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ABSTRACT

The power spectrum for a stationary random process can be

defined with the Wiener-Khintchine Theorem, which says that the power

spectrum and the autocorrelation function are a Fourier transform

pair. To implement this theorem for signals that are discrete and of

finite length we can use the Blackman-Tuckey method. Blackman and

Tukey (1958) show that a function w(f), called a lag window, can be

applied to the autocorrelation estimates to obtain power spectrum

estimates that are statistically stable. The Fourier transform of w(_)

is called a spectral window.

Typical choices for spectral windows show a distinct trade-off

between the mainlobe width and sidelobe strength. A new idea for

designing windows by taking linear combinations of the standard

windows to produce hybrid windows was introduced by Smith (1985). We

implement Smith's idea to obtain spectral windows with narrow

mainlobes and smaller (compared with typical windows) near sldelobes.

One of the main contributions of this thesis is that we show

that Smith's problem is equivalent to a Quadratic Programming (QP)

problem with linear equality and inequality constraints. A computer

program was written to produce hybrid windows by setting up and

solving the QP problem. We also developed and solved two variations of

the original problem. The two variations involved changing the

inequality constraints in both cases from nonnegativlty on the

combination coefficients to nonnegativity on the hybrid lag window

itself. For the second variation, the window functions used

to construct the hybrid window were changed to a frequency-variable

iX
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set of truncated coslnusoids.

A series of tests was run with the three computer programs to

investigate the behavior of the hybrid spectral and lag windows.

Emphasis was put on obtaining spectral windows with both relatively

narrow mainlobes and the lowest possible (for these algorithms) near

sidelobes. Some success was achieved for this goal. A i0 dB peak

sidelobe reduction over the rectangular spectral window without

significant mainlobe broadening was achieved. Also, average sidelobe

levels of -i17 dB were reached at a cost of doubling the mainlobe

width (at the -3 dB point).
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CHAPTER i

INTRODUCTION

The definition of the power spectrum P(f) due to Wiener

(Robinson, 1980) says that P(f) forms a Fourier transform pair with a

quantity called the autocorrelation function. The autocorrelation of a

stationary, ergodic realization of a random process (Blackman and

Tukey, 1958) is

• TI2
I

C(r) - Lim I/T _ x(t)x(t+_) dr.

T _ _ J -T/2

T is the length of a segment of x(t) and r is a variable called the

lag time. It corresponds to the amount of time shift between x(t) and

x(t+r) when computing the auto (self) correlation. The power spectrum

P(f) is the Fourier transform of C(r):

I -12_f_
P(f) - C(r)e dr

where (f) is the frequency. To implement this definition of P(f) for a

finite interval of a sampled time series, we need discrete estimators

of C(_) and the Fourier transform (Oppenheim and Schafer, 1975). For

a real (N) point sequence x[n], we can write the autocorrelation

function as

= ,.

N-Iml-I
V-"

ctm] - I/(N- lml)> x[nlx[n+m].

L__
n--O



L

w

w

w

LL
M

W

I

2

and

(l.1)

N-I

P[k] -_ c[m]e "i2xkn/N

_0

for the discrete Fourier transform (DFT) of the autocorrelation (power

spectrum). Blackman and Tukey (1958) realized that the application of

the above two formulae leads to statistically unstable power spectrum

estimates. The variance of the estimate can be quite large and does

not decrease with increasing (N). Blackman and Tukey solved this

problem by noticing that the later lags (m) of c[m] have a smaller

number of products to average over, and hence, are less reliable

estimates. They showed that spectrum estimates made by ignoring later

lags became more stable. For Gaussian processes, they recommend

keeping only about 10% of the autocorrelation lags. The theoretical

properties of lag windows are more conveniently discussed for the

continuous case so we will stay with the variable _ for the rest of

this chapter.

Deleting later lags amounts to multiplying the autocorrelation

estimate with a rectangle function _(_/L) of the appropriate length

(L), where

i, I_I < L/2
H(_/L) [ 0, ]_] > L/2

Note that (Bracewell, 1978) H(_/L) D L sinc(Lf) - sin(_Lf)/(xf) (where

D denotes the Fourier Transform). According to the Convolution Theorem

(Bracewell, 1978), this function, sin(xLf)/(xf), will then be

convolved with our spectral estimate. Figure i shows this function for

L - i second. Note that the peak sidelobe is at about =13.5 dB. Our dB

W
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convention uses the following definition

W(f) (dB) - 20 log I W(f)/W I
i0 max

The convolution of the rectangle transform with our spectrum will

reduce the variance of our estimate but will introduce other problems

at the same time. First, note the main lobe width. This will

fundamentally limit our resolution in the spectrum. We are especially

concerned about this if we are trying to resolve closely spaced peaks.

Also, the sldelobes themselves can mask weak signals in the presence

of strong resonances, and generally distort the spectrum (Marple,

1987). Side lobe distortion is sometimes referred to as leakage.

Hence, we need to pay close attention to these effects.

First, we make the observation that functions other than _(_/L)

should also serve to reduce variance (Blackman and Tukey, 1958).

Consider a function w(r), called a lag window, which has the following

properties.

11 w(_) _ O, for all T

2) w(_) - 0, l_l > L/2

3) w(_) piecewise continuous

41 w(-_) - w(T1 (symmetric about the orlginl

5) w(0) - l

Note that

J_J

IbW

w

r/2t

C(0) - Lim I/T I [x(t)]

T_ J
-TI2

2
dr.

C(0) is called the power of the signal. Property 5) simply

insures that we preserve the power. Note also that the inverse

I[3
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transform is

so

I i2_fr
C(r) - P(f)e

C(O) - I P(f) df.

dr,

Thus, property 5) preserves the area under the power spectrum P(f).

Property 4) guarantees that P'(f), the Fourier transform of the

windowed autocorrelatlon, is real, where

I -i2_fr
P'(f) - C(r)w(r)e dl-.

Let w(r) D W(f).

We call W(f) the spectral window. If w(r) is real and even, W(f) is

real and even, since

4

m

i

w

;z

¢ ¢

I w(r)cos(2zfr) dr + i i w(r)sin(2_) dr.W(f)

J J

An even function w(r) multiplied by the odd function sin(2zfr) is odd,

and the integral over _ vanishes. Now, P'(f) - P(f)*W(f). The

convolution of two real and even functions is real and even (P(f) is

real and even for real x(t)).

Eleven typical spectral windows, common (except for window 4)in

the literature, are shown in Figures 1-22 (Smith, 1985; Kreamer, 1988;

Marple, 19871. Refer to Table 1 for the formulae. Each window has the

following properties which are useful to summarize overall behavior
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(Marple, 1987);

I) mainlobe width (typically referenced to the -3 dB point),

2) sidelobe decay rate (dB/octave),

and

3) the peak sidelobe (amplitude of the largest sidelobe).

When observing spectral window behavior in Figures 1-22, it is

immediately obvious that there is a trade-off between malniobe width

and the peak sldelobe. Typically, having small (near) sidelobes and

narrow malnlobes is a conflicting goal (Marple, 1987). One problem in

spectral analysis where this trade-off is particularly bothersome is

dicussed next.

Consider a signal x(t) that contains a large amplitude

slnusoidal component of frequency f'. This "resonance" would ideally

show up in the power spectrum as a peak at frequency f'. However, our

spectral window W(f) will 5e convolved with the peak, and the

sidelobes may mask weak signals at frequencies near f'. Our spectral

window must have a mainlobe narrow enough to resolve the two signals,

and needs small near sidelobes if we are to detect the weak spectral

response. This creates a challenging window design problem in trying

to overcome these apparently conflicting goals. The problem of

designing such a spectral window will constitute the main emphasis of

the rest of this work.

Smith (1985) posed a mathematical statement of a possible scheme

to design the desired window. He suggested that we might be able to

generate a better window than the standard literature windows if we

take a linear combination of them. Let's define the windows in Table 1

r..a
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as wi(r), where i-l,M (i to ii here). The linear combination will

produce a "hybrid" window wH(r ) . Then,

M

wH(r) - _ aiwi(r)"

i-I

l

mmm

w

ime

To insure that wH(r ) has property I), we can impose a nonnegativity

condition on the ai, giving

a >_ 0.
i

To insure property 5) we need

M

ai-l.

i-i

Note that if WH(r) D WH(f),

then, since WH(r) - Z aiwi(r),

we have WH(f) - Z aiWi(f),

where wi(r) D Wi(f).

For a criterion to determine an appropriate set of ai, we can use the

least squares measure to insure that the spectral window is small over

a desired frequency band fl to f2" That is, choose a i such that

f2 i wm(f) I

fl

2
df

is a minimum. This problem, and two variations to be discussed later,

form the basic subject of study in this work. A brief survey of the

contents of the rest of this thesis follows next.
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In Chapter 2 we proceed to solve the problem of how to determine

the a° so that w is a valid lag window while minimizing the above
I H

integral. We will also discuss two variations of the original problem.

In Chapter 3 we discuss the algorithmic details of implementing (as

computer codes) the solutions presented in Chapter 2, and discuss a

series of tests that were run with the programs. The figures (I

through 80) that follow after Chapter 4 are also discussed. In Chapter

4 some general conclusions are drawn about algorithmic behavior from

the tests that we discussed in Chapter 3.
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CHAPTER 2

THEORY

In Chapter i we posed an optimization problem with the following

f

rain F(a) - I W (f) J df,
f

>0
subject to a i _

M

and

i-i

W

where
WH(f ) -

M

i-i

aiWi(f)

Iml

_J

m.m

_a

w

and

Since

and the w
i

T

a - [aI ..... aM].

w i D Wi(f)

are even, we have that the Wi(f) are real. Thus,

f2 2F(a) - [WH(f) ] df

fl

f2 2- [_ aiWi(f)]

fl

df

f2
- _ _ ai aj Wi(f ) Wj(f) df

Jfl

m.i
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Now we know the Wi(f ) so, in principle, we could carry out the

indicated integration. In practice, this would require numerical

quadrature techniques. Another approach would be to evaluate W.(f)
l

numerically with the discrete Fourier transform (DFT), and change the

integral to a discrete sum over Wi(k)Wj(k ) . Recall that the DFT was

defined in Chapter i in Eq. No. (I.I). We will proceed in the following

manner. Let

r
----=9

W

= .

f k

2Wi _2(f) Wj(f) df _ Wi(k ) W (k)
Jfl J

k-k
1

or k

Z-. wki
k-k

1

where k I and k2 are the indices that correspond to the frequency

points fl and f2" That is,

f - (k i) Af,
n n

where af - i/(N_r), and _r is the sample rate for C(r) (to give c[m]).

N is the total number of sample points.

Consider a matrix W with elements Wij , where (j) is the window

number and (i) is the frequency index. W is (k2 - kI + I) X M in size.

Then,

Z Zwklwkj ik
k k

where WT is an element of WT
ik and _ Wki Wkj is the ijth element of

T T T
W W. %; W is square, M X M, and symmetric. Let }{ - W W for convenience.
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Then

- a jaj),
which can be written as

T T T T
F(a) - a Ha - a (W W)a - (Wa) (Wa)

In general, a quadratic form (Scales, 1985) is a function

of x that can be written as

T T
f(x) - 1/2 x Ax + b x + c.

A is called the Hessian. Obviously, our objective function F(a) is a

quadratic form, where we identify

1/2 A - H

b-0

c - 0.

We have immediately that H is symmetric, since

T
H-WW

T T T T
S - (W W) - W W - S.

T
or H - H

2 2Furthermore, F(a) - I WH(f) I df Z 0,

I

so F(a) z 0 for any choice of a. By definition, a matrix A is

T
nonnegative definite if and only if, for any x, x Ax Z 0. Hence, since

T
F(a) - a Ha _ 0

for any a, we have that H is symmetric and nonnegatlve semldefinite.

It is instructive to note that the vector a that minimizes F(a) is

(0 ..... 0), or the trivial solution. This is shown in Appendix A.
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In summary, then, we wish to find an a that miminizes

T
a Ha

subject to _ ai - i

and a _ O,
i

given that H is symmetric and nonnegative semidefinite. This

is a special case of a more general mathematical problem in

optimization theory call the Quadratic Programming problem (Bronson,

1982). The full formulation allows more general linear constraints and

a nonzero b and c (although c does not affect the solution).

Quadratic programming (QP) is an effective way in general to

deal with least squares problems if inequality constraints are needed.

Various approaches for the solution of this problem are discussed by

Bronson (1982), Lawson and Hanson (1974), Scales (1985), and Hillier

and Lieberman (1967). The solution to the QP problem investigated in

T.M.
this work is a code, called DQPROG, from the IMSL MATH /Library. The

details of QP are beyond the scope of the work, but a brief descrip-

tion is given in Appendix B.

In addition to the QP problem we have Just outlined, two

variations were also studied in this work. We will refer to

the above QP problem henceforth as Program-l. The first variation we

will consider is a relaxation of the nonnegativity constraints on a.

Instead, we will impose this condition on the hybrid lag window

itself. The inequality constraints then have the following form:

Ba _ O,

th th
where B is the lag window value for the i time sample and the j

ij

window. B is (N X M), where N is the number of lag window samples used

u
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for the DFT. This new problem will be referred to as Program-2.

The second variation on Program-I we wish to consider is that of

retaining the constraints of Program-2, but changing the functions

w (_). The new functions are (Nuttall, 1981)
i

(2.1) w - cos(2_L_/T), L - 0,I ..... M
L+I

where T is the window length and L is an integer. They offer the

advantage of being more general than those of Program-I, and are

reminiscent of a Fourier construction. This variation will be called

Program-3. Examples of the implementation of Programs-l, 2 and 3, with

a discussion of results, are presented in Chapter 3.

L

n

w

E =

w

=

W

mml
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CHAPTER 3

RESULTS

Introduction

A general outline of the algorithm for Program-I is given first,

followed by an introduction to the tests that were run. Program-2 and

Program-3 follow this outline as well; only the constraints and/or the

window functions differ.

I) The Discrete Fourier Transform (DFT) was discussed in Chapter One.

An algorithm for efficient evaluation of the DFT is called the Fast

Fourier Transform (FFT). An FFT (Claerbout, 1976) of the radix 2 type

was used to evaluate W. The wi(r ) (see Table 1 and Figures 1-22) were

sampled at 256 points, and zero padded to 1024 points before computing

the FFT. The zero padding was used to obtain a more densely sampled

transform.

2) W was constructed by using the window FFT's over the chosen

frequency band. The FFT over this band for window wi(_) becomes the

th T
i column of W. Then H was constructed by H - W W.

H and the constraints were given to DQPROG (an IMSL quadratic

programming subroutine), which returned a solution vector a.

3) The hybrid spectral window was constructed in the function domain

using _ aiwi(r), and then sampled and the FFT computed in the same

manner as in step 1 (except that the zero padding was to 2048 points).

Now we will consider the testing that was done using Programs-l,

2 and 3. These three programs were tested for performance by varying,

in each case, the frequency band we wish to attenuate, computing two

quantitative measures that relate to performance (discussed below),
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and displaying the resulting hybrid spectral windows along with a

graph of the rectangular spectral window for comparison. The two

quantitative measures of performance are the mean dB level (MDB) over

the desired attenuation band and the half power width (HPW). The half

power width is the frequency (Hz) that corresponds to the -3 dB point

on the spectral window of interest. The mean dB levels and half power

widths are listed for each test in Table 2 through Table 5.

The testing strategy was as follows. For Program-I and

Programo2, the eleven lag windows listed in Table i and Figures i

through 22 were used to compute the hybrid spectral windows. For

Program-3, it was of interest to see how the results would vary with

different numbers of the cosine windows, since the window number

scheme (window number 1,2, etc.) corresponds to the frequency of the

lag window. That is, increasing window numbers mean increasing

frequencies (see Figures 23 through 40). The maximum number of cosine

windows tested was 9 (corresponding to L - 8 in equation number 2.1).

For all three programs, the desired frequency band for

attenuation was varied. Figures 41 through 50 show results for the

frequency band i through 2 Hz. Figures 51 through 60 show results for

the frequency band 2 through 4 Hz. Figures 61 through 70 show results

for the frequency band 2 through 8 Hz. Figures 71 through 80 show

results for the frequency band 4 through 8 Hz. The rationale for this

testing scheme was to observe window behavior for the cases in which

the frequency band was close to and farther away from the origin, and

in which the frequency band width itself varied.

In the case of Program-3, for each frequency band tested, three

different combinations of windows were used. The combinations were:
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window numbers i through 3 (L - 0 through L - 2), window numbers I

through 6 (L - 0 through L - 5), and window numbers I through 9 (L - 0

through L - 8).

Discussion of Tests

Test for ! through _ Hz

For the i - 2 Hz test (Figures 41 through 50), the MDB's range

from -27 dB to -29 dB, and the HPW's range from 0.46 to 0.48 Hz (refer

to Table 2). The average MDB is about -28 Hz and the average HPW is

about 0.47 Hz. These values are fairly clustered, so to further judge

performance, we can visually inspect the spectral and lag windows in

Figures 41 through 50. For comparison purposes, the rectangular spec-

tral window (also shown in Figure i) is overplotted with dashed lines.

Note that the HPW of the rectangular spectral window (RSW) is 0.44 Hz,

and the peak sidelobe is at -13.5 dB.

For each case, we note that the HPW's of the hybrid spectral

windows are relatively close to the RSW width, while the peak

sidelobes of the hybrid windows inside the attenuation band are at

about -23 dB. This is a I0 dB improvement over the RSW without much

gain in window width (increases by a factor of 1.07), which is an

encouraging result.

The relative performance of Programs i, 2, and 3 (3 windows, 6

windows, and 9 windows) is discussed next. First, let's adopt a short-

hand notation. Let Program-I be represented by PI, Program-2 by P2,

and Program-3, 3 windows, 6 windows, and 9 windows be respectively

represented by P3;3, P3;6, and P3;9. We can summarize the relative

window behavior, which we observe visually, by saying that the side-
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lobe behavior, outside of the attenuation band, of P2 (Figure 43),

P3;6 (Figure 47), and P3;9 (Figure 49) is relatively poor. On the

other hand, PI (Figure 41) and P3;3 (Figure 45) have sldelobe behavior

outside of the attenuation band that is quite near that of the RSW. As

we would expect, the lag windows for PI and P3;3 (Figures 42 and 46)

look quite similar, while the lag windows for P2, P3;6, and P3;9

(Figures 44, 48, and 50) are quite variable with respect to each

other. It is interesting to compare the lag windows for PI and P3;3

with the rectangular lag window (Figure 2). The hybrid lag windows

start at 1.0, smoothly taper off to about 0.6, and then stay fairly

level. This behavior is somewhat different from the standard lag

windows (included in Figures 2 through 22).

Tes_.___tfor _ through A Hz

For the 2 4 Hz test (Figures 51 through 60), the MDB's range

from -54 dB to -64 dB, and the HPW's range from 0.62 through 0.66 Hz

(refer to Table 3). The average MDB is about -58 dB and the average

HPW is about 0.64 Hz. Note that there is more variability in the MDB's

than was the case for the i 2 Hz test. However, the HPW's do not

significantly vary.

In moving the frequency band away from the origin (0 Hz), we

have allowed the average HPW to increase over the RSW width (0.44 Hz).

The increase is by a factor of 1.45. Also, by moving the attenuation

band, we have improved our attenuation to an average dB level of -58

dB.

In comparing PI (Figure 51) to P2 (Figure 53), we note that P2

has a slightly better attenuation level in the 2 - 4 Hz band, but

larger sldelobes outside of the band. However, P2's behavior outside
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of the attenuation band is better than in was in the i 2 Hz case. PI

and P3;3 (Figure 54) have very similar behavior. P2 has slightly

better behavior inside the attenuation band than P3;3, and slightly

worse behavior outside of the band. P3;6 (Figure 57) and P3;9 (Figure

59) exhibit similar behavior in the 2 - 4 Hz band, and have comparable

mainlobe widths, but P3_6 has much better sidelobe behavior outside of

the attenuation band than does P3;9. Compared to the other windows

(except P3;9) however, P3;6 has poor sidelobe behavior outside of the

2 - 4 Hz band. Note that the lag windows for PI (Figure 52), P2

(Figure 54), and P3;3 (Figure 56) are quite similar. The lag windows

for P3;6 (Figure 58) and P3;9 (Figure 60) are considerably different

from each other and the other lag windows. The P3;9 lag window has an

oscillatory behavior uncharacteristic of typical lag windows. However,

P3;9 has the best attenuation characteristics for the 2 4 Hz case

in the attenuation band.

Test for Z through 8 Hz

For the 2 - 8 Hz test (Figures 61 through 70), the MDB's range

from -55 dB to -57 dB, and the HPW's range from 0.62 Hz to 0.66 Hz

(refer to Table 4). The average M/)B is about -56 dB and the average

HPW is about 0.67 Hz. It is evident from Figures 62 through 69 that

the results for the spectral and lag windows are fairly uniform as

compared with the last two tests. Going to a wider bandwith seems to

have a stabilizing effect on the programs' behavior. It would be

difficult to choose one window over the other from this test, except

for the P3;9 (Figure 69) window, which has the poorest behavior and

would be excluded. Towards the end of the frequency band, the
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sidelobes of P3;9 come back to a higher level than for the other

spectral windows.

In comparison to the 2 4 Hz case, the Pl's (Figures 51 and

61) are about the same. For the P2's (Figures 53 and 63), a

significant improvement in the behavior of the 2 8 Hz case can be

noted. The sidelobes from 4 - 8 Hz are much lower than for the 2 4

Hz case. This makes a lot of sense, and shows that the algorithms are,

fortunately, behaving in an intuitive and reasonable way. The results

are similar but even more dramatic when comparing the P3;6 and P3;9

cases for the 2 8 Hz test (Figures 67 and 69) with the 2 4 Hz test

(Figures 57 and 59). It seems safe to conclude that we gain more than

we lose by opening up the bandwidth when possible.

Test for A through _ Hz

For the 4 - 8 Hz test (Figures 71 through 80), the MDB's range

from -83 dB to -117 dB, and the HPW's range from 0.81 Hz to 0.93 Hz

(refer to Table 5). The average MDB is about -i01 dB, and the mean HPW

is about 0.88 Hz. The average MDB has almost doubled over the 2 8 Hz

case, and the average HPW has increased by a factor of about 1.3. We

note for this test that we have a broader range of results in terms of

attenuation levels and mainlobe widths across the various programs.

Specifically, P3;6 (Figure 77) and P3;9 seem to be in a class by

themselves with much higher attenuation levels (better than -i00 dB),

but broader main lobes. However, P3;6 and P3;9 are fairly comparable

to each other. It is also interesting to note that sidelobe behavior

outside the attenuation band is fairly good for all cases. The 4 - 8

Hz band, being farther from the origin, seems to allow more stable

results. This is also reflected in the lag window behavior. The lag
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windows for the 4 - 8 Hz case (Figures 72, 74, 76, 78, and 80) are all

fairly comparable and well behaved (smoothly tapering to a low value).

The spectral windows for PI (Figure 71), P2 (Figure 73), and

P3;3 (Figure 75) are similar. Their behavior can be characterized in

the following way. As we progress through the above sequence, the

overall mean attenuation improves, but the attenuation nearest the

mainlobe deteriorates. We can summarize the extremes of this test by

saying that P1 has the narrowest mainlobe behavior, and P3;9 has the

best sidelobe behavior. One would have to choose from them according

to need.

¢o_clu$ions

We will summarize here some of the conclusions that are

suggested by the above tests. The behavior differences between

Programs-l, 2, and 3 can be significant. This is illustrated in the 1

- 2 Hz test by the instabilities (large sidelobes) exhibited for

Program-5, and the differences between Program-I and Program-3 results

in the 4 8 Hz test. Program-I and Program-2 show their greatest

differences for cases where the attenuation band is close to the

origin.

In general, Program-2 seems to have less stable sldelobe

behavior outside the attenuation band than does Program-l. In most of

the cases that we looked at, Program-i and Program-3 (3 windows)

seemed to he the most similar, but for the case away from the origin

(4 8 Hz), Program-3 (6 windows) and Program-3 (9 windows) were very

similar. In some cases,, all the programs produced similar results (2

8 Hz test).
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We can conclude that we will get narrow mainlobe widths (close

to RSW) if we put the attenuation band close to the orign, but pay the

price of low attenuation (-28 dB). Conversely, good attenuation (-I00

dB) and broader mainlobes (twice that of RSW) are obtained for

attenuation bands farther away from the origin. It also should be

noted that opening up the bandwidth can have a stabilizing effect on

the window's sidelobe behavior. A similar stability effect seems to be

at work when we move the attenuation band away from the origin.
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CHAPTER 4

CONCLUSIONS AND FUTURE CONSIDERATIONS

In this work we have reviewed the basic ideas involved with the

Blackman-Tukey method of spectral estimation and, specifically, have

investigated the problems associated with designing spectral lag

windows. Three design ideas were implemented and tested. Program-I

used linear combinations of lag windows found in the literature. The

combination coefficients were determined by solving a constrained

least squares problem in which the objective function measured the

spectral window response over a given frequency region. The

constraints consisted of i) nonnegativity on the combination

coefficients and 2) that the combination coefficients sum to unity.

For Program-2, the constraints were changed so that the hybrid window

itself was nonnegative. In Program-3, the constraints of Program-2

were used with a different class of window functions (frequency

variable cosinusoids).

Each of the three techniques was tested for performance over

four different frequency bands, i 2 Hz, 2 - 4 Hz, 2 8 Hz, and 4

8 Hz. In the case of Program-3, the number of windows was varied to

include the first three cosine windows, then the first six, and

finally, the first nine. Based on these tests, we can tentatively

conclude that:

i) Relaxing the nonnegativlty constraint on the a i did not offer the

advantages that were hoped for. The results for Program-2 were at best

comparable to Program-l, and in some cases, not as good.

2) The difference in behavior for Programs-l, 2 and 3, for attenuation

I
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bands close to the origin and of a narrow bandwidth, is largely in how

the sidelobes behave outside the attenuation band. The best results

for this case were from Program-I and Program-3 (3 windows).

3) Using the cosine windows in Program-3 to try to improve over the

original idea of Program-i was a mixed success. Program-3 seems mainly

to offer advantages over Program-I in the case where the attenuation

band is farther away from the origin (e.g., 4 - 8 Hz). For this case,

Program-3 achieved much better attenuation levels (at the cost of

mainlobe width) provided we use enough windows.

4) The level of attenuation improves and the main lobes get broader

for all three programs as the attenuation band moves away from the

origin.

5) Increasing the attenuation bandwidth improves sidelobe behavior

in general. We do not have to give up much in terms of attenuation

levels and malnlobe widths.

6) The number of cosine windows appropriate to use in Program-3 varies

as follows: for attenuation bands close to the origin, use fewer

windows; for bands farther away, use more. Of course, the malnlobe

widths will increase for the latter case.

For future efforts along the llne of research presented in this

thesis, several things could be done.

i) Implementation of the algorithm in which H is evaluated by

numerical integration rather than by matrix multiplication (wTw) may

offer advantages.

2) The three programs need to be studied more thoroughly in terms of

their behavior with respect to various combinations of windows and

spectral attenuation bands.

w



L

w

L-

= ,

!

w

23

3) Modeling needs to be done to quantify the performance of the

programs. For example, if we take two sinusoids of some relative

magnitude at some frequency spacing, and truncate them to some

specific length, we can then try to design a window that will resolve

them. The relative strengths and frequency spacings could then be

varied.

4) In this study we ignored the sign of the hybrid spectral windows.

The degree to which these windows have negative lobes and their

characterization should be investigated. This should provide another

criterion for judging window performance. It is desirable to have no

negative sidelobes in the spectral window, but several typical window

functions have some. The severity of this problem depends to some

extent on the applications in mind.
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TABLE I

Program-i and Program-2 Lag Window

Functions (defined on an interval [-I/2, 1/2] secs)

WINDOW NO. NAME

I Rectangular

2 Parzen-2

3 Cosine-tlp

4 Bartlett-like

5 Hann

6 Hamming

7 Papoulis I

8 Blackman

9 Bartlett

I0 Sinc-like

II Gaussian (_ - 2.5)

FORMULA wi(T)

I

i 4T 2

cos(_f)

i + 21_ [

.5 + .5 cos(2x_)

.54 + .46 cos (2 _)

21f Icos(2xr) + (I/x) Isin(2x_) I

.42 + .5 cos(2x_) + .08 cos(4_)

1 21_ i

sin(2xT)/(2_r)

exp(-.5[2=_] 2)
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TABLE 2

Mean dB Levels (MDB) and Half Power Widths (HPW)

for the i - 2 Hz Test

MDB (db) HPW (Hz)

PI -27 0.48

P2 -28 0.46

P3;3 -28 0.47

P3;6 -29 0.46

P3;9 -29 0.46

25
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TABLE 3

Mean dB Levels (MDB) and Half Power Widths (HPW)

for the 2 - 4 Hz Test
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I_DB (db) HPW (Hz)

PI -54 0.66

P2 -58 0.64

P3;3 -55 0.66

P3;6 -60 0.63

P3;9 -64 0.62
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TABLE 4

Mean dB Levels (MDB) and Half Power Widths (HPW)

for the 2 8 Hz Test

MDB (db) HPW (Hz)

PI -56 0.67

P2 -57 0.67

P3;3 -55 0.68

P3;6 -57 0.67

P3;9 -57 0.67
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TABLE 5

Mean dB Levels (MDB) and Half Power Widths

for the 4 8 Hz Test

M_DB (db) HPW (Hz)

PI -83 0.81

P2 -99 0.85

P3;3 -97 0.85

P3;6 -ii0 0.94

P3;9 -117 0.93

(HPW)

28

m

L_

Li

r_

m



i

i



3O

w

w

CC

CZ

__D

Z

(ZZ

F---

Y

LJ
OZ

_ZD
ED
Z

CZ

F

0£'I
I

02 'I
I

06 '0
I

og '0
I

OE "0

dNU

_r_Oc
L/.,

0'3

O0

-C3

C'g

C3

U'_
o'3

-(:3

GD

0

Q.J

_ LJ_.I

-c5-'-

I'---

c]

r _

C:3

-C3

C3

0



31

w

w

w

W

w

CXJ

I

Z
Ld
r-_
n'-
CE
Q.._

e_

¢1
i,,a

r_

Z

rm
Z

-_r

_.J

OC
k--
(..3
LLJ
(3_
Cf3

I

00 .cj

<-

C
<

<-

<..
<__.

<-

<..

<_._

I I I

O0 'gl- O0 'L£- O0 '8£-
I

00 '6L-

SNd

c,

o

_03

C:3
C3

_L/3

C3
C3

D-,,J
"T"

C3,

o-_LLJ
rT-
I..4_

C3

£D

O
C3

O0 '001 -cJ

C3
(:3



= -

F _

w

w

W

Od
I

Z

L_

S

CE

CE

0__

0.I

oO

ED
C_
Z

Z

._.I

/

I I I I

OS '1 0:"I OB'O Og'O

¢...g

Ii
7

u'o
o-)

I

O_ '0

dWU
0O

w

-c5-"

b--

G

o

i



33

& .

w

w

w

u

I

J

w

0__

k--
I

Z

U-)
CZ)
U

Q)

Z
0

Z

.d

CIZ

CC

k--

(_)

L_
CL
(y')

I

O0 '£

rf
I

O0 '91 -

<i

<

<

<

<._.
<

<

<

C

C

<

<-

<
f

<

I

O0 'LC- O0 '6L-

dNU
O0 "00

C:D
CD

C_

CD

_=_

-Ckl

CD

CD

_CO

CD

CD

_U'I

O

CD

N

I

-.__.

CD

cJCD

_I_u]

Of-

[J_

CD

O

CD

O

=or)

CD

CD

CD



34

T

u

W

_3

W

w

W

=

r :

I

LzJ
Z

ED
U

0
0
Z

Z

[_9
CE
_J

I

0£ 'I
I

02'I
I

06 '0
I

09 '0

/

/
/

/

/
/

/
/

I
OC '0

dNU

/
/

/

O0

_D

U'_
ffl

-_ or')
[_)

t_J
U-)

_ka.A

-0

0

0
O



35

L

w_m

i I

•'z_..

=

.,=_.
w

_J

w

n

LI.J
,,<-

I
I'-'-

LI_I
_J
I.--
CC
C]Z
CC}

&l
14

,..,,I

Z
C)
c_
i

.d
cE
rr-
t---

iii
0.._
cf3

I

00 '£
I

O0 'gl -
I

00 'LE-
I

00.8£-

(ga)

I

00 '6z- O0 '00

c_

c_

_co

c_

G

.1.13

c)
c3

r-,4
q-

c_

cn IJ..J
CE
L.I...

C3
C3

£.t3

O
G

C:3
CC,



- 36

L_

L

W

L

w

w

W

n

LIJ

_J

I

k--

LIJ

_J

CC

CE

n7

0o

ED
F7
Z

Z

(_D
(I
J

00'2 Og'l 00'I

I

O_ '0

dNU
O0

r_D

°

O'3

-_cn
r._)

°JILl



37

w

_=

w

_ i

w

w

D

Z
Z

I

Z
_D
CD

Z

J
CE

_C

_D

W
O_

f

c----

C

_

O0 '£ O0 '91 -
I I

O0 '00

CD

C3

C3

C3

C3

C3

_CO

C3
C3

P_J

q-

CD

oC3
_uJ

Pr-

LJ_

c3
c3

CD
C3

CD
C3

C3



- 38

w

r_

w

w

w

B

Z
Z
C[
"T-

Z
ZD
Z2]
Z

z

(_.3
(]i

I

Ofi'I
I

02 'I

cz_

O_

/
/

1 I I
06'0 Og'O 0£_0 O0

SNY

-(221

-6

__)

La_l

H--



m_w

J_

Qin

_D

1,w

c_



m

i

J

'It,,,,,

_z

= ,

w

w

I

L..O

Z

Z

Z

CE

-I-

C'4

IWI}

c)
(-q
Z

z

L.O
CI
_._I

I

0£ 'l
I

02 'I

/

.

/

I I

O6 '0 Og '0
I

OE '0

dNU

o

O0

_d

C'J_

(_D

W

_LL/

I,,,,,,,--I

o

o

o



41

|

iiii

Iiw

CO

__J

ED
O_

(22
O_

-i-I

-._

c_
Z

Z

_.J
cz
n--
l---

0..
O0

O0 'S O0 '91- O0 'LE'- O0 "OS- O0 '6L- O0 '00

_EIO) a_U

.&

c_

_C21



! 5:!_

i-

=

m

w

w .

_J

N

cr%

_J

rid

CL_

CE

CJ_

,,4

C)
C3
Z

Z

(_9
CI
J

I I I

0g'_ 00'_ 0fi'1 00 I O0

m

C3

0

-d

Ln

-(D

co

Q.D
LID

Z_

-(ID

(D

CD

O

(D

0o



43

w

=

m

ira,

w

-!
m

!

w

LJ

w

mmm

m

lml

Z
CE
Z
,,<-
(J
CIZ
_.J
C[3

u"%

Z
(EZ)
rm

Z

1"--"4

._1

CE

CE

I--

O

L.I._I

Q..
U")

I

O0 '_
I

O0 '91-
I

O0 'LC-

C

I

00 'g£-
I

00 '6Z - 00 '00

CD

C3
C_

C_

_OD

C3

J_l'_

C_D
C3

P'4

-T-

-_ t_LJ

CIZ
L__

cD

c3

(.o

c3
c3

c3

c:3



!

w

i

!

u

Z
C]Z
Z

cD

_J
nN

Z

c)
r_
Z

z

I

OS 'l
I

O_ '1

/
/

/
/

/
!

/
//

s

/

/

I

06 '0
I I

09 '0 OE '0

dNY

LY_

C:3

O0

C3

C_J

G

C3

CO

-c;cO
U

Ill
Or3

CUIj_l
-C;_--

C3

r_.

C3

-C3

C_3
C3

o_



w

L
w

F--

W

__J

F---

FT'-

CZI

OD

&l

r-_

z
o
r'q

z

__J

CI

O2

(J

LLI

o._
(.r)

I

O0 'B
I

00'91-
I

O0 'lC-
I

O0 .o£-

(go)

I

O0 '6Z -

dNU

C_

f'xa

Q

G

C3

(C3

- U'}

C)

._.._ _ C&l
,,..a

r,q

T-

(:3

-_;t.J
cr-
I1

C}

ii

O0 '001 -°



w

r_

w

=

w

w

i

w

F-

LU

_J

F--

O2

OZ

CID

@0

rid
CD
Z

z

(_9
fil

I

O_ '1
I

O_ 'I 06 '0
I

09 '0
I

0£ '0

dWU
00

_D

(221

G

m

-c;cn

W

_ t.x_t

C



LLJ

...J

I

C.J

Z

CO

£3
C_
Z

..J
C_
CE

c.j
LLJ
(3_
or)

00.,
- O0 'L£- O0 'gS- O0 '6L- O0 '00

_gO) dldU
d



48

w

w

w

w

L_W

L

W

u

LzJ

__J

I

(_)

Z

Cr)

0

I-4

O0

C)
CZ3
Z

Z£

C]i
J

I

OS 'I
I

0_'1

/
/

/

I I I

06 '0 09'0 OC '0

dNY

L.O

C3

If)

C_

C3

(30

-c;CO
(J

Ill

CUl_l

oZ

F--

G

-d

O

0

oo:o_



romp

L

m_Rr
Z

c_

C_ _J

c_



-- 50

- °

w

z

w

w

w

w

W

7
CE

U'3
tO)

GZ
L.D

.,,.4

--,Z

ED

Z

L_.O
C£
.._1

!

OS '1
I

02 'I

/
/

/

I I

06 '0 09 '0
I

OE '0

dNY
O0

_D
urn

C'I

u7

0

(_._)
LIJ
U-)

-d



/o
!



52

L

E ?

w

r
m

w

w

= •

w

w

= _

w

W

S

£E)

0

_J

Ill

Z

U-)

ED

U

r_

c_

II

__I

I

0S'I
I

02 'I
I

06 '0
I

Og '0
I

0£ '0

SNU
O0

_D

C3

L f3

C3

CD

C',J_

-c_ crJ
(_3
LLJ
Or3

cu I_Lj

c_

r'--

C_

C3

(::3
C3

o



.53

w

L

w

w

=

=

E =

M

ZE
O
r-'l
Z

Z

U
i.j..j
EL.
GO

LI_I
Z
I.---,I

to
O
y

w_

1,4

@8
,,,..,I

II

._J

I
O0 '£

I I

O0 '91 - 00 'Z[-
I

00 '8£-

(gO;

I

00 '6Z -

SNU
00 '00

c)
c)

_:_f,

c:3
o

o
c3

.co

o
o

.U3

C:3
C)

"T-

CD

-_U.J
r-t--
D._

o
(c3

o

03

¢:3
c3

(c3



r
I

= :

I

I

I

=

I J
L

I

I

I

E

_D

i

Z
KD

C-q

Z

---<

__D

__A

LIJ
Z

U-?

C3
U

I-i

,,.....-I

11

._J

I

0S'I O0 'I

/
i

.i

/

.,/'

/

/

/
/

/
/

OS '0
I I

DO '0 OS 'o-

dNU
00

t.D
L_

CD

-c:; cr'_
_.)
Ill
U_

c'_ LL_I
oZ

I--

i

(::l

1-



wmw

w_

_w

llm

Tj_

i

_J
L_
c_

e_j
LLJ

C_j

c_

00'



w

m

z_
w

w

m_

Z
C3

Z

-<

L..n
CE
__J

LI_I

t,-,,,,-=l

U'-)
(Z)
L_)

co
c,4

t,a

F',,.j

II

_J

\

!

0£ 'I

\.

.J

/
00'I

I I I

0£ '0 00 '0 OC; 'O-

dNU

\
\

\

00'

L,'n

0

C31

C'.J

-C3

CO

-c; u-_
LJ
L..LJ
Or)

_L._

.,,--,

1=:3

r'-.-
1=3

(=3

(=3
C3

C_



S7

Ili

If

= z --

-- Z

&+.

Z

Z

O0 '£

O0'OOi-

Cb
C_



w

i

llmI'

lira

W

m

m_

v

l

---_

i

I

w

w

F-'-I

__J

U-)

CD

t_.J

0

0J

CY')

II

...J

[

OS'I

iy

j"

J

/

58

O0'l

r_O

C)

-C_

t._
677

- C::::)

CO

-_cr>
(_J
LIJ
qy')

,...,m

_ I.J_I

I--

0

o
l-



-- 59

=

m

m

w

k_

w

i

=

Z

c"q
Z

Z

U
LI_J
O_
(7)

L.LJ
Z

U'-)
£Z)
U

t,¢,l

1,,4

II

._J

I

O0 '£

<]-

<-
ii

I I

O0 '91 - O0 "LC-
I

O0 '9£-

(g@

I

O0 '6L -

8NU
O0 '00

C3

C3

(::3

E3

.CO
..-.a

C3

_U'3

C:3
O

J"_l

N

"-F

o

c_ (12_

CC
l_z_

C:3

-(,33

0
0

m

C3



_ 6O

i

i

w

i

_s

=

_zi

z z

m

F
m

= :

=
i

I

51

U

i

7

CZD
(-3
Z

Z

CIZ
__J

z3'

Ill II
z

(.N
0
U

(-q

I

OS'I 00'I OS '0 O0 '0 OS '0- 00"

dNU

c_

c_



_w



411,_-



Z
63

m._

Z

Z

r-q

Z

-4

(_.)

I..LJ

0._

CO

u3

L..3

__Q

II

.._I

<...

"T
O0 '91 - O0 'LI_- O0 'gg-

fgO_

"T
O0 '6L -

_NU



Qm.

_P

/

C_

\
\

c_
....J



L

65

|

=:

I

--<
El)
C3
Z

(_..)
L.d
Q_
t,")

LLJ -

Z
I-,,--i

U'3
£b
L)

=1

r'-,-

ii

J

O0 '9] -
O0 '-LC° O0 8£1 O0'6L-

" [gO) dL4U



66

i

_4

i"

m_

w

Z
C3

EZ3

Z

Z

L.9

CE

_J

LJ

Z

C_

CD

L_2

oo

la

ea

F'-

II

_d

f

0S'1

jt
J

f

S

J

L

OS '0 O0 "000'I
I

OS '0-

dNU
00'

-d

C',,,I

G

la"l

cr3

c_

Go

-_uO
(J
L.LJ
rd'-)

....,a

cu I_LI

I---

-,d

G

-,d

c)

G



67

W

i

Z
E3
{-.-q
Z

L.)
LJ
Q_
0O

l_zJ
Z
I,,---4

t.,O
C3
L.._)

CO

II

_.,J

C"

F
I I t I

00 '£, 00 'gI- 00 'ZE:- 00 'gS-
I

00 '6Z -

d 4U
O0 '00

o

C3
O

(:3

C3
O

-03

r,q
3-

(:3

oC3
,:,-;uJ

rr"
L.L_

C:3
C3



I
I

I
I

=

CZ)

L__

I-...---I

L_

CZ_

I

111

z
I-----4

L.Q

EZ)

L2

0

ell

co

11

_.J

I

OS 'l

J
J

S
O0'l OS '0

I

O0 '0

68

.--..<.

I

OS '0-

dNd
00'

LD
Un

C'XI_

-_cn
(_3
LxJ



T "

r_

r_j

I

&._

Z

(_3
b.j

Co

>-.

| - . _

O0 "S

O0 'bt'- O0 'Lb- O0 'Og

- i

oj



70

w

=

w

w

_4

w

w

u

I'_'-J

I

i

e.

I

C_
Q_

-i,4

CD

Z

CE
_J

0

-I-

I
0£'I

I

O_ 'I

i
I I

06 '0 og '0

c)

I

OE '0

dNY
O0

c_

o

cxl .---,

_.)

cxJk.Lj

G



71

m_

! --'

|: !

=

P_
i

imimm

w

I"-,-d
T-

C'x,.I
I

C'X.J
I

C"r-

EL

Z
E:)

Z

L.J

n
(f)

I-7
I.-,...+

rr7
).--
-I-

I

00 'S

f

I | I I

O0 'O- 00'12- O0'hC- O0'Lh-

 qa) dNU

c_

c_d

r'_d

T

c_c_
c_l__

Pr-
t4_

o

oo '09 -d

b



_mr

lIB

.+_

0_'1

09 '0

,..0

C_3

(j
LaJ
£0

_Lzj

h---

n3.

o

P_

O0

C3

C:3



73

w

i

i

i

w

!

= :

I"q

q-

I

CO
I

Z
r'r-

Q.._

u"l

=1

u')
"-4r

rm
z

Z

o'3

f.-q

_r-

00
>--
I

I

00 '£
I I !

00 'g- 00 '12- 00 'hE-
I

00 ,zh_
dNY

(D

(D
CD

C3
(:D

_OD

(D

(D

(D
CD

I

CD

L__

(D

CD
CD

CD

CD
O0 '09-



i

74

t

i

=

=

I

b-J

-F

I

•.

CO

I

7

CC

[_0

n'-

CL_

'4P

f_

O0

r._

U3

(C)
C_
i

Z

0"3

[_3
CE
__J

I

O_ '1
I

D_'I

i I I........

06'0 09'0
I

0£ '0

,JNtJ
O0

iJh

m

-0

d"g .,---,.

-_ r...o

L._

_I_LJ

F--

c:3

o





I

E

_J

i--

z

wm

=
@J

L_
m

w

mm_

_J

-F

CkJ

I

CO

I

CC

n-

O_

@0

bo
lZ

fiz)
c3
Z

z

cI
J

!
O_ '1

I
0Z 'I

76

\

\
\

J

fJ

J

/
I I I

06 '0 0g '0 0C '0 00

dNU

,_O

c)

CY_

I.n

CO

L'NI _

C._)

L_

O_

_LJ_I

I---

-d

0

0



_2

i

; =

1



_- _,lm,,,,,_
/

/

j_

/ _.

r'O"
/

cr
co -----.'

o....

q,/



79

r_

-I-

I

I

z
rT-

EE
[3_

w*==l

Z
E_
c'n
Z

L_J
LI_J

n

co-
rn
>--

-I-

!

O0 '5
I I I I

O0 "ZI- O0 '62- O0 '9fl- O0 'fig-

(gO) dNU

C3

(-_

_(:13
.--J

_In

.(-_j

h4

t

c_

CE

LL

o
o

-(.D

G

c_

O0 'Og _



-- 80

w

i

u

w

imil

i

N

-I-

I

C'X]

I

Z
rr

CII
ft_

QI

I-I

Z
CD
C-3
J

Z

(_.9
CE
_J

i,.-,,-t

cr-
CI3
>--
T

I

OS'l
I

02 'I

/
/

/
i

/
/

/
/

/
/

/
/

I I

06 '0 Og '0
I

OE '0

dNU
00

(.D

-(:23

-d

I

-a

-_V-)
_.)

Ill

_ ta_.l

iI-.i

H-

(D

-CD

(D

O

0o



E

_j



w 82

i

=

w

w

z

u

z

W

N

7-

C3"
I

C",J

w..

C',J
I

Z
CC

n'-
Q_

um

el}

Z
EC_

C3
Z

Z

C[
..d

r'q

cr-
nq
>-..

T

I
Og'l

I
02 'I

i
/
/

/
/

/
/
/
/

I I I
06 '0 09 '0 0C '0

dNY
00

,...O

ij- I

!

-CC,

(-,.j

Un

C'm

CD

C"_

-ocO
r,_)

Ill

rj-3

I.---

C3

-C)

o=



83

w

= =

w

z i

w

w

to
h

W

m

7-

I
C'X.I

Cr-)
I

CC

n"-
17

U'7

la

u-)
z
CD
CD
z

Co

r'7

rr

03
>--

7"-

I

O0 'fi

I

I

O0 'cg-

dNY

f

I I I

O0 'Z1- O0 '62- O0 'gfl-

[gO)

c_

_ :::3"
C',J

C3

CD

_CO

CD

_LN

CD

CD

_(-_

h_

T

_C2)
-_LxJ

cr-
ii

(23

CD

00 "Og -



-- 84

w

m

n

I

=

=

W

L_

--=

W

Immm_

r',-J

-F

I

(-xJ

m_

Cr-)

I

Z

r'r-

(__0

rC

CL_

ut_

b0
-I,4

LfO

CS)
Z

O'3

L_3

I

I

0S'I
I

OZ'I

/
/

/
/
/

/
/

!

i l-
OG '0 09 '0

I
OE '0

SNY
00

t.D

-C3

(33

-C:3

C3

IJ3

c-',J_

-_un
c__)
tJ_J

Lf-)

r_I_LJ
-C_Z

c_

c}

o

0_



85

L ,

L

w

_=

=

I

D,4

EE

I

cNJ

O7

I

Z

CC

(._O

CE

CL

.4

co

CD
c7
Z

EE

__0

C_

CC

CO

I

O0 'S
I I I

O0 '2]- O0 '62- O0 '9h-
I

O0 'C9-

"

G

c_
c_

_oD

o
o

N
I

o

_0
_W

Pr-
LL

G

0
0

O0'Og- °



86

m

LJ
r_

w

w

--_3

L_

E

w

F=

T_

_;=
mmm

L_

w

L

r-_
-F

z]"
I

Ux,j

cr)
I

Z
r'r-
(_3
EIZ
Q_.

co
Lt_

la

co
--_
CD
r-l
z

Z

CO

(_3
02
__J

!
0£ 'I

I

08'I

,.5
I.P

rtZ_

,

.Zj

j

I

06 '0
I

09 '0
I

0g '0 O0

-C)

:C7

CZ3

o'3

-C3

C_3

-cj or)
(J
Ill
CO

cu L._I
-cJ_--

c_

p,,
cc3

c}

c3
c3

0



87

ql- i

R_

w

w

J

N
7-

I
(-X.I

w.

Or)
I

Z
FT
L..0
CE
Q_

u"%

1,4

cr)

c_
r-q
z
t--,,,,i

Z

CO

r'q

r'r-

03
>--

'T

I

00 '£

f

C

I I I

00'_I- 00'62- o0'gh-

(go)

I

00 '£9-

dNY

C3
G

ok}

C3
C3

CM

C_
C3

.a3

C3
(:3

_1.13

(C3

C3

_C_

N

7-

C3

-cdW

EIZ
II

C3
C3

-r,.O

or)

(:3
G

00'00- °



- 88

w

r

w

w

w

W

w

w

j

n

==
j

N
T

I

Im

or-)
I

z
FT-
c_O
CE
EL

O

I-I

c.o

EE)
r-_
Z

O')

E_
._.J

f
OS'I

\

I

02'1

/

\,

\

\

(

J

f
/

1 I I

06 '0 09 '0 O_ '0 O0

SNU

cr_

(:z)

o

-c; c,_
C_J

Ill

U)

_ I.x_t

G

-G



89

hi

w

= :

!

N

-1-

CO
I

ckJ

I

n-
LD
n'-
Q_

QI

Z
_D
£23
z

L_)

n

(23

CC

>.-
-r-

I
O0 '£

CD

I I 1 1

O0 '_I - O0 '6_- O0 'gfl- O0 .£9-

_ga_ d I,,1Ig

C_

C_

0

C3

_CO

LN

C)

C_

_C'_

,....i

r--J

-r-

C_

-_ U._l
rl'-

LL..

C3

0

CJ

t"r3

CE,

C)

d
O0 '09



i

IIJ

i '

F_

-_.._:

z_-._

!If

:!

111

N

T

CO

I

c_j

I

Z
cc
LD

_T-
CL

Z
C)
E_

Z

(_9
CZ
._J

CD

cc
m
>-
I

I

OS'l
I

02'I

/

/"
I

/

/

I

06 '0

/
/

./
/

/
/

I
09 '0

I

OC '0

SNU
O0

9O

-C_

c_

-CD

U_

C_

CD

t_)

L_

C/D

_L_
-CDZ

I.---4

F--

-CD

r'-

CD

CD

<D

CD

oo



F_

!I'
i

_I_

=Ii

s;

3"

CO
I

Od
I

z
rr-

D,....

z

z

.-¢

oo

c-.i

r',r-

r"n
>-

9,1.

o

I !
O0 'gfl- oo'£9-

(El 12) dNU

F t -- " l

O0 'S O0 '21- O0 '62-

C:3

oo 'o_ '=;



:!

_J

t

:!

!i-

,_4_-

=- i-_

-!:

: !

-i

.i

,B i'__

,_L

N

-F

CO
1

C'xj

w-

f"xj
I

Z
CE

rt-
Q._

el)

Z

r--I

CE
...J

C3

CE
CO
)-...
T

t
0£'1

/

/
/

/

O_ 'I

/

I I
06 '0

/

I
09 '0

I
OE '0

SNU

_D

C)

00

L/n

a3

t"xj _--,

_.)

U-)

_LxJ

b--

O

r_

(Z3

C



_=

_f

I

I

z



-- 94

==

w

w

==

:_ il

u

M

w

rn_

N
-F

CO
I

(..-,,j

re,-

O-)

I

CT"

CC
C..L_

',,o
,,,.o

ol0

(5-)
..%

O
C3
z

Z

CO

(_.3
(1Ii

!

OS 'I
I

02 'I

/
/

/

/

/
/

/
/

/

I I I

06 '0 09 '0 0[ '0
4NU

/

00

L.....q

-(_

0'3

C3

_3

Crl

C3

O3

-_ u'-)
L_)
b_l

(j-)

_L._

-C3

0o



95

- -7

"L/

r_

i

= = :

i

I

i

i

N

'I-

CO

I

f.

fc_

I

z
CE

dE
Q_

o0

to

ED
r-_
Z

Z

cO

C_

rr-
CO
>--

7-

f

O0 'fi

_-"- .__.____...

f

I f I I

-00 '21 - 00 '62- 00 '9fl- 00 '_9-

(g[]) SNU

o,,j

o

o

.LP)

C)

C3
O

_og

r.,-..I

m

-c4 L.LJ

,

G
O

o0'oo -_



-- 96

J

J

m

=

N
-1-

CO
I

C',J

w,

Cr-)
I

7
CE

CE
CL

oo

@

el0

(3")
-z

C_
Z

Z

_.0

CZ
_.J

I
Ofi'l

I

0_'I

/

/
/

/
/

/

/

I

06 '0
I

09 '0
I

OI; '0

dWU
O0

LO

07

-d

c'.j

-d

i_1-)

-c:3

OD

-c:; (.r)
o
I_L]
(.r)

_LJ_I

t----

c)

f-,..

c:)

-d

o

0_



97

aiw

W

W

W

_. =

S

-T-

CO

I

Ip.

C_

I

>--
CE[

L_D

cc
EL

rod)
-,-4

to

ED
rn
z
l-,-,--i

CD

rn

cT-
co
>--

t

I

O0 'S

f

<

I I I I

O0 '_1 - O0 '62- O0 '9h- O0 '_9-

(gO) dNU

G

-c-x;

_¢0

_I._

_c-_

N
-F

02

LL_

d

-d
00'00-



v .

[

w

=

= =

w

N
T

CO
I

Od

p.

[-Q
I

.>--
or-

Q_

O

@

;.4

r._

U'3

r"n
Z

Ob

(_9
(Z

I

OB'I

/"

,/

/

/
,/

/

,

I I I I

0;_ '1 06'0 09'0 02 '0
dNU

00

98

,'_O

-C3

C'm

-d

CO

,C',..J _

-_Un
(....)
b_l
oQ

_L.LJ

I---

C3

C)

-(C]

C)

C3

0o



99

w

L _

w

o

w

w

Z

C_
I

t,

I

Q_

r_

Z

Z

u')

CC

(33

I

I

O0 '£
I I I I

O0 ' _,Z- O0 '6fl- O0 'gz- O0 .c01-
(ga) dNIsl

00'0_

CD
C3

cXJ

C3
C3

C3
C3

_03

C3

_l.n

CD
fD

_C_

N

I

CD

oCD

CC
tu

CD
CD

UD

CD

CD

On

CD
CD

CD



-- i00

=

=

w

u

E _ E
w

w

L

N

Z

CO

I

I

Z

cc

O

O_

c_

Z
CI3

C3
Z

_D

CI
_A

C3

CI3
>-

-F

I

0_'1
I

02 'I

/
/

/
/

/
_

/
/

I I I

06'0 Og'O OE'O

dNU
O0

L.n

C'J

B

c)

i,-n

co

-_cr)
r.__)
W

_LJ_J



w

101

z

L_

w

-=

m

w

w

= .

m

h-J

7-

CO

f

(-_

I

z
cY-

cc
O_

(:W}

Z
C]
c]
Z

[3
LLJ

O_
L_

C2]

_2
rn
)-
-r

I
O0 'S

....._>

<---
r__.-->-

I I
O0 '22- O0 "6fl-

I I
00 '9L- 00 'C01-

c a) dNU
00 '0E

L_

_o;

C3

C3
(:3

N
T

(:3

at2)

CC
L__

(:3

CO

(3
C3

-_4

C3

(:3

d



102

I

i

N

3Z

CO

I

q_J

I

I"

EEl

(_3

CL_

-.T

=

Z
El)

[13
Z

Z

cO
(31
J

(13

QO
>--
T

I

OS 'I
I

OZ'I

/
/

/
/"

/

/
//

/

/
/

/

/
/

/
/

I I I

06 '0 09 '0 O2 '0
dNU

O0

-CD

-d

U3

m

--0

CO

LLJ
tO

r_L_
-c; Z

-0

r _

o

-d

C3

0_



i

w

!

L_

m

L_

!

L_

L,,i

u
I

i

r-,.4

-F

CO
I

cr')

I

Z
rr-
(__.O

or
EL_

el@
,,.,4

Co
-z
0
n
z

t---,-I

-.-<

CO

C3

rr-

CO
)-
ZIZ

I

O0 'S
I I

O0 '22- O0 '6h-
I I

O0 '9L- O0 'E01-

 ga) dNIsl
O0 'OE

103

E_

0
C_

O0

C_
C_

,03

0

_l.J")

C3

_C_

P_d

c_

C_c3

-o_I,I
or-

u_

c_

c_

c_

c_

c_

c_

d



w

104

w

L_

z :

B

w

w

u

-?

m

w

m

_J

T

OD

I

z3_

I

V3

O
C3
Z

Z

oD

CE
__J

_D
-H

I

0_'I
I

O_ 'I

/

/
i/

/
/

/

/
/

I

08 '0
I

OC '0

JHY

L/"J

O0

-6

CD

__)

_-}

r'_ k_L_1

-c:_ 5-

b---



ib,,,,,-

_w

q--

CO
I

f,

CO
I

Z
rl-
L..o
m'-
Q...

f,a

U3
"-z"

CD
Z

-Z

_.0

CD

rr-
CO
>--

7"

f

<....

<--
<i

f

S
_._.._

I

O0 'gz -

I05

(

I

O0 'C01 - O0 '0_

C3
CD

C3
CD

-C,,J

0

.OD

C:D

_U_

o

_J

T

"_I_LJ

C_
U_

o

o

c_3



-- 106

i = =

m

L

_J

L

N

T

_D

I

O'3

I

z

_D

01

O_

oo

0"3

z

Z

L.Q

LD
C[
J

I

0£ 'I
I

0_ 'l

/
z

I I

06'0 Og'O
I

OZ '0

dNd
00

_D

[i

-C:I

G

t"Xl _

r,_)
1,1

-o_'-

t---

i

r_
G

G



107

i

L .

w

w

r

w

N

T

I

I

Z

CF

C3_

@

V3

O
C3
Z

O3

C3

o-
03
>--
T

O0 'S O0 '22- O0 '6h-
I I

O0 'gL- O0 .EOl-

(ga) dNIg
O0 'OC

CD

C_

C_

C_

f.a

C_

.1.1"1

C_

P"d

E

_C2_

cr-
14_

C_

O

O

d



w

108

m

i

w

I i

i •

II- i
w

= =

N

T

CO
I

I

Z

fl_

o

14

z

D
Z

Z

0]

(_.3

_.1

I
OS'I

I
02'I

/

1

06 '0

.

/
/

/
/

/

/

I
Og '0

/
/

//.J"

z"

I
O£ '0

dHW
O0

(_

L__)
W
U-)

_W

2_

C

G

0
C:_



E

m

r-

m

z_

i

h.

i

z ;

w

u

n

bw

109

REFERENCES

Blackman, R. B., and Tukey, J. W. (1958), Measurement of

Power Spectra, (Dover: New York).

Bracewell, R. N. (1978), The Fourier Transform and Its

Applications, (New York: McGraw-Hill).

Bronson, R. (1982), Schaum's Qutllne of e_ and Problems

of Ope_a_%ons Research, (New York: McGraw-Hill).

Claerbout, J. F. (1976), Fundamentals of Geophys%ca_ Data

p_ocessln_, (New York: McGraw-Hill).

Goldfarb, D., and Idnanl, A. (1983), "A Numerically Stable

Dual Method for Solving Strictly Convex Quadratic Programs",

p_o_rammin_, 27, 1-33.

Hillier, F. S., and Lieberman, G. J. (1967), _ntroduction

to Operations R_search, (San Francisco: Holden-Day, Inc).

Kreamer, J. L. (1988), _ Analysis of Combined Widow

Spectral Estimate ChaDnel Clearln_, Master of Science Thesis,

Dept. of Physics: University of New Orleans, Louisiana.

Lawson, C. L., and Hanson, R. J. (1974), $olvinz Least

Squares Problems, (New Jersey: Prentice-Hall, Inc.).

Marple, S. L. (1987), _ Spectral _nalys_s, (New Jersey:

Prentlce-Hall, Inc.).

Nuttall, A. H. (1981), "Some Windows With Very Good Sldelobe

Behavior", IEEE V. ASSP-29, No. i, 84-91.

Oppenheim, A. V. and, Schafer, R. W. (1975), _

Processln_, (New Jersey: Prentice-Hall Inc.).

Powell, M. J. D. (1983a), "On the Quadratic Programming

Algorithm of Goldfarb and Idnani", DAMTP e_ NAIg,

Cambridge, England.

Powell, M. J. D. (19835), "ZQPCVX - A FORTRAN Subroutine

for Convex Quadratic Programming", DAMTP e_ NAIT,

Cambridge, England.

Robinson, E. A. (1980), physical _&__of Stationary

Time_/__, (New York: McMillan Publishing).

Scales, L. E. (1985), ;ntroduction to NoD-Linear _Optimization,

(New York: Sprlnger-Verlag).



k

ii0

Smith, H. M. (1985), _reating Clear Ghannels b_.yMinimizing

Sidelobes in Power Spectral _ Us__ Line_

Comb%nations Of Autoco_relation W_ndows, Master of Science

Thesis, Dept. of Physics: University of New Orleans,

Louisiana.

m

E

in.

=

i

m

w



r

' L&

I

i _

L_
iml

: = =

= •
w

r_

iii

APPENDIX A

In this appendix, we will show that the vector a that minimizes

the unconstrained function aTHa is a* - O. The treatment is after

Scales (1985). Consider a Taylor expansion for F(x)

(i) F(x + Ax) - F(x) + AxTg(x) + 1/2 AxTG(x)Ax + ....

where the gradient is g(x) -

and the Hessian is G(x) -

[aF/ax I"

aFlaxn.

82F/aXlaXl ...

.a2F>axnaxl ...

Now consider a quadratic form

(2) F(x) - 1/2 xTAx + bTx + c.

Then F(x + Ax) - 1/2 (x + Ax)TA(x + Ax) + bT(x + ax) + c

- F(x) + AxT(Ax + b) + 1/2 AxTAAx.

ţ -

!__ | !:

q K._

Comparing (2) with (I), we have that

and

g(x) - Ax + b

G(x) - A.

The condition for x to be a stationary point is that
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g(**) - 0

Ax*or - -b.

t

I

m

Casting this result in the notation of our problem gives

Ha* - -b.

But, b - 0,

so Ha* - O.

This linear system is consistent, with a solution a* - 0. Since H is

square, if it is nonsingular, the solution is unique, and 0 is the

solution. If H is positive definite it is nonsingular. We actually

require H to be positive definite although we only showed in Chapter 2

that it was nonnegative semidefinite. DQPROG will perturb the

diagonals so that H becomes positive definite if it is not.

w

w

i_

L_

w

w
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APPENDIX B

In this appendix we will first give some useful basic

information about the specific quadratic programming (QP) subroutine

we used to generate the thesis results, and then we will give a broad

outline of the typical steps to solving a QP problem.

In all three programs discussed in the body of this thesis the

heart of each code was a subroutine from the IMSL MATHT'M'/LIBRARY

called DQPROG. DQPROG is the double precision version of QPROG which

is dicussed next.

QPROG is based on M. J. D. Powell's implementation of the

Goldfarb and Idnani (1983) quadratic programming algorithm for QP

problems subject to general linear equality and inequality

constraints. The matrix H (discussed in Chapter 2) is required to be

positive definite. If it is not, then a positive definite perturbation

is used in place of _. For more details, see Powell (1983a, 19835).

The following broad outline of quadratic programming is after

Bronson (1982). The solution of many mathematical programming problems

begins with the Kuhn-Tucker conditions. Consider the following general

nonlinear programming problem

r

w

"given that x - [xI.....xn]T,

maximize z - f(x)

subject to gi -< 0, i - i, m

with x >_ O.

To solve this program, rewrite the nonnegativity constraints as
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-X i S 0,

and add slack variables to the left hand sides of the constraints.

This converts the inequality constraints into equality constraints.

Now form the Lagranglan function

m m+n

L - f(x) - Z _i[gi(x) + (Xn+l)2 ] - E Xi[-xi + (Xn+i)2],

i-I i-m+l

where the Ii are Lagrange multipliers. Finally, solve the system

z

=

8L/axj - O,

8L/SA i - O,

j - i, 2n+m

i -- i, m+n

Ii z 0, i - I, m+n .

These last three expressions constitute the Kuhn-Tucker conditions.

They are important because the set of their solutions contains the

solution to our original nonlinear programming problem.

The QP problem is a special case of the general nonlinear

programming problem. Let's write the QP problem in the following form

(note, seeking the maximum extremum is quite general in that the

maxima of f(x) are the minima of -f(x))

L maximize z - xTCx + DTx,

i

subject to Ax s B,

with x Z O,
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After applying the Kuhn-Tucker conditions to the QP problem, we find

that the solution must satisfy the new matrix equation

A'Y - B',

where

B

A II 01 OT]
-2C 03 -I2 A

w

w

w

B F

and Y'

$ is a slack variable vector and U and V are Lagrange multiplier

vectors. We also have the condition that

-L _

Y' Z O.

Bronson (1982) discussed the use of the method of Frank and Wolfe to

solve these equations. This method is rather complicated and beyond

the scope of this thesis. However, in a few words, we can generally

describe what takes place. A subproblem of our Kuhn-Tucker conditions

is a modified linear programming (LP) problem with the inequality

constraints of our QP problem. A well known method of solving LP

problems is the Simplex method. A series of iterations that involves

application of the Simplex method will give the desired solution if it

exists.
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APPENDIX C

PROGRAM PRGRAMI

C Author: Kent Broadhead (12/89).

******************************

INTEGER STRINGLEN,SIZE

PARAMETER (IFFTMAX-2048,1MAXCHNL-50)

INTEGER LDA,LDH,NCONMAX,NCON,NEQ,NVARMAX,NVAR

PARAMETER (NCONMAX-12,NEQ-I,NVARMAX-II

I ,LDA-NCONMAX,LDH-NVARMAX)

CHARACTER*20,FILEOUT,DIGNSTC,TIME

CHARACTER QUESTN*I

DIMENSION IARRAY(II)

REAL*8 AME(IMAXCHNL,NVARMAX),

i AMET(NVARMAX,IMAXCHNL)

DIMENSION SCALE(NVARMAX),SUMARRY(IFFTMAX)

I ,SUMDB(IFFTMAX)

REAL*8 A(LDA,NVARMAX),ALAMDA(NVARMAX)

1 ,B(NCONMAX),DIAG,G(NVARMAX),

1 H (LDH, LDH), SOL(NVARMAX)

COMPLEX CW(IFFTMAX)

INTEGER BEGCHNL,ENDCHNL

INTEGER IACT(NVARMAX),K,NACT,NOUT

EXTERNAL DQPROG,UMACH

PRINT *,'Enter the output file name:'

READ (*,'(A20)')FILEOUT

OPEN(5,FILE-FILEOUT,STATUS-'NEW ')

C ............ Window only option .......................

PRINT *,'Do you Just want a window plot?

I (Y or RETURN):'

READ(*,'(AI)'),QUESTN

IF (QUESTN .EQ. 'Y' .OR. QUESTN .EQ.'y') THEN

CALL WNDONLY(CW,SUMDB,ILAGI,SUMARRY)

GO TO 1050

ENDIF

C ...........................................

C .......................................................

C Get the main input params. No values for the arguments

C are sent. Both returned by GETLIST.

CALL GETLIST(IARRAY,NVAR)

C WRITE(*,'(IX,12,4X,12)'), (IARRAY(1),I,I-I,NVAR)

C ....................... " ...............................

PRINT *, 'Enter no. of windows to use (2-11):'

ACCEPT *, NVAR
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C SCALE(i) sums to unity constraint

DO 302 J-I,NVAR

302 A(I,J)-I.0

C Open diagnostics file;

SIZE-STRINGLEN(FILEOUT,LEN(FILEOUT))

DIGNSTC - FILEOUT(I:SIZE)//'.DIAG'

OPEN(4,FILE-DIGNSTC,STATUS-'NEW')

WRITE(4,*),'Diagnositics File'

WRITE(4,*) ' '

WRITE(4,*),'VAX filename - PRGRMI.FOR'

WRITE(4,*) ' '

WRITE(4,444),FILEOUT

444 FORMAT(' Data filename - ',A20)

WRITE(4,*) ' '

C Windows range from -.5 to .5

C Get 0 to .5 first, then use symm to pad

C out neg side (in FFT format).

C Initialize

ICNT - i

• PRINT *, 'No. smples for lag wndw (desgn)'

READ(*,*),Ilagl

PRINT *, 'No. smples for spec wndw (desgn)'

READ(*,*),ifftnml

XLAGI - ILAGI

XFFTNMI - IFFTNMI

DELTAFI - XLAGI/XFFTNMI

PRINT *, 'No. smples for lag wndw (dsply)'

READ(*,*),Ilag2

PRINT *, 'No. smples for spec wndw (dsply)'

READ(*,*),ifftnm2

XLAG2- ILAG2

XFFTNM2 - IFFTNM2

DELTAF2 - XLAG2/XFFTNM2

ihalfl - llagl/2 + I

ihalf2 - ilag2/2 + I

NYQstl - ifftnml/2 + 1

NYQST2 - ifftnm2/2 + I

i010

i011

WRITE(4,1010),ilagl

FORMAT(IX,'No. smples for lag wndw (desgn)',14)

WRITE(4,1011),ifftnml

FORMAT(IX,'No. smples for spec wndw (desgn)',14)
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1020

1021

WRITE(4,1020),Ilag2

FORMAT(IX,'No. smples for lag wndw (dsply)',14)

WRITE(4,1021),ifftnm2

FORMAT(IX,'No. smples for spec wndw (dsply)',14)

WRITE(4,*) ' '

PRINT *,'Enter the begining and ending freqs:'

c PRINT *, 'Note: max no. of channels

C I presently is 50.'

ACCEPT *,FI,F2

C Cnvert FI and F2 to fit points.

CALL CNVRT(BEGCHNL,ENDCHNL,FI,F2,DELTAFI)

WRITE(4,10OO),FI,F2

i000 FORMAT(IX,'Frq atten, band ',FIO.3,' to 'FIO.3)

WRITE(4,*) ' '

WRITE(4,1023),BEGCHNL,ENDCHNL

1023 FORMAT(IX,'Chnl band ',i4,' to 'i4)

WRITE(4,*) ' '

NCON - NVAR + I

C Set up constraints;

DO 305 ICLR-I,NVARMAX

305 G(ICLR)-0.0D0

B(1) - 1.0D0

DO 299 I-2,NCON

299 B(I) - O.ODO

DO 301 I-I,NCON

DO 301 J-I,NVAR

301 A(I,J)-O.0DO

DO 307 J-I,NVAR

307 A(I,J)-I.0D0

DO 303 I-I,NVAR

303 A(I+I,I)-I.0DO

C Begin window calcs:

xlagl - ilagl

DO 20 IOUTER-I,NVAR

CALL CCLEAR(CW,ifftnml)

C Compute a window.

DO I0 l-l,ihalfl

XI - I

ARG - (Xl-l.)/xlagl

lO CW(1)-WZNDOW(ARC,IARRAY(ICNT))
C Fourier transform the window.

CALL FFT(CW,ifftnml)

C Load the window transform as a column of AME

DO 40 IL-BEGCHNL,ENDCHNL

INDEX- IL-BEGCHNL+I

40 AME(INDEX,ICNT) - CW(IL)

ICNT - ICNT + I

w
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20 CONTINUE

C Define M.

M - ENDCHNL-BEGCHNL+I

C Take transpose.

DO 12 K-I,M

DO 50 L-I,NVAR

50 AMET(L,K) - AME(K,L)

12 CONTINUE

C Multiply transpose by orig matrix and store in ATA.

DO i00 I-I,NVAR

DO i00 J-I,NVAR

SUM-O.

DO 102 K-I,M

102 SUM - SUM + AMET(I,K)*AME(K,J)

I00 H(I,J)- 2 .*SUM

C

C

C13

DO 13 K-I,NVAR

WRITE(6,'(IX,SFIO.5)') (H(K,L), L-I,NVAR)

CONTINUE

C Call DQPROG to solve for the hybrid window scale factors;

C IMSL Name :

C Computer :

C Revised:

C Purpose :

C

C Usage :
C

C Arguments :
C NVAR

C NCON

C NEQ

C A

C

C

C

C LDA

C

C B

C

C G

C

C

C H

C

C

C

C

QPROG/DQPROG (Single/Double precision version)

VAX/SINGLE

October 15, 1985

Solve a quadratic programming problem subject

to linear equality/inequality constraints.

CALL QPROG (NVAR, NCON, NEQ, A, LDA, B, G, H,

LDH,DIAG, SOL, NACT, IACT, ALAMDA)

The number of variables. (Input)

The number of linear constraints. (Input)

The number of linear equality constraints. (Input)

Real NCON by NVAR matrix. (Input)

The matrix contains the equality contralnts in the

first NEQ rows, followed by the inequality

constraints.

Leading dimension of A exactly as specified in the

dimension statement of the calling program. (Input)

- Real vector of length NCON containing rlght-hand

sides of the linear constraints. (Input)

- Real vector of length NVAR containing the

coefficients of the linear term of the objective

function. (Input)

- Real NVAR by NVAR matrix containing the Hessian

matrix of the objective function. (Input)

H should be symmetric positive definite; if H

is not positive definite, the algorithm attempts

to solve the QP problem with H replaced by a

119
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C

C

C LDH

C

C DIAG

C

C

C SOL

C

C NACT

C IACT

C

C

H + DIAG*I such that H + DIAG*I is positive
definite - See Remark 3.

- Leading dimension of H exactly as specified in the

dimension statement of the calling program. (Input)

- Real scalar equal to the multiple of the

identity matrix added to H to give a positive

definite matrix. (Output)

- Real vector of length NVAR containing solution.

(Output)

- Final number of active constraints. (Output)

- Integer vector of length NVAR containing the indices
of the final active constraints in the first

NACT positions. (Output)

C AIAMDA - Real vector of length NVAR containing the

C Lagrange multiplier estimates of the final

C active constraints in the first NACT positions.

C (Output)

CALL DQPROG(NVAR,NCON,NEQ,A,LDA,B,G,H,LDH,DIAG,SOL,

i NACT,IACT,AIAMDA)

C CALL UMACH(2,NOUT)

PRINT *,' '

WRITE(*,*) (SOL(K),K-I,NVAR)

C WRITE(*,99999) (SOL(K),K-I,NVAR)

C99999 FORMAT(IX,8FI0.5)

SUM-0.

DO 432 I-I,NVAR

SCALE(I) - SOL(I)

432 SUM - SUM + SOL(l)

WRITE(*,'(IX,4HSUM-,FI0.5)') SUM

C Put some info in the diag. file;

WRITE(A,*),'OptlmumWindow Wts'

WRITE(4,*) (SCALE(1),I-I,NVAR)

WRITE(4,*) ' '

453

452

WRITE(4,*) 'The program uses the following percentages

i for the given windows;'

DO 452 IPRCNT-I,NVAR

PERCNT - SCALE(IPRCNT)*I00.

WRITE (4,453), IARRAY( IPRCNT), PERCNT

FORMAT(' WINDOW NO.',I3,' - ',FI0.2,' PER CNT')

CONTINUE

WRITE(4,*) ' '

C ...................... ....... .........................

C Now that we have the lin. comb. wts, we need to get

C the spectrum of the hybrid window. To do this, let's

C recompute the window functions, scale them,

C stack them, and FFT.

C Initialize



121

-"T

L

mw

W

r_

w

ICNT - i

CALL CLEAR(SUMARRY, ifftnm2)

C Begin window calcs:

xlag2 - ilag2

DO 22 IOUTER-I,NVAR

C Compute, scale, and stack a window.

DO II l-l,ihalf2

Xl - I

ARG - (Xl-l.)/xlag2

ii SUMARRY(1)-SUMA_Y(1)+SCALE(ICNT)*

i WINDOW(ARG,ICNT)

ICNT - ICNT + i

22 CONTINUE

C Put hybrid window (time domain) out to a plot file.

SlZE-STRINGLEN(FILEOUT,LEN(FILEOUT))

TIME - FILEOUT(I:SiZE)//'T.DAT'

OPEN(3,FILE-TIME,STATUS-'NEW')

405

THALF - 0.5

XHALF2 - IHALF2

DELTAT - THALF/(XHALF2 i. )

SUM - 0.0

T-O.O

WRITE(3 ,*) T, SUMARRY(1)

DO 405 J5-2,ihalf2

SUM - SUM + DELTAT

T - SUM

WRITE(3,*) T,SI/MARRY(J5)

CONTINUE

C Fourier transform the window.

23

24

CALL CC_(CW,ifftnm2)

DO 23 IMOV-l,ihalf2

¢W(_MOV)-SUMARRY(_MOV)
CALL FFT(CW, Ifftnm2)

CALL CLEAR(SUMA_Y,ifftnm2)

DO 24 IMOV-I,NYQST2

SUMARRY(IMOV)-CW(IMOV)

C Output Stage:

C ........... Basic set up .................................

XMAX - SUMARRY(1)
DO 400 IDB-I,NYQST2

ARG - ABS((SUMARRY(iDB)/XMAX))

IF (ARG.EQ.O.0) THEN

PRINT *,'A zero value was encountered in

i the hybrid spectrum window.'
PRINT *,'The dB value has been set to -I00

i 0000000. I recommend that'

PRINT *,'you go with the clipping preset on
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I the next question.'

SUMDB(IDB) - -i000000000.

ELSE

SUMDB (IDB) - 20. *AI/)GI0 (ARG)

ENDIF

400 CONTINUE

C ........... ..... ................. . .... ...... ....

C Find mean of attenuated zone;

C First, get chnnel pts. for given freq band;

CALL CNVRT(BEGCHNL, ENDCHNL, FI, F2, DELTAF2)

XSUM- 0.

DO 402 IMEAN-BEGCHNL, ENDCHNL

402 XSUM - XSUM + SUMDB(IMEAN)

XNUMBR - ENDCHNL - BEGCHNL + I

XMEANDB - XSUM / XNUMBR

WRITE(4,406) XMEANDB

406 FORMAT(IX, 'XMEANDB - ' ,G20.10)

WRITE(4,*) ' '

C Find Half Power Width:

CALL GETHFPW(SUMDB,HFPW,DELTAF2)

873

WRITE(4,873),HFPW

FORMAT(IX,'Half Power Freq - ',F6.2,1X,'Hz')

WRITE(4,*) ' '

C ............ Plot file details ...................

PRINT *, 'Clipping? (N or Return):'

READ(*,'(AI)'),QUESTN

IF (QUESTN .EQ. 'N' .OR. QUESTN .EQ.'n') THEN

C Output data as is.

DO 404 J-I,NYQST2

FREQ - (J-I)*DELTAF2

WRITE(D,*) FREQ,SUMDB(J)
404 CONTINUE

ELSE

C Output data with clipping
CLIP - -160.0

PRINT *, 'Enter Y (change clipping value)

lor Return (for -160 preset):'

READ(*,'(AI)'),QUESTN

IF (QUESTN .EQ. 'Y' .OR. QUESTN .EQ.'y') THEN

PRINT *,' Enter new clipping value:'

READ(*,*),CLIP

ENDIF

DO 401 J-I,NYQST2

FREQ - (J -I)*DELTAF2

IF(SUMDB(J). GE_ CLIP) THEN

WRITE(5,*) FREQ,SUMDB(J)

ELSE

WRITE(5,*) FREQ,CLIP
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ENDIF

401 CONTINUE

ENDIF

C ............................................... -
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C Put some info in the diag. file;

WRITE(4,*),'The first few values'

WRITE (4,*),'of the plot file:'

403

DO 403 J2-1,10

XJ2 - J2-1

WRITE(4,*)XJ2,SUMDB(J2)

CONTINUE

C END OF MAIN PROGRAM

1050 CONTINUE

END

i

b

i.J
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C BEGIN SUBROUTINES

SUBROUTINE GETHFPW(X,F2,DELTAF)

DIMENSION X(1)

C Find dB pt. Just past -3dB.

i0

2O

DO i0 I-I,i0000

IF(X(1) .LE. -3.) THEN

IF(X(1) .EQ. -3.) THEN
12 - I

CALL CNVRT2(I,F2,DELTAF)

GO TO 20

ELSE

II - I-I

13 - I

CALL CNVRT2(II,FI,DELTAF)

CALL CNVRT2(13,F3,DELTAF)

CALL INTERP(FI,F2,F3,X(II),X(13))

GO TO 20

ENDIF

ENDIF

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE CNVRT2(I,F,DELTAF)
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F - (I-I)*DELTAF

RETURN

END

SUBROUTINE INTERP(FI,F2,F3,DBI,DB3)

DB2 - -3.

C Convert dB to ratio;

RI -(IO.**(DBI/20.))

R2 -(IO.**(DB2/20.))

R3 -(IO.**(DB3/20.))

C Linearly interpolate;

F2 - FI + (F3-FI)*(R2-RI)/(R3-RI)

RETURN

END

SUBROUTINE CNVRT(BEGCHNL,ENDCHNL,FI,F2,DELTAF)

INTEGER BEGCHNL,ENDCHNL

BEGCHNL - (FI/DELTAF) + 1.5

ENDCHNL - (F2/DELTAF) + 1.5

IWIDTH - ENDCHNL - BEGCHNL + i

IF (IWIDTH .GT. 50) THEN

PRINT *, 'Channel width .GT. 50'

STOP

ENDIF

RETURN

END

SUBROUTINE FFT(CW,LX)

COMPLEX CW(1)

CALL FFTWRAP(CW,LX)

CALL FORK(LX,CW,I.O)

RETURN

END

I0

SUBROUTINE FFTWRAP(CW,LX)

COMPLEX CW(1)

NYQUIST-LX/2 + i

IEND-LX-NYQUIST

DO i0 I-I,IEND

CW(NYQUIST+I) - CW(NYQUIST-I)

RETURN

END

FUNCTION WINDOW(ARG,ICNT)

PI - 3.14159
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IF(ICNT.EQ. i) THEN

GO TO i

ELSEIF(ICNT.EQ. 2) THEN

GO TO 2

ELSEIF(ICNT. EQ. 3) THEN

GO TO 3

ELSEIF(ICNT. EQ.4) THEN

GO TO 4

ELSEIF(ICNT. EQ. 5) THEN

GO TO 5

ELSEIF(ICNT.EQ. 6) THEN

GO TO 6

ELSEIF(ICNT.EQ.7) THEN

GO TO 7

ELSEIF(ICNT.EQ. 8) THEN

GO TO 8

ELSEIF(ICNT.EQ.9) THEN

GO TO 9

ELSEIF(ICNT.EQ. i0) THEN

GO TO I0

ELSEIF(ICNT.EQ. ii) THEN

GO TO II

ELSE

GO TO I00

ENDIF

i CONTINUE

C Rectangular
WINDOW - I.

GO TO I00

2 CONTINUE

C Parzen-2

WINDOW - I.

GO TO i00
4, * (ARO**2)

3 CONTINUE

C Cosine-Tip

WINDOW - COS(ARG*PI)

GO TO I00

4 CONTINUE

C Bartlett-like, with sign change

WINDOW - I. + 2.*ABS(ARG)

GO TO I00

5 CONTINUE

CHann

WINDOW - .5 + ,5*COS(2.*ARG*PI)

GO TO I00

6 CO_I_E

C Hammlng

125



m..

126

b

VII.

m

_2

--==

i

J

WINDOW - .54 + .46*COS(2.*ARG*PI)

GO TO I00

7 CONTINUE

C Papoulis

WINDOW - i.

i

GO TO i00

2.*ABS(ARG)*COS(2.*ARG*PI)

+ (I./PI)*ABS(SIN(2.*PI*ARG))

8 CONTINUE

C Blackman

WINDOW - .42 +.5*COS(2.*ARG*PI)+.OS*COS(4.*ARG*PI)

GO TO I00

9 CONTINUE

C Triangle
WINDOW - i.

GO TO i00

2. *ABS (ARG)

I0 CONTINUE

IF(ARG .EQ. 0.) THEN

WIDOW I i.

ELSE

WINDOW - SIN(2.*PI*ARG)/(2.*PI*ARG)

ENDIF

GO TO I00

Ii CONTINUE

C Gaussian

A_ 1 2. 5

ARG2 - -.5*((2.*ALPHA*ARG)**2)

WINDOW - EXP(ARG2)

GO TO i00

i00 CONTINUE

RETURN

END

SUBROUTINE FORK(LX,CX,SIGNI)

C From Claerbout's FGDP (first ed.), pg 12. Typed in by MKB.

I0

20

COMPLEX CX(LX) ,CARG, CEXP, CW, CTEMP

Jil

SC-SQRT (i./LX)

DO 30 I-I,LX

IF(I.GT.J) GO TO i0

CTEMP-CX(J )*SC

cx(J)-Cx(I)*sc
CX ( I ) ICT_

M-LX/2
IF(J.LE.M) GO TO 30

J-J-M
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30

40

50

i0

i0

M-M/2
IF(M.GE.I) GO TO 20

J-J+M

L-I

ISTEP-2*L

DO 50 M-I,L

CARG-(0., I. I*(3. 14159265-SIGNI* (M- I) )/L

CW-CF_.XP(CARe)

DO 50 I-M,LX,ISTEP

CTEMP-CW*CX (I+L)

CX ( I+L)-CX ( I ) - CTEMP

CX ( I ) -CX ( I ) +CTEMP
L- ISTEP

IF(L.LT.LX) GO TO 40

RETURN

END

SUBROUTINE CCLEAR(X, LEN)

COMPLEX X (1)

DO I0 I-I,LEN

X(Z) - (0.,0.)
RETURN

END

SUBROUTINE CLEAR(X, LEN)

DIMENSION X(1)

DO i0 I-I,LEN

X(Z) - 0.
RETURN

END

integer function stringlen(string,length)

integer length

character*(*) string

logical done

integer i

i-length
done-.false.

do while (.not. done)

done-(string(i:i).ne.' ').or.(i.le.l)
i-i-I

end do

check for "empty" string; i.e., having only blanks

if(i.eq.l .and. string(l:l).eq.' '1 i-O

stringlen-i

if(i.gt.O) stringlen-i+l
return

end

SUBROUTINE WNDONLY(CW,SUMDB,ILAGI,SUMARRY)
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COMPLEX CW(1)

DIMENSION WIND(1024),SUMDB(1),SUMARRY(1)

CHARACTER OPTION*4

CHARACTER QUESTN*I

PRINT *,'Enter window no.:'

READ(*,*),IWINDNO

C Calculate window.

PRINT *, 'No. smples for lag wndw (desgn)'

READ(*,*),ilagl

CALL CALC(WIND,IWINDNO,ILAGI)

C Prepare output.

PRINT *,'Enter FUNC or FREQ:'

READ(*,IO),OPTION

i0 FORMAT(A4)

IF(OPTION .EQ. 'FUNC') THEN

C Output function domain window values for plotting.

CALL FUNCOUT(WIND,ILAGI)

ELSE

C Compute FFT and output freq. domain window values

C for plotting.

PRINT *, 'No. smples for spec wndw (desgn)'

READ(*,*),ifftnml

CALL FREQOUT(WIND, CW, SUMDB, SUMARRY

I ,ILAGI, IFFTNMI)

ENDIF

RETURN

END

C

i0

SUBROUTINE CALC(WIND,IWINDNO,ILAGI)

DIMENSION WIND(l)

xlagl - ilagl

ihalfl - ilagl/2 + I

Compute a window.

DO i0 l-l,ihalfl

XI - I

ARG - (Xl-l.)/xlagl

WIND(1)-WINDOW(ARG,IWINDNO)

RETURN

END

SUBROUTINE FUNCOUT (WIND, ILAG)

DIMENSION WIND(l)

IHALF2 - ILAG/2 + i

THALF - 0.5

XHALF2 - IHALF2

DELTAT - THALF/(XHALF2 - i. )

SUM - 0.0
T-O.O

WRITE(5,*) T, WIND(1)

DO 405 JS-2,ihalf2

SUM - SUM + DELTAT
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23

24

T - SUM

WRITE(5 ,*) T,WIND(J5)
CONTINUE

RETURN

END

SUBROUTINE FREQOUT (WIND, CW, SUMDB, SUMARRY

i ,ILAG2, IFFTNM2)

DIMENSION WIND(l), SUMARRY(1), SUMDB(1)

COMPLEX CW (I)

CHARACTER QUESTN*I

NYQST2 - IFFTNM2/2 + i

XLAG2 - ILAG2

XFFTNM2 - IFFTNM2

DELTAF2 - XLAG2/XFFTNM2

IHALF2 - ILAG2/2 + i

CALL CCLEAR(CW,ifftnm2)

DO 23 IMOV-l,ihalf2

CW(IMOV)-WIND(IMOV)

CALL FFT(CW,Ifftnm2)

CALL CLEAR(SUMARRY,ifftnm2)

DO 24 IMOV-I,NYQST2

SUMARRY(IMOV)-CW(IMOV)

C Output Stage:

C ........... Basic set up .................................

XMAX - SUMARRY(1)

DO 400 IDB-I,NYQST2

ARG - ABS((SUMARRY(IDB)/XMAX))

IF (ARG.EQ.0.O) THEN

PRINT *,'A zero value was encountered in

1 the hybrid spectrum window.'

PRINT *,'The dB value has been set to -I00
I 0000000. I recommend that'

PRINT *,'you go with the clipping preset on

1 the next question.'

SUMDB(IDB) - -i000000000.
ELSE

SUMDB(IDB) - 20.*ALOGI0(ARG)

ENDIF

400 CONTINUE

C-. .... . .... ..-. .... . .... ....-. .... . .... . .... ..._

C Find Half Power Width:

CALL GETHFPW(SUMDB,HFPW,DELTAF2)

WRITE(*,873),HFPW
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873 FORMAT(IX,'Half Power Freq - ',F6.2,1X,'Hz')

C ............ Plot file details ...................

PRINT *, 'Clipping? (N or Return):'

READ(*,'(AI)'),QUESTN

IF (QUESTN .EQ. 'N' .OR. QUESTN .EQ.'n') THEN

C Output data as is.

DO 404 J-I,NYQST2

FREQ - (J-I)*DELTAF2

WRITE(D,*) FREQ,SUMDB(J)

404 CONTINUE

ELSE

C Output data with clipping

CLIP - -160.0

PRINT *, 'Enter Y (change clipping value)

lor Return (for -160 preset):'

READ(*,'(AI)'),QUESTN

IF (QUESTN .EQ. 'Y' .OR. QUESTN .EQ.'y') THEN

PRINT *,' Enter new clipping value:'

READ(*,*),CLIP

ENDIF

DO 401 J-I,NYQST2

FREQ - (J-I)*DELTAF2

IF(SUMDB(J).GE.CLIP) THEN

WRITE(5,*) FREQ,SUMDB(J)
ELSE

WRITE(5,*) FREQ,CLIP

ENDIF

401 CONTINUE

ENDIF

RETURN

END

SUBROUTINE GETLIST(IARRAY,NXR_)

DIMENSION IARRAY(1)

INTEGER NUM

PRINT *,' '
PRINT *,'Welcome to PRGRMI, an alternative window

I design program'

PRINT *,' '

PRINT *,'Later below, you will be asked for a list

I of numbers corresponding to'

PRINT *,'the windows you want to use. The window options

I are given here with'

PRINT *,'their respective identifying numbers.'

PRINT *,' '

PRINT *, 'Window options:'

PRINT *, 'Window No. i - Rectangular'

PRINT *, 'Window No. 2 Parzen-2'
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PRINT *

PRINT *

PRINT *

PRINT *

PRINT *

PRINT *

PRINT *

PRINT *

PRINT *

PRINT *

PRINT *

PRINT *

'Window No. 3 -

'Window No. 4 -

'Window No. 5 -

'Window No. 6 -

'Window No. 7 -

'Window No. 8 -

'Window No. 9 -

Coslne-Tip'

Bartlett-like, with sign change'

Hann'

Hamming'

Papoulis'

Blackman'

Bartlett (Triangle)'

'Window No. i0 -Sinc like'

'Window No. Ii Gaussian'

'Enter the total number of windows you are'

'going to use (between 2 and 11 inclusive):'

ACCEPT *, NUM

C Do some editing.

IF (NUM .GE. 2 .AND. NUM .LE. Ii) THEN

ELSE

PRINT *,'The number of windows you can use must'

PRINT *, 'be between 2 and Ii (inclusive).'

STOP

ENDIF

PRINT *,' '

PRINT *, 'Enter window no.s here (list of integers, each on '

PRINT *, 'a separate line):'

I00

READ(*,IO0), (IARRAY(1),I-I,NUM)

FORMAT(12)

C Do some editing.

DO 30 I-I,NUM

IF (IARRAY(1) .GE. i .AND. IARRAY(1) .LE. Ii) THEN

ELSE

PRINT *,'One or more of the window no.s you gave is outside'

PRINT *, 'the acceptable range (i-II).'

STOP

ENDIF

30 CONTINUE

END
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