]s, ffi dS+ g dS, (13)

where g" and g- denotes the value of the integrand

g on S," and S,-, respectively. These two values

may be different if g is discontinuous or involves a

projection on the normals.

Following a finite element discretization, the union

of inter¢lement boundaries becomes S,.

4. TIIE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are
based on functionals of the form

Il = U -- P, (14)
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where U characterizes the internal energy stored in

the body volume and P includes other contributions

such as the work of applied loads and energy stored

on internal interfaces. We shall call U the generalized

strain energy and P the forcing potential.

It must be pointed out that all functionals con-

sidered here include independently caried displace-

ments. Thus. the class of dual functionals such as

the complementary energy are not included in the

following study.

4. I. Volume integrals

The generalized strain energy has the following

structure:

U = }j.(#. e°h +jr:(#. _), +j_(E. e")r

+ [j..(o". _), +J_:t(o'", e'), _ " "... + _.J33(¢ ,e")).. (15)

where j. through h3 are numerical coefficients. For

example, the Hu-Washizu principle is obtained by

setting j_: = - I, j, = l,j:: = I. all others being zero.

The matrix representation of the general functional

(15) and the relations that must exist between the

coefficients are studied in Sec. 5.1.

detailed in [21 the forcing potential P" may be

transformed to

P,(r,.#.a)=(b,i),.+[i.a]s, +[#..¢,-dls. (19)

where the all-important surface dislocation integral is

taken over S rather than S,. One of the assumptions

is that displacement boundary conditions (6) are

strongly satisfied. This expression of P# is used in the

sequel. A similar technique can be used to modify P',

but that expression will not be required in what

follows.

4.4. Complete functionals

Complete elasticity functionais are obtained by

combining the generalized strain energy with one of

the forcing potentials. For example, the d- and t-

generalized versions of the Hu-Washizu functional

are

Ha., = Uw- pa, rl'.. = u,.- P', (20)

where U,, is obtained by settingj:: = J_3 = l, j_: = - 1,

others to zero, in eqn (15).

4.2. Hybrid forcing potemial5

Variational principles of linear elasticity are con-

structed by combining the volume integral (15) with

the forcing potential P. Two forms of the forcing

potential, called P'_ and P' in the following, are of

interest in the hybrid treatment of interface dis-

continuities, The d-generalized (displacement-gener-

alized) forcing potential introduces an independent

boundary displacement field d over S,

P"(i. ,_. _) = tb, _,), + [a,. ,i - ;]ls,

+li._]s, +[,L._-dls.. (16)

The t-generalized (traction-generalized) forcing

potential introduces an independently varied traction

displacement field i over S,

p'(ii,. (_. _) = (b. ,_}, 4- It. ti - dis., + [i. _]s, 4- [_. £)]s,.

(17)

The "conventional" form P' of the forcing potential

is obtained if the interface integral vanishes and one

sets [t = #,,]s. If so. P' and P" coalesce into P'. which

retains only two independent fields

P'(fi.a)=(b. fl), ÷[#,,.fl-tl]s . +[i._]s ,, (18)

4.3. Modified forcing potentials

Through various manipulations and assumptions

•_To justify the symmetry of J note, for example, that
I - I n

hl(a.e'h = _hd,.e'h + _))de .a'h. and so on.

5. MATRIX REPRESENTATION OF
ELASTICITY FUNCTIONALS

The generalized strain energy (15) can be presented
in matrix form as*

t <#.,¢.>[ j'' j;: j:,|]_dV. (2])
U = _ . LSymm. j,,J le"J

The symmetric matrix

J,, J,: J,,]J= J. J;3, (22)
LSymm" -/j33j

characterizes the volume portion of the variational

principle. Using the relations ¢" = Ee, ¢" = ED6,

e"= E-]a, and e"= lhi, the above integral may be

rewritten in terms of the independent fields as

,f
j,;, j,,D lf')

x | /,,! j2:E j,,ED /_e_ dr. (23)

Lj.D r j:,DrE j,,DrEDJ(.iJ

5.1. First variation of generalized strain energy

The first variation of the volume term (15) may be

presented as

&U = (Ae. &d)v + (Aa, 65)v

- (div _', fi)v + [_'., fU]s, (24)
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where

A¢ =j_,.d +j,.,.¢' +j2_¢"

a' =jl3_ +j:_¢' +'J_.¢_. (25)

The last two terms combine with contributions from

the variation of P. For example, if P = P" the

complete variation of H'= U - pc is

tsrI • = (Ae, 6#)v + (A¢, 6_)v .- (div a' + b, _fi)),

+ [¢;,- i. ,_'_]s,- [a -_. &Lls, (26)

Using P# or P' does not change the volume terms.

The Euler equations corresponding to P' and P'

are studied in [3, 4] for a more restrictive form of

functionals U.

Since the Euler equations associated with the first

two terms are A¢ = 0 and Ae = 0, these quantities

may be regarded as deviations from stress-balance

and strain-compatibility, respectively. For consist-

ency of the Euler equations with the field equations
of S¢c. 2 we must have Ae = 0 Aa = 0 and ¢' = ¢ if

the assumed stress and strain fields reduce to the

exact ones. Consequently

Jlt 4-Ja2 +.,% = 0

J,., + J.,., +J.'3 = 0

Jl3 +J.,3 +J33 := 1. (27)

Because of these constraints, the maximum number

of independent parameters that define the entries of

J is three.

5.2. Specific functionals

Expressions of J for some classical and

parametrized variational printaples of elasticity are

tabulated below. The subscript of J is used to identify

the functionals, which are listed roughly in order of

ascending complexity. The fields included in paren-

theses after the functional name are those subject to

independent variations.

Potential energy (fi):

Jr= 0 .

0

(28)

Stress-displacement Reissner. also called Hellinger-

Reissner ((i. fi):

I :1I 0 I

JR= 0 0 .

I 0

(29)

Unnamed stress-displacement functional listed in

Oden and Reddy [10] ((_, fi):

Jr,-- 0 0 . (30)

-1 0

Strain-disp)acement Reissner-type [10] (& ii):

°Z]Js= -1 .

I

(31)

Hu-Washizu (d. 6. fi):

Jw = - I .

0

(32)

One-parameter stress-displacement family (_,/i) that

includes Up, Ue and U c as special cases [I-3]:

J:. = 0 0 0 . (33)

7 0 1-7

One-parameter strain-displacement family (6, ii) that

includes Ur and Us as special cases [2]:

[0° 0 0]= -// _ . (34)
a_ Lo /_ 1-

Two-parameter strain--displacement family (0, 6, fi)

that includes U/_ and U as special cases [2]:

J,:. = (I - fl)J: + (I - ",')Jl_- (I - fl - 7)Jp

-;,(I -#) o _'(] -#) 1

= 0 _/.l_;,) /
;,(l-,q) /_(I-7) I-;_-_,+2/_,j

(35)

Three-parameter (_, j}, 7) family (d. _. fi) that includes

U),. and U_ as special cases [2]:

I -7(1 -#)(I -:c)
J,_ = _J., + (I - :()J:_; = -:(

+7(I-/_)(I-_)

:t -/3(1 -7)(I--:x)

J_(I -7)(1 - t)

:_+;,(I -_)(I -:() -I

fl(I -7)(1 -_} ],(I-fl-7+2BT)(I-_)

(36)
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I Hu-Washizu

0 Potential Energy

Displacement

Reissner

Stress- Displacement

Reissner
I

7"

Fig. 3. Graphical representation of the J,_, functionals.

The last form. which contains three independent

parameters, directly supplies matrices J that satisfy

the constraints (27). ]t yields stress-displacement

functionals for :_ = ,/] = 0. strain-displacement func-

tionals for :_ =7 =0, and three-field functionals

otherwise. A graphic representation of J,_.,. in (',, ,8, 7)

space is given in Fig. 3.

5.3. Energy balancing

A prime motivation for introducing the j co-

efficients as free parameters is optimization of finite

element performance. The determination of 'best'
parameters for specific elements relies on the concept

of energy balance. Let ,_'(_) = _(E_, _ h denote the

strain energy associated with strain field (. If E is

positive definite. ¢/(_) is non-negative. We may

decompose the generalized strain energy into the

following sum of strain energies:

c3 = ½(j. -Ju +A3 - l). Equation (37) is equivalent

to decomposing J into the sum of four rank-one
matrices

J= 0 +c I - 1

0 0

o+ c2 l - + c3 0 .

-1 - 0

(38)

Decompositions of this nature can be used to derive

energy balanced finite elements by considering ele-

ment 'patches' under simple load systems. This tech-

nique is disccssed for the one-parameter functionais

generated by eqn (33) in [l, !1, 12].

U = -'_(e") + c, _(e" - (_)

+ c:4/(_ - e #) + c3_(e" - e'), (37)

where _r(e")= Up is the usual strain energy, c_ =

_(J)_+A:-J33+ I), c:=!(-j)l +J::+J3_-I), and

6. FINITE ELEMENT DI$CRETIZATION

In this section assumptions invoked in the finite
element discretization of the functional I1 # for

arbitrary J are stated. Following usual practice in
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finite element work. the con_ponents of stresses and

strains are arranged as ,me-dimensional arrays

whereas the elastic moduli _n E are arranged as a

square symmetric matrix. I_ the following we shall
consider an individual elen_ent of volume V and

surface S : S, U S,I U Si, where Si is the portion of the

boundary in common with other elements.

6.1. Boundary displacement assumption

The boundary displacement assumption is

[_1= Na'ls. (39)

Here matrix Nd collects the boundary shape functions

for the boundary displacement d, whereas vector v

collects the degrees of freedom of the element, also
called the connectors. These boundary displacements

must be unique on common element boundaries.

This condition is verified if the displacement of the

common boundary portion _s uniquely specified by

degrees of freedom located on that boundary. There

are no derived fields associated with d.

6.2. Internal displacement assumptwn

The displacement assumpuon in the interior of the

element is

(fi = N,,:l)v, (40)

where matrix N, collects tLe internal displacement

shape functions and vecto_ q collects generalized

coordinates for the internal displacements. The as-

sumed fi need not be continuous across interelement

boundaries.

The displacement derived fields are

(e" = DNq = Bq)v, (a'" = EBq)_. (41)

To link up in Sec. 9.1 w_th the FF and ANS

formulations, we proceed to split the internal dis-

placement field as follows. "]'he assumed ii is decom-

posed into rigid body, constant strain, and higher

order displacements

fi = N,q, + N, q, + Ni, qh. (42)

averaged) strain values _. Consequently eqn (43)

simplifies to

e" = _" +e_ = _" + B_, (44)

in which

q,-- _" = (e_)r/e. (B_),, = 0, (45)

where v := (l)v is the element volume measure. The

second relation is obtained by integrating eqn (44)

over V and noting that qh is arbitrary. It states that

the mean value of the higher order displacement-

derived strains is zero over the element.

6.3. Stre:;s assumption

The stress field will be assumed to be constant over

the element

(t_ = _),. (46)

This assumption is sufficient to construct HP ele-

ments based on the free formulation [2-3, 12-17].

Higher order stress variations are computationaily

effective if they are divergence-free [3], but such a

requirement makes extension to geometrically non-

linear problems difficult. The only derived field is

(_" = E-ta)v. (47)

6.4. Strain assumptions

The assumed strain field _ is decomposed into a

mean constant strain _ and a higher order variation

(_ = _ + Aa)v, (48)

where _ =--(6)v/V, A collects higher order strain modes
with mean zero value over the element

(A)v --- 0, (49)

and a collects the corresponding strain amplitude

parameters. The only derived field is

Applying the strain operator D = !(V + 7 r) to fi we
obtain the associated strain field

(¢" = E_ = E_ + EAa)v. (5O)

e" = DN, q,+DN q, + DN_,q,

= B,q, + B q, _- B,,qh. (43)

However. B, = DN, vanishes because N, contains

only rigid-body modes. We are also free to select

B, = DN, to be the identity matrix I if the generalized

coordinates q, are identified with the mean (volume-

"L UNCONSTRAINED FINITE ELEMENT
EQUATIONS

For s_mplicity we shall assume that all elastic
moduli in E are constant over the element. Inserting

the above assumptions into FI" with the forcing

potential (19), we obtain a quadratic algebraic form,

which is fairly sparse on account of the conditions
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(45) and (49). Making this

finite element equations

jltz'E -I jl.,e I

jlzel j2:vE

0 0

-P, 0

j,,1"i -- P,, j,jcl

- Ph 0

L 0

where

K,¢,,= (B,_ EBp,), = K,_,

form stationary yields the

0 _pr jl3vi_pr _pr L r "# _" 0

0 0 Jz_ t' I 0 0

j,:Ch 0 0 j,jR r 0 a

0 0 j. v E 0 e" fv.

j.._ R 0 0 j. K,_, qh ' f_h

0 0 0 0 v L f.

(51)

Ch = (ArEA)v = C r

R = (BrEA)r L r r= [N,,,,ls P. = [N..ls

N rP = [ ,,,]._ P,, [Nr]s f, = (Nrb)v

f,, = (N/h), f,, = (N,rb), , t = fNfils,, (52)

in which N,_,, denotes the projection of shape func-

tions N,/on the exterior normal n. and similarly for

N,. N, and N_,. Coefficient matrix entries that do not

depend on the js come from the last boundary term

in eqn (19).

7.1. Tile P matrices

Application of the divergence theorem to the work

of the mean stress on e" yields

(#. e"), = 1#. _" + B_,qh), = c#r_" + #r(B,,), qh

= cdr_ " = [0,,, ills = In,,. N,q, + N, _" + N,q,] s

= at(p, q, + p,_,, +. P, qh). (53)

Hence P,=0. P,=cl. P,,=0. and the element

equations simplify to

/_I_'E r jl:r I 0 0 (j,j-1)vl 0

h:cl j:z*'E 0 0 j:_vl 0

0 0 ]:..Ch 0 0 j:j Rr

0 0 0 0 0 0

(.i,_- l)i'l ....... I 0 0 ).L'E 0

0 0 ):_ R 0 0 ). K o

L 0 0 0 0 0

FF and ANS elements. These are matrix relations

between kinematic quantities that are established

independently of the variational equations. Two types
of relations will be studied.

8.1, Constraints between internal and boundary

displacements

Relations linking the generalized coordinates q and

the nodal connectors v were introduced by Bergan

and co-workers in conjunction with the free formu-

lation (FF') of finite elements [14, 15]. For simplicity
we shall assume that the number of freedoms in v and

q is the same; removal of this restriction is discussed

in [3]. By collocation of u at the element node points

one easily establishes the relation

v = G,q, + G_q_ + G_qh = Gq, (55)

where G is a square transformation matrix that will

be assumed to be nonsingular. On inverting this

relation we obtain

q=G-_=Hv

L r"

0

0

0 ,

0

0

0

i

|e =

;u

0

0

0

f_, ..

fuu

f,

(54)

The simplicity of the P matrices comes from the

mean-plus-deviator expression (44) for e". if this

decomposition is not enforced. P, = 0 but P, = (B,),

and P_, = {B,,h

8. KINEMATIC CONSTRAINTS

The 'tricks" we shall consider here are kinematic

constraints that play a key rote in the development of

or

q---'_"_'= H v. (56)
I

LqhJ H,,

The following relations between L and the above

submatrices hold as a consequence of the individual

element test performed in Sec. 9.3.
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LrG,=0, LrGc=vl, vHc--L r. (57)

If the decomposition (44) is not enforced, the last two

should read LrG, = vB,., a relation first stated in [15],

and P,H,. + P, Hh = L r.

8.2. Constraints between assumed higher order strains

and boundary displacements

Constraints linking eh to v are of fundamental

importance in the assumed natural strain (ANS)

formulation. The effect of these constraints in a

variational framework is anaiyzed in some detail

in [4, 5]. Here we shall simply postulate the following

relation between the higher order strain parameters

of (48) and nodal displacements:

a = Or. (58)

where Q is generally a rectangular matrix determined

by collocation and/or interpolation. The individual

element test in Set:. 9.3 requires that Q be orthogonal

to G, and G_:

QG,=0, QG=0. (59)

The constraint (58) still leaves the independently

varied mean strain [ to be determined variationally.

9. VISIBLE STIFFNESS EQUATIONS

Enforcing the constraints a = Qv, q, = H,v,

q, = H,v = v -_ Lrv, and q, = Ha v, through Lagrange

multiplier vectors go, ,;.,, ,i._, and J._, respectively,

we obtain the augmented finite element equations

where

K_ = v -' LEL r (62)

Kh = j, HrK_,H, +j:_(HrRQ + QrRrH,.)

+j.,:QrC, Q (63)

f = f,. + Hrf_, + v -E Lrfq, ÷ H[f_,. (64)

Adopting the nomenclature of the free formulation

[l 5], we shall call K, the basic stiffness matrix and K,

the higher order stiffness matrix.

9. I. Relation to previous HP element formulatwns

lfJ = J_. ofeqn (33),j33 = I - ),,j,, =J.'3 = 0, and we

recover the scaled FF stiffness equations studied in

[2,3, 11, 12]

K_ = (I - 7) HrKq, H_. (65)

Ifwe take J = Jw ofeqn (32), then]:: = I.j_ =J.,3 = 0

and we obtain

Kh = QrC_Q. (66)

This is similar to the stiffness produced by the ANS

hybrid variational formulation studied in [4, 5], in

which the potential P' was used instead of pa.

However, the term with coefficient/:j in eqn (63) is

new. It. may be viewed as coupling the FF and ANS

formulation._. It is not known at this time whether

j,t'E -I jj,vl 0

jl,.vl j:,vE 0

0 0 jz:C,

0 0 0

(Jl3-1)vi j:_vl 0

0 0 j,.3R

0 0 -I

0 0 0

0 0 0

0 0 0

L 0 0

0 (Jl3-1)vl 0 0 0 0 0 L r

0 j2_vl 0 0 0 0 0 0

0 0 j23R r -- I 0 0 0 0

0 0 0 0 -I 0 0 0

0 j, vE 0 0 0 -I 0 0

0 0 .fi3K_, 0 0 0 - I .0

0 0 0 0 0 0 0 Q

-I o 0 0 0 0 0 H,

0 -I 0 0 0 0 0 v-lL r

0 0 --i 0 0 0 0 H_

0 0 0 Qr H r v-lL H r 0

e

a

q,

2,

).,

).,

v

0

0

0

0

0

0

r,

• (60)

Condensation of all degrees of freedom except v

yields the visible* element stiffness equations

Kv = (K, + K,)v = L (61)

•I"The qualifier visible emphasizes that these are the stiff-
ness equations other elements 'see', and consequently are the
only ones that matter insofar as computer implementation
on a displacement-based finite element program.

eqns (61)-(64) represent the most general structure of

the visible sttffness equations of HP elements.

9.2. Recovery of element fields

For simplicity suppose that the body forces vanish

and so do fv,, f,_, and f,,,, If v is known following

a finite element solution of the assembled system.
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solving eqns (60) for the internal degrees of freedom

yields

_=_'-_Lrv. _=Ee. a--Qv

q, --- H, v, e"= t'. qh -- Hh v

.i._= (j,:C_Q +j_)RrHh)v

/., = 0, 2,=0

An= (j:_ RQ +J's3 KvhH,) v. (67)

It is seen that the mean strains _. _' and _¢=E-_8

agree, and so would the mean stresses. This is not the

case. however, if the body forces do not vanish, It is

also worthwhile to mention that a nonzero Lagrange

multiplier vector flags a deviation of the associated

fields from the t'ariationally consistent fields that

would result on using the unconstrained FE eqns (54)
without "tricks'.

9.3. The indiridual element test

To conclude the paper, we investigate the
conditions under which HP elements based on the

foregoing general formulation pass the individual

element test of Bergan and Hanssen [ 13-15]. To carry

out the test, assume that the "free floating' elementi"

under zero body forces is in a constant stress state no,

which of course is also the mean stress, Insert the

following data in the left-hand side vector of (60):

#=a. = _'. [ = E-lar0

a, = 0, q, = arbitrary

e"= _"= E '(i.. qh=0

_.,, --- 0. ).,=0

2. =0. /.h=0

v = G,q, + G,_ = G,q, + G, E-_a0. (68)

Premuhiply by the coefficient matrix, and demand
that all terms on the right-hand side vanish but for

f,.--Lo,,. The orthogonality conditions in eqns (57)

and (59) then emerge. This form of the patch test is

very strong, and it may well be that relaxing circum-

stances can be found for specific problems such as

shells.

tO. CONCLU,3IONS

The results of the present paper may be summar-

ized as follows.

I. The classical variational principles of linear

elasticity may be embedded in a parametrized

matrix form.

2. The elasticity principles with independently varied

displacements are members of a three-parameter-

family.

f Mathematically. the entire element boundary is trac-
tion-specified, i.e. S _ S,.

3. Finite element assumptions for constructing HP

elements may be conveniently investigated on this

family.

4. Kinematic constraints established outside the

realm of the variational principle may be incor-

porated through Lagrange multiplier adjunction.

5. Tlie FF and ANS methods for constructing

HP finite elements may be presented within this

variational setting, in addition, combined forms

merge naturally from the general parametrized

principle,
6. The satisfaction of the individual element test

yields various orthogonality conditions that the

kinematics constraints should satisfy a priori.

The construction of HP elements based on a weighted

mix of FF and ANS "ingredients' will be examined

in sequel papers, and specific examples will be given

to convey the power and flexibility of the present
methods.
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SUMMARY. - ANDES is an acronym for Assumed Natural DEmeforie Strains. This is a brand new variant of the Assumed

Natural Strain (ANS) formulation cf finite elements, which, hse recently attracted attention as an effective method for

constructing high-performance plate and shell elsment* for linear and nonlinear analysis. The ANDES formulation is based

on an extended parametrised variational principle developed in recent publications. The key concept is that only the

deviatoric part of the strains is assumed over the element wheseas the mean strain part is discarded in favor of a constant

stress a_umption. Unlike conventional ANS element*, ANDES element* satisfy the individual element test (a stringent

form of the patch test) a priori while retaining the favorable distortion-insensitivity properties of ANS elements. The

first application of this new formulation has been the development of several Kirchhofl" plate bending triangular elements

with the standard nine degrees of freedom. Numerical experiment* indicate that one of the ANDES element is relatively

insensitive to distortion compared to previotmly derived high-performance plate-bending elements, while retaining accuracy

for nondistorted elements.

INTRODUC'I'IO _

Despite almost three decades of work, plates and shells re-

main a important area of research in finite element meth-

ods. Challenging topics include:

1. The construction of high performance element*.

2. The modeling ofcomp_ite and stiffened wall construc-

tions.

3. The treatment of prestress, iml,erfectioM, nonlinear,

dissipative and dynamic effects.

4. The development of prarticd error estimators and

adaptive discretization methods

5. The interaction with nonstructural components, for

example external and internal fluids.

This paper reports progress in the first challenge, although

it must be recognized that advance_ in this direction are

shaped to a large extent by thinking of the others.

The mann motivation behind our recent finite element work

has been the construction of simple and efficient finite el-

ements for plates and shells that are lock-free, rank suffi-

cient and distortion insensitive, yieht accurate answers for

coarse meshes, fit naturally into dhplacement-hased pro-

grams, and can be easily extended to nonlinear and dy-

namic problems. Elements that possess these attributes

to some noticeable degree are collectively known as high

performance or liP elements.

Over the past three decades investigators have resorted to

many ingenious dev!r*s to construct HP elements. The

most important ones are listed in Table 1. The under-

lying theme is that although the fi_lal product may look

like a standard displacement model _o as to fit naturally

into existing finite element progranw, tAc conventional dis-

placement forTnulation is abandoned. (By "conventional"

we mean the use of conforming displacement assumptions

into the total potential energy principle.)

Table 1. Tools for Cormtructlng HP Elements

Techniclae Year

introduced

1. Incompatible shape functions 1961

2. Patch _est 1965

3. Mixed and hybrid principles 1965

4. Projec,ors t967

5. Selective reduced integration [969

6. Uniform reduced integration 1970

7. Partial strain assumptions 1979

8. Energy balancing 1974

9. Directional integration 1978

10. Limit tifferential equations 1982

11. Free formulation 1984

12. Assumed natural strains 1984

3O
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Boot I Decomposition of the Element Stiffness Eqmttione

Let K be the element stiff'nero matrix, v the visible element degrees of freedom (those degrees of freedom in

common with other elements, alto called the connectors) and f the corresponding element node forces. Then

the element stifi'nem equations decompme as

Kv = (K, + K_)v = f. (1)

K_ and K_ are called the _tlic and big/tar order stiffness rn_rices, respectively. The basic sti_neas matrix,

which is usually rank deficient, is constructed for conscience. The higher order stiffness matrix is constructed

for stability and (in more recent work) accnrecy. A deenmpmition of this nature, which also holds at the

_membly level, was first obtained by Bergan and Nyglvl (1984) in the derivation of the free formulation.

In the unified formulation presented by Felippa and Militello (1989, 1990a, 1990b) the following key properties

of the decomposition (I) are derived,

1. K_ is [ormsiatson independen_ and is defined entirely by an amumed constant streas state working on

element boundary displscements. No knowledge of the interior displacements is necessary (Box 2). The

extension of this statement to C O plate and shell elements is not straightforward, however, and special

considerations are necessary in order to obtain Kt for those elements.

2. K_ has the genera] form

K_ = j_K_aa + J22Kh22 + j23K_. (2)

The three parameters JR, j2_ and j_ characterize the source variational principle in the following sense:

(a) The FF is recovered if j_ ----j2s = 0 and J&1 -- 1 - 7, where 7 is a Kh scaling coefficient studied in

Bergen and Felippa (1985) and Felippa and Bergen (1987). The original FF of Bergan and Nyg_rd

(1984) is obtained if T ffi 0. The source variational principle is a one-parameter form that includes

the potential energy and stress-displacement Reiasner functionals as special cases; see Felippa (1989a.

1989b, 1989c).

(b) The ANDES variant of ANS is recovered if J22 = .i2s = 0 whereas J_2 = a is a scaling parameter. The

source variational principle is a one-parameter form that includes Reimner's stress-displacement and

Hu-Washizu's functionais as special cmum; see Felippa and Militello (1989, 1990a, 1990b).

(c) lfj2s is nonzero, the lest term in (2) may be viewed as being produced by a FF/ANDES combination.

Such a combination remains unexplored.

A Unsfied Varlslional Fmmeteork

Table I conveys the feeling of a bewildering array of tooL_.

The question arises as to whether some of them are just

facets of the same thing. Limited progresl hu been made

in this regard. One notable advance in the 1970s has been

the equivalence of reduced/selective integration and mixed

methods achieved by Malkus and Hughes (1978).

The present work has benefited from the unplanned conflu-

ence of two unification efforts. An initialattempt to place

the free formulation developed in Bergen and Hanasen

(1976), Bergan (1980), Bergan and Nygltd (1984), within

the framework of parametrized hybrid variational princi-

pies was successful, as reported in Felippa (1989a, 1989b,

1989c). The free formulation in turn "dragged" incom-

patible shape functions, the patch test, and energy bal-

ancing into the scene. Concurrently a separate effort was

carried out to set out the assumed natural strata (ANS)

(as well as related techniques such ms projection meth-

_,a . a mixed/hybrid variational framework as described

in Militello and Felippa (1990a, 1990b). Comparison of

the results led to the rather unexpected conclusion that

a parametrized variational framework was able to encom-

pa_ ANS and the free formulation as well as some hitherto

untried methods; see Felippa and Militello (1989, 1990a,

1990b),

The common theme emerging from this unification'is that

a wide class of HP elements can be constructed using two

ingredients:

(1) A pm'ametrized functional that contains allvariational

principles of elasticity u special cases.

(2) Additional assumptions (which are sometimes called

"variational crimes" or "tricks") that can be placed

on a variational setting through Lagrange multipliers.

As of this writing it is not known whether the "wide class"

referred to above encompasses all HP elements or at least

the most interesting ones. Some surprising co_,'escences.

such as DKT and ANS bending elements, however, have

emerged from this study.
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Box2 ConstructionoftheBasicStiffnensMatrixKb
Step B.J. Assume a coas|sni stress field, _, inside the element. (This should be the element stress field

that holds in the coavecgence limit; for structural elements the assumptlon would be on mdependent stress

resu/tants, ) The associated boundary tractions see Fn -- F.n, where n ,Jennies the unit externel normal on

the element boundar7 S.

Step B._. Assume boundsey displacements, d, over S. This field is described in terms of the t_#ible element

node displacements v (also c,'_led the connectors) as

d = N. v, (3)

where N_ is an array of boundary shape functions. The boundary m_tions (3) must satisfy interelement

continuity (or U least, zero mean discontinuity so that no energy is lost at interfaces) and contain rigid-body

and constant-strain motions ,_actly.

Step B.$. Construct the "lumpin8 rrmtrix" L that consistently "lumps" the boundary tractions _'_ into

element node forces, f, conjugate to v in the virtual work sense. That is,

In the above, N_ see boundary-system projections of N4 conjugate to tb.e surface tractions _..

Step B..L The basic stiffne_ rnatnx for a 3D element is

K, -_ v °t LEL T, (5)

where E is the stress-strain constitutive matrix of elastic moduli, which are assumed to be constant over the

element, and v -- fv dV is the element volume measure.

For a Kh.chhoff plate bending element, stresses, strains and stress-strain moduli become bending moments,

curvatures and moment-<ur_ature moduli, respectively, and the inte_ati_n is performed over the elemem area

A:

K, = A -i LDL r, (6)

where D is the matrix of moment-cm'v_ure moduli. Specific examples for L are provided in the 'Stiffness

Matrix Computation' section

_e Au,,mcd N,,t_esl Stnliu Foem_Jation

The assumed natural strain fANS) formulation of finite

elements is a relatively new dev:iopment. A restricted

form of the assumed strain method (not involvin_ natu-

ral strains) was introduced by Wiilam (1969), who con-

strutted a 4-node plane-stress element by assuming a con-

stsat shear strain independently of the direct strains and

_ing a strum-displacement mixed variational principle.

(The resuJtmg element is identic_ to that derivable by" se-

lective one-point integration.) A different approach advo-

cated by Ashwell (1974) and cowctkers viewed "strain ele-

ments _ as a convenient way to generate 'good' displacement

fields by integration of appropriately assumed compatible

strain fields. [In fact, this was the technique originally used

by Turner d _/. (1956) for deriving the constant-strain

membrane triangle in their celebrated paper ]

These and other forms of assumed-strain techniques were

overshadowed in the 1970s by cevelopments in reduced

and selective integration methods The a_umed strain ap-

proach in natural coordinates, however, has recently at-

tracted substantial attention; particularly in view of its

effectiveness in geometrically nonlinear analysis Stupor-

tam contributions have been made by Bathe and Dvorkin

(1985), Huan 8 _nd Hinton (1986), Jang and Pinsky (1986].

MacNeal (197_), Park (1986L Park and Stanley {1986).

and Simo and Hughes (1986).

As noted above, the unification a_hieved by Felippa and

Militello (1989 1990a. 1990b) merges two BP element con-

struction schemes: the free formulation (FF) of Bergan

and Nygird (1984), and a variant of ANS called AN-

DES (_cronym for Assumed Natural Deviatoric Strainsi

described in further detail below. The stiffness equations

produced by the unified formulation enjoy the fundamental

decomposition property summarized in Box i.

]n tbe ANDES variant of ANS, assumptions are made only

on the dtviator_c portion of the element strums, namely

that portion that integrates to zero over each element

This assumption produces the higher order stiffness labeled

K_,_ in Box l. The mean strains are left to be deternuned

variatmnally and hav_ no effect on the stiffness eq,tattons
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Box 3 Construction of K_ by the ANDES l_)rmubst/on

Step 8.J. Select referzlcz _=u (in 2D elements) or re[srence flneJ (in 3D elemen t') where "natural strain-

gNP" _¢_io_ aze to be chusen. By appropriate interpotatioe expre_ the element natural stratus • in terms

of the "_ rudins_' g U thoes locasio_:

• = A, g, (7)

wbmm G ;" a _rsm field in natural coordinates that must include all constant itrsm statues. (For structural

ehunento the term _traln" m to be interpreted in a _enereli_'_i sense.)

Step E.2. ReLate tke Cartes/an straimt e to the n-*ur_ stls/us:

e = Te = TA,g = AS (8)

at elf.h point iD the elellle_t. (_ e -_ G,or if it is pc_ttbie to work throughout in natural courdinatee, this step

is _pp_.)

Step _.$. Relate the natural st_aingage readinp g to the visible degreu of freedom

g = Qv, (9)

whe_ Q b a stralnga_|e-to-node displacement transformation matrix. Techniques for doing this vary from

dement to element sad it is di_cult to staXe rules that _pply to every situation. In the etementa derived

here Q is constructed by direct interpolation over the reference llnm. (In general there is no unique internai

dinp|Kemant field u whine symmetric _adient is e or e, so this step cannot be done by simply integrating the

strain field over the element and collocating u at the nodes.)

Step H.,[. Split the Cutesian strain field into mean (volume-averaged) and deviatoric strains:

e :i+e_ = (A + Ad)g, (10)

whur0 A fvTA, dV/v, andej=AdghanmeanzerovalueoverV. This step may aleo he carried out on the
natural sttsinm if T is ¢oustant, m b the came for the elements here.

Step H.5. The hlgher_der sti_ees n_ix k given by

Ks = aQTK_Q, with Kd = /v A_EAed]/, (ll)

whm_ a = j_ > 0 is • Ir.ading coei_cient (see Box 1).

It it ofum ¢oQveuieat to combine the product of A aad Q into & single strata-displacement matrix called (as
mmal) B, which eplit8 into ]_ tad B4:

e = Aqv = (_ + A.)_v = (_ + l_d)V= B v, (_2)

in which cm

K_ =/_ BrEBddV. (13)

The notstion B, = A,Q is also used in the sequel.
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Box 4 Construction of K by the Conventional ANS Formulation

Identical to the first three steps H.2 through//'.3, in Box 3. The fourth step: strain splitting,Steps S./ to S.3.
is omitted.

Step S._J. The element stiFmem matrix is given by

K = QTKoQ, with K, = f¢ ATEA dV. (14)

or, if B = AQ is readily availaJ,|e

K = f¢ BrEB dV. (15)

In genera/this stiffness matrix does not pa_t the individnal clement test of 8ergan and Hanasen (1976), which

is a strong form o( the patch test that demands pairwise cancellation of node forces between adjacent elements
subjected to constant stress st*tee. For this to happen, K must admit the decompmition

K = K, + Kh = v-tLgL T + Kh, (16)

where L is a force-lumping matrix derivable as per Box 2 and K_ is orthog6nal to the rigid body and constemt
strain test motions. In other w_rds, the ANS element must coalesce with the ANDES formulation with _ = 1.

The equivalence may be checked by requiring that

= A'Q = v-' L r, (17)

where A is the mesa part of A (see Box 3). At the present there are no known general techniques for explicitly

constructing strain fields that satiJfy these conditions a pefor_.

If the patch teat is not satilfle_t, one should switch to the ANDES formulation by replacing the basic stiffness

constructed from constant strata, namely vBFE]_, with one constructed from constant streu _, in Box 2.

The basic steps in the construction of K, and Kh for a gen-
eral three-dimensional element are s_trcanarised in Boxes 2

and 3, respectively. For justification of these "recipes _' the

reader is referred to Felipps and Militello (1989, 1990a,

1990b).

The derivation of the element stiffn_ matrix for convert-

lionel ANS elements is summacised in Box 4. In this case

there is no splitting into basic ,rod higher order parts.

This paper reports briefly (because of space constraints) on

the construction and testing of the first ANDES elements.

These are Kirchhoff plate-bending trl angular elements with

the standard 9 degrees of freedom {one displacement and

two rotations at each corner). Thin choice is made because
of the following reasons:

High-performance three-node triangular plate bend-

ing elements, whether based on Kirchhoff or Reisaner-

Mindlin mathematical models, have not been pre-

viously obtained through the ANS formulation.

[Although the DKT element presented by Batos,
Bathe and Ho (1980) and Batoz (1982) qualifies as

high-performance and is in f*,t an ANS element as
shown later, it hal, not been derived as such.] The sit-

uation is in sharp contrast to fmr-node quadrilateral

bending elements, for which HP elements have been

constructed through a greater _ariety of tools; see e.g.

Bathe and I)vorkin (1985), Crlsfield (1983), Hughrs

and Tezduyar (1981), Kang (1986), MacNeal ([978)

and Park and Stanley (1986).

2. High performance elements of this type have been ob-

tained through the FF and ancestors of the FF as de-
scribed in Bergan and Hauseen (197_i), Bergan (1980),

Bergan and Nyg_d (1984) and Felippa and Bergan

(1987). These elements are considered among the best

performers available. It is therefore intriguing whether
elements baaed on the ANDES variant can match or

exceed this performance.

THE TRIANGULAR PLATE ELEMENT

Geometric Rela_,ona

We contider here an individua_ triangle with straight JJdes.

Its geometry is ,:ompletely defined by the location of its
three corners, which are labeled 1,2,3, traversed counter-

clockwise. The element is referred to a local Cartesian

system (z, y) which is usually taken with origin at the cen-

troid 0, whence the corner coordinates z_, Yi satisfy the
relations

_'t +Z_ +Z3 ---- 0, yl + _/'J + 1/3 -----0. (]8)

Coordinate differences are abbreviated by writing z, i =

zi - zj, and Ylj = Yi - y/. The signed triangle area A is
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givenby

2A = zl == = =2t_t - =alibi (19)
pt Y=

= z$2u12 - zl2ys= = zlsff23 - z_yl3 ,

end we require that A > 0. We shall make use of di-

mensionlem triangular coordinates _., _: sad _a, linked by

_x +_2+_ = 1. The following weJl known relations between

the trisagul& and Cactesisa coordinates of a straight-sided

triangle are noted for further uJe:

z = -l:t_t + ==_3 + Zs_3, Y= Yl_] + Y'J_2+ It_.=, (20)

_+ = 2_ [=,,,- =,,, + (Z- Z0),t, + (,- .)st, l, (21)

in which i, j and k denote pesitive cyclic permutations of

1, 2 and 3; for example, i = 2, j = 3, k = 1. (If the origin

is taken at the centmid, =o = P0 = 0.) It follows that

2A0¢_1 2A0_ 2A0_a
0z = Y=' az = Ya,, az = _='

A0¢_ 2A0_ _ = 2A0_ _ = (22)
2 _ = z32, 0y :1:13, 0_ z21.

Other intrinsic dimensions and ratios of um in future

derivations are

_o= t_+= _ + v_, co = :_Jt,j, s+j= y./t_j,

a++= 2A/t0 , b+j= (z+iz+,+ _+,+yh_)/t++= "i - b++,
,X+j= b++/+++= (z+jz++ + Yj+IPi+)/(zPj + yP_),

J++= 1 - J++= %J-'o-
(23)

Here t+_ = tji is the Length of side i-j and c+j sad s_j the
cosine and sine, respectively, of angle (i _ j,z). Further-

more b<j and b/_ are the projections of sides i-k and £_-j,

respectively, onto i-j; A+j and Aj+ being the corresponding
projection ratios.

On each side i-j, define the dimensioub.-- natural coordi-

nat,', p_ as varying from 0 at i to 1 at j. The coordinate

_ of a point not on the side is that o/" its projection on
i-j. Obviously

a.,-'T= "j`' o.,-'T=_"' (_4)

Displacements, Rogaiioms. Curvatures

As we are dealing with a Kirchhoff element, im displace-

sent field is completely defined by the transverse displace-

sent to(z,_) _ w(_t,_=,_3), pesitive upwards. In the

present section we amume that to is unique sad known in-

side the element; this amumption i_ relaxed {_ter. The mid-

plane (covuiemt) rotations about z and Y are O, = Ow/Op

and O_ = -Ou_/Oz, respectively. Along side i-j with tan-

gential direction t sad external-normal n the tangenti_d
and normal rot; ";_ns are defined as

On = _ = O+.s_j -OyC+j,
(2+)

O,u

The visible degrees of freedom of the element collected in

v (see Sexes 2-3) ace

v="= [,_,e,. O,_m, O,_0_,=_ O,sO_s]. (20)

The Cartesisa second derivatives .re _iven by

Oa_ 0=_ OG_.t+ OwO_¢_ 1 O=to

O_to 0=_ OGO_j.+ O_ 0=¢, 1 O'to
a_a,, = a(,a¢, a. o_ _-=_ = 4+4"_'_;,_;---E"_'';.'
O_to 0=_ OGO& O_ O_G 1 O=to

(27)
since 0=_/0==, O'¢plOzOt_sad O_p/_ _ vsaishona
straight-sided trisasle, of. Eq. (21).

/¢atmrel Cmrvatmres

The second derive.tires Of _Uwith respect to the dlulension-
lest side directions defined above will be cal|ed the ,s{-

'.r,_l cs_sg_res and denoted by XU = Osw/OP_y . Note
that these curvatures have dimen-ions of displacement.
The natural curvatures can be related to the Ca=tesian

plate curvatures ,_,., = Os_e/O_, r._s = Os_/Op s _nd
_._ = 20=_/0=0y, by chain-tale application of Eqs. (24):

::}:Ia :.+ ...-,<+ t,
J

(28)
or X = T- __. The inverse of this relation is

1 [ 9%mU,s FatFn

L_'23zsl + Z32YI3 _SXZt2 + ZlSg21

,,,,,, I/ 1

or. in compact matrix notation

*, = TZ. (30)

At this point we rein the requirement that the curvetures

be derivable from a displacement fieht t_; consequently the

partial derivative notation will be discontinued. However,

the foregoing transformations will be assumed to hold even
if the curvature fields _ and X are not derivable from to.
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DIRECT CURVATURE INTERPOLATION

The Slrein_ege .Readmfs

ANS and ANDES p|ate beuding element_ are based on di-

rect interpol,,tion of n&tural curv_uras. All elemen_ d_-

cussed here adept the three tr/_m_e sides ss the re[create
lines defined in Box 3. The natural cur_tures are aesumad

to vary linearly ove_ each re(erence fine, an mumption

which is obviously consistent with .:ubic beam-like varis-
sinus of _ over the s/des. A l/near variation on each side

is determined by two strsinga4_e s*,_ple points, which we
chcme to be at the eornees.

Over earh tri,a_e side chooe the isoparsmetrie coordinates

_q that vary from -I st corner i to +l at corner j. These

are related to the nstut -z _j coordinates by _O = 2_ - I.
The Hermite iaterpolation of w over i-j is

tv = ¼[(X - _q)s(2 + _,j) _l,j(1 -. _;j)=(1 + _,j)

}
(31)

where 8_ denotes the rotation about the external normal n

on side ij. The natured curvature o_er side ij is siren by

Xii = _

= {6_,V 3t,j(_q - l) -_q 3/_i(_. j + 1)]

L O_i

Evalu-*ing these relations at the nodes by setting _ij --- d:I
az_d converting no_m_ rotations to _-y rotatious through

(25), we build the transformation

X12tL

Xt21_

X2_Js

X_12

xsz{t

-6 -4Yn 4:%_

0 0 0
= 0 0 0

6 -2_t-_ 2z:_

--6 4pta -4:_-.

6 -2_x

-6 4_z

-6 -4y_z

6 2y_z
0 0

0 0

' U/1 (33)

w_

, _3

-4z+1 0 0

4zm _ -2_= 2=s2

-2zs2 -6 4Pa+ -+4z+2 |

0 --6 --4_/tS 4St3 |
0 6 2Vns -.2z_J

The left hand side is the natural strxingege readin K vector

called g in Box 3 and thus we can express (33) as

s = qv. (34)

This relation holds for all elementa discu.=ed here.

The six gage resdinKs colkcted in g provide curv&tures

aJong the three triangle side directions at two corners. But

nine values are _eeded to recover the complete curvature
field over the e/mnent. The three additinas_ values m the

natural curvatures X:t_, Xsn sad X_2 at comers 1, 2 and 3,

r_spe_tively. Three pcasib//ities for the missing v_ues are
discussed below.

T6e A_erefe-C.rva_ere l_elc

To each corner h _umiKnthe averse natural curvature _q of

_he opposite side. This averaKe is Kiven by (34) eva/uxted

st _j = 0. For example

xx2ls= _(xM_ + xx2l_)= u=_(_,s- 0,,)+ :_2(eo -o,x).
(35)

The natural curvature now can be inCerpolated linearly over

the trisnsle:

= x_=+t(¢_+ ½_) + x_21=(¢2+ ½C,_). (36)

It is readily verified that under this ru_e the natural curVa-

ture Xs= is constant over lines parallel to the trianKle me.

_ian that passes throuKh node 3. Formulas for the other
curv_uras followby cyclic permutation, from which we

construct the maCrix relation

0 0

:a + ½¢_ o

0

0

°o].
o _ + ½¢2 ¢_+ ½_

[_O,X (3('2t-I)_1 (3_,2+l)z,t= 0 0

_2 (3G, + t)z_ (3¢_- 1)_

0 0 0

0 0 0 ]

6¢2s (3(_= + l)zexz (3¢2- - I)W_ [ v,

(37)
in which _2 : (_ - _2, etc. In the notation of Box 3,

X = Ax.K = Ax.Q v = Bx, v. (38)

where subscript _ identifies the "aver_ing" rule (35). Since

the natural curvatures vary linearly over the trianKle, their

mean values are obtained by evaluating (37) _t the centroid

(_| -- (2 --. <_',= ]/3:

-=_ _'St I _/t3 --tt3 0 0 0

0 0 0 "1

0 _2 -zs_ J v = Bx.v0 -Pv, =ts
(39)

Finally, the Cartesian curvatures _re Kiven by

= TB_,v = B.v, (40)
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Anexplicitexpressionoftheserelationsiseuilyobtained,
butnotrequiredinwhatfollows;however,that of the mean
CLrtesian cur,_ture*_ = TIgx.v = ]I.v (a rel_ion valid
because T is constant over the triangle) is enfightening:

1,2_',s Vu :_ 0 yat zst
(4U

10 :_t v = goV.
0 Y12 :tsJ

The Projection Rule

To each corner k amign the natural curvature XO of its

projection onto the opposite side. This results in XO be-

ing const_t along linesnormJi toside ij. For equil*+_al

triangles this agrees with the averaging rule, but not oth-

erwise. The underlying motivation is to make the element

insensitive to bad aspect ratios in cylindrical bending along
side directions.

To illustrate the _ptic_ion of this rule consider side 1-2.
For node 3 take

02uI
Xl_J-_= _ = Ax2 Xl21t +A_s Xxs]2, (42)

8Pt2 s

where ,k12 and A_ axe defined in E_. (23). Proceeding in

the same manner along the other sides we construct the
rrmtrix relation

X_s = 0 (2+A_s(t
X'-t 0 0

0 0 ]C_+ _s2(t 0

0 Ca+ Asia2 G + Al_z

(43)
or

X = Axp g, _ = TA_ g, (44)

where subscript p identifies the _projection" rule. As in the

preceding rule, since T is constant we can do the strain-

splitting step of Box 3 directly on the natural curvatures

by evaluating at the centroid:

A_p = (Axp + Axe )

_(l + _,12) _(l + _) o
= 0 0 _(I + A_)

0 0 0

0 0 0 '_

_(1+ _s_) o o J
(_o + ,_C_ _'_o+ A_IC_o 0

= 0 0 C_o+ ,_',C_o

0 0 0

o o Oo]
0 _ao+ A3tC_ (xo+ Ats(so

(45)

in which _*o = _'_ - _. Then

Be = TAx..Q = T(Au + Ao) Q = B_ + B@. (46)

The explicit expression of these matrices is not revealing.
Fo_ the construction of the stiffnem m_r/x itisbetter to

leave (46) in product focm sad to carry out the operations

with a symbo/ic algebra package such ms MACSYMA. The

explicit expression of Kkl, obtained in this rn_nner is pre-

sented ia Appendix B of Militello and Fe|ippa (1989). Ob-

serve that if _II _ coefficients are ½, which happens for the

equilateral triangle, the expressions reduce to those of the

&verag/ng rule.

TAe 'Slidinf 8earn' Rule

This is &refinement of the avere_ge-curvature rule. Consider

a fictitious beam puallei to side i-j sliding towaxdl corner

k. The end displacements and rotation of this beam &re

obtained by interpolating to cubically, 0. quadratieMly, and

0, linearly, along sides i-k and j-k. Compute the mean

natural curvature of this beam and assign to node k the
limit as the beam reaches that corner.

The required calculations can be simplified if we observe

that the mean curvature of the sfiding beam vanes linearly

as it moves from i-j, where it coincides with (35), to corner
k. At one third of the why this mesa is the n&tural cen-

tmidal curvature, which can then be readily extrapolated
to k. These centroidal curvatures are given by _" = Bx,v,

where subscript _ identifies the 'sliding' rule. A symbolic

calculation yields the explicit form

B--_=

_2Cl3 _3C21 + a_ClS

a2sts OSStl+U2Sl3

2_ss 2As_

_1C32 asc2|

_1S32 GAS2|

--2(_t3 + A_) 2Ant

a2ct3+alc32 a2C13

,a_s_+a_ss_ a_a_S

2At2

ascst
ase_t

ale32 +a3C2l

2As2

alC32

(4z)

where a,, c0 and s_y axe defined in Eqs. (23). Extrapolating

to the opposite corners and interpolating over the triangle

we construct _ ----Bx:v, with
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2=.(_1 - t) + _ss_.3
6(6 - 6 + ;=6)

2Wz(3G - _) + 3atc=_
2_.(1 - 3(_) 4" 3ala=_

-e(;= + ;n)(:
(3_ct: 4 _tc.)G
(3e:ets 4 3ate.)_

-6(A:t + Asi)G
(3age21 + 3a:cts)q
(Sags. + _:ets)G
8(-6 + 6 + S:t6)

2_n_(I - 3G) + 3age, t6
2zn(3G - I) + 3a),_16

6(G - O + _st6)
2_{3_ - 1) + 3a:etsG
2zn(l - 3_) + 3::emq

6((s - 6 + ._*2G)

2z13(1 - 3C1)+ 3ass21(2
-6(AI=+ As=)G

{ 3a tc_ + 3asc=l )(2

(3al e_ + 3ate:t)(2

6(-(s + 6 + _6)
2pts(l - 3_s) + 3ate]=_2

2zn(3G - l) + 3a_snG.

(48)

It dmuld be noted that AX and q m _xtrksbly ca-

in the above formu_ and ,_maot be emily K.p-

_stod. _plkat/oa by T yields *t : B,v. Eva/-

..,_ o_ _). -_ the _eaUe/d yiekl, 1_. : t._/_...here
L_ = AT_ x. is the _c_c_ lumping matrix _ in FA. ($4).

A _ oa tlm slld;,,_-besm theme would cm_ist of

iatstpolatiag the normal m_ e. along i-k and j-k lin-

early rath_ than qusdrsticaily. _ scheme turns out to

be identical, however, to the average curvature rule and

them it pay/des nothing new,

Three ANS eiemmts bnsed on the preceding interpolation

rules may _ const_ctsd by _oUowiug the prescription of

Beg 4. Thek )tilfaemm _m identified at K., I_, and K,,

for sv_ projection, sad diding-beam, respectively.

The f_owiaS propm_ hem f_ the.e ehnaem,.

Ps_._, TgM.. Assuming that, the element has constant thick =

ares end material pmpe_iu, K. and K. plt_ the individ-

md eimmat test, but K) does not. This ds/m cua be sw

•lyrically cunf=med by applying the criterion of Eq.. (16)-

L_ end L_ m the force lumping matrices (51) and (M).

_lnmmAm4z wigs DI(T. IC. tetra out to be identical to the

mtiffnem matrix _ the Di_rete Kir_hhofl" Triangle (DKT)

eiemant, which wm originally c_truetod in a completely

different way time involves lumed rotation fields; see B_-

tm, Bathe _ad Wo (19_0), T)mz DI_'T is *n AN$ element,

.._ .u_ (Ik_,u_ _/ tie elztn_de=u e_t_d b_low) an AN-

DES sbm.at. This equivalence provides the first varia-

tim_d justiflcat_km of DKT, _ well _ the proof that DKT

pamm tbe pate.h tat without any numerical verification.

AN$/A2_DF_ E_mm&sez. If the bam¢ stiff'nora matrices

lgu am/ K q derived in the ne_t section are used in con-

junt_km with the sw_g and sliding-bee rules, and

= I, the ANDES formulatio_ yields the same result*

I ANS if the ekmmat hss coeataat thkknem and nm-

tetinl pmpertim. (If the element hM variable thicknem,

oe the materi_ propertim vs_y, the equivaleuee do_ not

hold.) The ANDES fozmuiatioa used with the projection

rule _ two element-, tailed ALR and AQR in the se-

quel, which differ in their bssic stiffnem_. Both of thee

dements pm the patch test sad ate not equivalent to the

ANS formulation.

STIFFNESS MATRIX COMPUTATION

The B._e 5til_ese

Am explained on l_x 2, the bust stiffne_ is obtained by

conatl_zcting the lumping matrix L. In our cue this k a

9 x 3 ma_x that 'qump_ an interned constant bending-

moment field (:i;fi'r=, _, _) to node forces f conjugate

toy.

On each element side, the comttant moment field produces

boundary momenta _._ and _,_t referred to a local edge

coordinate system n, t are

{-1= 2 _ m_l t (49)

The botmdary motions d conjugate to m.n and rn., are

Ow/_n : -_¢ and Ow/Ot : _.. Given the degree of free-

dom co_fisuration (26), the normal slope _./On = -_

along side i-j can at mast vary linearly (it could be also

tak_ tm consttmt tad equal to _(Oti +St/) but the results

ate the mm_e ss for a linear variation).

For the tangential slope (the rotation about the normal)

_o/_ = Pa thare are three options: constant, linear and

quadratic variation. But • constant _,_ = (w_ - wi)/_¢

turn_ out to be equivalent to the quadratic variation and

a constant 0. : _(O., + _,_) equivalent to the linear vari-

ation. Consequently only the linear and quadratic cases

need to be exarmned.

Linear Nomal Rotetion. The variation of Ot and _. along

each side is linear:

I to i

_tt

(t),} [X 1-_ 0 0 l+_ 0 ] 0,,,=½ 0 1-_ 0 0 1+_ t_0. ,, /

where { _ {_j. Under tb_ a_umption Fe]ippa and Berg_

(1987) obtamed the lumping matrix

L_r=½ z_ 0 0 :_ 0 0 :n .
_s z_ 0 _t :s_ 0 9:2 z_2j

(._t)
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where superscript t stands for 'linear 9_.' The correspond-

ing buic stiffnem is

Ku = A-ZLtDL_, (52)

where D is the Cartmiau moment-curvature comstitutive

matrix resulting f_om the integration ol'B through the plate

thickneN. This rmstfix been used u component of the free

formulation (FF) element presented in that re(erence.

(_nadmdic Normal Rotation. A quadratic variation of 9.

can be accommodated in conjunction with the cubic vari-

ation of w &long the side:

o, =½ 3(_2-z)/l 0 ½(3_+1)(_-z)

wi

0 1 + _ 0 ] 9.+

3(_ 3 - l)/t 0 ½(_ - t)(_ + Z) J w_

0tj

8nj
(53)

where _ - _0 and t =- t O. Then the resulting lumping

matrix can be presented as

--CI3SI2 4" C31851 _e$1831 ÷ e12s12

"["gS32",12"13- + $ilZ$1) ½(_13Z13 + e_lz3,)

_I s2 3

--C234_ ÷ ¢13113 _C13,@12 _ C23423

½(-"T23,:+ ,_:',-) _"+e23,,3:_:+ d',':')
-½(sT.w:+ d,_) -½(_,2_'+ c_,_)

--C31sSt + C3_S'_ --_S23 '+ e31ssl

½(s].,..=',,+ d, 33,) ½(d_z_+ d,'s,)
1 s 3 s2

(d: - d:) - (s_ - d=)

-d_=,3-d_=-
-c_)-(s_,-d_)

(54)

The corresponding basic stiffne_ matrix is denoted by

K_ : A-_LrDL_. (55)

The Higher Order Slimness

The higher order stiffnem for the ANDES elements de-

scribed previously is

K_, : aQrK_sQ

_- o_-o/
(5_)

where z : a,p,s for the average, projection and sliding-

_eam rules, respectively. (The last expression is appro-

priate when B_ is not easi/y factored into A_Q, as in

the sliding-beam rule.) Since A#. varies linearly, if D is

comstantwe could numericallyintegrateK_ in (56) ex-

actlywith a threepointGauss rule;fo_example the three-

midpoint formula. But as the element stiffnessformation

time isdominated by theeecalculationsitisof interestto

deriveK_ indosed form. This isdone inAppendix B of

Militello and Fe|ippa (1989) for K_,, which from the nu-
merical experiments discmumd below appears to be the best

performer,

ALR Stiff'hem defined as K : Kit + 1.5Kay. This corn*

bines the linear-rotation basic stiffness (52) with the

higher order stiffness given by the projection rule.

The value a = 1.5 was e_tabllshed through simple

energy balance techniques similar to those distrained

in Felipps and Bergan (1987) for the free formula-
tion elements.

AQR Stiffnessdefinedas K : K+ r + K_. This combines

the quadratic-rotation basic stiffness (55) with the
higher order stiffne_ given by the projection rule.

The coefficient a is unity.

DKT Stiffness defined as K = K_ r + K_,. As previ-

otmly noted, this combination is identical to the well

known Discrete Kirchhoff Triangle (DKT) element.

FF The free formulation triangle described in Felippa

and Bergan (1987), with multipararneter scaring of

the higher order stiffness matrix. The buic stiffness
matrix isK+t.

All of them qualify as high performance elements in the

standard platebending "obstacle"problems.

Traditionallytestsfornew finiteelements are reportedin

the following sequence:

NUMERICAL EXPERIMENTS

An extenmve set of numerical experiments has been run

to ame_ the performance t *he new ANDES elements

basedon the projectionrule(ALv. and AQR) and tocom-

pare them .with other existing high-performance elements.

These experiments are reported in Mi]itello and Fe]ippa

(1989). Four elements were considered in this study:

(1)

(H)

Patch tests, usually carried out numerically on ar-

bitrarily chosen mesh configurations.

Regular-mesh tests such u circular, square, skew
and cantilever plates under concentrated and dis-

tributed loads.

(Ill) lIigh-_pect ratio and geOmetric distortion tests.
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For the present investigation (I) was unnecessary because

all elements pass the patch test (in ,act, a strong form of

it) a priori by construction.

AJ for (ll)-(IIl), the traditional order was reversed. First

all four dements were subject to hig._ly demanding dletor-

tion tests. Thm decision mm taken to _weed" consistently

weak perform¢_ sad thus reduce the number of test runs

on batch (II). The approach paid off in that AQR sad

DKT (the two elements that tree the quadratic-rotation

baslc stiff'nero)comtistently outperformed ALR sad FF on

distorted meshes, with AQR exhibithlg an edge in extreme

distortion cases.

Then a "run offTM contest between AQR sad DKT was car-

ried out on the regulex-rneeh tests (II_.On these the perfor-

mance was similar with an &dvantage to AQR in problem*

involving concentrated loads. These results ate reported in

detail in Militello sad Felippa (1989).

CONCLUSION_

The main conclusions of the present study can be summa-

rized as follows.

I. The ANDES formulation represents a variant of the

ANS formulation that merits serious study. The key

advantages of ANDES over ANS are:

(a) s prior* satisfaction of the patch test. Although

this advantage is less clear for elements where

ANS and ANDES coalesce for constant thickness

and material properties, it reappears for more

general cases.

(b) The separation of the higher order stiffness al-

lows the application of a scaling parameter. Fur-

thermore it opens the possibility for the energy-

balanced combination with other formulations as

per Eq. (2), although this possibility presently re-

mains unexplored.

2. The study of plate bending elements shows that the

widely used DKT element is both an ANS and AN-

DES element. This discovery !)rovides a variational

foundation hereto lacking and a_alyticaily proves (be-

cause of the ANDES connection! that DKT passes the

patch test.

3. The numerical results clearly iemoustrate that the

choice of basic stiffness is of paramount importance

in the behavior of elements based on the ANDES for-

mulation. Of the two elements ,_haxing the quadratic-

rotation basic stiffne_, namely AQR and DKT, the

former has excelled in geometric distortion tests and in

convergence studies that involve concentrated forces.

For other cases the performance of AQR and DKT is

sirmlax, and superior to those _tements that use the

linear-rotation basic stiffness

The numerical experiments have not _ddressed questions of

matcr_al scnsittmty such as element performance for highly

a_motropic and composite p[at_. TI,s behavior, as well as

the possibility of applying this technology to C O bending

elements, is currently under investigation.
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Abstract. We derive electromagnetic Tmite elements based on a variataonal principle that uses the electromag-

netic four-potential as primary variable. This choice is used to construct elements suitable for downstream

coupling with mechanical and thermal Finite elements [or the analysis of electromagnetic/mechamcal systems

that involve superconductors. The main advantages of the four-potential as a basis for ['mite element

formulation are: the number of degrees of freedom per node remains modest as the problem dimensionaiity

increases, jump discontinuities on interfaces axe naturally accomodated, and statics as well as dynamics may be

treated without any a priori approximarions. The new elements axe tested on an axisymmetric problem under

steady-state forcing conditions The results are in excellent agreement with analytical solutions.

Introduction

The present work is part of a research program for the numerical simulation of electromag-
netic/mechanical systems that involve superconductors. The simulation involves the interac-
tion of the following four components:

(1) Mechanical fields: displacements, stresses, strains and mechanical forces.
(2) Thermal fields: temperature and heat fluxes.

(3) Electromagnetic (EM) fields: electric and magnetic field strengths and fluxes, currents and
charges.

(4) Coupling fields: the fundamental coupling effect is the constitutive behavior of the materials
involved. Particularly important are the metallurgical phase change phenomena triggered
by thermal, mechanical arid EM fields.

Finite element treatment

The first three fields (mechanical, thermal and electromagnetic) are treated by the finite
element method. This treatment produces the spatial discretization of the continuum into
mechanical, thermal and electromagnetic meshes of finite number of degrees of freedom. The
finite element discretization may be developed in two ways:
(1) Simultaneous treatment. The whole problem is treated as an indivisible whole. The three

meshes noted above become tightly coupled, with common nodes and elements.
(2) Staged treatment. The mechanical, thermal and electromagnetic components of the problem

are treated separately. Finite element meshes for these components may be developed

separately. Coupling effects are viewed as information that has to be transferred between
the_ threemeshes.

0168-874X/90/$3.50 © 1990 - Elsevier Science PubLishers B.V.
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The present research follows the staged treatment. More specifically, we develop finite
element models for the fields in isolation, and then treat coupling effects as interaction forces

between these models. This "divide and conquer" strategy is ingrained in the partitioned
treatment of coupled problems [5,16], which offers significant advantages in terms of computa-

tional efficiency and software modularity. Another advantage relates to the way research into
complex problems can be made more productive. It centers on the observation that some

aspects of the problem are either better understood or less physically relevant than others.
These aspects may be then temporarily left alone while efforts are concentrated on the less
developed and/or more physically important aspects. The staged treatment is better suited to

this approach.

Mechanical elements

Mechanical elements for this research have been derived using general variational principles
that decouple the element boundary from the interior thus providing efficient ways to work out

coupling with non-mechanical fields. The point of departure was previous research into the
free-formulation variational principles presented in Ref. [4]. A more general formulation for the
mechanical elements, which includes the assumed natural strain formulation, was established

and presented in Refs. [6,7,14,15]. New representations of thermal fields have not been
addressed as standard formulations are considered adequate for the coupled-field phases of this
research.

El_dc e_men_

The development of electromagnetic (EM) finite elements has not received to date the same
degree of attention given to mechanical and thermal elements. Part of the reason is the

widespread use of analytical and scmianalytieal methods in electrical engineering. These
methods have been highly refined for specialized but important problems such as circuits and
waveguides. Thus the advantages of finite elements in terms of generality have not been enough
to counterweight established techniques. Much of the EM finite element work to date has been

done in England and is well described in the surveys by Davies [1] and Trowbridge [22]. The
general impression conveyed by these surveys is one of an unsettled subject, reminiscent of the
early period (1960-1970) of t'mite elements in structural mechanics. A great number of

formulations that combine flux, intensity, and scalar potentials are described with the recom-
mended choice varying according to the application, medium involved (polarizable, dielectric,

semiconductors, etc.) number of space dimensions, time-dependent characteristics (static,
quasi-static, harmonic or transient) as well as other factors of lesser importance. The possibility
of a general variational formulation has not apparently been recognized.

In the present work, the derivation of electromagnetic (EM) elements is based on a

variational formulation that uses the four-potential as primary variable. The electric field is
represented by a scalar potential and the magnetic field by a vector potential. The formulation
of the variational principle pre",_*xls along lines previously developed for the acoustic fluid
problem [8,9].

The main advantages of using potentials as primary variables as opposed to the more
conventional EM finite elements based on intensity and/or flux fields are, in order of
importance:
(1) Interface discontinuities are automatically taken care of without any special intervention.

(2) No approximations are invoked a priori since the general Maxwell equations are used.
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(3) The number of degrees of freedom per fimte element node is kept modest as the problem
dimensionality increases.

(4) Coupling with the mechanical and thermal fields, which involves derived fields, can be

naturally evaluated at the Gauss points at which derivatives of the potentials are evaluated.

Following a recapitulation of the basic field equations, the variational principle is stated.

The discretization of these principle into finite element equations produces semidiscrete

dynamical equations, which axe specialized to the axisynmxetric case. These equations are
validated in the simulation of a cylindrical conductor wire.

Electromagnetic field equatioas

The Maxwell equations

The original Maxwell equations (1873) involve four spatial fields: B, D, E and H. Vectors

E and H represents the electric and magnetic field strengths (also called intensities), respec-

tively, whereas D and B represent the electric and magnetic flux densities, respectively. All of

these are three-vector quantifies, that is, vector fields in three-dimensional space (x l - x, x 2 -
Y, x3 = z):

E= D--- e-- , H= . (1)
E3 D3 E3 /I3

Other quantities are the electric current three-vector j and the electric charge density p (a
scalar). Units for these and other quantities of interest in this work are summarized in Tables 1
and 2.

With this notation, and using superposed dots to denote differentiation with respect to time
t, we can state Maxwell equations as

B+_7 ×E=-O, _7 ×H-D=j,

_7 .Drip, V -Bffi0.
(2)

The In'st and second equation are also known as Faraday's and Amp&e-Maxwell laws,
respectively.

The system (2) supplies a total of eight partial differential equations, which as stated are

independent of the properties of the underlying medium.

Constitutive equations

The field intensities E and H and the corresponding flux densities D and B are not

independent but are connected by the electromagnetic constitutive equations. For an electro-

magnetically isotropic, non-polarized material the equations are

In =/_H, O = ,E, (3)

where/_ and ¢ are the permeability and susceptibility, respectively, of the material (other names

x Some authors, for example Eyges [2]. include 4,n factors and the speed of _ight c in the Maxwell equations. Other
textbooks, e.g. Rojanski [19] and Sh_dowitz [201,follow Heaviside's advice in using technical units that eliminate such
confusing factors.
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Table i
Listof electricand magneticquantiti_

Quantity Symbol MKS-Weber units

Electric charge density p C/m 2

Elecmc field misty £ N/C

Electric flux density D C/m 2
Electric resistance R fl

Electric conductivity g mho ( - Q-t)

Displacement current density 1) C/s m2

Susceptibility" _ C/J m
Current j C/s

Magnetic field intensity H N/Wb or A/m
Magnetic flux density B Wb/n_
Magnetic permeability t, p, Wb/J m or H/m

• Also called capacitivity and permittivity.
b Also called inductivity.

axe often used, cf. Table 1). These coefficients axe functions of position but (for static or

harmonic fields) do not depend on time. In the general case of a non-isotropic material both/_
and ¢ become tensors. Even in isotropic media # in general is a complicated function of H; in

ferromagnetic materials it depends on the previous history (hysteresis effect).

In free space/_ =./Lo and c =, %, which are connected by

= (4)

where Co is the speed of light in a free vacuum. In MKS-A un/ts, co =- 3 × 109 m/s and

/_o == 4+ × 10-+H/m, Co ='/_olCo 2 =" (36_)-t × Z0_lts2/(Hm). (5)

The condition/_ =/_0 holds well for most practical purposes in such media as air and copper;
in fact/z._ rs 1.0000004/_ 0 and/_copp_ ="0.99999/_o-

The electrical field strength E is further related to the current density j by Ohm's law:

j = (6)

where g is the conductivity of the material.Again for an non-isotropic material g is generally a
tensor which may also contain real and imaginary components; in wh/ch case the above

relation becomes the generalized Ohm's law. For good conductors g _ c; for bad conductors
g -_ c. In free space, g - O.

Table 2

Equivalence between various MKS-Giorgi units

Unit Equivalent

newton,N kg m/s 2

joule.J N m

watt,W J/s

coulomb, C A s

volt, V W/A
ohm, fl V/A

farad,F C/V

henry,H V s/A
weber, Wb V s
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Maxwell equations in terms of E and B

To pass to the four-poterJtial considered in the next section it is convenient to express
Maxwell's equations in terms of the electrical field strength E and the magnetic flux B. In fact
this is the pair most frequently used in electromagnetic work that involve arbitrary media. On

eliminating D and H through the constitutive eqns. (3) we obtain

k+ _7 ×E=O, X7×B-l_e#. =.pj,

_7 •E = p/c, _7 • B = O.
(7)

The second equation assumes that c is independent of time; otherwise ¢/_ = cdE/dt should be

replaced by d(¢D)/dt. In charge-free vacuum the equations reduce to

±e
B+vxe=0, vXS-co 2 =0, (8)
v.e=0, v.n=0.

The electromagnetic potentials

The electric scalar potential • and the magnetic vector potential A are introduced by the
definitions

le= B=v ×a. (9)

This definition satisfies the two homogeneous Maxwell equataons in (7). The definition of A
leaves its divergence _7 •A arbitrary. We shall use the Lorentz gauge [13]

v .a + =0. (10)

With this choice the two non-homogeneous Maxwell equations written in terms of q_ and A
separate into the wave equations

XZ2¢ - t_c_ = -p/,, Xr2A - _cA'= -M. (11)

The electromagnetic four-potential

Maxwell's equations can be presented in a compact manner (a form compatible with special
relativity) in the four-dimensional spacetime defined by the coordinates

x 1 =- x, x2 = y, x3 =- z, x4 -- ict (12)

where xl, x2, X3 are spatial (:artesian coordinates, i 2= --1 is the imaginary unit, and c-
1/f_ is the speed of EM waves in the medium under consideration. In the sequel Roman

subscripts will consistently go from 1 to 4 and the summation convention over repeated indices
will be used unless otherwise stated.

The field strength tensor

The unification can be expressed most conveniently in terms of the field-strength tensor F,

which is a four-dimensional annsymmetric tensor constructed from the components of E and B
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as follows:

F_ - F n 0 F23 F24[ de=f_8[ - cB3 0 cBl - i E2 [

:] I-- F13 - F23 0 4 cB 2 - cB 1 0 3

-Fx4 -F:3 -Fvt iE1 iE2 iE3

(13)

Here fl is an adjustment factor to be determined later. Similarly, introduce the four-current
vector J as

lJz|dd /c/xA/ / /_A /

J= l J3 ¢ = fll cl_j3 ? " flc I ttj3 ¢"

[J,] [io/,] (ifff'_O]

(14)

Then, for arbitrary r, the non-homogeneous Maxwell equations, namely Xz × B -/_d_ =/_j

and X7 •E = p/_, may be presented in the compact "continuity" form (the covariant form of
these two equations):

aF,gaxk = 4. (15)

The other two Maxwell equations, X7•B = 0 and X7 × E + B =, 0, can be presented as

0F,k 0Fro, oF_m
-0-7 + -ffTx+ =o, (16)

where the index triplet (i, k, m) takes on the values (1, 2, 3), (4, 2, 3), (4, 3, 1) and (4, 1, 2).

The four-potential

The EM "four-potential" 4) is a four-vector whose components are constructed with the
electric and magnetic potential components of A and _:

cA3J"+,J tio

(17)

It may then be verified that F can be expressed as the four-curl of _, that is

00_ 00;
F"k = _)x, 0xk' (18)

or in more detail and using commas to at,._--'iate partial derivatives:

F_ (19)
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The ungauged Lagrangian

With these definitions, the basic Lagrangian of electromagnetism can be stated as

L-_¼F_kF, k-Jit_i_=¼fl2( _k _qSi) 2_xi axk - _

= ½f12(c2B2 - E:) - --_-(jln_ +j2A2 +j3A3 - Off)),

in which

_ --nCB--B,_+ J_+ B_, E_= eTe = z? + E_+ e_.

Comparing the first term with the magnetic and electric energy densities [2.19,20]

u m = ½BTH = +B 2, ue = _DTE = ½,E 2,

we must have 132:" = fl2/(#e) -- 1//_, from which

B--vT.

Therefore, the required Lagrangian is

!B 2 _ ½_E2 [L = 2t x - (jlAl +j2A2 +._A 3 -- p_5).
J

The associated variational form is

327

(20)

(21)

(22)

(23)

(24)

R= ii' f L dV dt, (25)

where V is the integration volume considered in the analysis. In theory V extends over the

whole space, but in the numerical simulation the integration is truncated at a distant boundary

or special devices, such as infinite elements, are used to treat the decay behavior at infinity.

The gauged Lagrangian

If the fields A and _ to be inserted into L do not satisfy the Lorentz gauge relation (10) a

priori, this condition has to be imposed as a constraint using a Lagrange multiplier field _,(x,),
leading to the modified or "gauged" Lagrangian:

L_ = L + X(X7 .A _/z,cb). (26)

The four-field equations

On setting the variation of the functional (24) to zero we recover the field equations

(15)-(16). Taking the divergence of both sides of (15) and observing that F is an antisymmetric
tensor so that its divergence vanishes we get

0d,
Ox-'-7= c/_(V "j + k) -- 0, (27)

2 Lanczos [12] presents this Lagrangian for free space, but the expression (24) for an arbitrary, material was not found

in any of the textbooks on electromagnetism listed in the References. The ,gauged Lagrangian (26) has not. to our

knowledge, been developed previomly.
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The vanishing term in parenthesis is the equation of continuity, which expresses the law of

conservation of charge. The Lorentz gauge condition (10) may be stated as _7 •_ = 0.
Finally, the potential wave equations (11) may be expressed in compact form as

_, = -L-, (28)

where O denotes the "four-wave-operator", also called the D'Alembertian:

da 02 02 02 02 02

0- Ox_ Oxk = _ + _ + Ox_ c20t 2" (29)

Hence each component of the four-potential q_ satisfies an inhomogeneous wave equation. In
free space, J, = 0 and each component satisfies the homogeneous wave equation.

The axisymmetr/c test example

The simplest example for testing the finite element formulation based on the four-potential
variational principle is provided by the axisymmetric magnetic field generated by a uniform,
steady current flowing through a straight, infinitely long conducting wire of circular cross
section. In the present section we derive expressions for the magnetostatic field outside and

within the conductor. These analytical solutions will be later compared with the finite element
numerical solutions.

The free-space magnetic field

To take advantage of the axisymmetric geometry we choose a cylindrical coordinate system
with the wire centerline as the longitudinal z-axis. The vector components in the cylindrical
coordinate directions r, 0 and z axe denoted by

An, BI, E_ in the r direction,

A2, B2, E2 in the 0 direction,

A3, B3, E 3 in the z direction.

The electromagnetic fields will then vary in the radial direction (r) but not in the angular (O)
and axial (z) directions. Similarly, the current density that flows in the wire has only one
nonzero component acting in the positive or negative z direction; conventionally we select the
positive direction.

In Cartesian coordinates the radial component of the electrostatic potential in free space can
be calculated from the expression (see, e.g. [2,10,18-20])

A dr, (30)
A:"A3= 4,nJvlrl ,

where Irl is the distance between the elemental change J3 dV and the point in space at which
we wish to find the field potential. The integral extends over the volume containing charges.
This expression serves equally well in cylindrical coordinates. In fact, the transformation of z
components will be one to one if the center of the systems coincide.

As noted above the only non-vanishing component of the current vector is J3 dS where dS
is the elemental cross-sectional area of the conductor and J3 is the current density in the z
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direction. If dl represents the differential length of the wire, then fsJ3 dV = fsJ3 dS dl = I dl

=, I dz and I r l = _ + z 2 • Substitution into eqn. (30) yields

IsoI [ _ dz (31)
A3(r) = 4_ J-oo ru_Y+z 2

This integral diverges, but thi_ difficulty can be overcome by taking the wire to have a finite

length 2L symmetric with respect to the field point, that is large with respect to its diameter.

Integrating between -L and + L we get

A3(r) -- -_-_ = 4¢r --,z + _)

Expanding this equation in pewers of r/L and retaining only first-order terms gives

A3=- 2,r ] r ¢-C.

(32)

(33)

where C is an arbitrary constant. For subsequent developments it is convenient to select
C= (g0I/2¢r)ln RT, where R r is the "truncation radius" of the finite element mesh in the
radial direction. Then

-[ 2"tr J 1/_ir]" (34)

With the normalization A 3 = 0 at r = R T. Taking the curl of ,1 gives the B field in cylindrical
coordinates:

B_ & 7"@- -

OAa aA3

1 a(rA2) 1 aA, 0s_ OA__!
ar "

0

(35)

It is seen that the only non-vamshingcomponent of themagnetic flux density is

OA3 _01
Be _ B2 = g°H2ffi -'-'_-= 2_--"_

This expression is called the law of Biot-Savartinthe EMhterature.

(36)

Magnetic field within the conductor

Again restricting our consiceration to the static case, we have from Maxwell's equations in
their integral flux form

¢:. ds=fy.dS, (37,
S

where C is a contour around the field point traversed counterclockwise with an oriented

differential arclength ds and dS is the oriented surface element inside the contour. The term

for the electric field disappears in this analysis because E = 0. From before we know that the

right-hand side of eqn. (37) is equal to the normal component of the current that flows through

the cross sectional area evaluated by the integral. In the free space case, this is the total current
that flows through the conductor. But in the conductor the amount of current is a function of
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the distance r from the center. Again using I to represent the total current carried by the
conductor, and R the radius of the conductor, and assuming an uniform current density

A = I/(_R2), the right-hand side of eqn. (37) becomes

(38)

Evaluating the left-hand side of the integral and solving for B2 gives:

2_rl_- tB2 = I r_R2, B: _, 2_R 21_Ir. (39)

Comparing with eqn. (36) we see that if/_ = i% then B: is continuous at the wire surface r ---R
and has the value 1%I/(2_R). But if/z @/% there is a jump (# - 1%)I/(2_R) in B2.

The magnetic potential A 3 within the conductor is easily computed by integrating - B_ with

respect to r:

l._Ir 2

A31_ + C. (40)

The value of C is determined by matching eqn. (34) at r =, R, since the potential must be
continuous. The result can be written

I _ R

The preceding expressions (34)-(41) for A 3 could also be derived in a somewhat more direct
fashion by integrating the ordinary differential equation X7ZA3 = r- t(O( r _A3/a r) or) =/_ J3 to

which the second of eqns, (11) reduces.

Finite element discretization

The Lagrangian in cylindrical coordinates

For simplicity, in the sequel we shall use the original "ungauged" Lagrangian (24) rather

than the gauged one (26) and then discuss briefly the consequences of doing so. To construct
finite element approximations we need to express

L -.--+B 2 - ½,e z - (jrA - pO), (42)

in terms of the potentials written in cylindrical coordinates. For B 2 we can use the expression
of the curl (35)

1 (1 1)
For E 2 we need the cylindrical-coordinate gradient formulas

{1{}{Et E, -a-7 + A1 )
1_O ./

E ,= E2 = E o _- r--_ff+A2t,
I

aO • I
E 3 E: "_ +/13 J

(43)

(44)
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SO that

E2=ETE =

In the axisymmetric case, A 1 --A 2 = 0; furthermore A s --A) is only a function of the radial

distance from the wire. Therefore _A3/_0 = OA3/Oz = O. From symmetry considerations we

also know that the electric field cannot vary in the 0 and z directions, which gives OO/Sz =

0q_/O0 =- 0. Finally, the only aonvamshing current density component is J3- Consequently the

Lagrangian (42) simplifies to

Constructing EM finite elements

To deal with this particular axisyrnmetric problem a two-node "line" finite element extend-

ing in the radial r direction _s sufficient. In the following we deal with an individual element

identified by superscript e. The two element end nodes are denoted by i and j. The electric

potential (/) and the magnetic potential A 3 -= A. are interpolated over each element as

_" = Njtb', A_ = N]A_, (47)

Here row vectors NJ and Nf contain the finite element shape functions for qr)• and A_,

respectively, which are only fanctions of the radial coordinate r:

N_ = (N;,(r) N;_(r)), N_ = (Nji(r) N_,(r)), (48)

and column vectors O" and ,t[ contain the nodal values of • and A 3, respectively, which are

only functions of time t:

/°,,,,}O'=_,j(t) ' A;=_A3/(t ) . (49)

Substitution of these finite element assumptions into the Lagrangian (46) and then into eqn.

(25) yields the variational integral as sum of element contributions R -- E,R', where

-( j3N_A'3 - pN_@') dr" dt, (50)

in which V* denotes the volume of the element. Taking the variation with respect to the element
node values gives

1 [ 8N,_\rON,_ , ]8"'= f,i'f/sA;)' )
d

+(8#,)T[ ,[DN;\ToN;--, ,,,,r]-- 1_ Or ) ---_--O +p[lv$) JdWdt. (51)

On applying fixed-end initial conditions at t = to and t ==t I and the lemma of the calculus of
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variations, we proceed to equate each of the expressions in brackets to zero. From the first
bracket we obtain for each element the following second-order dynamic equations for the

magnetic potential at the nodes, which are purposedly written in a notation resembLing the

mass-stiffness-force equations of mechanics:

where

M_a3+'"X_a'3=A',

_N_"1Ta_NLN_
K_=fv_( Or] ar dV',

(52)

(53)

(54)

From the second bracket we obtain for the electric potential a simpler relation which does not
involve time derivatives, i.e., is static in nature:

x;¢"=ig, (ss)

where

_'7"] _ dV', dV'. (56)

Assembling these equations in the usual way we obtain the semidiscrete master finite element
equations:

MAA'_+ XAA3 =f_, x.¢ ..f,. (57)

Consequences of using the ungauged Lagrangian

The assumption A l = 0, A 2 =_ 0, A 3 == Aa(r ) forces X7 •A ==0. The Lorentz gauge condition
(10) then implies that _ = 0; that is, the electric field is static. Removing this constraint

requires allowing a more general spatial dependence in A. It follows that the ungauged
Lagrangian is primarily useful in magnetoclectrostatics, as discussed next.

The static case

In time-independent problems, the term ,,,i"3 disappears from eqn. (57) and the master finite
element equations of electromagnetostatics become

x_a3 =I_, g,_ =I,. (58)

If the current density and charge distributions are known a priori then these two equations may
be solved separately. If only the charge distribution p is kn:-m then the second equation
should be solved first to obtain the electric field E as gradient of the computed electric
potential _; then the current density j can be obtained from Ohm's law (6) and used to

computed the force vector /a of the first equation, which is then solved for the magnetic
potential. Conversely, if only the current density distribution is known a priori the preceding
steps are reversed.

For the present test problem the current distribution is assumed to be known, and we shall
be content with solving the first equation for the magnetic flux.
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An alternative semidiscretiza_ton

If upon setting the brackets of the variation (51) to zero we mulitply them through by _t and

1/¢, respectively, the expressions for the mass, stiffness and force matrices become

f dr', dV, a = f .ZP( m) dr.
(59)

The matrices M and K above are quite similar to the capacitance and reactance matrices,

respectively, obtained in the potential analysis of acoustic fluids [8,9]. Another attractive

feature of eqns. (59) is that Ka = K. if the shape functions of both potentials coalesce, as is

natural to assume. These advantages are, however, more than counterbalanced by the fact that

"jump forces" contributions to ]A and ]_ arise on material interfaces where/_ and c change

abruptly, and the proper handling of such forces substantially complicates the programming

logic. Note that this issue does not arise in the treatment of homogeneous acoustic fluids.

Applying boundary conditions

The finite element mesh is necessarily terminated at a finite size, which for the test problem

is defined as the truncation radius R T alluded to previously. In static calculations the material

outside the FE mesh may be viewed as having zero permeability p, or, equivalently, infinite

stiffness or zero potential. It follows that the potential value at the node located on the

truncation radius may be prescribed to be zero. This is the only essential boundary condition

necessary for this particular problem.

Numerical validation

Finite elemental model

The test problem consists of a wire conductor of radius R transporting a unit current

density. For this problem the finite element mesh is completely defined if we specify the radial

node coordinates r_"=. r_ and _" = r,'.l for each element e. If the mesh contains N,¢ elements

inside the conductor, those elements are numbered e = 1, 2 ..... Nec and nodes n = 1, 2 ..... N,¢

+ 1 starting from the conductor center outwards. The Rrst node (n = 1) is at the conductor

center r = 0 and node n = N,c + 1 is placed at the conductor boundary r = R. The mesh is then

continued with N,r elements into free space. The last node is placed at r = R r, at which point

the free space mesh is truncated: usually R-r = 4R to 5R. Although the mesh appears to be

one-dimensional, a typical element actually forms a "tube" of longitudinal axis z, internal

radius r__ and external radius r_, extending a unit distance along z.

For the present study the magnetic potential was linearly interpolated in r, using the linear

shape functions

N,_ == (_(1 - _) ½(1 + _)), (60)

where _ is the dimensionless isoparametric coordinate that varies from -1 at node i to + 1 at
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node j. This interpolation provides for C o continuity of the potential inside the conductor and

in free space.

For the calculation of the element stiffnesses and force vectors, it is assumed that the

permeability /_ and the current density J3 are uniform over the element. Then analytical

integration over the element geometry gives

_rm[ 1-:] { _(2rT+_e)} (61)K_=--T- -1 ' f;=_J31 _(r:+2g) '

where r_ = _(ri e +5') is the mean radius and l=rT-r_* the radial length. For the test
problem, _t is constant inside the conductor whereas outside it/_ ==/_o was assumed to be unity.

The longitudinal current density is J3 = I/(_rR2) inside the conductor whereas outside it J3

vanishes.

The master stiffness matrix and force vector were assembled following standard finite

element techniques. The only essential boundary condition was the setting of the nodal

potential on the truncation boundary to zero, as explained previously. The modified master

equations were processed by a conventional symmetric skyline solver, which provided the value

of the magnetic potential at the mesh nodes. The magnetic flux density B2, which is constant

over each element, was recovered in clement-by-clement fashion through the simple finite

difference scheme

This value is assigned to the center of clement e.

Numerical results

The numerical results shown in Figs. 1-6 pertain to a unit radius conductor (R = 1), with

the external (free space) mesh truncated at R r = 5. The element radial lengths rf- r_e were

kept constant and equal to 0.25, which corresponds to 4 internal and 16 external elements.

The computed values of the potential A 3 are compared with the analytical solution given by

eqns. (34) and (41). As can be seen the agreement is excellent. The comparison between

computed and analytical values of the magnetic flux density B2 shows excellent agreement

except for the last clement near the wire center, at which point the difference scheme (62) loses

accuracy. The permeability of free space is conventionally selected to be unity. Figures 1, 3, and

5 illustrate the ease where the wire permeability _,_., is set to 10.0, whereas Figs. 2, 4, and 6 are

for the case in which _t,,i,_ is 1.0, that is, same as in free space. (The value of the susceptibility

does not appear in these magnetostatic computations.) Figures 1 and 2 show computed and

analytical magnetic potentials. The slope discontinuity at r = 1 in Fig. 1 is a consequence of the

change in permeability/_ from the wire material to free space.

Figures 3 and 4 show the computed and analytical magnetic flux densities. As noted above,

the jump at • = 1 in Fig. 3 is due to the change in permeability/x from the material to free

space. Figures 5 and 6 show the computed and analytical magnetic flux densities in free space

with more detail. Note that Figs. 5 and 6 for r > 1 are identical; this is the expected result

because the free-space magnetic flux field depends only upon the current enclosed by a surface

integral around the wire and not on the details of the interior field distribution.

In summary, the finite element model performed very accurately in the test problem and

converged, as expected, to the analytical solution as the size of the elements decreased.
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Conclusions

The results obtained in the one-dimensional steady-state case are encouraging, and appear to
be extensible to two- and three-dimensional static problems without major difficulties. The

electric field remains effectively decoupled from the magnetic field except through Ohm's law.
Care must be taken, however, in modeling the forcing function terms so as to avoid the

appearance of discontinuity-induced forces at physical interfaces.
The dynamic ease is expected to introduce additional complications since the use of the

gauged Lagrangian (26) will be generally required. The Lagrangian multiplier Eeld will
introduce coupling between the magnetic and dynamic fields on the left-hand side of the finite
element equations. The treatment of time-dependent effects, however, represents an important

step in the construction of a finite element model for superconductors. We plan to start with
harmonic currents, proceeding eventually to general transients. The code for the harmonic case
is currently written, but suitable analytical solutions for comparison with computed responses

are still being developed.
If encouraging results axe obtained in the dynamic case, thermocoupLing effects will be

added to the code. References [3,17,23] discuss several different approaches applicable to

various contexts (e.g. eddy currents) and these will have to be investigated for suitability for
capturing the couplings effects that axe relevant to the superconducting problem.

After modeling the coupling effects, the next step will be to model the superconducting
fields. The feasibility of using the current model for superconductor applications is high, as the

current density of a superconductor can be approximated by the standard current density
multiplied by a constant squared. This constant is called the London penetration depth. Other
analytical models that possess s'mlilar characteristics have been developed and axe described,

for example, in the books of K.ittel [11] and T'mkham [21].
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An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite
element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is
stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the
superiority of the proposed computational strategy to other conventional staggered procedures.
Numerical examples of one- and two-dimensional thermomechanical coupled problems demonstrate
the accuracy of the proposed numerical solution algorithm.

1. Introduction

Transient response prediction of thermally loaded structures is of considerable importance

in many aerospace engineering problems, and it has been the subject of intense research.

Finite element formulations of the classical heat conduction problem without mechanical

coupling have been presented by Wilson and Nickel [1]. Ritz type methods for the solution of

linear dynamic problems in coupled thermoelasticity were given by Nickell and Sackman [2].

Oden [3] has formulated finite element models for the analysis of a class of nonlinear problems

in dynamic coupled thermoelasticity, and Oden Armstrong [4] have developed explicit

quadratic numerical schemes for the integration of nonlinear unpartitioned systems of

difference equations arising from the analysis of dynamic coupled thermoviscoelastic prob-

lems. Recently, Ting and Chen [5] have introduced a unified numerical approach for the

analysis of thermal stress v,'aves. They have derived their algorithm from the concept of heat

displacement and a variational formulation in Lagrangian form. They have proposed to

integrate the resulting semJ-discrete equations with conditionally stable explicit schemes. Liu

and Zhang [6] have described an implicit-explicit procedure for the prediction of thermal

stress waves in coupled thermoelasticity problems. They have adopted the explicit rational

Runge-Kutta method [7, 81 for approximately solving the heat conduction equation and have

claimed that their solution procedure is unconditionally stable. However, their computational
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strategy requires the manipulations of a full matrix. In a sequel note, Liu and Chang [9] have

slightly modified the original procedure of Liu and Zhang to involve a banded rather than a

full matrix, and have numerically verified the unconditional stability on one-dimensional

problems.

However, several practical issues must be resolved before unconditionally stable explicit

rational Runge-Kutta schemes can become suitable for the analysis of real thermomechanical

coupled problems. First, when unconditional stability is achieved for explicit time integra-

tion algorithms, typically consistency becomes conditional (see for example Hughes and

Belytschko [10]). Second, most rational Runge-Kutta algorithms involve some divide oper-

ations by the difference between intermediate solution quantities, which can significantly

damage accuracy. Finally, these algorithms do not appear to accommodate staggered solution

procedures for thermal/structure interaction problems, as they are not implemented in many

existing production-level thermal computer programs.

The semi-discrete equations governing soil-pore fluid interaction dynamic problems and

those resulting from a mixed pressure-velocity formulation for fluid/structure problems are

similar to those governing thermoelastic coupled transient problems. In this sense, the work of

Liu and Chang [11] and the very recent work of Zienkiewicz et al. [12] could be extended to

the response analysis of thermally loaded structures.

In the present work, we present an unconditionally-stable and robust implicit-implicit

partitioned procedure for the solution of transient thermoelastic coupled problems. In Section

2 we briefly review the basic equations for the linearized coupled thermoelasticity theory. A

conventional implicit-implicit staggered solution procedure is summarized in Section 3. The

thermal coupling term in the structural dynamics equation is treated as an applied force.

However, while being very simple to implement, the resulting time integration algorithm

suffers from conditional stability. In Section 4 we introduce an augmented implicit-implicit

staggered solution procedure for the partitioned problem. We establish the unconditional

stability and second order accuracy of the resulting numerical algorithm in Section 5. In

Section 6 we discuss the computer implementation aspects of the proposed computational

strategy; we conduct a comparative cost analysis which demonstrates the superiority of the

proposed solution procedure to other conventional staggered schemes. Finally in Section 7 we

apply our partitioned algorithm to the solution of the one-dimensional Second Danilovskaya

[i3] and two-dimensional Youngdahl-Sternberg [14] problems. For both problems, the results

generated by the proposed stabilized procedure are shown to be in excellent agreement with

the analytical 'exact' solutions.

2. Finite element formulation

Let B denote the body of the structure to be analyzed, and 0B = OB, U dB s U dB 0 U OBq the
surface enclosing it. The basic equations for the linearized isotropic coupled thermoelasticity
theory are

p/i = div tr + b inB,

cO = -div(-k VO) - a(3A + 2/.L)O0 tr(e) + r in B,
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o" = 2/,e + A(tr e)I - a(3A + 2/a.)(O - 0o)1

e= + v,,')
and (1)

u=ti on0B u, o'n=_ on3B s,

0 = tJ on 3 B o , - kVO = q on c3Bq ,

where u, e, o', 0, 00, b and r are the displacement, strain, stress, temperature, reference

temperature chosen such that (0 - 0o)/0 0 << 1, body force and heat supply fields, respectively,
while/a,, A, c, a, p, k and n are the Lam6 moduli, the shear modulus, the specific heat, the

coefficient of thermal expansion, the mass per unit volume, the thermal diffusivity and the

normal to the surface at a given point, respectively. I is the identity tensor. The dot and t

superscripts denote a time derivative and a transpose operation, and tr denotes the trace of a

given tensor.

If we now express the dependent variables u and 0 by suitable shape functions as

u=Nli and 0=:N/J,

then a standard Galerkin procedure transforms (1) in the following algebraic coupled system

of differential equations:

Mii + Dft + Ku - CO = f , QO + HO + OoCtu = r, (2)

where M, D and K are the usual mass, damping and stiffness matrice, f is the prescribed

structural loading vector, and Q, H and r are the capacity and conductivity matrices
and the nodal source vector, respectively. If L denotes the differential operator

corresponding to strain, the coupling matrix is expressed as C=J'8(/z(3A+2/z)/

(A+/z))c_(LN)_[1, 1, 1, 0, 0, 0]N dB.

3. Conventional implicit-implicit procedure

In many applications, the coupling term Cbi that appears in the heat equation and is

induced by the effect of the strain rate is negligible. Therefore, one expects the second part of

(2) to remain parabolic and the temperature response to remain close to the uncoupled

solution. Consequently, the dependent variable 0 is easier to predict than the displacement u,

so that the most natural way of solving (2) would be

(3)

where 0 _*_P is the predicted temperature. Unfortunately, the above numerical procedure is

only conditionally stable, even when each field is integrated with an unconditionally stable

algorithm. Proofs of this result are given by Dubois-Pelerin [15] for various consistent
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predictors. Next, we introduce an augmentation technique that stabilizes the staggered
solution of (2).

4. An augmented implicit-implicit partitioned procedure

Park et al. have introduced a differential augmentation concept that was successfully used in

the stabilization of staggered solution procedures for fluid-structure interaction problems.

Basically, one of the coupled equations is injected into the other in order to 'soften' the

system, either by reducing the large eigenvalues of the uncoupled stiff equation, or by

introducing some damping into it. Here, we adopt a different strategy. We perform a

semi-algebraic augmentation--that is, we augment one of the two coupled equations while

integrating both fields.

First, the structural equation is integrated with the trapezoidal rule:

-n+l
/.g

n_-I
u

= ti _ + ½ At(ii "+_ + ii_)

= ,,° + ½at[/r + M-'(f _ - Oi,_'- Ku_+_

= u" + ½at(u "÷_+ ,_")

= u" + At ti" + ¼ Atz[ii" + M-t(f "__ -Oti "_t

+ co"_")],

_ Ku _+_ + CO"_t)]

(4)

and the velocity vector is extracted as

(I+ ½ AtM-'D)fi "÷t= fi_ + ½ At[ti" + M-_(f "÷_- Ku"*t + CO"+')]. (5)

Next, the heat equation is also integrated with the trapezoidal rule:

0 "+_ = O" + ½ at(O "÷' + 0")

= o"+ ½at0 ° + Q-'(r" _' - HO"*'- OoC'a"_'_)]. (6)

Finally, the system is augmented by recasting (5) in (6) to obtain

0 "_'i =0" + ½ At{O" +Q-l[r"+t-He"+l-OoCt(l+ ½ AtM-tD) -t

× (ti" + ½ At(a" + M-t(f "÷t- Ku "_'' + CO"+')))]}. (7)

Substituting (5) into the second part of (4) and :e-arranging (7) leads to

(I + _ At 2 B(At)M-tK)u "_ - ¼ At 2 B(At)M-tCO "÷t = F _ ,

(-_ At 20oAK)u _÷_ + (I+ _ AtQ-ZH + 14At" OoAC)O "+l = R "*_ ,

(8)

where

A = Q-tCtM -t ,
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B(At) = (I + ½ AtM-ID) -t ,

F n*l =u" +_I At(l _- B(At))ti" + ¼ AtZ(B(At)ii _ + M-_B(At)fn+t), (9)

R n*t= 8" + ½ At[O"+ Q-l(r"+'- 8oCtB(At)ai")]

At2[OoQ-tCt(B(At)ii" + B(At)M-_f"+t)].

Now, a displacement predicted staggered procedure for the solution of (8) is

1. Predict the displacement field:

n +LP unu = • (10)

2. Solve for the temperature field:

(I+ ½ AtQ-_H + ¼ At: OoAC)O "+t =R "+_ + ¼ At" OoAKu _+_ (11)

3. Correct the displacement field:

(I + ¼ At z B(At)M- _K)u "+t = F "÷_ + ¼ At 2 B(At)M-tC8 _÷_ . (12)

4. Compute velocity, acceleration and flux fields:

u'"*'= B(At){ti" + ½ At[/i" + M-l(f "÷l -- Ku "÷t + CS"÷t)]} ,

..,+l l(f,÷t CO,,+t ,+t Kun÷l)u = M- + - Dti - . (13)

b ',+_ = Q-_(r "÷_ _ OoCtfi ,,÷t _ H8,,+1).

REMARK I. The predictor ,:+ LPis simply the previous step solution. It has been found (see,

for example, [17]) that this is the most stable predictor when used in conjunction with the

trapezoidal rule, while still maintaining a second-order accuracy.

REMARK 2. The injection ,)f (5) into (6) is not arbitrary. It will be shown in Section 6 that

this is more economical than injecting (6) into (5).

REMARK 3. Equations (13) define the computational path of the staggered procedure.

5. Stability and accuracy analyses

In this section, we establish that (10)-(13) result in an unconditionally stable second order

accurate transient algorithm for the time integration of the coupled system (2). To avoid

lengthy expressions, we consider the undampled (D = 0) and unforced (f = r = O) case. Note

however that even when D = 0, the quantity CO still transmits a rate dependent damping effect
to the structural equation.
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STABILITY. The stability of the proposed staggered procedure can be examined by seeking
a nontrivial solution in the form

un I

Un+l

_n+l

_n+[

n+l

l+z

1-Z
0 _

(14)

and determining under what condition the real part of z is positive. Substitution of (10) into

(11) and (14) into (11)-(13) yields, after some algebraic manipulations,

][<][01-(1-zZ)¼At2OoAK z2I+z_AtQ-tH+¼AtEOoAC O_ = 0 " (15)

Therefore, the characteristic equation associated with (15) is

where

]Mz 3 + VM ½Atz 2 + (K + OoCQ-_C ' + ¼At 20oCQ-_CtM-_K)¼ At" z + VK _ At3l = 0,

16)

V= CUC t , U = Q-_H(CtC) -_

and [ I denotes the matrix determinant. If the matrices M, K, Q and H are positive definite,

and the coupling matrix C has full column rank, then U, V and each matrix coefficient of the

deteriminant expression (16) is positive definite. If C is column rank deficient, U and V are

positive semi-definite. In any case, all coefficients of the stability polynomial are non-negative.

Consequently, the first part of the Routh-Hurwitz criterion [18] for unconditional stability is

satisfied. In order to check the second component of this criterion, we consider a 2-dof model

problem for (2). The corresponding scalar form of (16) is

a3a 3 + a2z 2 + a_z + a o = O, (17)

where

At2[o200c2( 2)] __A'3h:a3=l' az= 2q ' aI=-2 "- +-_ 1+7 _' ' a0= 8q o,

Since At, h, q, _o:, 00, c 2 and m > 0, all the coefficients of the polynomial (17) in z are positive.

Moreover, the quantity

0°hc2 At3 (1 + At-'a_a2 - a°a3 = 8rnq 2 T to'-)

is also positive, which demonstrates that the staggered solution procedure is unconditionally

stable for the 2-dof model problem.
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For the general multi-dimensional case, it turns out that the limiting case K = 0 which states

that the structural system will grow quadratically in time, provides a sufficient test. For this

case, (16) reduces to

}Mz 2 + ½ AtVMz + 14At'- 9oCQ-_C'l =0.

Since M is positive definite and VM and CQ-_C ' are at least positive semi-definite, the

procedure is unconditionally stable for the limiting case K = 0, as discussed in Bellman [19].

This argument has been extensively utilized in [17] during the analysis of several partitioned

procedures. Therefore, we conclude that the procedure given by (10)-(13) is unconditionally
stable.

REMARK 4. The characteristic equation (16) reveals that the proposed procedure (10)-(13)

is algorithmically identical to the one obtained by first differentiating the second part of (2):

+ Ha + aoC'ii = ,

then substituting ti from the first part of (2) into the above equation:

Q# + HO + aoCtM - Zca = r - a0C'M-Z(f - Ku) .

However, differentiating the nodal source vector may be not practical, for example, if r is a

discontinuous function of time. In our present derivation (11)-(13) we avoid this problem.

REMARK 5. The first-order thermal equation is algorithmically modified to behave as a

dampled second-order system. It should be emphasized that the described stabilization

technique has not introduced any artificial damping. The only augmentation that is used is part

of the governing equation of motion itself.

Accuracy. After differentiation, the third part of (13) in the unforced case reads

0"+ ' = -aoQ-_Ctu ''t - Q-1HO"* t . (18)

Expanding the various terms in (8) around the time n At and injecting (13) and (18) when
needed leads to

Mii" + Ku" = CO" + O(At:), QO" + Ha" = -a0C'Li" + O(At:). (I9)

Comparing (2) and (19) demonstrates that the staggered procedure is second order accurate.

The same result can be proved for the damped (D # 0) and forced (f# 0, r# 0) case.

6. Computational aspects

In the remainder of this paper, we consider the case where the structure is undamped

(D = 0) and the mass and capacity matrices are lumped (M, Q are diagonal). The uncondition-
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ally stable staggered procedure (10)-(13) can be implemented as:

1. Form

R "÷t'= ½ Atr"*' + Q[0" + ½ At(O"-OoC'ti')]

- ¼At 2 OoC'[ii" + M-'(f "÷' - Ku"+t')], (20)

2. Solve

(Q + _ At H + ¼At: OoC'M-'C)O "+'= R "+'' (21)

3. Form

F "*t" =M[u" + At(ti" + ¼ At ti")] + ¼ AtZ(f "÷_ + CO"*'). (22)

4. Solve

(M + ¼ At" K)u "÷l = F "'l" (23)

5. Update

•.+t l(f.+, CO.*l lu =M- + -Ku "_" ).

u = + } at(a" + ), (24)

0"*' = Q-'(r "_'' _ 17or",,,t.,_-,u -He" ÷') .

Equations (20)-(24) involve algebraic computations that are common to most implicit

algorithms, when applied to the uncoupled problem. Only the quantity C'M-_C deserves

special attention. In particular, it is important to note that

C'M-LC is not a full matrix, it is a symmetric banded operator. Let n,, nt,, b, and b h denote

the sizes and the semi-bandwidths of the structural and heat matrices, respectively. Typically,

n, and b_ are two to six times larger than n_ and b h. The matrix product C'M-IC is n h by nj,

and has a semi-bandwidth close to 2b h. Therefore, (21) entails the solution of an n h by n h

symmetric banded system. On the other hand, if (6) had been injected into (5)--that is, if the

temperature field had been eliminated from the structural equation--the resulting augmenta-
tion term would have been CQ-1C ' which is n, by n_ and has a semi-bandwidth close to 2bs.

The Latter would have entailed the solution of a symmetric system that is several times larger

and denser than (21). For a rectilinear mesh composed of two-dimensional truss elements, the

patterns of matrices C, C', C'M-IC and CQ-_C ' are depicted in Fig. 1.

the additional cost incurred by the augmentation term is restricted to the factorization and

subsequent solutions of (21). The precise value of this additional cost (with respect to the

conventional procedure (3)) depends on the cleverness of the implementation.

At this point we also note that the quantity C'M-_C is common to several coupled field
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C T

SYMMETRIC

C

Fig. 1. Patterns of the coupling matrices for a rectilinear mesh with 2D truss elements.

problems. Its pattern, storage and computational properties have also been recognized and

analyzed by previous investigators in different areas (see for example [11]).

In order to illustrate the computational costs of the proposed numerical procedure, we

consider the problem of a clamped square plate where the edges are exposed to a sudden

heating. The finite element mesh is composed of N x N 4-node regular elements. The stiffness

and conductivity matrices K and Q are assumed to be stored in banded form so that operation

counting is facilitated. In practice, these matrices are compacted in skyline data structures. We

denote by d and p the number of structural degrees of freedom per node (d _<6) and the

number of integration steps, respectively.

The assumption of an N × N regular mesh with a number of fixed degrees of freedom at

each node is unlikely in practice. However, it is the worst case as far as the computational

effort required for the evaluation of the product ctn -tC.

For the above problem, the formation and factorization of (21) and (23) require (2 + d)N 4

and ½d3N 4 multiplications, respectively. The resolution of (20)-(24) requires (7d2+ 6d +
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3)N 3 multiplications for each time step. Therefore, the total computational effort needed for

the transient coupled solution using the proposed stabilized procedure is

E S-(½d 3 + d +2)N 4 +pS(7d 2 + 6d + 3)N 3 . (25)

For the same problem, the computational cost associated with a conventional second-order

accurate conditionally stable procedure (3) is

E ¢_ ½(d 3 + 1)N" +pC(7dZ +6d +3)N 3 . (26)

Clearly, unconditional stability is obtained at the cost of (d + _ )N 4 additional flowing point

operations. For linear problems, this computational effort is needed once. In the following, we

show that this overhead is compensated by a much larger time step.

The natural frequencies of the clamped square plate are given by

,_ El3 (mZ+n 2)
_,,,. = ,r" 12(1 -- _,2)p a 2 , (27)

where E, v, l and a are Young modulus, Poisson's coefficient, the plate thickness and its edge

size, respectively [20]. Therefore, the lowest frequency is

2_--_z_/ El3
Wmi. = a- 12(1--- vZ)p

(28)

and a good approximation of the highest element frequency is

_(e) = _2_ 2 N 2 _ El3 . (29)
max a 12(1 - vZ)p

An adequate time step for the stabilized procedure is given by OJmi. At _= _r/10. For the

conventional conditionally stable staggered procedure where both u and 0 are integrated with

the trapezoidal rule, the stable time step is expressed as a multiple of the time step based

on the Courant condition associated with the hyperbolic structural equation. Hence, At ¢

-m×2" Ic) wherernt>l. Using (28) and (29) we have-- /OJ max,

a 2 ,/12(1Z z)p
At_ = 20-"--_V El 3 ma z _/12(1 - vZ)p (30)At _ =--_ El 3 ,

so that

2wN 2

, c (31)p=40, P = m

are the number of steps which would cover twice the largest period of the problem. The

computational costs for both procedures become
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E _ - ( ½d 3 + d + :!)N 4 , EC _ 2_'r (7d2 + 6,/+ 3)N 5 , (32)
m

which demonstrates the superiority of the proposed :;tabilized staggered procedure for N

sufficiently large (N > m� 14).

7. Numerical examples

First, we consider the Second Danilovskaya problem !13]. An elastic half-space (x > 0) with

the surface plane x = 0 assumed free of tractions for all time is exposed to a sudden high

ambient temperature 0_. The continuum is assumed to be mechanically constrained and

thermally insulated so that the displacement and temperature fields are given by

u x=ux(x,t), u,=O, ux=O, O=O(x,t). (33)

The boundary and initial conditions for this problem are

a0

o'_(0, t) = 0, k_x(O,t)=h(O(O,t)-O,_ )
and (34)

ux(x, o) = o, _(x, o) = o, O(x,o) = Oo,

where h is the boundary-layer conductance. The following dimensionless variables are
introduced:

§= 0-0o _i= a(A+2_)u_
Oo ' ,c/3oo '

(35)

where

k a2 )t + 2/z c_ (36)
K=pc, P , /3=3h+2/_

The thermomechanical coupling parameter is defined by

8 = /3_00 /3_00= _ (37)
pc(A + 2/_) p2a2c "

The exact solution for this problem can be obtained using the Laplace transform (see [21]).

The finite element solution is carried out using 2-node linear elements. The ratio Kh/ak is

fixed to 0.5 and the therrnomechanical coupling parameter 8 is set to 1. We report on the

generalized results for two time integration steps, Atc_='tr/5tom_, and _tc2_=At_t_/2=
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Fig. 2. Dimensionless temperature at £ = 1.0.

"rr/10¢o=i .. These correspond to sampling the largest period of the mechanical.problem into 10

and 20 steps, respectively. Figure 2 depicts the dimensionless temperature O at .,?= 1.0 as a
function of the dimensionless time i, for At=At it). Figure 3 reports the dimensionless

displacement 12([) at i = 1.0, for At = At _2_. As expected, the results for At = &t C2_are more

accurate than those for At = At (_. However in both cases, the generated solutions are in good

agreement with the exact ones.

Next, we consider the case of an infinitely long elastic circular shaft of radius R, where the

surface temperature undergoes a sudden uniform change over a finite band of length Z, and is

steadily maintained thereafter (Fig. 4). Youngdahl and Sternberg have presented in [14] an

exact solution of the transient temperature and thermal stresses distributions in the shaft,

when thermomechanical coupling is neglected, in the form of definite integrals and infinite

series. In cylindrical coordinates (r, _b, z), the axisymmetric torsionless displacement and

temperature fields are given as

u r=ur(r,z,t), u+=O, u==u_(r,z,t), O=O(r,z,t). (38)
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The boundary and initial conditions for this problem are;

and

o',,(R, z, t) = 0,
o'=(R, z, t) = 0,

Or,,_O as Izl--._ ' o'_._---*0 as Iz I--*oo,

crzz--*O as Izl---_c,, ' o',z-*O as Izt---,oo.

O(R, z, t) = 0,=,

u,(r, z, O) = O,

li _ (r, z, O) = O,

Iz[ < kZ, O(R, z, t) = O,

u:(r, z, O) = O,

O(r, z, O) = O .

(39)
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Z
>r

Fig. 4. Problem geometry and finite element discretization.

The following new dimensionless variables (there should be no confusion about the present

definition of these variables and their earlier use) are introduced:

r 2z _ = _0 ?= kt
P = Z-' (40)

For all computations, we set L = 2R and v = 14. The finite element solution is carried out

using 4-node axisymmetric linear elements, and a time step At = rt/10tomi .. Figure 5 compares

the predicted temperatures at the center of the shaft (p = 0) with the exact ones for _ = 0, and

reports on the effect of thermocoupling (_5= 0.5) on temperature distribution. Clearly, the

stabilized procedure provides accurate solutions. The variations of the radial stress at _ = 0.1

for 8 = 0 and _5= 0.5 are depicted in Fig. 6. All numerical results are reported at/'= 0.2. It is
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Fig. _5. Dimensionless temperature at t' = 0 for t'= 0.2.

interesting to note that when the thermocoupling effecl is neglected the temperature field is

overestimated, but the radial stress distribution is underestimated.

8. Conclusion

An implicit-implicit staggered procedure for the solution of thermoelastic problems is

presented. It is stabilized with a cost-effective semi-algebraic augmentation scheme. The

resulting transient algorithm is unconditionally stable and second-order accurate.
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ELECTROMAGNETIC AXISYMMETRIC FINITE ELEMENTS

BASED ON A GAUGED FOUR-POTENTIAL
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Al_tract--Electromagnetic finite elements are derived based on a variational principle that uses the
electromagnetic four-potential as primary variable. The Lorentz gauge normalization is incorporated as
a constraint condition through a Lagrange multiplier field L. This "gauged principle" is used to construct
elements suitable for downstream coupling with mechanical and thermal finite elements for the analysis
of high-temperature superconductor devices of potential use in aerospace applications. The main
advantages of the four-potential formulation are: jump discontinuities on interfaces are naturally handled,

no a priori approximations are invoked, and the number of degrees of freedom per node remains modest
as the problem dimensionadity increases. The new elements are tested on two magnetostatic axisymmetnc
problems. The results are in excellent agreement with analytical solutions and previous "ungauged" finite
element solutions for the one-dimensional problem of a conducting infinite wire, in which case the
multiplier field has no effect. For the two-dimensional problem of a hollow cylinder connected to an
infinite cylindrical feed wire, the results make physical sense although there is no known analytical
solution. In this case, the multiplier field X couples the potentials in the radial and axial directions. The
effect of full and selective integration on L, as well as that of leaving _. out of the problem, are assessed.
For materials of widely different permeability, jump conditions are found to be naturally accommodated
by the present formulatio_

c

co
D
D = 0D/0z

E
e
F
f

GA, G,, G_

g
H
I
i
J

J
K
L

L_
M
N
R
r

NOMENCLAT_ RE x,, x 2, x_, x 4

magnetic potential vector: also computational

vector of finite element node values of mag- _',, ¢/E
netic potentials

magnetic flux densiD vector 13
damping matrix of finite element discretiz- 8
ation E

speed of light in arbitrary material

speed of light in vac_Jum _o
electric flux density vector e
displacement current density vector
electric field intensit_ vector L

element identifier (as superscript)
field strength tensor k

force vector of finite element discretization _.
matrices relating element magnetic, electric
and multiplier fields, respectively, to node p
values

electric conductivity •
magnetic feld intensity
total current intensity carried by a conductor
when not used as subscript, imaginary unit V
four-current vector V,
current density vector V x
stiffness matrix of finite element discretization

Lagrangian (')
gauged Lagrangmn ( )r
mass matrix of fini,e element discretization

finite element shape function vector
governing functionai
radial coordinate in cylindrical coordinate

system
time

finite element node value computational
vector containing m_tgnetic potentials, electric
potential and k

four-space coordinates
longitudinal coordinate in cylindrical co-
ordinate system

magnetic and electric energy density, respect-
ively
normalization factor in Lagrangian
variation symbol

susceptibility (also called capacitivity and per-
mittivity)
susceptibility of vacuum
circumferential (longttude) coordinate in
cylindrical coordinate system

Lagrangian multiplier field for Lorentz gauge
constraint

finite element vector of Lagrange multipliers
magnetic permeability (also called inductivity)
magnetic permeability of vacuum

electric charge density
electric potential
finite element node value vector of electric

potentials
four-potential vector

gradient operator
divergence operator
curl operator
D'Alambertian (four-wave) operator

abbreviation for temporal derivative
matrix transposition

I. MOTIVATION AND APPROACH

The present work is part of a research program for
the numerical simulation "of electromagnetic/

mechanical systems that involve high-temperature

superconductors (HTS). These are composite
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Table 1. Potential aerospace applications of HTS
devices j

Magnetic thrusters
Microwave power transnussion
Superconducting magnetic energy storage
Electromagnetic launch and braking
Aircraft power systems

materials whose structural and environmental prop-
enies are presently the subject of intensive experimen-
hal research. Devices fabricated with these materials

are expected to have a major impact in space propul-
sion, power, digital computing and communication

systems in the next century. Some potential appli-
cations I of this rapidly evolving technology to
aerospace systems are listed in Table i.

The computer simulation of HTS devices involves
the interaction of the following four components.

(1) Mechanical fields: displacements, stresses, strains
and mechanical forces.

(2) Thermal fields: temperature and heat fluxes.

(3) Electromagnetic (EM) fields: electric and mag-
netic field strengths and fluxes, currents and
charges.

(4) Coupling fields: the fundamental coupling effect
is the constitutive behavior of the materials

involved. Particularly important are the metal-
lurgical and superconducting phase change
phenomena triggered by thermal, mechanical and
EM fields.

!. 1. Finite element treatment

The first three fields (mechanical, thermal and
electromagnetic) are treated by the finite element

method. This treatment produces the spatial dis-
cretization of the continuum into mechanical,

thermal and electromagnetic meshes of a finite

number of degrees of freedom. The finite element
discretization may be developed in two ways.

(1) Simultaneous treatment. The whole problem is
treated as an indivisible whole. The three meshes

noted above become tightly coupled, with com-
mon nodes and elements.

(2) Staged treatment. The mechanical, thermal and
electromagnetic components of the problem are

treated separately. Finite element meshes for
these components may be developed separately.
Coupling effects are viewed as information that
has to be transferred between these three meshes.

The present research follows the staged treatment.
More specifically, we develop finite element models

for the fields in isolation, and then treat coupling
effects as interaction forces between these models.

This "divide and conquer" strategy is ingrained in the

partitioned treatment of coupled problems, 2"3which
offers significant advantages in terms of compu-
tational efficiency and software modularity. Another
advantage relates to the way research into complex

problems can be made more productive. It centers on
the observation that some aspects of the problem are

either better understood or less physically relevant
than others. These aspects may then be temporarily
left alone while efforts are concentrated on the less

developed and/or more physically important aspects.
The staged treatment is better suited to this approach.

1.2. Mechanical elements

Mechanical elements for this research have been

derived using general variational principles that de-
couple the element boundary from the interior, thus

providing efficient ways to work out coupling with
non-mechanical fields. The point of departure was the
previous research into the free-formulation vari-
ational principles presented by Felippa. 4 A more
general formulation for the mechanical elements,
which includes the assumed natural strain formu-

lation, was established and presented by Felippa and
Militeilo. _ New representations of thermal fields
have not been addressed as standard formulations are

considered adequate for the coupled-field phases of
this research. However, research in thermomechani-

cal interaction supported by this program has re-
sulted in the construction of robust and efficient

staggered solution procedures. 9

1.3. Electromagnetic elements

The development of EM finite elements to date has

not received the same degree of attention given to
mechanical and thermal elements. Part of the reason

is the widespread use of analytical and semianalytical
methods in electrical engineering. These methods

have been highly refined for specialized but important
problems such as circuits and waveguides. Thus the

advantages of finite elements in terms of generality
have not been enough to counterweight established
techniques. Much of the EM finite element work to
date has been done in England and is well described

in the surveys by Davies l° and Trowbridge. tt The
general impression conveyed by these surveys is one
of an unsettled subject, reminiscent of the early
period (1960-1970) of finite elements in structural
mechanics. A great number of formulations that

combine flux, intensity, and scalar potentials are
described with the recommended choice varying ac-

cording to the application, medium involved (polariz-
able, dielectric, semiconductors, etc.), number of

space dimensions, time-dependent characteristics
(static, quasi-static, harmonic or transientp,, : well as
other factors of lesser importance. The possibility of

a general variational formulation has not apparently
been recognized.

In the present work, the derivation of EM elements
is based on a variational formulation that uses the

four-potential as the primary variable. The electric
field is represented by a scalar potential and the
magnetic field by a vector potential. The formulation

of this variational principle proceeds along lines
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previously developed for the acoustic fluid prob-

lem. tz_3 The Lorentz gauge normalization is incor-

porated in the variational (weak) form through the

adjunction of a Lagrange multiplier field.

The main advantages of using potentials as pri-

mary variables in contrast to existing EM finite

elements based on intensity and/or flux fields are, in

order of importance, as follows.

(1) Interface discontinuities are automatically taken

care of without any special intervention.

(2) No approximations are invoked a priori since the

general Maxwell equations are used.

(3) The number of degrees of freedom per finite

element node is kept mode.,,t as the problem

dimensionality increases.

(4) Coupling with the mechanical and thermal fields,

which involves derived fields, can be naturally

evaluated at the Gauss point,; where derivatives

of the potentials are computed.

B+V×E=0 V×H-D=j

V.D--p V.B--0. (2)

The first and second equations are also known as the

Faraday and Aml_re-Maxwell laws, respectively.

The system (2) supplies a total of eight partial

differential equations which, as stated, are indepen-

dent of the properties of the underlying medium.

2.2. Constitutwe equations

The field intensities E and H and the corresponding

flux densities D and B are not independent but are

connected by the electromagnetic constitutive

equations. For an electromagnetically isotropic, non-

polarized material the equations are

Following a recapitulation ol the basic field

equations, the variational principle is stated

and specialized to an axisymmetric geometry.

The discretization of this principle into finite

element equations produces semidiscrete dynamical

equations, which reduce to the, electromagneto-

static equations in the time-independent case. These

equations are tested in the simulatton of a cylindrical

conductor wire and of a hollow conducting "can"

connected to an infinite feed wire.

2. ELECTROMAGNETIC FIELD EQUATIONS

2.1. The Maxwell equations

The original Maxwell equations (1873) involve four

spatial fields: B, D, E and H. Vectors E and H

represents the electric and magnetic field strengths

(also called intensities), respectively, whereas D and

B represent the electric and magr_etic flux densities,

respectively. All of these are three-vector quantities,

that is, vector fields in three-dimensional space

(xt =-x, x2=y, x3-z)

f i)f°) f  )f'tB= B, D= D: E H---- E, = H 2 •

B D3 E H 3

(1)

Other quantities are the electric current three-vector

j and the electric charge density p (a scalar).

Using superposed dots to denote differentiation

with respect to time t, we can _;tate the Maxwell

equations ast

¢ Some authors, for example Eyges? ( include 4_ factors
and the speed of light c in the Maxwell equations. Other
textbooks, e.g. those of Rojanski )_ ant Shadowitz, )6 follow
Heaviside's advice in using technical units that eliminate
such confusing factors.

B=lfl-I D=_E,I (3)

where IXand _ are the permeability and susceptibility,

respectively, of the material (other names are often

used, cf. Nomenclature). These coefficients are func-

tions of position but (for static or harmonic fields) do

not depend on time. In the general case of a non-

isotropic material both IXand 8 become tensors. Even

in isotropic media _ may be a complicated function

of H; in ferromagnetic materials exhibiting hysteretic

effects la depends on the previous history.

In free space Ix = _ and e = 80, which are con-

nected by

1
Co = _, (4)

_o8o

where co is the speed of light in free-space.

The electrical field strength E is further related to

the current density j by Ohm's law

j--gE, (5)

where g is the conductivity of the material. Again for

a non-isotropic material, g is generally a tensor which

may also contain real and imaginary components, in

which case the above relation becomes the general-

ized Ohm's law. For good conductors g >> e; for bad

conductors g ,,."_. In free space, g = 0.

2.3. Maxwell equations m terms of E and B

To pass to the four-potential formulation it is

convenient to express Maxwell's equations in terms

of the electrical field strength E and the magnetic flux

B. In fact this is the pair most frequently used in

electromagnetic works that involve arbitrary media.
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On eliminating D and H through the constitutive

equations (3) we obtain

B+V+E=0 V x B- i.ml_ = laj

V. E= p/£ V.B=0. (6)

The second equation assumes that e is independent of
time; otherwise el_. = e dE/dt should be replaced by

d(eE)/dt. In charge-free vacuum Eqs (6) reduce to

1

B+VxE=O VXB-c_g=0

V.Effi0 V.Bffi0. (7)

2.4. The electromagnetic potentials

The electric scalar potential • and the magnetic
vector potential A are introduced by the definitions

E= -VO-A B=VxA.[ (8)

These definitions satisfy the two homogeneous

Maxwell equations in Eqs (7). The definition of A
leaves its divergence V. A arbitrary. We shall use the
Lorentzgauge t7

] V.A+Ia_=0. I (9)

With this choice the two non-homogeneous Maxwell

equations written in terms of • and A separate into
the wave equations

V2_-l_=-ple VZA-ttr_ffi--laj,(I0)

F_

0 F,2 Fu Fi4 |

J- Ft2 0 F.,3 F:4

-Fu -F. 0 F3,

- Fl4 -- F23 - F34 0

def

=p

0 cB 3 -cB, -iE,|
i

-- cB3 0 cB! - iE, I •
cB: -cB, o -,E, I

OJiEi iE2 iE3

(12)

Here 13is an adjustment factor to be determined later.
Similarly, introduce the four-current vector J as

f fJ, ic J,i
J, L iple J i_/(la/¢)p .)

(13)

Then, for arbitrary 13,the non-homogeneous Maxwell
equations, namely V x B - _!_ = _tj and V. E = p/e,

may be presented in the compact "'continuity" form
(the covariant form of these two equations)

aFa ----J_- (14)
_Xk

The other two Maxwell equations, V. B =0 and

V x E + I_ ffi 0, can be presented as

which are only coupled on the fight-hand side
through Ohm's law [Eq. (5)].

aF_ aft, aft.
_x-----_-_--_x+-_x,-_O, (15)

3. THE ELECTROMAGNETICFOUR-POTENTIAL

Maxwetl's equations can be presented in a compact
manner (a form compatible with special relativity) in
the four-dimensional spacetime defined by the co-
ordinates

xl=x x2fy x3 =z x4fict, (il)

where xl,xz, x 3 are spatial Cartesian coordinates,
i2 ffi - 1 is the imaginary unit, and c ffi I/x/(_) is the

speed of EM waves in the medium under consider-
ation. In the sequel Roman subscripts will consist-

ently go from 1 to 4 and the summation convention
over repeated indices will be used unless otherwise
stated.

3.1. The field-strength tensor

The unification can be expressed most conveniently

in terms of the field-strength tensor F, which is a
four-dimensional antisymmetric tensor constructed

from the components of E and B as follows:

where the index triplet (i, k, m) takes on the values
(1, 2, 3), (4, 2, 3), (4, 3, 1) and (4, 1, 2).

3.2. The four-potential

The electromagnetic four-potential b is a four-

vector whose components are constructed with
the electric and magnetic potential components of
A and @

/cA,/
L ®.I

, ' r

It may then be verified that F can be expressed as the
four-curl of b, that is

_¢k e¢,
F'k = 5xi _xk" (17)
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or in more detail and using commas to abbreviate

partial derivatives

F_

CO,.,- _,,., _'2., - ¢',.2 ¢',., - _',.3 o J

(18)

but in the numerical simulation the integration is

truncated at a distant boundary or special devices are

used to treat the decay behavior at infinity.

3.4. The gouged Lagrangian

If the fields A and • to be inserted into L do not

satisfy the Lorentz gauge relation (9) a priori, this

condition has to be imposed as a constraint using a

Lagrange multiplier field t(x,), leading to the

modified or "gauged" Lagrangian

I L_ -- L + l(V. A + _(b). (25)

3.3. The ungauged Lagrangian

With these definitions, the basic Lagrangian of

electromagnetism? can be stated as _9

0xd - J,,,

= _132(c2B 2- E 2) --_ (j, A, +/2 A, +A A, - 90),

(19)

3.5. The four -field equations

On setting the variation of the functional (25) to

zero we recover the field equations (14) and (15) as

well as the gauge constraint (9) as Euler-Lagrange

equations. Taking the divergence of both sides of Eq.

(14) and observing that F is an antisymmetric tensor.

so that its divergence vanishes, we obtain

0J---2= cp.(V -j + p) = 0. (26)
ax_

in which

a'= are = a_+ al+ al

E2=ErE=E_+E_+ Ei. (20)

The vanishing term in parenthesis is the equation of

continuity, which expresses the law of conservation of

charge. The Lorentz gauge condition (9) may be

stated as V.Op--0. Finally, the potential wave

equations (10) may be expressed in compact form as

Comparing the first term with the magnetic and

electric energy densities _'-_6

ou_,= ½n,n=-_ n'
2,

q/E -- _.DrE =. ,_E2 (21)

we must have [3Zc: = _Zl(l_) = II11. from which

= ,_. (22)

Consequently, the required Lagrangian is

L--_B -}cE 2-(j,A,+yz42+j,A,-pO).

(23)

The associated variational form _s

Y/f R = L d V dt, (24)
0

where V is the integration volume considered in the

analysis. In theory V extends over the whole space.

? L is an extension of the flee-space Lagrangian given by
Lanczos _ to a material obeying the more general constitu-
tive equations (3).

[-]_,= -J,, (27)

where ["l denotes the "four-wave operator," also

called the D'Alembertian

0 _ 02 O_ 02 O_

F'] = Ox_'---Ox--_= _ + _ + Oxl c: Or:" (28)

Hence each component of the four-potential

satisfies an inhomogeneous wave equation. In free

space, j = 0 and each component satisfies a homo-

geneous wave equation.

4. FINITE ELEMENT DISCRETIZATION

In a previous pape rt_ the ungauged Lagrangian

(23) was used to construct one-dimensional axisym-
metric finite elements. These elements were success-

fully tested on a magnetostatic problem. In the

present investigation we extend the technique to

two-dimensional axisymmetric problems. In doing so

we find that the finite element discretization does not

necessarily satisfy the gauge condition (9) a priori and

consequently the gauged Lagrangian (25) must be

used.

4. I. The Lagrangian in cylindrical coordinates

-To take advantage of the axisymmetric geometry

we choose a cylindrical coordinate system with the
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rotationalaxisasthe z-axis. The vector components

in the cylindrical coordinate directions r, 0 and z are

denoted by

A_, Bl, El = A,, B,, E, in the r (radial) direction

A2, B=, E2 =--Ae, B0, £e in the 0 (circumferential)
direction

A_, B3, E_ -- A=, B:, E. in the z (longitudinal) direc-

tion.

The electromagnetic fields will then vary in the radial

(r) and axial (z) directions but not in the circumfer-

ential (0) direction.

To construct finite element approximations we

need to express the gauged Lagrangian

I _2 I 2

L t = _ -- _E - (ira - p_) + _.(V' A + _)

(29)

in terms of the potentials written in cylindrical co-

ordinates. For 8 z we use the expression of the curl

(set e.g.p. 54 of Ref. 16).

O0 az ,] \ 0z ar

I O(rA2) ! OAA,_ 2+ rar ;00}' (30)

For E 2 We USe the cylindrical-coordinate gradient

formulas

E= E_ = E. =- r-f#+A_ ,

_'3 E, _z +,'i3

so that

(31)

E2=ErE= _+i_,J

{1 _ 0A2V (0_ 0A3'_ 2+ m)

For the Lorentz gauge we use the gradient formula

again to obtain

V " A + IxzCb = rl a(rAi )or+ -_zOAs+ _d#. (33)

In the axisymmetric case the partials of any potential

with respect to 0 should vanish. Consequently the

gauged Lagrangian (30) simplifies to

=±IY%
L. 21_L_,az Or J +t'_Z') +(! a(rA2)'_:]ar /j

,Lt,a, + a,:j

o- )+ Or _"_ + _b

- (Z ,4_ +j2A: +AA_ - pC).

(34)

Note that this Lagrangian involves all components of

the four-potential although the independence from O

has introduced some simplifications with respect to

the full three-dimensional case.

4.2. Constructing electromagnetic finite elements

For the finite element discretization of the two-

dimensional case we have constructed quadrilateral

and triangular axisyrnmetric elements defined by

their geometry on the r-z plane. We have used

isoparametric elements with comer node points only.

Additional construction details are provided in
Sec. 5.

In the following we consider an individual

element identified by superscript e. The element

nodes are locally numbered i--l...n, where n is

the number of comer nodes (n = 3 for trianglesand

n = 4 for quadrilaterals).The electricpotential (b

and the magnetic potential components, A_-= A,,

A.,= A0, and A3 =-A:, are interpolated over each

element as

elf = N_,_lY A," = N_, A[. (35)

Here row vectors N_ and N_, contain the (isoparamet-

de) finite element shape functions for O* and At,

respectively, which are only functions of the radial

and longitudinal coordinates r and z

N_ = [N_,, (r, z)... N_. (r, z)]

N_, = [N_,, (r, z)... NS, (r, z)]; (36)

and column vectors qg' and M contain the nodal

values of q) and A, respectively, which are only
functions of time t

= (el(t)... _.(t)) r

Ae=(Al_(t)...A_,(t) A,_(t)...A_,(t)

A_t(t)... As,(t )) r. (37)
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The Lagrangian multiplier field X(r, z) will be as-
sumed to be constant over each element since the

variational principle associated with Eq. (34) allows
interelement discontinuities in this field. This value,

denoted by _.', may therefore be associated with an
internal node.

To facilitate a more compact formulation, we
introduce the following matrix and vector notations:

0 _N_2 0
0z

0N_, 0 0N_,
8z 8r

0

o

La_ J

I,0",
L

(38)

(39)

Substitution of the finite element assumptions and

our new notation into Eqs (34', and (24) yields the

variational integral as a sum of element contributions
R = Y-,R', where

with

8R I -- 8A'rG_(r G_(A"d V" dt
0

#

8RI {8_WrG;r(G_,_,+ , ", • ,r. -_ N4 A ) - 8A rNa
0 '

x (G_,dY+ N_.')} dV'dt

+ fv, 8A'rN_(r(G;(I)" + N_ A') dr'l: _

;f8R_ = (SA'rN_(rj" - pS(1)*rN_r) d V" dt
0 V#

fV ell
+ k'lasN_rS(ID" d V ],o- (42)

On applying fixed-end initial conditions at t = to and
t -- tt and the lemma of the calculus of variations, we

proceed to equate each of the volume integrals to
zero. We thus obtain for each element the following

second-order dynamic equations for the magnetic
and electric potentials at the nodes, which are pur-

posely written in a notation resembling the mass-
damping-stiffness-force equations of mechanics:

R" = RI - R',. - RI + R:, (40) M'fi'+ C"IY+ K'u_= f', (43)

in which where

= iA G A G AA dV dtR_ i ,r _r , • ,
0

;L.--- A rNf)R; ½{(®'rG;_+"" "
0

x (G;(I_" + N_(A')} dV'dt

;LR I -- (A'rN_rj ' - p(IY_.N_r) d V' dt
0

R, -- £lol fv 'e(A'rG_. -_ ,_'elN_dVe dt. (4l)

where V" denotes the volume of the element. On

taking the variation with respect to the element node
values we obtain 8R" = 8RT - 5R', - 8R_ + 6R'4 = 0,

N_rN_

M'= f_ 0

0

0

c'= I... Gg"N_,
dr,

0

- (;_rG, _

K'= fv, 0

G_.r

0 0

0 0

0 0

Nero,
A _aO

0

_N_

0

G_rG;

0

dV'

d V' (44)

0

_Ng r dV'

0

Gt

0 dV'

0

t'J

(45)

(46)

• (47)
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Considering Eq. (43) as a set of three matrix differen-
tial equations, we observe that the first two are the

discrete analog of the wave equations (10). These
equationsarecoupled,however,inthe damping and

stiffnesstermsas a consequenceofthediscretization

ofthegaugecondition(9).We can findan expression

for• interms ofA, but thereverseisnot generally

possible.

4.3. The static case

For the numerical experiments reported here, we
are primarily concerned with static solutions for the

magnetic fields. If the time dependence disappears,
the magnetic and electric fields uncouple and the
element equations reduce to

K_ u_ = f_

K_._ = f_,

where

,_ 1 ]ov.

{"'t_= Z,'

X_= f,.[G;_G;]dr"

= _" - pN;Td r.f_r
jr.

e,= {a,'_.

Assembling these element equations in the usual
manner, we obtain the discrete finite element
equations of electromagnetostatics:

Xuuu = fu Keue= t'_r. (51)

If both the current density and charge distribution are

known a priori then these two equations may be
solved separately. If only the charge distribution p is
known then the electrostatic equation should be
solved first to obtain the electric field E as gradient
of the computed electric potential _; then the current

density i can be obtained from Ohm's law (5) and
used to compute the force vector fu of the magnetic

equation, which is then solved for the magnetic
potential. Conversely, if only the current density
distribution is known a priori the preceding steps are
reversed.

For the two test problems presented here the
current density distribution is assumed to be known,

and we shall be content with solving the equations for
the magnetic flux.

5. NUMERICAL EXPERIMENTS

5.1. The finite element model

The finite element formulation described in the

previous section has been applied to the solution of
two test problems, described below. Both problems

are treated with quadrilateral elements. Each quadri-
lateral element has four corner points and one in-
terior node. These nodes arc defined by their radial

and axial positions r_and z_. At each cornerj we have

four degrees of freedom, namely AIj, Az, A3j and _j.
From these values the potential components are

interpolated with the standard bilinear shape func-
tions, which provide the C ocontinuity required by the
variational formulation. The centroidal node carries

(48) no physical significance and is solely used to provide

the extra degree of freedom assigned to the Lagran-
gian multiplier 7.'. Thus each quadrilateral element

has 4 x 4 + I = 17 degrees of freedom.
For the calculation of the element stiffness and

force vectors, it is assumed that the permeability
I_ and the current densities are uniform over the
element. The desired stiffness matrix and force vector

are calculated by numerical quadrature using Gauss
formulas. The portion associated with potentials is
always evaluated with a 2 x 2 rule. Three different

(49) schemes, on the other hand, are tried on the entries
associated with _..

Full integration. The same 2 × 2 rule as for the
potentials is used.
Selective integration. A one-point rule is used for

Zero integration. The effect of L is ignored by omit-
ting the integration of the associated terms and

(50) placing ones on the diagonal. This numerical device
effectively forces L" = 0, and thus "releases" the gauge
constraint.

5.2. Applying boundary conditions

The finite element mesh is necessarily terminated at
a finite size. For the two test problems, the outer
radial end of the mesh is defined as the truncation

radius r = Rr. In static calculations the material
outside the finite element mesh may be viewed as

having zero permeability g, or, equivalently, infinite
stiffness or zero potential. It follows that the z
component of the potential at the nodes located on
the truncation radius may be prescribed to be zero.
We do this because, no matter what the shape of an

axisymmetric conductor, it will appear to be straight

to the far-field potential. Because of the coupling
provided by the Lorentz gauge, the gradient of the r
component of the potential must be a constant in the
axial direction. For this reason, we constrain A, at the

top and the bottom of the mesh. A, must also be
constrained to zero on the axis if the field is to decay
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to zero since the gradient of A. in tae radial direction

should also be zero.

5.3. Assembly, solution and field rvcovery

The master stiffness matrix and force vector are

assembled following standard finite element tech-

niques. The boundary conditions are set as explained

previously. The modified master equations modified

for boundary conditions are processed by a standard

symmetric skyline solver, which provides the value of

the potentials at the mesh nodes.

The physical quantities of interest are not the

potentials but the magnetic flux and electric strength

densities BI and E,, and most especially the circumfer-

ential magnetic flux density B, = B0. This is calcu-

lated by discretizing the curl of A as follows. Since

OA,/80=O, the magnetic fields become, after dis-

cretization

8N_2

8z A_

f"t-_z A_ --"_-'r A_ (52)
B:

1 O(rNS,) A',
r e Or

The nodal values for B are obtained by evaluation at

the Gauss points followed by extrapolation to node

locations. The average of these quantities is also

reported as the centroidai value. As discussed below

this value was found to be more accurate than

interelement-averaged node values. Consequently the

centroidai value was used to report results.

For both test problems, the magnetic permeability

_t = g_,, is constant inside the conductor whereas

outside it the free-space permeability _,,,=g0 is

assumed to be unity. The current densities are as-

sumed to be uniformly distributed and consequently

are calculated by dividing the assumed total current

flowing through the conductor by the total cross-sec-

tional areas of the conductors.

z,l

radius a

z,I

radius

thickness a

thickness a

r

e

I

Fig. 2. Diagram of second test problem: a cylindrical "'can"

connected to an infinite feed wire conducting total current
L which is assumed to be uniformly distributed over the
varying cross sections. The feed wire radius and can wall

thicknesses are identical.

5.4. Problem i: a conducting infinite wire

The first test problem is identical to that reported

in Schuler and Felippa _9 with a one-dimensional

axisymmetric discretization. As shown in Fig. 1, it

consists of a wire conductor of radius a transporting

a total current I--- 1 in the z direction. This current

is assumed to be uniformly distributed over the wire

cross section. For this problem one layer of quadrilat-

eral elements in the : direction, extending from : = 0

through : = d, is sufficient; here the distance d is

chosen arbitrarily. The radial direction is discretized

with N,_, elements inside the wire and Nr_ elements

outside the wire in free space. The mesh is terminated

at a "truncation radius" rr "> a, where the potential

component A_- A. is arbitrarily set to zero. Other

boundary conditions are A,. --- A, = 0 on the nodes at

:=0 and.'=d.

The results obtained with rr= 5a, N_,_ = 4 and

Nr_ = 10 for the potentials were identical to those

reported prewously, _9 thus providing a check on the

element calculations. The same results were obtained

with the three integration schemes noted above for

the k term, which verifies that the Lorentz gauge

constraint (9) is automatically satisfied by the finite

element shape function for one-dimensional magne-

tostatic fields.

The computed magnetic flux density B,. at node

points was not as accurate as it could be expected,

especially at r = 0. The centroidal values, on the other

hand, were considerably more accurate as regards

matching analytical results. Thus for the second

problem we decided to report field values at the

element centroids.

Fig. 1. Diagram of the first test problem: infinite cylindrical
wire conducting total current 1. assumed to be uniformly

distributed over the cross section.

5.5. Problem 2: a conducting hollow can

The second test problem, shown in Fig. 2, bnngs

two-dimensional features. It is a hollow conducting
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4

Fig. 3. Magnetic field B: t B_ vs radial and axial coordi-
nates r and _ for p,_ = I. Full integration scheme for k.

Intersections of mesh represent element omtroids.

cylindrical "can" with infinite feed wires connected to

the center of its top and bottom faces. These wires

carry a total current I = I going in the + z direction;

this current is assumed to be uniformly distributed

over the varying cross sections it traverses. The wire

radius a and the can wall thicknesses are assumed to

be identical.

Because of the symmetry of the problem it is

sufficient to model only the upper half, z >I 0. The

results presented here were obtained using a 25 x 25

element mesh of square elements. Within this mesh

the wire as well as the can walls are modeled with only

one element across the radius or thickness, respect-

ively. The uniform mesh indeed represents an

"overkill" for the free space while it is insufficiently

refined to capture field distribution details inside and

near the conducting material. It was actually chosen

to expedite the preparation of inputs to three-dimen-

sional plotting software, given the limited time avail-

able for obtaining displays.

The problem was run using full, selective and

zero integration schemes for the _. freedoms. The

magnetic permeability _--Po in the free space

0.3

O. 4"_/

Fig. 4. Magnetic field B_ -- B0 vs radial and axial coordi-
nates r and : for p_, = I. Zero integration scheme for ;'.

(--gauge constraint not enforced). Intersections of mesh
represent element centroids.

l

!
I
I

I
!

5 lo 15 20

!
!
!
I

!

Fig. 5. Contour plot of magnetic field B: = B_, _,,,, = 1.0.
Full integration scheme for k. Numbers on axes represent
the number of element centroids traversed from the center

of the "can." Each element is 0.02 x 0.02 square. All
contours are equally spaced and range from minimum to

maximum values of the field.

outside the conducting material was chosen as unity.

For the conducting material two different values

for the permeability _ = p_ were tried: 1.0 and

10.0, the latter to check whether flux jump conditions

are automatically accommodated by the potential
formulation.

25
2o J

15

5 t

FIg 6 CoSntour plot lo0fmagnettcl_eld B, = B_ i,t_,_ 1_ [

Zero integration scheme for k (--gauge constraint not
enforced). Numbers on axes represent the number of el-
ement centroids traversed from the center of the "'can."

Each element is 0.02 x 0.02 square. All contours are equally
spaced and range from minimum to maximum values of the

field.
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4

0.1- 
O. 22_ "

O. 4_',_

Fig. 7. Magnetic field 82 ==B0 vs racial and axial coordi-

nates r and z for )_,, ==10. Full integration scheme for _..
Intersections of mesh represent element centroids. Note

sharp field jump on conductor surfaces.

Selective results are reported graphically in Figs 3

through 8. Figures 3 and 4 show_ the magnitude of

B_ = B0 for )_,, : t_.. : Po : 1 obtained for the full

and zero order integration schemes, respectively.

Figures 5 and 6 show these results in contour plot

form. Figures 7 and 8 correspond to )a,_,, = 10 and

show the magnitude of Be from different viewing

points. A general discussion of the results follows.

The full integration scheme for k performed well

outside the conductor. Results were compared with

those of the analytical solution for the infinite straight

wire (the first test problem) to determine whether they

were physically reasonable. As r becomes large com-

pared to the can cross dimension (towards the outer

radial edge of the mesh), the answers agree. This is

the expected behavior, because as r-. oo the general

axisymmetric problem should appear as an infinite

straight conductor. As one moves towards the top of

the mesh, the solution again approaches that for an

infinite wire, as can be observed in Figs 3 through 8.

This behavior was expected because as we move

&

• O.:'N _"¢T'_\' > .:_><::_YO. 3

o._ t !

Fig. 8. The same case as Fig. 7 shown from a different

viewing point to emphasize how magnetic field in feed wire
fails to go to zero as r approaches zero because of the coarse

conductor discretizat,,)n.

parallel to the wire in the : direction, the effects of the

current in the can ends should tend to zero and the

only far-field effects should be from the total current.

The results for the magnetic field within the feed wire

are not accurate as it did not vanish for r = 0; this

behavior is due to the use of only one element across

the radius and the fact that we report only centroidal

values as noted above.

The selective integration scheme gave answers of

the same general shape as those of the full integration

scheme, but they only agreed to one or two significant

digits; these results are not shown here as they are

hard to distinguish in plots. The zero integration

scheme (which in fact releases the Lorentz gauge

coupling) gave solutions for the field that were larger

than expected at the conductor boundary and a

physically unrealizable field inside of the "can." This

field grows sharply as the can axis is approached, as

shown in Figs 4 and 6.

The finite element model also provided results for

the electric potential _ and associated electric field

strength E, but such results have not been analyzed

to date.

& CONCLUSIONS AND FUTURI_ WORK

The results obtained from our two-dimensional

axisymmetric model for magnetostatic fields are par-

ticularly encouraging. They show that our variational

approach can provide good models of electro-

magnetic fields outside of the conductor and appears

to be extensibte to three-dimensional static problems

without major difficulties.

The results obtained for fields inside of the conduc-

tor in the second test problem can be improved by

using a finer (graded) mesh, higher order finite

elements, or elements based on a Hellinger-Reissner

principle in which both potentials and fields are

primary variables. In our experiments with one-

dimensional elements, the finer mesh gave excellent

results, and it is expected that the two-dimensional

element, being based upon the same variational prin-

ciple, will converge upon the exact solution in the

same manner.

One unsettled aspect of our results is the damping

type matrix C that appears in the dynamic equation

(43) for the multi-dimensional case. It appears that in

time-dependent problems we will be forced to work

with a set of equations that are coupled on the

construction of a finite element model for super-

conductors. We plan to concentrate on harmonic

currents rather than general transients as the former

are more important in envisioned applications such

as communications systems.

If encouraging results are obtained in the dynamic

case, thermocoupling effects will be added to the

code. Recent textbooks and surveys '°-22 discuss

several different approaches applicable to various

contexts (e.g. eddy currents) and these will have to be

investigated for suitability for capturing the coupling
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effects that are relevant to the superconducting prob-

lem. Fano et al. 20 present an interesting discussion on

the coupling of electric and magnetic forces to mech-

anical effects through the Lorentz force and it is

expected that this will be the next addition to our

code.

After accounting for coupling effects, the following

step will be to model the superconducting fields. The

feasibility of using the current model for super-

conductor applications is high, as the current density

of a superconductor can be approximated by the

standard current density multiplied by a constant

squared. This constant is called the London pen-

etration depth. Other analytical models that possess

similar characteristics have been developed and are

described, for example, in the books of Kittel za and
Tinkham. 24

Acknowledgement--This work was supported by NASA
Lewis Research Center under Grant NAG 3-934, monitored
by Dr C. C. Chamis.

REFERENCES

1. D. J. Connolly, "Aerospace applications of high-

temperature superconductors," SSTAC/ARTS Briefing,
Space Electronics Division, NASA Lewis Research
Center, Cleveland, OH, 1989.

2. C. A. Felippa and T. L. Geers, "Partitioned analysis of

coupled mechanical systems," Engineering Compu-
tations 5, 123-133 (1988).

3. K. C. Park and C. A. Felippa. "Partitioned analysis
of coupled systems," in Computational Methods for
Transient Analysis (edited by T. Belytschko and T. J. R.
Hughes), Ch. 3, North-Holland, New York, 1983.

4. C. A. Felippa, "The extended free formulation of

finite element in linear elasticity," Journal of Applied
Mechanics 56, 609-616 (1989).

5. C. A. Felippa and C. Militello, "Developments in

variational methods for high-performance plate and
shell elements," in Analytical and Computational Models
for Shells, CED Vol. 3 (edited by A. K. Noor, T.
Belytschko and J. C. Simo), pp. 191-216, American
Society of Mechanical Engineers. New York, 1989.

6. C. A. Felippa and C. Militello. "'The variational formu-

lation of high-performance finite elements: parameter-
ized variational principles," Computers & Structures 36,
I-11 (1990).

7. C. Militello and C. A. Felippa, "'A variational justifica-
tion of the assumed natural strain formulation of finite

elements: I. variational principles," Computers & Struc-

tures 34, 431-438 (1990).

8. C. Militello and C. A. Felippa, "A variational justifica-
tion of the assumed natural strain formulation of finite

elements: II. The C Ofour-node plate element," Comput-
ers & Structures 34, 439--444 (1990).

9. C. Farhat and K. C. Park, "An unconditionally stable
staggered algorithm for transient finite element analysis
of coupled thermoelastic problems." International
Journal of Numerical Methods in Engineering (to
appear).

10. J. B. Davies, "The finite element method," in Numerical
Techniques for Microwave and Millimeter-Wave Passive

Structures (edited by T. ltoh), Ch. 2. John Wiley, New
York, 1989.

1I. C. W. Trowbridge, "Numerical solution of electro-
magnetic field problems in two and three dimensions,"

in Numerical Methods in Coupled Problems (edited by R.
Lewis et aLL Ch. 18, John Wiley, London, 1984.

12. C. A. Felippa and R. Ohayon, "Treatment of coupled
fluid--structure interaction problems by a mixed vari-
ational principle," in Proceedings 7th International
Conference on Finite Element Methods in Fluids (edited

by T. J. Chung and G. R. KarrL pp. 555-563, Univer-
sity of Alabama Press, Huntsville, AL, 1989.

13. C. A. Felippa and R. Ohayon, "'Mixed variational
formulation of finite element analysis of acousto-elastic
fluid-structure interaction," Journal of Fluids & Struc-
tures 4, 35-57 (1990).

14. L. Eyges, The Classical Electromagnetic Field, Dover.
New York, 1980.

15. V. Rojanski, The Electromagnetic Field, Dover, New
York, 1979.

16. A. Shadowitz, The Electromagnetic Field, Dover, New
York, 1975.

t7. H. A, Lorentz, Theory of Electrons. 2nd edn, Dover,
New York, 1952.

I8. C. Lanczos, The Variational Principles of Mechanics,
University of Toronto Press, Toronto. 1949.

t9. J. Schuler and C. A. Felippa, "Electromagnetic finite
elements based on a four-potential variational prin-

ciple," Finite Elements m Analysis and Design (in presst.
20. R. M. Fano, L. J. Chu and R. B. Adler. Electromagnetic

Fields, Energy, and Forces. John Wiley, New York,
1960.

21. H. Parkus fed.), Electromagnetic Interactions in Elastic
Solids, Springer, Berlin, 1979.

22. K.-Y. Yuan, F. C. Moon and J. F. Abel, "Elastic

conducting structures in pulsed maznetic fields." in
Numerical Methods in Coupled Problems (edited by R.
Lewis et al.), Cho 19, John Wiley, London. 1984.

23. C, Kittel, Introduction to Solid State Physics, 6th edn,
John Wiley. New York, 1986..

24 M. Tinkham, Introduction to Superconductivity.
Krieger. Malabar. FL. 1975.



Computer Methods in Applied Mechanics and Engineering 93 (1991) 217-246
North-Holland

The first ANDES elements: 9-dof plate bending
triangles

Carmelo Militello and Carlos A. Felippa

Department of Aerospa<e Engineering Sciences and Center for Space Structures and Controls,
Univers, ty of Colorado. Boulder, Colorado 80309-0,129, USA

Received February 1990

New elements are derived to validate and assess the assumed natural deviatoric strain (ANDES)
formulation. This is a brand new variant of the assumed natural strain (ANS) formulation of finite

elements, which has recently attracted attention as an effective method for constructing high-
performance elements for linear and nonlinear analysis. The ANDES formulation is based on an

extended parametrized variational principle developed in recent publications. The key concept is that
only the deviatoric part of the strains is assumed over the element, whereas the mean strain part is
discarded in favor of a constant stress assumption. Unlike conventional ANS elements, ANDES

elements satisfy the individual element test (a stringent form ol the patch test) a priori while retaining
the favorable distortion-insensitivity properties of ANS elements. The first application of this new
formulation is the development of several Kirchhoff plate bending triangular elements with the
standard nine degrees of freedom. Linear curvature variations are sampled along the three sides with

the corners as 'gage reading' points. These sample values are interpolated over the triangle using three
schemes. Two schemes merge back to conventional ANS elements, one being identical to the discrete
Kirchhoff triangle (DKT), -.uhereas the third one produces two new ANDES elements. Numerical

experiments indicate that one of the ANDES element is relatively insensitive to distortion compared to
previously derived high-performance plate-bending elements, while retaining accuracy for nondistorted
elements.

1. Introduction

Despite almost three decades of work, plates and shells remain an important area of

research in finite element methods. Challenging topics include

1. The construction of high performance elements.

2. The modeling of composite and stiffened wall constructions.

3. The treatment of prestress, imperfections, nonlinear, dissipative and dynamic effects.

4. The development of practical error estimators and adaptive discretization methods.

5. The interaction with nonstructural components, for example external and internal fluids.

This paper addresses primarily the first challenge, although it must be recognized that

progress in this direction is shaped to some extent by thinking of the others. The main

motivation here is the construction of simple and efficient finite elements for plates and shells

that are lock-free, rank sufficient and distortion insensitive, yield accurate answers for coarse

0045-7825/91/$03.50 (C) 1991 Elsevier Science Publishers B.V. All rights reserved
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Table I

Tools for constructing HP elements

Technique Year introduced

1. Incompatible shape functions early 1960s
2. Patch test 1965

3, Mixed and hybrid variational principles 1965
4. Projectors 1967

5, Selective reduced integration 1969
6. Uniform reduced integration 1970
7. Partial strain assumptions 1970

8. Energy balancing 1974
9, Directional integration 1978

10. Limit differential equations 1982
11. Free formulation 1984
12. Assumed natural strains 1984

meshes, fit into displacement-based programs, and can be easily extended to nonlinear and

dynamic problems. Elements that possess these attributes to some noticeable degree are

collectively known as high performance or HP elements.

Over the past three decades investigators have resorted to many ingenious devices to

construct HP elements. The most important ones are listed in Table 1. The underlying theme

is that although the final product may look like a standard displacement model so as to fit

easily into existing finite element programs, the conventional displacement formulation is

abandoned. (By 'conventional' we mean the use of conforming displacement assumptions into

the total potential energy principle.)

1.1. A unified variational framework

Table 1 conveys the feeling of a bewildering array of tools. The question arises as to

whether some of them are just facets of the same thing. Limited progress has been made in

this regard. One notable advance in the 1970s has been the unification of reduced/selective

integration and mixed methods achieved by Malkus and Hughes [1].

The present work has benefited from the unplanned confluence of two unification efforts.

An initial attempt to place the free formulation [2-5] within the framework of parametrized

hybrid variational principles was successful [6-8]. The free formulation in turn 'dragged'

incompatible shape functions, the patch test and energy balancing into the scene. Concurrent-

ly a separate effort was carried out to set out the assumed natural strain (ANS) and projection

methods in a mixed/hybrid variational framework [9, 10]. Comparison of the results led to the

rather unexpected conclusion that a parametrized variational framework was able to en-

compass ANS and the free formulation as well as some hitherto untried methods [11, 12].

The common theme emerging from this unification is that a wide class of HP elements can

be constructed usu,_, _vo ingredients:

(1) A parametrized functional that contains all variational principles of elasticity with

independently varied displacements as special cases.

(2) Additional assumptions (sometimes called "variational crimes" or 'tricks') that can he

placed on a variational setting through Lagrange multipliers.
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As of this writing it is not _nown whether the "wide class' referred to above encompasses all

HP elements or at least the most interesting ones. Some surprising coalescences, such as DKT

and ANS bending elements, however, have emerged from this study.

1.2. The assumed natural stlclin formulation

The assumed natural strain (ANS) formulation of finite elements is a relatively new

development. A restricted form of the assumed strain method (not involving natural strains)

was introduced in 1969 by William [13], who constructed a 4-node plane-stress element by

assuming a constant shear strain independently of the direct strains and using a strain-

displacement mixed variational principle. (The resulting element is identical to that derivable

by selective one-point integration.) A different approach advocated by Ashwell [14] and

coworkers viewed 'strain elements' as a convenient way to generate appropriate displacement

fields by integration of appropriately assumed compatible strain fields. (In fact, this was the

technique originally used by Turner et al. [15] for deriving the constant-strain membrane

triangle in their celebrated 1956 paper.)

These and other forms o| assumed-strain techniques were overshadowed in the 1970s by

developments in reduced and selective integration methods. The assumed strain approach in

natural coordinates, however, has recently attracted substantial attention [16-23], particularly

in view of its effectiveness ir_ geometrically nonlinear analysis. One of the key ingredients in

this approach is the concept of natural coordinates developed by Argyris and coworkers in the

early 1960s [24-27]. Another important ingredient is the idea of reference lines introduced by
Park and Stanley [21].

As noted above, the unification presented in [11, 12] merges two HP element construction

schemes: the free formulatic, n (FF) of Bergan and Nygiird [4] and a variant of ANS called

ANDES (acronym for assumed natural deviatoric strains) described in further detail below.

The stiffness equations produced by the unified formulation enjoy the fundamental decompo-

sition property summarized in Box 1.

In the ANDES variant of _\NS, assumptions are made only on the deviatoric portion of the

element strains, namely that portion that integrates to zero over each element. This assump-

tion produces the higher order stiffness labeled Kh_,_, in Box I. The mean portion of the strains

is left to be determined variationally from assumptions on the limit stress field, and has no

effect on the stiffness equati,ms.

This paper describes the construction of the first ANDES elements. These are Kirchhoff

plate-bending triangular elements with the standard 9 degrees of freedom (one displacement

and two rotations at each corner). This choice is made because of the following reasons:

1. High-performance three-node triangular plate bending elements, whether based on Kirch-

hoff or Reissner-Mindlin mathematical models, have not been previously obtained through

the ANS formulation. (Although the DKT element [28, 29] qualifies as high-performance

and is in fact an ANS element as shown later, it has not been derived as such.) The

situation is in sharp contrast to four-node quadrilateral bending elements, for which HP

elements have already been constructed through a greater variety of tools; see e.g.
[17,20,21,30,31].

2. High performance elements of this type have been obtained through the FF and ancestors

of the FF [2, 3,4, 32, 33], and they are considered among the best performers available. It
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Box 1

Decomposition of the element stiffness equations

Let K be the element stiffness matrix, v the visible element degrees of freedom (those degrees of freedom in
common with other elements, also called the connectors) and f the corresponding element node forces. Then

the element stiffness equations decompose as

Kv = (K. + K.)v =f . (t)

K_, and gh are called the basic and higher order stiffness matrices, respectively. The basic stiffness matrix,
which is usually rank deficient, is constructed for convergence, The higher order stiffness matrix is
constructed for stability and (in more recent work) accuracy. A decomposition of this nature, which also
holds at the assembly level, was first obtained by Bergan and Nyg:_rd in the derivation of the free formulation
[4].

In the unified formulation presented in [11, 12] the following key properties of the decomposition (1) are
derived.

1. g, is formulation independent and is defined entirely by an assumed constant stress state working on
element boundary displacements. No knowledge of the interior displacements is necessary, (Box 2). The
extension of this statement to C" plate and shell elements is not straightforward, however, and special
considerations are necessary in order to obtain K, for those elements.

2, K_ has the general form

(2)

The three parameters J2=, J2_ and/33 characterize the source variational principle in the following sense:

(a) The FF is recovered if J22 = J23 = 0 and J33 = I - y, where y is a K, scaling coefficient studied in
[32, 33]. The original FI r of [4] is obtained if y = 0. The source variational principle is a one-parameter

form that includes the potential energy and stress-displacement Reissner functionals as special cases
[9-111.

(b) The ANDES variant of ANS is recovered if j,_.,= J23 = 0 whereas J2_-= a is a scaling parameter. The
source variational principle is a one-parameter form that includes Reissner's stress-displacement and
Hu-Washizu's functionals as special cases [12].

(c) If J.,3 is nonzero, the last term in (2) may be viewed as being produced by an FF/ANDES
combination. Such a combination remains unexplored.

is therefore intriguing whether elements based on the ANDES variant can match or exceed

this performance.

The basic steps in the construction of K_ and Kh for a general three-dimensional element are

summarized in Boxes 2 and 3, respectively. For justification of these 'recipees' the reader is
referred to [11, 12]. The derivation of conventional ANS elements is summarized in Box 4.

2. The triangular element

2.1. Geometric relations

The geometry of an individual triangle is illustrated in Fig. 1. The triangle has straight sides.

Its geometry is completely defined by the location of its three corners, which are labelled

1, 2, 3, traversed counterclockwise. The element is referred to a local Cartesian system (x, y)



C. Militello, C.A. Felippa, The first ANDES elements

Box 2

Construction of the basic stiffness matrix Kh

221

Step B.I. Assume a constant stress field. 6., inside the element. (This should be the element stress field that
holds in the convergence limit; for structural elements the assumption would be on independent stress
resultants.) The associated boundary tractions are 6", = 6.. n, where n denotes the unit external normal on
the element boundary S.

Step B.2. Assume boundary displacements, d. over S. This field is described in terms of the visible element
node displacements v (also called the connectors) as

a=NdV. (3)

where Nj is an array of boundary shape functions. The boundary motions (3) must satisfy interelement
continuity (or at least, zero mean discontinuity so that no energy is lost at interfaces) and contain rigid-body
and constant-strain motions exactly.
Step B.3. Construct the 'lumping matrix' L that consistently 'lumps' the boundary tractions 6.,, into element
node forces, ], conjugate to v n the virtual work sense. That is,

= fs Nj. 6",,dS = L6.. (4)

In the above, Nd,, are boundary-system projections of Na conjugate to the surface tractions 6",,.

Step B.4. The basic stiffness watrix for a 3D element is

K, = v-tLEL ' . (5)

where E is the stress-strain constitutive matrix of elastic moduli, which are assumed to be constant over the

element, and v = J'v dV is the element volume measure.
For a Kirchhoff plate bending element, stresses, strains and stress-strain moduli become bending moments.
curvatures and moment-curvature moduli, respectively, and the integration is performed over the element
area A:

Kh = A-ILDL ' , (6)

where D is the matrix of moment-curvature moduli. Specific examples for L are provided in Section 4.

I

3

2

Fig. 1. The triangular element.

IL

X
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Box 3

Construction of Kh by the ANDES formulation

Step H.I. Select reference lines (in 2D elements) or reference planes (in 3D elements) where 'natural

straingage' locations are to be chosen. By appropriate interpolation express the element natural strains E in
terms of the 'straingage readings' g at those locations:

e =A,g, (7)

where e is a strain field in natural coordinates that must include all constant strain states. (For structural

elements the term 'strain' is to be interpreted in a generalized sense.)
Step H.2. Relate the Cartesian strains e to the natural strains:

• = Te = TA,g = ag (8)

at each point in the element. (If e _ e or if it is possible to work throughout in natural coordinates, the step is
skipped.)

Step H.3. Relate the natural straingage readings g to the visible degrees of freedom,

g = Qv, (9)

where Q is a straingage-to-node displacement transformation matrix. Techniques for doing this vary from
element to element and it is difficult to state rules that apply to every situation, In the elements derived here
Q is constructed by direct interpolation over the reference lines. (In general there is no unique internal
displacement field u whose symmetric gradient is e or e. so this step cannot be done by simply integrating the
strain field over the element and collocating u at the nodes.)

Step H.4. Split the Cartesian strain field into mean (volume-averaged) and deviatoric strains:

• = i + ea = (,4 + Ae)g, (10)

where A = .l'v TA, dV/u and ea -- Aag has mean zero value over V. This step may also be carried out on the
natural strains if T is constant, as is the case for the elements derived here.

Step H.5. The higher-order stiffness matrix is given by

K_=otQ'KdQ with Kd=fvA'dEA_dV, (11)

where a = J22 > 0 is a scaling coefficient (see Box 1).
It is often convenient to combine the product of A and Q into a single strain-displacement matrix called (as
usual) B, which splits into/_ and B.,:

e = AQv = (,4 + Aa)Qv = (B + Bd)v-- By. (12)

in which case

K. = fv B'dEBj dV . (t3)

The notation B, = A,Q is also used in the sequel.
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Box 4

Construction of K by the conventional ANS formulation

"_3

Steps S. I to S.3. Identical to the first three steps H.1 through H.3. in Box 3. The fourth step. strain splitting,
is omitted.

Step S.4. The element stiffness matrix is given by

K=Q'K,Q, with K,,= I.A'EAdV (14)
jr-

or. if B = AQ is readily available.

K = ( B_EB dV.
Jv

(15)

In general this stiffness matrix does not pass the individual element test of Bergan and Hanssen [2.3] (a
strong form of the patch test that demands pairwise cancellation of node forces between adjacent elements in
constant stress states). For this to happen. K must admit the decomposition

K = K_ + Kh = v - tLEL ' + Kh, (16)

where L is a force-lumping matl_x derivable as in Box 2 and Kh is orthogonal to the rigid body and constant
strain test motions. In other words, the ANS element must coalesce with the ANDES formulation with

a = 1. The equivalence may be checked by requiring that

= ,4Q = v -tL', (17)

where ,4 is the mean part of A (_:f. Box 3). As of this writing, no general techniques for explicit construction
of strain fields that satisfy these conditions a priori are known.

If the patch test is not satisfied, _me should switch to the ANDES formulation by replacing the basic stiffness
constructed from constant strain, namely oB'EB, with one constructed from constant stress as in Box 2.
Additional details are provided in Appendix A.

which is usually taken with origin at the centroid 0, whence the corner coordinates x,, y,

satisfy the relations

xl+x2+x3=O, yt +y2+Y3=0.

Coordinate differences are abbreviated by writing x,/= ._:,- x� and y,/= y,- y/. The signed

triangle area A is given by

2A= xl x2 x3 :::x21y31-x._lyzl =x32Y12-x12y3:=x13Yz3-X23y13, (19)

Y:

and we require that A > 0. We shall make use of dimensionless triangular coordinates (t. (2

and (3, linked by (_ + (z + (_ = 1. The following well-known relations between the triangular

and Cartesian coordinates ola straight-sided triangle ae noted for future use:

x = xl( , + x_.(2 + x,( 3 , y=y,(, +y2(_+y3_'3, (20)
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1

(i = 2-"A [xjyk - x_Yi + (x - xo)yjk + (y - y,,)x_i ] , (21)

in which i, j and k denote positive cyclic permutations of 1, 2 and 3; for example, i = 2, j = 3,

k = 1. (If the origin is taken at the centroid as in Fig. 1, x o = Y0 = 0.) It follows that

2A _ = Y"3 , 2A -_x = Y31 , 2A -_x = Ytz ,

2A 0g', 0_"2 0_"3
= x32, 2A _ = x,3, 2A -_y = x2,.

(22)

Other intrinsic dimensions and ratios of use in future derivations are (see Fig. 2)

10 = lj, = X_ + y_ , % = Xji/lii , So = yji/lij ,

2A XijXik + YiiY_i

ak = 1,--'-7 b_ = li_ = lij - b_i ,

bij = Xi/Xik, + YjiYk,, , Aji = 1 - Aq = __bJ_.
Air =li/ XTI + YTj lit

(23)

Here l_i = ljs is the length of side i-j and % and s o the cosine and sine, respectively, of angle

(i---_j, x). Furthermore bij and bj, are the projections of sides i-k and k-j, respectively, onto

i-j; Ai_ and Aji being the corresponding projection ratios.

On each side i-j, define the dimensionless natural coordinates Iz_jas varying from 0 at i to 1

at j. The coordinate p,_j of a point not on the side is that of its projection on i-j. Obviously

Ox/alzsj = x/,, ay/Otzij = Yi_ • (24)

3

2

Fig. 2. Intrinsic dimensions of triangle.
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2.2. Displacement, rotations, curvatures

As we are dealing with a Kirchhoff element, its displacement field is completely defined by

the transverse displacement w(x, y) = w(_t, _'2, _'3), positive upwards. In the present section

we assume that w is unique and known inside the element; this assumption is relaxed later.

The midplane (covariant) rotations about x and y are 0_ = aw/ay and Or= -aw/ax, respec-

tively. Along

tangential and

side i-j with tangential direction t and external-normal n (see Fig. 3) the
normal rotations are defined as

Ow Ow

= 0-7= o,s,j- o,c, , o,= - o---g= o,c, + oys,j. (25)

The visible degrees of f_eedom of the element collected in o (see Boxes 2 and 3) are

ut =[W10xl 0) 1 W20x2 0y2 W30x3 Oy3]" (26)

The first and second derivatives of the displacement w with respect to the Cartesian and

triangular coordinates are linked by the relations (summation convention used)

aw aw a_r_ 1 aw

Ox O_, Ox 2A O_ Y/k,

02W 02W a(, O_j aW a2_i

Ox2 0,_,0_ Ox Ox + 0_, ax 2

0214/ O2W 9_'i a_'j Ow O2_'i

ax ay a_r, a_r/ ax ay a_', ax ay

aw aw o,_ 1 aw

ay a(_ oy 2A 0_ xkj. (27)

1 a:w

= 4AZ a_, b_ i YikYk,,

1 OZW

= 4A 2 ,9_. 0_.i yj_X_k , (28)

a2w a2w a_.:] a_'j aw a'_', 1 a2w

= a_'_ a_'j ay ay + a_, ay -_ = 4A 2 0_', 6_"i XkiX'k '

since az__/ax 2, az_/ax ay and a:_'_/ay 2 vanish on a s_raight-sided triangle, cf. (21). We can

represent the second derivative relations in matrix form as

Fig 3. Local coordinate systems over an element side.
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2

02W

3x 2

3:w 1

Oy 2 4A:

Ozw

Y23 X32 2x32Y23

Y_l xt3 2xt3Y31

Y/2 X21 2x21Yt2

2Y23Y3_ 2x3:x13 x32Y31 + xl3Y,3

2Y31Y12 2Xl3X21 xI3Y12 + x21Y31

2Yl2Y23 2X2tX32' x:ly23 + xa2y12

02W

02w

02w

a¢23

02w

a¢, o6

O2w

a6 o6
32w

(29)

or

_r = Ww _ . (30)

The inverse relation does not exist.

2.3. Natural curvatures

The second derivatives of w with respect to the dimensionless side directions defined in

Section 2.1 will be called the natural curvatures and denoted by X0 = OZw/OIz_ • Note that these
curvatures have dimensions of displacement. The natural curvatures can be related to the

Cartesian plate curvatures xxx = 02w / Ox 2, Gy = OZw / OY: and Gy = 2 O'w / Ox Oy. by chain-rule
application of (24):

fXi2_

X = lXz3t =
I.X31J

c)2v¢

7-"f"
Olz12

02w
.-.---.;-

0_3

02141

2
0 _./,31

x_t Y_t x,.,Y2,]

= xy
[.XI3 xI3Yt3.J

02W

Ox 2

02w

Oy'-

02w

2o- y

= T-t_r • (31)

The inverse of this relation is

Ozw

Ox 2

02w

Oy"

02w

zo-7-aTy

Y23Yt3

--'-- _A21 X23X'3

'*_ LYz3X31 + x32Y13

Y31Y2I

X31X21

Y31Xt2 + xt3Y2t YI:Y32 ]
XI2X32

yt,_X,_3 + x21y32

02W

a l.*-t, ,

O"w

Olz_3

3-w

Ola._t

(32)
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or, in compact matrix notztion,

=Tx. (33)

A comparison of (29) with (31)-(32) displays the advantages of natural curvatures over

triangle-coordinate curvatures when the curvature field is to be constructed directly. On the

other hand, (29) is useful when the transverse displacement w over the element is built as a

function of the triangular coordinates.

At this point we relax the requirement that the curvatures be derivable from a displacement

field w; consequently the partial derivative notation will be discontinued. However, the

foregoing transformations will be assumed to hold even if the curvature fields K and X are not
derivable from w.

3. Direct curvature interpolation

3.1. The straingage readingi

ANS and ANDES plate bending elements are based on direct interpolation of natural

curvatures. All elements discussed here adopt the three triangle sides as the reference lines

defined in Box 3. The natural curvatures are assumed to vary linearly over each reference line,

an assumption which is obviously consistent with cubic: beam-like variations of w over the

sides. A linear variation on each side is determined by two straingage sample points, which we
chose to be at the corners.

Over each triangle side chose the isoparametric coordinates _:,j that vary from -1 at corner i

to +1 at corner j. These are related to the /z.j coordinates introduced in Section 2.1 by

_,j = 2_ii- 1. The Hermite interpolation of w over i-j is

w = ¼[(1 - _#)2(2 _- _,i) tzl,,(1 - s_,,)2(1 + _#) (1 + _'#)z(2 - _',,)

f"l
"_ 0.;wlJ'

where 0, denotes the rotation about the external normal n on side /j. The natural curvature

over side ij is given by

X"= a/z_; =[6so'; t"(3sc"- 1) -6_¢,, l,j(3_, i + t)]_wj_. (34)

10.,J

Evaluating these relations at the nodes by setting ,f,; = -1 and converting normal rotations to
x-y rotations through (25). we build the transformation
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XI2[ t

Xtzi2

)(2312

)(2313

)(3113

X3111

--6

6

0

= 0

6

-6

-4y21 4x21 6 -2y=_ 2xzl 0 0 0

2Y21 -2x2_ -6 4y21 -4x21 0 0 0

0 0 -6 -4y32 4X32 6 -2Y32 2X32

0 0 6 2y32 --2X32 -6 4y32 --4X32

-2yt3 2x13 0 0 0 -6 -4yl3 4xt3

4yt3 -4x13 0 0 0 6 2Y13 -2x13_

14,'1 _

w 2

o.
14,'3

o.
(35)

The left-hand side is the natural straingage reading vector called g in Box 3 and thus we can

express (35) as

g = Qo. (36)

This relation holds for all elements discussed here.

The six gage readings collected in g provide curvatures along the three triangle side
directions at two corners. But nine values are needed to recover the complete curvature field

over the element. The three additional values are the natural curvature X23, X3_ and Xt2 at

corners 1, 2 and 3, respectively. Three possibilities for the missing values are discussed below.

3.2. The average-curvature rule

To each comer k assign the average natural curvature X0 of the opposite side. This average

is given by (34) evaluated at _:,i = 0. For example

X,213= ½(X,zl,+ Xt2[:,)= Yz,(O_z- 0_,)+ x,z(Oy2- Oy,). (37)

The natural curvature can now be interpolated linearly over the triangle:

x, l, +x,21 a' + x,z13_'3 = + + (38)

It is readily verified that under this rule the natural curvature XI2 is constant over lines parallel

to the triangle median that passes through node 3. Formulas for the other curvatures follow by

cyclic permutation, from which we construct the matrix relation

o 0 0 0]t-.., = g'2 _, _'3+ '_', 0 O, g
_'3, 0 0 0 _., ,- _r_ _', +, _"

6_02, (3_'., - l)y2, (3_',2 + 1)x..t 6_',. (3_'._ + l)y.., (3_',_. - 1)y..,= 0 0 6_r_z (3_'_2 - 1)y_., (3_'23 + 1)x32

L6_;, (3_,3 + l)y,3 (3_',, - l)y,_ 0 0 0

o o o ]

6_'23 (3_'_z + l)y3, (3_23 - 1)Y32Jo ,6_, 3 (3_',3 - 1)ytj (3_'3, + t)x,3

(39)
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in which ff12 = _l -- _'2' etc. In the notation of Box 3,

X = Ax,_g = AxaQv = Bx_v , (40)

where subscript a identifies the 'averaging' rule (37). Since the natural curvatures vary linearly

over the triangle, their mean values are obtained by evaluating (39) at the centroid

=

-x2,0 0 01= _X_-23[ -_- () 0 -- x_2 0 Y32 -x32 113 = n_ao.
[.X31J ) 13 -x13 0 Y32 0 -Y13 x13

(41)

Finally, the Cartesian curvatures are given by

= TBxav = B_v . (42)

An explicit expression of these relations is easily obtained, but not required in what follows;

however, that of the mean Cartesian curvatures _ = TBxav = B_o (a relation valid because T is

constant over the triangle) is enlightening:

{ 11[00 0 0= Kyy -_- X32 XI3

2_xyJ _ 0 0 0 x2_ 0 v=lff_v0 Y23 X23 0 Y31 X31 0 Yt2 Xt2

(43)

3.3. The projection rule

To each comer k assign tae natural curvature Xu of its projection onto the opposite side.

This results in Xu being constant along lines normal to side ij. For equilateral triangles this
agrees with the averaging rule, but not otherwise. The underlying motivation is to make the

element insensitive to bad a,;pect ratios in cylindrical bending along side directions.

To illustrate the application of this rule consider side 1-2. For node 3 take

02W 3
0/_12

where A_2 and A:_ are defined in (23). Proceeding similarly along the other sides we construct
the matrix relation

or

{X121 I_'l -._- A12_"3 _'2 -{- A21_'3 0 0 0 0 1
X23_ = 0 0 _'2 + A:3_', _'3 + A32_', 0 0 g

X3IJ 0 0 0 0 _'3 + A31 _'2 _1 + AI3_2 (45)

X = Axpg, K = TAxpg. (46)

where subscript p identifies the 'projection' rule. As in the preceding rule, since T is constant
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we can do the strain-splitting step of Box 3 directly on the natural curvatures by evaluating at
the centroid:

_(1+A,2 ) _(1+A2, ) 0 0 0 0 ]
= 0 0 _(1+A:3 ) _(1+A32 ) 0 0 Jo o o o + + A,3)

+ 0 0 _r20+ X-.3_',o _'30+ X32sr,,, 0 0 ,

0 0 0 0 _'30 + A31 _20 (ll.) "+" A13_20

(47)

in which _',o = _', - t. Then

Bp = TAxp Q = T(,4xp + Adp)Q = 1_ + Bjp. (48)

The explicit expression of these matrices is not revealing and for the construction of the

stiffness matrix presented in Appendix B it is better to leave (48) in product form. If all A

coefficients are ½, which happens for the equilateral triangle, the expressions reduce to those

of the averaging rule.

3.4. The 'sliding beam" rule

This is a refinement of the average-curvature rule. Consider a fictitious beam parallel to side

i-j sliding towards corner k. The end displacements and rotation of this beam are obtained by

interpolating w cubically, 0,, quadratically and 0, linearly, along sides i-k and ]-k. Compute

the mean natural curvature of this beam and assign to node k the limit as the beam reaches
that corner.

The required calculations can be simplified if we observe that the mean curvature of the

sliding beam varies linearly as it moves from i-j, where it coincides with (41). to corner k. At

one third of the way this mean is the natural centroidal curvature, which can then be readily

extrapolated to k. These centroidal curvatures are given by _ =/_x_v. where subscript s
identifies the 'sliding' rule. A symbolic calculation yields the explicit form

2A13 -2( A21 + A31 ) 2A12

a2¢13 a3£21 + a2cl3 a3c21

a2st3 a3s21 + a2s13 a3s21

2A23 2A,.l --2(A,2 + A32)

alC32 a3c21 alc32 + a3c21

als32 a3s21 als32 --t- a3s21

-2(At3 + A33 ) 2A31 2A32

a2ci3 + alC32 a2ci3 alC32

a2st3 + als32 a2sT3 ats32

(49)
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where ai, cij and s_i are defined in (23). Extrapolating to the opposite corners and interpolating

over the triangle we get X = Bxsv, with

B_=

6(- _', + _'2 + A,3_'3)

2y21(1 - 3_'_) + 3a2c13_" 3

2x,_1(3_" I - 1) _ 3a2st3_" 3

6( C_,+
2y21(3_r 2 - 1) + 3arc3, "

2x21(1 - 3_r2) + 3axs32

-6(A23 + _T3)_'3

(3a,_c13 + 3alc32)_" 3

(3a,_st3 + 3a!s32)_" 3

--6(A21 + A31)_"I

(3a3c21 + 3a._ct3)_" I

(3a3s21 + 3a.s,3)_r t

6(-C: + + A:,¢,)
2Y3_,(1 - 3_'z) + 3a3c21_t

2x32(3(: - 1) + 3a3s21ffl

6(¢2- ¢3+ a31¢ )
2y32(3_" 3 - 1) + 3azc13fft

2x32(1 - 3_'3) + 3a2s13_" _

6(_'3 - _1 _ /_12_2)

2yl3(3_" _ - 1) + 3a3c,_, _2

2xt3(1 - 3_', ) + 3a3s..1 _2

-6(A 2 + A32) "2
(3a,c32 + 3a3c21)_r2

(3als32 + 3aas,_a)_" 2

6(- _'3+ C, + A32_'2)
2y_3(1 - 3_'3) + 3a_c32ff 2

2x13(3_" 3 - 1) + 3ats3z_" 2

(50)

It should be noted that Ax and Q are inextricably enmeshed in the above formula and cannot

be easily separated. Premulttplication by T yields K = B_v. Evaluation of B_ at the centroid
t !

yields B_ = Lq/A, where Lq := ATBxs is the force lumping matrix given in (56).

A variation on the sliding-beam theme would consist of interpolating the normal rotation 0,

along i-k and j-k linearly rather than quadratically. This scheme turns out to be identical,

however, to the average curvature rule and thus it provides nothing new.

3.5. The six beam lattice ruu'

In addition to the sides, consider three fictitious 0eams along the triangle medians.

Determine the displacement,_ and rotations at the triangle midpoints by the same interpolation

procedure as in the sliding beam rule. The linear curvatures along the medians are thus readily
computed. At each triangle corner we now know the curvatures in three directions: the two

sides and the median. We can therefore transform to x-y curvatures using (32), and

interpolate these linearly over the element. This apparently new model gives, however,

identical results to the projection rule, a result that can be a posteriori justified by geometric
reasoning. Consequently this scheme will not be pursued further.

3.6. The ANS elements

Three ANS elements based on the previous interpolation rules may be constructed by

following the prescription of Box 4. Their total stiffness matrices are identified as K_, Kp and
K_, for averaging, projection and sliding-beam, respectively. The following properties hold for
these elements.

Patch test. Assuming that the element has constant thickness and material properties, K_ and

K_ pass the individual element test, but Kp does not. Thi_ claim can be analytically confirmed

by applying the criterion of (16)-(17) and noting that/I := L_/A and/_ = L'q/A, where L_ and
Lq are the force lumping matrices derived in Section 4.
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Equivalence with DKT. K s turns out to be identical to the stiffness matrix of the discrete

Kirchhoff triangle (DKT) element, which was originally constructed in a completely different

way [28, 29] that involves assumed rotation fields. Thus DKT is an ANS element, and also

(because of the equivalence noted below) an ANDES element. This equivalence provides the

first variational justification of DKT, as well as the proof that DKT passes the patch test

without any numerical verification.

ANS/ANDES equivalence. If the basic stiffness matrices Kb_ and Kbq derived in Section 4.1
are used in conjunction with the averaging and sliding-beam rules and a = 1, the ANDES

formulation yields the same results as ANS if the element has constant thickness and material

properties. (If the element has variable thickness, or the material properties vary, the

equivalence does not hold.) The ANDES formulation used with the projection rule yields two

elements, called ALR and AQR in the sequel, which differ in their basic stiffnesses. Both of

these elements pass the patch test and are not equivalent to the ANS formulation.

4. Stiffness matrix computation

4. I. The basic stiffness

As explained in Box 2, the basic stiffness is obtained by constructing the lumping matrix L.
In our case this is a 9 x 3 matrix that 'lumps' an internal constant bending-moment field

(rh_ x, ,,hyy, rhxr ) to node forces s7 conjugate to o.

On each element side, the constant moment field produces boundary moments rh and rh4,
referred to a local edge coordinate system n, t (see Fig. 3):

[ 9 -- 2SiiCi j mx x
Ir_nn ] = S_. C_j myy

t m4, : ,/ siici/ - siici/ si'-/- c_/j L rh_v J"
(51)

The boundary motions d conjugate to m,,,, and m4, are Ow/an = -0, and aw/Ot = 0. (see Fig.

3). Given the degree of freedom configuration (26), the normal slope Ow/On = -0, along side

i-j can at most vary linearly (it could be also taken as constant and equal to ½(0, + 0,j) but the
results are the same as for a linear variation).

For the tangential slope (the rotation about the normal) Ow/Ot = 0. there are three options:

constant, linear and quadratic variation. But a constant O. = (%- wi)/li/ turns out to be

equivalent to the quadratic variation and a constant 0. = _(04, + 04/) equivalent to the linear
variation. Consequently only the linear and quadratic cases need to be examined.

Linear normal rotation. The variation of 0, and 04 along each side is linear:

(0,) =t[0 1-_ r 0 0 1+_:O. it 2 0 0 1-_ 0 0

'Wi

0,,

0 ].04,1+_ %

0,,
o4,

(52)
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where _- so#. Under the assumption one obtains [33]

[!0 00L_= _ x32 0 x13 0 x,._ ,
Y23 X22 0 Y3n X31 0 YI2 Xt2]
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(53)

where superscript l stands for 'linear 0,'. The corresponding basic stiffness is

Kbt = A-LLtDL _ , (54)

where D is the Cartesian moment-curvature constitutive matrix resulting from the integration

of E through the plate thickness. This matrix has been used as component of the free

formulation (FF) element presented in [33].

Quadratic normal rotation. A quadratic variation of 0, c:m be accommodated in conjunction

Iwil0,
0 ]10.,t

'.,(3_ - 1)(_ + 1)j ].,, f.

l°,10_,

with the cubic variation of w along the side:

{0,} [ _:20 1-_ 0 0 t+_:0. ,j=_ 3( -1)/I 0 _(3_+1)(_-1) 3(_::-1)/l 0

where _ = _o and l- lq. Then the resulting force lumping matrix can be presented as

--C12S12 + CHS31

1 2 2
2(S12X12 + S31X31)

1 "_
- _(S'tzy21 + 5ily13 )

--C23S23 + C_2S12

I 22(s_2x_2+ s_x,. 3)

-kC:y:, + Gy_:)

--C31S31 + C:,3S23

½(s_x,._+s__)
1 2

-- 2 (s23Y32 + s31Yl3)

--C31S31 + C12S12

1 2:(c,2x_2 + c3_x3_)
.k 2

-- 2(c12Y21 + c31Y13 )

--C12S12 + C23S23

I 2
_(C12X12 + C23X23 )

-½(C_zy21 + c_3Y23)

--C23S23 + C31S31

½(C_3X23 "l- C_IX31 )

1 2 2
-- 2 (c23Y32 + c31Y13)

(55)

(56)

(s_,- c;,) - (s_ - ch)

c_,.y2t + c],y,3

-s'_,xt_ - s_x3t

(s'_:- c;2)- (s_ - c;._)

ct2Y2t + C__3y3, -

_ 2
--S12X12- $23X23

-- C23 ) 7- ($31 -- C;I )

c_y_ + c_,y_
"_ 2

--$23X23 -- S31X31

Zq =

The corresponding basic stiffness matrix is denoted by

Kbq = A - ILqDL 'q .

4.2. The higher order stiffness

The higher order stiffness for the ANDES elements described in Section 3 is

(57)
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= = AdxDAdx dA Q = et BoxDBj_ dA , (58)

where x = a. p, s for the average, projection and sliding-beam rules, respectively. (The last

expression is appropriate when Bd_ is not easily factored into Ad= Q, as in the sliding-beam

rule.) Since Aox varies linearly, if D is constant we could numerically integrate Kd= in (58)

exactly with a three point Gauss rule; for example the three-midpoint formula. But as the

element stiffness formation time is dominated by these calculations it is of interest to derive K h

in closed form. This is done in Appendix B for Khp, which from the numerical experiments
appears to be the best performer.

5. Numerical experiments: General description

An extensive set of numerical experiments has been run to assess the performance of the

new ANDES elements based on the projection rule (ALR and AQR) and to compare them

with other existing high-performance triangular elements. Table 2 lists the tests, material

properties and some relevant geometrical properties, whereas Table 3 lists elements, loading
and mesh identifiers.

An inspection of the element identifiers in Table 3 displays two important points: the

difference in the result obtained with AQR and ALR can be attributed to their basic stiffness,

whereas differences between AQR and DKT can be attributed to their higher order stiffness.
With these facts in mind, we conducted first a set of distortion tests so that the less distortion

sensitive combinations can be identified. Then, the best performers are submitted to a set of

representative thin-plate bending problems in linear elasticity.

The scaling a = 1.5 for ALR and a = 1.0 for AQR have been chosen to obtain energy

balance in some simple cylindrical bending tests. No further adjustment of these parameters
was made. In the distortion tests we included the results obtained with the free formulation

(FF) element presented in [33], since that paper did not report such tests.

Whenever the simply supported condition appears it implies that only the transverse

displacement w is restrained. It is equivalent to the SS1 condition described in Hughes'

textbook [34].

Table 2

Key to material and geometrical data

Test Description

Square plate

Cantilever beam

Twisted ribbon

Rhombic cantilever

Rhombic plate

[sotropic material v = 0, E = 1; thickness t = 1. plate span 10;
load scaled so that center deflection w = 100
Isotropic material v = 0, E = I; thickness t = 1; load scaled so

that center deflection w = 100
lsotropic material t, = 0.25, E = 107; thick. -_ , = 0.05: transverse

load at tip so that Pa = -P,, = 1
Isotropic material v = 0.3, E = 10.5 • 10": thickness t = 0.125;
uniform transverse load q = 0.26066

Isotropic material v = I).3, E = 1: thickness t = 1, plate side
a = 100, uniform transverse load q scaled so that w = I00
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Table 3

Key to element, loading and mesh identifiers

235

Key Explanation

ALR
AQR
FF
DKT
CL
TL
SDC

LDC

ANDES element K,, + 1.5Khp
ANDES element Kbq + gnp
FF element of [33] with 3-parameter scaling ,)f K,
ANS/ANDES element g,u + Kh_: identical to DKT
Consistent lumping (60) of uniform load q
Triangular lumping (59) of uniform load q
In rhombic meshes, triangles obtained by sphtting quadrilateral
mesh units with short diagonal cuts
In rhombic meshes, triangles obtained by splitting quadrilateral
mesh units with long diagonal cuts

For tests involving a uniform distributed load q, two node-force computation schemes are

usually reported:

1. Triangular lumping (TL), in which one third of the load qA is assigned to each triangle
corners, and nodal moments are set to zero:

f'=]qA[1 0 0 1 0 0 1 0 0]. (59)

2. Consisting lumping (CL), in which the element node force vector is

ft=qA[T 1 Y_+Y_'_x13+x128 8 1 Y23 +Y328 .... ] (60)

The lumping was obtained using the transverse displacement w of the FF element in [33]. It

is used for the ANS and ANDES elements as a matter of expediency, since for such

elements a unique internal transverse displacement does not exist.

Inasmuch as the present clements pass the linear patch test by virtue of their construction,

no validation experiments along these lines are necessary once the elements are correctly
programmed.

6. Distortion tests

6. I. Simply supported square plate under central load

This distortion test was proposed by Kang [31]. The use of a coarse mesh exacerbates the

distortion effect when far from the converged solution. (In a fine mesh the distortion effect

would be diluted.) The mesh and distortion parameters are shown in Fig. 4. When the

distortion parameter a approaches 2.5 the mesh converges to a four element cross-diagonal

mesh. Results are reported as a percentage of the deterioration with respect to the undistorted
mesh.

The results given in Table 4 show that AQR is superior in this test. FF and ALR are the

worst performers for a > 2. DKT and AQR display low deterioration rate from a = 2 up to
a = 2.49, but DKT behaves poorly for a < 2.
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I

q2
Fig. 4. Square plate: mesh for distortion analysis.

Table 4

Distortion analysis of centrally loaded SS square plate: percent error of
center deflection with respect to undistorted mesh

Element Distortion parameter
type 0.50 1.00 1.50 2.00 2.49

ALR 0.83 2.65 5.05 7.88 10.38
AQR 0.17 -0.14 -1.59 -3.29 -4.40
DKT -0.95 -3.46 -6.29 -8.06 -8.42

FF 0.81 2.27 3.69 4.85 - 13.50

6.2. Cantilever beam

A cantilever beam with a transverse load at the tip was selected for this test. Two meshes

shown in Fig. 5, A and B, are used to observe the effect of the element orientation under a

linear bending state. The results are reported in Table 5. Also shown in this table is the ratio

of the computed tip deflection to the exact value wex for zero distortion.

For mesh A, AQR is the best performer closely followed by DKT. FF and ALR behave

poorly.

For mesh B, FF is the best performer in terms of deterioration, followed by AQR, DKT

and ALR. However, it must be noted that FF and ALR recover only 77% of the exact

solution. This is a serious drawback in elements supposedly capable of providing an appropri-

!_ I0

Mesh A

A

B Mesh B

Fig. 5. Distorted meshes for cantilever beam and twisted ribbon.
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Table 5

Distortion analysis of cantilever beam: percent error at node C with respect to
undistorted Mesh

Element Distortion parameter Wc/We, ,

Mesh type 1.00 3.00 4.90 (no distortion)

A ALR - 10.7_:i - 19.80 8.40 1.031

A AQR 0.1'., 0.10 -2.05 0.995
A DKT 0.2_1 -0.59 3.41 0.982
A FF -7.75 - 17.30 - 18.35 0.974
B ALR 0.2_i 3.00 45.90 0.764

B AQR -0.1_ 0.40 -2.85 0.995
B DKT -0.13 - 1.09 -3.49 0.979
B FF -0.05 -0.15 2.20 0.769
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Table 6

Distortion analysis of twisted ribbon: loss of symmetry, under

distortion (Mesh B)

Element Distortion parameter

type Node 1.00 3.00 4.90

ALR A t.016 1.122 1.363
B i.013 1.098 1.076

AQR A 0.989 0.966 0.945
B 1.010 1.029 0.995

DKT A 0.993 I).978 0.940
B t.006 1.015 1.018

FF A 0.983 0.933 0.789
B 0.994 0.877 0.877

ate response for linear be:ading. This shortcoming can be attributed to the basic stiffness Kb_
which is the same for both elements. AQR and DKT recover almost 99% of the response for

both meshes.

6.3. Twisted ribbon

This test has been selected to assess the distortion effect under a field which combines

bending and twisting. The test uses mesh B of of Fig. 5. The results shown in Table 6 indicate

that AQR and DKT are the least distortion sensitive elements for this problem.

7. Convergence studies

From the distortion tesl results, it can be concluded that elements whose basic stiffness is

Khq are less distortion sensitive. Consequently only results for the AQR and DKT elements
are presented in the following studies.
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7. I. Square plate

In this analysis a square plate with either simply-supported or clamped edges is considered.

Due to symmetry only one quarter of the plate is modeled. The two different mesh

orientations, A and B, used in the analysis are illustrated in Fig. 6. The number of elements
used is 2N 2, where N is the number of side subdivisions.

For the cases involving a concentrated load, Figs. 7 and 8 show that for both meshes AQR

converges faster and is less sensitive to mesh orientation than DKT.

In the case of uniform loading with triangular lumping, Figs. 9 and 10, the convergence is

uniform for all the meshes and elements. For the simply-supported condition all answers are

within the 5% error limit for N= 4. Clearly DKT converges faster in this case. For the

clamped condition and N = 4, DKT(A) is outside the 5% error limit.

I I

Mesh A Mesh B

Fig. 6. Meshes for square plate convergence studies.

10 _KT(B)

-5

l 2 4 8

Number of subdivisions on each side

Fig. 7, Central deflection of centrally loaded

square plate.

5S

,o 5

o
_" -10 / / _. -5

I _//_QR(B)
-20 i -10

I 2 4 8

Number of subdivisions on each side

Fig. 8. Central deflection of centrally loaded clamped

square plate.

t 2 4 g

Number of subdivisions on each side

Fig. 9. Central deflection of uniformly loaded SS

square plate with TL force lumping.
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30

20

t0

0

-10

-20
/ AQR(B)

t, t [
1 2 4 8

Number of subdivisions on each side

Fig. 10. Central deflection of uniformly loaded clam-

ped square plate with TL force lumping.
Fig. 11. Rhombic cantilever: meshes for convergence
studies.

Table 7

Uniformly loaded square plate with CL force lumping: percent error of central
deflection

Element Mesh Mesh over quarter plate

Support type type 1 × 1 2 × 2 4 z 4 8 x 8

SS DKT A 31.73 4.49 1.01 0.24

B 4.55 5.37 1.56 0.41

AQR A 16.28 2.20 0.47 0.11

B - 1.55 2.30 0.74 0.20

DKT A 46.35 14.90 4.10 1.03

B -21.60 2.08 1.30 0.36

AQR A 26.65 8.26 1.87 0.44

B -41.20 -3.22 -0.28 -0.05

Clamped

For consistent force lumping, the results shown in Table 7 indicate a dramatic improvement
of AQR. DKT also improves in the sense that becomes less mesh sensitive and that all the
results fall within 5% error for N = 4.

7.2. Rhombic cantilever

The test involves a rhomb_c cantilevered plate subjected to uniform load. This problem was

used in [28] to test the DKT element with reference given to an experimental deflection result:

however, no convergence analysis was performed. This has been done here taking into

account the two possible mesh subdivision patterns, SI)C and LDC, depicted in Fig. 11.
Triangular force lumping has been used.

The results are shown in "Fable 8. For the LDC mesh DKT converges from above to an

answer 4% below the experimental value quoted in [28]. On the other hand. AQR converges

from below. For the SDC mesh both elements behave identically and converge to a value 4%
under the experimental one.

It is clear from these resulls that the experimental tip deflection given in [28] is in error by
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Table 8

Rhombic cantilever: percent difference of tip-A deflection with re-
spect to experimental value reported in [28]

Mesh Element Subdivision of whole plate

type type 4 × 4 8 × 8 16 × 16

LDC DKT 2.3 -3.7 -4.0

AQR -17.8 -10,4 -6.0
SDC DKT -6.7 -5,0 -4.0

AQR -6.3 -5.0 -4.0

Table 9

Uniformly loaded SS rhombic plate with TL force lumping: percent
error in center deflection

Mesh Element Subdivision of whole plate

type type 4 x 4 8 x 8 16 x 16

SDC DKT 11.05 4._ 2,86
AQR 13.86 4.56 2.89

LDC DKT 80.97 22.64 7,51

AQR 6.85 -0.36 -2.91

about +4% with respect to the analytical value for the load and material properties quoted.

The apparently small error for the 2 × 2 DKT/LDC mesh is thus fortuitous.

7.3. Simply supported rhombic plate

This problem poses severe difficulties for ordinary finite element methods because of the

presence of a singularity in the bending moments at the obtuse corner. A detailed description

of this problem may be seen for example in [33]. The acute skew angle 30 ° was selected for the

test. Again both SDC and LDC meshes were tried.

The results are shown in Table 9, For the SDC meshes AQR and DKT show slight

difference and almost the same rate of convergence. For the LDC meshes DKT is too flexible

whereas AQR converges faster.

8. Conclusions

The main conclusions of the present study can be summarized as foUows.

1. The ANDES formulation represents a variant of the ANS formulation that merits serious

study. The key advantages of ANDES over ANS are

(a) A priori satisfaction of'the patch test. Although this advantage is less clear for elements

where ANS and ANDES coalesce for constant thickness and material properties, it

reappears for more general cases.
(b) The separation of the higher order stiffness allows the application of a scaling

parameter. Furthermore it opens the possibility for an energy-balanced combination

with other formulations as per eq. (2), although this possibility presently remains

unexplored.
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2. The study of plate bending elements shows that the widely used DKT element is both an

ANS and an ANDES element. This discovery provides a variational foundation hereto

lacking and analytically proves (because of the ANDES connection) that DKT passes the

patch test.

3. The numerical results clearly demonstrate that the choice of basic stiffness is of paramount

importance in the behavior of elements based on the ANDES formulation. Of the two

elements sharing the quadratic-rotation basic stiffness, namely AQR and DKT, the former

has excelled in geometric distortion tests and in convergence studies that involve concen-

trated forces. For other cases the performance of AQR and DKT is similar, and generally

superior to those elements that use the linear-rotation basic stiffness.

The numerical experiments have not addressed questions of material sensitivity such as

element performance for highly anisotropic and composite plates. This behavior, as well as the

possibility of applying this technology to C° bending elements, is currently under investigation.

Acknowledgment

The work of the first author has been supported by a fellowship from the Consejo Nacional

de Investigaciones Cient/ficas y T6cnicas (CONICET), Argentina. The work of the second

author has been partly supported by NASA Lewis Research Center under Grant NAG3-934

and by NSF under Grant ASC-8717773.

Appendix A. Sanitizing incompatible elements

The stiffness-splitting technique summarized in Box 1 provides a systematic way for

'sanitizing' existing nonconforming bending elements that do not pass the patch test. The

technique essentially amounts to the replacement of the basic stiffness. The main steps will be

briefly outlined for the simplest such element: the BCIZ triangle proposed in 1965 by Bazeley

et al. [35]. The assumed transverse displacement is given explicitly in [36] as

W

¢2_(3- 2_'t) + 2¢,¢2(3

_'z,(Y12¢2- Y3t¢3)+ )7__'t¢2¢3

_:_(3- :!G)+ 2¢,¢2¢3

¢22(Y:3_'3- Y,2¢,) + )72¢,¢2¢3

(23(3- :_-_3)4-2_',¢..¢3

CZ3(y3, r, -Y:3¢2) + )73¢,¢2¢3

¢_(x,3¢, - x32G) + _¢, ¢2¢3

o, (61)

where )7t = Y,2 - Y3,, )72 = .vz3 - Y,2, )73 = Y3, --'Y23, "_1 :: X2t -- X,3, "1_2= X32 -- X21, "1_3 = X,3 --
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x32. The strain-displacement matrix B is obtained by double differentiation with respect to the

triangular coordinates and application of (30):

f Kxx l

K = ) Kyy f = WRiy = Bu = (B 0 +Bt_ j + B2_ 2 + B3ff3)o , (62)

in which W is given by (29), and

RIm2

3(1
Y,:G
XI2_" 2

- _,) o o r,, ¢,
-y_,¢_ 0 0 y,,¢, + _yt _ _y,¢,

o 3(1 - ¢_) o ¢_ ¢,
/" I -0 Y...,G -Y,.-¢, 0 -Y12¢,- + .Y,-¢._ Y,.._G.+ _.Y,_¢,

o x.¢, -x:1¢, o -x:,¢.. + _:¢, x.(.. + _i.,;,
o o 3(_- ¢._) c, ¢,

-y.,,¢, + __,¢:
-x,_¢, + _.i,G

x,_¢, + _£,¢,

(63)

Split the strain-displacement equations as

,¢ = ,_ + K_= (B + ad)v, (64)

where/_ = B 0 + ½(B 1 + B, + B3), B a = B - B. Then the 'sanitized' stiffness matrix is

_A tK = K_, + a BdDt, B d dA, (65)

where K. is one of the basic stiffness matrices derived in Section 4.1. The free formulation

leads to the same result but in a less direct manner, because w would have to be decomposed

into rigid body, constant curvature and higher order states. Although the corrected element

passes the patch test it is unlikely to be competitive with ANDES elements in distortion

insensitivity.

Appendix B. Explicit representation of higher order stiffness

To obtain an explicit representation of Khp, begin by defining

['Ctl Ctz Ct3]

c = r'or = I C 3l,
L symm C,_3.]

(66)

which can be interpreted as a constitutive matrix that relates the natural moments T'm to the

natural curvatures X- Then
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where ro

Carrying

following

Kdp = fA A;CAd d.4 = _6

rll --rll rl2 --rl2 rt3 --r13 -

rll --r12 rt2 --rt3 r13

r22 -r22 F23 --r23

symm r22 - r23 r23

r33 -r33

r33 _

=/3o Cii for i = 1, 2, 3, j = 1, 2, 3, and

_.. 2
/3,1 = 2(A_2 -- 112 l), /322 = 2(X23 -- 123 + 1) ,

/33, = 2(A_,-13_-_ 1), /3,a = (2- A_2)A23 -- 1,2 - 1,

1323= (2 - A23)13, -- 123 - 1, /3,3 = (2 - 13, )1,2 - 13, - 1.

out the congruential transformation Khp = QtKdp Q with
matrix entries:

Ktl = 4(r33 -rl3 - r13 + rll),

KI2 = 2((r,1 - r13)f21 + (r13 - r33)Yt3) ,

K,3 --2((,-,3- + (r3, - r,3)x,3) ,

KI4 = 4(-r23 + rt3 4- r12 - r11),

K15 = 2((rla - r23)f32 + (r,l - rt3)yzl),

K16 = 2((r23 - r12).r32 + (r13 - rll)X21) ,

K17 = 4(-r33 + r23 +-r13 - rl2 ) ,

KI8 =

K19 =

/(722=

K23 =

/(24 =

K25 =

K26 =

1(27 =

K2s =

K29 =

K33 =

K34

K35

2((r,z - r23)f32 + (rt3 - r33)Y,3) ,

2((rz3 - r,2).r3a + (r33 - r,3)x,3),

2 2
rllyzl + 2rt3yt3yal + r33Y13 ,

(--rllX21 -- rt3Xl3)Y21 + (--r13x21 -- r33x13)Y13 ,

2((rt2 - rtl).v21 + (r23

(rt2Y21 + rz3.v13)y32 +

(-r,zX3z - r, ix=, )Y21

-- r13)Y,3) ,

2
r_lY21 + r13Y13Y21 ,

+ (--r23X32 -- r13xzl)Y13),

2((r,3 - r,z)y2, + (r33 - r23)Yl3) ,

(rt2Y21 + rzaY_3)Y3a + r13Y13Y2t + r33Y_3,

(-r12x3_ - r,3x13)y,.t + (-r,.ax32 - r33x13)y13 ,

2
rtlx21 + 2rlax_3x21 + r33x13 ,

= 2((rtl -- r12) t-2t + (r13 -- r23)x13) ,

= (--rt2x2l -- r23x13)Y32 + (-rllx2, -- r13x13)Y21 ,

MACSYMA yields

(67)

(68)

the
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The same

K36 = (r_2x21 + rz3xt3)x32 + r_lx_t + rt3xi3x2t ,

K37 = 2((r12 - rt3)x2l + (r23 - r33)x13) ,

K3a = (- ?'12x21 - r23xt3)Y32 + (-rl3x,_l - r33xt3)Y13,

K39 = (r12x21 + rz3X13)x32 + r13x13x21 + r33x213 ,

K_4 = 4(r_,2 - rt2 - rt2 + rll),

K,5 = 2((r,_., - rt2)Y32 + (rl2 - r,i)y21),

K,6 = 2((r,2 - r,.2)x32 + (r,, - r,z)X.., ),

Ka7 = 4(r23 - r22 - rl3 + rt2),

K4s = 2((r22 - rt2)Y32 + (r23 - rt3)Y_3),

K49 = 2((r12 - r,.2)x32 + (rl3 - r23)x13) ,

K55 = r.,zy_2 + 2r,2y..,Y32 + r t,y_ ,

Ks6 = (- rzzX32 -- rl2x2t )Y32 + (-- rlzx32 -- rl Ixzt)Y:t ,

K57 = 2((r23 - rz,)y32 + (rl3 - rlz)y,l),

Ks8 = rz2Y232 + (rtzyzt + rz3Yt3)Y32 + rt3y13yzt ,

K59 = (-r22x32 - r23xt3)Y32 + (-rt2x32 - rt3xt3)Y2l ,

2

K66 = r22x232 + 2r_zx2tx32 + r_ tx2t ,

K67 = 2((r2z - rza)Xa2 + (rl2 - rt3)x21) ,

K68 = (-r22x32 - rt2xzt)y32 + (-r23x32 - rt3x2t)Yt3 ,

K69 -- rz2x_2 + (r12x21 + r23x13)x32 + rl3xt3x2t ,

K77 = 4(r33 - r23 - r23 + r22) ,

Kvs = 2((r23 - r.,2)Y32 + (r33 - r23)YL3),

K79 = 2((r22 - r23)x32 + (r23 - r33)xt3) ,
-)

Kss r:2y3_ + 2rz3Y13Y32 + r33Y 213 )

Ks9 = (-r22x32 - r23xt3)Y32 + (-r23x32 - r33x13)Y13 ,

2 2

K99 = r22x32 + 2r23xt3x32 + r33xt3 •

stiffness expression applies for K,a, if one sets At: = A23 = X31 _= zt"
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Abstract--A parametrized five-field variational principle that can accommodate both compressible
and incompressible hyperelasticity is presented. The primary variables are mean and deviatodc
stresses, mean and deviatoric strains, and displacements. Through appropriate selection of par-

aractera the functiot_al of this general principle specializes to those previously presented by Atluri-
Reissner, Herrmaan and Franca.

I. GOVERNING EQUATIONS

Consider a linearly hyoerelastic body under static loading that occupies the volume V. The

body is bounded by the surface S, which is decomposed into S: Sa w S,. Displacements are
prescribed on S# while surface tractions are prescribed on S,. The outward unit normal on
S is denoted by n = n_

The three unknown volume fields are displacements u = u_,infinitesimal strains e = eo,

and stresses tr = aij. The problem data include" the body force field b = b; in V, prescribed
displacements a = a, on sd, and prescribed surface tractions i -= ?_on S,.

The relations between the volume fields are the strain-displacement equations

e = ½(Vu+Vru) = Du or e_j = !_u_j+uj.,) in V, (1)

the constitutive equati_ms

a = Ee or a,j = E,,,ek/ in V, (2)

and the equilibrium (balance) equations

-divo=D*o=b or a,j.j+b_=0 in /I, (3)

in which D* = -div d_notes the adjoint operator of the symmetric gradient D = _(V + vr).
The stress vector with respect to a direction defined by the unit vector v is denoted as

a_ = ¢'v, or try,,= a_jv_.On S the surface-traction stre'_s vector is defined as a, = a'n or
tr,, = a,jnj. With this n::_tation the traction and displacement boundary conditions may be
stated as

a',=i, or trijnj=ii on S,, and u=/l or ui=d, on So. (4)

2. NOTATION

2.1. Field dependency

In this investigation of variational methods, the notational conventions in Felippa
(1989a,b,c) and Felippa and Militello (1989, 1990) are used. An independently varied
field will be identified by a superposed tilde, for example/i. A dependent field is identified

by writing the independent field symbol as superscript. For example, if the displacements
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are independently varied, the derived strain and stress fields are

e u=½(V+Vr)f=D_, a u=Ee'=ED6. (5)

Using this convention, tildeless symbols such as u, e and a are reserved for the exact or for

generic fields.

2.2. Integral abbreviations

Volume and surface integrals may be abbreviated by placing domain-subscripted

parentheses and square brackets, respectively, around the integrand. For example :

;(f)v a,:r= fdV, [f]s aa= fdS, [f] , fdS, fdS. (6)
dSd

If f and g are vector functions, and p and q tensor functions, their inner product over V is
denoted in the usual manner:

f _'fv =fv p''q'jdV" (7)( ,g)v = fy, dV, (p,q)v a'r

and similarly for surface integrals, in which case square brackets are used.

2.3. Stress and strain vectors

To facilitate the construction of variational matrix expressions, stresses and strains

will be arranged as 6-component column vectors constructed from the tensors 0-u and e_j
following the usual conventions of structural mechanics :

0-tl ell

0"22 e22

0"33 e33
a_ ,t , e_--- <

az2 2e_2

0-23 2e.,3

0-31 2e31

(8)

Then (a,e)v = (0-ueu)v = (are)v, and so on. Similarly, fourth-order constitutive tensors

such as E, jkl are arranged as symmetric 6 × 6 matrices (resulting from their restriction to

the space of symmetric stress-strain tensors) in the usual manner.

3. STRESS-STRAIN SPLITTINGS

For incompressible materials, in which div u = tr Vu = u_.,= 0, the stress-strain

relation (2) only holds in the space of traceless strain tensors, and its inverse does not exist.

With a view to including both compressible and incompressible elasticity in the variational

v,':ziples, some general splittings of the strain and stress fields are studied below. Define

(actual) pressure p and total strain condensation (negative of the volumetric strain) 0 as

p = - [ tr a = - _(0-_,+0-:, +0-13)

0 = -tr e = - (e_ +e22 q-e33 ) = -div u. (9)

Throughout this paper it shall be assumed that the material is volumetrically isotropic in
the sense

p = kO, (10)
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where k > 0 is the modulus of compression (one third of the bulk modulus K). In the

incompressible limit, k --* co.

3.1. Parametrized split:rag

A family of stress--strain splittings considered here is

a o = s(_)i,-_pfij, eis = gOD,j- t3tlOf,s, (11)

where 6ij is the Kronecker delta, and ¢ and r/are scalars in the range [0, 1] that determine

the splitting. If _ = 0, _(0)_j -- %, whereas if _ = 1, s(l)i/reduce to the usual deviatoric

stresses sq and the argument _ will be omitted. If_ = 0, g(0)is = %, whereas if_ = 1, g(1)q

reduce to the usual deviatoric strains g_, and the argument rl will be omitted.

Using the matrix notation (8) for strains and stresses, (1 I) is represented as

o = s(_)-_ph, e = g0D--q0h, (12)

where h is the 6-component column vector:

h= {1 1 1 0 0 0} r. (13)

Note that hrh= 3, ha= tra=-3p, hre =tre =-0, hrs(_)= trs(_)=-3(l-_)p,

hrg(q) = tr g(q) = -(1 -q)O, and hrs = hrg = 0.

3.2. Constraints on _ amt q

Parameters ¢ and r, are not independent but chosen so that s(¢) and g(rl) are connected

by an invertible "deviatoric'" constitutive equation

s(_) = Cg(rl) or s(_),,. = C,,klg(r/)k/, (14)

where C is finite and nonsingular. This condition is assumed to hold if _ = r/= 1 for any

material. For other vah,es the choice is possible if the material is fully isotropic because, if

this is so, (2) may be written [see e.g. Section 22 of Gurtin (1972)]:

a, i = 2#e,, + ;.ek, or a = 2_e- 20h, (15)

where # and 3. are the i..am6 coefficients (# is the same as the shear modulus G), so that

C = 2gI. Furthermore, It, 2 and k are related to the elastic modulus E and Poisson's ratio

v through

_ ).( 1 -- 2v) E
k = 2(1 +v) E - {(3,;.+2#), # = 2v = _,(k-2) = _ (16)

3v 3(I-2v) " - 2(1+v)"

Substituting these relations into (15) and (14) one obtains the relation

(l+v)_-(1-2v)_=3_. (17)

The pair _ = q = 1 sati,_fies this constraint for any v. If _ _ 0.5, specifying 0 <_ _ < I or rt
determines the other ; for example if r/= 0, _ = 3w(l + v). If the material is incompressible,

i.e. v = 0.5, ¢ = 1 regardless of the value of q.

3.3. Deviatoric splitting

The usual deviatoric stress-strain splitting is obtained by taking _ = q = 1 :

o=s-ph, e=g-_0h. (18)

As noted above, this choice satisfies the condition (14) for isotropic or anisotropic materials.
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3.4. Lamb splitting
The Lam6 splitting for isotropic materials--so called because of its intimate relation-

ship with the constitutive form (15) that displays the two Lamb coefficients--is obtained if
rt = 0 so that g = e. Then ¢ is chosen so that • = s(O = 2_e :

3v

a = Ce - _ph = 2#e - _ ph = t- qh.
(19)

In the literature q ffi _p is called the pseudo pressure whereas z = s(_) = 2#e = Ce is called
the extra stress, although a better name would be pseudo deviatoric stress. In the incom-
pressible limit, pseudo pressure q and ext,a stress z reduce to ordinary pressure p and
deviatoric stress s, respectively.

Although the Lain6 splitting may in principle be extended to anisotropic materials, par-
ameter _ then becomes a matrix : I- (3k)- _C, which complicates derivations substantially.

The same is true of (12) unless _ ffi rl = 1. It follows that splittings other than (18) are of
limited value for non-isotropic behavior.

4. THE GENERALIZED STRAIN ENERGY

The variational principles of linear elasticity studied here have the general form

n = u-e. (20)

Here U is the generalized strain energy, which characterizes the stored energy of defor-
mation, and P is the forcing potential, which characterizes all other contributions. The
conventional form of P is

P" = (b, u),+ [u-d, ¢,]s,+ [_, a]s,. (21)

Two other forms of P, which are of interest in hybrid finite element formulations, called pa
and P' for displacement-generalized and traction-generalized, respectively, are studied in

Felippa (1989a,b,c) and Felippa and Militello (1989, 1990). As this term is not affected by
material behavior, attention will be focused on U.

For a compressible material, the generalized strain energy introduced in Felippa and
Militello (1989, 1990) has the following parametrized structure :

U = ½j,,(b,e')v+j,2(b,_)v+jt3(b, eU)v+ _j2:(¢',_)v+j23(a_,e_)v+ [/33(o",e")v, (22)

where j,, through J33 are numerical coefficients. The three independent fields are stresses _,

strains _ and displacements 6. Following the notational conventions stated in Section 2, the
derived fields that appear in (22) are

¢'=E_, o _=EDfi, e"=E-'8, e_=D/i. (23)

As an example, the U of Hu-Washizu's functional is obtained by setting jr 2 = - l,j, _ = I,
J22 = 1, all others being zero :

U.(_,_,fi) = ½(_,_)v+ ½(_,e_-_)v+ ½(a_-a_,e')v = ½(_r',_)v+(_,e_-_)v. (24)

Equation (22) can be rewritten in matrix form as

l    TrJzij2ij3 f:t
,ram j33I_1 !.e_J

where I denotes the 6 x 6 identity matrix. The functional-generating symmetric matrix (to
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L/L_(¢, e )v+ L/13(e ,o_)v, and sojustify the symmetry note, for example, thatj,3(b, e_)v --= i • - _ i •

on)

,, j,2 J,_]
J3 = J,2 J22 J23/

/
,3 j23 J33J

(26)

is seen to fully characterize (22) hence, once the forcing potential P is selected, the functional

(20). The subscript of J identifies the number of independent parameters, as shown below.

On replacing (23) into (22), U may be expressed in terms of the independent fields as

fv _blrrJL rE- t j,2I1 le_ / j,21 j22EU=_
LfiJ Ljj3D r j23DrE

J:'3 ED V,
J33 D rED-l tfi)

(27)

which verifies the symmetry of J3. Using (27) the first variation of U may be presented as

6 U := (Ae, fib) v + (Aa, 6_) v - (div o', 66) v + [_,, 66]s, (28)

where

Ae := j,je _ +j,26-t-jt3C, Ao" = ja2b+j22o_+j23 O'_,

tr' = j,3_'+j23a" +j33aL (29)

The last two terms in (28) combine with contributions from the forcing potential variation.

For example, if P is the conventional forcing potential (21), the complete variation of
ll c = U-pc is

6I-Y = (Ae, cSb).+(Ao,6_)v-(div a" +b,<SfOv+[#_-i,_6]s,-[f_-a,66.]s_. (30)

Using pd or P' does not change the volume terms. Consequently the Euler equations
associated with the volume terms of the first variation

Ae=0, Ao=0, divo'÷b=0, (31)

are independent of the forcing potential.

For consistency of the Euler equations with the field equations (1)-(3), one must have

Ae = 0, A¢ = 0 and ¢r' = ¢ if the assumed stress and strain fields reduce to the exact ones.

Therefore

jtt+j,2+Jt3 =0,

J12+J22+J23 = 0,

J,3 +J23 +J33 = 1. (32)

Because of these constraints, the maximum number of independent parameters that define

the entries of J3 is three as claimed. The specialization of these functionais to conventional

and parametrized forms is discussed in Felippa and Militelio (1989, 1990).

5. SPLIT FORM OF GENERALIZED STRAIN ENERGY

The expression (22) for U is not suitable for incompressible materials. To construct a

parametrized form that encompasses incompressibility the generalized strain energy is
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augmentedwithadditionalindependentfields,oneof whichmustbethepressure.There

are several ways of accomplishing this objective. Here the starting point is the conventional

deviatoric splitting (18) and construction of an augmented generalized strain energy Ua_

(subscripts stand for "deviatoric split") in terms of the five independent fields g, fi, il. ,6 and

6Y Using (25) as a "template" the following quadratic form is postulated

s

sg

su

P

pO

-jT,! jl_,l j,fl j,4h jtsh j,6h"

j2tl j2:I j_,fl j24h j2_h j26h

j31I j32I jx3l js4h jssh js6h

j4,h r j42h r j43 hr j44 j4s j46

jslh r js,_h r j53h r Js, j55 J56

j6th r j6zh r j6sh r j6.t j6s J66

p o

g_

0p

g

0u

• dV, (33)

in which the derived fields are

g_=(D-_hdiv)6=Dq6, ff=C-_g, 0p=k-':, 0 r= -dive,

_=C_, su=Cg _=CDofi, pO=kff, p_=kO _= -kdivfi. (34)

The kernel matrix of the quadratic form (33) is now 21 × 21 and is characterized by the 36

j coefficients. Unlike the treatment in Section 4, coefficient symmetry conditions are not set

ab initio. Substituting (34) into (33), C_ may be expressed in terms of the five independent

fields as the quadratic form

fi

P

jll c-I

j:ll

]3 tDr+j6t k grad hrC - l

j41hrC-i

jsikhrC - 1

j_ 3Og +j_ 6h div

j23CD_t +jz6Ch div

Drc(j3_D_ +j3_h div)

+k grad (j63hrD_ +j66 div)

j43hrD_ +j46 div

j53khrD_ +j56k div

jl,_l

j,:C

jszDrC +j62k grad h r

j,2h r

js,_kh r

j_k-lh

j,_4k- t Ch

jsak- 'D_Ch +j64 grad

j 44k - '

j54

j,sh

jzsCh

J35 D_Ch +J65 k grad

j45

j55k

dZ (35)

in which

grad -= div r = [g/Ox, 6/Ox,. 0/_3x3} r

when applied to a scalar function. The kernel matrix in (35) must be symmetric, a condition

that provides the following symmetry relations :

j.,.=j,m, m= 1,2,3 n= 1,2.3 j,,.=__ .... m=4,5,6 n=4,5,6

j,,,,l =_,,k _C. m=4,5.6 n= 1.2.3. (36)
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If these conditions are imposed on (33) that kernel matrix becomes

jill jl21 jl3I jl4h j_sh jt6h-

jl2I J221 j23l j24h j:sh j26h

jl3l J321 j331 j34h j3sh j36h

/|4k-ZCh r j24k-ICh r j34k-ICh r ./44 j45 j46

/15k-ICh r j25k-ICh r j3sk-tCh r /45 J55 j56

/16k-_Ch r jz6k-tCh r j36k-ICh r /46 j56 J66

63

(37)

This is fully characterzed by the 6 x 6 functional-generating symmetric matrix

jL, J,2

),2 J.'2

at,. = :,3 J:3
Jl,_ j:4

Jr5 J:5

116 J26

j13

J23

J33

j34

J35

j36

j14

j:4

j3a ]35

j44 I45

ja5 ./55

j46 .156

Jr5 JJ6

/25 J26

J36

J46

J56

J66

(the J subscript denor.es the number of free parameters, as

matrix of (35) becomes

(38)

explained below). The kernel

jllC -t jlzl

j22C

symm

Jt 3Dg -Jl 6h div

jz3CDg -j_,6Ch div

j _3DrCD_ +jrok grad div)

-a _6(DrCh div + grad hrCD_)

jl4k- th Jl 5h

i24k- lCh j25Ch

j34k- 'DrCh j, sDrCh

-j4o grad -j56k grad

j,,k-t j45

j55k

(39)

The first variation of (35) is

6 Ud_ = (Ag, 6g) v + (As. a_), .... (div a', aft) v + (A0, aft) v + (Ap, 6if) v + [a;, aft]s,

where

(40)

Ag=

As =

O "t

AO=

Ap=

j, ,g_ +j, 2_+j, 3g_ + h(j_4O p +j, sg+j, 60" 1,

jt 2g+J2,g_ +j23 Su "l- Ch{ j,.4O p +j25ff+j260_),

J135 +J'. _sg +j33 su + B(J3aO p +J3 s0 +j36 Ou )

+ hhr(j_ _,.s+J26 S'j+J3 6S_) -- h(j46p +j56p _'+j66P u)

j135+j2 _s_ +J33 Su q- B(j340 p +j350 +j360" )- h(j4op+j56p ° +j66P_),

hrk-I(j, 4s+j2as 'q +j3as _) +j44 Op +jasff+j46 Ou = ja,O p q'-jasffq'ja6O u,

hr(jj sg _-j:ss _ +j35s") +jasff +j55p ° +jsrP" = J, sff +JssP ° +js6P" (41)

where B = (I-_hhr)Ch. and the simplifications in tr', A0 and Ap result from

hrs = hrs'= hrs"= 0 since the deviatoric stress tensor is traceless. Applying again the

consistency argument and noting that mean and deviatoric parts may vary independently,
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one obtains the constraint conditions

j_l÷J12+J13=O, jl4+jz_+jt6=O,

j24+J25+J26 =0, j13+j23+j33 = 1,

j46 +Js+ +J6+ = 1, j,, +J45 +j46 = 0,

Jlz+J22+j23 = O,

j34 +j3s +j36 = 0,

j45 +j55 +J56 = 0. (42)

Because of these nine constraints the maximum number of independent parameters that
define the coefficients of matrix (38) is 21-9 = 12 as claimed.

6. SIMPLIFICATIONS

Having a oo 12family of functionals for constructing approximation methods such as
finite elements leaves the selection wide open. In the absence of other information it appears

prudent to reduce the number of free parameters by setting all coefficients that couple mean
and deviatoric quantities equal to zero :

J6 --"

Jll j12 J13 0 0 0

J12 j22 J23 0 0 0

J13 jJ2 J33 0 0 0

0 0 0 j44 J'5 J,6

0 0 0 j45 J55 J56

0 0 0 j,6 j_6 J66

(43)

subject to the constraints that the row (and column) sums be 0, 0, 1, 0, 0 and 1
respectively. This simplified form exhibits six independent parameters.

The next question is how to include exact incompressibility, for which k --. _. A study
of the matrix (39) reveals that the only coefficients affecting terms multiplied by k are J_5

and j66. One solution would be to take J_5 =j'55/k, and J66 =J'_6/k with the primed
coefficients as source data. A more expedient solution is to set those coefficients to zero,

J4

which reduces (43) to

Jr1 Jr2 Jl3 0 0 0

jl2 J2"- j23 0 0 0

jl3 J32 J33 0 0 0

0 0 0 26o-1 -co l-co

0 0 0 -e_ 0 co

0 0 0 l-co co 0

(44)

where co is a free parameter that determines the lower 3 x 3 principal minor. The total
number of parameters is reduced to four, just one more than in compressible elasticity.

Thus the following practical rule emerges : any compressible-elasticity principle characterized
by the coefficients (26) can be extended to embody incompressibility by modifying U as
follows:

(a) Replace a and e by s and g, respectively. (In fact, only the first modification is
actually needed, since srg = sre, etc.)

(b) Add the pressure and volumetric strain terms characterized by the lower 3 × 3

principal minor in (44). If co is zero the volumetric strain drops out as independent field
and the additional terms reduce to

_(:,O"-O')v+ !(p_.OP)v= - _-_+/_divfidV. (45)

Furthermore, in exact incompressibility only the term -,6 div u survives.
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7. LAME SPLI'I-I'ING

Consideration o( the Lam_ splitting (19) is of interest because of historical reasons,

since the first mixed principle encompassing compressible and incompressible elasticity con-

structed by Herrmann ( i965) was based on it. Again one can start by postulating a quadratic
form for the generalized strain energy U,s (where subscripts stand for "Lam_ split") :

qO

. qU

1"

lltl

121|

13tl

/41hi"

lslh r

161hr

1,2I 113I ll4h llsh ll6h-

l,.:I 12fl 124h 125h 126h

1321 133I 134h 135h 136h

14:hr 143hr 144 145 146

/5:hr 153h1" 154 155 156

/62hr 163hr 164 165 166

"e']

e_ [
' _"d V, (46)

in which the l's coefficients take the place of thejs, and where the new terms are

:=¢-qh, t "=C_, t_=CDu, {=3v/(l+v),

'i={ff, qe={:.g, q.= _{2div6, 0q=q/2. (47)

Going through the same mechanics one obtains relations similar to (35)-(40) with s, g, p,

k and Dg replaced by t, e, q, _.and D, respectively. But now hrt is not necessarily zero and
consequently the counterpart of (41) retains more terms"

Ae = 11te' + Ii ze+ll 3C +h(lt40 q+ Ii 5if+ 1160_),

At = llz_ +l,2_ _+l.,3t w +Ch(1240 q +125ff+1260"),

a' =/t 3C"+ 123r" -+-133r"+ Ch(/340 q+/35 0 + 136Ou)

+ hhr(ll 6 "_q-[26 "Ce +/36"L"u)-- h(146p + 156p0 + 166Pu)

AO := hr;. - I(It4"c+124"_e+134_'U)+la40q+145ff+1460_ ,

Aq ==hr(lt 5_+ 12:" + 135t_) +/45q+ lssq ° + ls6q_. (48)

Consistency with the tield equations provides the twelve constraints

Iii +lt2+ll3 = O,

124+lz5+126 =0,

1t6+1_6+/36 =0,

144+/4_+146 = O,

lt4+lls+lt6 =0,

I1_+123+133 = 1,

146+l_6+166 = I,

l_5+12_+l_ = O,

1_2+122+l_ 3 =0,

1_4+135+1_6 = 0,

lt4+124+13_ =0,

14_+l_+1_6 = O. (49)

This leaves 21- 12 = 9 independent parameters in the functional-generating symmetric

L 9

matrix

- 11_ l_: Ii3 114 115 Ii6"

l_: 122 123 124 125 126

l_ 123 l_ 134 /35 136

l_a 124 134 144 i4_ /46

l_ l:5 135 145 155 156

/16 /26 /36 146 /56 /66

(50)

If the off-diagonal blocks of this matrix are set to zero as in (43), L 9 becomes L_ and the
conditions on the remaining nonzero coefficients are identical to those of d_.
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Treatment of the more general splitting (12) with q # 0 does not cause any particular

difficulties. However, as splittings other than (18) do not accommodate anisotropic
materials naturally, they will not be investigated further.

8. SPECIALIZATIONS

The simplest principle (in the sense of having the most sparse 3 matrix) that accom-

modates both compressible and incompressible elasticity is obtained by specializing (44) to

"0 0

0 0

0 0

Jp= 0 0

0 0

0 0

o o o
0 0 0 0

l 0 0 0

0 -1 0 1

0 0 0 0

0 l 0 0

(51)

This choice leaves only displacements and pressures as independent field variables and
yields

Up(u,P) = ½(s_,g_)v-(',-_ +'vd)v f ½(s_,eU)v-(_k +,divfl)v, (52)

which may be viewed as a modification of the minimum potential energy functional. For

practical use it is important to note that ga may be replaced by eu in the first integral since
tensor s_'jis traceless. In the incompressible limit Up collapses to ½(s_,e_)v-(/_, div u)v.

The specialization

JAR

0 -1 I 0 0 O"

--1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 -1 1

0 0 0 --1 1 0

0 0 0 1 0 0

(53)

reduces Ua,-P to the five-field functional presented by Atluri and Reissner (1989; in that
paper p and 0 are defined as the negatives of the quantities used here). Notice that since

both 3 x 3 principal minors of .I_R display the Hu-Washizu structure of compressible
elasticity, use of (24) yields

U,4R = Un (_,i,/i)+ Un (_h,ffh,O_h)= 12(s',_)v+ (s,g_- g)v+ ½(pO,if)v+ ff(O_- if)v, (54)

in which again g_and i may be replaced by e_ and _, respectively. As j55 # 0, this functional
does not accommodate exact incompressibility. This drawback can be easily corrected,
however, through the techniques discussed in Section 6.

Finally, speciahL_.L,n of (50) to

t H

0 0 0 0 0 O

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 -1 0 1

0 0 0 0 0 0

0 0 0 1 0 0

, L_ =

0 --1 1 0 0 0"

--1 1 0 0 0 0

I 0 0 0 0 0

0 0 0 --1 0 1

0 0 0 0 0 0

0 0 0 I 0 0

(55)
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reduces the functional U ,-P to those presented by Herrmann (1965) and Franca (1989),

respectively ; which are identified as U,- P and UF- P in the sequel.
Herrmann's functio _al. which as noted above has historical importance, contains two

independent fields : displ._cements u and pseudo pressure q. Its U functional is

U.(u'q) = l'('c",e") -( [12 ). v _-_ +4 div fi _.
(56)

The upper and lower 3 >: 3 principal minors of Ln display the structure of the minimum

potential energy and stre_s--displacement Reissner compressible elasticity functions, respec-

tively.
Franca's functional contains four independent fields: extra stress 3, total strains e,

displacements u and pseudo pressure q. Its U functional is

4-' )Ur(_,_ fi, q) = i,(_',_)v+(LC-6)v- _-_+qdivfi
- , V"

(57)

The upper and lower 3 × 3 principal minors of L¢ display the structure of the Hu-Washizu

and stress-displacement R.eissner compressible-elasticity functions, respectively.

9. CONCLUSIONS

The parametrized fc,rmulations presented here extend the parametrized functionals of

Felippa and Militello (1989, 1990) to accommodate incompressibility. In doing so a wider

and perhaps bewildering range of possibilities is encountered, which raises some questions

as regards the usefulness of functional parametrization techniques.

The formulation of parametrized variational principles offers conceptual and practical

advantages. From a conceptual standpoint the technique is intellectually satisfying in that

all possible variational forms are obtained once and for all. This should be contrasted to

the conventional case-by-case derivation, which can only take "potshots" at the infinite

domain of possible functionals. The key practical advantage is that generating matrix

coefficients may be left tree in finite element application:; down to the element level, and

used to enhance the qt_ality of the numerical approximations as discussed in Felippa

(1989a,b,c) and Felippa md Militello (1989, 1990).

However, coming face to face with twelve free parameters as in Section 5 may be

confusing and negate the: claimed benefits of generality. The simplifications of Section 6

appear reasonable from an applications standpoint because: (l) they cut the number of

independent parameters _hile retaining flexibility in the weighting of the participating fields,

and (2) all important specific functionals proposed to date are still covered.

Finally, the simplicity and generality of the functionals based on the deviatoric splitting

(18) should be kept in mind. It is difficult to understand why the finite element literature is

still preoccupied with the Lame splitting and associated functionals. Not only is this splitting

unnatural for anisotropic materials but note that associated functionals such as (56) and

(57) degenerate for,;. = 0, which happens if v = 0. At this value, _ = 0, q vanishes identically,

and 0/0 terms requiring special treatment appear in U. As -'tzero Poisson's ratio is physically

realizable the claim to generality of application, even with restriction to isotropic behavior.

is seriously weakened.
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SUMMARY

The subject of the patch test for finite elements retains several unsettled

aspects. In particular, the issue of one-element versus multielement tests needs

clarification. Following a brief historical review, we present the individual ele-

ment test (IET) of Bergaa and Haaassen in an expanded context that encompasses

several important classes of new elements. The relattonship of the IET to the

multielement form_ A, B and C of the patch test and to the single element test

axe clarified.

1. BACKGROUND

The patch test for convergence is a fascinating area in the development of

nonconforming finite element methods. It grew up of the brilliant intuition of

Bruce Irons. Initially developed in the mid-1960s at Rolls Royce and then at

the Swansea grouic, headed by Olek Zienkiewicz, by the early 1970s the test had

became a powerful and practical tool for evaluating and checking nonconforming

elements. And yet r.oday it remains a controversial issue: accepted by most finite

element developer:_ while ignored by others, welcomed by element programmers,

distrusted by mat!mmaticians. For tracing down the origins of the test there is

no better source t:aan a 1973 survey article by Irons _md Razzaque [12]. Added

remarks to the quoted material are inserted in footnotes, and reference numbers

have been altered to match those of the present paper.

Origins o.( the P,Ttch Test

In 1965 even engineering intuition dared not predict the behavior of certain finite
elements. ExperJence force those engineers who doubted it to admit that interelement
continuity was important: the senior author I believed that it was necessary for con-

vergence. It is not known which ideas inspired a numerical experiment by Tother and
Kaput [25], which demonstrated convergence within 0.3_ in a biharmonie problem

of plate bending, using equal rectangular elements with 1, z, y, z 2, zy, y2 y2, z3
2 2 3 3 3

z y, zy , y , and z y and zy , as functional basis, The nodal variable of this Ari
Adini rectangle ill are w, Ow/Oz and Ow/Oy at the four corners, and this element
guarantees only (7 ° conformity.

a Bruce Irons
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Some months later, research at P,olls_Royce on the Zienkiewicg nonconforming

triangle [2], -- a similar plate-bending element 2- clarified the situation. Three
elements with C _ continuity were simultaneously available, and, because the shape
function subroutine used for numerical integration had been exhaustively tested, the

results were trustworthy. It wu observed: (a) that every problem giving constant
curvature over the whole domain wu accurately solved by the conforming elements

whatever the mesh pattern, as was expected, and (b) th_ the nonconforming element
was also successful, but only for one particular mesh pattern. 3

Thus the patch test was born. For if the external nodes of any sul>-_embly
of a successful assembly of elements are given prescribed values corresponding to an

arbitrary state of cormtant curvature, then the internal nodes must obediently take
their correct values. (An internal node is defined a8 one completely surrounded by
elements.) Conversely, if two overlapping patches can reproduce any given state of

constant curvature, they should combine into a larger successful patch, provided that
every external node lost is internal to one of the original patches. For such nodes are
in equilibrium at their correct values, and should behave correctly as internal nodes of

the extended patch. In an unsuccessful patch test, the internal nodes take unsuitable
values, which introduce interelement discontinuities, The errors in deflection ma.y be
slight, but the errors in curvature may be +20_0. We must recognize two distinct

types of errors:

(i) The finite element equations would not be exactly satisfied by the correct
values at the internal nodes -- in structural terms, we have disequilibrium;

(ii) The answers are nonunique because the matrix of coefficients K is semidefi-
site.

Role of the Patch Test

Clearly the patch test provides a neceesarV condition for convergence with fine
mesh. We are less confident that it provides a s_.O_cie_t condition. The argument
is that if the mesh is fine, the patches are =dso small. Over any patch the correct

solution gives almost uniform conditions to which the patch is known to respond
correctly -- provided that the small perturbations from uniform conditions do not
cause a disproportionate response in the patch: we hope to prevent this by insisting
that K is positive definite.

The patch test is invaluable to the research worker. Already, it has made re-
spectable

(i) Elements that do not conform,

(ii) Elements that contain singularities,

(iii) Elements that are approximately integrated,

(iv) Elements that have no clear physical basis.

In short, the patch test will help a research worker to exploit and justify his
wildest ideas. It largely restores the freedom enjoyed by the early unsophisticated
experimenters.

The late 1960s and early 1970s were a period of unquestionable success for

the test. That optimism is evident in the article quoted above, and prompted

Gilbert Strang to develop a mathematical version popularized in the $trang-Fix

textbook [21].

Confidence was shaken in the late 1970s by several developments. Numerical

experiments, for example, _hose of Sander and Beckers [20} suggested that the

test is not necessary for convergence, thus disproving Irons' belief stated above.

2 This element is that identified by 'BCIZ' in the present paper

The bending element test referred to in this sentence appears in the Addendum to
[2]. This Addendum was not part of the original paper presented at the First Wright-
P;_tterson Conference held in September 1965; it was added to the Proceedings that

appeared in 1966. The name "patch test" will not be found there; see the Appendix of
[21] for further historical details.
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Then a counterexanxple by Stummel [22] purported to show that the test is not

even sufficient. 4 Tills motivated defensive responses by Irons [13] shortlybefore

his untimely death, and by Taylor, Simo, Zienkiewicz and Chart [24]. These

papers tried to set out the engineering version of the test on a more precise

basis.

Despite these ruminations many questions persist, as noted in the lucid

review article by Griffiths and Mitchell [11]. Some of 1hem are listed below.

Q1. What is a patch? Is it the ensemble of all possible meshes? Are some

meshes excluded? Can these meshes contain different types of elements?

Q2. The test wa_. originally developed for harmonic and biharmonic compress-

ible elasticity problems, for which the concept of "constant strains" or

"constant curvatures" is unambiguous. But what is the equivalent con-

cept for shells? Even Reissner-Mindlin plates (which lead to the so-called

C o elements) pose difficulties.

Q3. What are tile modifications required for incorapressible media? Is the

test applicable to dynamic or nonlinear probleias?

Q4. Are single-element versions of the test equivalent to the conventional,

multielement versions?

Q5. Is the test restricted to nonconforming assumed-displacement elements?

Can it be extended to encompass assumed-stress or assumed-strain mixed

and hybrid ,.'lements? (For initial attempts in this direction, see [10])

The following treatment is aimed primarily at an:;wering the last two ques-

tions. No position as to the mathematical relevance of the test is taken.

2. THE INDIVIDUAL ELEMENT TEST

Because of pre,:tical difficulties incurred in testing all possible patches there

have been efforts directed toward translating the original test into statements

involving a single eLtement. These will be collectively called one-elemenf, f_e.*f;.s.

The first step along this path was taken by Strang 121], who using integration

by parts recast the _riginal test in terms of "jump" contour integrals over element

interfaces. An updated account is given by Griffiths and Mitchell [111, who

remark that Stran_g's test can be passed in three different ways:

JCS: Jump integrals cancel over common sides of adjacent elements (e.g. De-

Veubeke's 3-midside-node triangle, Morley's plate elements).

JOS: Jump integr_ds cancel over opposite element sides (e.g. Wilson's incom-

patible pla_e rectangle [26]).

4 Stummel has col,structed [23] a generahzed patch test tha_ is mathematically impeccable
in that it provides necessary and sufficient conditions for convergence. Unfortunately
such test lacks important side benefits of Irons' patch test, such as element checkout by
computer, because it is administered as a mathematically limiting process in function
spaces. Furthermore, it does not apply to a mixture of different element types, or to
situations such _.'_a side shared by more than two elements.
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JEC: Jump integrals cancel over the element contour (see examples in [11]).

Another important development, not so well publicized as $trang's, was

undertaken by Bergan and coworkers at Ttondheim over the period 1975-1984.

The so called indiridual element test, or IET, was proposed by Bergan and

Hansse_ [4] in 1975. The underlying goal was to establish a test that could be

directly carried out on the stiffness equations of a single element -- an obvious

improvement over the multielement form. In addition the test was to be con-

structive, i.e., used as an a pr_0ri guide during element formulation, rather than

as a post-facto check.

The IET has a simple physical motivation: to demand pairwise cancellation

of tractions among adjacent elements that are subjected to a common uniform

stress state. This is precisely the 'JCS' case of the Strang test noted above.

Because of this inclusion, the IET is said to be a strong version of the patch test

in the following sense: any element passing the IET also verifies the conventional

multielement form of the patch test, but the converse is not necessarily true.

The IET has formed the basis of the free formulation (FF) later developed by

Bergan and Nyg_rd [6]. It has also played an important part in the development

of high performance finite elements undertaken by the authors [7-9,15-18].

In an important paper written in response to Stummel's counterexample,

Taylor, Simo, Zienkiewicz and Chan [24] defined multielement patch tests in

more precise terms, introducing the so-called A, B and C versions. They also

discussed a one-element test called the "single element test," herein abbreviated

to SET. They used the BCIZ plate bending element [2] to show that an element

may pass the SET but fail multielement versions, and consequently that tests

involving single elements are to be viewed with caution. In what follow we try to

clarify this apparent contradiction and to establish precisely what the individual

element test entails. In particular it is sho_on that the lET contains ,_ cruci,_l

condition tha_t the SET lacks, and that the two tests are not therefore equivalent.

Furthermore, we extend the IET to conditions beyond those considered by

Bergan and Nyg_rd by including elements with unknown internal displacement

fields. The most important sources of such elements are: stress-assumed hy-

brids, and elements constructed through the assumed natural strain (ANS) and

assumed natural deviatoric strain (ANDES) formulations.

3. ASSUMPTIONS FOR ELEMENT CONSTRUCTION

Suppose that we want to test an individual element of volume V and bound-

ary S with exterior normal n. The element satisfies the following assumptions.

A1. The element shares displacement degrees of freedom, -lV,_cted in v (the so

called visible degrees of freedom) with adjacent elements. The boundary

displacement field d is uniquely determined by v as

d = Nay, (1)

where Nd are boundary shape functions.
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The term "botmdary displacement field" is meant to include norms] derivatives (side
rotations or slopes) in bending problems. More generally, in a problem governed by a
v_riational principle of index m > 1. d includes normal derivatives up to the (m - 1)ah
order.

This ,,_umption says nothing about the internal displacement field u. In free-
formulation elements u is known and agrees with d only at the nodes. In the ANS
[3,14,19,] and _NDES [8,9,17,18] formulations, u is unknown because the deviatoric
strain field eh _ntroduced in A2 below is not generally mtegrable.

A2. The strain fi_qd e within the element is expressible as

A3.

A4.

c = By, (2)

which admit; the following decomposition into mean and deviatoric parts:

e = e+eh = By+ BhV = (B _- Bh)v, (3)

where

= ._ E dV, _h = _ - e. (4)

We note tha:

vBh dV = O, /v ABh dV = 0. (5)

in which A i._,an arbitrary matrix constant ovez the element.

Subscript h stmds for "high order." The strain field e_, is not generally integrable,
that is, a.ssoci.ble with an internal displacement field u such that eh = Du, where
D = _(V - _r) is the symmetric vector gradient operator. On the other hand, the
mean strain field _, being constant, is integrable, as discussed under assumption A4.

Suppose the element is under a constant stress state o'0. Then a nodal

force system P0 conjugate to v in the sense of virtual work develops.

These forces axe connected to v through the relation

t

= L_r0, L =/s Na_ dS, (6)
P0

where L is crlled the force lumping mairix and Na, denotes the projection

of the shape functions Na over the normal to the element side.

Matrix L was introduced by Bergan and eoworkers in their studies leading to the free

formulation [5.{;], and plays a crucial role in the individual element test.

The const,'m', stress field O'o is associated with a given displacement field

called urc. s_ch that the associated strain and _,;tress fields are

i" = D(u,e), o ° = Et ", (7)

where E is _he symmetric matrix of elastic moduli, assumed constant

over the eler_,ent. This constitutive assumption excludes incompressibil-

ity, which m_.,st receive special treatment.
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Field u,c cannot be immediately linked to v because it spans a subspace

of the possible boundary motions. We must start by expressing u,c in

the modal or generalized-coordinate form

u,.c = N_cq,-c, (8)

where N_c are modal functions and q,c their amplitudes. The projection

Vre of Ure OVer the space of boundary motions spanned by v can be most

easily obtained by collocation, that is, evaluating u,c at the nodal points.

This process yields

v_c -- G,'cqrc, (9)

in which Gre will generally be a rectangular matrix with more rows than

columns.

Subecripts r and c mean that u,e is supposed to include rigid-body and constant-
strain modes. In mathematical terms, urc is • po|ynomial of degree m - 1 when the
variational index i_ m.

4. THE STIFFNESS MATRIX

Under the previous assumptions, the stiffness matrix is given by

K =/v BrEBdV' (10)

Using the strain decomposition (3), K splits as follows:

(i1)
because of the energy orthogonality condition

v BrEBh dV = O, (12)

which results on taking A = BYE on the second of (5). Matrices Kb and K_

receive the name of basic stir'heSS and higher order stiffness, respectively.

5. FIRST CONDITION: CONSTANT STRAIN STATES

Bergan and Nyg£rd [6] state two constraints for FF elements, which taken

together represent the satisfaction of the IET. The first one is

Kvrc = L#o, (13)

which is essentially an equilibrium stater.._.,_ at the element level. Premuitipiy-

ing (13) by vTc we get v_Kv_,T = v_,La'0, which on introducing (9) and (ll)

becomes

T T --T -- T G T T Tq_¢Gr_B EBG_q_V + q_ _KhG_q_¢ = q_G_Lcr0. (14)
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If werequestthatKhcannotcontributetotheinternalenergy under a constant

T fv BhEBh dV,strain state we must have GrcKhGr c = 0, or, since Kh :

BhGr¢ = 0, (15)

This may be calk'd the higher order strain cancellation condition. Taking into

account that _r0 --: EB_cqr c, where Bqrc = D(N_c), the above equation becomes

BrEBG_c = V -_ LEB_c. This can be split into _T = V_ 1L and BG_c = B_¢.

Replacing the former in the latter we obtain

V -] LTG_c = B_. (16)

These conditions were introduced by Bergan and NygLrd [6] in the context of

the free formttlation. They state that equation (16) should be used to check

that the matrix I, is correct. Then (16) is the first consistency constraint on L.

Equations (15) _ld (16) are necessary in 9r4er that a single element, which is

in equilibrium, be capable of copying a constant strain state. To prove that they

are also sufficient conditions is straightforward.

An important consequence of (16) can be investigated as follows. Rewrite it

as V -1 LTGrc q_= = Du_¢. Multiplying both sides by or0r and integrating over

the element volume we obtain

°'[LTGr_ q_' = fv _[Du_ dV. (17)

Integration by parts of the right hand side yields

a'°TLTG'= q_" = °'°7"fs N,, dSq,.e, (lS)

where Nu, are t 3e the projections of the modal functions over the normal to

the element side. From the definition of L in (6) we conclude that

/sNr. dSGrcqrc = _ N..dSq_c. (19)

This result may be stated as follows: the force lumping produced by the bound-

ary displacement field should be energy consistent (in the sense of virtual work)

with _hat produ_:ed by the displacement field u_ over the element side. Al-

though B_c is unique for a given problem, since Grc is generally a rectangular

matrix, equation (16) clearly shows that L is not necessarily unique. Examples

that illustrate this property may be found in [17]. L is unique for simplex el-
ements where we have the same number of nodal connectors v and re-modal

amplitudes q_c, because in this case Grc is square and non-singular. For these

elements the total and basic stiffness matrices coalesce. An obvious example is

provided by the (onstant strain triangle (CST).
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o.
J

Figure 1: A common side i - j shared by two elements

6. SECOND CONDITION: PAIRWISE FORCE CANCELLATION

Quoting from [4]: "The basis for the individual element test is that the

element, when interacting with its neighbors, should be capable of identically

reproducing an arbitrary rigid-body/constant strain field ... The interelement

forces transferred at nodes should cancel out in a pairwise manner for adjacent

elements during such state." This establishes a second key constraint on L.

Suppose we have a side i - j joining elements k and k + t, as illustrated in

Figure 1. The second condition requires that

/, lJ N_,_ dS = ,_k+l,d, dS. (2(?)

The easiest way of enforcing this condition is by choosing a boundary displace-

ment d that is uniquely defined over i-j by degrees of freedom on that interface.

This rule can be extended to cases in which more than two elements share a side, as is the case
in many practical structures. Note that (20) does not involve the internal displacement field in
any way. Consequently it establishes the ra:zabihly of elements of different types (for example.
FF with ANDES elements), The SET discussed in [24] omits this important condition.

7. MULTIELEMENT PATCH TESTS AND THE lET

Bergan and coworkers called conditions (13) and (20) the IET. We now prove

that if the element under consideration satisfies these conditions, it will also pass

the so-called forms A and B of the multielement patch test [24]. Furthermore,

if the element is rank sul_cient it will also pass form C.

Let us consider the assemblage of elements shown in Figure 2 as a patch.

The global displacement field consistent with a constant strain field is v_c =

G_qr c The stiffness matrix of the k th element satisfies equation (13), or its

equivalent global form

(P_)rKkPkv_ = (Pk)rLker0, (21)

where pk are Boolean localization matrices. Upon assembly we obtain

K_vg¢ = Lg_o = p, (22)
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• j+2j+l o e--------"'TX"

j+ n-O • .
j+ ....

Figure 2: An assemblage of elements

but because of the satisfaction of condition (20) the force vector p has only

components in nodes j .... j + n. Then, for the i th internal degree of freedom we
h ave

K_jv_e j = p, = O, (23)

which is the statement of the form A of the patch test. If an element satisfies

A, form B is also satisfied because from (22) we can obtain the displacement of
the internal node 2 as:

v,_, = (K_i)-n(p i - K,iv_ci) , j 5t i. (24)

Because the dement satisfies (13), vrc can be obtained if upon removing

the rigid body motions K k is nonsingular and can be inverted. Consequently

K k should be rank sufficient in order to satisfy form C.

8. CONCLUSIOV S

It has been shown that the lET constraints plus rank sufficiency provide

sufficient conditions to pass any form of the multielement patch test. The main

practical advantages of the IET are:

1. By applying rules (13) and (20) elements can be constructed that will pass

any multielement patch test a priori, provided that they are rank sufficient,

while being capable of copying constant strain states. No such possibility

exists in the -onventional patch test, which must be necessarily applied a

poJteriori.

2. Element mixability is immediately established.

3. A "surgical operation" can be established to "sanitize" elements that fail

the IET, as ciiscussed in the Appendix of [17]. The operation essentially

amounts to the replacement of the basic stiffness.
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The price paid for these advantages is that the test is occasionally stronger

than strictly necessary. For example, the BCIZ nonconforming triangle [2] fails

the IET but passes the multielement test for certain mesh configurations.

A potential difficulty in the application of the IET to e_i_ting elements is

the need for extracting the force-lumping matrix L. This matrix may not be

readily available and, as mentioned in Section 5, is not necessarily unique.

Finally, as remarked in several places, the present statement of the IET

is not restricted to the free formulation, and has actually been used in this

expanded form for constructing high-performance elements based on the ANDES

formulation [8, 9,17,18].
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Abstract. This paper is the first of a three-part series that studies the formulation of 3-node, 9-dof membrane
elements with normal-to-element-plane rotations (the so-called drilling freedoms) within the context of

parametrized variational principles. These principles supply a unified basis for several advanced element-con-

struction techniques; in particular:, the free formulation (Fir). the extended free formulation (EFF) and the

assumed natural deviatoric strain (ANDES) formulation. In Part I we construct an element of this type using

the EFF. This derivation illustrates the basic steps in the application of that formulation to the construction of

high-performance, rank-sufficient, nonconforming elements with corner rotations. The element is initially

given the twelve degrees of freedom of the linear strain triangle (LST). which allows the displacement

expansion to be a complete quadratic in each component. The expansion basis contains the six linear basic

functions and six energy-orthogonal quadratic higher-order functions. Three degrees of freedom, defined as

the midpoint deviations from linearity along the triangle-median directions, are eliminated by kinematic

constraints. The remaining hierarchical midpoint freedoms are transformed to corner rotations. The perfor-

mance of the resulting element is evaluated in Part 111.

1. Introduction

The idea of including normal-rotation degrees of freedom at corner points of plane-stress

finite elements--the so-called drilling freedomsmis an old one. The main motivations behind
this idea are:

(1) To improve the element performance while avoiding the use of midpoint degrees of
freedom. Midpoint nodes have lower valency than corner nodes, demand extra effort in
mesh definition and generation, and can cause modeling difficulties in nonlinear analysis

and dynamics.
(2) To solve the "normal rotation problem" of smooth shells analyzed with finite elements

programs that carry six degrees of freedom per node.
(3) To simplify the modeling of connections between plates, shells and beams, as well as the

treatment of junctures in shells and folded plates.
Many efforts to develop membrane elements with drilling freedoms were made during the
period 1964-1975 with inconclusive results. A summary of this early work is given in the

Introduction of an article by Bergan and Felippa [1], where it observed that Irons and Ahmad

Correspondence to." Professor Carlos A. Felippa. Department of Aerospace Engineering Sciences and Center for

Space Structures and Controls, University of Colorado. Boulder, CO 80309-11429, USA.
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in their 1980 book [2] had dismissed the task as hopeless. In fact, the subject laid largely
dormant throughout the 1970s, but it has been revived in recent publications [1,3-8] that

present several solutions to this challenge. Especially notewortht is the study by Hughes and
Brezzi [9] of variational principles that include independent displacement and rotation fields.
A membrane element with drilling freedoms based on these principles has recently been

constructed by Ibrahimbegovic [10].
The first successful triangles with drilling freedoms were presented by Allman in 1984 [3]

and Bergan and Felippa in 1985 [1]. Both elements are nonconforming and pass displace-
ment-specified patch tests. In addition the Bergan-Felippa triangle, being rank sufficient,
passes traction-specified patch tests. The original Allman element, based on the concept of
vertex rotations, had remaining problems such as rank deficiency, which were corrected in an

improved version published in 1988 [7]. The two approaches share procedural similarities,
such as the use of imcompatible displacement functions. But the element construction
methods are entirely different: Allman used the conventional potential energy formulation

whereas Bergan and Felippa used the free formulation _FF) of Bergan and Nyg_rd [11].
Furthermore Bergan and Felippa, following mid-1960s work at Berkeley and Trondheim
[12-15], exploited the concept of continuum-mechanics rotations, sometimes referred to as

true rotations. A discussion of the relative performance of these elements is given in Part III
of this series [16].

Both approaches can be extended to quadrilateral elements with drilling freedoms for
plane stress and shell analysis. Extensive experience witll Allman-type quadrilateral shell
elements is reported by Frey and coworkers; see the excellent survey article [17] and

references therein. An FF-based quadrilateral called FFQ was constructed by Nyg_rd in his
thesis [18] using quadratic and cubic higher order functions; this is presenly a workhorse shell
element in the nonlinear program FENalS [19].

At the time the Bergan-Felippa element was constructed (summer 1984) the free formula-

tion lacked a variational basis. This deficiency was remedied five years later by the introduc-
tion of parametrized variational principles in a series of recent publications [20-23]. Therein
it is shown that the energy-orthogonal FF with scaled higher-order stiffness can be accommo-

dated in the framework of a one-parameter d-generalized hybrid variational principle that
reduces th hybrid versions of the potential energy and Hellinger-Reissner's principle as
special cases. This rigorous justification of the FF opened the door to a variant called the
extended free formulation or EFF [24], which circumvents :, major kinematic restriction of the
FF.

The present work may be viewed as a continuation of two mid-80 papers [1,6] but now on
firmer theoretical grounds Our main objective is to illustrate the application of the EFF to
the construction of a triangular membrane element with drilling freedoms that initially has

complete quadratic polynomial expansions in each displacement component. The use of
complete quadratic expansions as departure point requires a total of twelve degrees of
freedom. Nine freedoms are defined at the corner nodes in the usual fashion, i.e., six

translations and three drilling rotations. Three additional degrees of freedoms, to be subse-

quently eliminated, are needed. In the EFF such additional freedoms can be eliminated in
three ways: duality pairing with divergence-free stresses, static condensation of augmenting
degrees of freedom, or a-posteriori application of kinematic constraints. The present deriva-
tion uses the last technique.

Four choices of "eliminable midpoint freedoms" intrinsically related to the triangle

geometry were considered: side directions, normal-to-sides, median directions, and normal-
to-medians. It was found that only the third choice provides for stable elimination. Once this
key discovery was made, the remaining element derivation steps, though laborious, could be
followed in a systematic way.
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Box l--Decomposition of the element stiffness equations

Let K be the element stiffness matrix, u the visible element degrees of freedom
(those degrees of freedom in common with other elements, also called the

connectors) and p the corresponding element node forces. Then the element
stiffness equations decompose as

K/,' -- (K b + Kh)v = p. (B.1)

K b and K h are called the basic and higher-order stiffness matrices, respectively.
The basic stiffness matrix, which is usually rank deficient, is constructed for
convergence. The higher-order stiffness matrix is constructed for stabili_ and (in
more recent work) accuracy. A decomposition of this nature, which also holds at

the assembly level, was first obtained by Bergan and Nyg,_rd in the derivation of
the free formulation [11].

In the unified formulation presented in Refs. [22,9-3] the following key

properties of the decomposition (B.1) are derived.

(1) K b is formulation independent and is defined entirely by an assumed
constant stress state working on element boundary displacements. As detailed in
Box 2, no knowledge of the interior displacements is necessary for this stiffness
component. The extension of this statement to C ° plate and shell elements is not
straightforward, however, and special considerations are necessary in order to

obtain K b for those elements.
(2) K h has the general form

Kh = j33Kh33 + J22 Kh22 + j23Kh23" (B.2)

The three parameters J22, J23 and J33 characterize the source variational
principle in the following sense:

(a) The FF is recovered if J22 =J,_3--0 and J33 = l -3_, where -/ is a K h scaling
coefficient studied in [1,6,25]. The original FF of [1 1] is obtained if y = 0. The
source variational principle is a one-parameter form that includes the potential
energy and stress-displacement Reissner functionais as special cases.

(b) The ANDES variant of ANS is recovered if 1"23=]33 = 0 whereas J22 is a
scaling parameter. The source variational principle is a one-parameter form
that includes Reissner's stress-displacement and Hu-Washizu's functionals as
special cases.

(c) If Jz3 is nonzero, the last term in (B.2) may be viewed as being produced by a
FF/ANDES combination. Such a combination remains unexplored.

The stiffness equations

The stiffness equations derived from the parametrized variational principles referenced in

the Introduction enjoy the fundamental decomposition property summarized in Box 1. The

element stiffness matrix can be additively decomposed into K = K h + Kh where K b is the
basic stiffness matrix, which is constructed for convergence, and K h is the higher-order
stiffness matrix, which is constructed for stability and accuracy. As discussed in Box l, for
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free-formulated elements gh can be scaled by (1 - y), where y is a scaling coefficient (3' < l)

that may be used to increase the element performance for coarse meshes. This value may vary
from element to element wtthout affecting convergence. This scalling is justified variationally

in [20,21]. Muitiparameter scaling is discussed in [25] to improve the performance of a specific

plate bending element.
The basic stiffness part of the present element (as well as that of the element derived in

Part II [26]) is identical to that presented in Bergan and Felippa [1,6]. The higher-order
stiffness is initially based on a modification of the twelve shape functions of the linear strain

triangle (LST). The modification makes the higher-order (quadratic) shape functions energy
orthogonal to the lower-order (linear) ones. The coefficients of these quadratic shape

functions are generalized coordinates in terms of which a generalized higher-order stiffness
matrix is readily contructed in closed form. A chain of transformations follows in which these

generalized coordinates are first transformed to-midpoint degrees of freedom of the hierar-
chical LST, and then to three drilling freedoms at comes and three median hierarchical

displacements at the midp_ints. Finally the latter are eliminated by invoking a parametrized

boundary constraint.
The main advantages sought for this element over the FF element of [1,6] are:

(1) the higher-order stiffness matrix is obtained in explicit form without need of numerical
inversion. Explicitness is expected to facilitate the direct derivation of energy-balancing
formulas to attain high performance under in-plane bending. This is especially true for

orthotropic or anisotropic material behavior.
(2) Shorter formation time for Kh, which dominates the computation of K.
(3) The coarse-mesh performance should be comparable to that of the linear strain triangle

(LST) without the encumbrance of midpoint nodes.

Experience with the EFF element, as reported in Part 1II [16], indicates that the first two
advantages were realized, but the last one was not. Its performance turned out to be similar to
that of the original FF element, except for some regular-mesh problems where explicit energy
balancing was able to make a difference. The performance is, however, substantially better
than all other elements tested for large element aspect ratios.

Aside from its intrinsic value as illustration of a new technique for constructing high-per-

formance elements, the present derivation serves as prelude to a far more challenging task:
the construction of a rank-sufficient element in three dimensions (a 24-dof, rank-18 tetrahe-

dron with 12 comer rotations).

The free formulation

The original free formulation (FF) was developed by Bergan and Nyg_rd [11] for the

construction of displacement-based, incompatible finite elements. This work consolidated a
decade of research of Bergan and coworkers at Trondheim, milestones of which may be found
in [27,28,19]. The products of this research have been finite elements of high performance,

especially .for linear and nonlinear analysis of plate and shell structures. As noted in the
Introduction, a theoretical justification based on parametrized hybrid variational principles is

provided in Ref. [20-23].
The original FF was based on nonconforming displacement assumptions, the principle of

virtual work and a specialized form of Irons' patch test that Bergan and Hanssen [27] called
the individual element test. The basic and higher-order stiffness are constructed in largely

independent fashion by following the procedures outlined in Boxes 2 to 4.
Box 2 lists the main steps for constructing the basic stiffness matrix; for justification the

reader is referred to the previously cited references. The key steps in constructing the higher

order stiffness matrix using the standard free formulation (FF) are listed in Box 3.
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Box 2--Construction of the basic stiffness K b

Step B.1. Assume a constant stress field, _, inside the element. The associated

boundary tractions are _, = ft. n, where n denotes the unit external normal on the
boundary S.
Step B.2. Assume boundary displacements, d, over S. This field is described in
terms of the visible element node displacements v (also called the connectors) as

d ffi Ndi) , (B.3)

where Nd is an array of boundary shape functions. The boundary motions (B.2)
must satisfy interelement continuity and contain rigid-body and constant-strain
motions exactly.
Step B.3. Construct the "force lumping matrix"

L = f Nar. dS, (B.4)
J

which consistently maps the boundary tractions ft, =ff'n into element node
forces, _, conjugate to v in the virtual work sense. That is,

,_ = fsN_O', dS = Lff. (B.5)

In the above, Na, = Nan are boundary-system projections of Na that work on the
surface tractions ft,.
Step B.4. The basic stiffness matrix for a three-dimensional element is

1
K b = -/.,EL "r, (B.6)

U

where E is the stress-strain constitutive matrix of elastic moduli, which are

assumed to be constant over the element, and v ==fvdV is the element volume
measure. For two-dimensional or one-dimensional elements, c is replaced by the

element area A or length I, respectively, if the remaining dimensions are
incorporated in the constitutive matrix E.

The extended free formulation (EFF) presented in [24] removes the restriction n_. = nq of
Step H.l(b) in Box 3 three methods: (1) injection of higher order divergence-free stress fields,
(2) freedom augmentation with elimination by static consideration, or (3) freedom augmenta-

tion with elimination by kinematic constraints. The last method, which is the one used for the
present element, is outlined in Box 4.

Element geometry

The geometry ot an individual triangle is illustrated in Figs. 1 and 2. The triangle ha_
straight sides. Its geometry is completely defined by the location of its three corners, which are
labeled 1, 2, 3, traversed counterclockwise. The element is referred to a Iocat Cartesian

1
system (x, y). The Cartesian distances from the nodes to the triangle centroid x 0 = _(x t +x 2
+ X3), Y0---- ½(Yl + Y2 + Y3) are denoted by xio = xi- x 0 and Y,0= Y_- Y0- It follows that

xto+X2o+X3o=O, ylo +Y20 +y3o = 0. (1)
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Box 3--Construction of K h by FF

Step H.1. Assume an internal displacement field over the element volume V:

u = N,q = Nrq r + Ncq c + Nhq h , (B.7)
rig_tl body constanZ-strain higher order

where array N_ collects shape functions and q collects generalized coordinates.
This assumption mu_,.t satisfy the following conditions:
(a) linear independence with respect to u;

(b) the dimensions tTt and n,. of vectors q and u, respectively, are the same;
(c) the rigid motions and constant-strain fields are complete;

(d) the higher-order displacements are energy orthogonal with respect to the
constant-strain displacements. (Although this requirement was not mandatory
in the original Ft:, it is an essential part of the variationally formulated FF.)

Often (B.7) is _vritten so that the rigid-body and constant-straint shape
functions are combir_ed:

u = Nreqrc + Nhq h. (B.8)

Step H.2. The inte,nal strain field derived from u is e"= Du, where D is the
strain-displacement operator. Decompose this field as

• _ = DN_q = e I + e_ = Bcq c + Bhq_, (B.9)

since the strains associated with rigid body motions, Brqr, must vanish.
Step H.3. By collocation at the node points assemble the square nonsingular
transformation

v = Gq = Gr_;_+ Gcqc + Ghq h, (B.10)

which inverted gives

q= q_ =_lv-- /-#_ v. (B.I1)

qh H h

Step t-1.4. The higher-order stiffness matrix is given by

K h = (1 - 3")HXKqhHh, where Kqh = fvB_EBh dV. (B.12)

Kqh is the generali2ed stiffness in terms of the qh coordinates, and (1 -3') is a
scaling parameter (see Box 1).

Node coordinate differences are abbreviated by writing .% = xi- x j, etc. The signed triangle-
area A is given by the formulas

2 A = xzl Y31 -_31Y-,t = x32 Yt2 - x t2Y32= X 13Y23-- X_Y13, (2)

and we require that A > 0. We shall also make use of dimensionless triangular area

coordinates G'_,_'2, _'3 linked by the constraint

(, + (2 + (3 = I. (3)
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Box 4--Construction of K. by EFF with freedom augmentation

Step E.1. The internal displacement expansion is written as in (B.7) or (B.8) but

now nq > n_. is allowed. The general prescription is to augment vector v with
na - n, degrees of freedom collected in subvector vx. These additional degrees of
freedom must be chosed so as the produce an invertible square transformation
matrix with the following hierarchical structure:

vx = 0 0 G_ q.

Step E.2. Solving (B.13) for q one obtains an inverse relation of the form

q,,, qc = 0 vx . (B.14)

q. LH. H_

Eliminate vx through a kinematic constraint, sayStep E.s.

v_

Then

= Tv. (B.15)

q= H_ v = H¢v. (B.16)

+nxr Ln.j

Having H, available, proceed as in step H.4 of Box 3. Many variations and
shortcuts are possible. For example, Hh can be often expressed as the product of k
transformation matrices:

H. =HhIHh2 "'" Hhk, (B.17)

some of which can be directly constructed whereas other result from solving
simpler inverse subproblems. If all matrices in (B.17) can be determined in closed

form the numerical inversion of G is avoided. This is the approach followed in the
element constructed here.

The following well known relation between the area and Cartesian coordinates of a straight-
sided triangle is noted for further use:

1

_, = _-_ [x, Yk -- xk Yj + ( X -- Xo) Y,k + ( y - yo) xk, ] (4)

where i, j and k denote positive cyclic permutations of 1, 2 and 3; for example, i = 2, ) = 3,

k = 1. (If the origin is taken at the centroid, x o = Y0 = 0.) It follows that

2A_x =Y23, 2A"_x =Y3i, 2A_x =Y,2,

0_2 2A0(3 =x21.
2A0y =x32, 2A O-'-y=xl3' 0y

(s)
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Y

n13

/_\ .0 I_' '

X 2

Fig. 1. Triangle geometry, showing Cartesian and normal/tangential coordinate systems

Y

3

S5"= %2

L mj... m32

m4 -- m21

Fig. 2. Intrinsic triangle dimensions and median/normal-lo-median coordinate systems
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Other intrinsic dimensions of use in subsequent derivation are

l 0 = lji -_ + y_, aiy = aji _x_. 0 + y20, bij = 2A/aq,
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(6)
SI I 2 1 2= -- S3

in which j and k denote the positive cyclic permutations of i; for example i = 2, j = 3, k = 1.

The a o are the lengths of the triangle medians (see Fig. 2).
In addition to the comer nodes 1, 2 and 3 we shall also use the element midpoints 4, 5 and

6 for intermediate derivations although these nodes will not appear in the final equations.

These are located opposite corners 3, 1 and 2. respectively. As shown in Figs. 1 and 2, two
intrinsic coordinate systems are used on each side:

n21 , 321 ) /132 , 532 , n13, s13 , (7)

m2l, /21) m32, t32, ml3, ll3" (8)

Here n and s are oriented along the external normal-to-side and side directions, respectively,
whereas m and t are oriented along the triangle median and normal-to-median directions,
respectively. Note that the two coordinate sets (7) and (8) coincide only for equilateral

triangles. The origin of these systems is left "floating" and may be adjusted as appropriate. If
the origin is placed at the midpoints, subscripts 4, 5 and 6 may be used instead of 21, 32 and
13, respectively, as illustrated in Fig. 2.

The visible degrees of freedom of the element collected in vector v are

v r= [vxt v,, 0, vxz urz 02 cx3 vr3 031. (9)

Here v;, and v_, denote the nodal values of the translational displacements u, and u r along
x and y, respectively, and 0 and the nodal values of the "drilling notations" about z defined
by

oy " (lo)

The basic stiffness

The assumed constant stress field of Step B.1 of Box 2 is

o-_,.,= _,,,, o-yy= ff;,y, _-,,y=_,r. (11)

For Step B.2, the boundary displacements (d., d_) along side j-k opposite comer i in the

normal/tangential side coordinate system (njk, syk) may be expressed in terms of the visible
node displacements as

(d,} = [_b,,jOah_boi&,,kOoo,_b,_kd, 0 q% 0 0 _0,, 0

' L'nJ I
Usj

Unk I

Usk [

,Ok]

(12)



172 K. Alvin et al. / Membrane elements with comer drilling freedoms- I

with the shape functions

_/= ¼(I- g)2(2 +,f),

q,,_= ¼(I + _:):,_z- _:),

% = ½(l - _),

¢,, = _l(t - _:):(I - _),

$,_ -- -_I(I + sc)2(l - _),

_,,, = ½(I + _:).

(13)

Here _¢is the isoparametric side coordinate _ ---(2s/l) - 1, which varies from - 1 at node j

(s = 0) to + 1 at node k (s --/); s being the side distance from node j and l = l/k the triangle
side length. A scaling factor a b has been introduced on the shape functions that relate
boundary normal displacements to the comer rotations. The significance of this factor is
discussed by Bergan and Felippa [1]. (In that work this parameter is called a. The subscript b

is used here to distinguish _:his parameter from a similar one that appears in the derivation of
the higher-order stiffness.)

The surface tractions along a side of the element are

s1_x

coseos,n o2sinocoso]  , 14>if" = if,,, --sin w cos _o sin o.i cos t.o cos 2 w- sin' w
ttr_y

in which w = %k is the angle of the external normal with x. In [1] it is shown that on carrying
out the boundary integrals of eqn. (B.4) of Box 2 one obtains the force lumping matrix

1
L=,- 2

Y :2 0 x 32

() x32 Y_

_,_y_( - ,"_Ofb X32 ( X31FI3 Y21) Xl2) Y13 --Xl2Y2t)

) u 0 xt3

0 X13 Y31

_aby31 ( i I_ot b ( xt2Y21V21 --Y32) gabXt3( Xl2 -- X23) -- x23Y32 )

) _2 0 x,_l

0 x21 Yt2

_abYle( Y32 --YI3) 1 l otb( X'_.3Y32ZO/b X21( X23 -- X31 ) -- X31Y 13)

(15)

If orh = 0, the force lumping matrix of the constant strain triangle (CST) results, in which case
all nodal forces are associated with translations only. Once L is available, it is a simple matter

to form the basic stiffness g b according to the prescription (6), which for a two-dimensional
element becomes

1

gb = -_ L( hE ) L r, (16)

where h is the mean thickness of the element and E the plane stress constitutive matrix

arranged as a symmetric 3 x 3 matrix in the usual manner:

rEtl EIz Et3]

E= |Ezl E,.2 Ez3| (17)
/

LEt3 Ez3 E33 ]
Often the thickness-integrated constitutive matrix D m= hE is specified instead of E. This is
particularly useful for nonhomogeneous plates where E wtries through the thickness.
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The higher-order stiffness

The internal displacement field

The construction of the EFF higher-order stiffness requires a considerable amount of

analytical derivations, the details of which are given in the Appendix. In the present Section
only the key results are reported. One starts by expressing the internal displacement field u of
Boxes 3 and 4 as

' U x _ [ qx I qx2 qx3 qx4 qx5 qxo ]

Uy ) = [qyl qy2 qy3 q v4 qr5 qy6]

where the q's are generalized coordinates, and

_, = ¢i, 4'2= ¢2,

4', = (¢, - ¢2)z = ¢22, % = (¢z

This expansion befits the form (B.7), with

qrT = [qxl qx2 qx3 qyl qy2 qy3],

qTh= [qx4 qx5 qx6 qr4 q,5 qy6]"

_b4 '

%

(18)

_3 = ¢3'

(19)
-- ¢3) 2 = ¢2, _6 = (¢3 -- ¢1) 2 ¢2"=-- 31"

(20)

(21)

Note that rigid-body and constant-strain terms coalesce into one set of linear shape functions.
It is shown in the Appendix subsection "Generalized interpolation" that the six basis
functions (19) enjoy the following properties:
(1) They span a complete quadratic basis.

(2) The higher-order base functions _b4, _b5 and _b6 are energy-orthogonal to the basic
functions d_l, _b2 and _b3.

Gradients and strains

The displacement gradients are obtained by differentiating (18) with respect to x and y:

qxt qxz qx3 o o o qx4 qxs qx6 o o o ]

J= "_ I qv2 qv3 0 0 0 qp4 qy5 qyo 0 0

0 0 qv_ q_2 qv3 0 0 0 qv4 q_s q,.oJ

¢]U x

ax

ou x

ay

auy

ax

_U v

3)'

Y23

Y31

YI2

X32

XI3

X21

6_'21Y3o ,,

6g'_, y to

6_13Y20

6_'21X30

6_3zXlo

6_'13xzo ]

(22)
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where use of (1) has been made in the derivation of the last six entries in the rightmost vector.

The displacement-derived element strains may be conveniently split as

e"=]%r{ =l 8ui'/aY _--e_ +e_=Brcqr¢+Buq h, (23)

" and u are associated with constant-strain and higher-order terms, respectively, aswhere ec eu
discussed in Box 3. The strain-displacement matrices are

1 [Y23 Y:,| YI2 0 0 0 ]

Brc=_[ 0 0 0 x32 xl3 x21], (24)X32 X_3 X21 Y23 Y31 YI2

and

where

L [:21Y30/O -_ _2 YlO :13Y20 0 0 0
B, 0 0 :_2X3o ';_xto :3_X2o

A I

L_'tzX3o *_z3Xl0 :31X20 :21Y30 _'32 Y 10 :t3 Y20

3[ 00o0 0 01Bh= 0 0 -x3o -X_o -X2o ,

--X30 -Xlo --X20 Y30 YlO ,'¢20

Z

¢2t 0 0 0 0 0

0 ¢32 0 0 0 0

0 0 -_,3 0 0 0

0 0 0 :21 0 0

0 0 0 0 :32 0

0 0 0 0 0 :,3

= (25)

(26)

The generalized higher-order stiffness matrix

The higher-order stiffness matrix in terms of qh is given by the second of (B.12) in Box 3,
which for a plate of thickness h becomes

Kq. ----fABT(hE)B, dA. (27)

For constant hE we can express (27) in closed form as

Kq,--A B r hE 5 h * J . (28)
6>(6 6x6 3×3 3;<6 6x6

where the asterisk denotes entry-by-entry matrix product, and J is a purely numeric matrix:

:2,/

_'321

_'32 srl3:21:32 _'_3] dA



K. Alvin et eL / Membrane elements with corner drilling freedoms m I

 [21121 i]2-1 2 -1 -1 2 -1

_- -1 -1 2 -1 -1
2 -1 -1 2 -1

-1 2 -1 -1 2

-1 -1 2 -1 -1

The explicit expression for the upper triangle entries of Kqh is as follows:

y2Kqh[1,1 ] -- 2k(E,l 30- 2EI3x30Y30 "1-E33x320),
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(29)

Kqh[l.2] ffi k(( Et3x,o - E,I Y,o)Y30 + (Et3Y,o - E33x,o)X30),

Kqh[ 1,3 ] = k(( Et3x2o - E,,Y2o ) Y3o + ( Et3Yzo - E3sxzo)Xjo),

Kqj,[ 1,4]-- 2k(Et3Y_o-(E33 + E,2)X3oY3o + E,x_o),

Kqh[ 1,5] ffik(( Et2x,o - e,3yto)Y30 + (E33Y,o - E_x,o)X30).

Kqh[ 1.6] ffik(( Et2x20 - E,,Y20)Y30 + (E33 Y20 - E_x20)x30),

Kqh[2,2 ] : 2k(E,,Y2to - 2Et3xtoY,o + E33x_o),

Kqh[2.3 ] = k(( E,3x,o - E,, Y,o) Y..o + ( E,3Yto - E33xto)Xzo),

Kqh[2,4 ] = k(( E33xto - Et3Y,o ) Y3o + (EtzY,o - E=x,o)X3o),

gqh[2,S ] = 2k(E,aY_o- ( E3a + Etz)XtoY,o + E_x2to),

Kqh[2.6] -=k(( E33xto - e,.3y,o)Y20 + (Et2 Y,o - E.xto)X20).

K,,.[3.31=2J,(E,,y o-2E, X oy o+E.X o).

Kqh[3.4 ] = k(( E33x20 - Et3Y20 ) Y3o + ( E,2Y2o - Zz3x20)x30).

K.h[3.5 ] ffi k(( et2xto - et3y,o)Y2o + (e33Yto - E23xto)X20),

Kqh[3,6 ] ----2k(Et3Y_o- ( E33 + E,2)x20Y20 + E23x20),

Kqh[4,4 ] ffi 2k(E33Y_o - 2E23x3oY3o + E22x3Zo),

Kqh[4,5 ] = k(( E_x ,o - E33 Y ,o) Y3o + ( e_y,o - E22 x to) X3o),

K,h[4,6 ] = k(( Ez3X2o - E33Y2o) Y3o + ( E.3Y2o - E22x.o)X3o),

Kqh[5,5 ] = 2k(E33Y_o- 2E_x,oY,o + E22x_o),

Kqh[5,6 ] = k(( E2ox,o - E33Y,o ) Y2o + ( E23Y,o - E22x,o)X2o),

Kqh[6,6 ] ffi 2k( E33Y_o- 2E,3x_oY2o + E22x_o),

where k ffi 3/(2AZ). Having formed Kqh, the first of (B.12) in Box 3 says that the higher-order

stiffness is Kh=(1-T)H_KqhH h. Thus the 6×9 matrix Hh, which relates qh=Hhv,
remains to be determined.

Building H h

We will build H h as the product of five transformation matrices:

H h = Hq,,, H,,,. H,,. H., Ho,.. (30)
6×9 6x6 6x6 6x6 6x3 3×9
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These five matrices link the following vectors:

qh = Hq,,,m, m = H,,ss, s = H,,sr,

Vectors qh and

m

r= H_O, O = Ho,.v.

given b_ (21) and (7), respectively. The others arev are

Ux4

Ux5

Ux6

Uy4

Uy5

Uy6)

'_m5/

S =: _m6[,

Ut4 I

I
ldt6 ]

Urn4

l't m5

Urn6

r_i -
Ot

02

, 03

(31)

1

Hqm = "9 1 0

' 0

L o

3

.I"-10 2 2 0 0 01
, 2 - lO 2 0 0 {Il2 2 - 10 0 0 II

0 0 - 10 2 2 '

0 0 2 - 10 2

0 0 2 2 - 10

-X_o/al: 0 0 -Y3o/a12 0 0

0 Xto/az3 0 0 -yto/a_ 0

0 0 x20/a31 0 0 --Y20/a31

Y30/al: 0 0 x30/at2 0 0

0 ym/az3 0 0 xu)/a _ 0

0 0 y20/a31 0 0 X2o/a3l

Here m, s and r collect x-y and m-t midpoint degrees of freedom, respectively, of the

hierarchical LST element discussed in the first two Appendix subsections (recall that m and t
denote median and normal-to-median directions). Vector 7 collects the hierachical corner

rotations 7_ defined in the Appendix subsection "Hierarchical drilling freedoms". We list

below the expression of the matrices in (30), referring all derivations to the Appendix.

Hsr

1 0 0 0 0 0

I 0 1 0 0 0 0
0 0 1 0 0 0

t __ 1I S3/A at2a_/A -a12a3t/A ½a12 _a12 _al2

L l I I

-a_atz/A SI/A a_a3t/A - _a_ ya_ _a_

a3lalz/A -a31a_/A SJA t i l_a3z -- _a31 _a3t

Hr8
l --Aah/4al: ACth/4atz 0

0 --Acth/4a23 ACth/4a _

= ActJ4a31 0 --ACth/4a31

1 0 0
i

0 1 0

0 0 1

(33)

(34)

(35)

(36)

, 7:= d,. (32)

d
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Here the a's and S's are defined in (6), and c% is a scalar parameter introduced in the

Appendix subsection "Elimination of hierarchical mean displacements by collocation". Fi-
nally,

1 Ix32 Y32 4A xt3 Y,3 0 xz, Y2, 0 ]Ho,=-4-_lX3z Y32 X13 Yl3 4A x21 Y21 0 . (37)
[.X32 Y32 0 X13 YI3 0 X21 Y21 4A

Closed-form evaluatwn

Multiplying symbolically the middle three matrices in (30) a surprisingly simple closed-form

expression emerges for H,,,e = H,,,_H,,Hro. If we choose a n -- 5/4, which as shown in Part III
is optimal for pure bending, then

3 2
(-$3 + _a12)Y3o + AX_o

_ai" 2

3

.F10

(S.. + _a_)y,o -Ax.o
2 "*
_a" h

3 2
( S3 - _atz)x3o + AY3o

_ar:

--XtO

3 2
( -$2 - -_a_t )x.-, o - AYzo

3 2
(S 3 + _a12)Y30 -Ax30

2 2 )'30
_a12

3 '_ 3 "*
( -S! + sa_)yto +axto (S 1 + 3-a53)yto -Axlo

_a_ _a_3

($2 - _-a_t )Y2o - Ax2o

3 "

( -$3 - _ar2)X3o +AY3o

• • --X20

_asl

d12 --X30

(St _ "_ _a_3)x m +Ay m (_S t 3 "-- _a;.3)xl0 -AYlo

_a_ _a_

(s. - _,)X:o +Ay..o

(38)

With Hme directly computable, the fastest evaluation of K h is obtained as follows. First

form Hqe = Hq,,H,,,s , which can be done quickly because (33) is a block-diagonal numeric
matrix. Next, obtain the higher-order stiffness in terms of hierarchical rotations:

Koh = H_ Kqh Hqs. (39)
3x3 3×6 6x6 6x3

Finally, K h is obtained as

X h = ( 1 - Y) H_ gob /'/0,,. (40)
9×9 9x3 3×3 3x9

The congruentiai transformation (40) can be speeded up because of the special nature ot He_ ,
cf. (37), and the bulk of the numerical work is actually spent in (39).

Generic stiffness template and the individual element test

The expression (40) has significance that transcends this particular element. It is a generic

expression for the higher-order stiffness of any satisfactory membrane triangle with this

freedom configuration. The transformation matrix Ho_ is always given by (37). Only the

"kernel" K0h, which is a higher-order stiffness in terms of the hierarchical corner rotations 0,,
changes from element to element. Because this is a 3 × 3 symmetric matrix, it follows that the

higher-order stiffness of all elements of this type form a six-parameter family.
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Using the expression (16) for IKb, it follows that the generic template for the total stiffness
is

1
T

K = K b + K_ = --_L(,_b)(he) L(_b) T + ( 1 -- y) Hov Ko.Hov, (41)

with each component contributing three to the rank of K, and where the dependence of the

force-lumping matrix L on at, has been emphasized. It is easy to show that any element that
befits this template passes the individual element test (lET) of Bergan and Nyg_rd, and
consequently no numerical verification to that effect is necessary. In this regard it is
interesting that the 1988 Allman triangle befits (41), and consequently must pass the lET;

further details are given in the last Appendix subsection.

Concluding remarks

We have presented the derivation of a plane-stress triangle with drilling freedoms using the
extended free formulation (EFF). The main advantage over the FF triangle derived in [1] is
that an explicit form is obtained for the higher-order stiffness. This simplifies the symbolic
determination of optimal parameters by energy balance, as investigated in Part 1II. In

addition the explicit derivation reveals a generic template form that all elements of this type
must fit. Other element implementation details, such as consistent node force calculations, as

well as performance of the EFF element with respect to other 9-dof triangles, are discussed in
Part III.
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Appendix--Auxiliary derivations

The LST interpolation

Let w = w(_'_, _2, __) denote any quantity being quadratically interpolated over the six-node

linear strain triangle (LST), for example the displacement components. The node values of w
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are wi, i = 1..... 6. The hierarchical LST interpolation is [29]

[=w ]4_.r2 =w'r!o, (A.1),5 /4_r2_'3

_0_,) _ 4_'3_"t

where the hierarchical nodal values if4, ffJ5and if'6 are defined as the midpoint deviations

from iinearity:

I 1w_= _(wt +w2) + _,, ws=½(w2.+w3)+cvs, w6= .:(w3+ w,) +%.
(A.2)

If one sets _4 = _5 = _6 = 0, (A.1) collapses to the linear interpolation of the three-node
constant-strain triangle (CST), a property characteristics of hierarchical elements.

Two types of shape functions appear in (A.1). Following the free-formulation (FF)
terminology, the three linear shape functions associated with the corner nodes, namely

_ot = _'t, _02= _'2, and _03= _':, are called basic shape functions, because they provide the
rigid-body and constant-strain motions when w is identified with the displacement compo-

nents u x and uy. The three quadratic shape functions associated with the midpoint nodes,
namely _04= 4_'t_'2, _o5= 4_'2_ and _o_= 4_3_"_, are called higher-order shape functions. The
higher-order functions are not energy-orthogonal to the lower-order ones according to the
definitions given below. As we shall see, (A.1) is not suitable as a departure point for the

internal displacement expansion of an EFF element, but it is useful as an intermediate step.

Generalized interpolation

A generalization of the quadratic interpolation (A.1) is

'/'2[
6 '/'3_

W-_- i_lE qi_i((l" _:" if3)= [ql q2 0'3 q4 q5 q6] (/'41' (A.3)

,t,,J

in which the coefficients q, are not necessarily node values but may be interpreted as
generalized coordinates. The d_, are called generalized shape .functions. These functions no

longer enjoy the nodal interpolation properties of the ordinary shape functions %.
To construct EFF elements we shall keep the same three basic shape functions in (A.2):

¢bl = _l = _l, (b2 ="_2 = _'2, _b3= _3 = _'3" (A.4)

As for the higher-order shape functions, the most general choice may be written

64 = /d'l(_'/ "1- _'22 ) -F /J, 2_ "2 "4- #'3_'1_'2 "1" /2,4(¢2¢3 "b _'3_1),

65 = _,(U + (¢) -__,-_6'+ _,3L,_'._+ _4(¢3¢, + ¢,_.,),

6u =/z,(_'_ + _'3) + g.2_'_,2 +/._3_r3_'i +/_,( _r,_'2+ ¢2¢_), (A.5)
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where /zt, _.,_, lz 3 and /_4 are numerical coefficients, at least one of which must be nonzero.

Because the functions may be scaled by an arbitrary nonzero common factor, only three

coefficients are in fact independent. The grouping of the terms in (A.5) is dictated by

triangular symmetries. In subsequent developments we shall restrict the choice to energy-or-

thogonal functions defined below. The general case is briefly commented upon later.

Energy-orthogonal shape functions

A higher-order shape function 6j (j = 4, 5, 6) is said to be energy-orthogonal with respect
to the basic shape functions 6i (i = 1, 2, 3) if the area integral of any product of their

triangle-coordinate derivatives is zero. (This definition applies strictly to the case in which the

thickness and material properties are constant over the element. But these conditions hold in

the limit of infinitesimally small elements, which is the same limit of interest for the patch
test.) This condition can be expressed as

fA o_i dA=0, i,m, n= 1,2 3, j=4,5,6. (A.6)
a<bj

o_., o_.

But since all derivatives of 6i are constant, (A.6) is equivalent to

fA 6j-- OA = 0, (A.7)

which expresses the fact that the element mean value of the first derivatives of an energy-or-
thogonal shape function must vanish.

Applying this condition to (A.5) we find that the higher-order shape functions are
energy-orthogonal if

2/_t +/z3 +/.L4 = 0, /_2 +/.*4 -= 0. (A.8)

Given lz t and /.*2, which may not be simultaneously zero, these relations determine /2 3 and

/_4. Because (as noted above) only three coefficients in (A.5) are actually independent, it

follows that the energy-orthogonal subclass forms a one-parameter family. Note that the

choice (A.I) in which /_3 = 4, others zero, violates the orthogonality condition (A.8).

Two physically transparent sets of shape functions supplied by these relations are

Ill:= tA.9,
6_ _'3 -- 51)')

4_ (_'2 _)'] (-_'3- _r, + 2_'2) 2

which correspond to taking /.tl = 1, Iz, = 0, and iz t = -2/9, _'2 = 8/9, respectively. The first

set vanishes on the triangle medians, whereas the second set vanishes on lines parallel to sides

passing through the centroid. Any linear combination of these functions, such as

64 = c,((3 - _)2 + c:(_', - _'2) 2, (A.I 1)
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is also energy-orthogonai. Moreover, the sets (A.9) and (A.10) are not independent because

(,,2,11 {6)'1 =
(_', _rl)2 )

they can be linked through the linear transformations

/

l,
(c,

(A.12)

where

I1 !], __Q=_ 2
2 2 -

(A.13)

is an orthogonal matrix. Thu_ we confirm that all energy-orthogonal sets can be related by a
linear transformation, and all of them would produce the same higher-order stiffness.

Consequently the choice ot basis for the higher-order flmctions is merely a matter of

convenience. For the element derived here we select (A.9) as this choice leads to a fairly

simple generalized higher-order stiffness matrix Kqh , derived in "The basic stiffness" section.
Thus the generalized interpolation formula (A.3) becomes

14'=[ql q2 q3 q4 q5 q6]

ffz

_3

(_, -¢z) z

(_z - G) 2

(_3 - ¢,)z

= q'r¢i. (A.14)

Freedom transformation

We need to establish the _ransformations q - Tqww, w = 7_w'q that connect nodal values to

generalized coordinates. Formulas (A.1) and (A.9) are related by equating their left-hand
sides because they both cmrespond to complete quadratic expansions referred to linearly

independent bases:

w wrw=q'r4_ T T= =., :r_.4,. (A.XS)

T
Thus _o= Tqw4_. Evaluating this relation at the six nodes yieids

I I
1 0 0 _ 0

I
0 1 0 5 _ 0

I I
0 0 1 0 _ ,z

0 0 0 1 0 0

0 0 0 0 l 0

0 0 0 0 0 I

= U.

1 0 0 I_ __ 0
2 2

I 1
0 1 0 0 _

I I
0 0 1 _ 0

I I
I 1 0 0 _ x

I I
0 l 1 x 0

1 _ 0l 0 I _

(A.16)
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Solving we get

T_W

1 0 0
8

0 1 0
4

0 0 1 -_

0 0 0 __o
9

0 0 0 -_
9

0 0 0

I 0 0 1
0 1 0 l
0 0 1 0

0 0 0 -I

I

0 0 0 -_
!0 0 0 -_

4 8"

8 4

8 8

2 2 _'

__o 2
9 9

I0

9 9

0 l
1 0
1 1

_± _!
4 4

t

-1 -_
_! -1

4

Setting w to u x and uy in turn we can write

_ °

qy Tow my

From this 12 x 12 transformation we extract the 6 × 6 matrix Hq,_ given in (33).

(A.17)

(A._8)

Hierarchical drilling freedoms

We now study the "migration" of freedoms of the hierarchical LST into drilling and
eliminable freedoms. The continuum-mechanics rotation about the z-axis, positive counter-

clockwise, is defined by formula (10). For the hierarchical LST element we set w to u_ and uy
in turn and evaluate 0 making use of (22) to get

O= u_l ux2 ux3 uyt uyz uy3 (ix4 (_x5 ux_ (_y4 (ty5 (ty6

x23

X31

Xl 2

Yz3
Y31

Yl2

× 4(_'lx3t + ffzxr2) (A.19)

4( _2xt2 + _zx_l)

4(_'3X23 + _'lXl2)

4(_'l Y3I + _'2Y23)

4(_'2Yl2 + _'3Y31)

4( _'3Y23 + _" Yt2)

Note that 0 varies linearly over the element. It follows that only three independent drilling
freedoms may be defined, and the obvious locations are the corner points. Any additional

drilling freedom (chosen, for example, at the centroid) would not be linearly independent.
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The three corner drilling rotz, tions 0_, 0= and 03 at the corners are related to the other
freedoms by replacing the corner triangular coordinates in (26):

,,, x, 4. 0 0L /0-, _ X_
O_ _ xn xl2 Y_ Y3I Yl2 4x_ 4xl2 0 4y?. 3 4yl2 ,

• X_ X31 .IC12 y_ Y31 Y12 0 4X31 4X_ 0 4Y3t 4Y23 .]

cur I

fix 2

Ux3

I,_v2

/AV 3

ux4 }.

ll x5

U rff

td), 4

°

Uy5

Uvh

(A._-O)

Subsequent manipulations are facilitated by defining the hierarchical rotations /_i= 0i- 00,

i = 1, 2, 3, where 0o is the (ST rotation, that is, the mean rotation obtained if one sets

ux4 =5_5 ..... 5y 6 = 0:
1

[_0 = "_(X23Uxl +'131Ux2 +Xl2Ux3 + Y23U.vl "_" Y31/_y.: +Yl2Uy3) " (A.21)

Then (A.20) simplifies to a matrix relation that involves only the hierarchical midpoint
displacements:

0' l[X_x,_ o,_,,,_o i,+.i=,,0...(i.2:)
6---65--_L ° x_ 0 Y3, y_ /,i. |_3 X31

For reasons explained in the following subsection, we shall link 0 to vector s defined in (32)

as 0 = H_,,H,,_s. Matrix H,,_, which is displayed in (34), can be constructed by inspection of
Fig. 2. Carrying out this multiplication and using the geometric definitions in (6) we obtain

S 3 + ai;,
0

Aat2

S 3 - ai: ! S, + aZz3

As12 Aa_

S I -a_
0

Aa_

S 2 -- all

a _21 0
Aa31

0

S: + aZ3,

Aa31

a_' a_'

0 a_ t

a_ I tt ,t
31

5

5
0 '-

(A.23)

°3

Choosing eliminable freedoms

The 12- 9 = 3 eliminable freedoms must be displacements because no more linearly

independent drilling freedom choices remain. From symmetrs' and invariance considerations
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four possible choices emerge:

(i) The hierarchical midpoint freedoms directed along the side directions: u_, uss, us6.

(ii) The hierarchical midpoint freedoms directed along the normal directions: un4 , uns , un6.
(iii) The hierarchical midpoint freedoms directed along the median directions: u.,4, urns, Urn6.
(iv) The hierarchical midpoint freedoms directed along the normal-to-the-median directions:

Ut4, Ut 5, Ut6.

Choices (i) and (iv) lead to transformation matrices that are singular for any triangle. Choice
(ii) leads to a transformation matrix that is singular for right-angled triangles. That leaves

choice (iii), which as shown below has a well conditioned inverse. The necessary relation
relating 0 to s is available in (A.23). This is rendered square by augmenting it with the trivial

=fi,.,, =4,5,6:

1
0
0

S 3 + a22

Aa tz

S 3 - aZ2

Aat2

relations ft..

u.-,,,)
/

Ura6 [

02

0O_

0 0 0 0
1 0 0 0
0 1 0 0

S 2 -- a21

0 a_ I 0
As3t

S I + a 2

0 a_z I a_ I
Aa 23

S t - a 2 S: + a21
- _ 0 a_ l

Aa2a Aa_l

0 rf,,,4)
0 f,,,s i
0 u-,6

aft t ut4

0 fits

a_' u,6

(A.24)

or r = Hrss in the notation of (31). The determinant of H_, is a12azaa3t/2A 3. Thus H_s is
nonsingular for any nondegenerate triangle. Symbolic inversion of this transformation pro-
vides matrix Hs. given in (35).

Elimination of hierarchical median displacements by collocation

We now proceed to eliminate f.,4, f,.5 and t_.,6 through kinematic constraints. To fix the
ideas consider f.,_. From the boundary expansion (12) over side 1-2 we can obtain the

normal displacement d_ in terms of the freedoms on that side. The hierarchical value at 4 is

d.,=d.a-½(an, +anz)

= + + + - 2'-(an,+
I

= _ahlt2 ( 02 - O, ) = _ahl,2 (02 - O, ). (A.25)

Here parameter a b of (t2) has been renamed a h to emphasize the fact that we can vary both
of them independently for the basic and higher-order stiffness. Assuming the collocation

u,,4 = fin4 cos(n12, ml2) = d_4(bl2/ll2), (A.26)

where the bu are defined in (6), we find
- I "

Urn4 = _othbl2(0 2 -- d I ). (A.27)

Repeating this procedure for the other two side_ and collecting into one matrix equation we
get

Ura4 ]

_¢"I'1'15 I

Urn61

[ -bl: bl2 0
= _oth 0 -b2a bz3

bat 0 -b31

02 • (A.28)
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Augmenting this with the triwal equations 0i = 0i (i = 1, 2, 3) as last three rows and replacing

b_j -- 2A/aii yields the translormation matrix Hr_ listed in (36). An energy balance analysis
presented in Part III shows that the best value for a h is

ath -- 5/4, (A.29)

a value that has been "hard_,ired" into (38).

What happens for non-energy-orthogonal functions?

The original FF does not depend on the energy-orthogonality concept although the

variational justification of Refs. [21-24] does. To assess the effect of that condition on this
element, symbolic experiments (with Macsyma) were conducted with elements derived with
the general assumption (A.3) for the higher-order shape functions. The orthogonality condi-

tion (A.8) was replaced by

2p.i +//.3 +/a,4 = _. /./.2+ #.a = $2, (A.30)

where St and _, may be regarded as deviations from energy-orthogonality.
The EFF higher-order stiffness depends on two parameters: y and a h, where 3' defines the

scaling of K h as per eqn (B12) of Box 3. These parameters are selected to match pure
bending energies on regular mesh units, as described in Part III [16]. When the energy-or-

thogonal sets are selected, the matching can be made so that a set (3', oth) works for a//
aspects ratios. With (A.30) it was found that such matching was possible only if

. = _t51.

One choice that verifies this condition is

t_ 5 (_'3 -- _'1 )2 + _2t_B J

(A.31)

(A.32)

in which _bB= _'l_r2 + _'z_'3+ _'_- This is not energy-orthogonal if 3, #: 0. Closer examination,
however, showed that the sarne higher-order stiffness matrix K h was produced for any value

of _5,.;thus adding (ha has ne effect.
Any deviation from the condition (A.31) made matching impossibel: only specific element

aspect ratios could be energy balanced. Thus is appears that the main effect of departure
from energy orthogonality is a degradation in element accuracy. Consequently the general
assumption (A.3) was not pursued further.

Allman triangles fit the generic template

The rank-sufficient Allman triangle [7] was constructed with incompatible cubic shape
functions. Numerically integrated versions of this element have been symbolically analyzed as
prelude to the evaluation presented in Part III. Four triangle integration rules, labeled as

follows, were considered:
lc the 1-point centroidal iJ_tegration rule;
3m the 3-midpoint rule of quadratic accuracy;

3i the 3-interior point rule. also of quadratic accuracy, with points at r _- 2/3, _'j = _', = 1/6;
7i the 7-interior point rule of cubic accuracy.
The resultant (total) stiffne_;s matrices will be denoted by K A_, K A3m, K A3i and K A7,
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respectively. All of them were found to fit the generic template (41) in the sense that

KAIC = Kb(4/3),

KA3m Xt,(1)+K_,,, Kb(1 ) T 3m= = + Ho. Kqh Ho.,

K A3i Kb(1) +Kh 3i Kt,(1) T 3i= = + HovKqhHsv,

KA7i = Kb(1) + gl_i = Kb(1) T 7i+ no,.K.,no., (A.33)

where the argument of K b is the value of a b obtained by setting constant-stress states. The

centroid-integrated stiffness K Arc is of course rank deficient by 3. The 3-point-integrated

Allman elements are effectively linear-strain, quadratic-displacement triangles because such

sampling "filters out" quadratic strain variations. The higher-order stiffness of these 3-point

integrated elements does not fit into the present EFF family except for specific geometries.

For example, for the equilateral triangle, /(_" coincides with EFF's K h if 1 -3' = 1/4 and

a,=(32- = 8f_')/24, whereas g_ i is obtained if 1-3"= 1/36 with the same ah=(32
_+ q_')/24. To achieve equivalence for more general geometries, however, it becomes

necessary to generalize the present EFF formulation by allowing three a h coefficients, one

per side, with ah, depending on the magnitude of the opposite angle.

The main practical value of the decomposition (A.33) is that it shows that the numerically

integrated Allman elements pass the patch test without any numerical experiments. The

equivalent EFF elements, however, have parameter values that do not agree with the optimal

ones determined in Part III. As a consequence, the performance of all Allman triangles

deteriorates for high aspect ratios.
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Abstract. This is the second article in a three-part series on the construction of 3-node, 9-dof membrane

elements with normal-to-its-plane rotational freedoms (the so-called drilling freedoms) using parametrized
variational principles. In this part, one such element is derived within the context of the assumed natural

deviatoric strain (ANDES) formulation. The higher-order strains are obtained by constructing three parallel-
to-sides pure-bending modes from which natural strains are obtained at the corner points and interpolated

over the element. To attain rank sufficiency, an additional higher-order "torsional" mode. corresponding to
equal hierarchical rotations at each corner with all other motions precluded, is incorporated. The resulting

formulation has five free parameters. When these parameters are optimized against pure bending by energ,/

balance methods, the resulting element is found to coalesce with the optimal EFF element derived in Part I.

Numerical integration as a strain filtering device is found to play a ke_¢ role in this achievement.

Introduction

In the first part of this article series [1], a 9-dof triangular membrane element with three
corner drilling freedoms was constructed within the framework of the extended free formula-

tion (EFF). In the present work, we undertake the derivation of an element with the same
freedom configuration, using the assumed natural deviatoric strain (ANDES) formulation.

ANDES represents a recent variant of the assumed natural strain (ANS) formulation. The
latter is in turn a relatively new development. A restricted form of the assumed strain method.
not involving natural strains, was introduced in 1969 by Willam [2]. He constructed a 4-node

plane stress element by assuming a constant shear strain independent of the direct strains,
and using a strain-displacement mixed variational principle; the resulting element is identical

to that derivable by selective one-point integration. A different approach advocated by
Ashwell and coworkers [3] viewed "strain elements" as a way to obtain appropriate displace-
ment fields by integration of assumed compatible strain fields. (In fact, this was the same
technique used by Turner et. ai. [4] for deriving the constant-strain membrane triangle in their
celebrated 1956 paper.)

These and other forms of assumed strain techniques were overshadowed in the 1970s by
developments in reduced and selective integration methods for displacement models. The

assumed strain approach in natural coordinates, inaugurated in a pioneer paper by MacNeal
[5], has attracted increased attention since 1980. Among the main contributors we may cite

Correspondence to: Professor Carlos A. Felippa. Department of Aerospace Engineering Sciences and Center for

Space Structures and Controls, University of Colorado, Boulder. CO 80309-0429, USA
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Bathe and Dvorkin [6], Crisfieid [7], Park and Stanley [8,9], Simo and Hughes [10], Huang and

Hinton [11], and Jang and Pinsky [12]. The name "assumed natural strain" and the acronym
ANS are due to Park and Stanley [8].

ANS applications have been focused on plates and shell elements because of the effective-
ness of this formulation in producing elements with low distortion sensitivity, balanced

stress/displacement accuracy, and which are easily extendible to geometrically nonlinear
analysis. These advantages are somewhat counterbalanced by the fact that a-priori satisfaction
of the patch test is not guaranteed, even for fiat elements, and a-posteriori verifications to

that effect are required.
The basic steps of the ANS formulation are summarized in Box 1. The narrative assumes

that the element to be constnlcted has nodal displacement degrees of freedom collected in

vector v (these are those nodal variables common with other elements, also called the visible

degrees of freedom, or connectors), elastic modulus matrix E, and volume V. A generally
incompatible strain field (that is, one not necessarily derivable from displacements), is built in
natural coordinates, transformed into Cartesian coordinates where it is expressed as e = By,
and used to compute the stiffness matrix K by the standard formula fvBTEB dV. From the

standpoint of connected elements, an ANS element looks exactly like a displacement model
and can be easily implemented in a standard finite element code. Extensions to geometrically

and materially nonlinear analysis are equally straightforward.
ANDES is a variant of ANS that exploits the fundamental decomposition of the stiffness

equations described in Box 1 of Part I [1]:

Kr ffi ( K b + aK,)v = p, (1)

where a > 0 is a scaling coefficient. Assumptions are made only on the "deviatoric" portion

ed of the element strains, namely the portion that integrates to zero over the element volume:
/veal dV--O. Thus instead of e = Br we eventually get, by the procedure outlined in Box 2,

% = BdV, and

K. ffia fvBrdEB d de. (2)

The basic stiffness matrix K b is constructed by the same procedure described in Box 2 of Part
I. The mean portion of the strains, namely [, is left to be determined variationally from the
constant stress assumptions used to develop K b, and has no effect on the stiffness equations.

The main advantages of ANDES over ANS is that elements constructed with the former
technique are guaranteed to pass the individual element test of Bergan and Hanssen [13] (a
strong form of the patch test that demands pairwise cancellation of surface tractions among

adjacent elements in a constant-stress state). There are cases when an ANS element and the
corresponding ANDES element with a---1 coalesce. The ANDES formulation retains an
edge, however, in that the scaling coefficient remains available to improve the element
performance. Furthermore, the availability of K h helps in the construction of element level
error estimators [14] for •anO h mesh adaptation.

The variational justification of the ANDES formulation was developed by Felippa and

Militello [15,16], to which the reader is referred for details. This justification built on previous
work [17,18] on the variational foundations of the ANS formulation. The first ANDES
elements constructed using this theory were 9-dof Kirchhoff plate bending triangles presented
in [19]. The technique has also been used to formulate C O plate bending elements [14].

The present paper describes the first application of ANDES to membrane elements with
drilling degrees of freedom. The main objective is to illustrate another application of this

relatively new technique and assess its advantages and shortcomings when compared to FF
and EFF.
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Box 1--Construction of K by the ANS formulation

Step S.1. Select locations in the element where "natural straingage" locations are

to be chosen. For many ANS elements these gages are placed on reference lines (in
2-D elements) or reference planes (in 3-D elements), but this is not a general rule.
By appropriate interpolation express the element natural strains • in terms of the
"straingage readings" g at those locations:

• =A,g, (B.I)

where • is a strain field in natural coordinates that must include all constant strain

states. (For structural elements the term "strain" is to be interpreted in a
generalized sense.)

Step S.2. Relate the Cartesian strains e to the natural strains:

e = Te = TA,g _.4g (B.2)

at each point in the element. (If e---•, if it is possible to work throughout in
natural coordinates, this step is skipped.) The resulting Cartesian strain interpola-
tion is

e = TA,g = ,4g. (B.3)

If T is constant over the element, as in the case of the triangle studied here, the
step during which interpolation is effected becomes irrelevant.

Step S.3. Relate the natural straingage readings g to the visible degrees of
freedom

g = Qv, (B.4)

where Q is a straingage-to-node displacement transformation matrix. Techniques
for doing this vary from element to element and it is difficult to state rules that

apply to every situation. Often the problem is amenable to breakdown into
subproblems; for example

g = Q,v t + Qzv2 + • • • , (13.5)

where vj, v z.... are conveniently selected subsets of v. Some of these
components may be derivable from displacements while others are not.

Step S.4. For a three-dimensional element of volume V and elastic modulus matrix
E, the element stiffness matrix is given by

K = QTKaQ, with K_ -- fz,4rF.a dV. (B.6)

Should B = AQ be readily available one may use the standard formula

K-- f BTEB dV. (B.7)
Jv
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Box 1 (continued)

In general this stiffness matrix does not necessarily pass the individual element test

of Bergan and Hanssen [13] (a strong form of the patch test that demands pairwise

cancellation of node forces between adjacent elements in constant stress states).

For this to happen, K must admit the decomposition

K= K b + K, = v-_LEL T + K h, (B.8)

where L,--fv dV is the dement volume measure, L is a force-lumping matrix

derivable as discussed in Box 1 of Part 1 and K h is orthogonai to the rigid-body
and constant-strain test motions. In other words, the ANS element must coalesce

with the ANDES formulation with oe = 1. The equivalence may be checked by

requiring that

= ,4Q = t:- ILr, (B.9)

where .4 denotes the mean part of A (cf. Box 2). As ol this writing, no general

techniques for explicit construction of ANS fields that satisfy these conditions a

priori are known.

If the path test is not s:Jtisfied, one should switch to the ANDES formulation by

replacing the basic stiffness constructed from constant-strain, namely cBrEB, with

one constructed from constant-stress assumptions.

The triangular element

The geometry and degree-of-freedom configuration of the triangular element is identical to

that developed in Part I, to which the reader is referred for notation, geometric and

behavioral relationships.

Extracting the higher-order behacior

From the EFF development in the Appendix of Part I we learned that the most effective

way to exhibit the higher order element behavior is to extract the hierarchical corner rotations

_J, from the total corner rotations 0i:

0, = 0, - On, (3)

where i = 1, 2, 3 is the corner index and 0c) is the rotation of the constant-strain triangle

(CST):
1

0o = -_ (x,.3url +x _lUr2 + x12u_3 + Y23t.;yl + Y31t:y2 + Yl2Ur.3).

From (3) and (4) we readily perceive the fundamental transfolmation

1 I x3z v_2 4A xI3 Yl3 0 x2t Y21

= _/x32 v32 0 x13 Y13 4A .r:l y,.]
LX32 v._2 0 xl3 Y13 0 .r21 Y2t

(4)

0

0

4A

Ux I

L!y 1

O,

ux 2

Uy2

Ur3

U v 3

03

(5)
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Box 2--Construction of K h by the ANDES formulation

Steps H.1 to H.3. Identical to the first three steps S.1 through S.3 in Box I.

Step H.4. Split the Cartesian strain field into mean (volume-averaged) and
deviatoric strains:

e = _ + ea = (,4+Aa)g, (B.10)

where ,4= v-_fvTA, dV, and ed = Adg has mean zero value over V. For elements

of simple geometry this decomposition can often be done in advance, and ea
constructed directly. Furthermore, this step may also be carried out on the natural
strains if T is constant, as is the case for the elements here.

Step H.5. The higher-order stiffness matrix is given by

K h =aQTKdQ, with K_ = fAsEad dV, (B.11)

where a =Jzz > 0 is a scaling coefficient (see Box 1).
It is often convenient to combine the product of A and Q into a single

strain-displacement matrix called (as usual) B, which splits into B and Ba:

e = AQv = (,4÷ Ad)QV ----(B + Bd)v = By, (B.12)

in which case

K h = f:-_gB_ dV. (B.13)

or

b = Holy. (6)

The unsealed higher-order stiffness of this element fits the generic template introduced in

eqn. (41) of Part h

K. = H_Ko.H.v. (7)

The main objective of all formulations investigated here, as well as those in Part I, is to

construct the 3 x 3 matrix K0,, which represents the higher-order stiffness in terms of the
hierarchical rotations 8.

Guided by these considerations, we begin by decomposing the visible degree of freedom
vector into basic (CST) and higher order, as follows:

v=vb+v_ =vb +/'fi, (8)
where

Vb_

L':rl I

Uv2 ]

°. I
Ur2 ]

L'v2 "1,

Oo I

/"r3 [
t'v3

Vh----

0 0 0
0 0 0
1 0 0
0 0 0

= 0 0 0
0 1 0
0 0 0
0 0 0
0 0 1

(9)
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To simplify the problem of building higher-order strain fields, we further split the hierarchical

rotations into mean and deviatoric:

b,_ t0;j
I _ I t ¢

where ff -- 3(0t + 0,_ + 03) and 0,' = 0, - ft. Consequently 01 + 02 +/93 = 0. In matrix form

0--- #+0', (11)

which in terms of the nodal disl:_lacement vector becomes

u = v b +P(ff + O'), (12)

where P is the 9 × 3 matrix shown above. The deviatoric corner rotations define the linear

deviatoric-rotation field:

0' = o_(, + 0"_'z+ o_,,, (13)

which integrates to zero over the element. For future use we note the matrix relation

1110i}/[00]i l/i!:/oil=., x -1 2 -1 O. = o 1 o , 1 1 1 (14)

0_3/ -1 -1 2 0 0 1 --7 1 11, ,1 1 1 _ _ _ f o o o 03)

or

The hierarchical rotation decomposition is associated with a similar decomposition of the

higher order strains:

e o = e b + e,, (16)

where subscripts b and t identify "'pure bending" and "torsional" strain fields, respectively.
The former is generated by the deviatoric rotations 0 whereas the latter is generated by the

mean hierarchical rotation ft. We now proceed to examine these two components in turn.

The pure-bending field

This field is produced by pure inplane-bending modes associated with the deviatoric corner

rotations 0", i = 1, 2, 3. One way to visualize the nature of these modes is to think of a tiny
triangle su0erposed on a thin r_lane beam bent to constant curvature in its plane. Place the

triangle centroid at neutral axis height. Then rotate the triangle so that its three sides align in

turn with the bending directior_

From this visualization it follows that the reference lines mentioned in Box 1 are the

triangles sides. The straingage locations are chosen at the triangle corners. The natural strains

are the three direct strains parallel to the triangle sides, traversed in the counterclockwise

sense. These strains are collectt:d in the vector

,_. = {e.21 e.3 z e_.l._}r (17)

The natural strain E_k at corner i will be written ejk_,, the bar being used for reading
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convenience. Vector % at corner i is denoted by %i. Our objective is to construct the 3 × 3

matrices Qb_ that relate natural straingage readings to the deviatoric rotations:

_b! = Qbl O'' eb2 = Qb2 0', _b3 = Qb3 0'. (18)

Once these are known the natural bending strains can be easily obtained by linear interpola-
tion over the triangle:

_b = (Qbl_'l -[- Qb2_'2 + Qb3£3) 0' = Q,o'.

Consider the natural strain _b21(P) at an arbitrary point P of the triangle. Denote by d:u e
the signed distance from the centroid to P measured along the internal normal to side 21. In

particular, for the corners we have

4A 2A

d2t)3 -- 31z-_t, d2m = d2=12= - t d2113= 3ltz (19)

We shall assume that _b21tP depends only on d2_)p divided by the side length 12_, which

introduces a distance scaling. These dimensionless ratios will be called X21)e = d2_)P/12_, which
specialized to the corners become

4A 2A

X2'M3= 31_'---_" X2,,, =X2,/2 " 31_, (20)

Formulas for corners 2 and 3 are obtainedby cyclic permutation. According to the assumption

just stated, the natural straingage readings %2_1_at corner i depend only on X211,.multiplied
by as yet unknown weighting factors. This can be written in matrix form as follows:

{Eb2111 }
_bl "_- Eb3211

ffbl311

PlX2111

= PsX3211

-PlXI311

Eb2

E b2112 /

Eb3212_

Eb1312 ]

P2X2112

= P4X3212

-P3XI312

. [ p3x ,, Eb3 = _Eb32137 = P4X3213

_Eb1313] --P2XI313

,.2 ,4.21(0/P3X3211 --P3X32)I 0_ -- Qbl0',

p..x.,, J[ o;)

PsXI312 P3XI312 0_

o,x, ,3 Jr0;)

(21)

El2 C21 $21 S21C21 1 exx

• =/,z3(= c]2 s3z ,}2c321| eyy =T-'e,
['3,1 c_3 s_3 s,3c,3 J t2e,,

(23)

where pt through Ps are dimensionless weight factors to be determined on the basis of energy
balancing for rectangular mesh units, as discussed previously. The distribution and sign of
these factors is made on the basis of triangular symmetries.

The strain field is energy orthogonal if

Pt +Pz=203, P4+P5 =0, (22)

but these conditions will not be assumed a priori. The optimal element described later will be

found, however, 7" _atisfy (22).
The natural strains can be related to Cartesian strains by the transformation
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where c2t =x2t/lzt, s2t =Y2t/':,.1, C32=X32/132 ' $32=Y32//132 ' C13 =XI3//113 and Sl3 =y13/ll3.
The inverse of this relation is

eyy _ x J I_2exrj 4A2[(yz3x3".,x,fl_l x3,x2,1z32 x,zx321zt3 "23+ x32Ytz)/_t (Y31X,2+x,3Y2t)122 (Y,2X_+X21Y32)123 "3,

(24)

or, in compact matrix notation, e - Tf. Note that T is constant over the triangle. Combining

- '=TQb, e', i= 1, 2, 3. Thewith (17) we get the Cartesmn corner strains as ebi--Bb, O
Cartesian strains are obtained by linearly interpolating over the element:

e b = (Bbl¢l + Bb2¢: + Bb3¢3)0' -- Bb/_'. (25)

The torsional fieM

The higher-order stiffness produced by the pure bending fields alone is rank deficient (2
instead of 3) because of the deviatoric constraint EO" = O. To complete the construction of a
rank-sufficient higher-order stiffness we need to build a strain field associated with the degree

of freedom setting 0i = 0, others zero. This may be viewed as forcing each corner of the
triangle to rotate by the same amount while corner displacements are precluded. A displace-
ment-based solution to this l_roblem is provided by the cubic field of the QST triangle
constructed by Felippa [21] and developed by Carr [22] as membrane component for refined

analysis of thin shells. The QST expansion is

Ux_

T

Uxl

Ux.xl l

Ux.yll

Vx2

Ux.xl2

Ux.yl2

Ux3

Ux.xl3

Ux.yl3

Uxo

¢t2(3 -- 2¢1 ) + 2_'|¢2¢ 3

¢?( Y12¢2 -- Y31¢3) + (X13 -- X21)¢1¢;'_'3

¢:( X21¢2 -- X 13¢3) + ( Y31 -- Yl2)¢1¢2:¢3

6"22(3 -- 2¢2) + 2_'1¢2_r3

¢2( Y23¢3 --Y12¢1) + (x21 -- X32)¢1¢.'¢3

¢ 21 X32¢3 -- X21¢1) + ( Yl2 -- Y23)¢1¢:!¢3

532(3 -- 253) + 25,52¢3

5 2(` Y31¢1 --):23¢2) + (X32 --XI3)¢1_'3¢3

¢_1x_3¢_-x32¢2) + (Yz3 - Y31)GCz¢3

27¢tCz¢3

(26)

where v_._l, and v_.y), denote: Ou,/Ox and 0uJ0y, respectively, evaluated at corner i. A
similar interpolation holds for the y displacement component uy. The torsional mode with
unit rotations 0; = 0-- 1 is imposed by setting the QST nodal displacements to

v., = v. = v_.._j = l',, ,,)j= O; v..,, _= - _, v>..aj = _,

i-0, 1, 2, 3, j = 1,2,3. (27)

Differentiating (26) with respect to x and y and setting the freedoms to (27), we obtain the



C.A. Felippa, C. Mifitello / Membrane triangles with corner drilling freedoms- II 197

torsional strain field

etx X _ _ _

1
[_IY23(Y31ff3 -- Yl2_2) + ff2Y31( Y12_'I -- Y23_3) + _3Yl2( Y_'2 - Y3t_'I)]0,

A

1

etyy = _" [(,x32( xzlg'2 -x13_'3) + ¢2 x 13( x32_'3 - x21¢1 ) q- _'3221( x13_'l -x32_'2)] _,

1

2e,_y = - -_ [¢tx32( Y31¢3 -- Yl2¢2) -- ¢1 Y23( X21ff2 -- X13_3)

+¢2 x13(y1251 --Y23ff3) -- 52Y31(X3253 --X21¢1)

+ _'3X21( Y23_'2 -- Y31_'I) -- _'3Yl2( Xl351 -- X32¢2)] if,

where A is the triangle area. In matrix form

etxx ]et == etYr I = Btff"
2etxr )

(28)

(29)

This strain field is compatible, varies quadratically, and vanishes at the corners and centroid.

Integrating over the triangle and using the fact that xt2 + x23 + x31 -- 0 and Y_2 + Y__3+ Y31 = 0
it may be verified that all strain components are energy-orthogonal.

The field (28) appears unduly complicated. Conversion to natural strains through the
transformation (23) reveals, however, its intrinsic simplicity:

•/'tzt/• "_'v2'"¢z'¢3 ]
,, = = r-t,, = .,3_ (30)

kett3] )(13_3¢13¢2

where (21 - _'z - ¢_, _'3_,-- _'3- _'2 and ¢13 = _'1 -- _'3" For future use, it is of interest to consider
a midpoint-filtered version of (30), obtained by evaluating it at the three triangle midpoints 4,
5, 6 and then interpolating linearly over the triangle:

"t m_ _'t_2) = 31X3212_'32 O. (31)

To facilitate combination with the bending field, it is convenient to define the "spread"
matrix form of (31) in which each column receives one third of the strain:

• := {e_32_ = |X32)2_'32 X3z,2¢3z X32,z_'3z =Q: (32)

LXl ,Z¢,3 xi3(32¢13 x1313 't3

The stiffness matrix

Having constructed the higher-order strain fields, the computation of the higher-order
stiffness can proceed according to the general rules laid out in Box 2. The bending and
torsional strain fields are combined as

eo -_ B_O'+ BtO = (BhJ'- BtJ)O = BdO, (33)
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where J' and f are the numerical matrices in (15). We shall evaluate the higher-order
stiffness in terms of 0, namely

Koh =, fABrd(hE)Bd dA, (34)

where, h is the plate thickness, by numerical quadrature. The 9 × 9 higher-order stiffness K h
then follows from the congruevtial transformation (6). At this point, however, we still have the

undetermined Pi coefficients present in B d.

The optimal element

For reasons that will be immediately apparent, we are particularly interested in three-point
quadrature rules defined parametrically by

A

fAF(¢;,, _'z, (3) dA = -_-[F(_, rt, 7/) + F(r/, _, r/) + F(_7, r/, _:)], (35)

where 0 _<( _ 1 and 7/-- ½(1 -- _:). In practice the two most interesting rules of this type are

s¢ = 2/3 (the interior-three-point rule) and _:= 0 (the midpoint rule), both of which exhibit
quadratic accuracy. But in the present context it is instructive to leave _ free, excluding only
the cases _ = I (corners) and _ -- 1/3 (centroid). A symbolic analysis with Macsyma, described
fully in Part III [20], shows that the choice

pt----0, p2= 1-s c , p3--- ½(I --_), p4-----ps=O, (36)

has the following properties:

(1) It achieves pure-bending energy balance for rectangular mesh units of arbitrary aspect
ratio, a test discussed in detail in Part lII.

(2) Let Keh(_:) be the stiffness obtained with the integration rule (35) and the choice (36) for
the p coefficients. Then the scaled stiffness

= K0h(_: ) (37)
8(¢- 11"(¢- ,

is independent of _:, and coincides with that of the optimal EFF element derived in Part 1
[1].

For practical calculations it is convenient to use the midpoint rule _ = 0, in which case Koh
= X oh(0) for P2 =_i, P3-- _., others zero. If there are replaced in (2I), the matrices Qb,

Qb3 _--"

reduce to the simple form

Qbl = 7X3212

0

1
_X2113

0

--,¥1313

0

1
-- 2,1(3212

Xt311

I
"" 7X2113 0

X3213 0

0 0

Qb2 =_

X2m 0 0 ]

0 0 --3(3212 ],I 1

-- _X1312 0 2".¥ 1312

(38)

The seven-interior-point quadrature rule was also tried, but then it was found impossible to
construct an energy-balanced element. Because this rule accounts for quadratic strain varia-

tions in the torsional mode, T.heforegoing negative result suggests that linear strain variations
are required to attain an opt imal element.
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The combined natural strain field

Having chosen the optimal p coefficients and the midpoint integration rule, it is possible to
obtain the complete higher-order natural strain field. This is done by combining the bending
matrices (38) with the filtered torsional strain expression (32);

"d = (QbJ' - Qr_J) b "_Qd b = (Qa_ r, + Qd2_2 + Qd3_'3)_,

where

Qdl

Qd3 --

-Xzt_t -2Xztlt -Xzttt
I I

0 _X3211 - _X321t

XI311 X1311 2XI31_

_X2113 I-- _X2113 0

X3213 2X3213 X3213

- 2X1313 -,I(1313 --X1313

7

Qd2 ---

(39)

2X2112 Xztt2 XxlI2 ]

--X3212 -X3212 - 2X32_2 J,- ½x1312 0 __X 1312

(40)

Evaluation at the midpoints gives

Qd4

Qd6 z

_X2114 - _XZII4 0

X3214 2X3214 X3214 ,

-2Xt314 -X1314 -X1314

2)(2116 X2116 X2116 1

-X3216 -X3216 -2X3216/'

/

--½XI316 O ½XI3163 ]

Qd5 ==

-X2115 - 2X2115 -X2115 1
1 1 l0 2X3215 - 2X3215 ,

X1315 XI315 2XI315

(41)

1
where a'j_14--- -_(_'/,tt +A'_,q2), etc. Note that te structure of Qd4, Qa5 and Qd6 mimics that of
Qd3, Qdt, and Qd2, respectively, the only change being the evaluation point.

Fast computation of K h

With the explicit strain expressions found above we are now in a position to try for the

fastest computation of K h. For this we proceed as follows. First evaluate

en = TTET, (42)

which may be interpreted as a stress-strain matrix in natural coordinates. Then apply the
midpoint rule, which for uniform thickness h yields

Ah
r E r E T

K_h = T(QJ4 ,Qd, + Qd5 .Qd5 + Qd6EnQd6)_ • (43)

Finally, transform to physical coordinates via (7), in which advantage should be taken of the

special form (5) of He_. These are essentially the same computational steps described in
Appendix 2 of [19] for the "AQR" ANDES plate bending triangle.
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Concluding remarks

We have presented the derivation of a plane stress triangle with drilling freedoms using the
assumed natural deviatoric strain (ANDES) formulation. It is somewhat surprising that the

optimal choice in the energy-balance sense described in Part III [20] coalesces with the
optimal EFF element. This result suggest that this may in fact be the best available triangular
element with the present freedom configuration.

Numerical integration is seen to play a crucial role in achieving an optimal element. The

key effect is the function of the 3-point rule as a strain filtering device for the torsional mode.
Note that strain filtering was not needed for the EFF derivation in Part I, which dealt

throughout with quadratic displacements and linear strains.
Despite the coalescence, the ANDES derivation displays a ditferent flavor than EFF. The

formulation offers greater flexibility in that one is not restricted to compatible strain fields,
allowing element developers to bypass detailed kinematic analysis. By way of contrast, the

present element was formulated _n two months whereas the derivation of the final EFF form
took over one year. The difference may become more appreciable as one proceeds to shells
and solid elements.

On the other hand, the FF and EFF do provide explicitly the internal displacement field.

This knowledge is useful in the calculation of consistent node force vectors--a topic further
treated in Part Ill--consistent mass matrices, and geometric stiffness matrices. In cases

where the same element is available from both assumed-strain and assumed-displacement

formulations (the present element as well as DKT being examples), one would prefer the
latter for tasks that demand knowledge of internal displacements.
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Abstract. This paper completes a three-part series on the formulation of 3-node, 9-dof membrane triangles

with comer drilling freedoms based on parametrized variational principles. The first four sections cover

element implementation details including determination of optimal parameters and treatment of distributed

loads. Then three elements of this type, labeled ALl., FF and El:F-ANDES, are tested on standard plane
stress problems. ALL represents numerically integrated versions of Allman's 1988 triangle; FF is based on the

free formulation triangle presented by Bergan and Felippa in 1985; and EFF-ANDES represent two different

formulations of the optimal triangle derived in Parts I and I1. The numerical studies indicate that the ALL, FF

and EFF-ANDES elements are comparable in accuracy for elements of unitary aspect ratios. The ALL

elements are found to stiffen rapidly in inplane bending for high aspect ratios, whereas the FF and EFF

elements maintain accuracy. The EFF and ANDES implementations have a moderate edge in formation speed
over the FF.

Introduction

This paper is the last in an article series [1,2] that deals with the formulation and
evaluation of high-performance triangular membrane elements with corner drilling freedoms.

Those elements were derived using two recently developed techniques: the extended free
formulation or EFF [3] and the assumed natural deviatoric strain or ANDES [4,5].

Part III has two main objectives:
(1) To complete the theoretical derivations of Parts I and II with formulation and implemen-

tation details. These include the determination of optimal parameters by energy balance
methods, and the conversion of distributed applied loads to node forces. A third topic:
accurate recovery of strains and stresses, is deferred because the study of superconvergent

stress points (Barlow points) is still in progress.
(2) To carry out a comparative evaluation of triangular elements of thts type derived with

three different construction meth-'_: Allman's element [6], FF and EFF-ANDES. The

comparison involves accuracy for known test problems, accuracy degradation for high

element aspect ratios, and computer formation times.
Table 1 summarizes notational conventions for the elements Considered in following sections.

Correspondence to: Professor Carlos A. Felippa, Department of Aerospace Engineering Sciences and Center for

Space Structures and Controls University of Colorado, Boulder, CO 80309-0429, USA.
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Parameter determination

The EFF and ANDES triangles derived in Parts I and II, respectively, initially carry along

a set of numerical parameters, most of which affect the higher-order stiffness:

K EFF= Kb(o%) + (1 - y)K_(ah), (1)

KANDES = gb(ab) + °tK_(pI, /92, P3, P4, PS)" (2)

where K_ is the unsealed higher-order stiffness. Parameter a b must be the same for all
elements in an assembly, for otherwise the patch test would be violated. All other parameters

may, in principle, vary from element to element without affecting convergence.
Equations (1) and (2) display a total of 3 and 7 parameters for the EFF and ANDES

elements, respectively. The presence of these parameters is both a nuisance and an opportu-
nity. In production-level programs one should never leave sucla parameters to be defined by
users, as that would demand specialized knowledge. On the other hand, they provide the

opportunity to improve the element performance in some respects, a process that may define
"optimal values" for at least some of them. Such values may then be either hardwired in the
element subroutine, or in the element-calling programs.

In the most favorable case the best value of a parameter is element independent; if so it can

be set once and for all. Example are the "magic values" a b -- 3/2, a h -- 5/4 for (1). Next best
is dependence on material properties but not on geometry; such parameters may be left as

subroutine arguments to be set by calling routines that may examine constitutive properties. A
typical example is the higher-order stiffness scaling factors /3 = 1-3' for EFF and a for
ANDES. Least favorable is when the best value depends on element geometry; if so some

compromises may be called for.

The bending test

For the present elements, parameters will be determined b_, an energy balance method on

rectangular mesh units under simple but nonuniform motions. (This method resembles a

Table 1

Element notational conventions

Identifier Descript ion

ALL-3i

ALL-3m

ALL-7i
CST

EFF Cab. a,..8)

EFF

FF(O)

FF

AND (a_,. a, Pl ..... P5 )'7i

AND (ah. a. p_ ..... p5)-3¢

AND
EFFAND

1988 Ailman triangle [6] numerically integrated by the 3-interior-point rule

with sample points at(-_, _, _ i 2 I i _ 5)._),(_, 7, _),(_, _,
Ibid., numerically integrated by the 3-midpoint rule.

Ibid., numerically integrated by the 7-internal-point rule.

Constant strain triangle; same as EFF(0, 0, 0).
EFF trmngle constructed in Part I. with free parameters.

EFF triangle with optimal parameters (6), except that/3 = max( ½(1 - 4v'-), 0.01 )

to maintain rank.

FF element constructed in [7] with ab = -_ but _ith _ = i - y

as frt-e parameter.

FF element with _ = _.

ANDES triangle constructed in Part II, with free parameters, numerically

integrated by the 7-interior-point rule.

As above but numerically integrated by the par;tmetrized 3-point rule with sample

points at (_, _z(l- _), _(!-_)),(½(1-_), _, !(1-_)),(-[(I-_),-_(1-_)._)

for 0 _ _ < 1, but excluding _ = _.

As above, upon substitution of the optimal parameters (7). Coalesces with EFF.

Designates indistinctly the optimal ElF or ANDES triangles.
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y

Fig. 1. Mesh unit used for optimal pa-

rameter determination.

linear patch test whose satisfaction is sought in an energy sense.) A modification of the test

described by Bergan and Felippa [7] for the FF element is used. More specifically, we require
exact energy response to pure bending in the configuration shown in Fig. 1. The material is
isotropic with elastic modulus E, Poisson's ratio u, and uniform thickness h. Each mesh unit

is assembled with two triangles; because of the symmetry the results Would be identical if four
half-thickness overlaid triangles (with no internal nodes) were used.

The 0 _<x _<L, 0 _<y < H mesh unit is subjected to the pure-bending displacement field

Ux= -Kxr, u, = "x(x2 + uy2), O=_x, (3)

t hH 3where K = M/(EI), with I = _ , is the bending curvature. This produces an equilibrium
plane stress state _x_ = Exy, others zero. The exact strain energy stored in the elastic body
that occupies the mesh unit domain is

U,,,-- _EhKZLH 3= _EhKZLZr 3, (4)

where r = H/L or r- i = L/H are used as aspect ratio measures in the sequel.
Let u be the nodal displacement vector obtained by evaluating (3) at the nodes. The strain

energy taken up by the finite element assembly is

U_ _ T= (5)

where K isthe totalstiffnessofthe assembly.Ifthe trianglestiffnessescontainparameters,

theseare taken to be the same forboth.The strainenergy ratiort= UvE/Ue,, obtained
throughMacsyma islistedinTable 2 forseveralelements.The identificationconventionsof

Table I arefollowed.Alldatapertaintois.otropicelements;forthe ANDES elementof Part

IIonlythecaseu = 0 isshown topreventthe equationsfrom overflowingthe page.Table 3

complements Table 2 by givingnumeric valuesforspecificvaluesof parameters,Poisson's
ratiou and aspectratior.

Itshouldbe notedthatifu= 0,thetestofFig.Icouldbe furthersimplifiedby moving the

(x,y) axesto thecenterofthe rectangle.Becauseof symmetry onlyone trianglewould then

need tobe considered.But thissimplifiedtest,which was infacttheone used in[7],doesnot

properlyaccountfor the y-contractioneffectifu q,0 because the displacementfield(3)
appliedto thenodes would notbe distinguishablefrom a y rigid-bodymotion.

Nice solutions for EFF and ANDES

The energy-balancing condition 77= 1 leads to algebraic Riccati equations in the free

parameters. The resulting system is linear in/3 and a, quadratic in parameters such as ab, a h
and the Pi, and quartic or higher in the aspect ratio r. A solution of these equations is called
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Table 2

Energy ratios for mesh unit of Fig. 1 under pure bending--isotropic material

Element Energy ratio "11= UFE / Ue_ Nice solutions

of'q= 1

FF(_)

AND

(Orb, Or,

P l,'- P5)'7i

(v = O)

ALL-3m [72-48=,-" +(5-9v)r-: + 2r-4]/[64(1 - =,2)] None

ALL-3i [1880- 1296v 2 +(79 - 91 v )r -2 + 6r-' ]/[1728( 1 - v2)] None

ALL-Ti [264- 180v z +(15- 19_ _r -2 + 2r-']/[24(Xl - v2)l None

CST [6(2 - v:) + 3(1 - v)r -21/[8(1 - v2)] None

EFF [(16Or_ -52Or h + 43)/3 + .!a{; - 12a b +36- 18v 2 +((ot_(16v +32) Orb = _, Orh = _,

(orb, orh, fl) -orh(80+64u)+50-_55v)fl+(l--vX4a_-12ab-9))r -2 fl== 1--7=_(1-4u 2 )

+ (48a_ - 120a h + 7.' tflr-']/[2ad I - v2)]

[(45- 36=, 2 +8fl)r s +(7.70- 216v 2 +(24=, + 24)fl)r 6 +(495- 36¢_v 2

+ (24=, + 64)fl)r 4 + (770 -- 216=, 2 +(8=, + 40)/3 )r + 45 -- 36v 2 + 8/3]

/[48(1 - v2Xr s +6r _ 4- llr 4 +6r 2 + l)]

[(((60p_ - 60p4 + 480p 3 - 120p 2 - 120p I )P5

+(45p4 -240p 3 + 18t)p2 + 180pt)P4 +(960p3 - 480p2 - 480p,)P3

+(195p, +330pt + 12)p 2 + 195p_ - 12p t +4)a + 360a_

- 2160or_ + 3240) + 0 (300p5 - 24004 - 720p 3 + 480pz + 600p_ - 48)p_

+ (210p4 + 1080p3 - 480P2 -420Pt - 24)p4

+ ( 1440p3 - 1320p2 -- 1080pl - 48)p3 + 330p 2 + 600p t P2

+ 390p_ - 24pl + 8)a + 720a_ - 2160a b + 1620)r-2

+ ((5400_ - 540p,,p_ +405p_ + tSp z - 30plpz - 12p z + 15p_

+ 12pt +4)a)r-_]/1080

3

AND {[(9_' -(18p,. -18pl + 24)_ 3 +(12p_ + p3(96ps + 48p,) ab = '='

(orb, Or, + PI(24p_ + 12p4 + 96P3 +6p, - 30)+ pz(24p5 + 12p4 + 96p3 + 30) Pl = P4 = Ps = 0,

Pt ... P5)-3_ + 12p_tp5 +3pl + 19:.p3 +21p; +21p_ +22)_ 2 P2 == 2p3 1 - _,
" 2

(v ==O) +(Pl( - 16ps -8p4 - 64p3 -4p 2 + 14) a =

+ p:(- 16p5 -Sp, -_4p_ - 14)+ P3( -64p_ -320,) 8(¢ - 1):(¢ -_)'_

- 8p_ - 8p4p , - 2p_ - 128p] - 14p_ - 14pt - 8){_

+ 4p_ + p3(32p_ - 16p4) - 4p4P5 + pl ( - 8p5 + 12p4 - 32p3 + 22p: - 2)

+ p2(-8p5 + 12p4 - 32p_ +2)+ 3p_ +64p_ + 13p_ + 13p_ + I)Or

+ 24Or _, - 144ab + 21h]

+ [(18_ c' +(72p_ + 3bO., + 72p3 + 36p_ -48),_ 3

+(72p_ + p3(144p5 -_"72p4 - 120)+ pl(72P5 + 36p4 + 120p] - 24p 2 -60)

+ p4(I2p5 -60)- 12':)p5 + 18p42 +96p] - 24p2p3 +6p_ +42p_ +4.4)_¢2

+ (56p_ - 48p_ + p I( - 48P5 - 24p4 - 80p3 + 16pz + 28) + p4(28 - 48p_)

+ p_(-96p_ -48p, _56)- 12a,_ -64_,_ + 16p_p_- 4p,-"-28a_ - 16)_,
+ 20p_ + pt(4Op5 - :'Sp,t - 72p3 + 40P: - 4) + pz(32p_ - 32p= - 88p3)

--8p5 + p4( -- 16p5 --4)+ p]( --48P5 + 72p4 --8)+ 14p_ + 96p_ + 22p z

+ 26p_ + 2)," + 48or _, - 144Orb + 108lr- _ + [9_ a + (18p2 -- 18p= --24)_ 3

+ ( 108p5z + 108psp5 _-27p_z + 9p2_ -- 30p: + p t(30 -- 18p2) + 9p _ + 22)_ z

+(14p2 -72p_ - 72p4p 5 - 18p_ -6p_z + Pt(12pz - 14)-6p_ -8),_

+ 36p_ -36p45 + 27/, _ + p,_ -2p2 + p_(2- 2p 2) + ptz + l)Or Jr- 4}/72

None (but see text)

None

"nice" if it yields real values for the parameters that are independent of r. Being aspect-ratio

independent, these solutions are of significant practical value. They are sought by equating
coefficients of powers of r to () or I.

The parametrized EFF element has the surprisingly simple nice solution

=.3 5cq, _, a, i, /3=I-7=_(I-4v2), (6)

The values for a, and a_ emerge as double roots of quadratic equations while/3 is the root of
a linear equation; thus (6) is t_e only such solution.
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Table 3

Energy ratio rp for Specific Elements, v and r

207

v 1 / r ALL-3m ALL-3i ALL-7i CST EFFAN D FF

0 i/4 1.130 1.091 1.104 1,523 1.000 1.009

i/2 1.146 1.100 I. 116 1.594 1,000 0.997

1 1.234 1.137 1.171 1.875 1.000 0.998

2 1,938 1.326 1.483 3.000 1.000 1.009

4 10.375 2.708 4.233 7.500 1.000 1.016

8 134.125 18.236 39.233 25.500 1.000 1.020

16 2069.1 25 240.347 563.233 97.500 1.000 1.021

1/4 1/4 1.153 1.113 1.126 1.569 1.000 1.030

1/2 1.164 1.119 1.135 1,625 1,000 1.020

1 1,229 1.149 1.178 1.850 1.000 1.020

2 1.867 1,309 1.448 2,750 1.000 1.029

4 10,417 2.614 4.128 6.350 1,000 1.035

8 140.617 18.503 40.448 20.750 1.000 1.038

16 2197.417 252,725 595.328 78.350 1.000 1.039

1/ 2 1/4 1.25 t 1.202 1.219 1.766 1.000 1.103

1/2 1.255 1.207 1.225 1.812 1.000 1.095

1 1.302 1.231 1.258 2.000 1.000 1.096

2 1.958 1.378 1.517 2.750 1.000 1.103

4 12.083 2.799 4.550 5.750 1.000 1.108

8 172.583 21.818 48,683 17.750 1.000 1.110

16 2734.583 311.225 737.217 65.750 1.000 1.111

For the ANDES element the situation is more complicated. All nice solutions of the

Riccati equations of the 7-point integrated element are imaginary. For the 3-point-integrated

element with sC-parametrized sample points (cf. Table 1), the value a h = 3/2 is exceptional in
the sense that the nice solution

3
¢xb= 7, Pl =P4=P5 --0,

2

o/_---

- "):'

PI = 2p2 = l - _,

(7)

is unique (it appears as a double root of a quadratic). This can be generalized to arbitrary v

by multiplying a by (1- 4u"). If a h < 3/2, many other solution families exist that satisfy

P4=P5 =0, Pt--Pz 1+_¢; for example, if u=_=0, a b O, p3=__p2-_(5+¢__)/4, a=

9/(- 16 -T-lvr_-). But since all these solutions lead to the same K, nothing new emerges. On

setting the values (7), the resulting element coalesces with the optimal EFF.

The FF triangle

For the FF element of [7] an "almost nice" solution is possible. If ab = _, the condition

rt = 1 yields the "balancing/3" as

3 (l-4u2)(rS+6r6+llr4+6r2+l)

fl = 1 - y -- 8 r 8 + 3r 6 + 8r 4 + 5r 2 + ]. + v(3r 6 + 3r 4 + r-') (8)

This expression differs somewhat from the numerical results presented in [7] because the

energy balance test done in that paper was done on a different mesh unit that did not account
for lateral contraction.
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Equation (8) has the disadvantage of depending on the aspect ratio r; thus securing the

correct energy balance for bending along x does not imply such balance for bending about y

unless r = 1 (square mesh unit). Nonetheless for a given _, the dependence is mild; for

example if v--0, /3 varies from 0.375 to 0.547 and so the "compromise" value of 1/2 was

recommended in [7] for general use. This is confirmed by Table 3, in which one can see that

the deviation of r_(v, r) from I for FF (½) never exceeds 12%.

Orthotropic material

All previous results can 1)e extended to an orthotropic material characterized by the
strain-stress relation

Ey_ = v2t/oE 2 1/E,. 0 ,

implying that the principal orthotropy axes are directed along the bending directions. The

displacement equilibrium solution (5) has to be suitably modified. All previous nice solutions

were found to apply if v 2 is replaced by v12v2t. The case of general anisotropic material has

not been investigated, because for such materials the construction of a pure-bending equilib-
rium solution is difficult.

Body load lumping

The conversion of distributed loads to node forces (a process herein called load lumping)

in high-performance elements displays several points of interest. Discrepancies arise with

respect to the well ordered world of conforming elements. These can only be explained

satisfactorily through the underlying variational principles. To focus subsequent discussions it

is convenient to distinguish between interior or body loads, and boundary loads.

If body loads bT = {b_ br} per unit volume are given within a two-dimensional FF or EFF

element, the variational forrr_ulation says that the consistent node force vector p is given by
the usual formula

p -= fAN_Vhb dA, (9)

where h is the element thickness and N u is a 2 × 9 matrix of shape functions that gives the

internal displacements u in terms of the visible degrees of freedom:

{u_} =N,,v. (10)U _ Uy

In the FF and EFF, the shape functions N_ are not usually known directly but result from

transformations on modal functions initially constructed in terms of generalized coordinates
(cf. Part I).

But if the element is of ANS or ANDES type, the internal displacements u are not

necessarily known, because the assumed strains may not be integrable. A heuristic solution is

to use the p vector of an FF, EFF, or conforming element with the same v. This expedient

device has been used sotto toce in stress-assumed hybrid elements for over two decades.

Although the subject is not treated here, it should be noted that a similar obstacle arises

when computing the consistent mass matrix and geometric stiffness matrices of assumed strain
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elements. These two calculations require knowledge of the internal displacements and their
gradients, respectively.

Boundary load lumping

Suppose boundary loads t ("surface tractions" in continuum mechanics terminology) are
specified per unit length and thickness on the boundary S of a two-dimensional FF, EFF, or
ANDES element. The variational formulation presented in [8] asserts that, under certain

assumptions examined further in the "Locality lost" section,

p = fsN_ht dS, (11)

where Na are the shape functions for the boundary displacement field. In general u and d do
not match on S, so (11) is not necessarily the same as [sN, Tht dS. The following difficulties
may arise.

(1) Na may depend on free parameters, for example the rotational factor a in equation (29)
of Part I. The optimal value of these parameters may be different for the basic and
higher-order parts; for example in the optimal EFF element, otb = 3/2 but a n = 5/4.
Which value should be used for p?

(2) The assumptions that lead to (11) may not be applicable, and if so the internal displace-
ment u evaluated on the boundary, rather than d, appears for portions of t.

These difficulties are best assessed through a detailed example relevant to the present
application. A side of length L of a right-angled EFF triangle of constant thickness h is

subjected to a normal distributed load f (per unit of length and h) that varies linearly from f,
at node i to f/ at node j. The x and y axes are placed as shown in Fig. 2. We shall see that

nodes forces p,, py and Po at nodes i and j depend on f, and fi through formulas that can
be placed in the generic form

I
p,,=_(Otf,+(1-O,)f,)hL, p,=O,

Po,--- _°_(_Orf, +(1-O,)L.)hL z,
(12)

p.= ½((1-_O,)L_+,,L)hL, p,,, = O,

Po, = - _-_(( 1 - O,)f, + O,f/)hL 2.

Here 0t, 0, and o_ are numerical coefficients (subscripts t and r stand for translation and
rotation, respectively.) A simple calculation shows that translational equilibrium is always

satisfied by (12), but that rotational equilibrium for f_ _f/ requires 120,- 6_00r = 8- 3w.
Table 4 collects results from several methods outlined below.

Boundary shape functions

The simplest load lumping technique consists of using (11) with Na taken from the
boundary interpolation for the baz,,, stiffness. This is exact if the boundary loads are uniform,

and in any case reasonable from the standpoint of convergence.
Using the cubic Hermite interpolation--equation (12) of Part I--with rotation shape

functions multiplied by a/ yields the coefficients listed under label "HCI(at)" in Table 4. A
similar calculation using linear interpolation yields the coefficients listed under label "LI".
This is effectively the CST load lumping, for which the fixed-end nodal moments Po vanish.
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Fig. 2. Triangle side subjected to normal

linearly-varying load f.

Energy balance

A different procedure uses energy balance (EB) concepts similar to those exploited in the

"Parameter determination" section. Embed the triangle into the four-triangle rectangular

mesh unit illustrated in Fig. 2(b). A stress field that equilibrates the boundary loads is

o-xx = (1 - _r)L + g]), _rrr=a,,y=O, (13)

+x/L is a side isoparametric coordinate. The associated strain field is easilywhere _"= ._
integrable if h is constant and the material is isotropic. Taking symmetric boundary conditions

about the mesh unit midcentcr one gets the displacement field

u, = crux - c,._,, uy = -cmvy + ½(x 2 + vy2), 0 = c,x, (14)

in which c m = ½(fj +f,)/E and c, = (fj -f,)/(EL). Evaluate this at the nodes of the mesh
assembly to form the 12 × l displacement vector v. Evaluate the 12 × 12 EFF stiffness K of

the assembly using the optimal parameters (6). From the energy condition ½vT/O.' -- vrp = min.

the force vector is taken to be p =Kv from which the forces on nodes i and j can be
1

extracted. For Poisson's rati_;s v = 0 and v = ._ this method gives a formula that befits (12),

with the coefficients listed ur, der labels "EBZ" and "EBH", respectively, in Table 4.

Table 4

Load lumping formulas for case of Fig. 2

Identifier Method (_'oefficients of (12) Rotational

label description _t 0r _o equilibrium?

7 _ ., Only if otf _ [HCI(a/) Eqn. ( 11 ) with Hermite cubic interpolation shape functions ,_ -_ 3at

unless L = L

LI Eqn. ( l 1 ] with linear inrerpolafion shaoe functions _ any 0 Yes

EBZ Energy balance, v = I) -_ _ t Yes

EBH Energy balance, v = '_ _ _ I Yes
I 37

EBQ v - z interpolating EB_Z. and EBH ._ _ I Yes



C.A. Felippa. S. Alexander / Membrane triangles with corner drilling freedoms _ I11 211

Locality. lost

What happens if v _ 0 and u ¢, _? Then the expressions given by the EB method bring in

the triangle dimension normal to side i-j, and forces appears on the third corner! This is

contrary to intuition, but the variational principle in [8] explains this mystery. The original

boundary traction energy term is )i_htu dS rather than fhtd dS. The key assumption in the

reduction to the latter is that t be in the range of o-,_ =nT(EDu), namely the normal

projection of the internal stresses generated by the internal displacement field u.

Now the internal displacement field (14) is in the range of the applied load f, but is not

exactly representable by EFF elements if v _ 0. Thus o-," can match any constant f exactly

through the basic modes, but a linearly varying f only approximately through the higher-order

modes. (The case u = _ is a fluke in that the higher-order stiffness vanishes on setting the

optimal /3--_(1- 4v2)---0 and only the basic stiffness survives.) As a result the boundary.

term ]shtu dS emerges on part of the linear variation of f. This destroys locality because u
along an element side does not necessarily depend only on freedoms located on that side.

For the numerical experiments on the uniformly stretched beam the case u-- ¼, labeled

"EBQ" in Table 4, is handled by linear interpolation of the coefficients for EBZ and EBH, a

device that maintains locality despite being variationally inconsistent.

Rotational disequilibrium

A comparative analysis of HCI, EBZ and EBH leads to the following conflict. For uniform
3

load (fi =_ --f) the three expressions coincide if at. = _ for HCI, giving

p_, =p,j = ½fL (as expected), P_, = -P_i-- _fL'-. (15)

By running uniform stretch problems, reported below, it is readily verified that these

"fixed-end moments" are the correct ones. But for a varying force (f, ¢:fj) HCI violates

rotational equilibrium unless a t = 1. This violation does not affect ultimate convergence as

the mesh size is refined, but may worsen coarse-mesh results.

Thus both techniques for computing node forces are found to have limitations. Use of (11)

maintains locality but may lead to inaccurate or out-of-equilibrium formulas. The energy

balance technique is accurate and upholds equilibrium, but brings in material properties and

may lose locality.

Practical recommendations

In production programs the force computation module may not be aware of "'interior

details" such as the element type and material properties. Then it appears best to take a

compromise value for the coefficients. For example: tO_= 3/4 = 0.75. t0_ = 2/3 and _ = I., a
set that satisfies rotational equilibrium. The difference between two equilibrium force systems

is a self-equilibrated force system. By Saint-Venant's principle its effect should be felt only

within a few element layers. Thus for fine meshes the ch,:'_,_ of load lumping should make

little difference. But the effect can be important for coarse meshes, or when accurate local

stresses are desired. The numerical experiments on the uniformly stretched beam studied
below corroborate this observation.

For distributed forces tangential to element sides no such difficulties arise because the only

possible tangential displacement interpolation is linear. Consequently the node force lumping
of the constant strain triangle (CST) can be used.
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Accurate recovery of strains and stresses

One of the goals of high.performance elements is to achieve comparable accuracy in

stresses and displacements at any location. Two steps are necessary to attain that objective:

(1) Identify superconvergent points (also called Barlow point.',) at which higher order stresses

(or stress components) are most accurate.

(2) Devise interpolation-extrapolation procedures for "transoorting" that accuracy to other

locations of interest; for example the corner points.

For the EFFAND and FF membrane elements these steps are being investigated and will be

the subject of a future commtinication.

Example 1--Uniformly stretcaed beam

The first numerical example, illustrated in Fig. 3, is a cant}lever beam of rectangular cross

section and length/height ral}o 16: I. The beam is under constant uniaxiai stress o'_x = 100.

Consequently the beam functions as a bar throughout its length as long as root contraction for

v _ 0 is permitted: it is also important to set the drilling rotation to zero at the root. A regular

32 x 2 mesh of square elements, each square being fabricated by four half-thickness overlaid

triangles, is used. The elastic modulus E = 32 is chosen so that the exact end deflection is

always I00.

Of course this problem should be solved exactly by any membrane element with any mesh.

The purpose of the example is to illustrate potential difficulties with the treatment of the

applied distributed loads f_-; o-_ = 100 at x =32. All energy balance (EB) load lumping
methods listed in Table 4, as _vell as HCI(3/2), yield fixed-end moments +fH2/8 = _ 125 at

the top/bottom nodes of the __nd section, whereas HCI(1)yields +fH:/12 = _+_83.33. On the

other hand, the linear interl:,olation method (LI) gives zero end moments. All these load

lumpings satisfy equilibrium.

Displacement results as weil as maximum stress errors for EFFAND and CST elements are

shown in Table 5. For EFFAND all load lumpings satisfying (15) yield the exact solution as
I

expected. For Poisson's ratios u = 0 and _ the end displacement error induced by LI is of the

order of 3%, which is not unreasonable. But maximum stress errors at near-end locations

reach levels of 6() to 90%. E:'rors disappear rapidly as one moves from the end. as may be

expected from Saint-Venanrs principle, and are imperceptible for x < 28. For many applica-
tions, however, those stress error levels would be intolerable.

Results for HCI(I) fall 1/3 of the way between those of EB and LI. Errors for v = 1/2 are

about three times higher, the_;e being exacerbated by the use of a very. low/3 = 0.01.

y

a) D

I. 32 _ P=2_

b)

_111 IIIIIIIIIIIIi IIIII1_I_III_._
_1111111 IIIIIIII}II_IIIIIII I_1_

Fig. 3. Slender beam under axial loading:

/: = 32, v varies, h = 1: root contraction

allowed for v _ 0; four-overlaid-triangle

mesh units used: a 32× 2 mesh is shown

in (b).
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Table 5

Results for beam under uniaxial loading
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Element Load Quantity Poisson's ratio

lumping u = 0 _, = 1/4 v = I/2

EFFAND EB or HCI(_) U,D 100.00 100.00 100.00

EFFAND EB or HCI(_) t',c 100.00 100.00 100.00

EFFAND EB or HCI(_) Max _r_ error 0% 0% 0%

EFFAN D HCI( 1 ) L'_D 101.12 tO 1.32 103.92

EFFAND HCI( 1) l',c 99.74 99.73 99.63

EFFAND HCI( 1 ) Max crux error 22% 29% 71%

EFFAND LI u, o [03.35 103.94 111.75

EFFAND LI u ,c 99,23 99.19 98.88

EFFAND LI Max (r_ _ error 61% 87% 211%

CST LI l'_ o 100.00 100.00 100.00

CST LI t'_ c 100.00 100.00 100.00

CST LI Max o-,x error 0% 0% 0%

Obviously the CST has no problems with LI load lumping or root drilling rotation settings,

and would be the cheapest and safest element for this problem. This observation underscores

a general rule well known to practitioners of finite element methods: Any refinement

deL'ice_here, the inclusion of drilling freedoms_mcreases the potential for element misuse.

Example 2--Cantilever under end moment

We take up again the slender cantilever beam of Example 1, but now subjected to an end

moment M = 1013.The problem is illustrated in Fig. 4. The modulus of elasticity, is adjusted to

E = 768 so that the exact tip deflection 8,p = ML/(2EI) is 100. Regular meshes ranging from
32 × 2 to 2 × 2 are used, each rectangle mesh unit being composed of four half-thickness

overlaid triangles. The element aspect ratios vary from 1 • 1 through 16: 1.

Table 6 reports computed tip deflections (y displacement at C). It displays the effect of

four variables: element type, element aspect ratio, load lumping, and Poisson's ratio. The first

two are the most important ones. The element types are identified following Table 1.

The root clamping condition was imposed by setting

t,,j = t'__, _- t'x3 = 0, t'_2 = 0, 0_a = 0_2 = 0_s = 0, (16)

a)

b)

Y

J= 32 .. --.4 M-,oo

Fig. 4. Slender cantilever beam under

end moment: E=768. u varies, h=l:

root contraction for t, _ 0 allowed: four-

overlaid-triangle mesh units; a 32×2

mesh is shown in (b).
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Table 6

Tip deflections (exact = 100) for beam under end moment

Element v Load Mesh: x-subdivisionsx y-subdivisions

lumping 32 X 2 16 x 2 8 x 2 4 × 2 "3 •
_X_

ALL-3i 0 EBZ 87.99 75.47 37.1)1 5.51 I).42

ALL-3m 0 EBZ 81.02 51.62 9.o4 0.74 0.04

ALL-7i 0 EBZ 85.43 67.44 23._)5 2.55 0.17

CST 0 LI 53.33 33.33 13.33 3.92 1.02

EFFAND 0 EBZ 100.00 100.00 100.00 100.00 100.00

FF 0 EBZ 100.25 99.15 98.38 98.08 97.98

ALL-3i 1/4 EBQ 87.08 76.48 38.32 5.42 0.39

ALL-3m 1/4 EBQ 81.36 53.57 9..';9 0.70 0.03

ALL-7i 1/4 EBQ 84.92 69.09 24. ?.5 2.47 0.16

CST 1/4 LI 54.05 36.36 15.'r5 4.82 1.28

EFFAND I/4 EBQ 99.99 99.99 99.(_9 99.96 100.07

FF 1/4 EBQ 98.36 97.17 96.',8 96.34 96.27

ALL-3i I/2 EBH 81.26 72.61 35."6 4.58 0.3 l

ALL-3m 1 / 2 EBH 76.80 51.06 8.26 0.56 0.02

ALL-7i 1 / 2 EBH 79.48 65.95 21 .(_8 2.04 0.17

CST l/2 LI 50.00 36.36 17.39 5.63 1.52

EFFAND l/2 EBH 99.98 99.98 99A)8 99.98 99.97

FF I/2 EBH 91.27 90.66 90.22 90.06 90.01

EFFAND 0 HCf( _ ) 97.51 97.50 97.50

EFFAND 0 HCI( I ) 100.00 100.()1 100.00

EFFAND 0 LI 99.98 I00.01 I00.01

EFFAND 0 EBZ 100.00 100.()0 100.00

EFFAND 0 EBQ 99.99 100.00 100.00

EFFAND 0 EBH 99.97 993)9 I00.00

EFFAND 1/2 HCI(_) 98.68 97.t)7 97.51

EFFAND 1/2 HCI( 1 ) 101.36 1130.19 100.00

EFFAND I / 2 LI 101.66 100.20 99.99

EFFAND I/2 EBZ 101.75 100.09 99.99

EFFAND 1/2 EBQ 100.31 100.04 100.00

EFFAND I/2 EBH 99.98 99.08 99.97

where l, 2, 3 are the root nodes, numbered from the top. It is essential to leave L'>_ and U), 3

unrestrained for _,_ 0. This makes allowance for the Poisson's contraction at the root and

makes the exact solution mergt: with the displacement solution (3) over the entire beam.

The first 18 lines of Table 6 compare elements for aspect ratios varying from 1 : 1 to 16 : 1

as columns, and Poisson's ratios of 0, 0.25 and 0.50. The EB lc)ad lumping formula appropri-

ate to _, is used for all elements, except for CST, for which the LI lumping--which is

consistent for that element-- is used. The last 12 lines compare the effect of different load

lumping formulas on EFFAND

Because two elements through the height are used, the discretizations are nothing more

that repetitions of the test mesh unit of Fig. 1 along the beam length. Consequently the

computed deflections should be 100/r/(_,, r). This provides a valuable numerical confirmation

of the Macsyma results of Tables 2 and 3. Discrepancies from 100/r/ for elements other than

EFFAND and CST are due to the use of EB load lumpings which were not rederived for each
element.

Because r/(v, r) - 1 for EFFAND, that triangle should maintains full accuracy for all _,

and r. The deviation from 100.00% for u = 0.25 is caused by FBQ not being in exact energy



C.A. Felippa, S. Alexander / Membrane triangles with corner drilling freedoms-- 111 215

a)

b)

Y

x

48

P=40

d

Fig. 5. Cantilever under end shear: E =

30000, v= I/4, h= 1; root contraction

not allowed; four-overlaid-triangle mesh

units; an 8×2 mesh is shown in (b).

balance, as explained in the "Locality lost" section. The slight discrepancy for v = 0.5 is due

to the use of/3 = 1 - 3' = 0.01 rather than 0 to keep correct rank.

The FF element with fixed 1 -3'--0.5 maintains good to excellent accuracy. The Allman

triangles perform well for unit aspect ratios, but rapidly become overstiff for aspect ratios

over 2: 1, and are inferior to the CST for aspect ratios exceeding 8: 1. Of the three

numerically integrated versions 3i is consistently superior, followed by 7i.

The last 12 lines in Table 6 show that the EFFAND accuracy for low Poisson's ratio is not

affected by the choice of load lumping formula as long as equilibrium is maintained. In fact
the results for v = 0.25 are virtually identical to u--0, and are not shown here. The effect

becomes more significant, however, as v approaches l/2. For v = 0 the only visible difference

from the exact solution are the results for HCI(3/2), a lumping that violates rotational

equilibrium by about 3%.

Example 3--Cantilever under end shear

The shear-loaded cantilever beam defined in Fig. 5 has been selected as a test problem for

plane stress elements by many investigators since originally proposed in [9]. A full root-clamp-

ing condition is implemented by constraining both displacement components to zero at nodes
located on the x = 0 section. Drilling rotations must not be constrained at the root because

the term auy/ax in the continuum-mechanics definition is nonzero there. The applied shear
load varies parabolically over the end section and is consistently lumped at the nodes.

The main comparison value is the tip deflection 8c -- vy c at the center of the end-loaded

cross section. One perplexing question concerns the analytical value of _c- An approximate

solution derived from 2-D elasticity (based on a polynomial Airy stress function) gives

_ei-_ 0.34133 + 0.00145 = 0.35583, where the first term comes from the bending deflection
PL3/3EI, I = H3/12, and the second from a quadratic shear field. The shear term coefficient

in the second term results from assuming a warping-allowed root-clamping condition that is

more "relaxed" than the fully-clamped condition prescribed on the FE model. Consequently
in [9] it was argued that _el should be an upper bound, which was verified by the conforming
FE models tested at that time.

The finest grid results in [7] gave, however, 5c -_ 0.35587, which exceeds that "bound" in

the fifth place. The finest EFFAND mesh ran herem128 × 32--gave a still larger value:

0.3564)1. The apparent explanation for this paradox is that if u _ 0, a mild singularity in o-yy
and _'_r, induced by the restraint uyl ,-o = 0, develops at the corners of the root section. This
singularity "clouds" convergence of digits 4-5 (In retrospect it would have been better to
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Table 7

Tip deflections (exact _, 100) for Bt :tm under End Shear

Element Mesh: x-subciwisions x y-subdivisions

8×2 I6x4 32x8 64x 16 128 × 32

ALL-3i 96.41 98.59 99.59 99.91 99.99

ALL-3m 82.70 94.78 98.57 99.62 99.9 !

ALL-7i 89.43 96.88 99.16 99.79 99.96

CST 55.09 82.59 94.90 98.65 99.06

EFT'AND 101.68 100.30 100.03 100.00 100.00

FF 99.15 99.71 99.87 99.96 99.99

4x2 8x4 16x8 32x 16 64x32

ALL-3i 82.27 93.22 97.86 99.38 99.83

ALL-3m 54.23 81.84 94.52 98.50 99.61

ALL-7i 70.71 89.63 96.93 99.15 99.77

CST 37.85 69.86 90.04 97.25 99.28

EFFAND 96.68 98.44 99.37 99.78 99.93

FF 94.27 97.85 99.23 99.74 99.92

2x2 4x4 8x8 16x16 32x32

ALL-3i 42.53 72.66 90.72 97.32 99.27

ALL-3m 12.39 31.81 63.68 87.24 96.41

ALL-7i 26.16 56.93 83.54 95.14 98.69

CST 17.83 43.84 75.01 92.13 97.86

EFFAND 92,24 96.99 98.70 99.48 99.8 l

FF 89.26 96.37 98.66 99.50 99.83

allow for lateral contraction effects as in Example 2 to avoid this singularity.) The percentage

results in Tables 3-5 of [7] therefore contain errors in the J,th place.

Table 7 gives computed deflections for rectangular mesh units with aspect ratios of 1 : 1,

2:1 and 4:1, respectively. Mesh units consist of four half-thickness overlaid triangles. For

reporting purposes the load was scaled by 100/0.35601 so that the "theoretical solution"

becomes 100.00.

The data in Table 7 generally follow the patterns of the previous example: the main

difference being the lack of drastically small percentages because element aspect ratios only

go up to 4: 1. Of the three Allman triangle versions again ALL-3i outperformed the others.
The results for FF and the optimal EFF-ANDES triangles are very similar, without the latter

displaying the clear advantages of Example 2. The data for FF and CST change slightly from
that of Tables 3-5 of [7] on two accounts: four-triangle, rather than two-triangle, macroele-

ments are used to eliminate y-directionality, and the normalizing "theoretical" solution

changes by + 0.00014 as explained above.

Example 4mCook's problem

Table 8 gives results computed for the plane stress problem defined in Fig. 6. This problem

was proposed by Cook [10] as a test case for nonrectangular quadrilateral elements. There is

no known analytical solution but the EFFAND results for the 64 x 64 mesh may be used for

comparison purposes. The last 6 lines in Table 8 pertain to quadrilateral elements. Results for
HL, HG and Q4 are taken from [10] whereas those for Q6 and QM6 are taken from [11].
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Table 8

Results for Cook's problem

217

Element Vertical deflection at C for subdivision

2x2 4x4 8x8 16x 16 32x32 64x64

ALL-3i 21.61 23.00 23.66 23.88

ALL-3m 16.61 21.05 23.02 23.69

ALL-7i 19.01 21.83 23.43 23.81

CST 11.99 18.28 22.02 23.41

EFFAND 20.56 22.45 23.43 23.80

FF 20.36 22.42 9_3.41 23.79

FFQ 21.66 23.11 23.79 23.88

HL 18.17 22.03 23.81

HG 22.32 23.23 23.91

Q4 11.85 18.30 23.43

Q6 22.94 23.48

QM6 21.05 23.02

9_3.94

23.87

23.91

23.91

23.91

23.94

23.95

Results for the free-formulation quadrilateral FFQ are taken from Nyg_ird's thesis [12].
Further data on other elements are provided in [13].

For triangle tests, quadrilaterals were assembled with two triangles in the shortest-diago-
nal-cut layout illustrated in Fig. 6 for a 2 × 2 mesh. Cutting the quadrilaterals the other way
or using four-overlaid-triangle macroetements yields stiffer results.

The performance of the drilling-freedom triangles was similar, with ALL-3i giving the best
results, especially for coarse meshes. It should be noted that accuracy of the FF, EFF and

ANDES triangles for this problem is dominated by the basic stiffness response. Consequently
the deflection values provided by the FF and EFFAND elements, which share the same basic
stiffness, are virtually identical.

_Y

Fig. 6. Wing-like plane stress structure

(Cook's problem): E = 1, v = 1/3, h = I;

root contraction not allowed; two-trian-

gle mesh units; a 2 x 2 mesh is shown.
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Element formation times

Table 9 gives a breakdown of formation times of the stiffness matrix for an individual

triangle. Times are on milliseconds measured on a Sun 4/260; all floating-point computations

being carried out in double precision (DP). T b and T h denotes times spent in forming the

basic and higher-order stiffness matrices, respectively. All elements use the same basic

stiffness routine written in 1984. For elements labeled ANDES-1991, EFF-1991 and FF-1986,

the subroutines listed in the Appendix, compiled with f77 for Sun-OS level 4.1.1, were used.

The element labeled FF-1984 shows the timing for the first FF element implementation

reported in [7], and illustrates the progress since made in reducing the higher-order stiffness
formation time. The CST is formed by the basic stiffness subroutine when called with a b = 0,

in which case all computatioras dealing with rotational freedoms are skipped. No data are

given for the ALL elements because their shape function subroutines are far from optimized,
and as a result their form:¢tion times are between 5 to 10 times--depending on the

integration rule--those of ANDES and EFF.
From these data it can be concluded that the ANDES implementation has a minor edge

over that of the EFF, which in turn is somewhat faster than the FF-1986 implementation. The

last column of Table 9 gives the length in nonblank characters of the K h subroutine,

excluding comments. As can ._e seen the FF-1986 implemenlation is the most compact one,

closely followed by ANDES.

Concluding remarks

The present study confirms the beneficial effect of adding drilling degrees of freedom to

3-node plane stress triangles when in-plane bending performance is to be enhanced. Success-

ful elements of this type can be constructed using methods that lead to element families. Two

such families have been compared here: numerically integrated versions of the Allman

triangle, and the FF, EFF anc_ ANDES triangles based on parametrized variational principles.
The numerical studies indicate that the performance of most of the 9-dof triangles is

comparable for meshes containing elements of unit aspect ratio, or in problems where

in-plane bending actions are ._ccondary. (It can be argued, however, whether drilling freedoms

are cost-effective under such conditions.) As regards the three tested versions of the Allman

triangle, the one integrated with the 3-interior-point rule consistently outperformed the other

two. For meshes containing ,.'tements of high aspect ratio under dominant inplane bending

action, the FF, EFF and ANDES elements with optimal parameters clearly outperformed the

others.

Meshes with highly elongated triangles are quite common in many slender structures such

as composite tubes and aerospace vehicle skins. Triangles with aspect ratios of 20:1 or even

Table 9

DP element formation times on Sun J,/260 (in ms)

ImpLementation Th Th Th + Th K_ code bytes

AN DES- t 991 1.34 1.55 2.89 4739

EFF- 1991 1.34 1.90 3.24 6698

FF- 1986 1.34 2.07 3.41 4507

FF- 1984 1.34 6.71 8.05 8173

CST 0.77 0._} 0.77
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'_, I I I "

C

v '_ planestrain

Fig. 7. Elongated mesh units in thin-tube

wall modeling.

50: ! are not uncommon (see Fig. 7). To handle such problems it would be advantageous to

extend the present EFF and ANDES elements to plane strain and axisymmetric conditions.

Despite substantial variation in implementation "flavors", the performance differences

among the optimal FF, EFF and ANDES elements are relatively slight. Any of them would

make a fine choice for a general-purpose program whether as a stand-alone two-dimensional

element, or as the membrane component of flat shell elements. The ANDES formulation

appears to have a substantial edge in simplicity that would be valuable in extending the

rotational-freedom concept to three-dimensional elements. This is counterbalanced, however,

by the advantages accruing from the knowledge of internal displacements in FF and EFF

elements in body-load and boundary-load lumpings.
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Appendix--Computer programs

This Appendix provides listings of the Fortran subroutines that implement several of the

elements tested in the present study. A brief description of the subroutines is given below. A

detailed description of calling sequences is presented in the comments at the beginning of the
code.

sM4t4. This is a dricer subroutine for computing the total stiffness matrix of membrane

elements with 3 degrees of freedom per node, one being a drilling freedom. It is normally

called to form the stiffness matrix of a quadrilateral composed of either two triangles, or four

"overlaid" triangles of half thickness. It can also form a single triangle.

SM3M8. This forms the 9× 9 basic stiffness matrix K b used by all high-performance

elements. Coefficient a b has been left as a free parameter to facilitate certain studies as well

as to permit the formation of the CST, which is obtained if a b = 0.

SM3 MHF F. Forms the higher-order stiffness of the 1985 Bergan-Felippa triangle using a fast

implementation that is a minor modification of that presented in [14]. The scaling factor

/3 = I - 3' is left as a parameter although /3 = 0.5 is recommended.

SM3MHE FF. Forms the higher-order stiffness of the optimal EFF triangle described in Part

I. It has a h = 5/4 hardwired, but the scaling factor/3 is left as a subroutine parameter.

SM3MHANDES. Forms the higher-order stiffness of the optimal ANDES element described

in Part II. The optimal p factors (7) are hardwired for the midpoint rule _:--0.

The numerically integrated Allman elements are formed by subroutine SM3MALL. This is

not listed here because its shape function implementation is far from optimized and as a
result the element formation is slow.

Some general comments on these subroutines follow:

Initialization. None of the subroutines clears the stiffness array internally. They simply add

the stiffness matrix entries to the incoming array. The calling program is supposed to take

care of initialization. In conjunction with the Iocator array t.s discussed below, this decision is

intended to simplify macroelement formation.

Stiffness locator. All subroutines utilize a location pointer array t. S to direct stiffness entries

into the stiffness array SM. This has two practical uses:

(a) The ordering of degrees of freedom can be easily changed, as illustrated in the examples

given under the OSAGE section of SM4M and SM3MB. Note, however, that the sequential

ordering LS = I, 2, 3 .... has different interpretation in the driver SM4M and triangle

subroutines as regards the position of drilling freedoms.

(b) The formation of macroelements is facilitated. This is already illustrated by the method

used by SM4M to merge triangles by simply setting up their stiffness locator arrays

appropriately. Another important application, not iilustratcu here, is the formation of

shell elements in which the plane stress stiffness becomes the membrane component.
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Subroutine Listings

C=DECK SM4M

CsPU_POSE Driver to fern material monbrane stiffness of quad assembly

C=AUTHOK C. A. Felippa, June 1984

C=VEESION July 1991

C=F_UIPNEJT Nachine £ndependent
C=KEYWORDS finite element

C=KEYWORDS material stiffness matrix membrane plane s_ress drilli_

C=BLOCK ABSTRACT

C

C

C

C

C

C

C=END ABSTRACT

C=BLOCK USAGE

C

C The calling sequence is
C

C

C

C

C The Inputs are:
C

C TYPE(1:3) Element

C ALL

C AND

C CST

C EFF

C FF

C

C TYPE(4:S) For ALL

C IC

C 3I

C 3M

C 7I

C

C OPT

C

C

C

C

C X

C

C

C ¥

C

C

C DM

C

SM4M is a driver that forms the material stiffness matrix of a

membrane quadrilatezal formed by 2 or 4 triansle8 (optionally a

single triangle). Three nodal dof (2 translations, I drilling

rotation) are assumed. Several element formulations may be used.

CALL SM4M (TYPE, OPT, X, Y, DM, ALPHAB, GAMMA,

IAT, IS, SM, N, STATUS)

type argument (upper case assumed):

Allman' s element

ANDES- 1991 element

CST, drilling freedoms are ignored
EFF- 1991 element

FF-1984 element, fast reformulation of 1986

elements specifies integration rule:

l-interior poin_ (centroid)

3- interior-point rule

3-midpoint rule

7- interior-point rule

Options character (upper case assumed):

B Form basic stiffness only (FF/EFF)

H Form higher order stiffness only (FF/EFF)

If neither of these, form total stiffness.

(4 x I) array of x coordinates of quad nodes.

(only first 3 used if IAT=O).

(4 • I) array of y coordinates of quad nodes.

(only first 3 used if IAT=O).

(3 • 3) membrane force-to-strain constitutive matrix.

Assumed Zo be already thickness-inteErated.
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Rotational lumping factor for basic sZiffness

Applles to ANDIFFIEFF elements only.

G_A (I-GAMMA) is H.O. stiffness scale factor (AND/EFF/FF)

1 o++÷+÷+÷o 4 1 o+÷÷+÷÷+o 4

+ ÷ + ÷ ÷ ÷

+ IAT-I + + IATm2 ÷

÷ ÷ ÷ ÷ ÷ ÷

2 0+++++÷+++++0 3 2 0++++++÷++÷+0 3

Iden=ifier of assembly type (cf. sketch above):

0 Single triangle.

1 2 triangles: 123 and 341 (diagonal 1-3)

2 2 triangles: 124 and 234 (diaEonal 2-4)

3 4 half-thick overlaid triangles: 123,341,124,234

(12 x i) array of s_iffness location pointers.

For the standard freedo= ordering

uxl,uyl,theta2, ux2, ... uy4,theta4

se_ LS = 1,2,3,4,5,6,7,8,9,10,11,12. To get
uxl,uyl,ux2,uy2, ... uy4,thetal, ... theta4

se_ LS s 1,2,9,3,4,10,5,6,11,6,7,12, and so on.

Other settings are useful when this element is to be

inserted in a shell element as membrane component.

Incoming stiffness array. NOT CLEARED by SM4M.

Firs_ dimension of SM in calling program.

C

C ALPHAB

C

C

C

C

C

C

C

C

C

C

C IAT

C

C

C

C

C

C LS

C

C

C

C

C

C

C

C

C SM

C

C M

C

C The outputs are:
C

C SM

C

C

C

C

C STATUS

C

C

C-END USAGE

C=BLOCK FORTRAN

Output stiffness array ,ith bending stiffness

coefficients added in. The (i,j)-th entry of the
(12 • 12) element membrane stiffness is added

to SM(K,L) ,here K-LS(I) and LmLS(J).

StaZus character variable. Blank if no error

detected; else returns appropriate message.

subroutlne SN4H

$ (type, opt, x, y, am, alphab, gala, iat, Is, sm, :, sta%us)

ARGUMENTS

characte_ type*(*), opt, status*(*)

double precision x(3),y(3),dm(3,3), alphab,ga_ma

integer iat, m, is(*)

double precision sm(m,m)
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C
C

2500

C

TYPE • D INENSI ON

double precision xt(3), y_(3), f, fb, fh

integer i, j, ias, n, p

integer ntrigs(0:3), tnodes(3,4, 0:3), ist(9)

integer nt(3)

DATA

data

data

$
$
$

nZrigs 11,2.2,41
tnodes /1,2,3, 9.0,

1.2.3, 3,4,1, 6*0.

1,2,4, 2,3,4, 6*0,

1,2,3, 3,4,1, 1,2,4, 2,3,4/

LOGIC

status = ' '

ias • max(O,min(iat,3))

f = l.DO/(l+ias/3)

fb = f

fh = f*(l.DO-gan=_a)

if (opt .eq. 'B')

if (opt .eq. 'H')

fh = 0.0

fb = 0.0

do 3000 j = l,nzriss(ias)

do 2500 i = 1,3

n • tnodes(i.j,ias)

nt(i) • n

xz(i) = x(n)
y_(i) = y(n)
Is%(2*i-I) = IsC3*n-2)

ist(2*i ) • is(3*n-l)

ist( i+6) • is(3*n )

continue

if (type(l:3) .eq 'ALL') then

p = ichar(type(4:4))-ichar('O')

if (type(5:5) .eq. 'N') p = -3

call SM3NALL (zt,y_, am, p, f, ist,sm,m, status)

else if (type(l:3) .eq. 'CST') then

call SM3MB (x_,y_c, dm, O.ODO, fb, ist,sm,m, status)

else if (type(t:3) .eq. 'AND' .or.

type(l:3) .eq. 'EFF' .or.

type(l:2) .oq. 'FF') then

call SM3MB (xZ,y_, am, alphab,fb, Ist,sl,m, status)

if (type(l:3) .eq. 'AND') then

call SM3MHANDES (xt,yt, am, fh, Ist,sm,m, status)

else if (type(l:3) .eq. 'EFF') then

call SM3MHEFF (xt,Tc, dm, fh, ist,sm,m, status)

else if (type(t:2) .eq. 'FF') then

call SN3MHFF (xt,y_, dm, fh, ist,sm,m, status)

end if
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elso

status • 'SM414: Illegal TYPE ar_men_'
end if

if (status(1:l).no. ' ') return

3000 cent inua

return

end

C-END FORTRAN

C=DECK SM3MB

C=PURPOSE Form basic nembrano stiffness of 9-dof triangle

CnAUTHOK C. A. Felippa, June 1984

C=VERSION Juno 1984

CnEQUIPMENT Machine independent

C=KEY'dORDS finite elamant mambrans plane strass

C-KEYWORDS basic material stiffness matrix

C=BLOCK ABSTRACT

C

C SM3MB forms the basic stiffness matrix of a 9-dof plane

C stress triangle (sea CNAME, re1 50, pp 25-69).

C It can 8ensrate the CST as special case.

C

C=END ABSTRACT

CmBLOCK USAGE

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

The calling sequence is

CALL SM3MB (l, ¥, DM, ALPHAB, F, LS, SN, N, STATUS)

The inputs are:

X
Y

DM

ALPHAB

F

LS

SN
M

(3 x I) array of • coordinates of triangle nodes.

(3 x I) array of y coordinates of _riangle nodes.

(3 • 3) matrix relating in-plans forces to strains.

Rotational lumping factor; if zero form CST.

Factor by which stiffness entries ,ill be multiplied.

(9 • I) array of stiffness location pointers.

For the conventional dof arrangement

vxl,v_1,thetal,vx2,vy2,thsta2,vz3,vy3,theta3

set LS - 1,2,4,5,7,8,3,6,9. The arrangeasnt

vxl,vTl,vx2,vy2,vx3,vy3,_hetal,theta2,_heta3

is obtainQd if L5 = 1,2,3,4,5,6,7,8,9.

Incoming material stiffness array.

First dimension of SN in calling program.

The outputs are:

SM

STATUS

Output stiffness array ,ith basic stiffness

coefficients added in. The (i,j)-th entry of the

basic elament stiffness is added to SM(K,L) 0

,here KzLS(I) and L=LS(J).

Status character variable. Blank if no error

detected.
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C

C=END USAGE

C=BLOCK FORTRAN

subroutine

$
¢

C

C

C

C

C

SM3MB

(x, y, dm, alphab, f, ls, sm, m, status)

TYPE & D INENSI ON

character*(*)

integer

double precision

double precision

double precision
double precision

double precision

double precision

integer i,

status

n, is(9)

z(3),y(3), dm(3,3), #d.phab,f, sm(m,m)

area2, c, lt(9,3)

e11, e12, e13, e22, e23, e33

z21, x32, x13, 721, },32, 713

z12, x23, x31, 712, 723, 731
el, S2, S3

j, k, 1, n

LOGIC

status • ' )

if (f .eq. 0.0) return

x21 - x(2) - x(1)
x12 • -x21

x32 • x(3) - x(2)

x23 = -x32

z13 • x(1) - x(3)

z31 • -x13

721 • 7(2) - y(1)

712 = -721

732 = 7(3) - y(2)

723 = -732

713 = y(1) -y(3)

731 = -713

area2 • y21*x13 - x21.713
if (area2 .Is. 0.0) then

status • 'SM3MB: Negative area'

if (area2 .eq. 0.0) status = 'SH3MB: Zero area _

return

end if

lt(I,1) • 723
I=(2,1) = 0,0

lt(3,1) = 731

It(4,1_ = 0.0

lt(5,1) = 712
lt(6,1) = 0.0

I=(1,2) = 0.0

It(2,2) = x32

It(3,2) = 0.0

lt(4,2) = x13
lt(5,2) = 0.0

i=(6,2) = x21

it(1,3) = x32

/
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lt(2,3) • y23

It (3,3) • x13

It (4,3) • 731
lt(5,3) • z21

1"C(6,3) • 712
n • 6

if (alphab .ne. 0.0)

lt(7,1)

it(7,2) •

1_(7,3) =

1_(8,1) =

It(8,2) •

1t(8,3) •

lt(9,1) •

It (9,2) •

lt(9,3) -

n •
end if

_hsn

• y23*(y13-y21)*alphab16.
z32*(z31-z12)*alphab/6.

(x31*y13-z12*721)*ed.phab/3.

y31*(y21-y32)*alphab/6.

x13*(x12-z23)*alphab/6.

(x12*y21-x23*y32)*alphab/3.

y12*(y32-y13)ealphab/6.

x21*(x23-z31)*alphab/6.

(x23*y32-z31*y13)s_phab/3.

9

C •

ell =

e22 =
e33 =

e12 •

e13 =

e23 •

do 3000
1=

sl •

s2 =

s 3 •

do 2500

k=

sm(k,l) •

sm(l,k) =

2500 continue

3000 cent inue

re_urn

end

C=EI_D FORTRAN

O. 5DO*f/a.rea2

c * d=(1,1)

c • din(2,2)

¢ * dm(3,3)

¢ * dm(1,2)
c * dm(1,3)

c * dm(2,3)

j=Z,n

is(j)

ell*It(j,l) + e12*l_(j,2) + e13*l_(j,3)

el2*it(j,1) ÷ e22*l_(j,2) + e23*It(j,3)

e13*it(j,1) + e23*it(j02) + e33*It(j,3)

i • 1,j
Is(i)

sm(k,l) ÷ (st*it(i,1) + s2*it(i,2) + s3*it(i,3))

sm(k,l)

-.7

C=DECK SM3MHANDES

C=PURPOSE Form high-order material stiffness of 9-dof ANDES _riangle

C=AUTHOR C. A. Felippa, June 1991

C=VERSION July 1991
C=EQUIPMENTMachine independent

C=KEYWORDS finite element

C=KEYWORDS material stiffness matrix high-order

C=KEYWORDS triangle membrane assumed natural deviatoric strain
C=BLOCK KBSTBACT

C

C SM3MANDES forms the higher order eleNent stiffness matrix

C of a 9-dof membrane triangle based on the ANDES formulation.
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C Implementation moderately optimized for speed.
C

C=EMDABSTRACT

C'BLOCK USAGE

¢

C

C

C

C

C The inputs are:

C

C X

C Y

¢ DM

C

C F

C SM

C LS

C

C M

C

C The outputs are:

C

C SM

¢

C

C

C STATUS

C

C

C-END USAGE

C=BLOCK FORTRAM

subrou¢ine

$
C

C

C

C

C

C

The calling sequence is

CALL SMSMHANDES (X, Y, DM, F, LS, SM, M, STA_JS)

(3 x 1) array of x coordinates of triangle nodes
(3 x 1) array of y coordinates of triangle nodes

(3 x 3) natrix constitu_iye matrix already

integrated through the thickness

Factor by which all stiffness entries will be multiplied.

Incoming material stiffness array.

(9 • I) array of stiffness location pointers

(see examples in SMSMB)

First dimension of SM in calling program.

Output stiffness array with higher order stiffness
coefficients added in.

The (i,j)-th entry of the basic elemen_ stiffness is added

to SM(K,L), where K-LS(I) and L-LS(J).

Status character variable. Blank if no error

detected.

SM3MH, NDES

(x, y, dm, f, ls, sm, m, status)

ARGUMENTS

integer

double precision
character

Is(9), m

x(3),y(3), dm(3,3), f, sm(m,m)

status*(*)

TYPE t D I MEMS I ON

double precision

double precision

double precision

double precision

double precision

double precision

double precision

double precision

integer

x12, x21, x23, x32, x31, x13

y12, y21, y23, y32, y31, y13
121,132,113

chi213,chi321,chi132

area, area2, area43

c(3,3), e(3,3), et(3), d(3), qa(3,3,3)

t(3,3), tfac, kth(3,3)

s(3), xyij(6), sum, w(3), _fac

i, j, k, 1
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LOGIC

if (f .eq. 0.0) return

x12 = x(1) - x(2)

x21 • -x12

x23 = z(2) - x(3)

x32 • -x23

x31 = x(3) - x(1)

x13 • -x31

712 • 7(1) - 7(2)

721 • -712

723 • 7(2) " 7(3)

732 • -723
731 • y(3) - 7(1)

y13 • -731

area2 = x21*731-x31*721

if (area2 .le. 0.0) _hen

sZatus • 'SM3MHANDES: Negative area'

if (area2 .eq. 0.0) s_atus • 'SM3MHANDES: Zero area'

return

end if

area •

121 •

132 •

113 •

_fac =

t(1,1) =

t(1,2) =

t(1,3) =

t(2,1) =

t(2,2) =

t(2,3) =

t(3,1) =

t(3,2) =

t(3,3) =
Irfac =

e(1,1) •

e(1,2) •

e(1,3) =
o(2,1) =

e(2,2) =

e(2,3) =

o(3,1) :

e(3,2) =

e(3,3) =
do 1600

1400

1500

0.5DO*area2

sqr_(x21**2+721**2)
sqrl:Cz32**2+732**2)

sqr_(x13**2+713*=2)
0.25DOlarea**2

tfac.723.713.121.*2

Cfac*y31*721*132**2

_fac.712.732.i13.*2
_fac*x23*x13*121*=2

tfac*x31*x21*132**2

tfac*x12*x32*113**2

_fac*(y23*x31+x32*713)*121**2

_fac*(y31*x12+x13*721)*132**2

_fac*(y12*x23+x21*732)*113**2

0.75DO*f-area

.fac*dm(1.t)

wfac*dm(l,2)

wfac*dm(l,3)

.fac*dm(2,1)

wfac*dm(2,2)
wfac*dm(2,3)

wfac*dm(3,1)

wfac*dm(3,2)

w/ac*dm(3,3)

j = 1,3
do 1400 i = 1,3

_t(i) • e(i,1)=_(l,j)+e(i,2)*t(2,j)+e(i,3)*Z(3,j)
continue

do 1500 i • 1,3

c(i,j) : t(l,i)*et(1)+t(2,i)*et(2)+t(3,i)*et(3)
continue

229



2500

2600

2800

"(3) =

_0 C_.Felippa. _ Al_ander/Membranetnangle$ wi_ c°rnerd_llingfreedorns_lll

1600 con_inuo

lrea43 • (2.DO/3.DO)*exoa2
cbi213 = axea43/121**2

c_i32I • ¢rea43/132**2

¢bi132 - axea43/l_3**2

qm(l,l,1) . "0-25.¢h_213
qm(1.2.1) = "qm(1,1,1)
q=(I,3,1) = 0.0

qm(2,1,1) = 0.25"ch_321

qm(2,2,1) • 0.50*chi321
qn(2,3,1) . qm(2,1,i)

qm(3.l,1) • "0.50"ch±132

qm(3,2,l) = "0.25-chii32

qn(3,3,1) = qm(3,2,_)

qm(1,1,2) • "0.25.chx213

qm(1,2,2) • -0.50echO213

q=(1,3,2) . qm(l,l.2)
q=(2,1,2) = 0.0

qm(2,2,2) = °0.25.ch:_32!

q=(2,3,2) • "qm(2,2,2)

qm(3,1,2) = 0-25*ch:LZ32
qm(3,2,2) • qm(3,1,2)

qm(3,3,2) • 0.50"chi132

qm(l,l,3) = 0.50"chi213

qm(l,2,3) • 0.25"chi213

qm(1,3,3) = qm(l,2,3)

qm(2,1,3) • "0.25"chi321

qm(2,2,3) = qm(2,1,3)

q_(2.3.3) : "0.50"chi321

qm(3,1,3) = 0.25.cbi132
qm(3,2.3) • 0.0

q=(3,3,3) • "qm(3,1,3)
kth(1,1) = 0.0

k_h(1,2) = 0.0
kth(l,3) : 0.0

kCh(2,2) = 0.0

kCh(2,3) • 0.0

kth(3,3) = 0.0

do 2800 k • 1.3

do 2600 j • 1.3

d(1) • c(l,Z).q:(Z,j,k)+c(1,2).qB(2,j,k)÷c(1,3).qB(3,j,k)d(2) • c(2,1)*qm(1,j,k)+c(2
d(3) • c(3,1)*qm(1,j '2)*qm(2.j,k)÷c(2,3).qm(3,j,k)

do 2500 i • 1,j 'k)+c(3,2)*qm(2.j,k)+c(3,3),qm(3,j.k)

$ k=b(i,j) • kth_i,j) +

qm(l'i'k)*d(Z)+qm(2.£.k),d(2)+qm(3.£.k),d(3)kCh(j,i) = kth(i,j)
continue

con¢inue

con¢inue

s(l) = kCh(l,1) + k_h(1,2) + kl:h(1,3)

8(2) • kth(2,1) + kth(2,2) + kl:h(2,3)

k_h(3,1) + kth(3,2) + k_h(3,3)
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xyij (I) •

xyij (2) •

xyij (3) •

xyij <4) •

xTij (5) •

x_iJ (6) *

0.25*xa21a.rea

0.2S*y321axea
0.25*x131area

0.25*y131area
0.25*x211area

0.25*7211arem

do 4000 j • 1,9

i = is(j)

do 3600 i • 1,3

if (j .le. 6) then

w(i) . s(i)*xyij(j)
else

w(i) = kth(i,j-6)
end if

3600 continue

sum = w(1) + w(2) + w(3)

do 3700 i = 1,j

k • Is(i)

if (i .Is. 6) then

sm(k,l) = sm(k,l) + sum*xyij(i)
else

sm(k,l) = sm(k,l) + w(i-6)

end if

sm(l.k) • sm(k,l)

3700 continue
4000 continue

return

end

C=END FORTRAN

C=DECK SM3MHEFF

C=PURPOSE Form high-ordermaterial stiffness of 9-dof EFF triangle
C=AUTHOR C. A. Felippa

C=VERSION June 1991

C=EQUIPMENTMachine independent
C=KEYWORDS finite elemen_

C=KEYWORDS material stiffness matrix

C=KEYWORDS triangle membrane high-order extended free formulation
C=BLOCK ABSTRACT

C

C SM3MEFF forms the higher order stiffness matrix of a 9-dof

'C membrane triangle based on the extended free formulation.

C This implementation has alphah-5/4 hardwired, and is

C optimized for maximum formation speed.
C

C=END ABSTRACT

C=6LOCK USAGE

C

C

C

C

C

C

The calling sequence is

CALL SM3MHEFF (X, Y, DN, F, LS, SM, N, STATUS)

The inputs are:
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C

C X

C Y

C DM

C

C F

C

C SM

C LS

C

C

C M

C

C The outpuCs are:
C

C SM

C

C

C

C

C

C STATUS

C

C

C=END USAGE

CzBLOCK FORTRAN

subroutine

$
C

C

C

C

C

C

(3 x 1) array of • coordinates of triangle nodes

(3 • 1) array of y coordinates of triangle nodes

(3 • 3) matrix constitutive matrix already

integrated through the thickness

Factor by which all stiffness entries will be multiplied.

It is beta or 0.5ebeta

Incoming material stiffness arra T.

(9 • I) array of stiffness location pointers

(see examples in SM3MB).

three rotational DOF will appear at the end.

First dimension of SM in calling program.

Output stiffness array with higher order stiffness
coefficients added in.

The (i,j)-th entry of the basic element stiffness is added

to SM(K,L), where K=LS(I) and LzLS(J).

(Drillimg freedoms are internally 7,8,9)

Status character variable. Blank if no error

detected.

SMSMHEFF

(x, y, am, f, is, sm, m, status)

ARGUMENTS

integer

double precision

character*(*)

ls(9), m

x(3),y(3), dm(3,3), f, sm(m,m)

st atus

TYPE Jt DIMENSION

double precision

double preclsxon

double precls%on

double prec_sxon

double preclsxon

double preclslon

double precxszon

double precxsxon

double precxsxon

double precmslon

integer

LO

status s ,

if (f .eq. 0.0)

xO,yO, xlO,x20,x30, ylO,y20,ySO

x]2, x21, x23, x32, x31, x13

y12, y21, y23, yS2, ySl, yI3
aa12,aa23,aa31,ss12,ss23,ss31,ssl,ss2,ss3

caa12,caa23,caa31, sum

ca,cax10,cax20,cax30,caylO,cay20,cay30

area, are a9, kfac

kqh(6,6) ,hint(6,3) ,hqt (6,3) ,kth(3,3)

s(3) ,w(6) ,xyij (3)
ell,e22,e33,e12,e13,e23

i .j ,k,1

GIC

return
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z12 = z(1) - z(2)

z21 - -z12

z23 = z(2) - z(3)

x32 = -x23

x31 • z(3) - z(1)

x13 = -x31

712 = 7(1) - 7(2)

721 = -712
723 • 7(2) " 7(3)

y32 • -723

731 • y(3) " 7(1)

713 • -731

¢z'ea2 = x21*y31-x31*721
if (area2 .le. 0.0) Chert

scacus• 'SM3RBEFF: Nega¢ive azea J

if (szsa2 .eq. 0.0) sCaCus = 'SM3MBF.FF: Zero area'

reCtL¢11
end if

area • 0.5DO*area2

zO = (z(1)+z(2)+x(3))/3.

yO • (7(1)+7(2)+7(3))/3.
zlO • x(1) - xO
z20 = x(2) - xO

z30 = z(3) - zO

710 • 7(1) - 70

720 • 7(2) - 70

730 • 7(3) - 70

aa12 = 2.25DO*(z30**2+730**2)

aa23 = 2.25DO*(zlO**2+710**2)

aa31 • 2.25DO*(x20**2+720**2)

caal2 = 15.DO/(32.*aa12)

cal_.3 • 15.OO/(32.*aa23)

caa31 = 15.DOl(32.*aa31)

ss12 • Z12"'2+712"*2

SS23 • X23"'2+723"*2

Ss31 • X31"*2+731"'2
ssl • 0.25DO*(ss12-ss31)

Be2 • 0.25DO*(ss23-ss12)

ss3 = 0.25DO*(ss31-ss23)

ca710 • 0.1875D0,710

cay20 • 0.1875D0*720

ca730 = 0.1875DOs730
caxlO = 0.1875DO*zlO

cax20 = 0.1875DO*z20

caz30 • 0.1875DOsz30

hm¢(1,1) • caa12*((-ss3+O.6DO*aa12)*y30+srea_x30)

ha_(l,2) • 3.*ca730 - hm_(1,1)

ha_(1,3) = cay30

ha_(2,1) • ¢a710

ha¢(2,2) • caa23*(_-ssl+O.6DO*aa23)*710+area*xlO)

hmt(2,3) • 3.*caylO - hat(2,2)

hm_(3,1) • caa31*((ss2÷O.6DO*aa31)*720-area*z20)

ha_(3,2) • cay20

233
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2000

hm_(3,3) -
IMP(4 1) =

hm_(4 2) =

lm_(4 3) •

h=_(5 1) •

bmtC52) •

h=_(53) =

hm_C61) "

1m_(6.2) •

]:_1;(6 3) =

do 2000 J
sum •

hqt(%,j)

hqt(R,j)

hq_(3,j)
st%m •

hq_(4,j)

hqt(5,j)

hq_(6,j)

continue

kfa¢ •

oll =

e22 =

e33 =

e12 =
o13 =

o23 =

kqh(1,1) =

kqh(1,2) •

kqh(1,3) =

kqh(1,4) =

kqb(1,5) =

kqh(t ,6) =

kqh(2, I) =

kqh(2,2) :

kqh(2,3) •

kqh(2,4) •

kqh(2,5) =
kqh(2,6) =

kqh(3,1) =

kqh(3,2) =

kqh(3,3) =

kqh(3,4) =

kqh(3,5) =

kqh(3,6) =
kqh(4,1) =

kqh(4,2) =

kqh(4,3) =

kqh(4,4) =

kqh(4,5) =

kqh(4,6) =

kqh(5,t) =

kqh(5,2) =

3.*cay20 - hmt(3,1)
caa12* ( (sm3-O. 6DO*aa12) *x30+eu'ea*y30)
-3.*¢ax30 - hmt(4,1)

-ceux30

-CaLZlO

caa23* ( (se_ ].-0.6DO*aa23) *zlO+e_'ea*710 )
-3.*¢_t0 - hmt(5,2)

¢aa31. ( (-ss2-O. 6DO*aa31 ) *x20-area*y20)
-cu20

-3.*ce_¢20 - hint(6,1)

= 1,3

(2. DO/9. ) = (hm'c (1, j ) +hm_; (2 ,j ) +h=_; (3 ,j ) )

• stua- (4.DO/3.)*h='c(1,j)

• sum- (4.DO/3.)*hm_(2,j)

• sum- (4.DO/3.)*hm_(3,j)

(2. DOI9. )- (hm_ (4, j )+hm_ (5, j )+hint(6, j ))

= sum- (4.DO/3.)*hm_(4,j)

= sum- (4.DOl3.)*hmt(S,j)

= s_- (4.DOl3.)*ha1:(6,j)

1.5DO*f/a._-ea2

kfac * dm(t,1)

kfac * dm(2,2)

kfac * d=(3,3)

kfac * dm(Z,2)

kfa¢ = dm(1,3)

kfa¢ • ¢Im(2,3)

2*(e11*y30**2-2*e13=x30*y30+e33*x30**2)

((e13*xtO-et1*ytO)*y30÷(e13*y10-e33*x10)*x30)

((e13*z20-e11*y20)*y30+(e13*y20-e33*x20)*x30)

2*(e13*y30**2-(e33÷e12)*x30*_30÷e23*x30**2)

((e12*x10.-e13*y10)*y30÷(e33*y10-e23*x10)*x30)

((e12*x20.-e13*y20)*y30+(e33*y20-e23*x20)*x30)

kqh(1,2)

2*(e11*ylO**2-2*e13*xlO*y10+e33*x10**2)
((e13*xlO-ell*ylO)*y20+(e13*ylO-e33*xlO)*x20)

((e33*xlO.-e13*ylO)*y30+(e12*ylO-e23*xlO)*x30)

2*(e13*ylO**2-(e33+e12)*xlO*ylO+e23*xlO**2)

((e33*x10-e13*ylO)*y20+(e12*ylO-e23*_ZO)*x20)

kqh(1,3)

kqh(2,3)

2*(ell*y20**2-2*e13*x20*y20+e33*x20**2)
((e33*x20--e13*y20)*y30+(e12*y20-e23*x20)*x30)

((eZ2*xlO-e13*ytO)*y20+(e33*ylO-e23*xtO)*x20)

2*(e13*y20**2-(e33+et2)*x20*y20+e23*x20**2)
kqh(t,4)

kqh(2,4)

kqh(3,4)

2*(e33*y30**2-2*e23*x30*y30+e22*x30**2)

((e23*xlO-e33*y10)*y30+(e23*y10-e22*x10)*x30)

((e23*x20-e33*y20)*y30+(e23*y20-e22*x20)*x30)

kqh(l,5)
kqh(2,5)
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$
$

3200

3300

3500

3600

kqh(5,3) •
kqh(5,4) •
kqhC5,5) •

kqhC5,6) =
kqh(S,Z) •
kqh(6,2) =

kqh(6,3) •

kqh(6,4) •

kqh(6,5) •

kqh(6,6) =

kth(l,l) •

k%h(t,2) •

kth(2,2) •

kCh(1,3) =

kch(2,3) =

kCh(3,3) •

do 3500 j
do 3200

.(i) =

kqh(3,5)

kqh(4,S)
2* (e33*ylO**2-2*e23*xlO*ylO+e22*xlO**2)

((e23*x10-e33*ylO)*y20÷(e23*y10-e22*xlO) *x20)

kqh(l,6)

kqh(2,6)

kqh(3,6)

kqh(4,6l

kqh(5,6)

2, (e33*y20**2-2*e23*x20*y20+e22*x20**2)
0.0

0.0

0.0

0.0

0.0

0.0

1,3

i= 1,6

kqh(i,l)*hqg(1,j) + kqh(i,2)*hq_(2,J)

+ kqh(i,3)*hqt(3,j) + kqh(i,4)*hq¢(4,j)

+ kqh(i,5)*hq¢(5,j) + kqh(i,6)*hq¢(6,j)
con¢inue

do 3300 i = l,j

kCh(i,j) • kCh(i,j) + hq¢(l,i)*w(1) + hq¢(2,i)*w(2)

+ hq¢(3,i)*.(3) + hq¢(4,i)*w(4)

+ hq¢(5,i)*-(5) + hq_(6,i)*w(6)

kth(j,i) = kgh(i,j)
con¢inue

con¢inue

s(1) • kCh(1,1) + kth(1,2) + kth(1,3)

s(2) • kth(2,1) + k_h(2,2) + kth(2,3)

=(3) = kth(3,1) + kth(3,2) + kCh(3,3)

ca • 0.25DO/area

xyij(1) = ca*x32

xyij(2) • ca*y32

xyij(3) • ca*xl3
xyij(4) • ca*yt3

xyij(5) • ca*x21
xyij(6) • ca*y21

do 4000 j • 1,9

1 = is(j)
do 3600 i • 1,3

if (j .le. 6) then

w(i) • s(i)*xyij(j)

else

.(i) = kCh(i.j-6)
end'if

continue

sum = .(I) + .(2) + .(31

do 3700 i = l.j
k = Is(i)

if (i .le. 6) then

sm(k,l) = sm(k,l) + sum*xyij(i)
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else

am(k,1) - am(k,1) + w(i-6)

end if

sm(1,k) - am(k,1)

3700 continue

4000 conZ inue

ret_

end

C=END FORTRAN

C=DECK SN3MHFF

C=PURPOSE Form HO material stiffness of 9-dof m--bran, FF-1984 triangle

CmAUTHOR C. A. Felippa, June 1984

C-VERSION September 1986

C=EQUIPMENT Machine independent
C=KE_ORDS finite element

C=KE_ORDS material stiffness matrix

C=KEI"gORDS triangle membrane high-order free formulation FF 1984
C=8LOCK ABSTRACT

SMSMH forms the high order stiffness matrix of the Bergan-

Felippa membrane triangle (CMAME, vol 50, pp 25-69). A faster

reformulation (Finite Element Handbook Series, Pineridge

Press, pp 139-152) of the original implemenZation is used.

C=END ABSTRACT

C=8LOCK USAGE

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

The calling sequence is

CALL SM3MHFF (X, 7, DM, F, LS, SN, N, STATUS)

The inputs are:

X

Y

DH

F

LS

SM

M

(3 x 1) array of x coordinates of triangle nodes

(3 • 1) array of y coordinates of triangle nodes

(3 • 3) matrix relating membrane forces to strains

Factor by which stiffness entries will be multiplied.

(9 • I) array of stiffness location pointers

(see SM3MB for examples)

Incoming material stiffness array.

First dimension of SN in calling program.

The outputs are:

SM

STATUS

Output stiffness array with higher order stiffness

coefficients added in. The (i,j)-_h entry of the

(9 by 9) H.O. membrane stiffness is added to

SM(K,L), uhere K-LS(I) and L=LS(J).

(Drilling freedoms are 7,8,9 internally).
Status character variable. Blank if no error

detected.
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CaEND USAGE

CBBLOCK FORTRAN

subroutine

*

C

C

C

C

¢

C

SM3MHFF

(x, y, dm, f, ls, sn, m, status)

ARGUNENTS

character*(*) status

integer is(9), m

double precision x(3), y(3), dm(3,3), f, smCm,m)

LOCAL VARIABLES

double precision

double precision

double precision

double precision

double precision

double precision

inteKer i, j,

xc(3), yc(3). _c(3), dyc(3), hh(3,9)

sqh(3,3), qx(3,3), _L7(3,3), r(3,3)

area, area2, laabda, cj, sj, csj

e11. e12. e13. e22. e23. e33. Jxx. Jxy. jyy

det. gaema. Egg. ma. :ux. ,my. mmu. tau

sum, sl, s2, s3, s4, sS, s6, xO, yO

k, 1

LOGIC

s¢&tus 8 _

azea2 • (y(2)-y(1))*(x(1)-x(3)) - (x(2)-x(1))*(y(1)-y(3))
if (area2 .le. 0.0) then

status 8 'SM3MHFF: Negative area'

if (area2 .eq. 0.0) status • 'SM3NHFF: Zero area'

return

end if

if (f .eq. 0°0) return
xO • (x(1)÷x(2)+x(3))/3.0

yO • (y(_)+7(2)+7(3))/3 .0
area • O.5*azea2

lambda : 1.0/sqr_(area)

xc(1) • lambda * (x(1)-xO)

xc(2) = lambda * (x(2)-xO)

xc(3) = lambda * (x(3)-xO)

yc(1) • lambda * (y(1)-yO)

yc(2) = lambda * (y(2)-yO)
yc(3) • lambda * (y(3)°yO)
dxc(1) = xc(3) - xc(2)

dxc(2) • xcCL) - xc(3)

dxc(3) = xc(2) - xc(1)

dyc(1) : yc(3) - yc(2)

dyc(2) : yc(1) - yc(3)

dyc(3) • yc(2) - yc(1)

ell • dm(l,1) * f

e22 • dm(2,2) * f

033 • dm(3,3) * f

e12 = dm(t,2) * f

e13 • dm(i,3) * f

e23 : dm(2,3) * f
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C

2400
2500

C

jxx •

jxy •
JYY =

-2.*(xe(l)*xe(2)+xc(2)*xc(3)+xc(3)*xcCl))/3.0

(xc(1)syc(1)+xc(2)sTc(2)+xc(3)*yc(3))/3.0

-2.*(yc(l)*yc(2)+yc(2)*TcC3)+yc(3)*ycCl))/3.0

do 2500 j • 1,3
mux s

amy •
m •
Eu •

gJmma •
tau m

_r_ =
¢j •
sj •
r(1,j) •

r(2,j) •

r(3,j) =

csj = cj*sj
qx(j,X) = -O.5*¢:sj*cj
qx(j,2) • -0.5*nj**3
qx(j,3) • -csj'.j
qy(j,1) = 0.5"cj*'3

qy(j,2) • O.5*<:=j*sj
qy(j,3) • csj*¢:j

sl = ell*qx(j,1) +

s2 = el2*qx(j,1) +

s3 = e13*qx(j,1) +

s4 = ell*qy(j,1) +

s5 = el2*cLT(j,l) +
s6 = el3*qy(j,1) +

do 2400 i • l,j
sqh(i,j) = jxx =

+ jxy *

+jy7 _
continue

continue

-3.0*x,:(j)/2.0

-3.0*yc(j)12.0

m_z**2 + _y**2

sqrC(_)
2.01au

0.25DO=CdxcCj)**2+dycCj)**2-gamma**2)

(muRm-3.0*tau)*gamma*lambda/24.
mt]x/_l

muy/ma
-lalbda * (cj*xc(1)+sj*yc(1)) +

-lambda * (cj*xcC2)+sj*Tc(2)) +

-laab,ia * (cj*xc(3)+sj*yc(3)) +

e12*qxCj,2) + el3*qx(j,3)

e22*qxCj,2) + e23*qx(j,3)

e23*qx(j,2) + e33*qx(j,3)

el2*qy(j,2) + e13*qy(j,3)

e22*c_(j,2) + e23*qy(j,3)

e23*qy(j,2) + e33*qy(j03)

(qx(i

(qx(i

+qy(i
(qy(i

,l)*s1+qx(i,2)*s2+qx(i,3)*s3)

,l)*s4+qx(i,2)*sS+qx(i,3)*s6

,1)*sl+qy(i,2)*s2+qy(i,3)*s3)

,1)*s4+qy(i,2)*s5+qy(i,3)*S6)

hh(1,7) =
hh(2,8) •
hh(3,9) •
hh(1,9) =

hh(3,7) =

hh(2,7) =

hh(1.8) =

bh(38) =

hh(2,9) •

det •

r(2,2:b*r(3,3) - r(2,3)*r(3

r(3,3)*r(1,1) - r(3,1)*r(1

r(l,l_i*r(2,2) - r(l,2)*r(2

r(l,2>*r(2,3) - r(1,3)*r(2

r(2,1_*r(3,2) - r(3,1)*r(2

r(2,3)*r(3,1) - r(2,1)*r(3

r(3,2_*r(1,3) - r(l,2)*r(3

r(3,1_*r(1,2) - r(3,2)*r(1

r(1,3)*r(2,1) - r(2,3)*r(1

2)

3)

Z)

2)

2)

3)

3)
Z)

I)

r(1,1)*hh(1,7) + rC1,2)*hh(2,7) + r(1.3)*hh(3,7)

do 2700 i • 1,3
hh(i,7) • -bh(i.7)Idet

hh(i,8) • -hh(ioS)/det

hh(i,9) = -hh(i,9)/det

sum = -0.25I)O*lambda*(hh(i,7)+hh(i,8)+hh(i,9))
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2600

2700

C

do 2600 j • 1,3

hhCi,2*j-i) = -sun*dxcCj)

hh(i,2*j ) = -sum*dycCj)
continue

continue

do 4000 j • 1,9
I • zs(J)

sl • sqhCl,l)*hhCl,j) + sqhCI,2)shhC2,j) + sqh(l,3)*hh(3,j)

52 - sqh(1,2)*hh(1,j) + sqhC2,2)*hh(2,J) + sqhC2,3)*hh(3,j)

53 • sqhCI,3)*hhCl,j) + sqhC2,3)ahhC2,j) + sqhC3,3)*hhC3,j)

do 3500 i • 1,j
k • Is(i)

saCk,l) - smaCk,l) + (slmhh(1,i) + s2*hhC2,i) + s3*hhC3,i))
am(1.k) • saCk,l)

3500 cont inus

4000 continue

return

ond

C=END FORTRAN
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PARAMETRIZED VARIATIONAL PRINCIPLES FOR

MICROPOLAR ELASTICITY
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Al_tract--A parametriT_ed six-field variational principle for micropolar compressible linear elas-
ticity is presented. The primary variables are symmetric and skew stresses, symmetric and skew

strains, micropolar rotations and displacements. The governing functional is characterized by six
free parameters. The connection between this formulation and vhe functionals with relaxed stress
symmetry and independent rotations fields proposed by Reissner and Hughes-Brezzi for classical
(non-polar) linear elasticity is examined. It is shown that the Hughes-Brezzi functionals are special
cases of the parametrized functional but that "the Reissner functionals are not. The former may be
interpreted as a regularieation (consistent stabilization) of the Retssner functionals that places them
within the framework of micropolar elasticity. An eight-field parametrized principle that accounts
for couple stresses is briefly described in the Appendix.

1. GOVERNING EQUATIONS

Consider a compressible linear micropolar body under static loading that occupies the
volume V. The body is bounded by the surface S, with outward external normal n,. The

surface is decomposed into S:So u St. Displacements are prescribed on So while surface
tractions are prescribed on S,. Rectangular Cartesian coordinates will be used throughout.
The four unknown volume fields are the displacement vector u_, the infinitesimal strain

tensor _u, the stress tensor to, and the (antisymmetric) microrotation tensor 00. The stress
and strain tensors are not symmetric. The symmetric and antisymmetric parts of the stress

tensor are _r0 and s u, respectively. The symmetric and antisymmetric parts of the strain
tensor are e_jand _bu, respectively. The antisymmetric tensor of infinitesimal rotations (also
called macrorotations) is cou.

The problem data include : the body force field b_per unit of volume in V, body couples

c, per unit volume in V, prescribed displacements d_on Sd, and prescribed surface tractions
I i on St.

The governing field equations for an isotropic micropolar continuum without couple
stresses are written below following Novacki (1970), with some notational changes. In the

following equations, 6_/is the Kronecker delta, eukdenotes Ihe permutator symbol (e,k- = + 1
or - 1 if i,j, k are distinct and form a positive or negative permutation, respectively, of 1,
2, 3 ; else e,jk = 0), 2 and # are the Lame coefficients, and x is a micropolar modulus that

relates the antisymmetric tensors _b,/ and su. In addition, a comma denotes the partial
derivative with respect to the space coordinate whose index follows.

Strain-displacemenl and rotation-displacement equations in V:

7_ = u/.,--Oq = eu +ogu--O q = eu + c_u ,

oJ_,= 12(uj.,-u,.,),

e h -_- ½(Ttj'_-'/j,) : _(blj,i'_bl,4),

_b,, = ½(Tu-Tj,) = ½(uj.,-u,.j)-Ou := coo-Oo. (l)

Constitutive equations irt V:

r, = (/_+ x)7,j + (# - x)7/, + _.6o7_k = (ru+ su,

a, = ½(r,i + r,) = 2_e,j + 26ue_,,

s, = ½(r,,- t,,) = 2_:_,,,. (2)

2709
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Equilibrium equat ons in V

tl

"_,,.i-t'b_ = Gj,./+ sp./+b i -- 0, ei/_ rjk + c, = 0. (3)

Stress boundary conditions on S, :

r,jnj = _. (4)

Displacement boundary conditions on Sd"

u, = d,. (5)

o"

The foregoing equatior s apply if the presence of the couple stresses mij is neglected. The
variational treatment is extended to that case in the Appendix.

For completeness, and to facilitate correlation with other references, eqns (1)-(5) are

restated below in direct lindex-free) tensor notation :

7_= Vu --O = e+to-O = e+d_,

to = _(V-Vr)u = skew (Vu),

e = ½(V _ Vr)u = symm (Vu) = symm Z,

= to--0 = ½(V- Vr)u- 0 = skew (Vu-- O) = skew 9',

5 = (#-+ x)_+ (#- x)7_r +';-I trace _, = a+s,

a = symm • = 2_e+,:J trace 7_,

s = skew r = 2_ctO,

div z+b = div(a+s)+b = O,

2 axial z + c = 0.

in V (6)

Here an underlined bolcl symbol denotes a second order or higher tensor. This convention

is used to distinguish ten,ors from their vector/matrix representations introduced in Section
2.1. No such distinction Lsneeded for vectors such as u.

2. NOTATION

2. I. Matrix notation

To facilitate the construction and manipulation of variational matrix expressions.

stresses and strains will be arranged as column vectors constructed from the respective

tensors. The arrangement rules vary according to the symmetry properties and are best

illustrated by specific examples.
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For symmetric stress and strain tensors :

O'tl ell

0"22 e22

I0"1l 0"12 0.13] 0.]3 Ieli el2 el3] e33

_°'=/0.,2 0"2., 0":3/--0"=" 0":3 >' _e=|e,2 en e231 -=e= 2e23 ' (7)

Lo'I3 0"23 0"33-1 Le_3 e23 e33_1 2e3_
0"31 i I

.O'12.J 2el2J

where 0"3t = a,3 and e3, = e_3. The factor of 2 in e maintains the equivalence of the stress-
strain inner products ; cf. (12) below.

For antisymmetric (skew) stress and strain tensors'

(8)

- °0'J o'JL-O,3 -0_.3 [20_ _1 L--COt3 --0)_ 3

(9)

where s3, = -s,3 and _b3, = -(_13. The factor of 2 applies only to kinematic skew
(rotational) tensors, and again maintains inner product equivalence ; cf. (12) below.

For general (unsymmetric) stress and strain tensors"

T,I TI2 TI31

LT31 r32 1:223

T22

T33 I"['23

T3' _'

' TI2 I

! r32 I

T'3 l

L_:, J

71i 7i2 _131

L73i 732 733J

"lY22

733

723

"_Y3, -

'/i3

.72i J

(10)

With these con'ventions operations between tensors of equal type can be easily trans-
lated to matrix form. For example, the inner products

o:e = _i/e,s = ore, s'_ = s,,_b,i = sr_. (1 1)

Problems arise, however, in combining different types. For example, _ -- ¢+s is an in-
consistent matrix operation because vectors a and s have different dimensions. This difficulty
can be circumvented by introducing "uncompressed" versions, in which components of

symmetric and skew tensors are arranged as general tensors :

29"22-C
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o e li0"33 e33

t._,2.) 2 .e_2. L -q_,2

(12)

Furthermore, _ = *t and 7 = *_'; thus no distinction _sneeded there. This convention will

let us consistently expand expressions such as the inner product of total stresses and strains :

r0_,j = tt_ = (*o+ *s)t(*e+ *_) = a'te+s'r@. (13)

2.2. Matrix form of governing equations

Using the matrix notation of Section 2.1, field equations (!)-(3) may be represented
as follows :

Strain-displacement equations :

I' = *e + "4_,

Constitutive equations:

Equilibrium eqtmtions :

e ---Du, 4_= _o-0 = Ru-0. (14)

=*a+*s, _=Ee, sfGh. (15)

Dra+Rts+b ---0, 2s+c=0. (16)

In the above equations,

D

"_/_>:, 0

0 O/_x:

0 0

O/dx: O/dx,

0 O/dx3

d/d_ 0

0

0

O/dx3

0 '

_/dx,

d/Oxl

- d/_x,. O/Ox_ 0 ]
R = 0 -d/Ox_ O/Ox,. (17)

are the symmetric gradient and curl operators, respectively, in matrix form, and

m

"2-_ 2# # # 0 0

U k+ 2# g 0 0

u # 2.+2# 0 0

O 0 0 # 0

) 0 0 0 /_

_) 0 0 0 0

il
0

(o!1G 1=_c0

0 0

(18)

In the sequel E and G are not restricted to these isotropic forms but can be arbitrary non-
singular symmetric ma_.rices. This allows anisotropy in the constitutive equations, subjected
however to the restriction that the pairs (a, e) and (s, _,) remain constitutively uncoupled.

For future use, introduce the constitutive matrix C that relates t to _,:
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c E: ,19,
2.3. Reduction to classical elasticity

Micropolar elasticity reduces to classical linear elasticity if the coupled body force c

vanishes. If so, the second equilibrium equation 2s+c = 0 shows that s = 0, and
= a+s---a is symmetric. Under the assumption that G is non-singular, the second

constitutive equation in (16) gives _ =G-Is = 0, and 7=e+_---e is symmetric.
Furthermore, 0 = ¢o, that is, microrotations and continuum-mechanics rotations coalesce.

2.4. Field dependency
For the investigation of variational methods in Sections 3 and 4, the field-dependency

notational conventions used by Felippa (1989a, b, c, 1992) and Felippa and Militello (1989,
1990) are followed. An independently varied field will be identified by a supcrposed tilde,

for example ft. A dependent field is identified by writing the independent field symbol as a
superscript. For example, if the displacements are independently varied, the derived sym-
metric strain and stress fields are

e"=Dfi, a_=Ee"=EDfi. (20)

Using this convention, tildeless symbols such as u, e and er are reserved for the exact or
generic fields. If a symbol derives from two independently varied fields, both fields appear
as superscripts" for example Su0 = Rfi-O.

2.5. Integral abbreviations

Volume and surface integrals may be abbreviated by placing domain-subscripted
parentheses and brackets, respectively, around the integrand. For example :

cl t

If f and g are vector functions, and p and q tensor functions, their inner product over V is
denoted in the usual manner:

def

(f,g)v_=fvfg, dV=;vfrgdV, (P,q)V=JvPijq,jdV=fvPrqdv, (22)

and similarly for surface integrals, in which case brackets are used.

3. GENERALIZED STRAIN ENERGY FOR CLASSICAL ELASTICITY

The method used to construct parametrized micropolar variational principles in Section

4 represents a generalization of the corresponding principles of classical linear hyper-
elasticity, which are summarized in this section. These principles have the general form

ri = u- P. (23)

Here U is the generalized strain energy, which characterizes the stored energy of deformation
and P is the forcing potential, which characterizes all other contributions. The conventional
form of P is

P_ = (b, ii) v+ [fi- d, d,]s, + [i, ii]s,, (24)

where o, = am, n being the unit external normal on S. The other two forms of P, called
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P'_ and P' for displacement-generalized and traction-generalized, respectively, are studied
by Felippa (1989a, b,c). These (mesh-dependent) forms are of interest in hybrid finite
element discretizations. As the forcing potential is not affected by parametrization, attention
will be focused on L

For a compressible material, the generalized strain energy introduced in Felippa and
Militello (1989, 1990) has the following structure:

U = _11 (d, C)_ +jt,,(d, e)v +jl3(d, eU)v+ 1_,j22(a'", e)l" +j:3(a ", e")e+ b'33 (O "u, e")v,

(25)

wherej_ _through j3 _are numerical coefficients. The three independent fields are stresses &

strains _ and displacements ft. Following the matrix notational conventions stated in Section
2.4 the derived fields that appear in (25) are

=E& a"=ED6, e" =E-_& C=Dfi. (26)

As an example, the/,' of Hu-Washizu's functional is obtained by settingj_., = - 1, J_3 = 1.
J22 = 1, all others being zero :

Uu(&&fi) = !_(o*,_)v+_(,i,e"-_)z+½(a"-a',e'),, = ½(a%_)v+(d.e_-_)v. (27)

Equation (25) can be rewritten in matrix form as

2J l ; ymm.
j,=l j,31] _'C'_

j3 3I_] I.e".J

(28)

where I denotes the ,5 x 6 identity matrix. The functional-generating symmetric matrix

F, J,2 J, ,]

Ljl3 j23 J3,]

is seen to fully characterize (25) and consequently, once the forcing potential P is
selected, the functional (23). (To justify the symmetry of J note, for example, that
jj3(d,e*')v = l,.Jt3(d,e_)v+l,_jt3(e°,a")v, etc.)

On replacing (26) into (28), U may be expressed in terms of the three independent
fields as

fv fff)r ['jl l E -I j_,!! / ja:eu=--_
{.fiJ Lk3D r j,3DTE

j,3D ] _d)

j,,ED /l_/.dV-
J33DrEDJ [fiJ

Using (30) the first ,,ariation of U may be presented as

where

6 C = (Ae. 60) v + (Aa. 66) v -- (div a', 6 fi) v+ [a'., 6 fi]s,

(30)

(31)

The last term in (37:) combines with contributions from the forcing potential variation.

Ae=j,,e°+j,:e+j,3C, Aa=j,..d+j::a¢+j:_aL a'=jt3d+j._3ae+j33a _. (32)
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For example, if P is the conventional forcing potential (24), the complete variation of
rV = U- P_ is

6H c = (Ae. 30)v+(Aa, 6_)v-(div a" +b, bfi)v+[a',,--'t, 6fi]s -[fi--a,r&,]s,. (33)

Using pa or p, does not change the volume terms. Consequently the Euler equations
associated with the volume terms of the first variation

Ae=0, Aa=0, diva'+b=0 (34)

are independent of the forcing potential. For consistency of the Euler equations with the
field equations of classical elasticity one must have Ae = 0, A¢ = 0 and a' = ¢ if the assumed
stress and strain fields reduce to the exact ones. Therefore

ill +jl2+Jt3 = O, jtz+J2"+j23 = 0, J13+J23+J33 = 1. (35)

Because of these constraints, the maximum number of independent parameters that define
the entries of matrix J is three. The specialization of these functionals to conventional and

parametrized forms is discussed by Felippa and Militello (1989, 1990).
Insofar as E- t appears in (30), this development is valid only for compressible elasticity.

Extensions of this variational principle to cover incompressibility are discussed by Felippa
(1992).

4. GENERALIZED STRAIN ENERGY FOR MICROPOLAR ELASTICITY

For a micropolar elastic material without couple stresses the variational principle is
structurally similar to (23) :

Fire = U_,- P,,, (36)

where U_, now also depends on g, _ and O, and P_, may be P_, P_ or PL. The following
generalization of U to U_, is postulated :

-O-it

O"e I
1

.'J
SuO

-jtll6 j1216 jl316 0 0 0

jl216 j2zl6 j2316 0 0 0

jtsl6 j2316 jsjl6 0 0 0

0 0 0 j4413 j4513 j4613

0 0 0 j4sI3 j5513 j5613

0 0 0 j4613 j5613 j6613

dV, (37)

where I6 and I3 denote the identity matrices of order 6 and 3, respectively, and the new
..,._tved fields are

$_ = G-_, s* = G$, $_o = R6-O, s"° = G_b_° = G(Rfi-O). (38)

The block structure of the kernel matrix in (37) results from the inner product orthogonality
(14) of symmetric and antisymmetric tensors. The symmetry of the j coefficients is an
assumption that remains to be verified.

On substituting (38) and (26) into (37), U_, is expressed in terms of the six independently
varied fields 0, 6, fi, L _ and if:
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"Jl E-I jl216 j13D 0 0 0

jlzl6 j2:E jE3ED 0 0 0

jt_D T j23DTE j33DTED j46 RT j56RrG -J66RTG

+j66RrGR

0 0 j46R j44G-I j4513 --j4613

|l 0 j56GR j4513 js_G -j56G

{) 0 -j66GR -j4_I3 -J56G j66G

_r
"dV.

S I

#1

(39)

The kernel matrix in the above quadratic form must be symmetric, a condition that verifies

the symmetry assumptions in (37). As for the forcing poential, the conventional form
changes to

PC.,,= (b, fi), +½(c,O)v+[fi-a,Z.]sd+[t,6]s ' := pc+½(c,B)v+[6_a,s.]s. (40)

Similarly, the generalized forcing potentials P_ and P;, are obtained by augmenting pd and
P', respectively, with _(c, #)v + [fi- d, s]Sd. [The ½in the e term arises from the presence of
factor 2 in the definition (9) of the microrotation vector 0.]

The first variation of U" is

6U" = (Ae, 6d) v+ (_, 6_) v - (DTa ' + RTs', 66) v

- ' ' ' -(as, 6qb)v - (s, a#) v + [a. + s., 6 U.]s, (4 I)

where Ae, A¢ and a are the same as in (32), and

A¢_ =j,,tk_+j4s_p+j46dp _, As =j,5._+j55 s'_-t.-j56s ua, S' =j46s"I-j56s _ d"J665 uo. (42)

Note that (DT¢ '+ Rrs ') = div ¢' + div s' = div _', where _' = *¢' +*s'. The first variation
of l-I,, = U,.- PC,.is

6 II., = (Ae, 6_) v + (Aa, a_) v - (div _' + b, 6 6) v+ (A_b,6 £) v

+ (As, ad)v - ½(2s' + e, 6#)v + [*_,- i, 6 61s, - [6--d, 6q.]s.. (43)

Following the same argument as in Section 3, it is found that consistency with the field
equations requires, it. addition to (35), that

ja4"4"jas"t'j46 ----0, J45+j55+j_6 =0, J4n+jsn+j66 = !. (44)

It follows that the parametrized functional of micropolar elasticity

(45)

depends on 12-6 = 6 free parameters through U_,. Specific instances of (45) are char-
acterized by the functional-generating symmetric matrix
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Jll Jl2

/_2 A,

J,3 J23
Jm= 0 0

0 0

0 0

Jr3 0 0 O"

J23 0 0 0

J33 0 0 0

0 j44 j4s j46

0 J,_ J55 Js6

0 j46 Js6 J66
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(46)

subjected to the six constraints (35) and (44). The non-zero 3 x 3 blocks in J,, characterize

weightings for symmetric and antisymmetric fields, respectively, and one is free to "mix or
match". For example,

.

0

0

1 '

0

0

(47)Jm

0 -I I 0 0

-1 1 0 0 0

1 0 0 0 0

0 0 0 0 --1

0 0 0 -1 1

0 0 0 1 0

represents the choice of the Hu-Washizu principle for both symmetric and antisymmetric
fields.

The variational principles of Reissner (1965) and Hughes and Brezzi (1989) will be
now examined in light of the preceding developments.

5. NON-POLARFUNCTIONALS WITH INDEPENDENT ROTATIONS

5.1. The Reissner functionals

Reissner (1965) proposed a functional of Hellinger-Reissner type for classical (non-
polar) elasticity (c = 0) in which u, x and 0 are to be treated as independent fields. In this
functional the stress symmetry condition s -- 0 appears as a weak condition with 0 playing

the r61e of multiplier. In the present notation the functional, herein called FIRI =
UR_--P_t, can be written as

UR¿ = -½(_,E-'_)v+(_,W-g)v, e_ = ec+[a-a,L]sd, (48)

where Vu is the gradient of the displacement vector. Expanding inner products, noting that
xr(Vu_O) = _r_._ = (*a+*s)r(*eU +*4_u'*), and making use of (13) yields

Uxt = - ½(#, e')v + (O, e")v + (_, d_"e)v

= - _(#, e'), + ½(_, e") v+ ½(#', _), + ½(_,¢'_)_ + _(s"_,$)_. (49)

This corresponds to taking

Jm

-1 0 1 0 0 O"

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 1 0 0

(50)

It can be seen that the first consistency condition in (44), namely j44 +j4 5 +j46 = 0, is violated.
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Consequently I'IR_ is not a valid functional for micropolar elasticity. Inspection of (50)
reveals that conditions (44) can be met by simple changingja4 to - 1, and that is precisely

the regularization of ttughes-Brezzi described in Section 5.2.
Reissner also proposed a second functional rIru = Ua2- P_, of Hu-Washizu type. in

which

= _(,e._)._-;(,r,e -a)_.+_.(_-_,e_)_+_(_,#:-f)_+_(s"°-_°,O')h (51)

which corresponds to the J,, of (47) except that J55 = 0. Now the second consistency
equation in (44) is violated. Thus this second functional is also inconsistent with micropolar

elasticity, but may be corrected by changing j55 to I.

5.2. The Hughes-Brez:J functionals
Hughes and Brez_'i (1989) investigated the possible application of the Reissner func-

tionals to construct finite elements with "drilling" degrees of freedom for classical elasticity.

Their analysis shows that the first Reissner functional would lead to unstable discrete
approximations. The physical cause of this instability Js that deviations from stress sym-

metry do not produce strain energy. To circumvent that difficulty, they proposed stabilizing
UR_ by adding a penalty-like term of the form

1

2_ (g' s3v, (52)

where _ > 0 is a pseudo-modulus with dimensions of stress (in their paper this modulus is
called 7, a symbol usec_ here for total strain). Although _ plays the same role as x in the

micropolar theory, for the intended application it is a fictitious quantity to be chosen by
numerical experiments. The term (52) can be encompassed in the present framework by
choosing G = _I3, which allows that term to be written as -½('],q_')v. Adding this to URI

yields the first Hughes-Brezzi functional:

u..,, = - _(e,(:-'_v + (_,v,_- #),.

= - _(._.:),.- _(_.,#')v+ _(a,e")v+ !(,_, a',,:+ _(_,_"),: + _(s". 6},-. (53)

This befits the form (371 with the generating matrix

Jm, I

-1 0 1 0 0 0-

0 0 0 0 0 0

! 0 0 0 0 0

0 0 0 --1 0 1

0 0 0 0 0 0

0 0 0 I 0 0

(54)

whose coefficients satis_ (35) and (44). Thus the stabilization procedure has also the effect

of rendering the functional consistent with micropolar elasticity.
For the second Reissner functional, the stabilization term added to URz is !(s _. 4_)v.

which effectively transforms the first term in (51) from t_. E_)v to (_, C}')_. The resulting
d,, is (47).

An obvious generalization of this "repeating block" rule is
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-jll J12 J13

jl2 J2: J2s

J,3 J23 J33

J'"= 0 0 0

0 0 0

0 0 0

for micropolar elasticity

0 0 0

0 0 0

0 0 0

jtl jl2 Jts '

Jl2 j:: J23

J_3 J23 J3_
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(55)

with the coefficients satisfying (35). This three-parameter family permits symmetric and
antisymmetric stress and strain fields to be merged into total stresses and strains. The

resulting functionals 1-I(_,_, fi, if) may be viewed as having at most four independent fields.
Note, however, that this choice is but a special case of (46).

5.3. A two-field functional

The simplest generating matrix with the block structure (55) is

Jrn _---

0 0 0 0 0 O"

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

(56)

The resulting two-field functional is 174 = U_-pc, with

u,, (a, #) = ½(a", e")v+ 1.,(s_O,4,,o)v. (57)

This may be viewed as a generalization of the minimum potential energy functional, to

which it reduces if the second term is dropped. It can be obtained from a more general
functional for elastoplasticity proposed by Atluri (1980), who recommends taking g = 4_
in s_° = ff_b"°. Hughes and Brezzi (1989) also investigated the functional (57) but made no
recommendation on g.

6. CONCLUSIONS

The functional H,, = U,_- P,, extends the parametrized functional H = U- P of classi-
cai linear hyperelasticity to include three more independently varied antisymmetric fields :
skew stresses, skew strains and microrotations. This extension is made here in the context

of micropolar elasticity without couple stresses.
Another application of these functionals is the construction of finite element inter-

polations for classical linear elasticity in which the rotational field 0 is varied independently
from the displacements. The objective is to relax stress symmetry into a weak condition. It

is in this context that the functionals of Hughes-Brezzi have been proposed. A membrane

element with drilling freedoms based on these functionals has recently been constructed b_¢
lbrahimo_govic (1990). The present study indicates that the Hughes-Brezzi functionals
fit the framework of micropolar elasticity if fictitious modulus ff is identified with the
micropolar modulus x.

The Hughes-Brezzi functionals can be readily generalized into a three-parameter family
defined by (55), in which the same weighting is applied to symmetric and antisymmetric
fields. However this is just a subspace of the six-parameter functional (45) characterized by
the Jm matrix (46), which allows such weights to be separately chosen.
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APPENDIX: PARAMETRIZED FUNCTIONAL FOR A MICROPOLAR MEDIUM WITH
COUPLE STRESSES

In this Appendix the preceding variational formulation is extended to account for the presence of couple
stresses mV. Two changes in the field equations occur. The angular-momentum equilibrium equation gains a
divergence term :

mj,.j + eu_rjk + c, = O. (A 1)

The constitutive equations must be augmented by a relation between the couple stresses and microrotation vector
derivatives, which for the is()tropic case is

m_j -- rt_6,jO_.k+ rc,.O_v+ r_30,,. (A2)

Here 7h, n_, and n3 are con_q_tutive coefficients with dimension of force, and for compactness we have used the

microrotational vector components 0, = 28:_, 0= = 203, and 03 = 28,: in accordance to the convention of eqn
(9). The gradients of 0, will 9e denoted by ;(, = 0,., which may be interpreted as "'curvatures".

In addition, the boundary conditions (4)-(5) are augmented with

re, n, = m_, = O on S .... 0, = 0 on S,,. (A3)

where S: S,_ u So.
Next, define the vecto_ and matrices

m

/t4 7_ I

7t_ /_4

gl rtl

0 0

H= 0 0

0 0

0 0

0 0

::: {m, i m22 /9133 /'/123

:= {_,1 Z22 ;(3J _:3 ;C3,

=, 0 0 0 0 0 0

rt, 0 0 0 0 0 0

n, 0 0 0 0 0 0

0 n,. 0 0 _ 0 0

0 0 n., 0 0 :H 0

0 0 0 n2 0 0 rt3

0 n3 0 0 rH 0 0

0 0 n3 0 0 _t., 0

0 0 0 0 0 rt_ 0 0 n:

/'n3l m12 m32 m13 rtl21} T ,

" d/dx,

0

0

0

, Q=: _/c)x3
0

0

0

_/_x,

0

d/8x:

0

0

0

C/UX_

8_8x_

0

0

0

0

O/_x_

_/_x:

0
(A4)

0

0

_/?x_

0

in which r_ = _t,÷_+n_. Matrix H can be generalized to account for anisotropy without difficulty. Little _s

known experimentally abou_ couple stress constitutive behavior, however, even in the isotropic case.
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With the foregoing definitions, the matrix field equations that include the effect of the couple stresses are

Z = QO, m = HX, QTm+2s+c -- O. (AS)

The first two are appended to the kinematic relations (14) and constitutive equations (15), respectively, whereas

the latter replaces the second of (16).

A parametrized variational principle that accounts for couple stresses is easily obtained by including two

independently varied fields: couple stresses r_ and curvatures ;_. Functionals U,. and P_ are aum'nented with

couple stress terms

U.,., = U. + U_:, P_. = P'_ + PL, (A6)

where

,f f l'F J'"' J'"' J"'qfq
m ° ymm. j9919J I.X°J

PL = ff,,Ols.+[o-6,m,ls,. (AS)

The derived fields in (AT) are m x = Hi, X_' = H- 'm, X° = Q8 and m ° = HQ0 ; also 19 denotes the 9 x 9 identity
matrix.

The first variation of Hm_ = U.,o+ P_. is

6r[,._., = (Ae.3(_)v+(Ae,3_.)v-(Rrr' +b,_l)v.C-(Aq_,6i)v

+ (As, 35) v - _(Q*m' + 2s' + c, 3b') v + [*;, - i, 6iils,

- [fi- d, _9.]s, + tin;, - #, 6i]s" - [_- 0, $Ih.]s,, (A9)

where m" = j79_a+j, gm_+j99m°. The consistency conditions are (36), (45) and

j_+jT*+J79 =0, JTs+Jsg+J89 =O, J_9+Jsg+J99 = l. (AI0)

It is seen that extending the variational principle (45) to accommodate couple stresses brings three additional free

parameters, for a total of nine. This may be reduced to three free parameters, however, by extending the rule (55)

with another 3 x 3 repeating block. Note that if one chooses J99 = I, others zero, U. = ½(0"rQTHQOT)v, and no

additional independent fields other than those in (45) appear.

The couple-stress theory of elasticity attracted theoretical attention in the 1960s but it is rarely used in practice.

particularly in static situations. For modeling micropolar and oriented media the simpler equations of Section l

are more common. This is especially true in homogenization of filamentary composite materials, where the body

couple c and the micropolar modulus K can be estimated from component-level non-polar data complemented by

statistical and periodicity arguments [see for example. Bergiund (1977)].

Although couple stress models can be generated in the continuum limit of regular and defective-lattice

theories [see for example, Askar (1985)], the difficulties in characterizing and measuring moduli such as n,, _.

and n _are significant, and the theory has to be regarded as experimentally inconclusive. Furthermore the additional

boundary conditions (A3) are not easily interpreted physically. Consequently the main development of the paper

focuses on the zero-couple-stress case. This has the additional advantage that the reduction to the classical non-

polar case for finite element development is easily accomplished.










