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ABSTRACT

Precursors for Solar System Exploration Initiative (SEI) missions may require long period

elliptical orbits about a planet. These orbits will typically have periods on the order of tens
to hundreds of days. Some potential uses for these orbits may include the following:

studying the effects of galactic cosmic radiation, parking orbits for engineering and opera-

tional test of systems, and ferrying orbits between libration points and low altitude orbits.

This report presents an approach that can be used to find these orbits. The approach con-

sists of three major steps. First it uses a restricted three-body targeting algorithm to deter-

mine the initial conditions which satisfy certain desired final conditions in a system of two

massive primaries. Then the initial conditions are transformed to an inertial coordinate

system for use by a special perturbation method. Finally, using the special perturbation

method, other perturbations (e.g., sun third body and solar radiation pressure) can be eas-

ily incorporated to determine their effects on the nominal trajectory.

An algorithm potentially suitable for on-board guidance will also be discussed. This algo-

rithm uses an analytic method relying on Chebyshev polynomials to compute the desired

position and velocity of the satellite as a function of time. Together with navigation
updates, this algorithm can be implemented to predict the size and timing for AV correc-
tions.

1.0 Introduction

During the summer of 1991 the authors were approached (by NASA-JSC) to assist in a

trajectory design problem for the "Life Sat" mission. The objective of Life Sat is to deter-

mine the biological impact of deep space radiation on the cells of living animals. Data

gathered from this mission will be used to estimate the effects of deep space radiation on

human beings. Such effects must be well understood prior to sending humans on the nec-

essarily long transfer trajectories to explore Mars.

A major problem in the experiment is that the data can be corrupted by another type of

radiation, found in the Van Allen radiation belt region, relatively near the Earth. The tra-

jectory should therefore be designed such that the spacecraft is near the Earth for rela-

tively small amounts of time compared to the time spent in deep space. The ideal trajec-

tory design requirements that would maximize scientific return are:
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1.ThespacecraftmustremainoutsidetheVanAllen regionfor 60days.
2.ThespacecraftshouldentertheVanAllen regiononly twice - oncefor

departureandoncefor thereturn
3.Thecostof themission(i.e.AV) mustbeminimized.

Thisreportdescribesanapproachfor findingadeepspacegeocentricorbit whichwill sat-
isfy theabovestatedrequirements.A keyelementto thisapproachis theuseof theDouble
LunarSwing-bytechniquefirst proposedby FarquharandDunham(1981).Usingthis
techniquethegravitationalforceof themoonisa significantperturbationto thesolution.
However,it wasfoundthatthemoonis of somebenefitto missionperformancesinceit
canbeusedto increasetheenergyof theoutboundlegwhiledecreasingtheenergyon the
inboundleg.

A secondgoalis to presentaguidancealgorithm,possiblysuitablefor on-boardcomputa-
tions,whichkeepsthevehicleon theprescribedtrajectoryevenin thepresenceof other
perturbations(e.g.solarthird bodyeffects).This algorithmusesaChebyshevpolynomial
approachto analyticallyestimatethedesiredstateasafunctionof time.This stateis then
comparedto thenavigationstateandAV corrections are applied to maintain the desired

trajectory.

2.0 Restricted Three Body Analysis

This section is provided in two parts. First, a description of a restricted three body target-

ing algorithm which solves the problem of: Given two position vectors and the flight time

between these positions find the initial velocity. This is a two point boundary value prob-

lem which in the two-body theory is called Lambert's problem. However, since the strong

perturbation of the moon must be accounted for, we started with the equations of motion

in the restricted three body problem and then solved for the trajectory between the two

specified position vectors. The solution is more difficult than in the two-body case since

numerical integration is required. The technique for finding a solution is well known

(D'Amario and Edelbaum, 1973; Bond and Fraietta, 1991) and will be used in this report.

The second part describes how the restricted three body targeting algorithm is used to
determine a double lunar swing-by solution suitable for the Life Sat mission.

2.1 Targeting Algorithm

The differential equations of the restricted three body theory are given in a coordinate sys-

tem whose origin is at the center of mass of the primaries, m I and m2, and is rotating with

the line (i.e., the x-axis) connecting the primaries. The z-axis is normal to the plane of

motion of m 1 and m2, and the y-axis lies in the plane of motion. The x-axis rotates about
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the z-axis at a angular speed which is the mean motion of the primaries. This system

appears in Figure 1.

m3

m2 J
center of mass

The z axis is normal to the x,y plane

Y

x
m 1

Figure 1 - Rotating (x,y) system

An inertial (X, Y, Z) system remains fixed with respect to the rotating system and is

depicted in Figure 2.

Y

x

The z and Z axes are normal to the x,y plane

Yl = mean motion ofm 1 and m2

Figure 2 - Rotating (x,y) system in relation to an inertial (X, Y) system

The nonlinear differential equations describing the motion of m 3 (assumed to be massless)

in the restricted three body system are given by (Szebehely, 1967)

_f2
)/-23)= f_ -

x c3x

a_
y+22 = f_

Y _)y

0_2
g=f_ =--

z De

Where the force function f_ (x, y, z) is

1 1 l-It _t
f_ = ](1-g)/.t+_(X2+V 2) +--+---' rl r 2
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and

m 2
g-

m 1 +m 2

r_= (x-_t)2+y2+z 2

r 2= (x+l-g)2+y2+z2

An approximate targeting solution, specified by the initial conditions (_ro, _Vo) at to, is

used as a first guess for solving the restricted three body system of differential equations.

The initial velocity is then corrected according to the equation

v_P° = Vo+,7_(tf, to) [rf--r(tj;to, V-o) l

where r, the final or target position is specified. The solution is then recomputed with vp
-f -O

instead of _vo. The matrix 012 is a sub-matrix of the transition matrix

= I011 0121

dO(to, tf) [_02102_

which is associated with the differential equations of motion of the restricted three body

problem. The matrix 012 is found via numerical integration of the differential equations

d_22

d_ = MOI2 + 2'1022

where M is the matrix of second partials

[ixxM = xy

I xz

f2
xy

f2
YY

f2
yz
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and J is

= 0

0

The initial conditions for the transition sub matrices are

(null matrix)

(identity matrix)

This procedure continues iteratively until the computed final position vector

(-r(tl' to, Yo) ) becomes arbitrarily close to the specified final position vector Cry), that is

I_rl-r(t to,

2.2 The Double Lunar Swing-by

A typical trajectory for a double lunar swing-by requires the vehicle to fly by the moon's

eastern limb on the outbound leg. The lunar encounter changes the velocity of the vehicle

such that a second lunar encounter is achieved after a specified time interval. The second

lunar fly by on the inbound leg, occurs on the western limb which acts to decrease the

vehicle velocity prior to encountering the earth.

In their paper Farquhar and Dunham (1981) used a closest approach to the moon of

approximately 16,000 kilometers. Adopting this value the restricted three body targeting

algorithm is employed to find a solution targeting from the east limb of the moon to the

symmetrical location on the west limb given a 60 day flight time. The vehicle motion is

restricted to the Earth-Moon plane. After convergence the state required at the east limb of

the moon that would attain the target conditions on the west limb 60 days later is known.

The next step is to determine the initial conditions required to depart a 400 kilometer alti-

tude circular orbit at the earth (orbit lies in earth-moon plane) such that the state vector at

the moon would exactly match the solution found above for the east limb. It is desirable

that no additional AV corrections be necessary beyond that required for the Trans-Lunar

Injection burn. This is essentially a patched solution in the restricted three body system.

Again, the restricted three body targeting algorithm was used to determine the solution.

However, this problem requires iteration to obtain the solution using two parameters

namely, the longitude of the departure orbit and the time of flight to the patch point.
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As a result of the symmetry found in the restricted three body system it was not necessary

to patch the inbound trajectory from the moon to the earth since it is the mirror of the earth

to moon trajectory. The complete double lunar swing-by trajectory in the rotating system

is displayed in Figure 3.
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Figure 3 - Double Lunar Swing-by Trajectory

The Earth departure conditions specified by the targeting algorithm are depicted in Figure

4. As shown by the figure the Trans-Lunar Injection (TLI) burn required a AV of 3.119

kilometers per second at a longitude of 100.11 degrees with a transfer time of about 2.66

days to the patch point. Using these initial conditions, with no other additional AV, the

vehicle will arrive at the moon with the required position and velocity for the 60 day moon
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to moontransfer.It shouldbenotedthattheTLI AV is veryneartheHohmann(minimum
energy)value.

EarthDepartureFrom400KMParkingOrbit
,._o,, Longitude of departure was 100.11 Degrees

AV = 3.119 km/sec

o .f=OO.

_ o._.
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Earth and Moon ~ 2.66 Days
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Figure 4 - Earth Departure and Arrival
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The vehicle trajectory in the vicinity of the moon is displayed in Figure 5. As shown both

lunar encounters have a closest approach to the moon at a relatively safe distance of

16,000 kilometers. The lunar encounter during both flyby's assists the vehicle perfor-

mance. On the outbound leg the vehicle experiences a net gain in velocity, provided by the
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lunargravity,whichpropelsit onto a very large elliptical orbit. On the inbound leg the

vehicle experiences a net loss in velocity which is desirable prior to earth encounter.
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Figure 5 - Outbound/Inbound Lunar Fly by
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Preliminary analysis has shown that relatively small amounts of AV (about 5 meters per

second), applied during the lunar encounter on the inbound leg, would suffice for re-tar-

geting for a specified entry interface (i.e. altitude and longitude). Entry velocities would be

similar to those encountered during the Apollo missions (i.e. -36,000 fps).

3.0 Perturbed Two-Body Analysis

From this point on the problem will be considered as a perturbed two-body problem. Solu-

tions will be found by the special perturbation program, known as BG14, described in

Bond and Fraietta (1991). There are several reasons for this change in point of view. For

example, navigation, guidance and communication studies are more amenable to standard

inertial coordinate systems. Also, even though the most significant perturbation, the moon,

is included in the restricted three-body analysis, other significant perturbations such as the

solar gravitational perturbations, high order gravitational fields of the Earth and moon,

solar radiation pressure are not.

3.1 Transformation to Inertial Coordinates

Once the solution in the restricted three body system is determined the next step is to com-

pute the initial state vector in the inertial coordinate system suitable for use in perturbed

two-body analysis. The transformation from the rotating system to the inertial system is a

two step process: (1) translate the position vector from the center of mass to the center of
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theearthand(2) rotate the state vector into the Earth-Moon plane for a particular date.

This translation and rotation is given by

The matrix M provides the rotation into the Earth-Moon plane. For our analysis we used

the J2000 inertial system.

3.2 Lunar Perturbation Only

Prior to investigating the effects of other perturbations, the method was first verified by

duplicating the results found in the restricted three body system in the perturbed two-body

system. To this end a circular lunar orbit, consistent with the computed initial conditions,

was implemented in BG 14 as a perturbation. The initial conditions were then integrated

for the desired flight time (about 65.32 days) in the presence of the lunar third body pertur-

bation. The trajectory, as viewed in the X-Y inertial plane, is displayed in Figure 6.
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Figure 6 - Double Lunar Swing-by In Inertial Coordinates

As shown by the figure the trajectory experiences a significant bending on both the out-

bound and inbound legs as a result of the lunar swing-by.
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3.3 Lunar and Solar Perturbations

Analysis performed during the preparation of this report has shown that the effects of the

solar third body perturbations can not be ignored (especially for elliptical orbits with large

semi-major axes.) It will therefore be necessary for the vehicle to periodically apply AV

corrections to maintain the nominal trajectory. In an effort towards solving this problem a

simple guidance control law using Chebyshev polynomials has been developed. This con-
trol law is then applied to the problem described in Section 3.2 with the addition of the

third body perturbation due to the sun.

3.3.1 Chebyshev Guidance Algorithm

A guidance algorithm using Chebyshev polynomials, which can be expressed as

Tn+ l (X) = 2xT n_ l (x) - T,__ l (x) n> 1

with starting values

To(x) = 1

Tl(x) = x

has been developed. Using the recursive nature of Chebyshev polynomials, this algorithm

analytically provides the required state vector in the restricted three body coordinate sys-

tem as a function of time using coefficients generated for a particular trajectory. Since for

the restricted three body system the motion was restricted to the Earth-Moon plane, only

the x-y components of the state vector are required. The restricted three body state vector

is then transformation to the J2000 inertial system (in an identical manner to that

described in Section 2.3). Once in the inertial system the actual state of the vehicle, as pro-

vided by navigation, can be compared to the desired state as provided by the Chebyshev

polynomial solution. AV corrections are then applied at appropriate intervals to maintain
the vehicle on the nominal path.

Using the entire earth to earth trajectory to compute the coefficients for the Chebyshev

polynomials, it was found that the accuracy of the approximate state compared to the

numerically computed state is a strong function of the number of Chebyshev coefficients

used in the approximation. Figure 7 shows the maximum RSS position error between the
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Chebyshevapproximationandthenumericallyintegratedstateasafunctionof thenumber
of Chebyshevcoefficients.

xto s

o,see 1 .coo 1.see _.c_o 2.5oo 3.0_e 3._Joo 4 .o(x) 4 .'_0 5 .oeo 5.5e_)

Number of Chebyshev Coefficients ,,o

Figure 7 - Maximum RSS Position Error as a function of
the Number of Chebyshev Coefficients Used

Note that the RSS position errors are dramatically reduced as the number of coefficients

used increases. For example, as shown by the figure, the RSS position errors are reduced

by about a factor of 5 by doubling the number of coefficients. Although not shown the

velocity error behaves in a similar fashion.

3.3.2 Guidance Algorithm Results with Solar Perturbations

The Chebyshev guidance algorithm presented in Section 3.3.1 was implemented in BG 14

along with a function to compute the solar third body perturbation. BG14 was then exe-

cuted (with the same initial conditions and flight times as described in section 3.2) using
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bothlunarandsolarthird bodyperturbationswithperiodicAV correctionsbeingapplied
by theguidancealgorithm.TherequiredAV isdisplayedin Figure8.
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Figure 8 - AV vs Time With Sun Perturbations

As shown by the figure the AV required to maintain the nominal trajectory during the

lunar flyby's approaches several hundred meters per second. These large values do not

seem reasonable and are attributed to the fact that the Chebyshev approximation is not

doing an adequate job in this region. However, once past the lunar encounter the total AV

cost (a linear function in time) is only about 182 meters per second during the 60 day

moon to moon transfer. It should be noted that it is on this part of the trajectory where the

solar perturbation effects are largest.

Although time did not permit it for this study, it is felt that instead of fitting the entire earth

to earth transfer with one Chebyshev fit it might be better to break up the trajectory into

three different legs (i.e. earth to moon, moon to moon and moon to earth). A Chebyshev fit

could then be provided for each leg. It is hoped that this technique would provide the accu-

racy required for the lunar encounter, thereby reducing the excessively large AV's shown

in Figure 8.

4.0 Summary

An approach for finding long period elliptical orbits has been presented. The approach

uses a targeting algorithm to solve the two point boundary value problem in the restricted

three body system. The restricted three body solution found by the targeting algorithm was

then transformed to the J2000 inertial system for use in a special perturbation method.

This method allows modelling of other perturbations (due to for example the solar third

body and solar radiation pressure) which are not easily modelled in the restricted three

body system.
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The approach was then used, in conjunction with the Double Lunar Swing-by technique,

to obtain a candidate trajectory for the Life Sat mission. The candidate trajectory satisfies

ideal trajectory design requirements which would maximize scientific return.

Finally, an estimate of the AV required to keep a vehicle on the desired trajectory in the

presence of the solar third body perturbation was provided using a Chebyshev guidance

algorithm. The algorithm was found to work well on the long elliptical trajectory once past

lunar encounter. A suggestion for improving the performance of the guidance algorithm

during lunar encounter was offered.
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