Old Dominion University Research Foundation

o -

NASA-CR-192891

DEPARTMENT OF COMPUTER SCIENCE
COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529

GEOMETRIC MODELING FOR COMPUTER AIDED DESIGN

By

James L. Schwing, Principal Investigator

Progress Report
For the period ended January 1, 1993

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23681-0001

Under

Research Grant NCC1-99

Lawrence F. Rowell, Technical Monitor
SSD-Vehicle Analysis Branch

April 1993

N93-24750

GEUMETRIC

(NASA-CR-1921391)

FUR COMPUTER AIDED DESIGN

Proar-ess eport, paeriod enging

T3

A AL

Unclas

Jniv.)

(.14 Sominiton

1793

Jan.

0158595

G3/61

o @

DEPARTMENT OF COMPUTER SCIENCE
COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529

GEOMETRIC MODELING FOR COMPUTER AIDED DESIGN

By

James L. Schwing, Principal Investigator

Progress Report
For the period ended January 1, 1993

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23681-0001

Under

Research Grant NCC1-99

Lawrence F. Rowell, Technical Monitor
SSD-Vehicle Analysis Branch

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

April 1993

Geometric Modeling for Computer Aided Design

Progress Report - January 1993

1. Introduction

Over the past several years, it has been the primary goal of this grant to design and
implementation software to be used in the conceptual design of aerospace vehicles. The work
carried out under this grant has been carried out jointly with members of the Vehicle Analysis
Branch (VAB) of NASA Langley, Computer Sciences Corp. and Vigyan Corp. This has
resulted in the development of several packages and design studies. Primary among these
arel the interactive geometric modeling tool, SMART, the Solid Modeling Aerospace
Research Tool and the integration and execution tools provided by EASIE, the Environment
for Application Software Integration and Execution. In addition, it is the purpose of the per-
sonnel of this grant to provide consultation in the areas of structural design and algorithm
development, and software development and implementation, particularly in the areas of com-

puter aided design, geometric surface representation and parallel algorithms.

During the last year, the investigators of the grant specifically proposed to consider the

following areas.

e Provide general consulting on the use and development of aerospace structural analysis
codes; in particular, design and implement a new Structures Module for SMART.

e Establish a database interface for POST that allows easier definition of data and helps
perform data consistency checks for the model.

e Research the possibility of providing a general data integrity checker for EASIE.
e Build a prototype X-Window interface for EASIE.

-2-

e Develop methods for the creation of smoother, "faired" surfaces for SMART to allow the
transfer of SMART geometry to structural grid generation programs and other analysis
programs requiring surfaces to meet more exacting requirements.

e Develop algorithms for the efficient use of parallel and distributed computing.

This report refers to a number of Master’s projects, conference presentations and journal
papers. Copies of the Master’s projects and an AIAA paper have been appended to the end
of this report since they may be difficult to otherwise obtain. The other papers and confer-

ence articles appear as cited in the open literature and are therefore not included here.

2. Use and Development of Structural Codes

2.1 SMART Extensions

SMART provides conceptual designers with a rapid prototyping capability and addition-
ally provides initial mass property analysis. In addition, SMART has a carefully engineered
user interface that makes it easy to learn and use. Given the type of vehicle analysis that is
conducted in VAB, it has become a bﬁoﬁty to extend the capabilities of the SMART analysis
support tools into the areas of acrodynamic and structural analysis. These enhancements have
proven to be of interest to number of other groups at NASA, notably the HISAIR project.
Recently, a new design team was formed with the purpose of soliciting requirements from all
concemned engineering groups. The requirements were collected and synthesized by the
design team and since have gone through a formal review process. The design team is

presently completing design documents for these extensions to SMART.

A major effort of the work here centered on taking the approved system requirements
documents and developing first implementation plans and continuing on to the coding and
debugging phase. The personnel on this grant aided in the development of the implementa-

tion plans for the structural analysis portion of the codes including consulting on the general

-3-

development of data transfer algorithms. Implementation of the actual code for the final por-
tion of these system improvements has been given to programmers with Computer Sciences
Corporation. A portion of this code, that used to develop interior structure for fuselages, was

developed as a Master’s project by Ms. S. Schwartz.

e "Surface Generation and Editing Operations Applied ato Structural Support of Aerospace
Vehicle Fuselages”, S. Schwartz, ODU Master’s Project, Department of Computer Sci-
ence, 1992.

2.2 General Structural Analysis Consulting

In addition, continuing research under this grant has been focused on the design and
implementation of computer aided design tools to support conceptual level aerospace design.
This has included the use of a number of finite element design and analysis codes involved in

several design studies currently underway in the VAB.

Of these, the primary task has been the development of a finite element model of the pri-
mary structure of the air-breathing first stage of a two stage launch vehicle. The model
includes a lifting-body configuration fuselage, a discrete wing and internal multi-bubble tanks.
Development of this model involved converting sections from hardcopy with linear and qua-
dratic scaling between the sections. At present the vehicle is changing and the analytic model

needs to be changed to meet these changes.

Consultation on these and other structural codes and analysis have been provided through
this grant by Mr. James Robinson. Some of the primary results of this work, resulted in the

following publication.

e "Structural and Loads Analysis of a Two-Stage Fully Reusable Advanced Launch Sys-
tem”, J.C. Robinson and D.O. Stanley, Fourth Symposium on Multidisciplinary Analysis
and Optimizations, September 1992, AIAA paper # AIAA-92-4774.

2.3 Smooth Surfaces

Recently there has been an increasing interest in applying computational fluid dynamics
(CFD) analysis to models at the conceptual level. Currently, none of the software systems
which generate CFD grids and provide the corresponding analysis, provide tools for model

generation.

As a first stage of this, personnel on this grant investigated the smoothing of data sets
while reducing the size of the data. In essence algorithms were developed to find non-
uniform rational bicublc B-spline approximations to given data sets. NURB’s were chosen as
the basic building blocks since they exhibit properties necessary to carry out the desired
smoothness conditions needed for future surfaces. This work resulted in a Master’s project by

Ms. Carol Macri.

e "Implementation of an Algorithm for Data Reduction using Cubic-Rational B-Splines”,
C. Macri, ODU Master’s Project, Department of Computer Science, 1992.

3. Enhancements for EASIE

3.1 Database Interface to POST

POST is an event driven program, the input to which falls into the above categories.
POST is batch oriented taking input data from an ascii 'event’ file. The flexibility of POST
leads to a high degree of interdependence in the definition of data items. For example, when
an altermate method of guidance is selected, a completely different set of input parameters

must be specified. POST provides no tools for the definition of such input.

Current research has designed and implemented the prior work of Schwing and Grimm
into a prototype which applies these techniques to the parameter variables of POST. User
reaction has been extremely favorable. The personnel on this grant are currently engaged in

the extension of the prototype to tabular variables, the last piece necessary for a phase one

-5-

release of a new POST user interface. This work is currently being carried out by graduate
students, Ms. Hima Gurla and Mr. Vasu Bokka. At the same time, work has also commenced
on integrating data management directly with the database and stripping the current namelist
data entry requirements of POST. This will allow the application of the data integrity check-

ing previously described.

3.2 X-Windows and EASIE

EASIE provides a set of interactive utilities that simplify the task of building and execut-
ing computer aided design systems consisting of diverse, stand-alone, analysis codes. Result-
ing in a streamlining of the exchange of data between programs reducing errors and improv-
ing the efficiency. EASIE provides both a methodology and a collection of software tools to

ease the task of coordinating engineering design and analysis codes.

Now that version one of EASIE has been released to the public the importance of the
menu driven aspect of EASIE has been emphasized. Currently, this user interface is designed
for simple ascii terminals and does not take advantage of recent advances in technology for
presenting the user interface. On the forefront of these advances is the windowing system for
the Athena project at MIT, X-Windows. Most of the software in this system is in the public
domain and hardware in the form of X-servers and X-terminals is rapidly becoming available.
To do some crystal gazing, it would seem that this combination of public domain software

and low-cost hardware will lead to the next revolution of the user interface.

The research carried out in this area resulted in two master’s projects. The effort was
divided since EASIE can operate in two highly different modes. These are the complete com-
mand environment, CCE and the application derived environment. The work was completed

by Ms. Chia-Lin Tsai and Ms. Ya-Chen Kao respectively.

-6-

e "User Interface Design for EASIE", C-L. Tsai, ODU Master’s Project, Department of
Computer Science, 1992.

e "Application Driven Interface Generation for EASIE", Y-C Kao, ODU Master’s Project,
Department of Computer Science, 1992.

4. Parallel Algorithms

It has become clear that much of the future improvements in computing power will arise
in the use of parallel and/or distributed computing environments. Indeed, this can be seen in
the new IRIS computers that have been brought in to support the VAB analysis and design
programs. They are all multi-processor machines. While these machines can and do provide
a certain amount of automatic algorithm adjustment to take advantage of this environment,
true efficient use of any parallel or distributed environment requires careful investigation of
the algorithms being developed. Algorithms initially developed for sequential single processor

machines may not perform anywhere near optimally under automated conversion.

It is the belief of the principal investigators of this grant that the next major impact on
the development of analysis programs will come via the proper utilization of parallel and dis-
tributed processing. Further, this can only occur if the proper ground work is developed. The
personnel on this grant have been extremely productive in providing both the basis for under-
standing algorithm development on a number of exciting new architectures and also in a
number of application areas that will have direct impact on research being conducted by Mr.

Joe Rehder of VAB. This work is contained in the following publications.

e Optimal Parallel Algorithms for Problems Modeled by a Family of Intervals, (S. Olariu,
J. Schwing and J. Zhang), IEEE Transactions of Parallel and Distributed Systems, v.3
no. 3, (1992), 364 - 374. A preliminary version was published in Proc. 28-th Annual
Allerton Conf. on Communication, Control, and Computing, 1990, 282-291.

e On the Power of Two-Dimensional Processor Arrays with a Reconfigurable Bus System,
(S. Olariu, J. Schwing and J. Zhang), Parallel Processing Letters, 1, (1992) 29-34.

e Optimal Parallel Encoding and Decoding Algorithms for Trees, (S. Olariu, J. Schwing
and J. Zhang), International Journal of Foundations of Computer Science, v. 3 no. 1,

-7-

(1992), 1 - 10. A preliminary version of this paper appeared in Proc. 1991 ACM Com-
puter Science Conference, San Antonio, Texas, March 1991, 1 - 10.

Integer Problems on Reconfigurable Meshes, with Applications, (S. Olariu, J. Schwing
and J. Zhang), Journal of Computer and Software Engineering, accepted for publication.
A preliminary version has appeared in Proceedings of the 29th Annual Allerton Confer-
ence on Communications, Control, and Computing, 821-830, 1991.

A Constant-time Channel Assignment Algorithm for Reconfigurable Meshes, (S. Olariu,
J. Schwing and J. Zhang), BIT, v. 32, (1992) 586 - 597.

Fast Computer Vision Algorithms on Reconfigurable Meshes, (S Olariu, J. Schwing and
J. Zhang), Image and Vision Computing Journal, v.10 no. 9, (1992) 610 - 616. A prel-
iminary version of this work has appeared in Proceeding of the 6th International Parallel
Processing Symposium, Beverly Hills, 1992.

Selection on Meshes with Multiple Broadcasting, (D. Bhagavathi, P. Looges, S. Olariu,
J. Schwing, and J. Zhang), BIT, accepted for publication.

Simulating Enhanced Meshes with Applications, (R. Lin, S. Olariu, J. Schwing, and J.
Zhang), Parallel Processing Lezters, accepted for publication.

Applications of Reconfigurable Meshes to Constant-time Computations, (S. Olariu, J.
Schwing and J. Zhang), Parallel Computing, accepted for publication. A preliminary
version of this paper appeared as "Constant Time Integer Sorting on an nxn
Reconfigurable Mesh" in Proc. of the International Phoenix Conf. on Computers and
Communications, Scottsdale, Arizona, 1992, 480-484.

A Simple Selection Algorithm for Reconfigurable Meshes, (S. Olariu, J. Schwing, W.
Shen, L. Wilson, and J. Zhang), Parallel Algorithms and Applications, accepted for pub-
lication. A preliminary version of this work appeared in Proc ISMM Conference on
Parallel and Distributed Systems, Pittsburgh, October 1992, 257 - 261.

Fast Mid-level Vision Algorithms on Reconfigurable Meshes, (S. Olariu, J. Schwing and
J. Zhang), Parallel Computing: From Theory to Sound Practice, Proceedings of
EWPC’92, 10S Press, 1992, 188-191.

Sorting in O(1) time on a Reconfigurable Mesh of Size nxn, (R. Lin, S.Olar, J.
Schwing and J. Zhang), Parallel Computing: From Theory to Sound Practice, Proceed-
ings of EWPC’92, Plenary Address, IOS Press, 1992, 16-27.

A Fast Selection Algorithm on Meshes with Multiple Broadcasting, (D. Bhagavathi, P.
Looges, S. Olariu, J. Schwing, and J. Zhang) Proc. International Conference on Parallel
Processing, St. Charles, Illinois, 1992, p. II-10 - TI-17.

Fast Component Labeling on Reconfigurable Meshes, (S. Olariu, J. Schwing and J.
Zhang), Computing and Information - Proc. International Conference on Computing
and Information, Toronto, 1992, 121 - 124.

Efficient Image Processing Algorithms for Reconfigurable Meshes, (S. Olariu, J.
Schwing and J. Zhang), Proc. of Vision Interface, 1992, Vancouver, British Columbia,
May 1992.

Computing the Hough Transform on Reconfigurable Meshes, (S. Olariu, J. Schwing and
J. Zhang), Proc. of Vision Interface, 1992, Vancouver, British Columbia, May 1992.
Time-Optimal Sorting and Applications on nxn Enhanced Meshes, (S. Olariu, J.
Schwing and J. Zhang), Proc. IEEE Internat. Conf. on Computer Systems and Software
Engineering, Comp Euro ‘92, The Hague, May 1992, 250 - 255.

-8-

Interval-Related Problems on Reconfigurable Meshes, (S. Olariu, J. Schwing and J.
Zhang), Proc. ASAP '92, Berkeley, August 1992, 445 - 455.

Efficient Image Computations on Reconfigurable Meshes, (S. Olariu, J. Schwing and J.
Zhang), Proc. of CONPAR ’92, Lyon, France, September 1992.

Convexity Problems on Meshes with Multiple Broadcasting, (S. Olariu, J. Schwing and
J. Zhang), Proc. 4th Annual Canadian Computational Geometry Conference, St.
John’s, August 1992, 365 - 370. .

Convex Polygon Problems on Reconfigurable Meshes, (S. Olariu, J. Schwing and J.
Zhang), SPIE Conference on Vision Geometry, Boston, November 1992.

An Optimal Parallel vertex Cover Algorithm for Cographs, (R. Lin, S. Olariy, J.
Schwing, W. Shen, and J. Zhang), Proc ISCIS Conference, Antalya, Turkey, November
1992, 49 - 55.

Geometric Problems on Meshes with Multiple Broadcasting, (S. Olariu, J. Schwing and
J. Zhang), Proc ISCIS Conference, Antalya, Turkey, November 1992, 41 - 47.

-9.-

Appendix
Master’s Project Reports and AIAA Conference Procedings

=

Surface Generation and Editing
Operations Applied to Structural Support
of Aerospace Vehicle Fuselages

Susan K. Schwartz

A Master’s Project
submitted to the
Computer Science Department
of
Old Dominion University
in partial satisfaction of
the requirements for the degree of
Master of Science

Project Advisor: Dr. James L. Schwing,

Associate Professor of Computer Science

April, 1992

1This work was supported under NASA grant NCC1-99.

Abstract

SMART, Solid Modeling Aerospace Research Tool, is the Vehicle Analy-
sis Branch of NASA Langley Research Center’s computer-aided design tool
used in aerospace vehicle design. Modeling of structural components using
SMART includes the representation of the transverse or cross-wise elements
of a vehicle’s fuselage, ringframes and bulkheads. Ringframes are placed
along a vehicle’s fuselage to provide structural support and maintain the
shape of the fuselage. Bulkheads are also used to maintain shape but are
placed at locations where substantial structural support is required.

Given a Bézier curve representation of a cross-sectional cut through a
vehicle’s fuselage and/or an interior tank, this project produces a first-guess
Bézier patch representation of a ringframe or bulkhead at the cross-sectional
position. The grid produced is later used in the structural analysis of the ve-
hicle. The graphical display of the generated patches allows the user to edit
patch control points in real time. Constraints considered in the patch genera-
tion include maintaining “square-like” patches and placement of longitudinal,
or lengthwise along the fuselage, structural elements called longerons.

Contents

1 Introduction 5
2 Capabilities of SMART ' 6
3 Aircraft Structural Design 9
3.1 Design Considerations« ova s 9
3.2 The Actual Design« o« v v v v v e 11

. 4 Overview of Finite Element Analysis 15
4.1 Steps in the Finite Element Method 18
4.2 CreatingtheMesh 18

5 Geometric Representation 21
6 Algorithms for Generating Bulkheads and Ringframes 26
6.1 Capabilities Developed for SMART Prior to the Project 26
62 New Results o« c v v v v v oo v oo e e 30
6.2.1 Bulkheads« ot e 30

6.2.2 Ringframeso 36

7 Conclusion 37

Appendix A: Implementation of the Algorithms: Snapshots of
the SMART Display 39

Appendix B: Software Requirements for SMART Structures 65

Appendix C: SMART Code to Implement Algorithms 103

List of Figures

DU W

00 =3

11

12

13
14

15
16
17
18

19

20
21

The Layout of the SMART Screen [SMART, p. 2-1] 7
Ringframe from an offset curve [REHDER, p. 3] 8
Bulkhead between fuselage and internal tank [REHDER, p. 4] 9
Semimonocoque construction [MCKIN, p. 144] 12

Typical semi-monocoque stiffened shell—L-1011 [NIU, p. 376] 13
Typical transport fuselage center section floor beams arrange-

ment. [NIU,p. 396] ittt 14
Typical pressure flat bulkhead [NIU,p. 398} 14
Fail-safe design by using longitudinal beam along side of fuse-

lage. [NIUp.391]o i ittt 15

Sketch of main details of aeroplane structure [STIN66, p. 205] 16

" Finite difference and finite element discretizations of a turbine

blade profile. (a) Typical finite difference model. (b) Typical
finite element model. [HUEB,p. 5} 17
An arbitrary shape divided into nodes and elements. The
shape is governed by the partial differential equation shown.
The value of this equation at any point in an element is a
function of the values of the nodes ®; bounding the element.
[BARAN,p. 3] 19
Model reduction due to structure symmetry 20
Two Bézier curves and their control points [FOLEY, p. 488] . 22
The Bézier curve defined by the points P, is divided at t = 1
into a left curve defined by the points L; and a right curve

defined by the points R;. [FOLEY,p. 508 25
Bicubic Bézier Patch 26
Vectors and points used to calculateapatch 29
A fuselage cross-section. 42
A fuselage cross-section with component cubic Bézier curve

segments and control points. L. 43
A simple tank cross-section (simple implies convex shape) with

component cubic Bézier curve segments and control points. . . 44

A fuselage cross-section with interior simple tank cross-section. 45
A multi-bubble tank cross-section with component cubic Bézier
curve segments and control points.o 46

[3%)

22

23

24

25

26

27

28

29

30

31

32

33

34

A fuselage cross-section with interior multi-bubble tank cross-

SECHIOM. + & v v e h e e e e e e e e e e e e e e e 47
A fuselage cross-section with generated interior circular tank

with cubic Bézier curve segments showing the path of growth

for bulkhead patches.o 48
A fuselage cross-section with generated interior circular tank
with first-guess bulkhead patches. 49

A fuselage cross-section with generated interior circular tank
with control points (plotted as one-third points) edited to
smoother patches. v« o v oo e 50
A fuselage cross-section without interior tank with first-guess
bulkhead patches based on cubic Bézier inward growth curves. 51
A fuselage cross-section without interior tank with first-guess
bulkhead patches based on linear inward growth curves. 52
A fuselage cross-section with interior simple tank cross-section
and cubic Bézier growth curves between corresponding points.
Blue squares on the green cross-sections indicate locations
where original given cross-sections were split to accomplish
equal number of curves per cross-section, and corresponding

curves of near-equal percents of arclength. 53
Initial bulkhead patches based on cubic Bézier growth curves
between fuselage cross-section and simple tank cross-section. . 54
Bulkhead after editing of control points of patches between
fuselage cross-section and simple tank cross-section. 55

A fuselage cross-section with interior multi-bubble tank cross-
section and cubic Bézier growth curves between correspond-
ing points. Blue squares on the green cross-sections indicate
locations where original given cross-sections were split to ac-
complish equal number of curves per cross-section, and corre-
sponding curves of near-equal percents of arclength. 56
Initial bulkhead patches based on cubic Bézier growth curves
between fuselage cross-section and multi-bubble tank cross-

SECLIOM. « v v v e e e e e e e e e e e e e e e e e e e 57
Bulkhead after editing of control points of patches between
fuselage cross-section and multi-bubble tank cross-section. . . 58
Placement of twelve longerons on fuselage cross-section with
interior multi-bubble tank cross-section. 59

3

35

36

37

38

39

Placement of nine longerons on fuselage cross-section with in-

terior simple tank cross-section. 60
Placement of thirteen longerons on fuselage cross-section with
interior simple tank cross-section. 61
Placement of thirty longerons on fuselage cross-section with
interior simple tank cross-section. e e e 62

A fuselage cross-section with ringframe patches generated with
constant percent of growth along cubic Bézier curve segments. 63
A fuselage cross-section with constant width ringframe patches. 64

1 Introduction

“A model is a representation of some (not necessarily all) features of a con-
crete or abstract entity. The purpose of a model or an entity is to allow
people to visualize and understand the structure or behavior of the entity,
and to provide a convenient vehicle for ‘experimentation’ with and prediction
of the effects of inputs or changes to the model [FOLEY, pp. 286-7).” In
many instances, the model is the only means in which analysis can be per-
formed to determine feasibility of an idea. Costs of creating an actual entity
. or the testing facility for a particular entity may be prohibitive and a model
provides the simulation of the entity for experimentation and learning about
a proposed system.

The cost of memory and computing time has decreased drastically in
the past two decades and made the computer one of the most viable tools
for modeling. In particular, graphics-based modeling tools are now used “to
create and edit the model, to obtain values for its parameters, and to visualize
its behavior and structure [FOLEY, p. 287].”

In the mid 1970’s, the Vehicle Analysis Branch, VAB, of NASA Lang-
ley Research Center, LaRC, began development of its own solid modeling
system. Numerous commercially produced systems were evaluated and de-
termined not to meet the needs of the VAB. Thus, SMART, or Solid Modeling
Aerospace Research Tool, was begun in the 1980’s to provide the VAB with
its own computer-aided design tool for aerospace vehicle design.

A primary method of modeling used by aerospace and structural engi-
neers is based on the ability to create a “nice” grid on a surface. Finite
element analysis and computational fluid dynamics both rely on known val-
ues at points relatively close to one another to predict values of quantities
like stuctural stress at other points. Currently, the difficulties in producing
suitable grids for these analyses slows the design process. Manual means of
producing the grids are unsuitable and automating the process is the desired
method.

The goal of this project has been to automate the Bézier patch gener-
ation of fuselage bulkheads and ringframes used in the structural analysis
of aerospace vehicles. Sections two through five of this paper provide in-
sight into the basics of SMART, aircraft structural design, the finite element
analysis process, and the geometric representations used in the modeling pro-
cess. Section six presents the algorithms developed to generate the desired

S

patches. Snapshots of the SMART display showing the implementation of
the algorithms are provided as Appendix A. Copies of the SMART struc-
tures requirements document and source code are provided as Appendices B
and C, respectively. '

2 Capabilities of SMART

SMART, written in the C programming language, was developed for use on
the Silicon Graphics IRIS workstation, a computer which features custom
- graphics hardware and the UNIX operating system. The initial modeling
requirements of the software included:

o ability to generate accurate 3-dimensional geometric descriptions of
complex vehicle shapes quickly and easily;

e facilitate easy manipulation of the vehicle components using a hierar-
chial component grouping scheme;

e provide data from a single geometric representation to a variety of
analysis programs; and

e real-time interaction with the user [MCMIL, p. 1].

The user interface of SMART was designed to accomodate “novice, oc-
casional, and experienced users [MCMIL, p. 2].” The main features of the
display, shown in Figure 1, are two large viewing windows or viewports, a
small textport area, two horizontal main menus, and an area for displaying
a variety of menus and slider bars pertinent to the given evolution. Most
user input is accomplished by positioning the mouse over the desired menu,
bar, or plotted geometric figure in the viewport and pressing an appropriate
button.

Objects may be created from basic primitive shapes, that is, SMART-
facilitated automatic generation of vehicle components, or by “free-hand”
rendering with the mouse over the viewport. In particular, SMART “has
an extensive capability for creating and modifying cross-section capability
to create completely arbitrary shapes [MCMIL, p. 3).” The cross-sections
are represented by either “Bézier cubic curves or a series of points connected

B ® ' (© MAIN OPTIONS
SMART NASA/LaRC/SSD/VAB d ' ®

TREE T rrimisiecs | FEN T INAGES | PROPERTIES | PICIURES | PATCN TooLs | [T1L]

|
FILE - | CS SURFACE | cuts | eooLem _ | _PacrAsine CALCULATOR AMITATION | CFD 6R1DS | [

_®

1
]
|
|
|
|
|
I
]
]
|
1
e e e]
|
|
|
|
|
|
|
|
t
|
]
|
1
|
i
|
|
|
|
|
1
]
!
|
t
e et e]
|
|
|
i
I
1
1
]
]
t
)
]
1

Figure 2-1
The Layout of the SMART Screen

A. Textport E. Mode Menubar

B. Clock A F. View Windows
C. Function Name Area G. View Option Menubars
D. Information Display Area H. Menu Display Area

Figure 1: The Layout of the SMART Screen [SMART, p. 2-1)

Figure 2: Ringframe from an offset curve [REHDER, p. 3]

by straight lines, referred to as Cartesian cross-sections [MCMIL, p. 3].” A
discussion of Bézier curves is presented in Section 5 of this paper.

Once a geometric component is created, the component is accessed for a
variety of processes. A capability, currently being developed, is the consoli-
dation of the model generation process for structural analysis. New require-
ments specifications have been written and this project represents the fulfill-
ment of many of the ringframe and bulkhead generation and longeron place-
ment requirements. See [SOFT, pp. 24-28], provided in Appendix B of this
paper, for the pertinent portion of the requirements document. [REHDER,
pp. 3-4] describes the technique applied to constructing the model of these
components. A planar surface is generated between two curves: one of the
curves is formed by the outer surface of the fuselage; the other is a scaled
offset from the fuselage curve, creating a ringframe, as in Figure 2, or a sep-
arate curve representing the cross-section of a tank interior to the fuselage,
creating a bulkhead, as in Figure 3.

The planar surface, represented by Bézier bicubic patches, may be stored
in several different types of files. In particular, SMART has the capability
of writing an ASCII text file of the patch data for an entire vehicle in the
format known as a “neutral file.” This file may then be “read” by the PA-
TRAN structural analysis program [PATRAN] and this geometry is used as

N\

Figure 3: Bulkhead between fuselage and internal tank [REHDER, p. 4]

a template to create a suitable grid and then perform finite element analysis
on that grid for various pressure and stress loadings.

3 Aircraft Structural Design

3.1 Design Considerations

The design of an aircraft requires the combined efforts of both the aerody-
namics engineer and the structural engineer. The aerodynamicist considers
the vehicle as an aerodynamic shape and analyzes the reaction of the sur-
rounding air to the presence of the “envelope of specially shaped airframe
surfaces [STIN66, p. 190].” This envelope must distribute the loads to the
surrounding air. The airframe must also protect the items within, such as the
payload, fuel, and engines. Given an accurate distribution of the air-loads
of the vehicle, the structural engineer’s job is to produce a sound struc-
ture. Because there is great difficulty in accurately predicting these loads at
each point on the structure’s surface, the structural engineer considers the
“most critical design cases—which often run into thousands— arising from
the various combinations of speed, attitude and weight throughout the flight

[STING6, p. 190].”

“Structural design affects the achievable flight envelope, stability and
control, the operational role and the development potential of an aeroplane
[STING6, p. 192]).” There are many considerations for structural design and
each deserves to be fully explored. However, full exbla.na.tiqns are beyond the
scope of this paper, and each will be given at most, a cursory explanation:

o The outer skin must remain reasonably wrinkle-free and smooth in 1-g
flight, which is different from an unloaded vehicle on the ground.

o The fabrication material must have a high strength-to-weight ratio,
particularly at high temperatures, and high specific stiffness.

o The study of loads on a material is of major concern and both the way
in which the load is applied and the area over which it is applied must
be considered. When a material is loaded in a particular way, it is said
to be stressed. There are three types of stress: tensile, compressive
or bearing, and shear. Tensile stress is caused by tension across a
cross-sectional element. Compressive stress is the reverse of tensile
stress. Shear stress occurs tangential to the surface. The material’s
shape multidimensionally changes when it is stressed. Shear strain is
defined as the angular displacement caused by shear stress. Similar
strain definitions apply to tensile and compressive stress. Although a
simplistic approach, it should be noted that stress causes strain and

strain causes stress.

e Heat is also a consideration. The boundary layer of air surrounding a
high-speed aircraft becomes heated and raises the temperature of the
skin of the aircraft. External radiant heat may also be a factor.

o The elasticity/plasticity of a material is an important factor. If the
strain caused by a stress completely disappears when the stress is re-
moved, the material is said to be wholly elastic. If the strain has not
disappeared, the material is said to have a permanent “set” and plas-
ticity has occurred. “A structure is designed so that the working range
of any component does not exceed its elastic limit. It is now possi-
ble to study stress-patterns established in structural components by
various applied loads.... A useful general law, known as Hooke’s Law,
states that within elastic limits of a material the strain produced is
proportional to the stress producing it [STIN66, p. 197).”

10

-

e Bending and torsion or twisting must also be accounted for. Bending
takes place when a load is applied to a point on the flexural axis of
a structural member and the reaction is at another point on the axis.
Torsion will also occur if the reaction is offset from the flexural axis.

o Fatigue is also studied. It occurs when repeated stresses, each much
Jower than maximum tensile stress allowable, cause the cracking of
structural members.

None of these items can be taken in isolation and generally combinations

" are considered simultaneously. “An important aid in structural analysis is

the Principle of Superposition: that the total strain caused by a load-system
may be considered as the sum of the individual strains caused by the various
load components, taken in isolation [STIN66, p. 197].”

“The analysis of stress and strain in advanced aircraft structures has
forced the development of very elegant and complicated mathematical tech-
niques. The structural engineer must relate the effects of weights, aero-
dynamic inputs, elastic responses and stress distributions throughout the
structure as one whole, for a wide variety of different shapes. Fortunately,
the grid-like construction allows accurate analyses to be made and translated
into mathematical statements that can be handled by computers [STING6,

p. 213)."

3.2 The Actual Design

The airplane has three basic parts, the fuselage, the wings, and the tail.
This paper will only address the fuselage, parts of which are the focus for
this project.

“The fuselage is the body to which the wings and the tail unit of an
airplane are attached and which provides space for the crew, passengers,
cargo, controls, and other items, depending upon the size and design of the
airplane. It should have the smallest streamline form consistent with desired
capacity and aerodynamic qualities of the airplane ... The main structure of
a spacecraft or missile may be called a fuselage but is more commonly called
the body or tank [MCKIN, p. 140].”

The modern aircraft’s fuselage is of a semi-monocoque construction, as
seen in Figures 4 and 5 . This means that the fuselage has a framework

11

Figure 4: Semimonocoque construction [MCKIN, p. 144]

which supports an external skin which must withstand most of the stresses
placed on the fuselage. The framework consists of several types of structural
elements. The vertical or transverse elements of the fuselage support are
called bulkheads, frames, and formers or rings. A bulkhead is a substantially
constructed cross-section cutting across a fuselage, perpendicular to the fuse-
lage’s longitudinal beam, as in Figure 6. A bulkhead is placed at points of
concentrated loads, and helps to distribute the loads over the skin and allows
little radial expansion. There may be cut-out areas for doorways and holes,
but doors and plates are used to maintain the structural requirement, as seen
in Figure 7.

A frame serves primarily to maintain the shape of the body and has the
outline of the cross-section of the vehicle, which can be seen in Figure 8. The
loads at the frames are smaller and construction of the frames can be lighter
than that of the bulkheads. Formers or rings have the same outline as the
frame but are lighter and are used to maintain a uniform shape of the skin.
This paper refers to all of these as ringframes.

The longitudinal components are longerons and stringers. They are sup-
ported by the bulkheads and frames and support the outer skin to prevent
bulging due to severe stresses. They also are used to carry the axial loads

12

&~

\ Flight station

Forward pressure bulkhead
Stringer

Seat wack

Floor beam
support post

Passenger comparunent ﬂoor/
support beam assembly

Cargo comparument floor

t beam Y

Figure 5: Typical semi-monocoque stiffened shell—L-1011 [NIU, p. 376]

13

Fioor
bssms
Up .
Fe _T i
1 LL
L 4
D e — prmmm————1

Wing center box

Figure 6: Typical transport fuselage center section floor beams arrangement.
[NIU, p. 396}

Figure 7: Typical pressure flat bulkhead [NIU, p. 398]

14

Sest track
or seat rail

Figure 8: Fail-safe design by using longitudinal beam along side of fuselage.
[NIU,p. 391]

caused by bending. Longerons are especially designed to take the end loads
fore and aft of the vehicle and run the length of the fuselage. Stringers are
shorter and of lighter construction. See Figure 5.

The external skin is formed from metal sheets which are attached to the
frames and bulkheads by riveting or welding. It carries the loads of sheer
stress and cabin pressure. Figure 9 shows the combined features mentioned
above.

The semi-monocoque structure is considered to be “very efficient, i.e., it
has a high strength to weight ratio, and it is well suited for unusual load
combinations and locations. It has design flexibility and can withstand local
failure without total failure through load redistribution [NIU, p. 377).”

4 Overview of Finite Element Analysis
Finite element analysis is defined to be a “group of numerical methods for

approximating the governing equations of any continuous system [BARAN,
p. 1]7. Originally developed for the study of stresses in complex airframe

15

‘Ruddervator’ .;lzdlmw el.va[uiih

and ruddes; | '] Spar w
.[I;:::I';l; ?a's?:d m:d“zg ':::mg fiblets and skin of dished skin to replace
1ibs and spats stabilising ridlets.

Allerons and flaps similar to
tuddervators

Stringers rumning length of tail boom,
riveted of spot welded inside skin

bulkhead and box beam keel
supports port and starboard
glazed petal-type canopy doors

@ Main fuselage (;a:esl ?nppgtlnzb 'i-nble
spars, boom and front fuselage box-beam. ion b
Large box-beam kee! fastened to main Rear frame supports engine mounting ﬁgg;&’uﬁggﬁg:‘%m? o

luseiage frame,supports seals, houses
control runs and rods and takes

retractabie nose wheel at forward end. -

Figure 9: Sketch of main details of aeroplane structure [STIN66, p. 205]

16

1l

(a)

Figure 10: Finite difference and finite element discretizations of a turbine
blade profile. (a) Typical finite difference model. (b) Typical finite element
model. [HUEB, p. 5]

structures [HUEB, p. 3], the finite element method today is also used in a
variety of engineering disciplines. It is particularly effective for problems with
complex geometries. Until recently, finite element analysis was restricted to
expensive mainframe computers, but the significant declines in hardware and
processing costs have made this process available to virtually all engineers
and scientists. Civil and aerospace engineers remain the most frequent users
of this method. '

The difficulty of a continuous system or structure is the infinitely many
values of the unknown quantity being evaluated at each point of the struc-
ture. The objective of finite element analysis is to approximate the governing
differential equation of the system or structure at selected points with a suf-
ficient degree of accuracy. A mathematical model of the physical system i1s
created. The points or nodes, when connected, define the elements of the
model. This process of creating nodes and elements is called discretization
and is illustrated in Figure 10. Simplifying assumptions are made to create
approximating functions, from the original differential equations, which are
then applied to the specified nodes of the model. Solutions are created for
individual elements and then combined to represent a solution for the en-
tire problem. The size and number of elements and simplifying assumptions
determine the accuaracy of the analysis.

17

4.1

Steps in the Finite Element Method

Finite element analysis can be performed in a sequence of five steps, each of
which has its own difficulties and time requirements. They are summarized

as follows:

1.

Perform the discretization. Dividing the physical structure into ele-
ments is the most important phase because this will greatly affect the
accuracy of the analysis. Elements may take various shapes depending
on the nature of the problem. This is discussed in greater detail in the
next section.

Define the geometric properties of each element and any material prop-
erties and boundary or loading conditions pertinent to the analysis.

Formulate interpolation equations for each element. These are often
polynomial in nature because of the ease in integrating and differen-
tiating them. The interpolation functions in these equations give “an
analytical expression for the displacement at any point inside the ele-
ment” [BARAN, p. 4]. The value of the equation at any point in an
element is a function of the nodes bounding the element. See Figure 11.

Assemble the system equations, accounting for properties outlined in
Step 2 above, and solve the equations.

Make additional calculations, if necessary. The solution of the system of
equations may be used to calculate other parameters. For example, in
structural analysis, nodal values represent body displacements. These
values are then used to calculate strains and stresses in the elements.

4.2 Creating the Mesh

There are two basic categories of planar elements: line and area. Beam and
spring elements are examples of line elements. Beam elements are used in a
variety of engineering problems to represent parts whose lengths are much
greater than the cross-sectional depth or width. Area elements include flat
plate or shell elements. The plate elements have a thickness much smaller
than their other dimensions and are usually represented by three or four

18

e

atp = 3%
FYt + W * £z, y) < NN'-A
\‘\4~ Elemants
~ ,\ ¢4 ¢3‘
P —— {
$ ¢z

X
/95' g, .P2. b3 o)

Figure 11: An arbitrary shape divided into nodes and elements. The shape
is governed by the partial differential equation shown. The value of this
equation at any point in an element is a function of the values of the nodes
&, bounding the element. [BARAN, p. 3]

nodes. Solid or volume elements are a third type of element used to account
for parts whose thickness is significant compared to other dimensions.

The model being created is an idealization of the actual physical structure
being analyzed. By understanding the physical problem, the regions of the
structure most likely to be stressed are determined. A coarse mesh is created,
placing nodes at stress, support, and load points. Finer meshes can be created
from this initial mesh, if necessary. Huebner quotes John M.Biggs as saying
that it is a “waste of time to employ methods having precision greater than
that of the input of the analysis [HUEB, p. 88].”

The shape and element pattern of the finite element model is determined
by the location of the nodes. Other significant locations of nodes include
structure corners and discontinuities. The model should closely approximate
the shape of the actual structure. The size of the model can be reduced
by accounting for the structure’s symmetry, as in Figure 12. Establishing
a coordinate system with an origin on an axis of symmetry allows easier
definition of nodes and elements.

Ultimately, the choice of nodes and elements depends on the type of

19

=>

\—m ufsyn':met:ry—/l

Figure 12: Model reduction due to structure symmetry

finite element analysis being performed and the accuracy required. Huebner
suggests the following as rules for finite element modeling [HUEB, pp. 94-99]:

If the problem involves concentrated loads and/or geometric disconti-
nuities, minimum dimensions and areas requiring a refined mesh should
be determined using St. Venant’s principle. This states that “localized
loads or geometric discontinuities cause stresses and strains only in the
immediate vicinity of the load or discontinuity [HUEB, p. 99].”

Stress analysis requires a more refined mesh than displacement analysis.

Nodes should be placed at supports, load points, and other locations
where information, such as displacements or temperatures, is required.

Uniform mesh spacing should be used, if possible. If it is necessary
to transition from coarse to fine meshes, the dimensions of adjacent
elements should not differ by more than a factor of two. The transition
should be made across a series of elements.

When using plate or axisymmetric elements, quadrilaterals are the pre-
ferred shape because they are more accurate than triangles. Triangular
elements should be used only when required by the geometry or for
transitions.

o The aspect, or length-to-width, ratio of triangular or quadrilateral el-
ements should be as close to unity as possible. Aspect ratios as large
as 5.0 are permissible, but below 3.0 is preferrable.

In triangular and quadrilateral elements, no extremely obtuse or acute
angles should be used. The optimum is the equilateral triangle, where
all angles are 60 degrees, or right angles in the quadrilateral, but devi-
ations of up to 30 degrees is permissible.

e Curved surfaces should be modeled with flat elements whose nodes are
all in one plane. The angle subtended by the surface and the plane
should be less than 15 degrees.

o Poisson’s ratio, should be less than 0.5. An elastic material elongates
in the direction of an applied tension while its cross-section contracts
perpendicular to the tension direction. During simple compression, the
material contracts in the tension direction and expands perpendicularly
to the tension. Poisson’s ratio is the ratio of the resultant perpendicular
strains to the parallel strains. Most metallic materials have a value of
0.95-0.3 and an assumed value of 0.3 is used. It is also assumed that
Poisson’s ratio approaches 0.5 as the stresses reach a maximum for the
material [NILES, pp. 151-152].

o Lengths and areas of line and area elements must be non-zero. Values
of zero may produce unpredictable results.

o Elements should not extend across discontinuities or changes in thick-
ness. This tends to cause numerical errors and inaccurate results. Ad-
ditional nodes and smaller elements should be used.

o It is assumed that flat plate elements have no in-plane rotational stiff-
ness. If in-plane twisting is allowed, plate elements do not accurately
represent the model’s flat plates.

5 Geometric Representation

Vehicles are drawn using curves and surfaces which approximate the desired
shape of the vehicle. There are numerous ways to represent such curves

21

-~

A
'y a
~ /7 N
’ N P ~
’ N ~
’ N ’ ~
. 4 ~
N ’ ~
. ’
PO ‘-~ PJ ’ ,;
- PO - = e

Figure 13: Two Bézier curves and their control points [FOLEY, p. 488]

and surfaces. As surface representations are a generalization of curve rep-
resentation, this section will first consider working with curves. Often, a
parameterization of curves, where each coordinate, z,y, and z, is a function
of a parameter, t, i.e.,, z = z(t),y = y(t),z = z(t), is used to avoid prob-
lems occuring with explicit and implicit equations used to describe geometric
figures. For specifics, see [FOLEY, p. 478).

The predominant method used in SMART is the Bézier form of the para-
metric cubic polynomial curve segment. This consists of 4 points, Po, P,
P,, and P; where P, and P; are endpoints of the curve segment and P; and
P, are additional control points. Generally not on the curve segment, points
P, and P; indirectly specify the tangent vectors to the curve at Py and Ps.
Specifically, the direction of the tangent vector at P, is determined by Fo P,
and the direction of the tangent vector at P; is determined by P3P,. See
Figure 13.

To determine a point P on the curve segment, the parameterization of the
domain is set up so that at parameter t =0, P = Py, and at t = 1, P =P
The weighting factors for each point, known as the Bernstein polynomials,
are:

By(t) = (1-¢)
B¥t) = 3t(1-1)°
B3(t) = 3t*(1-1t)
B3t) = ¢

The resultant equation to evaluate P is:

P(t) = i P; x B3(t)

3=0

Note that P(t) is guaranteed to be cubic in ¢ becauseit is 2 linear combination
of cubic polynomials. The sum is computed for each coordinate, z and y in
2-D; z, vy, and z in 3-D).

There are several advantages inherent to this representation:

e Cubic curves do not “wiggle” as much as higher order polynomials and
give a relatively smooth approximation of the desired shape. Note that
a cubic curve is the lowest degree polynomial to interpolate to four
requirements: the two endpoints and the specified derivatives at each

endpoint [FOLEY].

o The resultant curve segment is contained by the convex hull of its
representative points. This guarantees that the curve segment is planar.

e Calculation of the derivative at any point on the curve segment, most
notably at the endpoints, is easy. For a given t, P'(t) is calculated as
the linear combination of the derivatives of the Bernstein polynomials.

o The storage requirements for a curve segment are minimal—the four
points and possibly, information about slope continuity with adjoining
segments.

e Another way to compute P(t) involves successive linear interpolations
of pairs of the given four points. This linearity allows the Bézier rep-
resentation to inherit the property of affine invariance. That is, when
applying an affine transformation, scaling, rotation, shearing, or trans-
lation, to a Bézier curve, the result is the same whether the trans-
formation is applied to the original four points, followed by the curve
generation, or if the curveis generated from the points, followed by the
transformation. Therefore, these viewing transformations need only
be applied to the four control points of the segment, which minimizes

computation time.

To represent a given shape, successive Bézier curves are placed end-to-
end. Continuity of segments is guaranteed if P of one curve is set to Fp of
the next curve. If slope continuity from one segment to the next is required,
then P; and P of the first curve and P and P, of the second curve must
remain collinear. Moving P; or P, “controls” the slope at the endpoint(s).

Sometimes a Bézier curve needs to be split into two pieces. If the param-
eter t is normally defined over the interval [0,1], a value of ¢ in this interval
can be specified to represent a certain percentage c along the curve, or the
place where the curve should be split. In essence, the first piece of the curve
‘would be exactly the original curve over the parameter’s interval [0, c] and the
second curve is the piece corresponding to [c,1]. [FOLEY, pp. 507-510] and
[FARIN, pp. 75-77] describe this process using the geometric construction
technique developed by F. de Casteljau in 1959. Asin Figure 14, “the point
on the curve for a parameter value of ¢ is found by drawing the construction
line L,H so that it divides PP, and P;P; in the ratio oft:(1—t), HR;
so that it similarly divides P;P; and P3Py and L3R, to likewise divide Lo H
and HRs. The point Ly (which is also R,) divides L3R, by the same ratio
and gives the point Q(t) [FOLEY, p. 508],” the value of the Bézier curve at
parameter t. The points Ly, L2, Ls, and L, are the control points for the first
curve and Ry, R, Ra, and Ry are for the second curve.

Bézier representation can be extended to surfaces. Bézier bicubic patches
are determined by sixteen control points, positioned in a 4 x4 gridlike pattern.
The four points on a side of the patch form a Bézier curve segment. The
center four points control slopes of the surface. The parameterization requires
two variables, s and t, and a point P(s,t) is calculated by:

Pow Pn FPoz Pu t3
Pos Pos P P 12

3 g2 o4 Jfos foe [Lor T
[sssl]xMBxPosPongPuxMth

Pl2 Pl3 PH PIS

where Mp is the coefficient matrix for the Bernstein polynomials and the F;’s
are the control points of the patch. Slope continuity between two patches is
achieved by maintaining collinearity of a control point on the border between
them and the control points on either side of the border. Additionally, the
ratio of distances between control points on either side of the boundary and
the boundary control points must be consistent along the edge. Calculation

24

Figure 14: The Bézier curve defined by the points P; is divided at t = % into
a left curve defined by the points L; and a right curve defined by the points
R;. [FOLEY, p. 508]

of the slope at a given point on a patch is achieved by partial derivatives
with respect to parameters s and/or t. See Figure 15.

All surfaces in SMART are represented with Bézier bicubic patches; how-
ever, sometimes two other representations for curves are used, each of which
is equivalent to the Bézier representation. The first is the one-third point
representation which requires using the coordinate values of the points on
the Bézier curve at parameter values of t = 0,%,%, and 1. Note that the
endpoints of the curve for both representations are the same. The one-third
points are used in this project to place “control-like” points directly on the
curves for clarity in editing multiple, closely spaced Bézier curves.

The Hermite representation is the other method. Often the slopes of the
tangent vectors to each endpoint are known. The Hermite representation
utilizes the two endpoints and the two tangent vectors to represent the curve.
There are matrices which allow easy conversion from one representation to
the other, which are included in Appendix C in the matrices2.h file.

25

Figure 15: Bicubic Bézier Patch

6 Algorithms for Generating Bulkheads and
Ringframes

6.1 Capabilities Developed for SMART Prior to the
Project

As with many graphics programs, the image on the screen is constantly
redrawn at speeds which fool the human eye into believing that the image
has remained continuously on the screen. This is generally accomplished with
a looping routine in the software. The main loop checks the mouse location
and based on its present coordinates, determines whether the user had placed
the mouse over a menu, a bar, or over a viewport on the screen. Based on the
mouse’s position, certain calculations are accomplished or editing capabilities
are available. The display is refreshed each time through the loop, regardless
of the function being performed. The loop is exited by explicit menu choices.
The structure of the main loop in this portion of SMART is:

while (true)
begin
if choosing a main-menu option then
exit main loop and redisplay;

else if over a menu then
begin

26

if over main-cross-section-menu then
exit main loop and redisplay;
else if over store-paiches-menu then
store patches in SMART data structure and redisplay;
else if over type-of-growth-menu then
redisplay patches using Bézier or linear format;
else if over growth-direction-menu then
redisplay with patches interior or exterior to cross-
section; :
else if over new-edge-menu then
store partial patches, begin new calculations from old
leading edge, and redisplay;
end

else if over a bar then
begin
if over patch-growing-bar then
calculate partial patches to given percentage and
redisplay;
else if over radius-bar then
calculate new patches given new radius length and
redisplay;
else if over centerline-bar then
calculate new patches given new centerpoint position
and redisplay;
else if over ringframe-bar then
calculate new patches for ringframe value and redisplay
with ringframe patches;
end

else if over the right-viewport then
edit control points and redisplay;
end

The initial algorithms for creating bulkhead patches centered on a given
fuselage cross-section represented by a linked list of Bézier curves. Due to the
symmetry of the cross-section about a vertical axis of symmetry, the cross-

27

section representation is actually one half of the complete cross-section, as in
Figure 12. For the remainder of this paper, reference to a cross-section will
imply the “half-cross-section” unless explicit indication to the contrary.

Because many interior tanks of a vehicle are spherical or multi-bubble
spherical in shape, the software created a first-guess semicircular cross-section
of a tank, interior to the fuselage cross-section, with its endpoints on the
on the axis of symmetry of the fuselage cross-section. The points on the
tank cross-section were generated around the semicircle to correspond to the
percent of arclength of the one-third points of the curves of the fuselage
" cross-section. The centerpoint of the semicircle was placed at the calculated
midpoint between fuselage cross-section endpoints, and the default radius
was half the minimum distance from the centerpoint to any one-third point
on the fuselage cross-section. The analogous representation using a circle
external to the cross-section has also been developed and may potentially be
used by aerodynamicists for computational fluid dynamics.

The patches generated between the given cross-section and the semi-circle
represented a structural bulkhead between the fuselage and the tank. The
percent-of-arclength guide for generating tank points enabled the patches to
have reasonable wedge-like shape, which is as close to square-like patches as
possible.

The original algorithm was as follows:

procedure bulkhead-first-guess (cross-section, centerpt, radius)

begin
for each curve in cross-section do
begin
calculate 1/3 pts on curve;
calculate inward pointing normal vectors to each 1/3 pt;
calculate normalized vectors from centerpt in direction
of each 1/3 point;
calculate tank-points at length radius from centerpt in
direction of normalized vectors;

comment: The two points and two vectors comprise

the Hermite representation of the curve, as seen
in Figure 16.

28

Cross-section curve

Py

Centerpoint

Figure 16: Vectors and points used to calculate a patch

calculate Bézier curves between corresponding
1/3 points and tank-points;
calculate Bézier patch from 4 Bézier curves
place patch on linked list;
end
end

Using established SMART routines, graphical bars and menus were cre-
ated to enable the user to change parameters. A bar is used to change the
radius of the interior tank, allowing growth until the tank cross-section is
at most tangent to the fuselage cross-section. The radius is also allowed to
decrease to zero to represent a position in the fuselage where there is no
interior tank and only a bulkhead. Another bar allows the centerpoint of the
semi-circle to move along the axis of symmetry until the tank cross-section
is tangent to the fuselage cross-section. Menus are used to allow choice of
linear or Bézier curve patch growth between the cross-sections.

Editing of control points is important to allow smoothing of patch wedges.
Because the points on the tank were generated according to a given radius,

29

these points can be “dragged” with the mouse around the semicircle by de-
termining the change in arclength and recalculating the actual point on the
circle. Movement is restricted to tank-points which are patch “corner” points
and one-third points on either side of the corner point are then recalculated.
Patch corner points on the axis of symmetry are required to remain on the
axis.

The eight patch control points not on either cross-section may also be
“dragged” with the mouse to smooth the interior shape of the patches. The
change in mouse position is used to calculate the new one-third point posi-
" tion. Points on the fuselage may not be edited in order to preserve the pre-
viously determined shape based on aerodynamic and structural constraints.
Due to the speed of the Silicon Graphics processor, changes in patches are
redisplayed in real time.

6.2 New Results

The specific tasking of this project was to allow automatic generation of a
bulkhead or ringframe for a given cross-section(s). The bulkhead would be
drawn between two given cross-sections, one representing the fuselage and
the other representing the interior tank. This allows the interior tank to
have any predetermined shape and not be limited to being circular. The
ringframe would be drawn interior to the fuselage cross-section at a default
width which could be edited.

6.2.1 Bulkheads

There were several problems to consider in creating patches for the bulk-
head between the two cross-sections. The requirement to have “square-like”
patches supports the current method of calculating each patch using corre-
sponding curve points of the two cross-sections. The most obvious problem is
that both cross-sections may not have the same number of Bézier curve seg-
ments. Even if the number of curves is the same, their respective arclengths
may not pair up in a fashion to create “nicely” shaped patches. These prob-
lems were solved with the following algorithm which compared arclengths
of successive curves on each cross-section, splitting curves into two curves
when differences in arclength was greater than a predetermined percentage.
Locations where splits are made are internally stored and create an addi-

30

tional editing capability, explained in further detail below. The algorithm is
as follows:

procedure match-curve-arclengths (fuselage-cross-section,
tank-cross-section)
begin '
calculate percent of arclength of each curve in
fuselage-cross-section;
calculate percent of arclength of each curve in
tank-cross-section;
determine value where curve percents of arclength
are close enough;

look at first curves in each cross-section;

while there is another curve in the fuselage-cross-section
and another curve in the tank-cross-section do
begin
if difference in percents of arclength of current
curves in each cross-section is greater than
close-enough-value then
begin
split curve with larger percent of arclength (pal):
first curve will have same pal as smaller curve;
look at second curve of split curve (other piece
of larger curve, farther along the cross-section)
and the next curve on the other cross-section;

end
else
look at the next curves on both cross-sections;
end
end

This algorithm accomplishes two things: both cross-sections end up with
the same number of Bézier curves and corresponding curves have near-equal
percents of arclength, within an agreed-upon factor. As mentioned above,
information is stored as to which curve endpoints were created by splitting

31

original curves. Although the percent of arclength is a reasonable way to
line up corresponding curves, it is sometimes preferrable to move the curve
endpoints to straighten the patch wedges. “New” endpoints can be “dragged”
with the mouse: the change in mouse position is translated into the change
in percent of arclength of the split in the original curve and the original
curve is resplit with the new percent. The subdivision of a Bézier curve
is accomplished by finding control points of the curve as represented by a
higher degree polynomial. Each piece of the curve will represent the same
cubic polynomial on its own interval domain, as explained in Section 5 of
‘this paper on Bézier curves or [FARIN, pp. 75-6]. Therefore, each new
curve is an exact duplicate of the corresponding piece of the original curve.
By returning to the original curve each time, the original shape of the cross-
section is preserved, but editing of at least some of the curve endpoints is
now also a feature of the software.

The other problem that needed consideration was the placement of long-
erons in the longitudinal structural design. The places where these longerons
intersect the fuselage cross-section needed to be at “corner” points of the
patches for later structural analysis, as explained in sections 3 and 4 of this
paper on aerospace vehicle structure and finite element analysis. The shape
of the vehicle in many instances reflects only aerodynamic requirements, and
curve endpoints in the fuselage cross-section are usually not in the locations
of longeron placement.

The guidance from engineers at NASA Langley Research Center’s Vehi-
cle Analysis Branch can be summarized: longerons are ideally spaced equally
around the fuselage, but must especially be placed at discontinuity points,
or curve endpoints where successive curves are not slope continuous with
one another. Thus, a percentage of the longerons to be placed on the cross-
section, equal to the percent of arclength of the portion of the cross-section
between discontinuity points, should be equally spaced between the discon-
tinuity points. If the desired placement of the longeron is too close to an
already existing curve endpoint, a very narrow patch, which is undesirable,
might be created. To resolve this, if a desired longeron position is within a
curve-length, from the curve endpoint, corresponding to less than twenty-five
percent of the equal spacing curve-length for that section of the cross-section
between discontinuities, the longeron could be placed at the endpoint.

The resulting algorithm is shown in two parts. The first is the computa-
tion of a comparison value used to determine if the placement of the longeron

32

requires the splitting of an existing curve or if it will be placed on an existing
curve endpoint:

procedure compute-compare-value (equal-spacing-length,
push-up-length,back-up-length, length-not-yet-included)

comment: Because longerons may be placed at curve endpoints
and not exactly at the equal-spacing-length, the quantities
push-up-length, or the curve-length difference of the
positioning point located past the end of equal-spacing-length,
back-up-length, or the curve-length difference of the
positioning point located before the end of equal-spacing-length,
and length-not-yet-included, or the curve-length total
from previous curves which did not total to equal-spacing-length
yet, keep track of differences in the calculated and actual
position of the previously-placed longeron. The use of
the term “section”in the following algorithms refers to
the current portion of the fuselage cross-section between
discontinuities.

begin
if first curve in section then
compare-value = equal-spacing-length;

else
begin
if push-up-length and back-up-length are both zero then
compare-value = equal-spacing-length;
else if push-up-length > 0 then
compare-value = equal-spacing-length — push-up-length;
else if back-up-length > 0 then
compare-value = equal-spacing-length + back-up-length,;
if longeron not placed on previous curve then
compare-value = compare-value — length-not-yet-placed;
end
end

The actual algorithm for placing longerons 1s:

33

procedure place-longerons(fuselage-cross-section,
number-longerons-to-place)

comment: The first endpoint of a curve is the one closest to the
beginning of the cross-section, the second endpoint is
further along the cross-section.

begin
for each section of fuselage-cross-section between discontinuities do
begin
number-longerons-for-section =
(number-longerons-to-place) x (pal-of-section);

if number-longerons-for-section > 0 then
begin
calculate equal-spacing-length;

comment: equal-spacing-length = pal-of-section divided
by (number-longerons-for-section + 1)

look at first curve of section;

while all longerons not placed in section do
begin
compute-compare-value;

if pal-current-curve = compare-value then
begin
place longeron at second endpoint of curve;
look at next curve in section;
end

else if pal-current-curve > compare-value then
begin
if not first curve of section and
Jongeron was not placed on previous curve and

34

compare-value < 25% of equal-spacing-length then
begin
place longeron at first endpoint of curve;
back-up-length = compare-value;
end '

else if pal-current-curve and compare-value
differ by > 25% of equal-spacing-length then
begin
split current curve (wrt compare-value);
place longeron at split point;
look at curve beginning at split point;
end

else if pal-current-curve and compare-value
differ by < 25% of equal-spacing-length then

begin
place longeron at second endpoint of curve;
push-ahead-length = difference of

pal-current-curve and compare-value;

ook at next curve in section;

end

end

else (pal-current-current < compare-value)
begin
increase length-not-yet-included by
pal-current-curve;
look at next curve in section;
end
end

place longeron at last endpoint of section;
end
end
end

35

This algorithm would be applied to the fuselage cross-section prior to
the match-curve-arclengths algorithm to ensure that the interior tank cross-
section matches the fuselage cross-section for which the longerons have been

considered.

6.2.2 Ringframes

The original algorithms enabled constant percentage ringframes, i.e., those
ringframes whose width at each one-third point of the fuselage cross-section
.was a given percentage of the length of the Bézier curve from the one-third
point to the corresponding tank cross-section point, to be created. However,
in actual aerospace vehicle design, the requirement for ringframes is constant
width and not constant percentage, although constant width is a misnomer.
At points of discontinuity, the width of the ringframe is usually a little wider,
the leading edge of the ringframe maintaining the basic shape of the cross-
section at a place of greater structural stress.

To create a realistic width for the ringframe at points of discontinuity, the
following algorithm was used to change the calculated “normal” to the cross-
section at the discontinuity point. When normal vectors to each one-third
point are calculated, because the tangent to each curve at the discontinuity
is different, the curves would have a different normal vector emanating from
the same point. This algorithm provides an alternative to just averaging the
two normals at the discontinuity point:

procedure normal-at-discontinuity

begin
for each discontinuity point do
begin
calculate normal vector to second endpoint of
first curve meeting at discontinuity;
calculate normal vector to first endpoint of
second curve meeting at discontinuity;
compute points corresponding to tails of two
normal vectors;
compute tangent vectors to each curve at discontinuity;
compute intersection point between two lines through

36

respective points at the head of the normal
vectors in the direction of the tangent vectors;
new-normal = vector from discontinuity to intersection
end
end

The ringframe patches are then constructed as follows:
procedure ringframe-patches

begin
for each curve in fuselage-cross- section do
begin
calculate 4 inward Bézier curves using Hermite
representation of one-third point on fuselage-cross-
section curve, point in direction of normal at
ringframe-width, two vectors of ringframe-width
length in direction of normal;
calculate patch from 4 curves;
place patch in linked list;
end
end

7 Conclusion

The algorithms just described have been implemented in the current cross-
sections portion of SMART and preliminary feedback from the previously
mentioned NASA engineers has been extremely positive. The final implemen-
tation will be placed within the currently being developed structures portion
of SMART. Actual “snapshots” of the SMART display showing these results
are provided in Appendix A of this paper.

The development of software can be a very long and sometimes difficult
evolution. Getting a user to specify his or her requirements such that they
truly reflect the needs of the user can be extremely frustrating. The specifi-
cations may represent a simple concept yet the implementation may be very
complex, and the reverse is also often true. This project has added a new

37

dimesion to SMART and should enable the designing and testing of the de-
sign phases of aerospace vehicle research and development to be accomplished

more expediently in the future.

38

MASTER PROJECT

Generating
The Complete Control
Environment
Inferface

for
EASIE

by
Chia-Lin Tsai

Project Advisor:
Dr. James L. Schwing
Associate Professor of CS

Computer Science Department
Old Dominion University
Norfolk, VA 23529
April 1992

ABSTRACT

The Environment for Application Software Integration and
Execution, EASIE, was designed to meet the needs of conceptual
design engineers that face the task of integrating the results
of many stand-alone engineering analysis programs. EASIE is
a set of utility programs which supports rapid integration and
execution of programs about a central relational database, and
it provides users with two basic modes of executing
operations: Application-Derived Executive (ADE), a menu-driven
execution mode which provides users with sufficient guidance
to quickly review data, select menu action items, and execute
application programs, and Complete Control Executive (CCE),
which provides a full executive interface allowing users in-
depth control of theAdesign process. Users can switch between
these modes as needed. This project will consider the CCE
mode interface.

Two objectives of this project are to redesign the
selecting menus by using a windowing system and to reorganize
the selecting structures of the selecting menus. The project

will be implemented in the X window system, OSF/Motif version.

ii

ABSTRACT

CONTENTS

CONTENTS

LIST OF FIGURES

1 AN INTRODUCTION TO THE EABIE BYSBTEM .ccccccccccoccce

e N s
. L1 L] .
W N

sb'

NN
A bd WP

3

W w
L]

Why EASIE was developed
wWhat EASIE was
What two operation modes of EASIE were

Wwhat CCE mode was

COMPARISON BETWEEN THE CURRENT EASIE SYSTEM

THE DESIGN PRINCIPLES ccccccscercecerccccccccons
Be consistent

Provide feedback

Minimize error possibilities

Provide error recovery

Accommodate multiple skill levels

Minimize memorization

O OBJECTIVES OF THIS PROJECT cccecscsvessssncccscns
.1 Redesign the selecting menus
2 Reorganize the selecting structures

4 ANOUTLINE or TBIS PROJECT ..I.........I............

1 A general view
.2 Improvements

3 A sample session using the CCE mode
4 A command summary using the CCE mode

5 CONCLUSION ...'.Q.l.....................lccl....oc..

REFERENCES
APPENDIX A:
APPENDIX B:
APPENDIX C:

APPENDIX D:

State-transition diagrams of this project

User manual of this project

PAGE
ii
iii

iv

NIRRT

QUL b WW

=B 0 -)

10
10
12
13
17

21

sample screens using the CCE mode of this project

Programs and files of this project

iii

LIST OF FIGURES

Figure PAGE
1 WorkSpace Control mMenuceocesceccccsccccccs 9
2. Basic Environment File, easie.input 11

iv

1. AN INTRODUCTION OF THE EASIE SYSTEM

1.1 WHY EASIE WAS DEVELOPED

The Environment for Application §oftﬁare Integration and
Execution, EASIE, was designed to meet the needs of conceptual
design engineers that face the task of integrating the results
of many stand-alone engineering analysis programs [REF 9].
The need for such techniques and tools has stemmed from the
computer aided design and engineering activities with Langley

Research Center’s Space Systems Division (SSD).

1.2 WHAT EASIE WAB

EASIE provides access to the programs via a quick,
uniform interface. The most predominant system design
methodology uses the jterative technique. One progresses to
a final solution through successive application of analysis
techniques to increasingly refined data. EASIE facilitates
this process.

In addition, EASIE is a set of utility programs which
supports rapid integration and execution of programs about-a
central relational database. EASIE provides utilities which
aid in the execution of the following tasks: selection of
application programs, modification and review of program data,
automatic definition and coordination of data files during
program execution and a logging of steps executed throughout

a design. Therefore, EASIE provides both a methodology and &

set of software utility programs to ease the task of

coordinating engineering design and analysis codes.

1.3 TWO OPERATION MODES OF EASIE

EASIE provides users with two basic modes of executing
operations. The first, Application-perived Executive (ADE),
is a menu-driven execution mode which provides users with
sufficient guidance to quickly review data, select menu action
items, and execute application programs. The second mode of
execution, Complete Control Executive (CCE), which provides a
full executive interface allowing users in-depth control of
the design process. For example, when using CCE, techniques
are provided which allow the user to establish a design
sequence and then automatically re-execute the sequence. This
allows the engineer to refine input iteratively and review the
results with minimum interaction. Users can switch between

these modes as needed. This project will consider redesigning

the CCE-mode interface.

1.4 WHAT CCE MODE WAS

The CCE-mode interface provides the flexibility of an
operating system without requiring the user to track a
multitude of files, directories, or data. In CCE, commands
can be issued via menu selections or typed in via a command

line. Various levels of menus, display, and help text are

-

available.

2. A COMPARISON BETWEEN THE CURRENT EASIE SYSTEM

AND THE DESIGN PRINCIPLES

To design a good human interface, we have to consider a
number of design principles which are to help ensure good
human factors in a design: be consistent, provide feedback,
minimize error possibilities, provide error recovery,
accommodate multiple skill levels, and minimize memorization.
These principles are discussed more fully in [REF 8].

As described above, EASIE provides significant
functionality; however, this utility is buried in the current
user interface. To see these probleams, let us consider each

of the factors above with respect to the EASIE interface.

2.1 BE CONSISTENT

First, the EASIE interface is consistent. The conceptual
model, functionality, sequencing, and hardware binding in
EASIE have been uniform. For example, in the output portion
of EASIE, the menu items are always displayed in the same
relative position within the menu, system-status messages are
shown at a logically fixed place, and the same codings .are
always employed. In addition, when considering the input
portion of EASIE, keyboard characters always have the same
function and can be used whenever text is being input, global

commands such as Help, Status, and Cancel can be invoked ab

any time, and generic commands such as Move, Copy, and Delete
are provided and can be applied to any type of object in the

EASIE systenm.

2.2 PROVIDE FEEDBACK

Feedback can be given at three possible levels,
corresponding to the hardware-binding, sequencing, and
functional levels of user-interface design. Currently, the
EASIE interface is restricted to keyboard input, thus
hardware-binding is trivially satisfied. EASIE provides some
sequencing feedback such as when each word of the input
language (command, position, object, etc.) is accepted by the
system. However, EASIE does not provide functional feedback,

for example, there is no acknowledgement communicated to the

user when an operation is processing.

2.3 MINIMIZE ERROR POSSIBILITIES

Users will make input errors in any system, and it is the
job of the user interface to minimize error possibilities.
The system tries to minimize the errors as possible. No

matter how, there may be some error occurred in the future.

2.4 PROVIDE ERROR RECOVERY
It is important to provide error recovery: Undo, Abort,

cancel, and Correct. Unfortunately, EASIE currently only

-«

provides the cancel feature.

2.5 ACCOMMODATE MULTIPLE SKILL LEVELS

User interface methods which can be used to help
accommodate multiple skill levels are accelerators, prompts,
help, extensibility, and hiding complexity. EASIE, however,
does not provide accelerators which are faster interaction
techniques that replace slower ones. Secondly, it provides
some prompts which is to suggest what to do next, but these
are not generally sufficient. Thirdly, the EASIE interface
does not offer a sufficiently detailed help facility. For
example, the EASIE interface does not give a full explanation
about how to use commands. EASIE does offer a primitive
extensibility which means letting the user add additional
functionality to the interface by defining new commands as
combinations of existing commands. Finally, the EASIE
interface does not provide complexity hiding which can allow
new users to learn pbasic commands and to start doing
productive work without becoming bogged down with specifying
options, learning infrequently used specialized commands, or

going through complicated start-up procedures.

2.6 MINIMIZE MEMORIZATION

The final principle of user interface design is "to
minimize memorization. The original configuration of the
EASIE system seems to be redundant. A new user has to read

commands on a complicated menu to get what is needed. It is

-

not economic.

3. TWO OBJECTIVES OF THIS PROJECT

There are two objectives of this project: redesign the
selecting menus by using a windowing system, and reorganize
the selecting structures according to the design principles

outlined above.

3.1 REDESIGN THE SELECTING MENUS

Redesign of the menus of the Complete Ccontrol Executive
(CCE) mode will be implemented in the X window systen,
OSF/Motif version. Since the initial menus of CCE mode are
alphabetical with numerical selection, we want to redesign
those menus to be windows. This will allow the accommodation
of skill level in the EASIE system: hide complexity from the
user.

Wwindow-based user interfaces [REF 7) have become a common
feature of most computer systems, and users are beginning to
expect all applications to have polished user-friendly
interfaces. The X window System, developed at Massachusetts
Institute of Technology (MIT), is an industry-standard
software system that allows programmers to develop
sophisticated user interfaces that are portable to any system
that supports the X protocol. In addition, X allows programs
to display windows containing text and graphics on any
hardware that supports the X protocol without modifying,

recompiling, or relinking the application. X is based on a

6

network-transparent client-server mode. The X server creates
and manipulates windows in response to requests from clients,
and sends events to notify clients of user input or changes in
a window’s state. One important different between X and many
other window systems is that X does not define any particular
user interface style. X also provides a device-independent
layer that serves as a base for a variety of interface styles.

The OSF/Motif version of the X window system [REF 2] is
a graphical user interface combining a toolkit, presentation
description language, window manager, and style guide. First,
the OSF/Motif toolkit is a rich and varied collection of
widgets and gadgets for building OSF/Motif applications. The
toolkit provides a standard graphical interface upon which the
window manager is based. Second, the OSF/Motif presentation
description language allows application developers and
interface designers to create simple text files that describe
the visual properties and initial states of interface
components. Third, The window manager works with the toolkit
to manage the operation of windows on the screen. The window
manager provides functions for moving and resizing windows,
reducing windows to icons, restoring windows from icons, and
arranging windows on the workspace. Finally, the style guide
describes the standard for window manager and toolkit
behavior. It is a guide to usage, providing application
writers with guidelines for using toolkit widgets, widget

writers with guidelines for designing new widgets, and window

manager writers with guidelines for designing new or
customized window managers. Together, these four elements

provide the OSF/Motif to be a standard of user interface

behavior for applications.

3.2 REORGANIZE THE SELECTING STRUCTURES

The second objective is the reorganization of the
interface with respect to the previously mentioned design
principles. Version 1.0 of the EASIE interface has seven
different standard menus in addition to a "Permanent” Menu of
commands. They are Utility Selection Menu, Workspace Control
Menu, Data Review/Modification Menu, Application Execution
Menu, Procedure Execution Menu, Procedure Building Menu,
Template Building Menu, and the "Permanent” Menu mentioned
above. We find that the old ones are to be redundant and
ineffective. One objective of the reorganization will be the
minimization of memorization. Let us take an example of
Workspace Control Menu shown in Figure 1 on the next page.

There are twenty-eight choices. It is difficult for
users to select their choices. They have to read all the
selections, then make their decisions. Therefore, we want to
reorganize those menus to be more efficient. Let us have an
example. If your selection concerning the WORKSPACE, then
there will be only six choices: READ DESCRIPTION, NEW, COPY,
ACTIVATE, SAVE TEMPLATE, and REMOVE FROM UFD. It will Dbe

easier for users to choose what they need. In addition, the

user can not enter some commands with file name or with path
if he/she does not know or make sure about the file names or
paths. There is no way for the user to get the information of

the file name or path he/she needs.

WORKSPACE CONTROL
COMMAND FORMAT

1 - READ DESCRIPTION - WORKSPACE RD WS <name>
2 - — CONFIGURATION RD CFG <name>
3 - - TEMPLATE RD TPL <name>
4 - - APPL. PROG. RD APPL <name>
5 - PROCEDURE RD PROC <name>
6 - CLEAR LOG OF OLD INFORMATION CL

7 - TYPE COMMAND LOG TY LOG <name>
8 - - PROCEDURE TY PROC <name>
9 -~ NEW - WORKSPACE N WS

10 - - CONFIGURATION N CFG <name>
11 - COPY - WORKSPACE CP WS <f,to>
12 - - PROCEDURE CP PROC <f,to>
13 - ACTIVATE - WORKSPACE ACT WS <name>
14 - - CONFIGURATION ACT CFG <name>
15 - - TEMPLATE ACT TPL <name>
16 - - APPL. PROG. ACT APPL <name>
17 - - UTILITY ACT UTL <menu>
18 - : - INPUT TEMPL ACT ITPL

19 - - OUTPUT TEMPL ACT OTPL

20 - - PROCEDURE ACT PROC <name>
21 - - PROGRAM UFD ACT PUFD <path>
22 - SAVE TEMPORARY - WORKSPACE SA WS <name>
23 - - PROCEDURE SA PROC <name>
24 - REMOVE FROM UFD ~ WORKSPACE RM WS <name>
25 - - CONFIGURATION RM CFG <name>
26 - - TEMPLATE RM TPL <name>
27 - PROCEDURE RM PROC <name>
28 - SET USER LOGIN CHARACTERISTICS SLOG

ENTER COMMAND:

Figure 1. WorkSpace Control menu

4. AN OUTLINE OF THIS PROJECT

4.1 A GENERAL VIEW

The main purpose of this project is not to change the
existing EASIE system, but to design a nice-looking, window
selection menu for EASIE. The work of this project is to
provide a front end to EASIE for users which handles basic
menu processing and passes some commands as necessary to the
EASIE command processor. Thus, some processing and error
checking will be provided by the front end. EASIE commands
are written into a file called easie.file in the user or home
directory where they are available to the EASIE command
processor, and they are also shown in the window for the user.
Error messages and warnings will also be displayed in this
window.

When the user starts EASIE, the user may enter a file
name as an argument. Alternatively, the system will use a
default file name called easie.input. The contents of this
file define the basic operating environment for EASIE and
include basic filenames and default directories. They are
WorkSpace (.WS), configuration (.CFG), Application (.APPL),
Template (.TPL), Procedure (.PROC), home directory, program
directory, and base directory. For format purpose, a blank
line is entered if there is no corresponding file name or
directory for a particular environment. The contents may bg

changed after being executed by the system. The following is

10

an example format of the easie.input.

/tmp mnt/home/tsai_c/project/ws.WS

/tmp_mnt/home/tsai_c/project/cfg.CFG
/tmp_mnt/home/tsai_c/project/tpl.TPL
/tmp_mnt/home/tsai_c/project
/tmp_mnt/home/tsai_c/project/program
/tmp_mnt/home/tsai_c/project/base

Figure 2. Basic Environment File, easie.input

The state diagrams in Appendix A define the operation
implemented for the improved EASIE interface. Appendix B
gives a user manual for the new CCE mode interface of the
EASIE system. What follows is a description of the new CCE
interface.

Upon initialization, the CCE mode interface will pop up
a window with eight basic selections in a main menu bar and
the current status or operating environment in the working
area. These eight selections are Tools, Qpen, Retrieve,
Update, Organize, Execute, Print, and List. The user can use
a mouse to choose any of these selections. The main menu is
further organized in a hierarchy which is a pull-down for the
first level of sub-menu and a pull-right for further levels of
sub-menu.

The working area will show the current status which
includes the file names of WorkSpace, configuration,
Application, Template, Procedure, the home, program, and base
directories. These data are read from the default file,,
easie.input, or the filename which the user entered as an

11

argument. If there is no such file name or if the file does
not specify that environment variables, the systenm will
display <null> on the corresponding position in the working
area. The current status will be updated during executing the
system. Before exiting the system, the user will be asked
whether to save the current status or not. If the answer is
"OK", the updated status will be saved; otherwise, the updated
status will not be saved, and the status will be kept as same

as the first time the user logged in.

4.2 IMPROVEMENTS

First, we have given the user a windowing system for
selecting choices. Thus, it is simpler for the user to select
his/her choice and memorization and confusion of the previous
system minimized. Second, we offer on-line help to assist the
user. The user can get the on-line help whenever he/she
pushes the help buttons. Third, we provide enhanced utility
to the user, for example, the user can change his/her program
or base directory as he/she needs. We also provide List
selection for the user. The system provides a list of all
appropriate files for a given situation, again, limiting the
memorization and confusion factors. Fourth, we offer the
current status. The current status indicates the current
operating environment of EASIE for the user. Fifth, the user
is provided with a file list for selecting when he/she needs

-

to enter some file names. Finally, we remove some unnecessary

12

and confusing menu choices, for example, Toggle the display
mode (EASIE command T), Return to Previous Menu (EASIE command
R), Quit this sequence of menus and return to the utility
selection menu (EASIE command Q), 2ero: cancel a command

sequence (EASIE command O).

4.3 SAMPLE SESSION USING THE CCE MODE

The following EASIE session is included as a sample for
the CCE mode user to follow. The screens given in Appendix C
were recorded during the session. References to screens in
Appendix C will be denoted by Screen n where n represents the
screen number. This sample session has been put together to
highlight the capabilities of the EASIE system using the CCE
mode environment. To initialize EASIE, we type "easie". As
described above this uses the file "easie.input". For
reference, the contents of this file have been given
previously in Figure 2.

Screen 1 is the general log-in screen presented to users
who log in using default log-in characteristics. It includes
a menu bar with eight selections, and a working area shown the
current status. The user can resize the screen 1 by using the
mouse device. Screen 2 is the resizing window. We will use
screen 2 to present the main window in the following examples.
Screen 3 shows the contents of the input file, easie.input
under the /tmp_mnt/home/tsai_c/project directory, and it just

cshows the user the contents of the input file before executing

13

the program.

The menu is organized in a hierarchy which is a pull-down
for the first level of sub-menu, and a pull-right for further
levels of sub-menu. The first level in the main menu is the
selections of the main menu bar which are Iools, Qpen,
Retrieve, Update, organize, Execute, Print, and List. Now we
choose the Tools selection, pull the sub-menu down, and select
the General Concept from the pull-right sub-menu. Note that
if there are pull-right sub-menus for the choice, there is a
triangle after that choice. Screen 4 shows the condition
above. Screen 5 shows the pop-up window after pushing the
General Concept choice. The user can push the OK button in
the pop-up help window. The pop-up help window will be
closed.

Screen 6 shows that we choose the System command. A
System Command widget will be popped up. Screen 7 is the pop-
up widget. The user can type the system command in the
widget, and push the Ok button or strike the Enter key. The
EASIE command will be generated and written into one specific
file, easie.file. Pushing the Clear button will erase the
contents which the user typed in. The Help button will pop a
help widget up and show the on-line information for that
widget. Screen 8 is the pop-up on-line help widget pushed by
the Help button. If the user pushes the Close button in
Screen 7, the System Command widget and the on-line help

.

widget will be closed. The situation for the Comment choice

14

under the Tools selection is similar to the System command.

screen 9 shows the results when the user pushes the clear
Log choice. There are two sub-choices for the clear Log. An
appropriate EASIE command will be generated by pushing each of
these sub-choices.

Screen 10 represents the results of pushing the QOpen
selection. Next we pushed the HOME sub-choice which means we
want to activate an application from the home directory. An
ACTIVATE-Application-HOME dialogue widget will be popped up.
In this widget, all files with an .APPL extension will be
appeared. The functions of the buttons on the bottom of this
widget are similar to the puttons described above, except for
the Filter button. Screen 11 shows how the user chose the
file name he/she wants. The chosen file name will appear in
the Selection column. The Filter button is a way to change
the directory. Select the directory the user want to change
to, and then push the Filter button. The list of file names
will be modified and shown for the new directory. Screen 12
shows the widget described above. Screen 13 shows the on-line
help information for the user by pushing the Help button.

Screen 14 shows the result when we chose the WorkSpace
sub-choice under the New pull-down sub-menu. New means that
we want to clear the WorkSpace filename in the current status.
Screen 15 is presented the result.

The Retrieve selection and the Update selection are

similar to the Open selection. Notice that the sub-choicé

15

Directory under the Update selection is an improvement of the
modified CCE mode. Let us take a look of this choice. Screen
16 shows that we pushed the BASE sub-choice of the Directory
under the Update selection. It means that we want to update
the directory for base programs and configurations. A Change-
Directory widget will be popped up, and the default base
directory will be shown in this widget. Screen 17 is the pop-
up widget. The functions of this widget are similar to the
System command’s.

Now we take a look of the QOrganize selection. There are
four choices: Copy, Remove, Save, and ReName. Screen 18 shows
the result when we chose the Application sub-choice of the
Copy. When the Application sub-choice under the Copy pull-
down menu selected, this result is in Screen 19. Screen 19
presents all the file names with .APPL extension under the
directory. The functions of this widget are same as the
ACTIVATE-Application-HOME widget. After selecting a file
name, the system will pop a COPY-to widget for the user to
enter the copy-to file name. Screen 20 demonstrate the COPY-
to widget. The functions of this widget is similar to that of
the pop-up widget of the System command choice. The functions
of the Remove, Save, and ReName sub-choices under the Organize
selection, the Execute selection, the Print selection, and the
List selection are similar to the functions mentioned above.

Next we consider how to exit the EASIE system. We select

the Quit EASIE choice under the Tools selection. Screen Zf

i6

shows the choice. A question widget will be popped up.
Screen 22 is the pop-up question widget. It will ask the user
whether to save the current status or not. Pushing the Ok
button means to save the modified status. Pushing the Cancel
button means to keep the original status as the first time the
user logged in. Screen 23 presents the result when the user
pushes the Ok button for saving the modified status. Screen
24 shows an example of EASIE commands generated during
executing the system. These generated EASIE commands will be
written into a file called easie.file, and will be sent to the

EASIE command processor.

4.4 COMMAND SUMMARY USBING THE CCE MODE

The following section summarizes and collects the EASIE
command information of the CCE mode interface as it is
organized in this project. There are eight selections in the
menu bar of the main window. They are Tools, Open, Retrieve,
Update, Organize, Execute, Print, and List. In what follows,
we distribute EASIE commands under each of these choices. It
should be noted that the user is no longer responsible for
knowing the structure of these commands. The new interface
automatically provides this information. Some selections do
not have the EASIE commands since the functions of those
selections can be performed by the modified CCE mode
interface. For example, Help choice under the Tools

selection, and the List selection. As described above, some

17

functions have been added to the modified CCE mode interface,

for example, changing the base or the program directory.

Tools Selection

S - System command

Used to pass a command to the operation system.
Form: S <system command>
Example: S 1ls

C - Comment

CL

Used to place a comment in the command log. This allows
notes to be inserted in the log for later reference and
clarity.

Form: C <comment>

Example: C enter today’s date

Clear Log
Used to remove prior information from a cluttered command
log or clear the log completely.
Form: CL <type>
Example: CL D
Allowable object types: D - prior to a given date
T - total, a new log started

L - Log out

Used to give an orderly closeout of the EASIE system, and
return the user to the computer’s operation system.
Before exiting the EASIE, the system will pop up a
guestion widget, and ask the user: "save Current
Status?". If the answer is "OK", the system will save
the current status into a file called easie.input;
otherwise, it will not save the updated status, and it
will keep the original status. After that, the system
will close all the windows which the user opened during
executing the system.

Form: L

Example: L

Open Selection

ACT - Activate

Used to associate the indicated object with the user’s

workspace.

Form: ACT <type> <filename>

Example: ACT CFG /tmp_mnt/home/tsai_c/project/cfg.CFG

Allowable object types: APPL, CFG, ITPL, OTPL, PROC, TPL,
WS

-

N - New

Used to create a new object or get a fresh object.

18

Form: N <type>
Example: N WS
Allowable object types: WS, CFG, TPL, PROC

Retrieve Selection

TY - Type

Used to type the indicated file at the terminal.

Form: TY <type> <filename> :

Example: TY PROC /tmp_mnt/home/tsai_c/project/proc.PROC
Allowable object types: LOG, PROC, BAT, FILE

RVU - Review

Used to review data from the configuration database.
This command invokes the interactive "REVIEWER" progranm,
and will display for possible modification a "view" of a
configuration database. A view of a database is defined
as the collection of variables defined by a data
template.

Form: RVU <type>

Example: RVU IDB

Allowable object types: IDB, ODB, TPL

Read Description

Used to read a file description associated with any
workspace, program procedure, template, or database.
Form: RD <type> <filename>

Example: RD APPL /tmp_mnt/home/tsai_c/project/appl.APPL

Allowable object types: APPL, CFG, ITPL, OTPL, PROC, TPL,
WS

Update Selection

ED - Edit

CcD

Used to invoke a system editor for certain operations.
Form: ED <type> <filename>

Example: ED PROC /tmp_mnt/home/tsai_c/project/proc.PROC
Allowable object types: LOG, PROC, TPL

Change Description

Used to change a file description of the indicated object

by using the system editor.

Form: CD <type> <filename>

Example: CD TPL /tmp_mnt/home/tsai_c/project/tpl.TPL

Allowable object types: APPL, CFG, ITPL, OTPL, PROC, TPL,
WS

Oorganize Selection

CP - Copy

Used to copy one file to another.
Form: CP <type> <filename> <filename>

19

SA -

CN -

Example: CP CFG /tmp_mnt/home/tsai_c/project/cfg.CFG
/tmp mnt/home/tsai_c/project/configuration.CFG

Allowable object types: APPL, CFG, PROC, TPL, WS, FILE

Remove

Used to remove a file from the user’s file directory.

Form: RM <type> <filename>

Example: RM CFG /tmp_mnt/home/tsai_c/project/cfg.CFG

Allowable object types: APPL, CFG, PROC, TPL, WS, FILE

Save

Used to save the indicated object for the later work.
Form: SA <type> <filename>

Example: SA PROC /tmp_mnt/home/tsai_c/project/proc.PROC
Allowable object types: PROC, WS

Change Name

Used to change the name of a file as indicated.

Form: CN <type> <old filename> <new filename>
Example: CN TPL /tmp_mnt/home/tsai_c/project/tpl.TPL
/tmp_mnt/home/tsai_c/project/template.TPL

Allowable object types: APPL, CFG, PROC, TPL, WS, FILE

Execute Selection

EX -

Execute

Used to execute an indicated application program or
procedure command file.

Form: EX <type> <filename>

Example: EX APPL /tmp_mnt/home/tsai_c/project/appl.APPL
Allowable object types: APPL, PROC

SUB -Submit

Used submit a job for batch processing.

Form: SUB <type> <filename>

Example: SUBA&WH,/tmp_mnt/home/tsai_c/project/appl.APPL
Allowable object types: APPL

Print Selection

PR -

PRVU

Print

Used to print an indicated file at a local hard copy
printer.

Form: PR <type> <filename>

Example: PR LOG /tmp_mnt/home/tsai_c/project/log.LOG
Allowable object types: LOG, PROC, BAT, FILE

- Print Review

Used to print a template or a view of the database.
Form: PRVU <type> .
Example: PRVU IDB

Allowable object types: IDB, ODB, TPL

20

5. CONCLUSION

EASIE is consisted of a set of utility programs to meet
the needs of conceptual design engineers who needs many stand-
alone engineering analysis programs. Since the selecfing menu
of the original EASIE interface are the alphanumerical menu
selection, and the structures of the selecting menu are not
well-organized. Thus, the main purpose of this project is to
give a front end to EASIE for the users. This project is
considered in CCE mode, and is implemented in the X window
systeﬁ, OSF/Motif version.

This paper is organized by the introduction of the EASIE
system, a comparison between the current EASIE system and the
design principles, two objectives of this project, and an
outline of this project.

At the beginning, this paper gives the reader a general
concept about the EASIE system. By comparing to the design
principles, we found that the current EASIE got some flaws.
Therefore, the two objectives of this project are to redesign
the selecting menus and reorganize the selecting structures.
To redesign the selecting menus by using a windowing system is
to hide complexity from the user. To reorganize the selecting
structures is to minimize memorization. Finally, we give the
reader a general concept about the modified EASIE system in
CCE mode and some improvements we did.

Although we enhance some functionality to the current

21

EASIE system in CCE mode, there are still some potential bugs
in this project. First, the input file must be in the correct
format; otherwise, the system will not perform well. This
project does not provide file-existence checking. Second, we
suggest that we can minimize the levels of pull-right menus.
It may be more organizing if we put the choices in the second
level of pull-right menus to be some buttons in the pop-up
widget as pushing the choice of the firét level of pull-right

menu.

22

REFERENCES

[REF 1] .ee..., by the staff of O’‘Reilly and Associates,
Inc., X _Toolkit Intrinsics Reference Manual, second edition

for X11, release 4, Volume five, O’Reilly & Associates, Inc.,
1990

[REF 2] , OSF/Motif Style Guide, Open Software

Foundation, Prentice-Hall, Inc., New Jersey, 1988

[REF 3] Al Kelley and Ira Pohl, A Book On C Programming in
C, second edition, The Benjamin/Cummings Publishing Company,
Inc., California, 1990

[REF 4] Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, second edition, Prentice-Hall Inc., New
Jersey, 1988

[REF 5] Brian W. Kernighan and Rob Pike, The UNIX Programming
Environment, Prentice-Hall, Inc., New Jersey, 1984

[REF 6] Dan Heller, Motif Programming Manual For OSF/MOTIF
Version, Volume Six, Motif edition, O’Reilly & Associates,

Inc., 1991

[REF 7] Douglas A. Young, The X Window System Programming and
Applications with Xt, OSF/MOTIF edition, Prentice-Hall, Inc.,
New Jersey, 1990

[(REF 8] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes, Computer Graphics: Principles and
Practice, second edition, Addison-Wesley Publishing Company,

U.S.A., 1990

[REF 9] James L. Schwing, Lawrence F. Rowell, and Russell E.
Criste, The Environment for Application Software Integration
and Execution (EASIE) Version 1.0 Volume II] Program Execution
Guide, NASA TM-100575, National Aeronautics and Space
Administration (NASA) Langley Research Center, Hampton,
Virginia, April 1988

[REF 10) Joseph S. Dumas, Designing User Interfaces for
Software, Prentice Hall, New Jersey, 1988

[REF 11] Samul P. Harbison and Guy L. Steele Jr., A Reference
Manual, 3rd edition, Prentice-Hall, Inc., New Jersey, 1991

[REF 12) William M. Newman and Robert F. Sproull, Principles
of Interactive Computer Graphics, second edition, McGraw-Hill:

Book Company, U.S.A., 1979

23

Master's Project Report

Application Driven Interface Generation
for EASIE

by
Ya—-Chen Kao

Advisor : Dr. James L. Schwing

April 28, 1992

Department of Computer Science
Old Dominion University
Norfolk, VA 23529 — 0162

ABSTRACT

The Environment for Application Software Integration and Execution, EASIE, provides a user
interface and a set of utility programs which support the rapid integration and execution of analysis
programs about a central relational database. EASIE provides users with two basic modes of
execution. One of them is a menu—driven execution mode, called Application-Driven Execution
(ADE), which provides with sufficient guidance to review data, select a menu action—item, and
execute an application program. The other mode of execution, called Complete Control Execution
(CCE), provides an extended executive interface which allows in depth control of the design
process.

Currently, the EASIE system s based alphanumeric interaction techniques only. Itis the purpose
of this project to extend the flexibility of the EASIE system in the ADE mode by implementing it
in a window system. Secondly, a set of utilities will be developed to assist the experienced engineer
in the generation of an ADE application.

Table of Contents

1. Introduction
2. EASIE: ADE-mode Considerations
2.1 Concepts of EASIE system
2.2 Sample Session for ADE mode
2.3 Menu Manipulation and Construction in ADE mode
2.4 The Drawbacks of EASIE in ADE mode
3. Principles of Interface Design
4. Modification of EASIE in ADE mode
4.1 Window System: OSF’s MOTIF
4.2 Design Considerations for ADE Facilitator
4.3 Demonstration of the ADE Facilitator
5. The General Structure of Solution
5.1 Data Structure
5.2 Mechanisms
5.3 Capabilities and Limitations of ADE Facilitator
6. Conclusions
7. References
Appendix: program Listing

1. Introduction

The Environment for Application Software Integration and Execution, EASIE, which developed
for NASA by Old Dominion University, Computer Sciences Corporation and Vehicle Analysis
Branch of NASA Langley, provides with a methodology and a set of software utility program to case
the task of coordinating engineering design and analysis codes.

EASIE provides a user interface and a set of utility programs which support the ra;Sid integration
and execution of analysis programs about a central relational database [1]. EASIE provides users
with two basic modes of execution. One of them is a menu-driven execution mode, called
Application-Driven Execution (ADE), which provides users with sufficient guidance to review
data, select a menu action—item, and execute an application program. The other mode of execution,
called Complete Control Execution (CCE), provides an extended executive interface which allows
in depth control of the design process. In CCE, commands can be issued via menu selection or
directly typed. Although CCE provides the flexibility of an operating system, it also is complicated
to use like an operating system. Most users currently access the EASIE system via the menu—driven
mode known as ADE.

In general, the EASIE system addresses the needs of two different classes of users who be involved
in the buildup and use of an engincering design system.

The first classification represents the engineer/designer/analyst. This group conducts the design
study through the execution of modeling and analysis programs and the generation of data required
to this evaluate the design against its objectives. EASIE documentation will refer to this group as
"EASIE system users” or, more often, as “designers”. In general, these users are only interested in
executing programs already installed into an EASIE design system [1].

A second group aided by EASIE will be referred to as “application programers” or “experts”.
These programers/engineers arc responsible for the development and improvement of modeling and
analysis programs used in the engineering design process. EASIE documentation will refer to this
group as “experienced engineers”. They are the experts with respect to particular application
programs and can defines its input and output variables [1].

2. EASIE : ADE-mode Considerations

The predominant design method used by engineers is the iterative technique. One processes to
a final solution through successive applications of analysis techniques to increasingly refined data.
EASIE provides a basic user tools which support the selection and execution of application
programs, viewing, and editing of program data. EASIE also provides tools for a design team ©
easily manage the design environment by providing the ability to quickly integrate new analysis
programs and data with the existing environment.

3

2.1 Concepts of EASIE system
Configuration Data:

Configuration data is stored in a system-managed database. An advantage of the EASIE user
interface is that data held in the database are automatically communicated to cither a user or an
application program in an appropriate format. Once the basic data definitions and values have been
made, a copy of this “master” database is placed in a controlled project directory. Access to this
database is provided on a "read only” basis. Thatis, the users may display the configuration data
for review, or they may make copy of the database for their personal files. Updates to the master
database can be entered only by the design manager [1].

Reviewer:

The EASIE software interface provide a program called the "REVIEWER” which can access any
data. Based upon an indicated analysis program or other dataset in the database for a designer, the
REVIEWER, using information contained in the database, can then make the appropriate selection
to retrieve the necessary input and present that data at the terminal.

Data Templates:

The software screen forms used to control the flow of data to and from the database are called
data templates. A data template is basically alistof all data required for input (or supplied as output)
by a given program along with their required data formats. Since data templates are generated by
EASIE utility program. Finally, access to these data templates is used in conjunction with the
REVIEWER to directly modify the variables in the database when presented during the Review
process [1].

Formatter:

A final utility called the Formatter uses the data templates to enable the automatic generation of
FORTRAN subroutine source code, called Formatter code, which can be placed in the application
program allowing it to retrieve data or store data into the database during program execution.

2.2 Sample Session for ADE mode

Menu displayed during an ADE session are typically created by experienced engineers to guide
new users through the proper sequence of steps to conduct some particular design activity. Given
such an interface, an introductory user can easily learn to manipulate data and execute programs in
the Application Derived Executive (ADE) mode. Now we look at an example to describe an
interaction with EASIE for a given application. This example illustrates capabilities of the EASIE
system. It consists of four short programs that define and draw a box. Figure 1 represents the basit
relationship among these programs and their data.

Within the concepts of the EASIE system, we can realize this figure in a straight forward manner.

Default

(protecled)

Ptogmﬁ
Box

Template
Makgeoot

model
modes
taces

IE

Figure 1.

Flow Diagram For Sample Session Using EASIE

Configuration

The Box program extracts dimensional data from the database, calculates physical
properties(volume), and stores it in the database. The MAKGEO program extracts the dimensional
data from the database, create a geometric boundary representation for the box, and stores that data
in the database. The object of the DRAW program is to display the box geometry that exists in the

database.
The session commences with the user entering the following command (underlined text represents

user input) .

$ cxmenu
CS — SELECTA CONFIGURATION

DC - DELETE A USER CONFIGURATION

CD — EDIT A CONFIGURATION DESCRIPTION FILE

R - REVIEW PROGRAM INPUT

E - EXECUTE A PROGRAM

P - PRINT OUTPUT FILES

X - EXIT

Input: label — menu choice, <CR> - reprint menu — CS

SCREEN 1

Screen 1, the first screen presented, provides a menu of the commands available for basic
interaction: selection, deletion, editing , and review of configuration data, program execution, and
printed out. From figure 1, the first choice from this menu would be CS for the selection of a

configuration database.

MASTER CONFIGURATIONS
DEFAULT

USER CONFIGURATIONS
SHOULD A NEW CONFIGURATION BE CREATED (Y = yes)

Y

COPY SOURCE CONFIGURATION (FOR DEFAULT VALUES)
TO THE DESTINATION CONFIGURATION

ENTER SOURCE CONFIGURATION (1" TO LIST):
DEFAULT .

ENTER DESTINATION CONFIGURATION (”1” TOLIST) :
NUDATA

COMMENCING DATABASE COPY

SCREEN 2

Screen 2 is the result of that selection. The first four lines displayed indicate the existence only
the master configuration database DEFAULT. Since EASIE users may changed only personal
database. Then, the following steps are the copy of configuration. In ADE mode, the menu provides
basic selections available for designers, then designers use the keyboard for alphanumeric input to
the program. Successive menu choices allow designers to complete a special execution of programs.
Details of the sample session described above can be found in the EASIE Volume III - Program
Execution Guide.

Control of the system during ADE is governed by a command procedure designed by the
experienced engineer who , as it will be seen, must also be an expert on the EASIE system. The
next section demonstrates how procedures are structured in EASIE. Thus the construction of such
procedures should be considered a priority in order to fit the needs of designers who will use the ADE

mode.

2.3 Menu Manipulation and Construction in ADE mode
Since design is generally iterative in its nature, the procedures controlling the EASIE sessions
for ADE users should have the ability to jump and loop when needed. During the execution of a
procedure, EASIE will keep track of its position via a procedure counter (pc). The procedure counter
may be reset by jumping to a labeled statement within a procedure. Labels are placed in a procedure
with a comment statement of the form below:
CLABEL : <label_id >

Consider this example.
GET JMPL THERE

CLABEL : THERE
Menus can be presented to the ADE user via the "GET MENU"” command. The format for this

command is :
GETMENU <n> where < n > represents an associated menu number.

.

Menus are stored in separated files, whose format is detailed below. The combination of this
command, along with the ability to jump and loop within a procedure, provides EASIE with the

flexibility to make the ADE interface work. The procedure file to be executed is linked to a
particular choice of USER-ID and is automatically executed when EASIE is initiated with that ID.

The following illustrates the procedure and its associated menu files [1].

CLABEL : MM

GET MENU 1

CLABEL:R

GET MENU 2

CLABEL:E

GET MENU 3

CLABEL:CS

GET CFG

GET JMPL MM

CLABEL :DC

RM CFG

GET JMPL MM

CLABEL: (D

CD CFG -

GET JMPL MM

CLABEL : BIR

RVU BOXIN

GET JMPL R

CLABEL : BOR

RVU BOXOUT

GET JMPLR

CLABEL : MR

RVU MAKGEOIN

GET JMPLR

CLABEL: DR

RVU DRAWIN

GET JMPLR

CLABEL : BX

EX APPL BOX

GET JMPLE

CLABEL : MX

EX APPL MAKGEO

GET JMPLE

CLABEL : DX

EX APPL DRAWIT

GET JMPLE

CLABEL: X

L

N .
Figure 2. A printout of the procedure file

CS CS SELECT A CONFIGURATION

DC DC DELETE A USER CONFIGURATION

CD C EDIT A CONFIGURATION DESCRIPTION FILE
R R REVIEW PROGRAM INPUT

E E EXECUTE A PROGRAM

P PRINT OUTPUT FILES

X X EXT

Figure 32. EXMENU.PROC_1.

BIR BI REVIEW INPUT FOR BOX

BOR BO REVIEW OUTPUT FOR BOX
MR M REVIEW INPUT FOR MAKGEO
DR D REVIEW INPUT FOR DRAWIT
MM R RETURN TO MAIN MENU

Figure 3b. EXMENU.PROC_2.

BX B EXECUTEBOX

MX M EXECUTE MAKGEO

DX D EXECUTE DRAWIT

MM R RETURN TO MAIN MENU

Figure 3c. EXMENU.PROC_3.

A review of the commands in figure 2 procedure reveals the use of the GET MENU command
three times — namely, command 1,2 and 3 . Since each of these has a different number, it refers
to each of the menus listed on figure 3. For example, GET MENU 2 refers to the menu contained
in file EXMENU.PROC_2. In general, the use of the statement GET MENU < n > in a procedure
with the name <proc_id> requires the existence of a menu file.

In general, when a procedure is activate, command are being sent to the EASIE command
processor from the procedure, and thus are not expecting feedback from a user. It is clear from the
above example that construction of an ADE-mode procedure is a nontrivial operation and requires
an expert on the EASIE system. Unfortunately, EASIE does not provide the analyst with utilities
to create a predefined procedure and associated menu files. *

As a final note, EASIE user file directory will contain a large variety of files. Though an

explanation of each of thesc files is attracted, there would generally be little reason fora general user

to become involved with any of the details or naming conventions used in these files. Such details
can and generally should be left for the EASIE system to monitor. Although most designers prefer
10 access EASIE via the ADE mode interface, many have voiced disappointment over the lack of
a modern interface. In addition to the preceding section makes it clear construction of such an
interface is difficult at best. This has led us to identify two major problems with the current EASIE
ADE mode interface.

2.4 The Drawbacks of EASIE in ADE mode

® The EASIE system is based alphanumeric interaction.
e Control of the system during ADE mode is governed by command procedure. The construction
of such procedures are designed by an experienced analyst.

3. Principles of Interface Design

Most computer users feel that computer systems are unfriendly, uncooperative and that it takes
too much time and effort to get something done. They feel dependent on specialists, and they notice
that "software is not soft”. Users use computers as tools for achieving tasks of particular problem
domains such as text processing financial planning, or computer—aided design. Itis too much to ask
users to learn about something as complex as a large computer program by direct observation of what
the program does. Therefore, the overall goal of the design methodology is to help programmers
deliver their designs, not only by reducing the complexity of the delivery process, but also by helping
1o ensure that the delivered system provides a good interface for users.

The quality of the user interface often determines whether users enjoy or despise a system and
ultimately whether the system is even used. The following will describe five principles of interface

design [4] [5].

3.1. Put the User in Control

An effective interface allows users to form an accurate and detailed cognitive representation of
the structure of the software and to learn quickly how to operate it. A poor interface frustrates and
confuses users placing them in constant doubt about where they are in application; it makes users
unsure that they can predict how the software will respond to their direction; it creates difficultes
in operating the software; and it makes it easy to make errors but not to recover from them.

In order to solve this problem, different interface construction techniques have been proposed”
e Provide online help that informs the user about the structure and operation of the application.
® Provide effective prompts and status messages that guide the user through procedures and keep

them informed about program status.
o Provide error messages that allow the user to understand both what went wrong and how to

smoothly recover from the error.

® Provide the user with the means to move freely within and between screens and the ability to
move easily to major menu items and to quickly exit from the application.

e Provide consistency in the use of words, formats and procedure.

3.2. Address the User’s Level of Skill and Experience

One of the most difficult problem for you as a software developer is overcoming this gap between
your skills and the skills of most users. If the application you are developing will be used by people
with no computer experience, then your design must favor these users over the more experience
ones. In order to solve this problem, different interface construction techniques have been proposed.
® Avoid jargon .

All computer terms and other technical jargon not familiar to the users must be eliminated from

the interface or explained to the users. The design must be subjected to ensure that potential users

understand the words contained in menus, messages, help text and tutorials.

o Usc appropriate transaction control procedures.
New users will be most comfortable with menu or simple question—and—answer dialogue.

Experienced users can use these methods, but they may wantto be able to string together sequences
of commands and use function keys to speed up the operation of an application.
e Provide several levels of detail for error and help messages.
Experienced users need error and help messages to remind them of what they already know. New
users, however, need step-by—step procedures and examples that instruct them in the operation
of the application. The needs of both these groups can be met by providing more than one level
of help and error message.

3.3. Be consistent in wording, formats, and procedures

Consistency is an important feature that should be built into every interface and it should be
maintained across applications. Consistency helps the user to learn an application more easily, to
use it more easily, and to recover more easily when there is a problem.

3.4. Protect the user from inner working of the hardware and software that is behind the
interface .

One of the characteristics of a poor interface is that it displays information about the internal
workings of the software that the typical end user cannot understand. For example, displaying a

10

message such as "FORTRAN END” may tell you that the software is operating normally, but it may
be meaningless to the end user. In addition, many new users are very sensitive about their lack of
knowledge of computer hardware and software. As aconsequence, they are immediately upset when
words and phrases that describe the internal workings of the software are displayed on the screen.
A good interface will protect the user from having to know about the inner working of hardware and

software tools.

3.5. Minimize the burden on the user’s memory
Human beings are poor at recalling detailed information but are remarkably good at recognizing
it. A good interface design should minimize the need for the user to memorize and later recall
information. Whenever possible, users should be able to choose from lists and be allowed to use
their recognition memory rather than their recall memory. Here different interface construction
techniques have been proposed.
® Be Consistency in your use of words, formats, and procedures. Consistency reduces the user’s
need to learn and remember new information.
o Display status messages that remind users where they are in an application and what options are
in an application and what operations are in effect.
e Provide online help that is designed as an aid to memory.
® Use memory joggers in prompts and data entry captions. For cxample, tell users how to format
dates, such as (mm/dd/yy).

4. Modification of EASIE in ADE mode

4.1 Window system : OSF’s MOTIF

Almost all modemn user interface are window—based. Windows allow the user to interact with
multiple source of information at the same time. Window techniques allow a relatively rapid access
to more information than is possible with a single frame of the same screen size. The window system
provides many of important features of the modern interface, for example, applications that show
results in different area of display, the ability to resize the screen areas in which those applications
are executing, pop—up and pull-down menus and dialog boxes.

Currently, the EASIE system is based alphanumeric interaction techniques only. The goal in the
design of any menu should be to facilitate the user’s ability to make a choice quickly and accurately.
It is the purpose of this project to extend the flexibility of EASIE system in the ADE mode by
implementing it in a window system. The user—interface, with its windows and pulldown menus;
is popular because it is easy to leamn and requires little typing skill. The windowing system chosen
to implement EASIE is OSF/MOTIF. What follows is a brief description of Modtf [2] [3].

11

OSF/Motif is a graphical user—interface toolkit, window manager, style guide, and user—interface
language. Motif’s graphical interface is based on the X window system from MIT. This underlying
technology provides you with a network-based graphical user interface. Motif is composed of a
style guide, window manager, interface toolkit and presentation description language.

® Style guide
The style guide describes a standard behavior and a setof connections for applications, to ensure
a consistent feel on multiple applications. The style guide includes extensions for powerful
network—based workstation. Its "look” is based on the HP-three dimensional screen—button

appearance.

® Window manager
The window manager lets you manipulate multiple applications on the screen and plays a
principle role in enforcing the style guide.

o Interface toolkit
The OSF/Motif toolkit is based on the X windows intrinsics, a toolkit framework provided
with MIT's X window system. The intrinsics use an object—oriented model to create graphical
objects known as widgets or gadgets. The specified widgets maintain consistency between

applications.

o Presentation description language
This language enables application developers to describe the presentation characteristics of
the application interface independent of the actual application code. The separation between
application and interface lets you make many changes to the overall appearance and layout of an
application without having to modify, recompiler, or relink the application itself.

4.2 Design Considerations for ADE Facilitator

Menus displayed during ADE mode are typically created by experienced engincers to guide other
designers in the proper sequence of stcps to conduct some particular design activity. In this project,
in addition to implementing ADE mode in a window system, a set of utilities are developed to assist
the experienced engineer in the generation of an ADE application. Itis assurned that an experienced
engineer has sufficient knowledge of the desired application to develop an organized approach to
use of that application. The ADE facilitator has been developed to capture this information in a way
that automatically includes a number of good interface design principles. Thus we have designed
the ADE facilitator to overcome the problem listed in section 2.4. In addition, the ADE facilitatot
provides the engineers a simple environment to gencrate the ADE application casily. Experienced
engineers are not required to have any knowledge of principles of interface design or OSF/MOTIF

12

. They make use of the ADE facilitator to build up an application-dependent hicrarchy menu in any

desired format.
In order to develop ADE facilitator as a good interface, there are a lot of issues we considered.

o The layout of menus

When the user interface makes use of graphical objects such as window and menus, it is called
a graphical user interface(GUI). Compared with the nongraphical application, interactive graphicals
makes menu selection such simpler and faster. The menu is displayed on the screen, the user points
1o a selection with a graphical input device, like mouse. This menu can facilitate the user’s ability
to make a choice quickly and accurately.

In application programs with commands or many different operands, the size and complexity of
the interface can become a scrious problem. A simple solution is to use a multilevel menu. With
a hierarchical menu, the user first selects from the choices set at the top of the hierarchy, which causes
a second choice set to be available. The process is repeated until a leaf node of the hierarchy tree
is selected. Since the ADE facilitator captures the organization of an experienced engineer, a natural
task decomposition is obtained.

o Feedback

Feedback is as essential in conversation with a computer. A selected objected or menu command
is highlighted, so the user can know that action has been accepted. In this project, when the
application designer travels the menus being built, information about the current level of menu
hierarchy is displayed in a list window. This list window provides good feedback for the application
designer. In addition, the full feedback facilities of OSF/MOTIF are automatically provided for the
final ADE application.

® Error Recovery

A poorly design interface gives the user no choice but to proceed with the command. A
well-designed interface lets the user back out of such situation with a cancel command. With good
error recovery, the user is free to explore unlearned system facilities without ™ fear of failure ”. In
a less serious type of error, the user may want to correct one of units of information needed for a
command. The dialogue style in use determines how easy to make such corrections are.
Command-language input can be corrected by multiple backspaces to the item in error, followed
by reentry of the corrected information and all the information that was deleted. This project
provides these capability automatically through its OSF/MOTIF interface.

¢ Be Consistent

Consistency reduces the user’s need to learn and remember new information. For example, whent
the select procedure is used on all menu, a user has to learn it only once and it is easier to remember.
In this project, we provide the capability for selecting menu by pushing first button of the mouse,

13

and pointing a special item before doing insertion with second button of the mouse. Again these are
capabilities provided automatically through the OSF/MOTIF interface.

o Provide online documentation to help the user to understand how to operate the application
In this project, we have provided a help menu that gives the usera brief overview of how to use
this application.

4.3 Demonstration of the ADE Facilitator

In windows 1~28, we demonstrate the use of the ADE facilitator. These windows also illustrate
those characteristics we mentioned above that lead to a well designed interface. For this example
we develop an interface for the sample problem stated in section 2.2. This interface is developed
with the following steps.

Window 1 is an original ADE facilitator, there is no menus with it.

Step 1. Push the "Add menubar Item” button.

Step 2. Type in the name of new menubar item.

Step 3. Click on the "ok” button.

Windows 2 ~7 show the procedure of creating new items on the menubar using stepl~step3
recursively.

Step 4. Point the pulldown menu of a menubar item using first button of the mouse.

Step 5. Push the "Add Item with subltem” button.

Step 6. Type in the name of a new item.

Step 7. Click on the "ok™ button.

Windows 8~11 show the procedure of creating a new cascading item using step 4~step 7.
Step 8. Point the pullright menu of a branch item.

Step 9. Push "Add Menu Item” button.

Step 10. Click on the "ok” button.

Step 11. Type in the EASIE command.

Step 12. Click the “ok” button.

Windows 12~14 show the procedure of creating a new leaf item using step 8 ~ step 12.
Window 15 is the resulting of built menu of first item at the menubar.

Step 15. Select an item on list window using the first button of the mouse.

Step 16. Release the button.

Windows 16 ~17 show the procedure of deleting an item from the menu using step 15 ~ step 16.
Window 18 ~23 show the procedure of building the menus of second item at the menubar.
Window 24 shows the menu of third item at the menubar.

Step 17. Push "Delete Menubar Item” button.

>

14

Step 18. Type in the name of the item existing on the menubar.

Step 19. Click on the "ok” button.

Windows 25 ~26 show the procedure of deleting a menubar item.

Window 27 is the dialog box for “’save” button.

Window 28 is the dialog box for "Exit” button.

Windows 29 ~34 show the EASIE user interface built by ADE facilitator. This user interface helps
the EASIE user make a choice quickly and accurately. When a leaf node of a hierarchy menu is
selected, a special command will be showed up on the list window and being sent to the EASIE

- command processor at the same time.

5. The general Structure of the Solution

As seen in the previous chapter, presentation of an ADE facilitator menu is best carried outin a
hierarchical manner. This hierarchy is easily described by the tree data structure shown below.

5.1 Data Structure

typedef structure menu {
structure info data,
structure menu *sub_menu;
structure menu *next,
} *node;

Since the purpose of the ADE facilitator and the creation of an ADE application, the menu
structure cannot be known ahead of time and therefore must be dynamic. The usual approach to
declare a space large enough to hold the maximum amount of data we could logically expect cannot
work. Thus tree components are created only as they are needed. Fach component contains
information about the location the next components. Such a tree can expand or contract as the ADE
facilitator is executed and we use this dynamic data structure to hold the structure of the newly
created menus.

In general, each node of this structure contain information related to the menu choice it represents
as well as two information of locations. The first location is that of next menu item at same level
of hierarchy, and the other is the location of the first choice for a submenu item.

Figure 4 demonstrates the structure of menus.

15

5.2 Mechanisms

We provide two operations on the data structure mentioned above.
(i) Add an item to the menu.
(ii) Delete an item from the menu.
Each item has its own ID. We use a binary expression to represent the location of an item or
subitem in the hierarchy of the menu to which it belongs.

ID=00001100001=33
I I
second level first level
figure 5.

The first five bits from right side stand for the first level of hierarchy in the menu, the second
five bits stand for the second level of hierarchy and so on. For example, consider the ID number
33 in figure 5. This binary expression represents the first subitem of the first item at the first level
of hierarchy in the menu. Thus the current implementation use a five bits to stand for each level,
and therefore there are 32 items at most for each level of hierarchy in the menu.

We use bitwise operators to deal with the problem from adding or deleting a menu or submenu
item. Except for the ID of any item at the first level of hierarchy menu, simple addition or subtraction
operations on the ID are not sufficient to find the ID of the next submenu item.

ID1=00001100001=33
ID2=00010100001=65
figure 6.
In figure 6 ID1 represeats the first submenu item of first item located at the first level of hierarchy.
ID2 represents the second submenu item of first item located at the first level of hierarchy. Using
the bitwise operators, we can easily realize the relationship between ID1 and ID2 as follows.
num = (ID1 & 01740) >> 5;
num ++;
numtemp = (ID1101740) ;
num =~ ((~num<<5);
ID2 = num & numtemp;
Based upon this encoding the menu hierarchy can casily be stored in file format. The resulting menu
tree needs to be stored for both later editing or using in an ADE session by a design engineer.
Currently we differentiate leaf nodes in the trec from branch nodes as follows.

(i) Format for an item with submenu (branch node) :

-

ID name
(ii) Format for an item without subitem (leaf node) :

16

1601

[nu

L9

St

*290) NUSW JO IMONDS ¥ ‘p 2m31g

[[nu

7807

|| 111} pa—

8501

tnu «—{Teogocope

iau

[[NUle——

99

147

[jnu

£evT80l

M «—

MY «—1-1"1 /¢8¢¢

LT -

6801

U g——

[jhu

$9

te

ID name
command name
Of course, design engineers do not need to have this knowledge of the format of a file, itis handled
automatically for them. When they develop an application-dependent menu, the ADE facilitator is
going to help them store the menu tree.

5.3 Capabilities and Limitations of ADE facilitator
We note the following capabilities of designed into the ADE mode facilitator.
e Add an item with submenu into the pulldown or pullright menu at any special position.
e Add an item without submenu into the pulldown or pullright menu at any special position.
@ Delete an item with submenu from the pulldown or pullright menu.
e Delete an item without submenu from the pulldowm or pullri ght menu.
e Add an item into the menubar at any special position.
® Delete an item from the menubar.

We also note two cautions for the current implementation.
® We can create six levels of menus at most.
® Each level of menu could have 32 items at most.

6. Conclusions

In this project, we used OSF/MOTTF toolkit based on the X window system to implement new
ADE mode. In addition, we designed an interface with facilities to help the design manager easily
build the application-dependent menu, called the ADE facilitator. With this, an EASIE design
manager can quickly develop an application—dependent menu to any desired format, and the EASIE
user can make a choice quickly and accurately.

17

7. References

1. James L. Schwing, Lawrence F. Rowell E. Criste, The Environment for Application Software
Integration and Execution (EASIE), Volume III, NASA Technical Memoradum, April 1988.

2. Douglas A. Young, The X Window System Programming and Application with Xt, OSF/MOTIF
edition, Prentice Hall.

3. Dan Heller, Motif Programming Manual, O’Reilly & Associates , Inc, 1991.

4. William M. Newman, Robert F. Sproull, Principles of Interactive Computer Graphics, second
edition, Mcgraw-Hill Book Company, 1979.

5. Joseph S. Dumas, Designing User Interfaces for Software, Prentice Hall, 1988.

18

IMPLEMENTATION OF AN ALGORITHM FOR
DATA REDUCTION
USING

CUBIC-RATIONAL B-SPLINES

Computer Science 698 - Master’s Project

Caroline E. Macri

10 December 1992

Acknowledgments

I would like thank several people for their contributions
toward this project

- Dr. James Schwing for providing the idea for the
topic of this project and for helping me to
understand the area of curve and surface design.

- The employees of the NASA Langley Vehicle Analysis
Branch for the generous use of their books, software
and time.

- My husband Steve for his emotional and financial
support

IMPLEMENTATION OF AN ALGORITHM FOR DATA REDUCTION USING
CUBIC RATIONAL B-SPLINES

ABSTRACT

A master'’'s project implementing and evaluating a data
reduction algorithm using cubic rational B-splines is
oresented. The method emphasizes the geometric
characteristics of curve constructicn. A general overview
5% the mathematicz of fezizr asnd R-splina curve
reprezentations is presented. The algorithm it=self 1= than

briefiy =ummarized. The largs library of geometric

ooerations developed in cunport of thes implementation are

described. <Some of the mors important gzomztric ilssuss
sroountered - including ambiguity . data validity, and the

meaning of evvor in rhe context of this fitting merhod arves
Finally . an =wviitztion ¢f the deta redeciian
CAalned wWinh o ohe Tonal oreesrvam. cning Severd

resrazsentative data siets, 13 ovenentad,

INTRODUCTION

The purpose of this master’s project was to implement
and evaluate the data reduction algorithm outlined by Chou
and Piegl ([cCHOU92]. A cbpy of their paper 1s provided in
Appendix A. Compared to other curve fitting schemes, this
method “provide(s] a sufficiently clear insight into the
geometric characteristics of curve construction.” The
authorzs’ describe the general technigue, but.not the detalls
required to develop a correct, robust program. Much of this
project was spent investigating these details. The result
wac in an even greater depth of understanding about curve
geometry. fhese insights constitute the bulk of this
report.

First, however, curve fitting and its relevance to a
significant class of practical problems is explained. Some
of the mathematics of Bezier curves and B-splines are
detailed since both are used in the Chou/Piegl algorithm.
Next, the algorithm itself is briefly summarized. The large
library of geometric operations which were developed in
support of the implementation are described. Some of the
more important geometric 1ssues encountered - including
ambiguity, data validity. and the meaning of error 1in the
context of this fitting method are documented. Finally. an
evaluation of the data reduction attained with the final
pProgram, using several representative data sets, 1s

presented.

CURVE FITTING

Curve fitting and surface design constitute a very
general class of problems with broad application to
engineering. There are many methods to model objects for
engineering analysis. The ’best’ curve or surface with
which to do this is a function of the analysis to be
performed as well as a compromise based on available
computer resources. For the most part, curve and surface
modeling require extensive use of graphics, both to verify
the accuracy of the model and for proper visualization and
interpretatioﬁ of analysis results.

Most of this work was performed under a research grant
at NASA Langley’s Vehicle Analysis Branch (vAaB). Aﬁ VAE,
englneers and computer scientists are currently applying
surface fTitting methodologles to aerospace vehicle design in
a system called Solid Modeling Aerospace Research Tool
(SMART). SMAKRT allows a user to interactively create a
model made of surface patches. It has automated the
manipulations necessary to convert this model into
descriptions suitable for use by pre-existing analysis
packages. Surfaces in SMART are represented using Bezier
patches (se2e Theoretical Background) however some
consideration is being given to other techniques. The
Chous/Piegl algorithm is one such alternative.

THEORETICAL BACKGROUND
Curve fitting is the process of defining a set of

piecewise polynomials to approximate some set of discrete

data points. A polynomial representation is compact - one
segment can approximate several data points and interpolate
infinitely many others - and provides the functional
description required for many types of engineering analysis.

Cubic parametric polynomials are quite prevalent in
curve fitting applications. Cubics are preferred over
lower order polynomials because they permit slope continuity
and interpolation at endpoints or, alternatively, they can
be manipulated to achieve second derivative continuity in a
relatively simple fashion. Practical experience has shown
that higher order polynomials tend to oscillate undesirably
between interpolation conditions [KREY79].

In the context of curve representation, parametric means
the location of a point {x,y,z)} is defined as a function of
an additional variable, called a parameter. Typically, such
a variable is dencted by t and is specified over a closed,
real interval. The segments, or individual pileces which are
combined to form a curve, are each described parametrically
as {x(t),¥y{t),z(t))y. This eliminates interdependencies
between x, y and z and provides great flexibility in the
types of curves which can be represented. Any non-
parametric form can be easily converted to parametric
notation. The computational stability of calculations
involving parametric curves can be directly influenced by
the choice of the parameter variable’s interval. A common

interval is O (t (1.

It is not probable that a single cubic curve will
accurately approximate a set of data points. 1In a piecewise
representation, cubics are fitted through subsets of the
data. These segments must meet some sort of interpolation
conditions at their end points in order to join smoothly
with adjacent segments. An nth~degree polynomial has n+l1
coefficients which can be determined by solving n+i1
simultaneous equations. 1In practice, this means n+1
interpolation conditions for a segment are required to
calculate its polynomial form. This data can be n+l points,
two endpoint slopes and n-1 points, or various combinations
of points, slopes and higher derivatives.

Parameterization has a subtle effect on the concept of
continuity between segments. The result is a distinction
between derivative (C") and geometric (G") continuity
(FoLESC] . CM means that all derivatives with respect to t,
up to and including the nth derivative, are equal botwesn
segments. Geometric continuity is more clearly demonstrated
by visualizing a curve segment’s end point tangent vector.
Two segments are G- continuous if their tangent vectors are
scalar multiples where they join. The parameter, ¢, is not
shown and the resulting curve plotted in x, y, and z
exhibits no change in slope between segments. C" implies G"
except for the case where the nth derivative vanishes.
Geometric continuity is often less computationally expersive

than derivative continuity. It is used in applicationzs where

visually pleasing results are the major requirement. Many

engineering analyses are based on an underlying parametric
model which demands derivative continuity.

There are many ways to describe a cubic polynomial
segment. One method, which will be utilized in this
project, was developed by Pierre Bezier [FARIB8B] . It uses
four known points, Pn..P3, Lo calculate cubic polynomial
coefficients. A Bezier segment interpolates Py and P3. Pj
and P, are called control points because'they gefine the
direction and magnitude of the endpoint tangents but are not
themselves interpolated. Since the endpoint slopes are
defined, it is possible to construct a piecewise-Beiier
curve with ¢l continuity. A cubic Bezier parameterized on O
(t ¢ 1 has the form

o) = (-t + 3ttt ¢ AL, ¢ ey
The coefficients of the four points are known as the
Bernstein polynomials and sum to one for any value of t.
£sch point on a Bezier segment is, in fact, a welighted
average of its defining points. This results 1In a very
useful property, the convex hull property. A Bezier curve
is completely enclosed by the shape formed by stretching a
surface around its control points (Figure 1.)
Rational Bezier representations introduce weighting factors
which fine tune the impact each control point has on the
curve. The cubic form is -

(1-t Bugpy + 3t(1-t)2,py + 321Dy + ugpy

T TSR PP SRR
(1-t g + 31t 2y + 3Lty + g

Again, it is clear that each point on the curve is a
weighted average of the control points. The weight
magnitudes affect the relative influence of each control
point as demonstrated in Figure 2.

Rational cubic Beziers satisfy the shape invariance
property [PIEG87]. Providing the two shape invariance

factors

remain constant, the weights can take on any value and still

produce the same curve. AsS a simple example, consider the
case where all polints are equally weighted. Regardless of
the magnitude, all versions are equivalent. The standard

representation for rational Beziers takes advantage of shape
invariance factors and sets endpoint weights (wgy, w3) to 1.
Cubic B-spline representations are also used in this
project. A serles of m control points, parameterized over a
set of m+3 knots, is used to define a set of m—-3 segments
with C2 continuity. Any particular segment is influenced
by, but does not necessarily interpolate, four consecutive
control points. Conversely, a control point impacts only
four adjacent segments, effectively localizing its
influence. rhe flexibility of the B-spline representation
can be increased by duplicating knots. This forces point

interpolation at the =xpense of geometric continuity. The

form of a cubic B-spline [PIEG8B7] is

r-2

Ct) = SN 4ty outd
A
where

Ni,o(t): 1 if t’i-f-t(ti*l and ti(tifl
0 otheruise

and for p 2 1

"t itpr1tisd

Like rational Beziers, rational cubic B-splines
introduce weighting parameters to fine tune the impact each
control point has on each segment’s shape. This 1mproves a
user’s ability to manipulate the curve. Its form

C(t) Jrz-zRi '3(1)Pi
-

where

is similar to that of a cubic B-spline with the addition of
the weighting factors [PIZG87].
OVERVIEW OF ALGORITHM

The Chous/Piegl algorithm fits a rational Bezier curve,
withir a specified tolerance, to a set of points and end
tangents. More specifically, using the end conditionsz, the
control points Py and Py of an interpolating non-rational
Berier are determined for each interior point. These will
vary and must be averaged to produce a single approximating
Bezier.

Next , the curve is converted to a rational form with

endpoint weights of 1. For every interior point,

interpolating weights based on the average P, and P, are
calculated. The variation of the weights indicates the
goodness of fit. 1If most interior points are close to the
average curve, the weights will be similar. The opposite is
true when the points vary greatly in their distance from the
approximating curve.

In the cubic form, the calculated wy and w, both
contribute to forcing the rational form through a specific
point. This coupling makes it difficult to determine
variation solely due to the W) ’s or to the wy,’s. Using
DeCasteljau’s algorithm, it is possible to decompose the
cubic into two rational guadratics and thereby isolate the
welights.

For every point, tolerance criteria is converted to an
acceptable range of weights for the quadratics. A fit with
acceptable error is achieved when there is a ron-empty
intersection of the weight ranges. TAverage ' welghts are
chosen from this intersection and are uszed to combine the
quadratics into a cubic.

It is unlikely that one curve will adequately fit a
large set of points. When tolerance is not achieved, the
curve must be recursively subdivided into segments and
refit. To preserve Gl continuity, the first tangent
dirzction of a segment is set equal to that of the last
tangent for the preceding segment. The final G!
representation merely joins the Bezier 'z with triple knots

and reparameterizes based on chord length.

A cl representation takes advantage of cubic shape
invariance factors. The weights can be adusted to produce
equal tangents between adjacent segments. Though still a
piecewise Bezier, the curve is a Cl parameterization in
cubic B-spline form.

GEOMETRIC OPERATIONS

This algorithm emphasizes the geometric aspects of
curve fitting. It was necessary to develop a large library
»f supporting point, vector, line and plane operations for
this implementation. Complete documentation is located in
rme program listing [(Appendix 8). During this process,
parametric representation proved to be a very powerful and
useful tool when dealing with lines in three space.

Consider a point, vector represzentation of a linz.
(FPosV D, where each is a 3x1 matrix with values for x, y and
- Given two lines in this form, it 1s not readily aprarent
now to determine an lntersection. Now, consider the
scarametric form for the same lines (Figure 3.)

P and

P.

Pz + Vzts
Thece must be equal at the intersection - that is

Pl + let = P2 +V2xs.
Picking any two of the x,y and z components yields two
zquations and two unknowns

Plx + lext = sz t szxs

Ply + Vlyxt = sz + szxs

which can be readily solved.

Figure 2.

Figure 3.

10

Once s and t are known, it is simple matter to
determine the Cartesian coordinates. Often, though, the
parameter value is more useful in subsequent operations. A
planar situation, where a determination of P’s containment
in the ’cup’ defined by PgP3., Tp and T, must be made, is
shown in Figure 4. First, a line defined by P and a vector
in the direction of PoP5 is constructed and parameterized on
s. Sides are created from Py and Tq, and Py and T4 and are
parameterized on t. For containment, P’s line must
intersect. one side with posipivg = and the other with

negative s. If it intersects both with negative s, P i3 to

0}

the ’right’ of the cup and if both are positive, it is to
the *left’. It iz also necessary to decide if P is above
PoPs. For this, construct PyPj, paramaterize PT, on t and
intersect the two lines: T ¢ 0 indicates containment while
an t > O would mean P is telow. Throughout the project,
many situationz were encountered which could be simply and
directly handled with the parametric representation.
END TANGENT CALCULATIONS

The program accepts a set of data points as input. It
must therefore make some assumptions about endpoint
tangents. The case shown in Figure S. subdivided the data
set into three segments and requires tangent estimates at
points 0, 4, 8, and 11. Farin [FARI&8] details several
methods for tangent generation. A Bessel function, which
calculates the slope for a quadratic passing through the

point and it’s two closest neighbors, was chosen for this

11

TO { +
| d
P s+ -
Py P
Figure 4.
4
o« Tl

Figure 5.

Figure 6.

12

implementation. This is not necessarily the best option.
For greater flexibility, the user could be given a choice of
methods and the ability to specify directions at the first
and last data points.

CONTAINMENT

One important discovery, made while testing the
program, is that some sets of points cannot be represented
Wwith a Bezlier curve. A data set with planar tangent vectors
illustrates the point. The convex hull property forces the
curve to lie in the plane defined by the tangents, therefore
out-of-plans interior points cannot be interpolated. This
forced a closer examination of what exactly constitutes a
valid set of data.

The first portion of the Piegl and Chou paper shows
that any point of a non-rational Bezier curve is actually
the result of calculating a point on PnP+ at some t, and
traversing from this point for some distance In the
direction of T4, and then for some distance in the direction
of -T, (Figure &.) The exact distances travelled depend on
the positions of P, and P,. This operation can be reversed
to determine the P, and P, locations and t value for an
arbitrary point. Tangent length is undefined at the
beginning of this process, so the valid point space must
allow a convex hull with P, and P, infinitely far from PP,
(Figure 7.) Thiz results in two semi-infinite strips of
width P4P

3:, emanating from PnF5 and extending out to

infinity in the divection of To and T respectively. A

13

Figure 7

Figure §.

14

point must be able to project onto PgP3 via Ty and -Tg. For
example, first project point P onto the PpP3Tg plane along
the direction T;, and then to the segment PyP5 along the
direction -Ty. The valid state space is a wedge bounded by
the two strips.

In the planar case, the analysis is slightly different.
The wedge collapses onto a subsection of the plane. Figure
8. illustrates the shape of this area as the tangents change
their relative positions. Containment can be verified with
the parametric line operations described in the Geometric
Operations section. This analysis provides some useful
insight into curve behavior, especially for users of systems
which allow interactive manipulations of Bezlers.
For the case where tangents are collinear, this
implementation considers only those points lying on the line
segment PPy to be valid.

¢ second cortainment check is required prior to
calculating weights for a rational Bezier. Figure 9.
illustrates how the averaging process for Pl and P2 may
cause some points to vioclate the convex hull property.
This can be detected in the 3-dimencional case using the
scalar triple product for vectors (a (b x c¢c)). The
physical interpretation of the triple product i3 six times
the volume defined by the three vectors (Figure 10.) The
sign of this volume depends on the order (left- or
righthand) of the operation. Any point can be combined with

each of the four faces of the tetrahedron. The four volumes

15

generated from the scalar triple products, if performed in a
consistent hand, will sum to the volume of the original
convex hull. Interior points will produce individual
volumes whose signs are consistent with the total volume.
Some of the volumes generated using an exterior point will
have the opposite sign.

Again, the planar case was somewhat more difficult to
handle. Checking for containment in a four-sided polygon
nad to be reduced to checking for containment in its four
constituent triangles. This provided correct detection even
in zome of the degenerate plarnar convex hull shapes such at
that shown In Figure 11. As long as the point is inside one
triangle, it 1is in the convex hull. 1Inclusion in a triangle
iz easily verified using parametric line representation.
Comnsider Figure 12. If PPo i3 parameterized on s and P1P-
on t, the intersection muzst satizsfy = ¢ 0 and 0 ¢ ¢t ¢ 1 for
containment.

set of points which violates containment will cause

>

that set to be subdivided. As seen in Figure 13., where B
cannot be contained between A and C, a set of three points
may be invalid. It is subdivided into two data sets with
two points each. However, two points do not provide
sufficient information to locate P; and P, so some
assumptions must be made. In this case, the algorithm
poszitions Py and P, at .4%,PoP3) to avolid overly long or
crossing tangents {Figure 13.) Farin [FARIB8] describes

several other methods.

16

ave P,

a
Py P
Figure 9. Figure 10.
Pl
P
Lt =0
5 -
! —
s+ P PZ
P Py ’
0 L
Figure 1. Figure 12.
. 4AB
47 .4BC
P
T, T
.4BC
_ C
Figure 13. Pe P,
Figure 14.

17

PLANAR AMBIGUITIES

Figure 7. depicts the process used to determine tangent
lengths and the value of t for a point P. For the three
dimensional Bezier curve, this is a unique solution.
The planar situation is shown in Figure 14. There are
several paths from P along the directions of -T, and T,,
each landing at different locations along PoP3. The extreme
cases have a zero length component for one direction. They
define the bounding values for valid t along PoP~- In some
inztances, this range extends outside the interval ¢ ¢ t (1
which is also necessary for a valid representation. Chou and

Piegl recommend using a chord length parameterization:

:POP: t :993:
but it was found that this could generate srroneous values
for ©. This implementation, instead, calculates ths
acceptavls range and places t at the midpolint, guarante=ing
valid t and preventing zero length tangents.

A similar problem was encountered when calculating
weights for rational Bezier (Figure 15.) 1In the three
dimensional case, M is uniquely identified by the
intersection of PoPs with the plane PP{P,. This construct
is not possible in the planar case, however, P must be
barycentric with respect to (that is, within the triangle
defined by) Py, M and P,. An acceptable range for t can be
defined by shifting M along PoP 3. These bounds do not

necessarily correspond those determined for the non-rational

18

Figure 18.
Figure 17.

19

Bezier. Again, this program sets t to the midpoint of the
acceptable range.

In the collinear case, w; and w, are set to zero
thereby eliminating any influence of P, and P, on the shape
of the curve.

Handling these ambiguities turned out to be rather
involved. Figure 16. demonstrates how different lengths and
orientations for P5P; and P,P5 require subtly different
interpretations for valid t ranges. 1In fact, the majority
of time for this project was devoted to understanding these
relationships to guarantee proper special case héndiing.
Planar and linear curves are frequently encountered in
aerodynamic vehicle design, and an acceptable implementation
must correctly deal with them.

TOLERANCE CHECKING

A tolerance chechk 1is performed only after a set o
poirts has met the containment criteria. In thelv sapsr,
Chou and Piegl detail the shoulder point method of errov
conzrol, noting that it provides a very tight fit,
especially for points rnear the ends of a segment. They
briefly mention an ep=zilon disk method and observe that it
invoives more work, but recults in fewer segments. This
program allows either option.

ome interesting propertlies were dizcovered during

[6g]

analysis of the epsilon disk method. A rational quadratic

2crier has the =tandard form

-ty .

For a constant t, this can be restated in the form

C(t) = M(1-v) ¢ Pyv

where
(1-t)2py + t3P, 2A1-t)t
Moz veoomomemee and v = --omsmssmmmmmosmesooooes
(1-1)% + 2 (1-6)2 + 2up(1-23t + t2
Figure 17 illustrates the implications. A stralght line

connecting a point on PoP> to P1 corresponds to a constant t
and the distance along that line (representea by v)
corresponds to the weight of the intersecting curve. This
realization of the epsilon disk method does not necessarily
find the maximum and minimum weights, but rather exploits
the simplicity of the above relations to approximate a
weight range. First, it calculates points at the user
specified distance (epsilon) from P along a line parallel to

AR The weights at these locatlions define the allowabls

[R%)

~eight range. Flgure 18 demonstrates why the epsilon disk
method is less restrictive than the shoulder point method.
The latter technigque measures tolerance at t = .5 where the
distance between curves of differing weights is greatest.
The usual noticn of tolerance is that a point falls
within some specified distance of the approximating curve.
This algorithm checks fit while the curve is decomposzed into
conics, so it is not apparent if the cubic satisfies the
common interpretation of tolerance. To obtain a better feel

for the implications of choosing a particular epsilon value

21

are, the program was run with several types of data. Figure

19. summarizes the results.
Actual vs Specified Tolerance
16000- ..
'14.000 ---
12_00 ..
10.00. ...
B.004-ccercreerecsrcencncrrcsanarecsrsctaticrsessticnsensscasscrvsonsoassasecsssessssaressasyfeccerccccsnceas
.00 b+ eeeneenrerteaiaasrerataesssaseeseeareenessaesneasnsesassesseassnesssesseessesaglonsrassansa o eenenns

[-We oL T e R L R ALYy LT ETTEY plecacrccscnacncccacs

Actual Tolerance/Speclified Tolerance

X0 0} TE SO A P8 eeieeececaarenenacaencnanns

__’
1.00 0.50 0.10 0.01

Specified Tolerance/Ave. Chord Length
-® Circle-r=50 B Aero-fwd 4 Aero-mid
‘¥ Aero-aft -3 Ship-fwd =¥ Ship_mid

Figure 19.

The tolerances in this graph are normalized to average
chord length for the particular data set. It appears that
the actual tolerance 1s approximately equal to the specified
tolerance for epsilons down to about one-tenth of the
average chord length. As tolerance requirements become
tighter, it becomss harder to correlate specified and actual
values. It is important to note, however, that very
stringent regquirements on tolerance are counter to the

desire of fitting many points with minimal segments.

22

SEGMENTATION

Piegl and Chou suggest a binary search to subdivide the
data set when a fit within tolerance is not possible. For
this implementation, some preprocessing was added. Since
space vehicles may have corners, this program allows the
user to define a maximum corner angle. The data set is
processed by calculating the angle between vectors formed by
three consecutive points. When the angle falls below the
maximum, the data set is separvated In two.

Like ‘many other curve fitting =s=chemes, this method does
not always handle inflection satisfactorally. Test runs
(Figure 20.) showed that when an interval with an inflection
narrowed to three points, an unacceptably ’wiggly’ curve
resulted. Fortuantely, this algorithm provides a simple
method to identify infleétion. End tangents orientation
which caussz a Bezler to cross Ppfgy (Figure 22.) signify
inflection. To handle this situarion, the program
successively scans each set of three adjacent point and
splits the data set when inflection iz found. Figure 21.
shows the improvement in the quality ¢f the curve fit as
comparad to Figure 20.
gl anp ¢l CURVE FORMS

This Implementation generates a cl curve, calculating
the Gl form as an intermediate step. Az suggested by Pliegl

and Chou, this is accomplished by plecing the Bezlers with

23

1

Q=

ISR EENAN A RER NN}

[N

(BN NERRR]

[I]

IR RN

L

IENERREN] [)

(AR ENENP RN (SR ERIRE)

fredtatrttaeel

-
[)

,llllllll.l|||lli|ll14ll!ll|‘l|'
)
1

(AR NS R N NN NN

LbLaotirrdrineine

o

(AN N NN NN

Tt IR ERENL RN

"l Y.
lllllll\‘l‘ltln"‘ll
~ T« ""‘3\‘;

vz

,

AR R N N Y N N NN NN RN NN R c’lllll‘Ill"lLIlIlICill!lJlCil'l'll'

3
&

Ed

)‘.v

[EE N RN E NN
2

IICllllll‘&llll.ll‘ll‘li"l"lllLIIIIIII‘IIIJ'III'IIIIlLIIllIIllllI:l\l'l'll
-
z
v}
Z
b
z
z

vireaIneaeey
<

s

+

/

RN NEEEER NN

(K]
e

[N T
[

\

“_LIII‘II

(AN NN
Ly

4
<K
-

J

l‘l ’-’ {l'l L]

LUV 1 S 4

(A RN N Py S N PR R RS YN YA NN Y RN PR R NN NN

|§;

My
-B65. QUJ 2050 50)

(AN RN R N N N A N N I NN N NN RN NN
‘r

-

.
-
EESYRERY
Jia

[S, SRR

1y

v

v
EY
>

s11Etsd

SHER

Ly
1

L
(-40,00,

[]

r
3
*
I
-
A
I
.
I

L I T T T T T T I T O O O O T S T O O T T T I O O I I T I O T O T O T T O O O I O O O O O T e T I A O T T I I I S T I T IO T O I O SO I Y I I T IO I O S A O S

PECES R b PN AT Rt L Tt it b bty

LI I ST S O T IO O T T O O IO U 20 I A O B X I N

(RN NN}

lll‘lllll)'}u)

cd G9-

......._..

N
WOIII
Q
N

‘00°0b~)

m. .mh R
[NEERRNERN] IS ARENERE]

-
-—

i
....:.. N RREREN

2

=

=
4lllllllIl<|lllllll04‘ll0lll|l

.w._.....

Attt aENRRNRM L LMY
(A EERFERERNRERE N
Illllllllﬂllllllill
IR ERRERSERRR RN

[ARAERR N (AR NEN NN R AR N A R R AN RN NN [RENENRNN

YR EKER
NI AR RERRN]
XL EEL LR R RN
TR XREER KLY

ix e g aweal o Bon

-—....._U._....-.-.

P e e ol ey

-...ﬂ....-_.-..J-...._.._.

||JI7!|V|1||JI|I

o e A

-~

[(EEEEFER RSN AR NP RN R

“rg

~oh

A
RN RN RN RN RN

i

.I‘lllt:"llI4Illllllll1llllllll|1

XX RRRRRE; RXEEERE R
(X ENEERP R RN R RN

1l|lllllll'|llllIllll"'lllllll|

WA IINTNEINALEININN
<sraceBNNEALILAILRLE)

(ARANEREENY)

€

(AR ERERRERAN RN ERNE (R ERE NN

o’
£

:/

.,

|Il’l!l"Jl‘ll‘llllJlllIlll

LINENER RN

SYINIIIE

[PYNEERN RN EE R RN
2

INERARE) IR R R AR AR RN RN N R AR N (EEERER NN

1y’

\

'y
--...4\,.-

FOIAN ORI IETIRDIDIRORD

[(RFYENENRER)

(AR ERR NI (AR ERRERER IFEREENARRE SR NN N NN [(RR R R NN RN

lAlllIlIlllAlllllllllJ

.
13
+

L

RN EE AR AR RN AR NN RNREN)

I|lllllll&llllllllllllllll.

(NN IR RN N AN [N RN RN

'|||lIllIODIIIlllllol’lllllll‘illlllIll.lllllll
nu|-vn!xuvnlnlx:ulnlnxuunulxnln

!ll!!'lIl-!l!‘I:'ll&"“]!llll'l!ll’

l
-
-
z
-
-
-
-
.
M
z
-
:
-
-
.
-
b
-
.

RERREREE PSRN R RS R AN R RN
IlIIIllll?lllllllll"llllll..

(AR AR NN AN

|

triple knots parameterized on chord length at the Jjoin
points (Figure 23.) To obtain the cl form, the weights are
adjusted to match tangents at segment boundaries. The
authors present the necessary algebraic manipulations to
perform this, but the following analysis provides a more
"intuitive understanding of the process. Consider the first
segment in Figure 23. Any weight changes must satisy the

cubic shape invariance factors

M2 M
Sjest © i Sright By R
¥ !
In fact, no weight adjustments are necessary for the first
segment . W, is determined from the tangent matching
concdition which, when based on a chord length

parameterization evaluates to

(X NEHXN
/

On the next segment, wWg, and then w, are determined using
the shape invariance factors. W5 is adjusted to match the
tangents. The process proceeds in a similar fashion for the
remaining segments.
EVALUATION OF THE ALGORITHM

This algorithm’s purpose is data reduction. Several
measures. of merit were developed to help guantify its
performance. The first, m/m., measures data reduction. It
comparesz number of segments generated (m) to number of

segments if & plecewlise cublec were fitted to the data (mc).

26

Figure 23.

27

Figure 24.

Cl continuity is obtained with a cubic fit in the following

manner :

1. Define endpoint tangent for initial point

2. Using this tangent and three points to
calculate a cubic

3. Calculate resulting tangent at third point

4. Repeat steps 2. and 3. until done.

The result, as seen in Figure 24., is m. = (n-1)/2 where n

C

is the total number of points. Since this method would
require preprocessing for corners, appropriate adjustments

have been made in any comparisons. M/m. will vary with

(o

epsilon; greater tolerance will require fewer segments.
Figure 25. shows data reduction for a variety of curve types

and tolerances.

Data Reduction (over cublc fit)
Epsilon disk method

Q) qreermarrareaseseasatestanesotarsarontamrsiioatotettostettsestsnttttsanansrsnnenamnansrensaasencansosuns
BO 4 -rareeremmmraaeaacieeerranrraessnrn e sterat s sttt g W T T s e s s e s s st s s s nosonnanes
40T S D G LT TLTETITRTPE

GO $--cerecrcarecioctcroancincncanniegiicioctcrtocsurrancaretanscacncarestasccisancivestnstnosreoonsssonanane

[T T <

P10} TR TTTTS Ty SO PP

% Reduction In segments

SO e,—..’.._,..r.............-.................................::::::::;;;::::::.-.......O
N :::m"m""ﬁ:xmumuQ:m:ZIZIIZZ
- et . .

T} OO OP PO
0.1 0.5 1

Tolerance (chord lengths)
-® Circle-r+50 M- Aero-fwd 4 Aerc-mid
‘M- Aero-aft ¥ Ship-fwd % Ship-mid

Figure 25.

28

AR RN R N

-
n
vl

1ri

r

[N I |

Trisenr L

? -
[(RENEEE IRENEEN]

!
|
}

!

t
)
H

i
[NEENE)
t

IR NN o EN RN RN N

SRR R RRSERERE

|
Tororsenevnendinened

|
|
|
|
]

[N RN NEEN N

(AN REREN}

[N EN N NN

EEREEELEXE

N RN NN

|
1

”l:lllllllIlll\.l!'lll|ll!ulllil‘l‘llAllllOIIIl

-
-

vy ey

llHOIll.lAllllllllllﬁllilllll
lf,u:-.

-
-

[EE RN I RN A R R AL R RN NN

- e
rivienait e

at]

rtrTrierTEEERENYLY

‘01Illl"lllOOll’llb-llllil‘!lll-‘.ll'l"

)

f.200 00

IV BN PLD

reternednaocasnnaen

e

TR RN ARE

HHQIIHIOIIHIHHOIHIIIIl.'H[Hll'llllllJllHIHIIICIHOIH!IIOlilllllllllll!',l‘

1

1300

RN R R AR SRR R R R R R R RN RF RN NERRER X

XL RRrIERNIRIRR

[RN

(AR AR R "R AR R R AR R RN YRR R

-
-

N

-
-
-

i

[BERER]

lllllllll'r_‘.ll‘.lll|l!|0cIltll‘llll'lllllllllll

Sarennarmrinterisy sty

srstae

»
.

g

-

LR

[RRERA]

-

E AR R R RN R A R N NN RN A NN N RN SN

[RN}
*

o

llllllIllll:ll!llllllllL!l'lIllll’Lll‘

-

[P N RN

(RN S N RN R A R FE AN RN RN}

1491888

A RN RSN AR

PR R A R R R RN R R N R R N R R N N R A R R N N R RN R NN AR NN NN

'Illl'l':l

[N RN
<

4

A
"

Lll'llllJlllllll

¥

-
-

LL)

R RRRRRERE RN NS R R A R RN RN RN NN R NN R R

ta0080

trI11?

1980008

[(EEREEERRY]

(RN R R R RN NN

i

INEEERERER]

(RN 4R

}

RN NNRRND SRRNRNN

’3\

[(ERSRERA]

S

-

D)

-
-

s st

Iy
P

.00, =1,

A Coons

3T,

i

- 100,00, - 100

(REENRRED SRR
| :
* -

!

(

I

PEEREEENENNEN]

ttiyrnate TrEv s

;
.
-
C
r
C
v
C

NP EERE RN NN
3

RN N NN NN N]

FeL i AR EINEL S Ftltentns TES A1V EABRE0 000D

MG

ERRR RN NN NN NN FER NN NN
;!lll:lllilll"lt

(NN R R R R RN R R RN RN R s SN RRRRRRER €Y
(RS RN RN AR RE R R RN AR R R R R "R R RRRE RS EIRRY

1

IR NN N NN T RN]

I LI L I T T T T T T VO T T N R U O O O A B A Y

[N EENRS RN sEEv RS

MR NS R NS N NNV N NN NN

IRR NN ERNNEN]

’s

IOllllllli!ll}llll!ll

'
“

Q

-

[

AR N N N I NN NN N NN N]
[

.

reteerttrstrery

-
-

ryztet

1.00)

-
-
-

-
-

?ﬂlga

)

W

MR N N AN A RN RN NN RN

RN R AR NN NN

s
RN}
0

ll'lll:lll:? 1

-

L
R

b

R s N g N N R N L R RN NN RN R]

Torvvtrrvaann Lo
. {

[AN ENN]

1ttt IR ENENER)

d

(- f00.00, - 100. 00,

PHOP s a0ttty

[ENNEE RN NN

lllll||l]llllll||

L O T o LI 2 T O T I S T T T O S O I O T IO O O O O I I T T T T O T T O W o O O S I O B O}

(AR NN AN N N N A NN AN E RN N TN N]

LI T I O I I B IO I O I T I I A I N N}
SRR NN RN EEENRR NN RN NNNY
REEER R EEERRRRERRFSRRE

[N N N s

[REEREER NN

For a relative tolerance of .1 chord length, it appears
that the number of segments needed to describe the curve can
be reduced anywhere from O to 30% over a simple cubic fit.
Figures 26. and 27. illustrate the tradeoff between
tolerance and data reduction. Upon closer, inspection of
the data, the curves which had minimal data reduction tended
to have many inflection points. The small data reduction is
actually the result of a tradeoff for curve 'quality’ in the
form of better inflection-handling. The quality of the same
curves fit with consecutive cubics was not investigated, but
they will most likely exhibit oscillation at inflection
points.

CONCLUSIONS

Regarding the implementation, for curves without a lot
of inflection, it offers the potential for significant data
reduction. With tolerances of 10% of the average chord
lengtin, data reductions of 15% over a simple cubic flit are
realistic.

The purpose of a master’s project is to provide
practical software engineering experience. Several
important conclusions can be drawn based on the experience

gained during the implementation of this algorithm including

1. Speclal case and ervor handling comprise a large
portion of developling practical software. Dealing with
these issues constituted the bulk of this project. This

program was by no means piece of commercial quality

31

software, but to be even marginally useful to the
engineers at NASA, errors and special cases had to be

considered.

Curve and surface fitting is somewhat of an art.

Often, a visibly pleasing fit is an indication of the
quality of fit, and there are many methods available to
manipulate a curve into a visually pleasing form. This
does not negate the need to understand the mathematics
behind these methods however . Familiarity with a
variety of curve and surface fitting techniques
provides a programmer with the ability to intelligently

aclapt his or her application to the problem at hand.

Many of the relationships between points, weights, and
a resultant curve can bz arrived at through algebraic
manipulation of the parametric curve eguations.
However, these relations are often much more intuitive
when approached from a geometric standpoint. They are

also easier to program using geometric operations.

RECOMMENDATIONS FOR FUTURE WORK

1.

Extend this algorithm to surfaces. This will require
defining one or several methodolgies for how the
surface will be divided into patches. It is not likely
that several consecutive curves will be fit with equal

numbers of equally sized segments. Perhaps a sort of

32

reverse stategy, where the user defines the size and
location of patches and the program returns actual

tolerances, may be necessary.

Analyze a different curve representation, (NURBS, as
opposed to cubic Bezier) for data reduction potential
in a similarly geometric fashion. This would entail an
extensive literature search to see if similar work has
already been done. A data reduction method using a
NURBS rep would have c2 derivative continuity which is

useful in aerodynamic vehicle analysis.

33

REFERENCES

CHOUS2 Chou, J. J. and L. A. Piegl, "Data Reduction Using
Cubic Rational B-splines," IEEE Computer Graphics &
ppplications, Vol. 12, No. 3, May 1992, pp 60-686.

FARISE Farin, G., Curves and Surfaces for Computer-Aided
Decsign. Academic Press, New York, 1988.

Feiner and J.F. Hughes,

FOLEYD Foley, J.0., A. van Dam, S.K.
comouter Graphics, Principles and Practice, Addison-
Wezley ., Massachussetis, 1990.

KREY79 Kreyeziag, E.,
Wiley & Sons,

Advanced Engineering Mathematics, John
N

ew YOrk, 1979.

CTFGR7 Eiegl, L. oand W, Tilier, "Curve ang surfane

soctroetion usirag vational Se-crolines,” Comontaer
Slcied Desian, Vol . 12, Mo. %, Nov 1387. pp 435470,

34

AIAA-92-4774
Structural and Loads Analysis of a
Two-Stage Fully Reusable
Advanced Manned Launch System
James C. Robinson

Old Dominion University

Research Foundation

Norfolk, VA

Douglas O. Stanley

NASA Langley Research Center
Hampton, VA

Fourth
AIAA/USAF/NASA/OAI
Symposium on Multidisplinary Analysis
and Optimizations
September 21-23, 1992 / Cleveland, OH

For permission to copy or republish, contact the American institute of Aeronautics and Astronautics
370 L'Enfant Promenade, S.W., Washington, D.C. 20024

STRUCTURAL AND LOADS ANALYSIS OF A
TWO-STAGE FULLY REUSABLE
ADVANCED MANNED LAUNCH SYSTEM

James C. Robinson*
Old Dominion University Rescarch Foundation
Norfolk, Virginia 23529

Douglas O. Stanlcy**
NASA Langley Rescarch Center
~Hampton, Virginia 23681-0001

Abstract

The conceptual design of a rockct-powered, two-stage
fully reusable launch vehicle has been performed as a part of
NASA's Advanced Manncd Launch System (AMLS) study.
This paper summarizes the structural design and loads analy-
sis of this two-stage fully rcusable launch vehicle. The method

used to determine the structural weights consists of generat-

ing a finitc-element model for each vehicle, sclecting a set of
critical loading conditions, dewcrmining the loads on the model
caused by those conditions, detcrmining the model responsc
and changing the sizes of individual clements 1o obtain a safe
structure. The integrated loads on the two-stage vehicle were
obtained from a three-degrees-of-frecdom trajectory analy-
sis.

Nomenclature
Al/Li aluminum lithium
AMLS Advanced Manncd Launch System
APAS Acrodynamic Preliminary Analysis System
DOF degrees of freedom
EAL Enginccring Analysis Language
ET extermal tank
FEM finite-element model
g acceleration of gravity at Earth’s surface
(32.2 fusec?)
Gr/Pi graphite polyimide
KSC Kennedy Space Center
LH2 liquid hydrogen (at 4.43 Ib/f13)
LO2 liquid oxygen (at 71.2 Ib/f13)
PLS Personnel Launch System
POST Program to Optimize Simulated Trajectories
q dynamic pressure, Ib/ft2

*Aerospace Engineer, Associate Fellow AIAA.
**Aerospace Engineer, Space Systems Division, Member AIAA.

Copyright©1992 American Institutc of Acronautics and Astronautics,

Inc. No copyright is asseried in the United Statcs under Title 17, U.S.

Code. The U.S. Government has a royalty-free license to exercise all

rights under the copyright claimed hercin for Govemmental purposes.
other rights are reserved by the copyright owner.

SMART Solid Modcling Aerospace Rescarch Tool
T/W thrust-to-weight ratio

a anglc of attack, degrees

AV incremental velocity, ft/sec

Introduction

In recent years, NASA has begun studies to define op-
tions for the next manned space transportation system. The
goals of this broad NASA effort are to define systems that
meet future mission requircments of transporting personnel
and payloads requiring a manned presence, while emphasiz-
ing improved cost-effectiveness, increased vehicle reliability
and personncl safety, and large operational margins. Three
approachcs are being examined for satisfying future manned
launch nceds. One approach is the evolution of the current
Space Shuttle. Another is the definition of a small Personnel
Launch System (PLS) for carrying people and small amounts
of cargo to and from space. The third approach is that of a
new, more operationally efficient Advanced Manned Launch
System (AMLS) to replace the present Space Shuttle.!

The goals of the AMLS study are to examine systems
that provide routine, lower-cost manned access o space. Tech-
nologies and system approaches are being studied that will
contribute to significant reductions in operating costs relative
to current systems. A wide variety of vehicle types and pro-
pulsion systems has been examined in the conceptual and pre-
liminary design of next-generation manned launch systems
as a part of the AMLS study. These include single-stage and
two-stage systems, systems utilizing rocket and airbreathing
propulsion, and systems with varying degrees of reusability.
For the assumed flight rate, payload class, and technology
rcadiness, a rocket-powercd, two-stage fully reusable system
was selected for detailed study. This rocket-powered, two-
stage vehicle would be expected to have a 2005-2010 initial
operating capability in order to gradually replace an aging

Shuttle fleet. Hence, a 1995-2000 technology readiness date
has been assumed to represent normal growth (evolutionary)
technology advancements in vehicle structure, propulsion, and
subsystems. Although many of these assumed technological
advancements contribute to significant weight savings in the
vehicle, a portion of this weight savings has been applicd to
aspects of vehicle design that enhance the operations, reli-
ability, and safety factors of the system.

This paper summarizes the structural design and loads
analysis of this two-stage fully reusable launch vehicle. The
method used to determine the structural weights consists of
generating a finite-element model for each vehicle, selecting
a set of critical loading conditions, determining the loads on
the model caused by those conditions, determining the model
response and changing the sizes of individual elements to
obtain a safe structure. The integrated loads on the two-stage
vehicle were obtained from an optimal three-degrees-of-free-
dom (3-DOF) trajectory analysis. ’

Analysis Methodology

The integrated structural design of next-gencration rocket-
powered launch systems requires proper consideration of the
effects of the vehicle gcometry, trajectory, and aerodynamics.
All of the geometry and subsystem packaging is performed us-
ing the NAS A-developed Solid Modeling Acrospace Research
Tool (SMART) geometry package. SMART is a menu-driven
interactive computer program for generating three-dimensional
Bezier surface representations of acrospace vehicles for use in
acrodynamic and structural analysis.3 All of the trajoctory analy-
sis is performed using the 3-DOF version of thc Program w0
Optimize Simulated Trajectorics (POST). POST is a gencral-
ized point mass, discrete parameter targeting and oplimization
program which allows the user to target and optimize point mass
trajectories for a powered or unpowcered vehicle near an arbi-
trary rotating, oblate planct.4 The Acrodynamic Prcliminary
Analysis System (APAS) is used to dctermine vehicle acrody-
namics. In the subsonic and low supersonic speed regimes,
APAS udilizes slender body theory, viscous and wave drag
empirical techniques, and source and voricx pancl distributions
to estimale the vehicle acrodynamics. At high supersonic and
hypersonic speeds, a non-interference finite-element model of
the vehicle is analyzed using cmpirical impact pressure meth-
ods and approximale skin-friction methods.

The method used for structural analysis and weights de-
termination includes geometry modeling, finite-element mod-
eling, loads generation and application, finitc-clement analy-
sis, element sizing W0 meet loading conditions and structural

criteria, and structural element weight summation, organized
into an iterative process. This process is illustrated in Fig. 1.
The external shape of a vehicle configuration can be modcled
by discretizing a SMART gcometry into a finile-clemcer:
model (FEM) through the use of PATRAN.S For relativel:
simplc geometries, a FEM can be constructed directly, Expe-
rience is then used to initially determine and model the inter-
nal structure of the vehicle. Physical and material properties
of the structure arc included in the FEM of the vehicle. Mis-
sion static-load cases arc assembled from critical POST iner-
tial loads and APAS aerodynamic loads. The completed fi-
nite-element structural model with physical and material prop-
crtics, external loading, and structural arrangement is then
ready for analysis.

o 3-D solid geometry modeling
« Limited finite element modeling SMART
capability
{ POST
« Finite eilement modeier (inertial loads)
» Static load casa definition PATRAN
» Physical & material properties APAS
{ {aerodynamsc
loads)
« Finite element modeler EAL
EZDESIT

« Elament sizing analyzer >

Figure 1. Structural analysis methodology.

The Enginecring Analysis Language (EAL)7 is used for
the finilc-element analysis. The finite-element analysis pro-
duces resultant structural loads due to the loading conditions
for each elcment. The responses determined by EAL for the
loading conditions include displacements and reactions,
stresses, buckling loads and strain-energy densities. The re-
sullant loads are indicative of the load paths of the vehicle
structurc. These loads are applied to the EZDESIT program8
to size the finite-elements (bars, planar beams, and plate ele-
menis) to withstand the loading conditions as shown in Fig.
2. The cross-sectional arcas of bar elements are sized. The
cap cross-sectional arcas and web height and thickness are
sizcd for planar beams. The plate element design variables
depend on the type of construction chosen. Isotropic and com-
posite honeycomb, hat-stiffened, and membrane panels along
with corrugated web elements can be sized by the code. For
cach elcment, a stiffness matrix and a construction geometry
(lamina gage, honeycomb core height, etc.) are specified, and
cach element has an initial thickness equal to the minimum

ORIGINAL FACE IS
OF POOR QUALITY

PANEL STRESS PANEL WEIGHT
RESULTANTS & DIMENSIONS
t

My T

Wa At X
M = moment load = density

- A = area
\Ny N = normal load Lo Mickness

SI{ZING CRITERIA
» Minimum gage

« Swbility critcal

« Yield strength

« Ultimate strength

Figure 2. Panel sizing methodology.

gage value. The elements are sequentially checked for failure
due to panel buckling, yicld, and ultimate modcs for cach load-
ing case. If failure occurs, the element dimensions are in-
creased until the indicated failure mode is satisfied. The geo-
metric sizing of the panel alters the stiffness properties. Thus,
the finite-element analysis and geometry sizing are itcraied
until convergence is achieved.

Resizing of structural elements to incrcase the global
buckling strength of the structure is accomplished after
completion of the strength sizing. Local buckling constraints
are satisfied in the strength sizing in EZDESIT. The method
uses EAL-generated element strain-cnergy densities to cal-
culate scaling factors that are applicd to EZDESIT element
dimension files. The global-buckling sizing mcthod is de-
scribed in Appendix A. Scaling factors are calculated using
values for the first buckling mode of the loading conditions
which caused global buckling in the strength-sized structure
below ultimate load. This method provides a satisfactory struc-
ture but does not optimize the solution. ‘

The dominant load case for each elcment is determined,
and its corresponding dimensions, weight, and failure modc
are obtained. The results of the sizing can be reviewed in two
different manners. The resulting weights can be grouped by
failure mode, element type, load case, and component, or the
EZDESIT output file can be read into PATRAN and the ele-
ment properties displayed on the model. Those properties in-
clude internal loads, dominant load case, failure modcs, and
unit weights. Highly stressed arcas may indicate a need for an
alternative structural design. Resultant loads arc reviewed by
the structural designer, and the necessary changes o the struc-
tural arrangement are made by altering the FEM and
reanalyzing the structure.

Yehicle Concept
Missi Guideli

The design refercnce mission for the two-stage fully re-
usable AMLS vehicle calls for the delivery and return of up
to 40,000 Ib of payload from Kennedy Space Center (KSC)
to Space Station Freedom (220 nmi, 28.5° inclination) along
with a crew of ten (cight passengers and a two-person flight
crew). A three-day flight duration with an in-flight margin
was budgeted (35 man-days). The payload bay dimensional
rcquirements were a 15-ft diameter by 30-ft length. On-board
propeliant would provide an incremental velocity (AV) of 1350
fy/scc following launch inscrtion into a SO x 100 nmi orbit.
Landing would nominally be at the KSC launch site.

The AMLS vehicle was designed with a crew escape ca-
pability characterized by the jettisoning of the crew module
using high-impulse solid rocket motors with inflight stabili-
zation followed by the deployment of a parachute system for
landing. In addition, both the booster and orbiter have single-
cnginc-out capability from lifti-off for added reliability and
mission success. A 15-percent dry weight growth margin was
also allocated. The orbiter was required to have a 1100-nmi
crossrange capabilily to allow once-around abort for launch
to a polar orbit and to increase daily landing opportunities to
sclected landing sites. All trajectories for this vehicle have
maximum acceleration limits of 3 g and normal load con-
straints on the wings equivalent to a 2.5-g subsonic pull-up
mancuver.

Vehicle Confi .

The AMLS vehicle, shown in Fig. 3, is a two-stage, par-
allel-burn design that consists of a manned orbiter and an un-
manncd winged booster that stages at a Mach number of 3
and glides back to the launch site. Propellants are crossfed
from the booster to the orbiter during the boost phase so that
the orbiter’s propellant tanks are full at staging. Both the
booster and orbiter usc liquid hydrogen and liquid oxygen as
propellants. The orbiter also employs a detachable payload
canister concept to allow off-line processing of payloads and
rapid payload integration. Both the booster and orbiter are
control configured and employ wing tip fins for lateral con-
trol. Integral, reusable cryogenic propellant tanks are used on
both the booster and orbiter. Dual-lobed tanks are used on the
orbiter (o allow the external payload canister to be easily in-
tegrated and for aerodynamic and reentry heating consider-
ations. As shown in the figure, the total vehicle dry weight is
343,000 1b, and the gross weight is 2,604,000 Ib. The total

1iftoff thrust-to-weight ratio (T/W) of the vehicle is 1.3. The
reference AMLS orbiter utilizes five light-weight derivatives
of the Space Shuttle Main Engine for main propulsion, whereas
the reference booster uses five of the same engines with a
lower area ratio nozzle. These engines arc throitled to 80 per-
cent of rated thrust for normal operation to provide single-
engine-out capability on each stage and to increasc individual
engine life. Both the booster and orbiter utilize an intcrnally
stiffened ring-frame construction with carrier panels and du-
rable metallic thermal protection system tile sections attached
to insulated standoffs where approprialc.

Tunnel & fairing - LO2 wnk IEH‘I; 30!1
Jettsonable crew moduie . oay
LH2 ank X
Y ~cstiiyl ——
 Vertical takeoff ' < L —
149 1t
o LO2AH2; SSME I
dertvative enginas
GLOW: 2,804 Kb Elow
« Unmanned Dry wt: 343kib . ons
ghdeback boosier;
Mach J staging
I>— Body fNaps
« Parailel bum /
with crossieed K
LO2 tan LHZ tank
« Extomnal payload
canisier with
aerodynamic shroud Tip fin controilers

Figure 3. AMLS two-stage vehicle configuraiion.
Structural Configuration

The construction of the orbiter and booster of the AMLS
utilizes near-term technology. The main propeliant tanks were
assumed (o be welded aluminum-lithium (Al/L1) 2095 struc-
tures that were machined from plate. External foam insula-
tion is used on the surfaces requiring insulation because in-
ternal cryogenic insulation was judged to be higher-risk. The
cryogenic tanks and wing carry-through structurc are scpa-
rated as much as possible 1o maintain relative simplicity in
the tank construction. Because of the lack of cxpericnce in
the use of reusable cryogenic tanks, the AMLS design phi-
losophy maintains simple structural arrangements, stress pat-
temns and temperature distributions that may contribute to
improved tank life.

Boaster Description. The structural arrangement of the
booster is shown in Fig. 4. The tank construction of the booster

is similar to that of the External Tank (ET) of the Space Shuttie
system except for the use of the more advanced Al/Li 2095
material. The liquid oxygen (LO2) tank has a flat front bulk-

Ak
T

LO2 tank LH2 tank
/— y4smmi

T i z + a
-

I 1s. NS

1
{

1\
)Y

i
1

T
I
1
1
\
\

Figure 4. Booster finite element model.

head, an ogive forward section, a cylindrical body and an el-
lipsoidal aft dome similar 1o the ET LO2 tank. The Al/Li 2095
intertank section is dry and contains the forward landing gear
and support for the forward connection to the orbiter. The
liquid hydrogen (LH2) tank is cylindrical with fore and aft
cllipsoidal domes. It requircs more internal stiffening than
the ET LH2 tank because it is a primary compression (and
bending) load path on the launch pad. The cryogenic tanks
and intertank section are stiffened with intermal A/Li 2095
ring frames and stringers. The cylindrical section behind the
LH2 wnk is denoted as the aft skirt. [t is constructed of a
short section of Al/Li 2095 10 alleviate thermal distortion prob-
lems and a longer scection of graphite-polyimide (Gr/Pi) hon-
eycomb that will withstand booster operating temperatures
without insulation. It supports the thrust structure of the pro-
pulsion system and contains the primary wing attachments.
The wing is also constructed of uninsulated Gr/Pi honeycomb
with a non-structural titanium leading edge. The primary land-
ing gear support is attached to the wing. The wing carry-
through is attached to heavy frames in the aft skirt at the front
and aft spars. The front of the wing root rib is attached to the
fusclage by a vertical link. The AVLi thrust structure is a coni-
cal shell in the upper portion with a flat shelf or beam sup-
porling the three lowcer engines without auachment to the wing
box or aft LH2 tank dome. There is a non-structural Gr/Pi
acrodynamic fairing between the wing and the fuselage.

Orbiter Description. The orbiter (shown in Fig. 5) dif-
fers structurally from the booster in that it employs dual-lobed
main propellant tanks, a long, canted conical nose and an aft-
located LO2 tank. The nosc of the orbiter is carbon-carbon
supported by an insulated Gr/Pi shell. The forward landing
gear is in the Gr/Pi honcycomb nose section. The LH2 tank is
a welded Al/Li 2095 structure with AYLi 2095 extensions on
cither end to provide thermal compatibility with Gr/Pi struc-

L0

LO2 tank

_}_ZZZH 1111

<

3

4 |

|
0
L40
184]
14
LN

AEEAY
Ll
111

=
=
=
-
=

Figure 5. Orbiter finite element model.

ture. The forward attachment between the orbiter and the
booster is contained in the LH2 tank. The intertank structure
is constructed of Gr/Pi honeycomb. The LO2 tank is con-
structed of AVLi and carrics some primary thrust loads. The
Al/Li thrust structure in the orbiter is a truss structure design.
Supports for the truss arc attached o the longerons in the LO2
tank at the top and bottom of the web that divides the two
lobes and a heavy longeron that reacts the thrust loads trans-
mitted from the booster and extends into the LO2 tank lower
skin. The fuselage section behind the LO2 tank is again de-
noted as the aft skirt. It is constructed of a short scction of Al/
Li 2095 to alleviate thermal distortion problems and a longer
section of graphite-polyimide honeycomb. It supports the
thrust structure of the propulsion system and contains the pri-
mary wing atachments. The orbiter wing is also constructed
of Gr/Pi honeycomb with a non-structural advanced carbon-
carbon leading edge. The primary landing gear support is at-
tached 1o the wing. The wing attachment is similar to that in
the booster except that there is a forward becam through the
intertank area. The orbiter also has non-structural Gr/Pi acro-
dynamic fairings between the wing and fusclage and between
the lobes of the LO2 and LH2 tanks. These fairings support
the thermal protection system but must be attached to the tanks
in a manner that will absorb the thermal shrinkage of the cryo-
genic tanks while maintaining the integrity of the thermal pro-
tection system.

Resul 4 Discussi
Irai A palysi

The nominal POST ascent trajectory for the two-stage
fully reusable vehicle is presented in Fig. 6. As shown in the
figure, the initial T/W is about 1.3. As propellant is burned,
the vehicle accelerates until it enters the transonic flight re-

gime at high dynamic pressure (maximum of 700 psf) at about
60 sec. The large increase in drag at this point causes the rate
of acceleration to decrcase for a short period of time. The
vehicle then accelerates until staging occurs at Mach 3 at an
altitude of 71,000 ft. Vehicle trim and control during ascent
is provided by gimballing of the main engines of both ve-
hicles. Because the booster is empty of propellant and the
orbiter is fully loaded at staging, engine gimbal angles of up
to 10 degrees arc required to trim the configuration. This leads
to large thrust loads (up to 2.0 MIb) being transferred between
the vehicles and complicates the vehicle structural design. The
unmanned booster then separates from the orbiter and per-
forms an unpowered glide back to the launch site. These stag-
ing and glide-back maneuvers are described in more detail in
reference 9. The orbiter continues to accelerate until the lon-
gitudinal acceleration limit of 3 g is encountered at 300 sec.
The engines are throttled to maintain this limit until orbital
insertion occurs at 420 sec into a transfer orbit with a 50-nmi
perigee and 100-nmi apogee. Further details on ascent trajec-
tories for the AMLS vehicle are contained in reference 10.

30

25

Accelsration,

20

Time, sec

Figure 6. AMLS ascent trajectory.

The nominal POST cntry trajectory for the fully reusable
orbiter is presented in Fig. 7. After performing a deorbit bumn,
the vehicle reaches nominal atmospheric interface (altitude of
300,000 ft) at a relative flight path angle of -1° and an angle of
attack of 30°. Throughout the majority of the entry profile, the
angle of attack of the orbiter remains between 25° and 30° to
allow hypersonic trim, maximize lift-to-drag ratio, and mini-
mize lee-side heating. POST was employed to determine a tra-
jectory that minimized the maximum stagnation-point heat rate
during entry while still achieving sufficient crossrange (1100
nmi) to allow for a once-around abort from a polar orbit. Atan
altitude of 260,000 {t, the equilibrium stagnation point heat rate
(bascd on a reference sphere with a 1-ft. radius) reaches 65 B/
fi2-sec. The bank angle of the vehicle is then modulated be-
tween 0° and 90° for about 1700 sec to hold the heat rate below

Figure 7. AMLS eniry trajeciory.

69 Bu/ft2sec. This was found 10 be the the minimum value
that the maximum stagnation-point heat rate could be limited to
and still achieve the desired crossrange. When an altitude of
200,000 ft is reached, the bank angle gradually decreascs, and
the vehicle preparcs for lerminal encrgy management maneu-
vers. Using this approach, the orbiter is capable of about 1300
nmi of crossrange. This entry analysis is used to size the non-
structural thermal protection sysicm, which is sized (0 assure
that the underlying vehicle structurc remains within reasonable
temperature ranges to ensure adequate material strength,

Finite-El Model C .

The results from the APAS aerodynamic analysis (ve-
hicle lift coefficient, drag coefficient, and pitching moment
coefficient variation with Mach number and anglc of attack)
served as inputs 10 the POST trajectory analysis. The inte-
grated loads on the vehicle due to thrust, gravity, and aerody-
namic forces were then obtained from POST for a number of
critical loading conditions. APAS was also used to help de-
termmine the distribution of the acrodynamic loads on the ve-
hicles. The critical loading conditions sclected include:

1) alift-off condition with impact due to the sudden
release of vehicle hold-down restraints

2) a pre-launch condition without intemal tank
pressurization to simulate on-the-pad conditions with
ground winds

3) amaximum qo (dynamic pressurc multiplied by
angle of attack) condition on the booster

4) acondition just prior to staging when the maximum
thrust is transmitted 10 the orbiter

5) a Mach-3 separation maneuver on the orbiter

6) a2.5-g subsonic pull-up maneuver

7) a2.0-glanding impact

8) amaterial minimum-gage condition

The LO2 tank limit pressure utilized in the study was 22
psia, with an ultimate pressure of 33 psia. The LH2 tank limit
pressure utilized in the study was 34 psia, with an ultimatc
pressure of 51 psia. In general, design ultimate loads werc
utilized of 1.5 times the applicd loads. However, to increase
vehicle reliability and provide longer life, it might be desir-
able 1o increase the operational load margins further. Increas-
ing operational load margins could allow lifetime vehicle cer-
tification, similar to commercial airline practices, which would
greatly reduce ground operations manpower requirements.

Symmetric finile-element models of both the orbiter and
booster vehicles were constructed for the study. The model
of the booster (Fig. 4) has approximately 1250 joints and 1700
elements. The model of the orbiter (Fig. 5) has approximately
1600 joints and 2800 elements. The models were analyzed
scparately with constraints located at the attachment points
on the orbiter. The connection between the vehicles is almost
statically detcrminate, and rcactions on the models were
checked against inertial forces calculated from the POST tra-
jectory program.

Each skin was modcled with a two-dimensional element
having honecycomb sandwich properties, which is the most
reliable two-dimensional element with membrane and bend-
ing stilfness in EZDESIT. The unstiffened skin in the tank
domcs was modcled with a very shallow core structure. Be-
causc all of the skin thickness in a sandwich is effective in
both directions, the stiffened skin in the tank walls was mod-
cled with a core structure of sufficient depth to provide equiva-
lent weight for the necessary longitudinal suffeners in a T-
stiffcned skin,

Small frames were modcled with planar beam elements.
Since the skin elements are large (~30 in. long), and skin cur-
vature reduces the effcctive skin width actually contributing
to the flange area, these elements were centered on the skin
joints to prevent large amounts of skin area from contributing
to the outer flange stiffness of the frame. Large frames were
modeled with quadrilateral elements for webs and with rods
for interior flanges. Frames are located at every skin joint in
the tank and, consequently, contribute to hoop strength as ef-
ficicntly as the skin in the model. Additional core weight was
included to compensate for this situation.

Tank pressure loads were modeled as distributed loads
on the interior of the tanks. An approximation was made in
the modeling of liquid-pressure-head loads by applying the
loads for partially full conditions as pressures caused by a
reducced-density liquid acting on the complete interior of the

tank. This produces the correct maximum préssure but pro-
duces somewhat higher pressures in other areas.

Finite-EI Model Analysi

The booster and orbiter finite-element models were ana-
lyzed using EAL for the previously mentioned load cases.
The models were then resized using the EZDESIT program
to satisfy strength criteria. Four iterations of the analysis and
resizing procedure were carried out to obtain a satisfactory
strength design. The weights calculated by EZDESIT contain
a user-specified non-optimum factor or net-weight multiplier
to approximate the weight of structural details not modeled
in the finite-element model. The non-optimum factor used in
this study is 1.5, thus increasing finite-element model weights
by 50 percent. Linear bifurcation buckling analyses of both
models showed that they buckled below design ultimate loads.
The models were resized iteratively using the procedure dis-
cussed in Appendix A 1o increase the buckling strength so
that it equaled or exceeded the design ultimate loads.

Booster Analysis. The strength-designed element
weight-per-unit of area is shown in Fig. 8. Most of the ve-
hicle surface skin weighs less than 2 psf. However, frame and
longeron weights are not included in these weights. Two psf
of AV/Li structure is equivalent (o an average skin thickness
of 0.099 in. of AVLi plus the 50% non-optimum weight. In
the LH2 tank, the ring frames add additional hoop material
equivalent to an average skin thickness of 0.033 in. of mate-
rial plus the 50% non-optimum weight. The value of internal
pressure multiplied by the radius of the LH2 tank is approxi-
mately 8000 1b/in.

The sums of the strength-designed weights caused by the
different load conditions are shown in Table 1, and their dis-
tribution is given in Fig. 9. The load case numbers correspond
1o those described above in the “Finite-Element Model Con-
struction” section. Load case 1, lift-off with the thrust impact
due to instantaneous hold-down release, sizes elements that

Table 1. Booster weight controlled by load case.

Load Case Waight, Ib
Lift-oft with impact 28,232
Unpressurized tanks on pad ' 270
Max qa 7500
Maximum thrust transfer 10,674
Subsonic pull-up maneuver 1,326
Runway bump 270

contribute to over half of the weight This loading condition
instantaneously removes a restraining force equal to 30 per-
cent of the vehicle’s weight. Alleviation of this impact load
may be beneficial, but no estimate of the resulting weight sav-
ings has been made.

The sums of the strength-designed weights controlled by
the different failure conditions are shown in Table 2. The small
increment added to satisfy buckling constraints (not shown in
Table 1) is also shown. The failure condition controlling the
sizing of various elements is shown in Fig. 10. The mini-
mum-gage-sized structure, which constitutes about 20 per-
cent of the total weight, is primarily in the lightly loaded por-
tions of the wing, LO2 tank, intertank and fairings. Overall
buckling does not appear to be significant in the booster.

Table 2. Booster weight controlled by failure mode.

Failure Mode Waight, Ib
Minimum gage 11,122
Panel buckling 4,450
Compressive yield 3,374
Yield 8,716
Ultimate 20,610
Overall buckling 79

The calculated weights for the components of the strength-
designed booster model are shown in Appendix B. Also shown
are the estimated component weights from the Space Shutde
ET, where applicable. The slosh baffle weight for the booster
oxygen tank was obtained from the scaled ET. The liquid hy-
drogen and oxygen tanks are lighter than the scaled ET
weights, as expected, because the AV/Li 2095 alloy used on
the booster is lighter, stronger and stiffer than the 2219 alloy
used in the ET. The intertank section is considerably lighter
than the scaled ET value because it is not subjected to the
large thrust loads applied to the ET by the solid rocket boost-
ers nor does it have the transverse beam and large cut-outs for
the structure to support those loads.

Orbiter Analysis. The strength-designed weight-per-
unit of area is shown in Fig. 11. Again, most of the vehicle
surface skin weight is less than 2 psf. The webs between the
two lobes of the tanks are not visible in the figure but const-
tute a rather large portion of the tank weights.

The sums of the strength-designed weights caused by the
different load conditions are shown in Table 3, and their dis-
ribution is given in Fig. 12. The load case numbers corre-

Unit Wt.
(ps)
7.0 —

6.0 —

N

. 1

5.0]
4.0

3.0 —
20

1.0

Side View 0.0

Figure 8. Booster shell elements weight per unit area.

Load Case

Figure 9. Booster load cases sizing shell elements.

EAT.Y

o

‘fui ‘!,

-

o b 0J
T

3
154 &
y o3 2
4~ ¥ TR S
g £ —
. = o ot 7 B8 - T b o Rt 165 125
> i = - y ~Ees "
i BEERE | [' | & ?% B
D1 %
e
-1 p T;
j - A 3 =k 4 7
ne 1 T Y 2.
e e W o = -
2 T [= i ¥
o oa1ss . 1 £ 2 - =
- 5 3 . = T
" - b3 o

Figure 11. Orbiter shell elements weight per unit area.

P -

[

NG
x: % g AR
o SRR ;
.
;o it Y
ZEEEsangn T
ZZzz ZusssCoaaN ;
,..0-: ——--—"""'."_F = 5 R Bl
LR
d .
Figure 12. Orbiter load cases sizing shell elements.
nate
i age
] n . ; :
DM p d
pld
: TEl ;
1)1
==a T 8 3 3
SEEE oAkt RN
(]

Figure 13. Orbiter failure conditions controlling shell element weights.

10

Table 3. Orbiter weight controlled by load case.

Load Case Weight, b
Lift-off with impact 33,202
Unpressurized tanks on pad €28
Maximum thrust transter 8,234
Separation mansuver 9,666
Subsonic pull-up maneuver 4,694
Runway bump 2,060

spond 10 those described above in the “Finite-Element Model
Construction” section. Load case 1, lift-off with the thrust
impact due to instantaneous hold-down rclease, again sizes
elements that contribute to over half of the weight.

The sums of the strength-designed weights controlied by
the various failure conditions are shown in Table 4. The in-
crement added to satisfy buckling constraints (not shown in
Table 3) is shown as well. The failure condition controlling
the sizing of various elements is shown in Fig. 13. The mini-
mum-gage-sized structure, which constitutes about 40 per-
cent of the total weight, is primarily in the lightly loaded por-
tions of the wing, nose, fairings and the tank webs mentioned
above. Overall buckling appears to be significant in the or-
biter, causing a weight increase of 2800 Ib. A large part of
this weight increase is in the fairings over the valleys between
the tank lobes. Remodeling these arcas as fairings that only
transmit applied pressure loads to the tanks would decrease
the weight of the fairings but incrcase the axial load in the
tanks. The effect of this change has not been investigated.

Table 4. Orbiter weight conirolled by failure mode.

Failure Mode Weight, Ib
Minimum gage 22,920
Panel buckling 5,492
Compressive yield 7.228
Yield 8,336
Ultimate 14,510
Overall buckling 2,800

The calculated weights for components of the strength-
designed orbiter model are shown in Appendix C. The unit
weight of the orbiter LO2 tank is similar to that of the booster.
The unit weight of the orbiter LH2 tank is 3 percent heavicr
than the booster LH2 tank despite the fact that it is lightly
loaded relative to the booster LH2 tank, which must support
the weight of the LO2 tank. The highcr weight of the orbiter

LH2 1ank is largely due to the dual-lobe configuration that
rcquires a center web structure between the lobes. The LH2
tank web is over 10 percent of the total tank weight. The inter-
tank section is significantly lighter in unit weight (~50 per-
cent) than the booster intertank because it supports only the
LH2 1ank, which is about one-fifth the weight of the LO2
tank, and because it is constructed of Gr/Pi rather than AYLI.
The weight of the fairings over the valleys between the two
lobes of the propellant tanks is approximately 1900 Ib with-
out considcration for buckling and is a disadvantage of em-
ploying a dual-lobe tank shape.

Conclusions

A structural analysis of a two-stage fully reusable Ad-
vanced Manned Launch System (AMLS) vehicle has been
made using near-term material technology. The study indi-
cates that the concept is feasible. Because fully reusable launch
vchicle concepts can be very sensitive 1o weight growth, it is

~ very important 1o perform detailed structural analyses as early

11

as possible in the design cycle to evaluate the effect of evolu-
tionary material technologies and to reduce program risk.

The loading condition that sizes most of the structural
weight is the impact caused by the sudden release of vehicle
hold-downs that removes, instantaneously, a restraining force
equal to 30 percent of the vehicle’s weight Elimination or
rclaxation of vehicle hold-down requirements could signifi-
cantly reduce the vehicle structural weight but would compli-
cate vehicle control requirements at lift-off. The effect of re-
ducing the impact load has not been determined.

The loads causing buckling of the strength-sized struc-
turcs, determined from global bifurcation buckling analyses,
were less than the applied loads. A resizing procedure was
developed and applied to increase the buckling strength to a
satisfactory level. Global buckling was found 1o be insignifi-
cant on the booster; however, resizing the structure to con-
sider global bucking impacts on the orbiter increased the to-
1al structural weight by 5 percent.

A large portion of both the booster and orbiter structure
is lighuy loaded. Twenty percent of the booster structure and
40 percent of the orbiter structure by weight uses minimum-
gage materials.

The dual-lobe main propellant tanks employed on the or-
biter added significant structural weight that would not be
required for cylindrical tanks. The central web in the orbiter
liquid hydrogen tank is over 10 percent of the total tank weight.

In addition the weight of the fairings rcquired between the
two lobes of each tank is approximatcly 1900 Ib, constituting
over 3 percent of the vehicle structure.

An assumption was made that simple structural arrange-
ments, primarily separation of tank pressurc conlainment and
wing bending restraint, would benefit cryogenic tank life. Veri-
fication of this assumplion and detcrmination of other factors
affecting cryogenic tank life are necessary before building
such a concept.

References

1. Stone, H. W. and Piland W. M., “An Advanced Manncd
Launch System Concept,” IAF Papcr 92-0870, Sept. 1992.

2. Freemen,D.C.; Talay, T. A.; Stanlcy, D. O.;, and Withite
A. W, “Design Options for Advanccd Manned Launch Sys-
tems,” AIAA Paper 90-3816, Sept. 1990.

3. McMillin, M. L., et al, “A Solid Modcler for Acrospace
Vehicle Preliminary Design,” AIAA Paper 87-2901, Sept.
1987.

4, Brauer,G. L.; Comick, D. E.; and Stevenson, R., “Capa-
bilities and Applications of the Program to Optimize Simu-
lated Trajectories,” NASA CR-2770, Feb. 1977.

12

5. Divan, P, E., “Aerodynamic Analysis System for Con-
ceptual and Preliminary Analysis from Subsonic to Hyper-
sonic Speeds,” AIAA Paper 80-1897, Aug. 1980.

6. Anon., “PATRAN Plus User's Manual,” Release 2.3 Pub
2191020, PDA Engincering, Costa Mesa, CA., July 1988.

7. Whetstone, W, D., “Enginecring Analysis Language Ref-
ercnce Manual,” EISI, San Jose, CA., July 1983.

8. Cerro, J. A. and Shore, C. P., “EZDESIT, A Computer
Program for Structural Element Sizing and Vehicle Weight
Prediction,” NASA TM-101649, 1990.

9. Naficl, J. C. and Powell, R. W,, “Aerodynamic Separa-
tion and Glideback of a Mach 3 Staged Booster,” AIAA Pa-
per 90-0223, Jan. 1990.

10. Stanley, D. O., et al, *Conceptual Design of a Next-Gen-
cration, Fully Reusable Manned Launch System,” AIAA Pa-
per 91-0537, Jan. 1991.

APPENDIX A

Buckling Resizing Method

The finite-element solution of the bifurcation buckling
problem is expressed as:

(K] (¢} + A (Kg] (¢} =0

where K is the global stiffness matrix, ¢ is the buckling mode
shape (eigenvector), A is the buckling eigenvalue and Kg is
the global geometric stiffness matrix. While there are mul-
tiple eigenvalues and modes, usually it is desired 1o stiffen
the structure so that the lowest buckling eigenvalue is greater
than unity for the maximum applicd load. If the equation is
pre- and post-multiplied by a single mode shape,

(011 T (K] (01) + M1 (011 T IKgl (01) =0

using the usual normalization procedurc wherc the {¢]]T [Kgl
{61) term is -1.0, then the {$ }T {K] {41} wcrm becomes the
eigenvalue. The (¢)T [K] {61} term is also twice the strain
encrgy (SE) caused by a displacement in that shape. This re-
lationship may be used to develop a resizing algorithm by
recognizing that in a simple column (a statically determinate
structure with a fixed load distribution) the buckling load is
directly proportional to the bending stiffncss of the column.

The pre- and post-multiplied {¢11T (K] (1) term is the
summation of all the individual clement stiffness terms (Ke),
also pre- and post-multiplied, where n is the number of ele-
ments:

(o1 T K] (91) =i§1l¢1lTchu (61

hence, the elements having the largest strain cnergy for a given
mode shape contribute the most to the corresponding cigen-
value. Because weight is the valuc to be minimized, it would
appear that the elements having the largest strain cnergy-per-
unit of weight will be most effective in increasing the buck-
ling value for a given weight increase.

This procedure permits resizing of elements in the same
way as fully stressed design does for strength-sizing, but the
sizing increment depends on the summation of element
changes. The approach used is to normalize the clemental
strain-energy densities for a mode shape, producing a data sct
(N) having values from 0.0 to 1.0, and assume a distribution
for modification based on the normalized valucs. The distri-

13

bution used herein assumes that each element will be
incremented in dimension in proportion to its normalized
strain-encrgy density. To prevent elements with small contri-
butions from being incremented, the distribution may be trun-
caled by neglecting elements below a minimum value.

An estimate of the eigenvalue change due to the applica-
tion of the increments is:

&% =2 (SEmax) é(Nﬂ)

where SEmax is the strain energy of the element having the
largest strain-energy density. Because the estimated eigen-
value change is probably not the same as the difference be-
tween the desired value (DV) and the existing value, a scal-
ing factor must be applied to the increments.

The magnitudes of the clemental changes are scaled us-
ing a factor equal to the requircd eigenvalue change divided
by Lhe change caused by the unscaled increment:

Scale factor = (DV - A1)/ AA

The required change is the difference between the desired
value and the existing value. The desired value may be 1.0, 0r
somewhat larger, because the resizing process causes the lower
eigenvalucs 1o become closcly spaced and there may be a pos-
sibility of intcraction. The magnitude of the maximum elemen-
tal change is limited by a pre-selected value (move limit) and
other changes are scaled accordingly. Changes for several
modes, caused by either a single loading with multiple eigen-
valucs less than 1.0 or several loadings with eigenvalues less
than 1.0, may be made by summing the individual changes
and imposing move limits on thc summed changes.

The advantages of the mcthod are that it is relatively
simple, docs not require additional optimization programs,
considers individual elements, and requires only the extrac-
iion and scaling of the strain-cnergy densities after the buck-
ling calculations. Furthermore, the distribution of strain-en-
ergy density between axial and bending components may be
used 1o assist in element sizing. At the expense of a larger
number of elements, individual ply orientations may be evalu-
ated in acomposite structure. The disadvantages of the method
are that the analyst must decide how to apply it and interact
with the solution process to determine when convergence has
occurred. Also, because the process is sequential in nature,
there is no guarantee of obtaining an optimum solution.

APPENDIX B

Component Study
Weight, b
Liquid oxygen tank 6,751
Shell structure 3,027
Aftring 732
Afl dome 1435
Slosh baffles 1,557
Intertank 4,667
Skin 3436
Attachment flange 0
Frames 1,089
Conncction structurc 142
Miscellancous 0
Liquid hydrogen tank 15919
Forward dome 979
Barrcl skin 8,801
Barrel frames 5073
Aft dome 1,066
Wing 8.846
Upper skin 2,409
Lower skin 2,209
Ribs and spars 2,170
Centcer scction 2,058
Aft fusclage 12,199
Skin 4319
Frames 2,672
Thrust structure 3474
Wing lairing 1,734
Booster/orbiler connection 1,445
Total structure 49,827

14

Scaled ET
Weight, Ib

8336
4,645

503
1,631
1,557

6.506
4,194
380
931
646
355

18,003
1,161
11,675
3,446
1,721

APPENDIX C

Orbiter S h-Sized Weight
Component Study Weight, 1b
Liquid hydrogen tank 19,595
Forward dome 400
Barrel skin 11,504
Barrel frames 6,100
Aftdome 1,591
Intcrtank 3,063
Skin 2696
Frames 367
Liquid oxygen tank 8,127
Forward dome 1,025
Barrel skin 2,950
Barrcl frames 1,058
Aft dome 1,537
Slosh baffles 1,557
Fairings 4,494
Liquid hydrogen tank 1,405
Liquid oxygen tank 488
Wing 2,601
Nose scction 1,657
Nose cap 104
Front gcar awachment 13
Skin 1.321
Frames 219
Wing 13,424
Upper skin 3,041
Lower skin 3,035
Ribs and spars 2,711
Cenler section 4,637
Aft fuselage 7,024
Skin 3273
Frames 968
Thrust structure 2,783
Total structure 57,384

15

