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Advances in the use of autoregressive models, pattern recognition methods, and
hidden Markov models for on-line health monitoring of dynamic systems (such as

DSN antennas) have recently been reported, ttowever, the algorithms described in

previous work have the significant drawback that data acquired under fault condi-

tions are assumed to be available in order to train the model used for monitoring

the system under observation. This article reports that this assumption can be

relaxed and that hidden Markov monitoring models can be constructed using only
data acquired under normal conditions and prior knowledge of the system char-

acteristics being measured. The method is described and evaluated on data from

the DSS 13 34-m beam waveguide antenna. The primary conclusion from the ex-

perimental results is that the method is indeed practical and holds considerable

promise for application at the 70-m antenna sites where acquisition of fault data
under controlled conditions is not realistic.

I. Introduction and Background

In previous articles, the problem of on-line health moni-

toring of a dynamic system (in particular, a DSN

34-m beam waveguide [BWG] antenna) has been inves-

tigated [1-3]. The problem can be stated in the follow-
ing simple manner: let the observed data be denoted by

X___(t)= {_x(t), x__(t- r),... ,_x(0)} where each of the x(t) is a

k-dimensional vector measurement of sensor data sampled

at discrete time intervals r. Given X(t), the problem is

to determine the most likely current state of the system
at time t, where the system is assumed to be in one of

m states {wl,... ,w,_}. The states are unobservable di-

rectly, but can be inferred from the observable data X(t).

In probabilistic terms, the modelling goal is to accurately

model p[w_(t)lX(t)] (either from prior knowledge, train-

ing data, or a combination of both), while for prediction,
p[w,(t)lX__.(t)] is used to predict the current state given a

specific set of data X(I) for which the system state is un-

known. Typically wl corresponds to the normal operating
state of the system, while the other states represent various

system faults that may occur. The quality of a particu-

lar model for p[wi(t)lX__(t)] can be obtained by measuring
an empirical estimate of the prediction accuracy, which is

simply the percentage of time that the state predicted by

the model agrees with the true state--the test is performed

over a period of time where the system cycles through var-

ious states (not known to the model) using data that are
independent of those on which the model was trained.

In [1] and [2], an autoregressive-exogenous (ARX) time

series model coupled to a pattern recognition component

was used as the basis for estimating p[wiLx(t)]. This is a

relatively simple model providing state estimates based

only on instantaneous measurements _z(t) but ignoring
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past data. This model resulted in prediction accuracies of
about 90 percent on independent test data sets obtained

at DSS 13. A significant improvement on this method

was reported in [3] whereby the past data were used in
the state estimates by embedding the problem in a hid-

dell Markov model (HMM) framework. The key point of

the HMM method is that prior knowledge regarding the

temporal behavior of the states can be used to effectively

model temporal correlations in the system at the state
level. On-line tests of this method at DSS 13 in Novem-

ber 1991 resulted in no prediction errors during a 1-hr test
with state estimates being provided by the model every

6 sec [3].

It should be pointed out that the autoregressive and

hidden Markov modelling methods are not the only ap-

proach for the fault detection problem. In [4] a number of
statistical change detection methods were investigated. It

was found that change detection methods require signifi-

cant prior knowledge of the behavior of parameter char-

acteristics when the system enters a fault state. In prac-
tice this type of detailed prior knowledge is unlikely to

be available, limiting the applicability of these methods in
practice.

I!. Limitations of Previously Reported
Methods

While the models described in [1-3] display useful ca-

pabilities in terms of on-line fault detection, they suffer
from two major limitations:

(1) The models assume that the known states are ex-

haustive, i.e., the set of states {wl,... ,win} covers

all possible states in which the system may be.

(2) The models also require that labelled training data
are available for each state, i.e., for each state wi

there is a set of data {_z(t), z__(t- r),... ,_(0)} which

was measured when the system was known to be in

state wi.

Clearly both of these requirements cannot be satisfied in
most real-world fault detection applications. For fault de-

tection, the assumption that all system states due to faults

can be specified in advance is clearly inappropriate except

for the simplest of systems--real-world systems (such as
DSN antenna pointing systems) often contain large num-

bers of interacting components with feedback and non-

linearities, making prior prediction of all possible system

behaviors under fault conditions unrealistic. However, it

should be pointed out that it is usually possible to model

system behavior under a small set of likely system faults--

this point will be expanded upon later in this article.

The second requirement, that training data are avail-
able for each possible system state, is coupled to the first

assumption: if all possible states cannot be described in

advance, then the notion of having training data for such

states is moot. Itowever, even if the first assumption were

satisfied and all fault states could be described in advance,

the requirement that data can be recorded when the sys-

tem is in each of these states is often unrealistic. A good
example is a DSN 70-m antenna where hardware simula-

tion of fault conditions is not a practical option due to

operational considerations (as compared to the DSN 34-m

antenna at DSS 13).

Ilence, there is considerable practical motivation to de-
velop methods that relax the assumptions on which the

earlier-reported models are based, while still retaining the
accurate prediction capabilities of these models. This arti-

cle describes a relatively simple yet effective method that

can detect the presence of states for which no training data
sets were available, i.e., states about which the model has

no knowledge. It is assumed that training data (or else a
strong prior model) for at least one state is available--this
is not restrictive since data under normal conditions are

almost always available. The proposed method is based on

the use of prior knowledge to constrain the possible distri-

bution of system parameters, which when coupled with the

model derived from the training data, allows detection of
both known states and a generic, unknown state category.

This article outlines the general model, illustrates its
use and effectiveness on data collected from the elevation

axis of the DSS 13 BWG antenna pointing servomech-
anism, and describes the limitations of the current ap-
proach.

III. Notation and Assumptions

For the purposes of this article, the distinction is made

between the observable data at time t which is z(t) and
the estimated parameters at time t, denoted by the vector

0(t). Typically z(t) is the original sensor data or time

series (such as the motor current in an antenna pointing

system), whereas the values of 0_(t) are typically statistical
estimates of some characteristics of the time series such as

the mean, variance, or autoregressive (AR) coefficients. In
this article, attention will be limited to block estimation

methods whereby O(t) = f_(t),x__(t - r),..., x__(t- Nr)],
etc. Hence, each of the parameter estimates is derived from

disjoint windows or blocks of the original data, where N

is chosen to be large enough to enable reasonably reliable
statistical estimates.

Let _, = {_9(t),0_(t- Nr),...,0_(0)}. In effect, if, is

then viewed as the observable data sequence and the prob-
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lem can be treated as that of recovering the likely system

states given the estimates Ct, i.e., find p[wi(t)lfft ]. Issues

such as choosing appropriate estimators, block sizes, etc.,
will not be dealt with in this article. For the experimen-

tal results reported later in this article, values of r = 20
msec and N = 200 are used. However, for the purposes of

simplification of notation, it will be assumed without loss

of generality that Nr = 1 during the development of the

probabilistic models that follow.

It is also assumed that there are m- 1 states for which

prior information is available either in the form of: (1) spe-

cific parametric models for the dependence of the states

on the observable data, or (2) training data. An addi-
tional ruth state is used in the model as a single state

which accounts for all other possible behaviors of the sys-

tem that are qualitatively different from the known states.
This state will be referred to as the unknown fault state.

Hence, in the simplest case, for example, if prior informa-
tion is only available for the normal state, then the model
has two states: normal and the unknown fault state.

IV. The General Model

The goal of the modelling process is to provide a means
of estimating the posterior state probabilities

p[_(t)l¢,] = p[_o_(t)[_0(t),0_(t - 1),...,/9(0)]

l<i<m

(1)

which are required for prediction. In the Appendix it is
shown how the hidden Markov framework can be used such

that the full number of conditioning terms in Eq. (1) is not

necessary if the appropriate assumptions are met. The
hidden Markov model leads to recursive estimates of the

form

p[wi(t)lO_(t),O_(t - 1),..., 0_(0)] _-. p_(t)looi(t)]

x _ f p[_j(t - 1)l_0(t - 1),... ,_0(0)] (2)
j=l -

so that knowledge of the likelihood p_(t)lw,(t)] at each
time t (in addition to the Markov transition matrix A) is

sufficient to calculate the posterior estimates.

Note that it will be assumed that the statistics of inter-

est are time-invariant, hence reference to a specific time t

can be dropped at this point.

In previous work, direct forward models of p(wilO_) were

estimated and then p(0_lwl ) was estimated by the use of

Bayes' rule in Eq. (2) [3]. In this article, it is proposed

to use models of the form p(__lwl) as the direct basis for
the model. The rationale behind this approach is simple:

based on prior knowledge alone it is impossible except in
simple cases to specify the form of p(wilO_), ttowever, it is

much more likely that one can model the dependence of

the data on the state, i.e., a prior density can be assigned

to the likelihood p(_0lw_) based on prior knowledge. In

particular, for state Win, which is the state that covers

all possible states not included in the set {wl,... ,win-l},
one can typically specify a noninformative uniform prior

density over the set of possible parameter values for _O.In

addition, one must also supply models for p(Olw d, 1 < i <

m- 1, which are typically estimated from training data.

The key difference between this method and those

methods proposed in previous literature is that the model

works with likelihoods (the probability of the observable

data given the states), rather than directly with the pos-

terior state probabilities (the probabilities of the states

given the data). This approach rules out the use of many
discriminant-based methods that only provide estimates of

the posterior probabilities, but do not provide estimates

of the likelihoods (for example, logistic regression, feed-
forward neural networks, decision trees, etc.). Methods

that provide the required estimates include (naturally)

both parametric methods (such as maximum likelihood
classifiers based on a specific parametric form for p(0_lwi )

and nonparametric methods such as kernel density esti-

mators. For a more extensive general discussion of the

differences between such models, see [5-7].

The proposed method can be summarized as follows:

(1) Specify or estimate prior density models, p(O_lwi),
for the known classes, wl,... ,w,,-l. As mentioned

above, this requires the use of either a parametric

model (such as a multivariate Gaussian) or a non-

parametric density estimation method.

(2) Specify a prior density for p(O_lwm ) where w,n is the
special unknown state. This is typically done by es-

tablishing bounds or constraints on each of the pa-

rameters in __and then (in the absence of any other

information) specifying a uniform density over the

bounded parameter space.

(3) The remainder of the method is the same as before:
simply estimate the hidden Markov model param-

eters from reliability data (as described in the Ap-

pendix) and run the model for prediction.

Note in step (2) it is important that the derived param-
eters can be bounded in some manner. The stronger the
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constraints that can be placed on the parameters, the bet-

ter will be the detection performance of the model. These
constraints could be due to the basic physics of the system,

such as energy limits, or a function of the particular rep-

resentation being used, such as spectral or autoregressive

estimates (a specific example is provided in Section V). If
there are no constraints at all, then it is still possible to

specify a prior model, such as a Gaussian model, although

the choice of model may now be somewhat more problem-

atic since it will inevitably reflect a prior bias which may

not be appropriate. A better alternative (in the case of no

constraints) would be not to use a prior model at all for
cam and just detect data which appear to be outliers from

the other m - 1 models. IIowever, outlier detection can

be problematic--it is a central theme of this article that

prior constraints can usually be placed on the parameter

space of interest and that this provides the natural avenue

for detecting data from win. In essence, it is argued that
if such prior constraints exist, this information should be

used in the model, and should in principle provide better

detection capabilities than any outlier detection method.

V. Applying the Likelihood Method
in Practice

One significant difference between modelling the like-

lihoods and posterior probabilities is the issue of dimen-
sionality, namely, that a high-dimensional parameter space

will be potentially more problematic for the likelihood

modelling method than for the posterior (or discriminant)

modelling method. In a discriminant model (which cal-
culates posterior probabilities), input dimensions can be

ignored in the model if they are irrelevant to the state, al-

lowing more efficient estimation at small training sample
sizes. However, in the likelihood model, all input dimen-

sions must be included in the model. If there are a signif-
icant number of irrelevant or redundant inputs, this can

lead to a poor model, particularly as the ratio of sample

size to input dimensions gets small. Hence, parsimony in

parameter choice is recommended.

From previous work with the DSS-13 BWG-antenna
pointing system, it has been found that autoregressive co-

efficients and standard deviation estimates are both par-

ticularly useful characteristics of the motor current for the

purpose of detecting abnormal events [2,3]. In this arti-
cle, three such characteristics as estimated from the mo-

tor current signal will be chosen: the two coefficients of

a second-order autoregressive model [AR(2)], ¢1 and ¢2,

and the standard deviation, a. ttence, 0 = (¢1,52,a). In

[2] and [3], an eighth-order ARX model was used to model

the motor current signal, using the rate command as the

forcing term. However, in the interests of keeping the in-
put dimensionality relatively low, a simpler AR(2) model

was used for the purposes of this experiment. While the

simpler model is not appropriate for complete system iden-

tification, it is sufficient for the purposes at hand to extract

useful signal characteristics that can be used to discrimi-

nate between normal and abnormal operating conditions.

The next step is to specify a prior density over the AR

parameters ¢1 and ¢2. In accordance with standard time
series theory, if the estimated process (as represented by

the two coefficients) is to be stationary, then the coeffi-

cients must obey the following restrictions [8]:

¢1 + ¢2 < 1

¢2- _1 < 1

-1 < ¢1 < 1

It will be assumed that the estimated coefficients are in

fact stationary, thus providing bounds on the possible pa-

rameter values (see Fig. 1). A uniform density is specified
over all such allowable values of ¢1 and ¢2. Of course,

this does not allow for the fact that in practice (and in

particular for fault conditions) there is no guarantee that
the estimated coefficients will obey these bounds. The fol-

lowing approach is adopted: if the estimated coefficients

lie outside the bounds of the stationary region, then the

probability of the normal state p(wl [0_) is set to zero.

The third parameter, the standard deviation of the volt-

age from the Hall effect sensor, which measures motor cur-
rent, is about 20 mV under normal conditions. Based on

experience from observing the motor current signal under

a variety of conditions, it is estimated that under any fault
condition the standard deviation should not exceed 1 V.

Hence, in the absence of any other prior information, a
uniform density is placed on the standard deviation over

this range 0 to 1 V for a. This density is assumed inde-
pendent of the AR(2) coefficient density. This completes

the specification of the likelihood model for w,,,.

For the other m- 1 states, normal and any known fault

conditions, likelihood models can be found via the use of

Gaussian assumptions with maximum likelihood parame-

ter estimation or nonparametric density estimation.

VI. Experimental Results

Ill [2] the acquisition of data at DSS 13 was described.

Specifically, sensor data were measured under controlled
conditions from the elevation axis servomechanism of the

34-m BWG antenna. Data are available for two different
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days of antenna operation, referred to as day 42 and day
53. Data were recorded for about 30 min with four differ-

ent fault conditions present. The faults are: tachometer

noise, tachometer failure, compensation loss in the ampli-

fier, and encoder failure. The fourth fault, encoder failure,
was a real fault that was subsequently repaired. It shows

up in the data as being intermittent in nature. The other
three faults were purposely introduced into the hardware
in a controlled manner.

The same model for the prior likelihood p(6_lw,n ) as de-
scribed in Section V was used in all experiments. The

Markov transition matrix was set to have probability of

0.99998 of remaining in the normal state, which corre-

sponds to a mean time between failure of about 2 days.
The probability of transiting to any particular fault state

was set uniformly, and the probability of remaining in a

fault state was set to 0.95 (corresponding to a mean failure

duration of 1 min before shutdown occurred).

A model was trained on normal data and on one of the

known faults (the compensation loss fault), giving a three-

state model (normal, known fault, and unknown fault).
The normal and known fault likelihood models were con-

structed using a multivariate Gaussian density where the

mean and covariance parameters were estimated from the

data using maximum likelihood estimators.

Two models were constructed in this manner (one on

each of the day 42 and day 53 data sets) and then tested on

the independent data from the other day. The goal of the

experiment was to see if the model could correctly identify

data as being either normal, a known fault, or an unknown
fault. The ability to classify data into the third unknown

category was of particular relevance, since, as described
earlier in this article, previously developed models did not

have this capability, i.e., all data were classified into one
of the known states.

The state sequence in each test data set was as follows:

normal, unknown fault (tachometer failure); known fault

(compensation loss); normal conditions, unknown fault

(tachometer noise); and finally an unknown intermittent
fault (encoder failure). Each state lasted roughly 5 min
in duration. Figure 2 shows how one of the AR(2) coef-

ficients changed as a function of the underlying state (for

day 53). Note how noisy the estimates are, due in part to

the fact that an AR(2) model is too simple to capture the

full dynamics of the data.

Figures 3(a) and 3(b) show the state estimation results

in terms of estimated state probabilities [as in Eq. (2)] for
each of the three states in the model. The results clearly

indicate that the likelihood model has the ability to infer

the correct state of the system from the observable data.

As in [3], the Markov model adds stability to the estimates,

reducing false alarms while still allowing a rapid transition
when the underlying state changes.

The important aspect of this new model is its ability to

identify data as being of the unknown category, namely,
between minutes 5 and 10, minutes 20 and 25, and the
intermittent fault that occurred between minutes 25 and

30. The response of the model is not entirely perfect. For

example, during the test of day 42 data [Fig. 3(a)], in the

first 5 min of normal operations, there appear to be at
least two short false alarms, i.e., where the probability of

normal conditions drops significantly below 1 even though

the system is supposed to be in the normal state. This
can be attributed to one of two possible causes: either

the model is not quite accurate, or, more interestingly, al-

though the system is assumed to be normal it is in fact in
some other transient state. Closer examination of the orig-

inal sensor data revealed that the second explanation was

more likely to be true: the model detected the possibility
of an unknown transient state that had not been noticed

when these data were originally recorded. While this is a

relatively simple example, it nonetheless demonstrates the

basic concept of a model which can detect subtle changes
and abnormalities in the behavior of a dynamic system--

changes that are not noticeable to the human observer.

It is also worth noting that the present model assigns

a relatively low probability to short a priori states. An
obvious extension to the model proposed here would be to
further refine the unknown state into substates based on

their temporal characteristics, i.e., intermittent or tran-

sient, or permanent.

VII. Discussion

This article has described the basic principles behind

the construction of dynamic system monitoring models

that can classify system states into an "unknown" cate-

gory. Although the basic idea is quite simple, it has some

very useful properties. In addition, it is worth noting that
all previous fault monitoring methods described in the lit-

erature (of which the authors of this article are aware) im-

plicitly assume that all system states of interest are known
in advance. For large-scale complex systems, this is clearly

an undesirable and unrealistic assumption.

A possible criticism of the proposed method is the pos-

sibly arbitrary nature by which the prior density for the

unknown state is assigned. Certainly it must be admitted
that this can never be _ purely objective choice and re-

quires the careful judgment of the modeller. However, any
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modelisbynaturetheresultof variousimplicitbiasesand
subjectivejudgments,and,hencethestandardargument
of theBayesianschoolof statisticalmodellingcanbeap-
pealedto: if anyreasonablepriorinformationexists,then
it isjudiciousto includeit in themodel.Theastutereader
will havenotedthat by simplychangingtheboundaries
orconstraintson theparametersof interest,themodeller
canin effectcontrolthedetectionto falsealarmtrade-off
characteristicofthemodel[alsoknownasthereceiverop-
eratingcharacteristic(ROC)in signaldetectiontheory].
Theuseofdecisiontheoreticmethodsto minimizetherel-
evantlossfunction(in thecontextof choosingtheprior
density)wouldseemtheappropriateavenueby whichto
controlthisaspectof themodel.

Theability to detectnewsystemstatesdoesnotcome
withoutacost.Asalludedtoearlier,themappingdescrib-
ing howtheobserveddatadependon thesystemstates
(tile likelihood)isgenerallymoredifficulttoestimatethan
themappingdescribinghowthestatesdependon theob-
serveddata.Itence,forexample,in thecasewhereonehas
threeknownfaults,amodelofthetypewhichisproposed
heremaynot beasaccuratein termsof discriminating
amongthesefaultsasthetypesof discriminationmod-
elsthat focusexclusivelyon thesefaultsbutwhichignore
thepossibilityof anunknownfault. Oneway to avoid
thisproblemis to improvethequalityof the likelihood
modellingprocess.Forexample,a Gaussianassumption
is oftennot appropriate:nonparametricdensityestima-
tionmethods,if usedcorrectly,mayprovidemoreaccurate
modelsfortheknownstates.

Anotherpossibilitywouldbe to useboth likelihood
modelsanddiscriminativemodelsaspartof oneoverall
model.Lettingp(wm) be the posterior probability that

the data are from an unknown state (as calculated by a

likelihood model of the type described in this article), and

letting the symbol w{1, ..,,,,-1] denote the event that the
true system state is one of the known states, one can es-

timate the true posterior probability of individual known
states as

pa(wi[_,w{1 .....m-1})x[1-P(W,n)], l<i<m-1

where pa(wi[_,w{1 ..... m-l}) is the posterior probability es-
timate of the known states as provided by a discrimina-

tive model such as described in [2] and [3]. Note that
this method does not in any way help to improve the abil-

ity of the overall model to detect unknown states since

that estimate remains unchanged; however, in principle, it

should improve the ability of the model to distinguish be-

tween specific known states. The possibility of improving

the model described in this article by using this particular
technique has not been tested in an experimental manner
at this point.

A final comment is that the ability of the likelihood

model to detect unknown states is necessarily limited by

the information in the observable data. For example, al-

though the simple AR models reported here have given

very useful information in terms of discriminating between
normal and various fault states, it is quite possible that a

fault state may not be well modelled by a simple linear

AR model, i.e., that the AR coefficients will not yield any

useful information. IIcncc, in general, the use of more ro-

bust signal characteristics should improve the model per-
formance.

VIII. Summary

A new method was proposed that allows the construc-

tion of HMM monitoring algorithms without the require-

ment that training data for each of a prescribed set of

faults be made available. Naturally, if such data (or equiv-

alent prior knowledge) are available, then these data can
also be incorporated into the new model. The proposed
method was validated on data from the DSS-13 BWG-

antenna pointing system. In particular, the model was
able to detect system states that could not have been de-

tected using previously reported methods. While there is

still room for improvement in terms of the performance of
this class of models, the results are nonetheless quite accu-

rate and of significant practical importance in the context

of monitoring 70-m antenna data where fault training data
are unlikely to be available.
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Appendix

Hidden Markov Model Description

Let f2 denote the discrete-valued state variable tak-

ing values in the set {wl, ... ,win}. A first-order discrete-
time Markov model is characterized by the assumption
that

p [a(t)la(t - z),..., a(0)] = p [a(t)la(t - x)] (A-Z)

That is, that the conditional probability of any current

state given knowledge of all previous states is the same
as the conditional probability of the current state given

knowledge of the system state at time t - 1. This is

equivalent to the well-known assumption of "memoryless-
ness" in that the evolution of the system depends only

on the present state and not on the past state. A direct

consequence is the fact that the number of consecutive
time steps that the system spends in any given state will

be a discrete random variable wittl a geometric distribu-
tion.

In a standard, nonhidden Markov model, to calculate

the probability that the system is in a given state at time

t, one needs only to know the initial state probabilities r =

and the values ao"= p[,0,(t)l j(t - 1)],
1 < i, j < m. The m × m matrix A is known as the tran-
sition matrix and characterizes the Markov model. The

first-order Markov assumption governing state evolution

in time may appear restrictive at first glance, but has
been found in practice to be an extremely robust model

for many real-world applications. In principle, the theory

for higher-order Markov models can be developed, but at
the cost of increased complexity in terms of specifying the

model and of increased computational complexity in terms

of on-line calculation of the posterior probabilities.

Under the first-order Markov assumption, it can easily

be shown that the probability in which the system remains
in the normal state from one instant to the next can be

expressed as

T

all ---- 1 MTBF (A-2)

in the transition matrix A can be estimated from informa-

tion concerning the general nature of system faults, which

may be available from an existing database or can he esti-
mated based on known physical properties of the system.

Augmented models may have a wide variety of additional

states. For example, it may be useful to include a state
to account for the transient behavior of the system. Sim-

ilarly, states which account for known operational modes

of the system, such as powered off and brakes on, may

be necessary in practice. The specification of the Markov
transition matrix corresponds to the explicit modelling of

high-level prior knowledge concerning system behavior at

the slate level. In particular, it does not involve the speci-

fication of prior models for observable data over time since

typically this is much more difficult to model. This is
precisely the advantage of the HMM decomposition: the

temporal behavior of the system needs only to be specified

at a relatively high level.

Denote the observed data up to time t to be (I)t =

{_0(t),... ,_6(0)}. The hidden aspect of the Markov model
is derived from the fact that the observed data et is a

stochastic function of the underlying Markov states. These

states are hidden in the sense that they cannot be mea-

sured directly. It is the state identities which one wishes to

estimate, hence, the purpose of the modelling is to repre-
sent the relationship between the states and the observable

data such that the most likely state sequence can be in-

ferred. Figure A-1 shows an illustration of the concept for

a three-state HMM. For on-line monitoring of a dynamic
system, the observed data simply consist of observed sen-

sor data (or derived parameters) while the states reflect the

underlying system states, in particular normal and fault

operational states.

An estimate of the instantaneous likelihood, the prob-

ability of the observed data at time t conditioned on the

state variable, p__(t)lf2(t)] , is assumed to be known. The
goal is to take advantage of all the symptom information

and to estimate p[f_(t)l(I)t ]. It is convenient to work in

terms of an intermediate variable a, where

cq(t) = p[wi(t), _,] (A-3)

where the MTBF is the mean time between failures of

the system and r is the time between states (both ex-
pressed in the same units). Similarly, the other elements

To find the posterior probabilities of interest, it is suf-

ficient to be able to calculate the o's at any time t, since

by Bayes' rule
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1 ,_(t)

p(,,,,(t)l'_,)= p---_-_,)_,(t) = _ _(t)
j--1

(A-4)

The derivation of a recursive

_(_) =

by the definition of aj

estimate follows:

Eri

_.,p _(t),O_(t)l¢,__,_o_(t- 1) _(t - 1)
j=l -

)( )= _.p e_(t)l,,,,(t),c,__,_(t- 1) p _,(t)lC,-_,,,,i(t - 1) ,_(_- 1)
j=l

= _-_p O_(t)l_,i(t p wi(t)l_,-1,wj(t- 1 aj(t- 1)
j=l

assuming that O_.(t) is independent of past observations and past states, given the present state

ITI

: j_=lp(t)(t)lwi(t))p(wi(f.)lWj(t--1))O_j(t -- 1)

assuming that wi(t) is independent of past observations given the past states

( )m= p a_(t)lwi(t) _-_ai_j(t- 1)
j=l

(A-5)

The first term is the likelihood (assumed to be known).
The terms in the sum are just a linear combination of the

c_'s from the previous time step. Hence, Eq. (A-5) pro-

vides the basic recursive relationship for estimating state

probabilities at any time t.

The additional assumptions made in the derivation of

Eq. (A-5) (besides the first-order Markov assumption on
state dependence) require some comment. The first as-

sumption is that _/?(t) is independent of both the most
recent state and the observed past data, given that the

present state is known. This implies that the observed

symptoms are assumed to be statistically independent

from one time window to the next, given the state in-

formation. This will generally be true when the values of

6(t) consist of derived parameters and r is much greater

than any significant time constants of the dynamic system.
Even if it is known that the __'s exhibit temporal correla-

tions, this can also in principle be modelled directly in

Eq. (A-5), although the model will now be much more
complex. The second assumption, that the present state

only depends on the previous state but not the past ob-
servations, simply reflects the causal relationship between

symptoms and states.

Note that the method described above only calculates

the state probabilities based on past information. Alter-

native estimation strategies are possible. For example, us-

ing the well-known forward-backward recurrence relations

[9], one can update the state probability estimates using
symptom information which occurred later in time.
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OBSERVABLE 0(t- 1) _e(t) _e(t+ 1) _e(t, 2)

HIDDEN

STATE 1

STATE 2

STATE 3

t-1 t t+

TIME

t+2

Fig. A-1. An illustrative example of a three-state hidden Markov

model.
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