Spacecraft Detumbling Through Energy Dissipation v /597
Norman Fitz—-Coy® and Anindya Chatterjee’ N 9 3 = 2/4)
/ /

Department of Aerospace Engineering. Mechanics, and Engineering Science |
University of Florida

Abstract

The attitude motion of a tumbling. rigid. axisymmetric spacecraft is considered. A
methodology for detumbling the spacecraft through energy dissipation is presented. The
differential equations governing this motion are stitf, and therefore an approximate solution.
based on the variation of constants method, is developed and utilized in the analysis of the
detumbling strategy. Stability ot the detumbling process is also addressed.

Introduction

As human expectations and scientific frontiers expand. the capabilities of satellites and
space platforms must expand to meet these challenges. This results in more expensive
satellites and space platforms being designed and launched. These elaborate systems will
require on-orbit servicing/repairs and recovery missions to correct system malfunctions. In
the past, on-orbit servicing and recovery missions have been uncommon operations since the
cost of a replacement satellite was far less than the cost of these missions. However. today’s
high cost of manufacturing and launching of space systems make servicing and recovery
missions an economical alternative to spacecraft replacement!  For example. the
INTELSAT 6 communication satellite with an initial cost of $265M will be repaired on orbit
at a total cost of $150M.°

In addition to monetary costs, there is the “cost™ of human lives when manned space
flights are involved. For these missions. recovery is not an alternative. it is the only choice.
Finally, the growing concern over space debris mandates that at the end of a spacecraft’s
useful life, it must be retrieved and properly disposed of.

Malfunctioning of a spacecraft could result in a wildly gyrating, uncontrolled system. In
the case of a manned spacecraft. it may not be teasible to wait for a period of several days
while the spacecraft settles into a state of pure spin® before a rescue mission is attempted. Itis
also reasonable to assume that the manned spacecraft may be a module from a larger system,
and as such. does not possess the degree of flexibility necessary to dissipate energy at a
sufficiently high rate in order to quickly detumble itself. Consequently. it can be expected that
during some recovery missions. the uncontrolled spacecraft will have non-zero precession
and nutation rates which must be reduced to zero as quickly as possible.

The dynamic interactions involved in detumbling one spacecraft (uncontrotled vehicle)
by another spacecraft (rescue vehicle). of perhaps comparable mass, are non-trivial. The task
of grasping the uncontrolled (tumbling) spacecraft poses quite a challenge to the recovery
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vehicle since the grappling point on the disabled spacecraft may traverse a cone in space. In
addition to the grasping task. the disabled spacecratt must be stabilized in a manner which
maintains the motion of both vehicles within some safe bounds. This requires detailed
knowledge of the dynamic characteristics of the spacecraft and places greater demands on the
rescue vehicle's attitude control system. as well as fuel reserves. More importantly. this
situation involves great satety hazards, particularly if either the disabled spacecraft or the
rescue vehicle is manned. Yet the philosophy behind current approaches to the spacecratt
retrieval problem is to “grapple and wrestle ™ the spacecratt.” *since the time required for the
spacecralt to settle into a state of pure spin may well exceed the time available during a
retrieval mission,

An alternative to the current “grapple and wrestle™ retrieval approach is a retrieval
strategy which first reduces the motion of the spacecraft to that of pure spin and then despins
the spacecratt.  In this paper. a process by which this may be achieved. within the time frame
of a retrieval mission. is presented. In the following section. a strategy for detumbling the
spacecrattis presented. The equations governing the detumbling motion are developed and
presented.  An approximate solution to the governing equations is presented and used to
investigate the proposed detumbling strategy.  The paper concludes with suggestions for
future work.

Detumbling Strategy

It is well known that the general rotational motion of a torque-free rigid body involves
spin. nutation and precession.” ? Also. when dissipative etfects are present (e.g.. a flexible
body). the rotational motion of the body eventually reduces to a state of pure spin about the

axis of maximum moment of inertia. This state of pure spin rotational motion is a result of

energy dissipation. and theretore represents the steady state rotational motion of all real
spacecraft (i.e.. non-rigid bodies). Tt is worth noting that for an axisymmetric body (one
where the two smaller principal moments of inertia are equal) the nutation rate as measured
with respect to the (constant) angular momentum vector is zero.

In practice. the time required for this state of rotational motion to occur is typically on the
order of several days.” Tt is proposed that in order to decrease the required time. the energy
dissipation rate of the spacecratt should be increased. This would be accomplished by
attaching a dissipative device to the spacecraft: that is, retroactively fitting the spacecraft with
external precession and nutation dampers.

The disstpative device consists of a tlexible rod with an end mass as shown in Fig. 1.
Damping effects in the rod would be tailored to dissipate energy at a rate which decreases the
nutation angle within the time frame of the mission. The length and stitffness of the rod. and
the size of the end mass are design criteria which are governed by stability requirements. As
depicted in Fig. 1. usage of this device requires only a slight modification of the Tumbling
Satellite Retrieval (TSR) Kit developed by Grumman.? It is proposed that the arm of the
device be constructed from “smart”™ materials such that. during instances when the device is
attached to the rescue vehicle it will be sufticiently stift to allow rapid maneuvers. However,
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once grappling has been accomplished, the device will be detached from the rescue vehicle,
eliminating its source of power, thereby rendering the device passive.

b)

Fig. 1. Retrieval vehicle: a) current concept(Grumman),
b) proposed concept

In this paper, the issues associated with attaching the device to a tumbling spacecraft (i.e..
locating/tracking/spin-rate matching and gripping). or the actual design of the dissipative
device are not addressed. In what follows. it is assumed that the device has been successfully
attached to the spacecraft. The following sections present an analysis of the dynamic
performance of the device.
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Equations of Motion

The spacecraft model adopted for the present study is shown schematically in Fig. 2. It
consists of an axisymmetric rigid spacecraft, S, an end-mass, E, and a flexible link. L. The
end-mass is attached to the spacecraft via the flexible link in such a manner that when the link
is in its undeformed state. both the link and the end-mass are along the axis of symmetry of
the spacecraft.

¢ R ¥
Undetformed 1

configuration : E

Fig. 2. Spacecraft Model

The dextral orthogonal coordinate system BX,YZ,, is fixed in the spacecraft. The axes
are centroidal principal axes for the spacecraft. The Z, axis lies along the axis of maximum
inertia which is also the axis of symmetry. The displacements of the end-mass in the
Z,~direction are assumed small and therefore are neglected. That is, the end-mass is
assumed to move parallel to the X, Yp-plane:in this plane, the displacements of the end-mass
relative to the spacecraft are denoted by x and y as shown in Fig. 1.

The centroidal moments of inertia of the spacecraft are Iy, Iy, and I, where
I« =1lyy <I. The contribution of the end-mass to the overall system mass is neglected since
its mass. m. is significantly smaller than the mass . M. of the spacecraft. The flexible link
connecting the end-mass to the spacecraft is assumed “massless.” Under these assumptions.
the center of mass location, B, is unchanged by the the addition of the dissipation device.

Denoting the stiffness and the damping of the flexible rod by K and C, respectively, then
the equations governing the motion of the system can be expressed as

¥4+ cx+ (k-wi- w%)x— 205 + (wxwy - )y = - (W, + wy)l (1)

y+cy+ (k- wi-wdy + 2w + (Wxwy + W)X = ~ (Wyw; - W)l (2)
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Iy = — wyw,fu - DI-I(ky + cy) - Fpy 3)
Iy = ww (- DI+ {(kx + ¢X) + F;x (4)

uldr, = c(yx - ky) . (5)

where/is the distance of the end-mass from B, ¢. k. and L. are mass “normalized” quantities. p
is a nondimensional inertia ratio (u > 1). and F, is the z-direction inertia force associated
with the end-mass. Note that the mass normalized stiffness. k. is actually the square of the
tundamental frequency for the dissipative device.

C K
c=—: k=—=w} (6.a)
m m
lY! -
l:ﬁz’—";y:lzi (6.b)
m m | .
F, = oy - dyx + 2w - 0yX) + w{wx + oY) ~l(w3 + w_‘z‘,) (6.¢)

Equations (1) through (5) represent a set of stiff differential equations since there are two
disparate time scales. An approximate analytical solution for these equations is developed in
the next section.

Approximate Solution

Assuming a small attached end-mass E (m < M) and relatively small dissipation rates.
the rotational motion of the system (spacecraft and device) can be approximated for a few
cycles of oscillation by Euler’s equations for an axisymmetric, torque free, rigid body. These
equations are

Wy = — wyw, (- 1), (7.a)
Wy = Wy, (1), (7.b)
@, = 0. (7.0)
where p is as detined in Eq. (6.b). Euler’s equation (Eq. (7)) has a solution
wy = AcosQ(t + ty). (8.a)
wy = AsinQ(t + to). (8.b)
w, = constant (8.¢)

where A represents the tangential angular velocity (i.e.. the resultant of wyand wy: see Fig. 4).
and @ = (1 - Dw,. Equations (1) and (2) can now be rewritten as

4 ek + (k- wi- APSH)x-2w,5 + A’SqCuy = - uw,lACq (9)
y+cy + (k- w2 - AZ(‘fz)y + 20,8 + ASCoX = — 1w ASg (10)
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where
Sg = sinQ(t + tg); Cq = cos Q(t + tg). (1D

Equations (9) and (10) have time varying coefficients; thus, a study of stability via the
Routh~Hurwitz criterion is inapplicable. To circumvent this problem. a coordinate system.
B&ng. which rotates relative to the spacecraft-fixed Zy-axis with angular rate Q is detined (see
Fig. 3). The counterparts of Egs. (9) and (10) in this coordinate system are constant

Zp, ¢ \
>

X
@
§

Fig. 3. Bé&n{ coordinate system

coefficient differential equations for § and . Routh-Hurwitz criterion can now be applied to
show that the complementary solutions of § and n decay provided that the normalized
stiffness satisfies

5 5, Al
k—u“w%-T > 0, (12)

e

and the normalized damping is positive (i.e., ¢ > 0). Note that if H is the magnitude of the
angular momentum of the tumbling spacecraft. then

H? = m?13(w? + A%, (13)
AZ 2
which implies u?w? + e < T3 is bounded at all times for any given set of initial
m

conditions. Therefore, proper selection of k will always satisty Eq. (12).
It can also be shown that in the B§n{ coordinate system, the particular solutions for the
counterparts of Egs. (9) and (10) are constants §; and 11,. Since the complementary solutions

decay to zero and the particular solutions are constant. then steady state solutions for Egs. (9)
and (10) can be expressed as
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x = {1Cq-1150 (14.2)
y = 0Sq + 11Co (14.b)

The energy dissipation rate D then becomes

D = mc(x2 + y?) = chz(g“f + 7;{) (15)

where the entire energy dissipation is considered as energy lost by the tumbling spacecraft.
That is.
dT
— = -D (16)
dt

where T is the spacecraft’s (rotational) kinetic energy.

e ml 9 2
I = Y ((twy; + A%) (17)
Now, the quantity A is a measure of how far the spacecraft is from a state of pure spin.
When A is zero. the nutation angle is zero. therefore. the spacecraft is in a state of pure spin.
The angle that the axis of symmetry makes with the direction of the constant angular
momentum vector is given by (sce Fig. 4)

tan@ = (18)

w,

where 0 is the nutation half angle.

Fig. 4. Precessing spacecraft
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Via Egs. (13) through (17), a constant coefficient, ordinary differential equation for the
A? can be developed. Omitting the algebra, this equation is
2CQ[2A2(P2 _ AZ)Z(QZ _ ngzAz)
[(Q? + (k- P2- FghA?)?
where p. P2, and Q? are defined respectively as
M-

Q0 = —

u

4 a2 -
dt(A) (19)

2 B o
pe = T2 = p‘wi; + A°,
Q? = (k- P22 + %P2,
Note that the P is the precession rate of the spacecratt (see Fig. 4).
Equation (19) is of the form

dx _ ax(B-x}y-x)
e (6 + x)?

which may be rewritten as

1 0+ x?
t=-— ( 2x) dx
a x(B-x)y-x)
Using a partial fraction expansion. an analytical solution can be obtained, resulting in a
solution of Eq. (19) of the form t = f(A?). For studies of settling time versus A2, this form of
the anti-derivative of Eq. (19) is quite convenient. However, when A2 as a function of time is

required. it is more convenient to numerically integrate Eq. (19).

Results

In order to validate the approximate solution, Egs. (1) through (5) and Eq. (19) were
numerically integrated using the MATLAB! function “ODE45.” Initial conditions for the
approximate solution were A =6. w, =23 whereas initial conditions for the complete solution
were we=6. wy=0,w,=3. X =y = 0,andx = y = 0. (Note, any combination of w, and Wy
resulting in A=6 is applicable since the transients decay rapidly.) In both cases, u=1.5
resulting in P2 = 56.25. The results of these numerical integrations for two different
scenarios are shown in Figures 5 and 6. While the accuracy of the approximate solution is
quite acceptable, its computational requirement is typically three to four orders of magnitude
less than that required for the “complete™ solution. Figures 5 and 6 show that the relative
error for the approximate solution decreases as the detumbling time becomes longer (i.e.. the
energy dissipation rate decreases). This is expected since the approximation becomes more
accurate as the dissipation rate decreases.

Figures 7 through 11 demonstrate the dependence of energy dissipation rate. hence
settling time. on system the parameters c. k. /. p. and H. respectively. For an effective
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comparison. an initial value of A= 6 is used in each investigation. In Figs. 7 through 10, the
parameter P2 remains unchanged at P2=56.25 (i.e., p=1.5, w,=3). whereas. in Fig. 11, P
changes as w, is varied from 2 to 5. That s, in Fig. 11 the angular momentum is varied while
keeping the inertia properties constant. In contrast. in Fig. 10 the angular momentum is held
constant while the inertia properties are varied (0.5< p <2 and w, adjusted such that P? is
maintained at 56.25). In Figs. 7 through 10, the label by each curve represents the value of the
parameter which was varied: in Fig. 11, the label by each curve represents the value of w,.

Damping obviously has a strong effect on the dissipation rate and generalily an increase in
damping leads to a decrease in settling time (Fig. 7). However, a relatively high damping
value (c=1500) causes the settling time to increase indicating that for a given configuration.
there is an optimal value of ¢. Increasing ¢ beyond this optimal value will result in increasing
settling times. As expected. decreasing the length of the rod (Fig. 8) or increasing its stiffness
(Fig. 9) increases the settling time since both of the processes decrease the energy dissipation
rate. Values of 1< p <2 are required for stability about the Zy-axis (Fig. 10). For cases in
which u < 1, the system is unstable about the Zy-axis. therefore A increases instead of
decreasing. Note that p < 1 does not violate the assumptions used in formulating the
problem, but represents an inappropriate configuration. Figure 11 demonstrates that the
settling time increases as the initial spin rate of the spacecraft decreases.

Figure 12 shows contours of constant settling time for various combinations of
normalized damping and stiffness. Settling time was defined as the time required for A? to
decrease to 1% of its original value. The contours of Fig. 12 were developed using values of
=400, u=1.5, /=1, and w,=3; the parameter P? was 56.25 (i.e., A=6 initially). Each
contour is labelled with the settling time in hours. These contours again demonstrate that for
a given stiffness. there is an optimal value of c. beyond which the settling time increases. For
large values of k. the optimal points on each contour lie approximately on a straight line. It

can be shown that for cases where (A? < k), the “optimal” value of ¢ is proportional to

(k-P?): the constant of proportionality depends on the choice of the initial and final values of
AZ? used in the definition of settling time. Superimposed on the contours of Fig. 12 is the
theoretically derived straight line. Excellent agreement is observed for cases involving large
stiffness values. 1t should be noted that the “optimal” values of c are unrealistically large:
therefore we may assume as a general rule of thumb that the damping should be made as large
as possible.
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Fig. 10. Effects of spacecraftinertia properties on dissipation rate
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Summary

The approximate solution developed closely parallels the energy-sink approach.!! The
device presented in this paper is an extension of the one-degree-of-freedom (dof)
ball-in-tube precession dampers studied by previous authors;!*12 this device represents a
two dof damper.

The problem addressed in this paper is an important part of the bigger problem of
devising sate and efficient spacecraft detumblimg and retrieval strategies. Although the
results presented in this paper are based on somewhat higher than normal initial rotational
rates and normalized damping characteristics, the usefulness of the proposed device is well
demonstrated. Currently, the “optimal™ normalized damping coefficients are not realizable:
however, with developments in the area of material sciences. these “optimal™ damping
coetticients may eventually be achievable. Future work of direct practical utility will include
(1) a detailed study of desired settling time as a function of system parameters, (2) stability
analyses associated with misalignment of the device, and (3) despin strategies.
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