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ABSTRACT

This analytical study focuses on the response of unsymmetrically laminated cylinders
subjected to thermally-induced preloading effects and compressive axial load. Attention
is focused on the displacement response and three-dimensional stress state of cylinders
having [+45/-45/0y)55 , [+45/-45/0)] ¢ , and [0,/-45/+45] o stacking sequences with
clamped end conditions. The methods used in the analyses involve derivation of the plane
stress and three-dimensional equilibrium equations and boundary conditions using the
method of minimum total potential energy with nonlinear strain-displacement relations.
The plane stress equations and boundary conditions are solved in closed-form for the
displacements and intralaminar stresses. The three-dimensional equilibrium equations
are then solved for the interlaminar shear stress t*" using the results of the plane stress
problem. For the three cylinders analyzed, the radial deformations are observed to be
larger for the unsymmetrically laminated cylinders, particularly in the boundary layer
near the ends of the cylinders. With the nonlinear effects included, the boundary layer
length increases with increasingly compressive axial load. If the thermally-induced
preloading effects are not included, the deformations and intralaminar stresses are under-
predicted. Also, it is observed that the boundary conditions for the axial load must
include the thermally deformed shape of the cylinder. At low axial load levels, it was
seen that both the fiber-direction intralaminar stress and the interlaminar stress ™ are
dominated by the thermally-induced preloading effects. However, the intralaminar stress
perpendicular to the fiber direction and the intralaminar shear stress are largely
unaffected by the thermally-induced preloading effects.
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I. INTRODUCTION

Cylinders made of composite materials are structurally efficient and well suited to
manufacture by automated fiber-placement techniques such as filament winding.
Composite cylinders are also more tolerant of unsymmetric stacking sequences than are
flat plates. Unsymmetrically laminated plates warp when cooled from the consolidation
temperature during manufacture. This effect becomes problematic for the designer, since
the degree of warp must be anticipated and accounted for before manufacture. Because
of the difficulties brought about by the manufacture of unsymmetrically laminated plates,
there is a tendency to view the idea of unsymmetrically laminated cylinders with the
same skepticism. However, due to the axisymmetric geometry inherent in the cylindrical
form, cylinders resist much of the warping observed in the manufacture of plates. In
practice, cylinders which are manufactured with the filament winding process are
sometimes purposely made with unsymmetric stacking sequences because it is easier and
less costly to complete the winding process without changing the fiber orientation on the
outer layers of the cylinder.

One of the benefits of designing a structure with composite materials is the ability to
tailor the structural properties of a member not only through changing the material type
or thickness, but also by taking advantage of the couplings between bending, stretching,
and shearing possible through changes in the stacking sequence of the wall of the
structure. These couplings may impart a structure with behaviors which are beneficial

under certain types of loadings, for example, increased buckling resistance to



compressive axial loads. For tubular members such as cylinders, these couplings will
also impart to the structure a nonuniform shape as a result of cooling from consolidation
temperature to ambient temperature. Although considerable attention to the response of
composite cylinders has been given by others in the past, the combined effects of
thermally-induced preloading effects and a compressive axial load on unsymmetrically
laminated cylinders have previously received little or no attention. In fact, buckling
analyses of unsymmetric cylinders are available in the literature which completely and
erroneously ignore thermally-induced deformation (ref. 1).

The purpose of this work is to investigate the effect of applying a compressive axial
load to an unsymmetrically laminated cylinder which has already deformed in a
nonuniform manner due to a temperature change from the consolidation temperature to
ambient temperature. The work is important because cylinders subjected to a
compressive axial load are prone to buckle. Analysis of the buckling phenomenon is a
difficult problem. However, a key component of the buckling analysis is the prebuckling
analysis. The predicted prebuckling state for an unsymmetrically laminated cylinder
deformed by thermal effects before loading could be significantly different than the
prebuckling state for that cylinder predicted by an analysis which ignores thermal effects.
Though interest here will not extend to a buckling analysis, as it is considerably beyond
the scope of the present effort, the formulation addressed here must be considered if a
buckling analysis is to be developed. The analysis developed here is indeed a
prebuckling analysis. Implicitly, it will be possible to determine if ignoring thermally-

induced deformations may have an impact on predicting buckling loads. Towards this



end, the equilibrium equations and consistent boundary conditions which govern the
response of thin cylindrical panels under general loadings will be derived in the second
chapter. In the third chapter, these equations will be simplified due to conditions of
axisymmetric geometry and response for the case of compressive axial end loading. The
equations will be solved, to include the thermally-induced preloading effects, for the
axial, tangential, and radial displacements as a function of the cylinder’s length
coordinate. These displacements will be calculated for three cylinders with different
stacking sequences and are presented in graphical form.

In the fourth chapter, the solutions derived previously for the displacements will be
used to obtain relations for the intralaminar stress components within each layer of the
cylinder. Relations between the stress components and the radial coordinate for clamped
boundary conditions and several axial load levels will be graphically presented for the
three cylinders. In the fifth chapter, the equilibrium equations and boundary conditions
in cylindrical coordinates for a three-dimensional stress state will be presented and
simplified based on an investigation of the magnitudes of the coupling terms in the
equations. The sixth chapter will present a solution of the simplified three-dimensional
equilibrium equations and boundary conditions by making use of the stress-strain
relations of the fourth chapter, which are of closed form. The significant interlaminar
stress component will be calculated for each of three cylinders and the results will be

graphically presented.



A. Cylinder Nomenclature and Geometry

The cylinder is referenced to a rectangular coordinate system with the axis of the

cylinder centerline coincident with the X axis, as shown in Fig. 1.

Fig. 1. Cylinder Coordinate System, Geometry, and Nomenclature.

For convenience, the origin of the global coordinate system is chosen to be at the
midspan of the cylinder. Naturally, a cylindrical coordinate system is used for the
analysis. The cylindrical coordinate system consists of an x axis which is coincident with
the X axis, 8, which is measured positive from the +7Z axis toward the +Y axis, and r,
which is measured outward from the X axis. The cylinder has a length L, a mean radius
R, and wall thickness H. Within the cylinder wall, a z coordinate is defined as being

positive outward, measured from the mean radius R. The axial, tangential, and radial

5



displacement components of a point in the cylinder wall are denoted by u(x,0,1), v(x,4,r),
and w(x,8,r), respectively. The axial displacement u(x,8,r) is measured positive along
the +X axis, the tangential displacement v(x,8,r) is measured positive in the +4
direction, and the radial displacement w(x,8,r) is measured positive outward in the r
coordinate direction.

The derivation of the governing equations follows in the next chapter.



II. DERIVATION OF THE EQUILIBRIUM EQUATIONS

FOR THIN CYLINDRICAL PANELS

A. The Method of Minimum Total Potential Energy

The total potential energy of a body is given by
O=U+0O,., (1)

where U is the strain energy of the body given by

1
2 fffv"veif av, | @
t,, and €, being the stress and strain tensors. The potential energy )1 is defined
ij V . load
as
Mo = - [[f Bu dv - [f T, as, 3

where B, is the body force distribution acting on the volume V of the body, 7, are the
surface tractions acting over the boundary § of the body, and u, is the displacement
field.

For thin cylindrical shells, the strain energy expression of eq. (1) can be sirﬁpliﬁed
by assuming a state of plane stress, i.e., by assuming that o, <, and t,, are zero.
As a further simplification, the body force distribution will also be assumed to be zero.
Considering preloading deformations and including these two restrictions, eq. (1) can be

expanded to yield



o= % fffy[(ox—of)e, +(oe—og)ee + (TxO—T;)YxOJdV

- ffs(Txu +Tyv+ Tzw)dS

@)

For a cylindrical panel with mean radius R, length L, opening angle B, thickness H,

bounded by the six surfaces x=—£, x=+£, 0=—£, 6=+-E, r=R—£, and
2 2 2 2 2
H

r= R+E , €q. (4) becomes

r-R-f_}! g-§£ e.,.ﬂ
2 2 2

I=2 [ [ [ [ooDes(oy-0Deg (r -t odbdedr + 1,

H L. p
=R-2" yu-Z Gu-
R T

where
o, =- ffs (T,u + Tyv + T,w)ds ©

is the potential energy of the applied loads. The stress components superscripted with
a "P" denote preloading effects. These components could be due to imperfect cylinder
geometry, thermally-induced deformations, or any other influence unrelated to the
loading.

The functional in egs. (5) and (6) represent the total potential energy of a cylindrical
panel under the assumption of plane stress. This functional will be minimized in a later

section through the methods of variational calculus.



B. Assumptions Related to Thin Shells

The following are Donnell’s assumptions for the kinematics of deformation :

u(x,0,r) = u°(x,0) +zp;(x,6)
W(x,0,r) = v°(x,8) + zBe(x.6)

w(x,6,r) = w°(x,0) .

In the above, the local thickness coordinate z is given by

zZ=r-R,

™M

t.)

the superscript zero denotes displacements of the cylindrical panel’s reference surface

taken at the mean radius R, and the B8’s are the rotations at the reference surface given

by

aw®

0=___

Bx &
w®

0__ -—

Be R0

9

Note that the displacements x° v°, and w® and the rotations B; and P, are relative

to a perfectly cylindrical panel before any preloading effects. The pertinent strain-

displacement relations in cylindrical coordinates are

g=ﬂ+lﬂ2
* oox 2\ax
_ov . w 1
gg=—— +t— *t=
R¥® r 2
e, o e
® 5 ro0 rdd

For thin cylindrical panels, the approximation

r=R

¥

e

SRR

(10)

(11)



can be made with sufficient accuracy. Substituting egs. (7) and (9) into eq. (10) using

eq. (11), the strains become

o o
€, =€, +2K,
e, = e5 + 2x 12)

_ .0 o
Yo = Yo T Tyg

where

o u° 1,0
€, = +_Bx

x 2
eo=aV°+3v_°+_l_pol
® R R 2'° 13)
vZe=a"°+a“°+ﬂ°l3‘é

& RO ° |
o OB . OBy ,=6BZ+65‘,’
ST ™ R ™ xR

The stresses within the cylindrical panel are given by

G, = 611(53 - 3:) + 612(59 - 3:) + 615(7;0 - Y;)

Og = —Q-u(ex - e:) + 622(39 - 8:) + 626(7,9 - Y:e) (14)
T~ 615(33 - 2:) + 626(53 - 8:) + 6“(7,9 - Y;) ’
where ef, e: and yfo are the strains due to preloading effects.
Equation (14) can be rewritten as
= = = P
0, =Qys¢, + Qg + Q¥ - 0,
Op = Qyz8, + Qe + QueY,p - °o’ 1s)

= = —= P
Teo = Q68 + Qugts *+ QusY,0 ~ Tao »

where

10



(16)
T:G = (6168: + 625‘:: + -Q“Y:e) .
If the preloading effects are due to thermally-induced deformations (from a
temperature change such as from consolidation temperature to room temperature, for

example), then oF = AT
x “x

c: = agAT a7

y:, =a AT,

where a_, @, and & are the coefficients of thermal expansion of the material in the

cylindrical coordinate system. If this is the case, then the stress-strain relation of eq.

(14) can be written as

o, = Q,y(e,-,AD) +Q(eg-gAT) +Que(¥0~ AT

o, =§12(8,-a,AT) +§,_2(se-aeAI) +§26(Yxe"“;eA7) (18)
T~ QIG(ex—axAD +Q25(eo—a0A7) +Q“(Yw—a’oA7) ,
or __ _ _ r
o, = gllex + 81280 * 916730 - 0
0 = Qpst, + Qnae * Qos¥uo = 6 (19)
Tro = Quets + Qo * Qes¥io - Thes
where _ _ _
0: = (Quax + Qnae + Qwa,o)AT
o = (Qu®, * Qe *+ Qug®,g)AT (20)

T = (Qise, + Qusto * Qgs0)AT
Here the superscript "T" denotes that the preloading effects are thermally-induced.

The stresses of, o:, r:, would be the stresses at a point arising from a temperature

11



change if the composite is fully constrained from any deformation. Since, in general,
each layer in the laminated cylindrical panel has unique values for 6,.1., a,ag,and a g,
there are separate equations, egs. (19) and (20), relating the strains €, €4, and Y,q, and

the temperature change, AT, to the stresses in each layer.

C. Specification of the Potential Energy Due to External Loads

In the absence of body forces, the potential energy due to applied tractions is given
by
Do = - [, [Tu+ Tov + Tw]as , @D
where T,, T,, and T, are the known applied tractions acting on the surfaces of the
cylindrical panel and the tractions and displacements u and v are functions of x, 0, and

z, and w is a function of x and 6. Substituting eq. (7) into the above,

- [/, [1x0.20u °x.8)+23(x,6))

+ Ty(x,0,0(v°(x,0) +zB(x.0))
+ T(x,8,)w °(x,0)| ds .

22)

As shown in Fig. 2, considering the tractions acting along the x=+L/2 edge of the

cylindrical panel, the contribution towards I, is

ey LBt St
e
o hm 2

12



T, +L/2,6,2) Te(+L./2,6,z)\

[ T (U282)

Fig. 2. Tractions acting on the x=+L/2 edge.

Since u°, v°, w°, B, and P are not functions of z, the integration with respect to

z can be distributed, resulting in

IR EA P LIETE AR EY
+{f_;_;,fT{+§,ez)w}p;(+§,e)+{f_gT,,(+§,e,z)dz}v.-(+§,e) @4
AL {-Loduedod-£o) {4 (+Loafepe{-Lo) .

The integrals with respect to z are the resultant forces and moments acting along the

x=+L/2 edge and are defined by

13



H H
+ _ ¢3 L R + _ ’i L
N;(6) = f.%, T{+5,eg)dz ; M) = f_%, T.(+-2-,6,z)zdz
*! L OE L
Mo = [AT{ L 0elie s M- [AT{-g0cpar @9

H
e o [ Z2p(, L
@ [ 4 Tf S0 .

Fig. 3.

/y Qi(e) Ne®)
WA TMO)
_— M;(e)

N (6)

/ ,

Stress Resultants acting along the x=+L/2 edge.

—

-

These resultants have the dimension of force or moment per unit circumferential length

and they are illustrated in Fig. 3. Substituting the definitions of eq. (25) into eq. (24),

the contribution towards II, , due to the tractions acting along the x=+L/2 edge can

be written as

D2 =-f 3 {N’(e)u-’(+£ e)+M‘(e)p:[+-': 6
load -‘g 0--% x 2’ x 2’ )

26)
+~,;<a)v"(+12',e]+M;(e)p:;(+12‘.e]+o;(e)w‘(+§,e)}xde .

In a similar fashion, the contribution to II,, due to tractions acting along the x=-L/2

14



edge can be written as

*{- - L - L
Mol 2=[0s {N, (e)u"(—?e)w, (e)as(—?e) o
+N,;<e)v"(—§,e)+M,;(em:[-§,e)+o;(e)w"(—-24,e)}nde ,

where the resultant forces and moments along the x=-L/2 edge are given by

2 W
N;® = [ ;T{-L,e,z]dz; M) = f_,}r{_L,e ,z)zdz
4 2
N,(8) = f ,_g’ Te(-g,e,z)dz i My(8) = f L} Tﬂ(-g,e,z)zdz (28)
2 2 .
A
Qi = [ fT{-Z oz .
2

These resultants have the dimension of force or moment per unit circumferential length.

The tractions and associated resultants at x=-L/2 are shown in Fig. 4 and Fig. 5.

/

/0N
T (L26.2) T (L2.8.2)

Fig. 4. Tractions acting along the x=-L/2 edge.
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X

Fig. §. Stress Resultants acting along the x=-L/2 edge.

Referring to Fig. 6 and considering the tractions acting along the 6=+g8/2 edge of

the cylindrical panel, the contribution towards II,_, is

I
load 2

Te(x,+3,zlv’(x,+-g]+zﬂ° x,+%)] 29
2 el £)}
T,(x, 2,z)w"(x, 2) dxdz .

Since u®, v°, w°, B, and Py are not functions of z, the integration with respect to

L H
= - QE ’? +-E +£ + +P—
st L‘_gf'_,?, {T,(x, ,zlu"(x, 2) zBx, )J
B

z can be distributed, resulting in

16



T (x,+B/2,2)

7

Y

| L Te(x,+B/2,2)
L= - -—T,(X.+Bl2.2)\L/

Tractions acting along the 8= +p5/2 edge

oo L4t
(bl e e et) o
e )

+{f‘gre(x,+_,z] ut)

The integrals with respect to z are the resultant forces and moments acting along the

6=+pB/2 edge. They are defined as

3 A
Ne(®) = f 8 T{J!ﬁ%z}# ; Mg () = f ) ,,’T,(x,+—g-,z}zdz
2 2
A A
No@ = [ ;T{x,+%.z ; My@) = f_gre(x,g,z)ﬂ,,
2

.
%w =[5 S Tk
2

These resultants have the dimension of force or moment per unit length The orientation

(31

17



of these stress resultants is shown in Fig. 7.

Qyx)

Fig. 7. Stress Resultants acting along the 6=+p/2 edge.

The contribution towards I, due to the tractions acting along the 6= +8/2 edge

can therefore be written as

LI

L
= - 2 N# ,( ,+£)+M‘ ’+£)
0-+3 fé{ % 5 |+ MulB %42 2)
+Ny (x)v "(x, +£) +M,y ()P x,+£) +Qy (W "(x,+£)}dx .
2 2 2

In a similar fashion, the contribution to II,,, due to tractions acting along the 6=-8/2

edge can be written as

L
nlodle._.g = L__zé {Ne;(x)“ n(x’_%) +Me;(x)p:( s“g)

*Ng v ‘(x%) + My ()63 x,-g)‘*Qe"(x)W’(x.-%)}dx :

(33)

where the resultant forces and moments along the 6=-8/2 edge are given by

18



H H
e (2 BN M [ 27y - B
W - [ 5 T,(x, £ )dz i - [ s T,(x, ?z)zdz
A A B
Ne@® = f_l_;’re(x,-g )dz; M= [ _gTa(x,-E )zdz (34)
JA
Q%@ = f__,zfrt(x,--g- e

Fig. 8 and Fig. 9 show the tractions and associated resultants acting on the §=-£/2 edge.

T,(%-B/2.2) To(x-P/2:2)

Fig. 8. Tractions acting along the §=-/2 edge.

P 4

y
Ned +——— |
N NG
- o™
Q" O
Fig. 9. Stress Resultants acting along the 6=-8/2 edge.
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Finally, the tractions acting on the top and bottom surfaces of the cylindrical panel
shall be considered. In this work, only loadings normal to these surfaces will be

considered, i.e., T, and T, will be taken as zero. These are illustrated in Fig. 10.

T, (x,0,+H/2)
0 f 4

w x

Tz(x-9.'H/2)

Fig. 10. Tractions acting on the top and bottom surfaces.

With this limitation in the loading on the top and bottom surfaces, the contribution to

I, due to normal tractions acting on the top surface is
LB H
Duil,... B=- [ __zé fo__’% T{x,ﬂ,*»;)w"(x,e)Rdde . (35a)
The contribution towards II,,, due to normal tractions acting on the bottom surface is
4t ow
HWI,,_%I = f L fo 2 T{x,e,-i)w %(x,0)Rd0dx . (35b)

The definitions H
2°(0) = T,(x.e,+-2-) (36a)

and

20



- (6) = T{x,e,—iz’) (36b)

are introduced here to give a more familiar meaning to these loadings, i.e., that of a
distributed normal pressure loading with dimensions of force per unit area. Substituting

egs. (36) into egs. (35),

AN
Dol,.n=-[ 20 [, 2p 4" cOW ORMOdx (37a)
2 202
and L
Dyl = [ 21 [, 2p 4 GOW RO . (37b)
2 272

For convenience, and for ease of discussion, commonly occurring loadings will be
partitioned from the general form of the potential energy due to surface tractions. For
the case of known axial loads applied at the x=-L/2 and x=+L/2 edges of the

cylindrical panel,
2 L 2 L (382)
= - Lz - * L a
Ty, 2y O ’( Z,G)Rde RLACE "(+ 2,B)Rd6 .
For bending moments applied along the x=-L/2 and x=+L/2 edges,
"% - L ‘% + L (38b)
0.-[’ : M, (e)p:(--z-,e)me -[: : M, (e)p:(+3,e)kde :

For inplane shearing loads applied along the x=-L/2 and x= +L/2 edges, and along the

0=-B8/2 and 6=+p/2 edges of the cylindrical panel,

21



f.E ’_E
- 0 L + ° L
Wias™ fe:_g N,o(B)v (--2-,B)Rd6 - fe:% N8V (+5,B)Rde

L N
+L..2£ No,(x)u n(""%)d-‘ - L __2£ N (x)u °(x,+%)d; )
2 2

For shearing moments applied along the x=-L/2 and x=+L/2 edges, and along the

(38¢)

6=-B/2 and 6=+B/2 edges,

‘% - of L ‘% + L
Tioas = fo.-g. Mw“’)ﬂe(‘;' )R"" -1, s Mxo(e)B;(+5,6)Rde

2 Y
+f 7 Mup x,-—z"—)dt— [ 2 Map x,+%)dx.
2 2

(38d)

For out-of-plane shear loadings applied along the x=-L/2 and x=+L/2 edges,

‘% - L *'% . L 38¢)
1 fo-- _g Q (O)W“(-E,B)Rdﬁ - fo-- % Q. (6)w”(+5,e)kda ) (38e

For circumferential loadings applied along the 6=-8/2 and §=+8/2 edges,
o2 L
O.-[ __’Lz_ Ny (x)v x,-—g-)dl -f _% Ny v "(x,+%)d, , (38D
For bending moments applied along the §=-8/2 and 8=+p/2 edges,
X oL
W= [ __’; M, (x)p x,-—g-)dx -f __’é M;(x)p;;( %)dx , (38g)

For out-of-plane shear loadings applied along the 6=-8/2 and 6= +p8/2 edges,

22



4 N
Hw=f,.f§ Qp (X)W "(x,-%)dx - fzg Qo ()W "(x,+%)dx : (38h)

For normal distributed loadings g (x,6) and ¢ '(x,8) applied to the bottom and top

surfaces of the cylindrical panel, respectively,

L

B
ipes = f efg f,.fé (g " (x,8) -q " (x,0))w °(x,6)RdBdx . (38i)

Note that, in this theory, the difference between the normal distributed loadings q "(x,6)
and q*(x,0) has an effect, not the individual distributed loadings themselves. In other
words, distributed normal loadings of ¢ (x,0) = -q and q *(x,08) = 0 would have the same
effect as distributed normal loadings of ¢ (x,8) =0 and ¢°(x,8) =g. Hence, since the
theory utilizes only the difference in the loadings, only the difference

‘- q (39

shall be used in the following. The sense of this net distributed load ¢ is outward
positive and it acts normal to the surfaces of the cylindrical panel.

It is important to note that, in general, the end loads N, and N, , the inplane
shearing loads Ny and N, the out-of-plane shear loads Q. and Q,, the bending
moments M, and M, , and the shearing moments M.y and M., can be known functions
of 0. Also, the inplane shearing loads Ny, and N, the circumferential loads Ny and
N, , the out-of-plane shear loads Q; and Qg , the bending moments M, and M, , and
the shearing moments Mg, and Mg, can be known functions of x. The net distributed

normal load ¢ = ¢ - g~ can be a function of x and 6.
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D. Application of the Method of Total Potential Energy to Cylindrical Panels
Substituting the expressions for the strains given in eq. (12) into the energy

expression for the cylindrical panel, eq. (5), and including the nine loading terms being

considered, results in a rather lengthy but complete expression for the total potential

energy, namely,
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Oueyvew® =
1 JHE L 8
2 f..zg f,._z_zl; f_f% [(0,‘0:)(€:+ZK;’) +(oe-o§)(8;+z“:)

+ (tw-tfe)(yzﬂ +zK:e)]Rd6 dxdz

+.% i L ,g_
e
*L +£

"2
N N
+ fe_f% M,;(e)li‘;(-%,e]kde - fo_f% M,;(e)p;(+§,e)kde
’% - L 3 L
s | -Z0)pm - f _ jl<2,‘(e)w"(+-,1=:)me o)
L_ ,_ Nox(x)u ”(x ——)dx f I. Nox(x)u "(x,+£)d:
L_ LMex(x)B x,- )dx f LMQ,(x)B x,+—'3-)dx

Ne (x)Vv "(x,-—)d: f 2 N, x)v “[x, +£)d:

f“ LMe(x)B x,——}i: f 2,_M(,():)B x,+p)dx
+ L__z_l: Qo-(x)wn[x '—}k f L Qe (x)wn(x,“'—)d‘
2

‘*5 +£
- f .f% f,_f_ng"(x,e)kdﬂdx X

In the eq. (40), use has been made of eq. (11) and the fact that
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dr = dz . 4D

and the integration with respect to r in the volume integral has been replaced with
integration with respect to z. Grouping terms under single integrals and integrating with

respect to z leads to the expression

O(u°yv ,w")—
L [ s - e i

(Mx'Mx’>": + ( 'Me’>"e + ( 'sz)‘xs
- qw"]Rdex

Lo
2 - o L of L
Ly o (o) - (9]

‘ 'M;(e)p:(——,e) M,‘(ew:{é,e}

» K
o (4] i (]
+ M,;(G)Ba( g,e] M,;(e)p:(+§,e 42)
/!
- |es@w ( ﬁ.e) Q;(e)w°(+£,e‘J}Rde
2 v

= (T
Ly fet) - it

' M&(x)p:( ) My x%)]

_B
2

+ Ne (x)v “(x, —g-) - Ny (x)v “(x,+%)
2)-

+ [ M@, - B) - sy x%]

+ |Qq B _o B
TQe ()w "(x, 2) Qe (x)W”(x. 2)]}dx
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The stress resultants in eq. (42) are defined as

N, =

N, =

N, =

MX

H

+_

g 042 = A8, +Au"'e‘“"157»6*Bu"‘x“Bn"ﬂ*Bm"xe N

z—-_

H

&—

2y Oz = Apes+AyeatdyYin*BiK By Ko +BagKeo = Ny

-

H

!I TodZ = A8y +A2630+A657x0+316“x+8 Ko+BgKrg ~ Nxﬁ

==

H

0._

,,zoﬁz B¢, "Blz"'e"'BwYxe*Du“x*D “e*Dw“xe M

==

H
-—

P
M, = fzs_zﬂ 204dz2 = By,e;+Byee* st:G*Dlz‘C:*Dzz":"Dzs":e - M
2 .

M, =

In the above

H

0._

2y zt4dz = B e, +Byseet <Y s0+D16%e*D 16¥6 +Deskeo = My .

=

H
N: o H H O dz f (Que + leeo + wa,o)dz
2

_’H
Ny = f n obdz = f Q,,e + Q,_zee + Qu‘m)
2

| Nzﬂ f._ﬂ nﬁdz f lee +steo+Q“Yxe)

M, Ef__ﬂ zo5dz = f Quc +Que° +wa,5)zdz

H

My = _Zoedz I u(o,ze + Qe + Quelio) 22

=~

Ml e [Ty e - ffg (@uee” + Bugts + Ougl) 2z .
2 2
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The superscript "P" denotes a preloading effect, and therefore, these expressions are the
so-called equivalent preloading stress resultants. If the preloading effects are thermally

induced,
pr = er = f n o dz f (Qu“ *szao*'Qw“w)Asz

-OH * -—

Nep = Nor = fz ?H 05‘11 = fz__zg (512"‘;*622“0*626“»9)‘”"11
2

JE
Ng = Ng = f _-_ TrdZ = f le“ *st“a*oss“»o)Asz

45)
‘u
M=M= 5o Tdz = f x (Q112,+ @1y Qi o)AT zdz
+£ |
M,’ = M: = f __2_,1 zo:dz = fz __2_,1 (leax+Qnae+Q%ax9)AT zdz
A
ML =M= f x 2t idz = f (Qwa +Qygttg+Qestt ) AT 2dz .
These expressions are the so-called equivalent thermal stress resultants.
The notation
IO =0u’vew (46)

is being used in eq. (40) and (42) to emphasize the fact that the total potential energy is
a function of the displacements, the superscript zero indicating that the displacements of
interest are the displacements of the cylindrical reference surface. The governing
equilibrium equations and consistent boundary conditions will be derived by examining
the variations, or increment, in the total potential energy due to variations, or increments,

in these displacements. Then, considering increments in the displacements of the form
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(47)

uo+eu ; vo+ev'; worew,
the increment of the total potential energy will be of the form

I+ AI=T (u *+euy’,v O +evy,w orewy) 48)

where ¢ is a small parameter and the quantities 4, vy, and wy satisfy all the

kinematic requirements of the problem.

The incremented total potential energy can be expanded using eq. (42) as follows:
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I+AL = — fx:__ f {N+AN -Nfes+Aeg) + (Ny+AN,-Ng feq+Aeg)

+ (Ng+ANq N,,,)(y,emy;,) (M +AM -M) )} +AxS)
+ (My+AMy-My g+ AXG) + (M g+ AMo-MoHSo+AK)

- g{w(x,8)+ew, (x,0)} }Rdﬂdx

2
I72, | meop{-Lofreuf-Lo| - oL )
+ M;(ﬁ){ﬁ:(-é,e\ +ep:( 5,6)} M (e){B:(+_ ).,.epx(_',_’e)}
2 n 2 1
- L)

L
2 2
o { o) s,e)} : <e>{ i : )mvrts 2
2
* Ms}(x){ﬂf(x,—£)+e B:,(x, %)} Me,(x){ﬁ xﬁ%)ﬂ:ﬁ (wﬁ]}

2

+°93.(x'-%)} Me’(x){p x,+2§)+eﬂ:,(x,2+%)}
%)} Qe(x){w"(x,+— +cwl x,+—)} ]dx .

(49)
It should be noted that the equivalent preloading stress resultants do not have increments

because they depend only on the material properties, temperature, and initial

displacements, not the displacements due to the applied forces. Subtracting eq. (42) from
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eq. (49) leads to an expression for the increment in the total potential energy, namely,

N
X

+ ANGES + ANyAe] + (Ng-Ng)Avse + ANgYe + ANyAY
+ (M-MDJAK + AMXS + AM,AK + (My-Mg )Axg + AMgxg
+ AMAK] + (M g-MgJAsy + AM e + AM AR,

- e qw°(x,0) }Rdﬁdx

el

N

2

--£
2

+ | M) a:l(—é.e) - M50 B:,(+—,e]]

{[N;(e) ul"(--;-',ﬂ) - N)(®) u,"(«»%,e)]

+ | M, (6) Bil(-é,e) - M/(6) p:l(+§,e)] ;

+ [N3(0) v{’(—%,ﬁ) - N3® v;’(af%,e)]

(50)

L
2

+1Q:(® Wln(‘—;',e) - Q. (®) wl"(+.§,9)] } RdS }
L {LNO;(") “1"(&-%) - No(®) uf(x,+%)]

+ |Me(®) BZ,(x,-%) - Mg, (%) ﬁ:,(x,+£)]

| 2

+ bNo' ) v{’(x,--g-) - Ny (x) v,"(x,+-g-)]

+ M) BZ,(x,-%) - My(x) BZ,(x.*rg]]

2

faretet)-avanfer ]
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The various strain increments in eq. (50) arise from the basic definitions of the strains
and curvatures, i.e., eq. (13), by substituting the increments in the displacements,
eq. (47), for the displacements in the original definitions. Such a substitution for e,

leads to )
ereneg= 2 Lgtieg . 51)

Discarding the superscript zero for convenience and expanding,

du_  Guy 1
e +Ae = E+331+-2—p +ef p’x 2 pxl2 . (52)
Substituting eq. (13) for ¢,
Ae~e| 2 .p g | Lep 2 | 53)
x ax X' x 2 n ?
which can be written as Ae,=ee, +e% (54
where e, and e, are defined as du, (55)
ex‘=_$+pxﬁxl
e&__z_p‘lz . (56)

In a similar fashion

o(v+ev,) w+ew, |
eotAe,= Raﬂl + R 1"’5(50“339.)2 (57
_ oy W w W 1.2 58
-ﬁ+zﬁ+i+e.§+5ﬂ°+ep°p° +—e p°x . (S8)
or Ac¢,=ee,,l+eze¢,z , (59)
where
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RBBR

Likewise, the increment in y,q is given by

o(v+ev,) Nu+eu,)
Yo Atuem—— t e "B B )Bo*ePs)
ov du_, au
YiotAYe™ L4 +B,Bq

ox axRaﬂ Rae

+2(B,Bo *BoB,) 7B, Bo, -

which can be written as 2
AY,g=tT,0 Y se, »

where v, u,
Yeo (ax roo BB * aa,l)

Y,ez=p,lﬂel .
Finally, Ax,=ex, ;  Axg=exg | Axg=eKy

where ap
%y

(60)

(61)

(62)

(63)

(64)

(65

(66)

(67)

(68)

(69)

(70)



In the above, use has been made of the definitions
ow ow, (71)

1
P P

The increments in the stress resultants, in terms of the strain increments just defined,

are given by:

AN, =A,Ae +A,Aeg+ A\ Ay g + B Ax, + B )Axy + B Ax
ANy =A,Ae, +ApAeg+ Ay Ay o+ B,Ax, +BLAx, + B, Ax g
ANg=AAe, +AAey + A Ay g+ BsAx + By Axy + By Ax o )
AM, =B, Ae, + B,Aey + BiAy,4 + D) )Ax, + D,Axg + DiAxg
AMy =B,Ae_+B,Ae, + B,;Ay 4+ D,Ax + D, Ax, + D, Ax
AMg =B Ae, +ByAey + BoAy o + D (Ax + D, Axy + D Ax g
In order to separate the first, second, etc. variations of the total potential energy at a
later point, it is convenient to expand the increments in the stress resultants in terms of
the displacements and redefine those increments in terms of powers of £. Incorporating
the definitions for the strain increments, egs. (51)-(70), the stress resultant increments
from eq. (72) are

AN Aufee, e, Joh e ee oA deta o ha) o
+B,, ex, +B e Xq, +B e K, *

These terms can be redefined to give

AN,=eN, +eN, , (73b)

where
N, =Ay8, *Apte *A16Y 0, + B K, *B1y¥g +B Ky (73c)
and N, =Aye, Aty +AicY,q . (73d)



Expanding for future reference,

sl ol
X ll_g pxpxl R3O ‘—R- pepe,
{av
+A ] —+

Lol B B aeo,l]
M, B, 6[3(50‘+ 5,1]

B
g Pepag ax RO

and

1,
Nx,'(z 1Pz, 2+ 2p02 Axsﬂx,po]
Using this procedure for the remaining stress resultants,

ANy=A, (¢ e,lﬂ:ze )+ Ax(e ee|+e2eez) "'Azs(”w,*ezﬂe,)
+By,ex, +Byexy +Byexyg -

Redefining,
efining AN,=eN, +°2Ne, ’
with
No =Aps8, *Axnte, +Ay5Y 0, *Bpa¥, +Byke, *Bas¥se,
and N,

02=A 128 x *Azzee, +A”y 58,

Expanding for future reference,

-Au(-— +p B,,] Au(;a—3+—g+ﬂepe.)

A“{— +—Lp B+ b.,o,,)

adx RoO
ap,‘ apa ap,l ap,‘
+B,, +B,, +B +
ox R0 ax RoJO
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(73e)

(730)

(74a)

(74b)

(74¢c)

(744)

(74e)



and

Likewise,

or

where

and

Expanding,

and

N, (—A B, 42 4By oA, 6)

ANy=A (ce, +e2¢ )+ Axs(eey +ezeez) O +ezyxe2)
+B,gex, +Bysex, +Begex,e

- 2
ANg=eNg +e?N,, |,
Nio,=A168: *Asso, *Aes 0, * BigXy *Byske *Besk,g

Nxewae;,*Azs‘e,*AesY:e, .

SV SHNTESN
=Ayd —=+B.B,, T R PeBe,

+A"‘(E_+ﬁ+p Bo, *Bob, ]

B, OBy _ (3B, 3B,
B B l 1
16 26

ox Ro6 ox Rae

1
wa[%“wpx,z+5Azspolz+‘4aspxlﬁe,) .

The increments in the moments can be similarly defined, namely,

or

with

AM,=B, (ce, +e’e,)+By,(eeq +e7eq ) *+B,i(eY,q re’y,g)
+D,sex, +Dyexg +Dygex,,

AM,=eM, +e’M,

M, =B,.e, +Bpeq +B,Y g *D %, +D 12%, *D16X,0,
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(741)

(75a)

(75b)

(75¢)

(75d)

(75¢)

(750

(76a)

(76b)

(76c)



and
Mx,—Bllexz+Bl2862+B16‘Yxﬁz ’

where u o,
Mxl =B11(—_1 +pxpxl) {Rae *'E*pepm]
+Bﬂ(av + au + )
S PP, Beb,
ap"l p 1 aﬂel p‘x
Dy Dis *Pia 5 oo
and

1 1
Mx,z(‘iBuBx,z“”z‘BlzBe,z*BlsBx,pe,) ‘

In a similar manner,

AM =B, (¢ee, +e € )+B2_2(€€° +€ e‘,z)*B%(t:'yxe +€ Yxe,)
+Dlze|c +D22exa +D26e|c1ne ,

or
AMe=eM¢,l+ezMez ,
with
M, =B,e, +Byeq, +B)gY 10, *D12%y *Dio¥e, +Dyex,
and
M,,z=Bue:x‘+Bz,.|:‘,2+826‘{,‘(,2 ’
where
M, =B * P P
o, Bl 5 PP Bo{ o " PP
. dv, Ou,
- 3;*'56*” Po, PP,
ap,l > o[, s
'R0 ae ENC)
and
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(76d)

(76e)

(760)

(77a)

(77b)

(77¢)

(77d)

(T7e)



1 1
M, =(§Bupxl2 +5822 B 012 +BygB, B 91) . (770

Finally,

AM =B, ((ee, +e2¢ ) *Bagleey +eze°2) +Bgg(eY g, +e2y ) (78a)
+D,gex, +Dysekg +Dege Kyo, »
h
where AM=eM,, +e'M,, (78b)
with
Mg, =B16®., *Bys€o, *BesY 0, *D1g¥y, * Do, * DesKog, (78¢)
and M,y =Bige, +Bygto +Begtsg. - (784)

Expanding for future reference

ou, oy, w,
M., =B, _+pxpx, +B R69+—+p°p°'

* + (78¢)
&r Raﬁ P.Bo,* B"B‘x]
9B, 9B, 9Py, aﬁx,]
+D 16 Dzs +D
& R & RO
and 1
M”f(z BB, 2,1 Buﬂe “B,lpel). (780

With the strain and stress resultant increments defined and expanded, the definitions can

be substituted into eq. (50). This results in
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=%f___f___{N Nr)(ee +ee eN +C2N)

(ele+e2N‘z)(ee +e2e ) (N Ner)(“e,*‘zea,)
+ (‘Ne,“zNe,) (cN +&’Ny, eeel+eze°z)
+ (N”—N,:)(ey,elw Yxe,) (eNxe+ezNﬂ2)y”
+ (erl+ezNﬁ2Xeyxel+ezy,91) + (M,-M)ex,
+ (eM +eM )x + (eMxx-FezM&)Ble + (Itl(,—l"l‘,”)fmel
+ (eM +e?M, &y (eMex-fezMaz)exe, + (Mm"Mx:)“xe,

8,
’ -
*—_ _ L . L
+ g {f:% {LNx ® ulo('—z‘,e) - N, (0) ulp(+5,e)]
“m® p:,(-fz'-,e) M® Bi,(* %e)]

[ L . L
N (e)v"(-—,e] N (e)v"(+—,e]]
L x0 1 2 x0 1 2

+ (eMwlﬂ: M

rzeo a:,(-g,e) - My®) BZ,(*‘%:G)}
et 49) - o 4o o
v {ffg {.N;,(x) w[s-8) - M@ u:{x-'z’-)]
. LM"—‘("’ pi(0-5) - M B x-g—)]
. .No'(x) v,"(x,--%] - N ®) v;‘(x,+%)]
. LMJ ® BZl(x,--g—) - My n:,(xw%]]

faonter) - a4}

Expanding and regrouping in powers of & leads to
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L
s 5 e e e, <
+ (No~Naleg * N Yoo + (MM, + M, %,
+ (M(,-Itl‘,")x‘,l + Myx, + (M zo'ng)"xo, + Mok - ‘wao}
+ Nyeo + Nyto + (NgNg J¥io + N Yoo + N Voo,
+ M. x, + M, X, * Mgy + oXe, * MoK + Mxe,“,el}

{N e N e, * Ne,‘e + Ny e, * N,QIY,@,
Wt M g, Mt
+ 84{N&e& "Ne,"e, N“z }]Rdﬂdx
NI ‘
s {2 {[n@uf-Le) - mouf-Lo)
L oo aof L
+ .Mx ) ﬂ,,(‘;»el - M, (6) pxl("?e)] (80)
+ N;,,(O) v{(-%, ) - N4(6) vl"(-v%,ﬂ)l

. M,e(e) a,( L e) M) p:,(+§,e)]

+ Q,'(B)w;(‘é,ﬂ) Q. (e)w"( ;' )” Rde}
velf? {N'(x)u"[x,-ﬁ) - No(¥)u x,+£)}
{f"‘f [ e 2 & ln( )
* (M) 5:1(""2‘) - My (x) ﬂ:{::.*-%)]
+ [Ng(@) v;"(x,-%) - No(®) v,’(x,-u--g.)]
+ | My (x) ﬁ:l(x,‘%) My(x) By (x,-o——)]

* _QJ(‘)Wf(&-%) Qe (®) Wy x,+——]} }
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The increment in the total potential energy can be written as
All=¢Il, +¢2IL,+e°M+¢*Il, . (81)
The quantities eII,, ¢IL,, ¢’Il;, and e*II, are defined to be the first, second, third, and

fourth variations of total potential energy, respectively. The equilibrium conditions for

a cylindrical panel are obtained from the condition
ell (u,,v, ;W) =0 = I0,(u,,v;W)=0 , (82)

where the notation indicates II, is to be stationary with respect to the displacements
u,, v, w,. These displacements are the variations in the equilibrium displacements.
The second variation is used to examine stability of the equilibrium displacements.
According to the Trefftz stability criterion, transition from a stable equilibrium

configuration to an unstable one is characterized by
8L (u,,v;,w,)=0 = BIL(u,,v;,w)=0 . (83)

This states that the second variation of the total potential energy should be stationary with
respect to variations in ,, v,, w,.

Interest in the present study focusses on equilibrium rather than stability. Hence, the
first variation, II,, shall be studied further. The higher order variations, however, will
not be discussed beyond this point.

The first variation can be identified with II, and that quantity is given by
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R
Hl:%j;hz% fe:.g [(Nx—N"r)sxl+leex+<Ne_Nep)eol+Nelee

’(Nxe'Nx:)Yxe,* xGlee+(Mx-Mxr}le+Mlex
*(Me'Me’)“sl"' olK0+(M19_M:’)Kﬁ| +M,°lxxe—qw,°] Rd6dx
L(r
- L . L
* fo:% { -Nx @ u{’(—;,e) - Nx ©) ulu(*'iye)}
[ = o _L - + [ +£
.Mx (e) Bx,( E’e) Mx (e) B‘l( 2,6)]
[
* [Na® v,"(—é,ﬂ) - N.(®) v{'(+§,9)}
+ |M4(6) ﬁ;‘(—g,e) - M4(0) p:l(+§,e]l | &
+Joi@{-L8) - ci@w{-Lo)| | s
+ 2 N'(x)u"(x,—ﬁl - N’(x)u"(x,+£)J
f ___21: { ol ®) Uy} X, el %) Uy 1 X+
+ N o ___ﬂ_ - M ° £
Mox(x) p“l x, 2 Ma;(x) pxl x’+ 2
+ DV,‘ ) v,"(x,——g—) - No(@) v,”(x,+%)‘
+ My a:,(x,-g) - My p:,(x.»rg)J

+ o w.“(x,-%] - Q) wl"(xﬁ%)] }dx .

A more useful form of the first variation can be obtained by substituting for N,, Ny,
N;e, , Mx, , M°.’ and Mﬁ; from eqgs. (73e), (74e), (75¢), (76e), (77e), and (78e). If this

is done and the various terms in this expanded form of II, are regrouped, the result is
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Lo LB
2 2
o = f:-.’z'. f=-.% {N‘e‘|+N°e°1+N‘°Y-‘°1+M‘K‘1

oXo, *M,oKsq, -qwy } Rd6dx

N
2 - L . L
+ fe=-.% { {N, © uxn(‘-i,e) - N, (0) ul"(+-2—,6)]

- ® "2('% e) - M)®) p;(+£,e)]

v "xe(°> v;-(-_ ) N(6) v;’(+- e))

L

+ Mxo(e) Be( —2- ) xe(e) pe(..._ )]

* | ® w('(-f,e) - Q/®) w,“(+£,e)] }Rde
L 2 2

+ f fg {[Ne}(x) u{’(x,-%) - No(®) ul"(x,+.g_)]

* | Y : 'P‘ - M,, ° +_E
.Max(x) p‘l(x’ 2) Mex(x) px‘(x’ 2)]

+ No_ ) V;(x,‘-g') - Nt; x) vln(x,+%]]

- Me0 a:,(x,—%) - M) p:.(x,»r%)]

+ {Qe' () w,"(x,--%) - Q) w,”(x,+%)] }dx .

@85

Note the quantities N/,.. M5 have disappeared, as has the factor of 1/2 in front of the
two-dimensional integral. Substituting the strain-displacement and curvature-displacement

relations, egs. (55), (60), (65), and (68)-(70), into the above, the first variation takes the
form
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L B
N | % o
e f"'zf J '1‘* {N‘(—I+B‘B")+N°(Raé +%+B°B°x]
.e( ap‘l aﬁ
“a?+7a'aﬁ+p Po, PoP J o Moe
ape X, ) Py }
S, A -qw } RdOdx
ox Rae
L7
- L + L
o oot
[ - [ _£ - + o £
Do 1) o 4

+ |N(0) v;’(-%,e) - N(®) vf’(+§,0)]

[
+ |M4(6) p;l(-g,e) - M(6) pgl(iz-,e)} (86)

+1Q:(® Wln(‘g,e) - Q;(6) w1°(+§,6)] }Rde
Lo
+ L..z é { Neg,(x) uf(x,-%) - Na:,(x) u,°(x,+%)]
* | ! . 'P‘ - . ° +£
Ma‘(x) Bxl(x’ 2) Max(x) pxl(x: 2)}
* _Ne_(x) Vn"(x»-%) - Ny v,’(x,+%)]

+ -Me' *) p;l(x,-.g.) - My(®) ﬁ;l[x,%)]

+ Qs () wl’(x,-—g-) - Q¥ w1°(x,+—§-)] }dx .

This is one of the fundamental forms of the first variation for determining the response

of a cylindrical panel. This form can be used directly in approximate schemes such as

the Rayleigh-Ritz method. Further steps, however, are required to obtain the equilibrium



equations and associated boundary conditions which are of interest here.

E. Application of Integration By Parts

To determine the equilibrium equations and the associated boundary conditions,
differentiation of u,, v,, and w, with respect to the spatial variables x and 6 must be
eliminated. This is done by applying integration by parts to the various terms in
eq. (86). This procedure follows, the results being given on a term-by-term basis:

first term .E
L ! fo__ : N——Rdedx 8__% (qul)[. 2 Rdo

87
L
£ EaN

2 x
‘f_-£ e--% axuleedx

second term
f_f -&NBBRdde f f.z ,axax‘medx

..E -l
- [, (inw_w,): : Rdp (88)

LB
2 2 Oy OW
- 2 [ ) a(Nx—a;)w,mzearx

third term LB & -2
2 2 _Rde 2
f,.-é o--2 Mo Ro dx = x--z(N"v‘)[*-% “ (89)

L___ e__£ Mo v, RdBdx
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fifth term

ow

+ * *— + aw

2 2 2 2 !
N, Rdodx = N,————Rdbdx

f,,-g .’;=-.§ oPoPe, f -2 Jo--2 R3© RO

ven m

eighth term

I.

W
2

+Z P
2 ow *
= .{x (N wl --é dx

0; 42 3 ow
i 9 (N, 9%\, Rdbdx
fx--g fe--g Rae( "Rae)Wl

L ¢£ av ‘-2 -0—-
2 N, —Rdedx = vy 2 Rdo
L--é o--ﬂ M o a---ﬁ( 71

2

L ! ;_fﬁ __v,Rdedx

0£ *-E au ’é -#.E
2 2 1 _ 2
L A : Ng s RABAx = x--é (N, g, )t F dx

oN,
L 1 fo__ : Ra: Rdedx

ow aw,
—L Rdbdx
-2 Neoze ax RO

L
[fugnf o
-k » --8
2 2
% % 5 Bw
- f, L fe__ : E(N”Fx-)wlkded:

.E
;. ,__g xoB BoRdedx L.-- fe
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(90)

o1

(92)

93)



ninth term : N
2 (72 2 (2 ow oW,
J. [i2s NioBoh, R - f% o--3 Nogoo ox
N o ook
_ 2 2
B f:-.e (Nxeia—awl[__L RdB (94)
2 3
L 5 o
2 2
- Z|N — |w,Rd0dx
ot by ax( “Rop) !
;gn;b E;m L 2 -E “L
2 2 X 3
[0 [0 M Radds = f (M,B.) % Ra®
2 (95)
£ oM,
f—-— e--.E ax

The last term on the right can be expanded further by substituting the definition for Bx‘ ,

from eq. (71), into eq. (95), namely,

oM, dw, %6)
e--l ax o

Lo LB
- f ..25 f .f_
2

Using integration by parts yields

f : f B RdOdx ’% awa -’ERde
xs-% 08-1 ax * 9“£ ax --3
41 aZM

L--_ fo--!; ax?

The tenth term can, therefore, be written as

o
Rdfdx .
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£ a 0£ e
2 2 X _ 2 1 2
[ [, 5 Rdoax = - [ 2 [Mx o et Rd®
B L
+ aM - —
2
+ [ 2 %( —w,| } Rdo (98)
2

. N ] 9B,
2 2 M. —Rdodx = M 2 gy
j; f--.E R3O ( oPe, .-.E
2 (99)

L ! fo_i Rae Bo, RdOx

This can be expanded further by substituting the definition for Bﬂ: , from eq. (71), into
eq. (99), namely,

A y
- [7, Hog, ravas - [ 2, Mo Mgy, (100)
x=-3 RoG ™ =-3 RO9 RoO

Using integration by parts and substituting into eq. (99), the eleventh term becomes

-8 oM, aw
°R60I-—1 dx + L--- fo---ﬁ R3O Rae

JL -
ﬂ “%dx +f 2 aM %dx
®Roo -2 x=-2 R -2

(101)



twelfth term L £ L
2 2
f x 0__2 Rdedx f ,epe)[ L Rd®

L My
-, .-gf Ly 5o Rd0dx

Using the definition of ﬁe,s in eq. (102),

WL ,J! N .
2 2
L

9Bg
2 1 = -
f——g 0=- -2 M ox Rdedx fes-%( ”Raﬁ ---iRde

L2 oMy, oWy o
I

Expanding the second term on the right using integration by parts,

'3 p”’Rdedx -
f,.-g .-Jz ol A ] xokae

L
< (M, Y-
2 x0
+ f.-& [—Bx wlthidx
2 2
01 azM

f,.-_ i Rean®

Applying integration by parts to the first term on the right,

49

—= w Rdbdx .
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(103)

(104



o.& *-ﬁ oM
T _ (2 Mo Lo\ (L
= )I 3 fe__% s (+2,e)wl(+2,e)m
L3 3 My L L
M ——6 -—, 3 S| O M| -5 .
2 .-L 0=-2 RAO\ 2 2
Collecting terms evaluated at -L/2 and +L/2, the first term on the right in eq. (104)
L L
f 2 o 2 pao
--2 " ® Roe ) ..- L
-¢£ . L -0%
[z oz )JE Pd 3o EY o

5 (Mg -k
-2 w,[ Rd® .
-5 (ko0 k. L

becomes

The twelfth term can thus be written

L aBO‘
L Al 1 ——'RdBdx

=-[m(-'e)«(—’e)1::i PR

A R

5 *M
- .ng fezg ﬁwlkdﬂdx X

107
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Expanding the first two terms on the right for future use, the twelfth term becomes

f 2 fe__},_M — i RdOdx

Fofde s omke 48
2’ 2
LBl L B) b -Bh L ﬁ]
M“’( ’ 1( 2 2) M"{z 2 ‘( 2’ 2] (108)
-.L 5 |aM L
fe__ [ ] iRdB-v é[ a;ewl]t=_:!dx
fx___ fe--.ﬁ Raeaxw‘Rdde
Thirteenth term
L L _‘_E
L..z_’: fe.-.ﬁ Rdedx f "[M‘op’ﬁ]E
2 (109)
f L .;.fz _—p Rdfdx

Substituting the definition of B % into the first term on the right above and integrating by

pam: L e.¢£ LT

L - Lr
L E Tam
=- x,+—)w(x,+ )[ L+f fl_ __’ﬂwlL dx
z AR
. L L ]
-k aM
M _B _B 2 _[2 | = L dx ,
| "("’ z)‘"‘("’ 2)[--; sz
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or

f 5 i
x__g[ x0 x,i__%dx =

DBl B3 pfe-E e

(S Y] ST )

(111)

L 2
o aM =+
+'[ ZL[-——qv{[ dx .
X“E & -_.E
2
Substituting the definition of Bxl into the second term on the right of eq. (109),
) 2 £ oM, Ow,
Ls-- f .E RO ﬂlededx Ls-— f .-.E RO -ngﬁdx
‘ (112)

M, k- £ M,
2 x0
wl[_ Rdo - f U 0'_% iR

]
2
fs:—-!
Substituting the results of eq. (111) and eq. (112) into eq. (109), the thirteenth term can

be written as

aB"'Rdedx =
f,.__ o--l Moo

f x;—}» A b2
A TR

4-!_' 01 82M
_[2 2 20
[ ! [, : Toaa. " iRd0ds .

(113)

Expanding the first two terms on the right for future use,
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Lo L2 aB"Rd
f--£ e.-.E !eRae Bdx =

+[-M¢(+_+ (+_+_)+Mﬁ( ( %)
R I R 2)w( 2’-%)1
2x [fg:fwl]t:;dx =

By [- ERdB
f,.-_ [ : Raeaxw‘Rdde

RO !

B

The terms involving Mg, M5, Mg, and Mg, in the line integrals in eq. (86) must

be expanded in terms of w, and integrated by parts also. These two terms follow.

Term involving M and M _in line integral from §=-8/2 to 0=+8/2:

Substituting the definition of pel into this term and integrating by parts,

+£ L L
f b [Mw(")ﬁo( 5,9] M,e(B)B,(+E )Rdﬂ
ow +% L

- f g Ma® '3%( 5 )Rde + [ i ( 2,6)Rd6

] (115)
= - L 2 £ oML (L
o M ”(e)w’(-?e) [.-L o--§ ~ Ro w‘(_'z"elm

2

-8 L aMye)
2 2 x0 L
+ M,,(e)wl( [“2 [ ' % w,(+-2-,e)kde :
2

Expanding the first and third terms on the right-hand side,
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Term involving Mg, _and M,, _in line integral from x=-L/2 to x=+1/2:

Substituting the definition of p,l into this term and integrating by parts,

+_

[.x

My (x)B, [x, ( ) Me,(x)ﬂ (x, +-)de

- f 3 M'(x)a—w-’(x
x--% bx ox ’

N@
w

L M) E("’ p)

x-

A
2 aM ax(X) B
+ f;:-é & 1(3:‘—2—)4!

¢£ +
- f 21. aMe‘(x)wl(x,+£)dx .
" 2

117)
= - (Me;(x)wl(x,—%) J

ﬁ'

Th=+
-

+ -Mo;(x)wl(x, +-g-)

T v

R s Nl Nlh

Expanding the first and third terms on the right-hand side,
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[M L (5 g)%{-_)w[ L g)
2 2’ 2 2’ 2 (118)
+ M. +_L. ( £ +.E.) M&{-_) (-— +—)
2 2 2
= aMg(®) M (%)
[ 2 B [ 2 B
2 2

Substituting egs. (87), (88), (89), (90), O1), (92), (93), (94), (98), (101), (108),

(114), (116), and (118) into the expression for the first variation, eq. (86), and

combining the boundary terms (i.e., integrals with respect to 6 and integrals with respect

to x), results in
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For the first variation to be zero, each term which is a product involving an increment
in the displacement, in each of the integrals, must be zero. The Euler equations come
from the two-dimensional integral and the boundary conditions come from the line

integrals along the x and 6 edges. Thus, the three governing equilibrium equations are

N, , Ne _, (120a)
ax  Ro®
WNe , Mo _ (120b)
ax  Ro®

x

+ 2 +
x? R®Ox  R230% Ox

“ox
+ 0 (Ne dw + 9 (N xeiw—) + —a-(N”—aw) (120c)
Ro6\ °Ro®) RoB\ ®ax) x| RO
N, o
—_ e ¥ = .
2 9

M M, M, 3 ( aw)

Using the first two equations in the third one, the three equations can be written as

aN, N,

ox R0

(121a)

]
o

Ny , Ny _, (121b)

+ —

ox Ro6

FM, . FM 4 . M, . Nxa2w

ox? RoBax  R?90? ox? (121¢)
N

>w +N°a=w M0

RoBox R¥20* R

+2Ng

The variationally consistent boundary conditions at the x=-L/2 and x=+L/2 edges of
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the cylindrical panel are
along the x = -L/2 edge:

i) N, =N, , or u must be specified,
il) Ng =Ny, or v must be specified,
iii) Nﬂ+N ow +aM’+23M’° =Q;+.W_”° , (122a)
*ax PR® R R29
or w must be specified,
iv) M, =M_, or %% must be specified.
long the x = +L/2
i) N =N, , or u must be specified,
ii) Ng =Ng, of v must be specified,
iii) Nﬂ +N ow +aM‘+2aM’° = Q‘-o-l ) , (122b)
*ax PR o R0 * R3O
or w must be specified,
ivy M =M, or%mustbespeciﬁed.

The variationally consistent boundary conditions at the §=-8/2 and §=+8/2 edges are:

i) Ny = Ny, , or u must be specified,
iy Ny =Ny , or v must be specified,
iii) Noﬂ +N”ﬂ+aM°+2% =Qe'+% , (123a)
ROO dx RoO ax ox
or w must be specified,
iv) My = M, , _or%mustbespeciﬁed.
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along the 8 = +3/2 edge:

i) Np, = Nex» or u must be specified,
ii) Ny =Ny , or v must be specified,
iii) Nei + Nxe?i + M, +2 M. = Qe‘ + Me: , (123b)
Ro6 dx RoO ox ox
or w must be specified,
iv) M, = M, , or%"mustbespeciﬁed

Note that the expression for the first variation of the total potential energy also involves

four non-integral terms. These are »corner” conditions. Therefore,

at the corner (x = +1L/2, 0 = +£/2) :

2M, = Mg + Mg, , or w must be specified , (124a)
he corner (x = +L/2, 0 = -f/2) ;

2M, = Mg + Mg, , or w must be specified , (124b)
he corner (x = -L/2, 0 = +£/2) ;

2M, = Mg + My, , or w must be specified , (124¢)
h r(x = -L/2. 0 = -B/2

2M4 = My + M, , or w must be specified . (124d)

At this point, the problem can be specialized to that of a complete cylinder, that is,

p=2n = -%h,;, %:m , (125)

Because the cylinder is complete, the response is a continuous function along ==, and
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the displacements at the -8/2 and +f/2 "edges" are unique and therefore can be
interpreted as being specified. Equations (123) do not have to be explicitly enforced.
This also holds for the "corner” conditions. However, a by-product of the egs. (123) is
an expression for the out-of-plane stress resultant, Q,, which could be used as a check

of a calculation of the interlaminar stress component t,,. Specifically,

ow aw M, M,
NN T T (126a)
Q =N RO ®& RO &

This shear stress resultant compliments the other out-of-plane shear stress resultant, Q,,

which is given by

ow, y v M, My (126b)
ax R® ox Rob

Q = N,

This out-of-plane stress resultant will be used as a check of a calculation of the

interlaminar stress component t_, in chapter VI.

Attention now turns to specializing the equations for the condition of axisymmetry.



II. SIMPLIFICATION OF THE EQUILIBRIUM EQUATIONS
DUE TO THE CONDITION OF AXISYMMETRY

The derivations which follow focus on complete cylinders (i.e., B =27) subjected to
an axisymmetric loading and responding in an axisymmetric manner. In particular, the
loading considered will be applied axisymmetric end loads N_(8)=N, and N,(6)=N, .

Therefore, the relations of the previous chapter will be simplified by

) _g ang 2O - 40 127
30 & dx

() being any response quantity. Under these conditions the kinematic relations simplify

considerably. Specifically, egs. (9) and (13) become

o dw° o
=—..__; =0
px I 90
o du® 1,02 o _W° o _dv°
= + ’ =—; = 128
e, ] 2”: 0 R Yxo l ( )
dp; 0

N, =0 (129a)
dx

N _y (129b)
dx



-0, (129¢)

i) N, =N, , u must be specified,
if) Ng =Ng, v must be specified,
dM -
i) —=+N¥-q, w must be specified, (130a)
dx dx
ivi M_=M_, % must be specified.
=+
iy N_.=N,, u must be specified,
ii) Ng=Ng, v must be specified,
dM, .
i) - +Nxd—1 =Q, , w must be specified, (130b)
dx dx
ivy M =M, , %‘:— must be specified.

Note that for a complete cylinder, the boundary conditions at 6=-8/2 and §=+p8/2 are
meaningless. Equations (129) and (130) will be the focus of the remainder of the this
chapter and the following chapter. In the next section, the solution of these equations

for the case of a known axial end load will be derived.
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A. Solution of Equations for the Case of Axial End Load

The first equilibrium equation, eq. (129a), integrates to
N, = constant. (131)

Since the axial load is known at the ends of the cylinder, this constant is the applied end

load. It will be referred to simply as N. The second equation, eq. (129b), integrates to

N, = another constant. (132)

In this study there will be no external torsional load applied explicitly to the ends of
the cylinder. Rather, the tangential displacement of the end will be specified.
Enforcement of the tangential end displacement may well require a torsional load, S, on
the end. This torsional load will be solved for as part of the analysis. Thus, as a result

of eq. (132),
N4 = § (a constant). (133)

To solve the third equilibrium equation, eq. (129c¢), it is convenient to express all
quantities in that equation in terms of the midplane displacement w°. Here, the stress
resultants, eq. (43), with the preloading condition being thermal according to eq. (45),
will be used. Only cylinders which are balanced, i.e., those with A, Ay, and Nj
equal to zero, will be considered. This is the situation of many laminates of practical
interest. Such laminates are called balanced laminates. Expanding

N,, Ny, N4, and M, in terms of w?, €2, and Y, results in
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o 2,0
N, = Aye; + Alzw_ Bu‘_iL -N] =N
R dx?
0 (/]
2R dxz
P (134)
Ng = AgYrs - By r =S
p w® d*w® T
M, = Be, + Blz? + BigYye - Du-de - M, .

Solving the equation for N, for ¢, and the equation for N for vy, yields

2
el - L(N + N7 - 4,% + B2 “”), (1358)
T Ay R dx?
and
vy = [ Dedwe S ) (135b)
A dx? Ag |

Substituting these results into the equations for N, and M, in eq. (134) yields

A \we B, A,\d*w®
No = |An-7 T_(B"_T —
1 u ) dx (136a)
A
+—2(N+N)-Ny ,
4,
and 2 2
M =B udn\we D _Bis By |d*w®
x 12 "k‘ 1 A_ T 2
1 6 4An) dx (136b)
+L(NN])-M]+ B 5

Substituting eq. (136a) and (136b) into the third equilibrium equation, eq. (129c), leads

to the equation governing w°



2 2
[ u-fl—l BlG]d‘wo +(2B“A12 -Z—Bﬁ—N)dzwo

Ay Ag) dx* AR R dx? 137
Ao NI A
+ Azz——l—z v o__% _ ——‘2—(N+N,T)
A, |R? R RA,

This is a linear differential equation with constant and known coefficients which
depend on material properties, equivalent thermal loads, geometry, and a known applied
axial load N. Hence, this structurally nonlinear problem results in a mathematically
linear problem. Note, however, that the coefficients vary as the applied axial load N

varies. This will be addressed in a later section.

B. Specification of Boundary Conditions

Attention now will be focused on the boundary conditions. A statement has been
made regarding N,. This statement satisfies one of the four boundary conditions,
namely, egs. (130a) and (130b), i. For the problem to be properly posed, the three
Within the context of the admissible conditions of thermal preloading, general balanced
laminates, and no explicitly applied torsional loads, three physically plausible boundary
conditions can be imposed on the ends of the cylinder, namely:

1 - lubricated boundaries;

2 - simply supported boundaries; and,

3 - clamped boundaries.

In the remainder of this work, it will be assumed that the same boundary conditions
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will be enforced at both ends of the cylinder. Hence, the discussions which follow will
focus on the x=+L/2 boundary only. Since the same boundary conditions will be
enforced at either end, the radial response of the cylinder will be assumed to be
symmetric about the x=0 plane. Therefore, the radial displacement, w°(x), of the
cylinder is an even function of x.

For lubricated boundaries, the ends of the cylinder are free to rotate about the
cylinder’s centerline, implying that N,y = S = 0. Also, the out-of-plane shear force Q,
and moment M, at the ends are zero. For simply supported boundaries, the tangential
displacement v° and the radial displacement w? at the ends of thg cylinder are specified,
and the moment M, is zero. For clamped boundaries, the tangential displacement v°,

at the ends of the cylinder are specified.

the radial displacement w°, and slope dw
The terminology ’lubricated’ comes from the fact that there is no restraint on the
tangential or radial displacement or slope at the cylinder ends, as if the ends of the
cylinder were being pushed together axially with perfectly lubricated plates.

From eq. (130), the formal boundary conditions for lubricated boundaries are

No|l L=8-=0, (1382)
2
aM aw?®
z N =0, 138b
dx sk " " e lened (1380)

and



M| ,=0. (1380)

X =
2

For simply supported boundaries the conditions are

v® | _.. is specified, (139a)
2
we | .. is specified , (139b)
and
M| .=0. (139¢)

For clamped boundaries the conditions are

ve | ... is specified , (1402)
we | .1 is specified , (140b)
2
and o
Tx— - L is specified . (140(:)

In order to conveniently impose these boundary conditions, they will be expressed in
terms of the radial displacement w°(x) and its derivatives. Therefore, the tangential
displacement v°(x) is required as a function of w°(x) and its derivatives. From eq.

(128), it follows that
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=Y = V(@ = f (YZa(x))dx +C, , (141)

where C is a constant of integration. Substituting eq. (135b) into eq. (141) and

integrating results in,

= 816 dw °(x) S . (142)

For convenience , and since we expect v°(x) to be odd since w(x) is even in x,

C, =0 . (143)

In the following, each of the three sets of boundary condition equations, egs. (138),
(139), and (140), will be presented in terms of the radial displacement w°(x).

Despite the desire to write the boundary conditions in terms of the displacements, the
first of the equations, eqgs. (138), which specify lubricated boundary conditions, i.e., eq.

(138a), can be represented most simply as

$=0. (144)

The two remaining equations, egs. (138b) and (138c), can be expanded to yield

B} B} )atwe
[Du""—'_ ‘

. [Budiz _ Bi)dw’| -0, (1459
A Ay) dx® lseg :

and

68



2 p2
_Big_Bu|dw® B4y, _By) ,
Dy-—"~71—"3 L*‘———WI,“L
g Ay) a2 bt (AR R F aash)
- _B_ll(N+NxT) + Mxr + 21—6S =0
1 Ags

Equation (145b) can be simplified by enforcing the first equation, i.e., by setting § = 0.
Due to these simplifications, the case of lubricated boundary conditions results in the

following two equations,

2 2
b B Bi)awd| | (Buts Balavd o aeem
n A“ All dx3 X"'Lz' AllR R dx “"é ’
and
2 2
[ _Bie_Bhlaw (Egﬁz‘_ixz)wol .
11 =+
Ag Ay) dx*l=l (AR R) T (146b)
B
- _‘l(N+N,’) +MI=0
All
1 nditi
Expanding eqgs. (139) in terms of w? yields
By dw® S( L
yol = s : _(+_) is specified,  (147a)
= A“ dx x-té A“ 2
we| .1 is specified , (147b)
2

and
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B,A, B
P e g ) TN
x=sk AR R =3

(147¢)
- ﬁ(N+Nf) + MT + -PES =0 .
1 Ags
3. Clamped Boundary Conditions
Expanding eq. (140) in terms of w°(x) yields
vo| g =edwt S (L) ecified,  (1483)
7 Ay dx x-og A\ 2 ’
w| .. is specified , (148b)
2
and .
dw is specified . (148¢)
dx Xue—

C. Solution of the Governing Equation for w°(x)
Equation (137) will now be solved for w°(x). The complete solution to eq. (137)

consists of homogenous and particular parts, i.e.,

WOR) = Wiopo(8) + Woere (%) . (149)

The particular solution is simply the right hand side of eq. (137) divided by the

coefficient of w?, or
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R{A, Ny -Ap(N-NT)) (150)
Ay Ay 'A122 -

Woare (%) =

where the notation w, ., denotes the particular solution. Note that it is not a function

of x.

The homogeneous solution is of the form

w‘:’m.(x) =Ae™ . (151)

Substituting this assumed form into eq. (137) results in the characteristic equation:

2 p2 2
[Du _Bu_ ﬁ]}f +(2__B"A“ -2ﬁ3 -N)l’ +|A,, __A_u.] =0 ,
1 “es AR R A
or
BjA A A, -AL
R DllAu—Blzl_ : 11]14 + (Zansz’anzAlx"AuRN)}'z + —uﬁ_ﬁ =0
66
(152)
There are four roots to this equation, namely
Aasa =
BjA
(A, RN *2‘41|Bu'24u31|)*\ {2A;B, -24,,B,, -AIIRN)z-4[DllAlI -B}; "—:‘“ﬂ}"u"zz 'Alzz)
% .
Bz
2[011411'331' ::"]R
(153)

Though it is not totally obvious, there is an interesting character to the roots given above.
This is due to the dependence of the roots on the level of the applied axial load, N. The

character of these roots can be examined by studying A% instead of A, i.e.,
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("z)x,z =

2
RN+2A,,B,,-24,B By, 24, B, -A, RN} -4|D, A, - B}, - 2ishu -A2
P‘u 44,5, 12 u)*\(z 12917448374y N)z nfu~fuT—g uln 12)
66

2

2
Du“u -Blzl = BI‘AH]R
A
66

(154)

The first important character to observe is that the discriminant in eq. (154) will be zero

for a certain level of applied axial load N. This load will be denoted by N*, given as

2
Ble‘]l

(155)
4 ]*szBu ~A;B,,|.
66

2
DuAu -B,, -

N* = ﬁi iJ Gﬂquz—Alzz)

In general, eq. (155) will yield one positive and one negative value for N*. In this
investigation, attention will be focused on compressive loading of the cylinder and,

therefore, on the negative value of N*. Hence, N* will be given by

2
BIGAII
66

(156)

2
DuAu 'Bu -

. 2 2
N® = AR '\J (Aquz "Alz) )*‘412311 -A By,
1

For varying values of N, the roots (%), , have the following characters:

1) For 02N> N*, the roots (A%, , are complex conjugates given by



(Az)u = a(()'2)1,2) x is((Az)lJ)

A

BiA
- - - 2 _pi _T16™1t L
A RN+2A,B,,~2AB,,  \ 24,8y, 24,,B,, -4, RN} *’4[D||Au By, ——}Au“n Au)
= ti )

BiA

2 164%11
7{1),,4“-3"- " ]x 2

66

BjA
D,A,, "Blzx'—“—g]k

A“
(157)
The roots A are thus of the form
"1.2.3.4 =+ (Az)u = +aziP . (158)
2) For N = N*, the roots (A%),, are negative repeating real roots given by

(%), = (A“RN*2A“B‘1-2A|2M
* ) BlzoAn - (159)

2|D,yA,, By - A R

66

Therefore, the four roots A are two pure imaginary repeating roots of the form
2'1.2,3,4 =z (Az)u = ziP, ziP . (160)

3) For N < N*, the roots (A%),, are negative distinct real roots given by

(Az)l,‘l *

Bia
2 6 2
(AuRN*’zAnBu'zAuBn) : \(2‘412311 -2A"Bu-A“RN)z—4[D"A"-B"- :4“"}"11421'411)

B2
2[011411 -Bj - %]R

(161)

The roots A are thus of the form
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Masa = £(A%), = 2ip,, B, . (162)

Because of these three different forms for the roots of the characteristic equation
(152), depending on the value of N relative to N°, the functional form of the x
dependence of the homogeneous solution depends on the value of N. Therefore, the
value of N defines the shape, as well as the amplitude of the deformed cylinder. For
the linear problem where the Nx% term in eq. (129¢) is not present, only the
amplitude, not the shape, is dependent on the value of N.

The functional form of the homogeneous solution, eq. (151), is as follows:

For 0 2 N>N"*, from eq. (158)
w‘:.o.(x) - Ale("ip)x + Aze("ip)x + Ase(-“’ip)x + A‘e(‘.'ip)x . (163)
For N = N*, from eq. (160)
Wiomo, () = (A, + Ayx)e’?* + (4, +A,x)e P (164)
For N < N*, from eq. (162)
Wiomo (0) = A€ + A, 4+ g™ 4 4 e (165)
Combining these homogeneous solutions with the particular solution, eq. (150), and
considering only the portion of the.solution that is symmetric about x =0, the three forms
of the solution of w°(x) are:

For 02N>N",
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T_ _nT
wo(x) = F cosh(ax)cos(Bx) + G sinh(ax)sin(px) + RQ“nNe Anz(N N, )) .

Aquz 'Alz2
(166)
For N=N"*,
R(A, NT-4, (N-NT
w(x) = Fcos(px) + Gxsin(px) + (A" 8 "( - ‘». (167)
Aquz'Au
For N< N*,
RlA, NT-A_(N-NT
wO(x) = Fcos(p,x) + Gcos(px) + (A1Pe A » (168)
Aquz'Anz

The constants F and G can be determined from the application of the boundary
conditions, eq. (146), (147), and (148), for lubricated, simply supported, and clamped

boundary conditions, respectively.

D. Solution of the Governing Equation for u®(x)

The remaining displacement variable u °(x) can be obtained from the definition of the
midplane axial strain e.(®), givch by eq. (135a), in terms of the material properties,
cylinder geometry, and equivalent thermal loads, along with the solution for w°(x) and

its derivatives. From eq. (128), it follows that

2 2
du’() _ o0y _ 1| dw°(x) - wO%x) = o 1{dwe(x)
e 2( dx ) v ”e"(x)"i( dx Hdﬁq ’

(169)
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where C, is a constant integration. By substituting eq. (135a) into eq. (169),

2
) 1 [y, N7 iz, 0 g, W@ 1w @ | a0
dx A R dx? 2\ dx

This expression involves constants and the closed-form solution for w°(x) and its first

two derivatives.  Therefore, this expression can be integrated analytically as

characterized in eqgs. (169), i.e.,

r
() = Al (V+N]) ]x—[ ‘2} wO(x)dx

[l e

Note that the solution for u °(x) involves the three terms which are the integral of w°(x),

17

its first derivative, and the integral of the square of its first derivative. Since w°(x) is
an even function of x, these three terms are odd functions of x. Therefore, since

symmetry about x =0 has been assumed, and constants are even functions,

C =0. 172)

Since the solutions for w °(x) comprise three different functional forms which depend
on the magnitude of the compressive axial load N, so will the solution for u°(x). The
solution for v°(x) was presented in the previous section in eq. (142) and (143), and
involves the first derivative of the solution for w°(x), given by eqs. (166), (167), and
(168).

Since the expression for u°(x), eq. (171), involves the integration of the square of

the first derivative of w°(x), the solution is not easily obtainable. However, after much
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algebra, it can be shown that,
for 0O>N>N°*,
u’x) = Cix+ Czsinh(ax)cos(ﬂx) + C,cosh(ax) sin(Px)

+ C4sinh(2ax)cos(2[3x) + C,cosh(2ax)sin(2|3x)
+ Cgsinh(2ax) + C,sin(2px)

where
oo A5 )N Aw 1 FGap
| Auln -Ap)\ An ) Ay -Af 2
A i _
Bu(F""’Gﬁ)"—EF(B )
C, =
’ Ayyfa®+p?)
4 (1732)
B)Ge ‘FB)*'—RQF(a +PB)
C. =
3 Afa®+5?)
c - (G*-F)ap*-FG(ap +B’)
‘ 8(a+ P
C. = (G2-F%)a?p -FG(a® +a B?)
’ 8o+
C= - (F*a®+G*P’)/@a)
C. - (FZ a2 +G2 pZ)(aZ + BZ)
! 8(a2ﬁ +p3)
and B
vo(x) = A—w {F[asinh(ax)cos(ﬂx) - B cosh(ax)sin(px)]
6
- G[acosh(ax)sin(Bx) - psinh(ax)m@x)]} (173b)
+ i x .
Ag



For N = N*,

u°x) = C,x +C,x* + C,sin(px) +C,sin(2px)
+ Csxcos(fx) + Cgxcos(2Bx) + C,x2sin(2px)
where

Az
C1= 1+ 12 2
Aquz'Alz

T
N+N, | A NT, F2B?+FGB-G?

2 [}
Aquz 'Alz 4

A
BII(G-FB)+712[F—%]

All

(174a)
2q2
_G c,-

C, = :
2 12 A,

c . (2G*-2Fp?-FGp) _
4" ’ s=
16 A,
: C,=-G*B/8

Cs=-FGp/8

and
B,

vew = — {F [-Psin(Bx)] + G [sin(Bx) + Bxcoswx)]}
“« (174b)

+ —X .
A66
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For N< N°,

u’(x) = Cix+ Czsin(le) + C3sin(ﬂzx) +C4sin(2[31x) + Cssin(ZBZx)
+ Cgsinf(B, - BJ] + C;sinf(B, + Bp]
N+NJ| Ay Nr_sz%GZai

where
2
YU 44, -A2 A A -4 4
114°22 12 11422 12
A, G) (175a)

Ap F
["Buppl‘_kl'z"d ("BuGBz"k‘T}"
C2= ! ; C'3 = 2

All

Ay Ay
C4=F2|31 : Cs=62p2
8 8
_FGB,B, _FGB,B,

and

B

|O\

vo(x) =

{F[-B‘sm(plx)] ¥ G[-stin(pzx)]} + Z‘E;x . (175b)

1
66
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The axial compressive load N*, which corresponds to the load at which the character
of the roots to the characteristic equation, eq. (152), changes from the roots being
complex conjugates to the roots being repeating pure imaginary roots, has been shown
to correspond to the collapse load of the cylinder by Booton (ref.2). Since
application of a compressive axial load corresponding to the collapse load would cause
catastrophic failure of the cylinder, the analyses and results discussed in the remainder

of this work will focus only on compressive axial loads in the range O>2N>N".
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E. Preloading Response Due to Thermal Effects

Composite cylinders are usually fabricated on a male mandrel and are consolidated
at an elevated temperature. After consolidation, the temperature is lowered to ambient
temperature and the male mandrel is removed from the cured cylinder. If the fabrication
and consolidation are assumed to be axisymmetric, the cured shape of the cylinder can
be determined using the solutions from the previous sections.

Since there are no loads applied to the cylinder after the mandrel is removed, N is
set equal to zero, as is S, and the response is given by eq. (166). Also, the roots are
given by eqgs. (158) and (157). Note that the roots are only functions of the material
properties and cylinder geometry, since N is set equal to zero. Therefore, the shape of
the deformed cylinder is a function of the material properties and geometry only. The
particular solution, eq. (150), which is a function of the material properties, cylinder
geometry, and the temperature change, governs the radial deformation of the cylinder
away from the ends.

Since the boundaries of the cylinder are unrestrained after the mandrel is removed,
the appropriate boundary conditions for this case are the lubricated boundary conditions,
eq. (146), with N set equal to zero.

In summary, from the material properties and geometry of the cylinder, the root parts
« and B of eq. (166) are known. By enforcing the lubricated end boundary condition,
the constants F and G of eq. (166) can be solved using eqs. (146). From the material
properties, cylinder geometry, and temperature change, the particular solution, eq. (150),

with N set equal to zero, is known. Therefore, the deformed shape w°(x) can be
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calculated.

F. Numerical Results for the Case of Thermally-Induced Preloading

o (4 [
Relations between (x), ve) , W) and = for three 16 layer cylinders are
H H H L
presented in Fig. 11, Fig. 12, and Fig. 13, respectively. These cylinders have stacking
sequences of [+45/-45/0,)s, [+45/-45/0]qr, and [0,/-45/+45],;, a length to radius
ratio, L/R, of 3 and radius to thickness ratio, R/H, of 125. The value of these
parameters are representative of thin, moderately long cylinders. The results are felt to
be valid for any cylinder with L/R = 2 and R/H = 100. Specific dimensions used

herein can be determined knowing a single layer of fiber reinforced material is 0.005 in.

thick. The layer material properties used in the calculations are given in Table I.

Table 1. Layer Material Properties
E, E, G, Y12 layer a, a;
thickness,
Msi) | (Msi) | (Msi) h (in.) (in./in.)/°F (in./in.)/°F
20. 1.3 1.03 3 .005 -.167 x 10°® 15.6 x 10°* “

The first stacking sequence represents an often-used slightly orthotropic lay-up, while
the second and third stacking sequences represent two unsymmetric variants of the first
one. If unsymmetric laminates are to gain favor, slight deviations from symmetry, as
with the second laminates, are most likely to initially be used. The laminate properties
and thermally-induced equivalent stress resultants with AT=-280°F for these three

cylinders are given in Table II.
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Table II. Laminate Properties and Thermally-Induced Stress Resultants for

[+45/-45/0,),5, [+45/-45/0,)4r, and [0,/-45/4+45],; Cylinders,
AT=-280°F.

Laminate Property | [+45/-45/0,) [+45/-45/0,)4r [0,/-45/+45],;
Ay (Ib/in) 1.068 x 10° 1.068 x 108 1.068 x 10°
A, (Ib/in) 1966 x 10° .1966 x 108 .1966 x 10¢
Ay (Ib/in) 3156 x 10° 3156 x 10° 3156 x 10°

| Ags (Ib/in) .2476 x 108 .2476 x 10° .2476 x 10°
B,, (lb-in/in) 0 2,707. -2707.
—_
B,, (lb-in/in) 0 -826.0 826.0
B,s (Ib-in/in) 0 -470.3 470.3
D,, (Ib-in%in) 461.3 569.6 569.6
N,T (Ib/in) -160.2 -160.2 -160.2
N," (Ib/in) -357.1 -357.1 -357.1
M,T (Ib-in/in) 0 .4921 -.4921
0.0125
O [+45/-45/0z2s
0.0100}| © (+45/-45/02l7 ... gL 4
a  [02/-45/+45l
0_0075 N , ............................................................
20,0050 koo ............... .............. ...............
0.0025 . » ............... . ............... \ ..............
0.0000 i i i .
0.0 0.1 0.2 0.3 0.4 05
x/L
Fig. 11. Dimensionless Axial Mid-surface Displacement of Cylinders with
Lubricated Boundary Conditions, N=0, AT=-280°F.
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Fig. 12. Dimensionless Tangential Mid-surface Displacement of Cylinders
with Lubricated Boundary Conditions, N=0, AT =-280°F.
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Fig. 13. Dimensionless Radial Mid-surface Displacement of Cylinders with
Lubricated Boundary Conditions, N=0, AT=-280°F.

T

Fig. 11 reveals that the axial displacement of the cylinder mid-surface for all three
cylinders is essentially a linear function of x and that the magnitudes of the responses for
these cylinders is the same. Since the effective axial coefficient of thermal expansion of
the cylinders is negative, they respond to the temperature change of AT=-280°F by
expanding axially.

By examination of Fig. 12 and Fig. 13, it is seen that for the symmetric cylinder, the
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tangential displacements of the mid-surface are zero over the entire cylinder length, and
radial displacements of the mid-surface of the symmetric cylinder are constant.
Comparing the results of the unsymmetric [+45/-45/0,],; cylinder to the results of
the [0,/-45/+45),; cylinder, it is seen that the tangential and radial displacements vary
along the half-length of the cylinders, particularly toward the cylinders’ ends. The ends
of the unsymmetric cylinders curl radially and twist, producing a boundary layer effect.
The direction of the radial curl is a function of the sign of the thermally induced moment
M,T, resulting from the opposite stacking sequences of the cylinders. The [+45/-45/0,),;
cylinder curls outward, while the [0,/-45/+45]; cylinder curls inward. Fig. 12
illustrates that both unsymmetric cylinders twist in the same direction due to the
thermally-induced preloading, although the [0,/-45/+45],; cylinder exhibits a slightly
larger tangential displacement at the end. It is important to realize that the study of
unsymmetrically laminated cylinders would not be correct without including this

thermally-induced deformation due to cooling from the consolidation temperature.

G. Cylinder Response Due to Thermally-Induced Preloading Effects and a
Compressive Axial Load
In order to correctly model the response of the cylinder due to thermal preloading
effects and a compressive axial end load, the thermally-induced preloading deformation
at the end of the cylinder must be taken into account when enforcing the end conditions
under axial load. Since the cylinder deforms due to cooling from consolidation

temperature to ambient temperature, any fixture used to apply the axial end load to the
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thermally deformed cylinder must take into account the thermally-induced tangential and
radial deformation and slope at the end of the cylinder before loading. This impacts the
specification of the simply supported and clamped boundary conditions, eq. (147) and
(148), respectively. Stated in another way, simply supported or clamped end conditions
would resist any tangential and radial end displacements relative to the thermally-induced
preloading value, and clamped end conditions would also resist rotation of the ends
relative to the thermally-induced preloading value. As observed in the previous section,
under thermally-induced preloading effects, for unsymmetric laminates, the radius at the
end of the cylinder will most likely be different from the radius of the cylinder away
from the ends. Therefore, the axial load N would be applied eccentrically relative to
the mid-length of the cylinder. This could have an influence on the response of the
cylinder near the ends.

Since the boundary conditions associated with the thermal-induced preloading effects
are those of lubricated ends, it follows that the thermally-induced torsional load, S, is
zero. Therefore, the tangential displacement v° at the end of the cylinder after

thermally-induced preloading effects is given by eq. (142) with S equal to zero, i.e.,

B.. dwy
IR ti 76)
2 A“ & [ Y Yot

Under thermally-induced preloading effects and axial load, the simply supported and

clamped boundary conditions are:
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1) Simply Supported end (at x=+L/2):

S
L L R
x=+3 66 dx x-oé A“ 2 A“ dx 3"%'
wel = wy L (177b)
and B B? B A, B
[D _l_l]d"w" +( 11 12__13)wo
11
A Ay) di? bl | AR R Lk 177¢)
- ﬁ(N-Q-NxT) + Mxr =0 .
11
2) Clamped end (at x=+L/2):
yo g=Dedwe | 1(&) _ Bgdwr (178a)
07 Ag drlel A\ 2] Ag drlik
wel o =ws L (178b)
and dwo
[
dw - r (178¢)
dx 3-0-2’: dx x-*-’-‘

where the subscript T denotes the value of the response due to thermally-induced
preloading effects.

Obviously, since w°(x) and its first derivative are involved in the boundary
conditions, the unknown constants F and G in the solutions for w°(x), eqgs. (166),

(167), and (168), can be solved for. Also, these two boundary conditions require that
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a third unknown, the torsional load S be found. Therefore, three unknowns, F, G, and
S, must be solved for using egs. (177) and (178).

It is worth noting that in the case of clamped boundary conditions, the specification
[4

T evaluated

o
of v°, eq. (178a), and specification of g:-x—, eq. (178c), both involve
B
at x=+L/2. In fact, if eq. (178¢) is multiplied by ﬁ and the result is subtracted from

66
eq. (178a), the solution

§=0 (179)

is found. Therefore, eq. (178a) can now be eliminated from the system of equations
used to solve for F and G, leaving eq. (178b) and (178c) as the system of equations to
be solved. The physical interpretation of this result is that for these particular
unsymmetrically laminated cylinders (which result in certain B matrix terms not being
zero), axial compression with clamped boundary conditions does not induce a torsional

load §, while simple support boundary conditions will induce a nonzero §. This is a

o

dx
the value of the thermally-induced preloading torsional load, S;, being equal to zero.

result of the definition of the tangential displacement v°(x) involving the slope and
If the boundary conditions during the cooling from consolidation temperature to ambient
temperature were other than lubricated end conditions, i.e., if the ends were simply
supported or clamped during the cooling procedure, a nonzero value for S, would result
for unsymmetrically laminated cylinders, and imposition of clamped boundary conditions

during axial compression would result in an induced torsional load S.
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H. Numerical Results for the Case of Thermally-Induced Preloading Effects and a

Compressive Axial Load

Dimensionless axial, tangential, and radial displacements for cylinders with
[+45/-45/0,)y, [+45/-45/0,)r, and [0,/-45/+45],; stacking sequences, with simply
supported and clamped end conditions and varying load N, are presented in Fig. 14
through Fig. 31. The figures illustrate the variation of these displacements along the
dimensionless half-length of the cylinders. The three families of figures illustrating the
axial, tangential, and radial mid-surface displacement have common vertical scales for
ease of comparison within these families.

The two axial load levels investigated are given by fractions of the load N*, i.e.,
for N=10% N* and N=90% N*. The quantity N* is independent of boundary conditions
and thermal preloading. Recall that the quantity N* dictated the form of the roots of the
characteristic equation, eq. (152). The values of N* for the three cylinders are:

[+45/-45/0,)5s : -2271 Ib/in,
[+45/-45/0,); : -2241 Ib/in,

[0,/-45/+45]; : -2771 Ib/in.

The dimensionless mid-surface displacements as a function of distance along the half

length of these cylinders with simply supported ends are presented in Fig. 14 through

Fig. 16 for N=10% N*, and Fig. 17 through Fig. 19 for N=90% N*. Comparison of
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the results relative to the two load levels exhibits the change in the magnitude and shape
of the responses. The difference in the shape of the responses is a result of the nonlinear
nature of the governing equations. In particular, the length of the boundary layer
increases with increasingly compressive axial load.

Fig. 19 illustrates that, at comparable load levels, the maximum value of the radial
response of the [+45/-45/0.); cylinder is significantly larger than that of the
[0,/-45/+45],; cylinder. Note that the actual load N=90%N" on the [+45/-45/0,
cylinder has a smaller magnitude than the load on the [0,/-45/+45],; cylinder, since the
load N* is larger in magnitude for the [0,/ -45/445),7 cylinder and each cylinder in these
figures is loaded axially based on the quantity N/N*, with N* being different for each
cylinder.

The tangential displacement v°(x) is given by eq. (142). Note that the magnitude of
A and the magnitude of B, (presented in Table II) for the [+45/-45/0,]4; and
[0,/-45/+45],; cylinders are identical, while the sign of B, for these two cylinders are

opposite. Therefore, the difference in the magnitude of the tangential displacement,

[

dx
for these cylinders, while the difference in the sign of v°(x) is a result of the difference

presented in Fig. 15 and Fig. 18, isa result of the difference in the magnitude of

in the sign of B, for these cylinders.

As illustrated in Fig. 14 and Fig. 17, the magnitudes of the axial displacements of
the [0,/-45/+45),; cylinder are larger than the magnitudes of the axial displacements of
the [+45/-45/0,), and [+45/-45/0,15 cylinders. Since all three cylinders have identical

inplane stiffnesses, as dictated by A4,,, 41, 4z, and A, and the fact that these figures
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represent displacement data based on dimensionless loads N/N*, this difference in
magnitude is a consequence of the larger magnitude of N* for the [0,/-45/ +45],1

cylinder.
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0.0 0.1 0.2 0.3 0.4 0.5

x/L .
Fig. 14. Dimensionless Axial Mid-surface Displacement of Cylinders with
Simply Supported Ends, N=10%N", AT=-280°F.
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Fig. 15. Dimensionless Tangential Mid-surface Displacement of Cylinders
with Simply Supported Ends, N=10%N", AT=-280°F.
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Fig. 16. Dimensionless Radial Mid-surface Displacement of Cylinders with
Simply Supported Ends, N=10%N", AT=-280°F.
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Fig. 17. Dimensionless Axial Mid-surface Displacement of Cylinders with

Simply Supported Ends, N=90%N", AT=-280°F.
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Fig. 18.

Dimensionless Tangential Mid-surface Displacement of Cylinders

with Simply Supported Ends, N=90%N", AT=-280°F.
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Fig. 19. Dimensionless Radial Mid-surface Displacement of Cylinders with
Simply Supported Ends, N=90%N", AT=-280°F.

Since simply supported boundary conditions are difficult, if not impractical, to obtain

in reality, and since the displacements of unsymmetrically laminated cylinders are large
and rapidly changing near the ends of the cylinder, it is legitimate to ask if the responses
of cylinders with clamped ends would be comparatively diminished.

The dimensionless mid-surface displacements as a function of distance along the half
length of cylinders with clamped ends are presented in Fig. 20 through Fig. 22 for
N=10% N*, and Fig. 23 through Fig. 25 for N=90% N"*.

As was the case with simply supported ends, it is observed that the axial displacement
is largest for the [0,/-45/+45],; cylinder. Again, this can be attributed to the fact that
the value of the axial load N is significantly larger for this cylinder, relative to the other
two, while the inplane stiffnesses of all three cylinders are identical.

From Fig. 24 and Fig. 25, it is apparent that the maximum values of the tangential
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and radial displacements of the [0,/-45/+45],; cylinder are larger than those of the
[+45/-45/0,),; cylinder. This is converse to the results of the previous section, Fig. 18
and Fig. 19, where simply supported boundary conditions were imposed. In comparing
the simply supported and clamped boundary condition results for N=90%N*, it is also
evident that the range of values for the tangential and radial response of the
[+45/-45/0,),; and [0,/-45/+45),; cylinders with simply supported boundary conditions
are broader than the range of values of these responses for the clamped boundary
conditions.

Again, from Fig. 22 and Fig. 25, it can be observed that the length of the boundary

layer increases with increasingly compressive axial load.
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Fig. 20. Dimensionless Axial Mid-surface Displacement of Cylinders with
Clamped Ends, N=10%N", AT=-280°F.
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Fig. 21.
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Fig. 24. Dimensionless Tangential Mid-surface Displacement of Cylinders

with Clamped Ends, N=90%N", AT=-280°F.
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Fig. 25. Dimensionless Radial Mid-surface Displacement of Cylinders with

- Clamped Ends, N=90%N", AT=-280°F.

In Fig. 26 through Fig. 31, the dimensionless axial, tangential, and radial mid-surface
displacements are presented for simply supported cylinders, subjected to the same axial
loads as before, but neglecting to include the thermally-induced preloading effects.

Comparing the case of simply supported cylinders with thermal preloading and axial

load to the case of axial load only for N=90% N°, i.e., Fig. 17 through Fig. 19 and
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Fig. 29 through Fig. 31, it is evident that neglecting to include the thermally-induced
preloading effects has a measurable effect on the predicted radial displacement response
of the cylinders. There is not much difference in the axial or tangential displacement
response. The tangential and radial responses at the mid-length of the cylinder differ
between these two cases since the particular solution depends on the thermally-induced
stress resultants N,T, N,,T, and M,T.

Fig. 32 and Fig. 33 represent the displacement responses for a [0,/90;); cylinder
using the same material properties as above. These figures illustrate the exaggerated
effect of neglecting to include the thermally-induced preloading effects in the solution for
the axially loaded case. There is a large difference between the results. This particular
case was studied in ref. 1 without including thermal effects. Results such as shown in

Fig. 32 and Fig. 33 certainly provide motivation to recompute the results of ref. 1 with

thermal effects.
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Fig. 26. Dimensionless Axial Mid-surface Displacement of Cylinders with
Simply Supported Ends, N=10%N", AT=0°F.
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In the next chapter, the effects of unsymmetric stacking sequence and thermally-
induced preloading on the intralaminar stress components will be investigated. The
solutions to the axisymmetric problem presented thus far will be employed to compute

the intralaminar stress components in the individual layers of cylinders.



IV. CALCULATION OF INTRALAMINAR STRESSES

In this chapter the equations used to calculate the principal material system stresses
Gy, Oy, and t,, within the wall of the [+45/-45/0,],5 , [+45/-45/0,); , and
[0,/-45/+45],; cylinders will be presented, and numerical results with thermally-induced
preloading effects and compressive axial load will be illustrated. The principal material
system stress components 0,,, 0,,, and t,, will be referred to as the principal material
system intralaminar stresses. These stress components can be calculated from the
principal material system strains, €,,, €5, and Y,,, through constitutive relations. The
other three stress components, t_, t,,, and o,, are referred to as interlaminar stresses

and will be discussed in a later chapter.

A. Equations Describing Intralaminar Stresses
Under the axisymmetric assumption of the previous chapter, the intralaminar strains
€, &g, and Y4, in the cylinder coordinate system x-6-r are given by eq. (12) and eq.

(128), namely,

0 o
E =€, +IXK,

eq = g + 2Ky
(-] [
Yo = Yo t 2K,
(12)
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and

p= -2 B3=0

po o du’  1p0 e:=y_". Y:ezdv"

od 20 R’ dx
o B oo o o
K= Ko =0 e

(128)

In the previous chapter closed-form solutions for u°(x), v°(x), and w°(x) were
presented. Therefore, the derivatives of these functions with respect to x are analytically
obtainable, and the expressions in eq. (128) are known for a given temperature change,
axial load, and boundary conditions.

The principal material strains can be calculated from the strains €,, €4, and ¥, by
coordinate transformation from the x-6-z coordinate system to the 1-2-3 principal material

coordinate system for each layer. These transformations are given by

rell‘ ex1
cos?0 sin?0 -25in6 cosO
[ A £
{72} =| sin% cos?®@  2sinBcosd [{ O} (180)
%‘3 sinBcosd -sinBcosB cos?0-sin0 E’zﬁ
} )

where @ is the angle measured from the x axis to the fiber direction (the 1-axis) of a
given layer.

Once the total strains in the 1-2-3 coordinate system are known, the mechanical
strains are obtained by subtracting the free thermal strains,

T

T
€2

(181)

0
R

B
>
~



from the total strains given by eq. (180). By definition, an orthotropic layer does not

have a free thermal shearing strain. Therefore, the mechanical strains are given by

M
€ = &, -, AT,

e3 = €, - G, AT, (182)
M
Yiz2 = Yy2 -

From these mechanical strains, the principal material system intralaminar stresses

G,1, Oy, and T, can be calculated using the reduced stiffness matrix for each layer,

i.e.,
M
% Qi Q. 0 ||etn
Op=|Qu Qun 0 [{ey; . (183)

Tio 0 0 Qg Yo

The reduced stiffnesses are

Q 5
n=s T

1 = ViaVay

_ VuE
Qu B l-vuv21 ’ (184)
Qy = __E,_ ,

1-v,vy

Qs = Gy »

where E,, E,, v,,, and G,, are known for a given orthotropic layer and v,, is

calculated by
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_ Vb , (185)

Vay
E,
The values for the layer material properties used in these analyses were given in the

previous chapter in Table 1.

B. Numerical Results for Intralaminar Stresses: Case of Thermally-Induced
Preloading Effects and a Compressive Axial Load with Clamped Boundary
Conditions
Since clamped boundary conditions more closely represent actual applications of

cylinders, the remainder of the analyses will focus on clamped boundary conditions.

Again, the three cylinders of interest have a length to radius ratio of 3, a radius to

thickness ratio of 125, and have [+45/-45/0,),s , [+45/-45/0,ky , and [0,/-45/+45]r

stacking sequences. The thermal preloading effects are due to a temperature change,

AT, equal to -280°F.

The numerical results to be presented in this chapter are principal material system
intralaminar stresses in various groups of layers within the cylinder wall. The stresses
are normalized by the quantity (N/H), where N is the compressive axial load and H
is the wall thickness, 0.080 in. The quantity (N/ H) represents the average axial stress
in the cylinder wall. The stress components are reported at the mid-thickness location
of each layer. The two axial load levels investigated are given by fractions of the load
N* ie, N=10%N* and N=90%N".

For each cylinder and load case, six figures are presented. There are two figures for
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each of the mid-layer principal material system intralaminar stress components, 0, Oy,
and t,,; one figure for the 0° layers and one figure for the +45° layers. Due to the
difference in magnitude of the respective stress components in these two groups of
layers, two figures can be used. For each cylinder and load case the vertical scale of
each of the six respective figures is the same for comparative purposes. Since the
magnitudes of the stress components are largest near the ends of the cylinders, the
horizontal scale includes only the portion of the half-length of the cylinder from x/L=0.3
to x/L=0.5. Where possible, the layer number in the stacking sequence is printed next
to the respective layer’s stress component relation in the figures. Where the relations are
too closely spaced in the figures, the direction of increasing layer numbering in the
stacking sequence is shown with arrows. Recall, layer no. 1 is at the inner most radial
position.

The first three sets of figures, Fig. 34 through Fig. 36, represent principal material
system intralaminar stress results for the three cylinders subjected to a compressive axial
load of N=10%N", including thermally-induced preloading effects, i.e., with a
temperature change, AT, equal to -280°F. The next three sets of figures, Fig. 37
through Fig. 39, represent principal intralaminar stress results for the three cylinders
subjected to a compressive axial load of N=90%N*, including thermally-induced
preloading effects. The last set of figures, Fig. 40, represent principal intralaminar stress
results for the [+45/-45/0,); cylinder subjected to a compressive axial load of
N=90%N"*, peglecting thermally-induced preloading effects, i.e., with a temperature

change, AT, equal to 0°.
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C. Discussion of Intralaminar Stress Results

For the low load level for the [+45/-45/0,),s laminate, Fig. 34, the fiber-direction
stresses, ©,,, are higher in the £45° layers than the 0° layers. Since the 0° layers are
aligned with the applied load and thus will directly bear the load, it is surprising that the
fiber-direction stresses are not higher in the 0° layers. This anomaly is no doubt due to
the thermally-induced effects dominating at this low load level. This will be seen
shortly. The intralaminar stresses perpendicular to the fibers, ©,,, are about the same
for the 0° layers as for the +45° layers. The shear stresses are small, being zero in the
0° layers and equal and opposite in the +45° layers.

For the low load level, the stresses in the [+45/-45/0,),; laminate, Fig. 35, are
similar in magnitude and spatial distribution to the stresses in the symmetric laminate.
The primary difference between the unsymmetric laminate and the symmetric laminate
is a minor level of shear stress in the 0° layers of the unsymmetric laminate.

The stress levels at the low load level in the [0,/-45/+45], laminate, Fig. 36, are
similar to the stresses in the [+45/-45/0.),s and [+45/-45/0,);r laminates. The fiber-
direction stresses in the 45° layers, at the end of the cylinder, are somewhat lower for
the [0,/-45/+45],; laminate than for the other two laminates. The compressive stresses
perpendicular to the fibers, ©,,, are not as high as for the [0,/-45/+45],; laminate as for
the other two. The same is true for the shear stresses in the +45° layers, though the
difference in stress levels for one laminate to the other two is of little consequence for

this low load level.

For the high load level and the symmetrically laminated cylinder, Fig; 37, the fiber-
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direction stress levels in the 0° layers, the load bearing layers, are higher than in the
+45° layers. Apparently, at the low load level, Fig. 34a and Fig. 34b, thermal effects
do dominate but at the higher load level, they are in the background. This will be
discussed more shortly.

The stress levels in the two unsymmetric laminates at the high load are quite similar
to the stress levels in the symmetric laminate at that load level. The intralaminar stresses
perpendicular to the fiber-direction, o,,, are compressive, thus virtually eliminating the
potential for micro-cracking due to this stress component. The shear stresses in the
+45° layers for the three laminates could lead to matrix cracking,_ but they are low, even
for this high load level.

To provide an indication of the magnitude of the thermally-induced intralaminar
stresses, the stresses in the [+45/-45/0,],; cylinder with the high load level but not
including thermal effects are shown in Fig. 40. These should be compared directly with
Fig. 38, the same laminate and same load level, but with thermal effects included. All
stresses except the fiber-direction stress in the 0° layers shows some influence of the
thermal effects. By comparing Fig. 38c and Fig. 38d with Fig. 40c and Fig. 40d, it
appears as though the intralaminar stresses perpendicular to the fibers, o,,, due to
thermal effects, are compressive. Also, when comparing Fig. 38f with Fig. 40f, it can
be concluded that thermal effects relieve somewhat the intralaminar stress in the +45°
layers.

It should be noted that the solutions for the intralaminar stresses obtained to this point

can be used directly in a failure criterion associated with classical lamination theory
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(CLT). However, since the failure of a cylinder on a material failure basis also consists
of determining whether delamination occurs for a given load case, a method for
determining the interlaminar stresses is needed.

In the following chapters, the analyses performed thus far will be used to derive

solutions for the interlaminar stress components within the cylinder wall.

107



2.5 5.0 — 16
14 éi
20f - 4.0 32
T st {‘ 3ol : o
Z Z +45°/-45° Layers
>~ g0oF ~ 20}
Y °
oSk - .- 1.0F
0.0 i L o 0.0 L L A
0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50
x/L x/L

Fig. 34a. oy, along x/L for 0° Layers of
a [+45/-45/0,],s Cylinder, N=10%N",
AT=-280°F.

Fig. 34b. o,, along x/L for 45° Layers
of a [+45/-45/0,],5 Cylinder, N=10%N",
AT=-280°F.

0.2 - , 0.2
—ook oo —0.0F - ‘
-02F - TR . S —0.2F
0.4 0° Layers ' sl +45°/-45° Layers
{,‘ -06F - - S o {K -0.6}F - -
~ -1.0}F - o ~ 1.0}
"4 : 1'4 Increasing Layer Numbers
-1.8 4 . . -1.8 L . .
0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50
x/L x/L

Fig. 34c. o, along x/L for 0° Layers of
a [+45/-45/0,],s Cylinder, N=10%N",
AT =-280°F.

Fig. 34d. o, along x/L for 45° Layers
of a [+45/-45/0,),5 Cylinder, N=10%N",
AT=-280°F.

0.003 0.50 ' _
: : : : 12
0.002F oo . e d 0.30 : . 16|
— : : T . . ;
z Z 0.00
: 0.000 o —0.10F- -
s v ‘ + _0.20 SEERERIEE A5° L.y.n
—0.001 b e -0.30 .“M“mww““ R
. N N !d‘
-040F S .“; 1
-0.002 : A . -0.50 . < .
0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50
x/L x/L

Fig. 34e. 7, along x/L for 0° Layers of
a [+45/-45/0,),s Cylinder, N=10%N",
AT=-280°F.

108

Fig. 34f. r,; along x/L for 45° Layers of
a [+45/-45/0,],5s Cylinder, N=10%N",
AT=-280°F.



o1 / (Nx/H)

osk -

0.0
0.30

0.45

0.40
x/L

0.35

5.0

7 14 )13
910
]
16
1

+45°/-45° Layers

40F

30

11 / (Nx/H)

20t

0.0

0.30 0.50

0.35 0.40 0.45

x/L

Fig. 35a. o,, along x/L for 0° Layers of
a [+45/-45/0,],; Cylinder, N= 10%N",
AT=-280°F.

Fig. 35b. ¢,, along x/L for 45° Layers
of a [+45/-45/0,)4; Cylinder, N=10%N",
AT=-280°F.

0.2
. 0° Layers .

SO e e S e

12 ) Increasing Layer Numbers

ral IR 1

-1.8
0.30 0.45 0.50

022 / (Nx/H)

0.40
x/L

0.35

0.2
—00f

02 easjdst Layen ]
-10ft

el Increasing Layer Number |

TN R T Ittt
0.45 0.50

022/ (Ne/H)

-1.8 L
0.30 0.40

x/L

0.35

Fig. 35¢c. o0, along x/L for 0° Layers of
a [+45/-45/0,]; Cylinder, N=10%N",
AT=-280°F.

Fig. 35d. o, along x/L for 45° Layers
of a [+45/-45/0,),; Cylinder, N=10%N",
AT=-280°F.

0.003
0° Layers

0.000

112 / (Ne/H)

-0.002

0.30 0.50

0.40 0.45

x/L

0.35

0.50 T
040} -
020
040 b o e e
0.00
-0.20
-0.30
-0.40

-0.50
0.30

T12/ (Nx/H)

. . .“({t_{jr.o
.............................................. =3
: : 2

0.40 0.50

x/L

0.35

Fig. 35e. 7, along x/L for 0° Layers of
a [+45/-45/0,); Cylinder, N=10%N",
AT=-280°F.

109

Fig. 35f. r,,along x/L for 45° Layers of
a [+45/-45/0,),; Cylinder, N=10%N",
AT=-280°F.



2.5

20t

a11 / (Ny/H)

085F - .

0.0 i i N
0.30 0.35 0.40 0.45 0.50

x/L

50
&2

1044
401 : . ]
3

30f

~~d

2.0. P

011/ (Nx/H)

_ +45°]-45° Layers

0.0 . L L
0.30 0.35 0.40 0.45 0.50

x/L

Fig. 36a. o), along x/L for 0° Layers of
a [0,/-45/+45];; Cylinder, N=10%N",
AT=-280°F.

Fig. 36b. o,, along x/L for 45° Layers
of a [0,/-45/+45],; Cylinder, N=10%N"
AT=-280°F.

0.2
—00F- .

-10f increasing Layer Numbers

it

~16+ -

-1.8 : . .
0.30 0.35 040 045 0.50

x/L

0" Lleyes

022 / (Ny/H)

0.2
-00+ -
-0.2F
-0.4r - : ‘
-1.0F - -5 . increasing Layer Numbers
ST ' r
—18F e

-1.8 . i .
0.30 0.35 0.40 0.45 0.50)

545" Layers |

022 / (Ne/H)

x/L

Fig. 36¢c. oy, along x/L for 0° Layers of
a [0,/-45/+45],; Cylinder, N=10%N",
AT=-280°F.

Fig. 36d. oy along x/L for 45° Layers
of a [0,/-45/+45),; Cylinder, N=10%N",
AT=-280°F.

0.003

0.30 0.35 0.40 0.45 0.50,
x/L

0.5 T y
+45° La
o : unmuyprnm

=01 F
—0.2 ltmulnguywﬂunh‘rl

o e [ g

5 i
0.30 0.35 0. 40 0.45 0.50

112/ (Ne/H)

x/L

Fig. 36e. 7,, along x/L for 0° Layers of
a [0,/-45/+45]),; Cylinder, N=10%N",
AT=-280°F.

Fig. 36f. 7, along x/L for 45° Layers of
a [0,/-45/+45),; Cylinder, N=10%N",
AT=-280°F.



o1 / (N/H)

0.0 i i N
0.30 0.35 0.40 0.45 0.50
x/L

+45°/-45° Layers

o11 / (Ne/H)

16 (15

) H H
0.30 0.35 0.40 0.45 0.50
x/L

Fig. 37a. o,, along x/L for 0° Layers of
a [+45/-45/0,],s Cylinder, N=90%N",
AT=-280°F.

Fig. 37b. oy, along x/L for 45° Layers
of a [+45/-45/0,],s Cylinder, N=90%N",
AT=-280°F.

o 5 IA,JT'

0° Layers

022 / (No/H)

-t4F-

-18 i " H
0.30 0.35 0.40 0.45 0.50

x/L

0.2

“10F

022 / (Nx/H)

Ul wEs yen
FERPY ST :

Y RIS

-1.8

0.30 0.35 0.40 0.45 0.50

x/L

Fig. 37c. oy, along x/L for 0° Layers of
a [+45/-45/0)),s Cylinder, N=90%N",
AT=-280°F.

Fig. 37d. o5, along x/L for 45° Layers
of a [+45/-45/0,),s Cylinder, N=90%N",
AT =-280°F.

0.0030
0.0025 b o e ke e
oouzo L. . . ............ e ...... e
0.0018 L e A b ]
0.0010 L orer e s R e
0.0005 kv oovverven e SRR AR

0.0000
00005 e e e b
—0.0010 - .............. R s

12/ (N/H)

-0.0015F s L e e e

-0.0020 . L >
0.30 0.35 0.40 0.45 0.50

x/L

0.50 ;
P SR
030k e
0.20F et

O m“‘__,.«az;;ag "

T2/ (N/H)

-0.50 i . 1
0.30 0.35 0.40 0.45 0.50

x/L

Fig. 37e. T, along x/L for 0° Layers of
a [+45/-45/0,],s Cylinder, N=90%N",
AT=-280°F.

Fig. 37f. 7, along x/L for 45° Layers of
a [+45/-45/0,],s Cylinder, N=90%N",
AT=-280°F.



’
~

a11 / (Ne/H)

L i
0.40 0.45 0.50

x/L

0.35

5.0

4.0} R
+45°/-45° Layers

30f

a1 / (Ne/H)

L L
0.40 0.45

x/L

L
0.35

0.50

Fig. 38a. o, along x/L for 0° Layers of
a [+45/-45/0,),; Cylinder, N=90%N",
AT=-280°F.

Fig. 38b. oy, along x/L for 45° Layers
of a [+45/-45/0,),; Cylinder, N=90%N",
AT=-280°F.

-0 -

022/ (Nx/H)

—1.2F -
—1.4

-1.8 . L
0.30 0.40 0.45 0.50

x/L

A.
0.35

~06F- -

“12F

022/ (Na/H)

-1.8
0.30

i i
0.40 0.45

x/L

s
0.35 C.50

Fig. 38c. o,, along x/L for 0° Layers of
a [+45/-45/0,); Cylinder, N=90%N",
AT=-280°F.

Fig. 38d. o, along x/L for 45° Layers
of a [+45/-45/0,); Cylinder, N=90%N",
AT=-280°F.

0.0030 ' ;

712/ (No/H)

—-0.0010 F - i

-0.0015 -

-0.0020 n .
0.30 0.40 0.45 0.50

x/L

0.35

0.50

--s..‘.‘,‘cas"" "‘“‘i#l\
-- Increasing I.mmnbon

0.10

-

Q00 -
-0.10 :

-0.50
0.30

712/ (No/H)

A . A
0.35% 0.40 0.45 0.50

%/t

Fig. 38e. 7, along x/L for 0° Layers of
a [+45/-45/0,),; Cylinder, N=90%N",
AT=-280°F.

112

Fig. 38f. 7,, along x/L for 45° Layers of
a [+45/-45/0,],y Cylinder, N=90%N",
AT=-280°F.



o11 / (Nu/H)

A L
0.40 0.45

x/L

0.30 0.35 0.50

5.0

40

- -45°[+45° Layers

LR o

a11 / (Ne/H)

n 2
0.40 0.45

x/L

A
0.35 0.50

Fig. 39a. o, along x/L for 0° Layers of
a [0,/-45/+45]) Cylinder, N=90%N",
AT=-280°F.

Fig. 39b. ¢, along x/L for 45° Layers

-0.4 P
-0.6 S
Z :
o 0° Layers
S —t2b e e
a4k e
FE 3 O R RREETIRTTEIED S

-1.8
0.30

0.40 0.45

x/L

0.35 0.50

of a [0,/-45/+45),; Cylinder, N=90%N’,

AT=-280°F.

. nareesng Laye mbs

RN S

022/ (Nu/H)

P 3 e PR

-1.8

0.30 0.40 0.45

x/L

0.35 0.50

Fig. 39c. 0, along x/L for 0° Layers of
a [0,/-45/+45],y Cylinder, N=9%0%N",
AT=-280°F.

Fig. 39d. o, along x/L for 45° Layers
of a [0,/-45/+45]; Cylinder, N=90%N’,
AT=-280°F.

0.0030
0.0010 |
0.0005 F---- - N

0.0000 |-

112/ (Ne/H)

-0.0015

-0.0020
0.30

. "
0.40 0.45

x/L

0.35 0.50

0.5
o3k e

12/ (No/H)

-0.5
0.30

0.35 0.40 0.45 0.50

x/L

Fig. 3%e. 7,; along x/L for 0° Layers of
a [0,/-45/+45),r Cylinder, N =90%N",
AT=-280°F.

113

Fig. 39f. ,, along x/L for 45° Layers of
a [0,/-45/+45),; Cylinder, N=90%N",
AT=-280°F.
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Fig. 40f. 7,, along x/L for 45° Layers of
a [+45/-45/0,),; Cylinder, N=90%N",
AT=0°F.



V. DERIVATION OF THE THREE-DIMENSIONAL

EQUILIBRIUM EQUATIONS IN CYLINDRICAL COORDINATES

In the previous chapters, the assumptions of thin shell theory and axisymmetry have
been employed in order to obtain closed-form solutions for the response of composite
cylinders. This method has provided relations for the displacements and intralaminar
strains and stresses as functions of the axial and radial coordinates.

As a practical matter, it is important not to ignore the existence of the stresses at the
layer-to-layer interfaces of the cylinder. These stress components are the shear stress
components T, and t,,, and the normal stress o,. These three stresses will be referred
to as interlaminar stresses. If acceptable levels for the interlaminar stresses are
exceeded, delamination of the layers can result, leading to a structural failure. The
theory presented thus far incorporates classical lamination theory (CLT) which assumes
a state of plane stress, i.e., that the interlaminar stresses can be ignored. Therefore, a
different set of governing equations is required in order to calculate the interlaminar
stresses.

The aim of the remainder of this work is to calculate the interlaminar stresses by
using the solutions for the intralaminar stresses derived in the previous chapters. The
procedure used to this end consists of deriving the three-dimensional equilibrium
equations and boundary conditions for a linear elastic body undergoing large
deformations, simplifying these equations in accord with the pertinent assumptions of the

previous chapters, and solving these equations using the solutions previously obtained for
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the intralaminar stresses.

In the following section, the three-dimensional equilibrium equations and boundary
conditions will be derived for the cylindrical coordinate system used thus far in the
analyses. In a subsequent section, the displacement gradients and rotations will be
derived for the cylindrical coordinate system. The equilibrium equations and boundary
conditions will then be recast in a form which explicitly illustrates the terms which
depend on the displacement gradients and rotations, then, the equations can be simplified
in a rational manner based on the magnitude of the deformations and rotations at a point.
In order to bring the three dimensional equilibrium equations, boundary conditions, and
the displacement gradients and rotations into accord with the solutions for the
intralaminar stresses, these relations will be simplified under the assumptions of
axisymmetry. In addition, the displacement gradients and rotations will be simplified
further under the assumption of Kirchhoff, i.e., that the displacements vary linearly
through the thickness of each layer. The simplified relations for the displacement
gradients and rotations for the three cylinders of the previous analyses will be used to
quantify the relative magnitudes of the coefficients of the stress components appearing
in the three-dimensional equilibrium equations. These results will be used to further
simplify the equilibrium equations. Finally, in the next chapter, these simplified
equilibrium equations will be solved for the interlaminar stresses and results for the three
cylinders will be presented. The method of solution will incorporate the solutions of the
previous chapter for the intralaminar stresses, in the manner described by Pagano

(ref. 3).
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A. Transformation of the Three-Dimensional Equations of a Linear Elastic Body

in Rectangular Coordinates to Cylindrical Coordinates

The method of derivation of the three-dimensional equilibrium equations in cylindrical
coordinates will begin with the derivation of the tensor form of the equilibrium equations
in rectangular coordinates. These equations will then be transposed into the cylindrical
coordinate system by methods of tensor analysis.

The total potential energy (ref. 4) for a linear elastic body in rectangular
coordinates 1is

o) - f (%c,,eu - f,u,)dV - f fuds . (186)
| 4 S

]

If Green’s Strain tensor,

o

(187

ey = Syt Ut b))

N

is incorporated into eq. (186), and the first variation is taken with respect to the
displacement tensor u,, the Euler equations and variationally consistent natural boundary

conditions are

(ty * 1:“,u“,)Il +f; = 0 in Vv, (188a)
and t +tu. =t on S
fi P )P J 2 (188b)

where t,; are the Kirchhoff stress tensor components, #; are the displacement vector

components, f; are the components of the body force vector, f, are the tractions specified
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on the surface S, of the total boundary S, and V is the volume containing the body. As
essential boundary conditions, the displacements are assumed to be zero over the surface

S, =5-8,, ie.,
u =0 on S, . (188¢)

The tensor y is defined as

L

= T,;n, (189)
which acts over the surface §,, where n; are the components of the surface normal
vector. Therefore, from the definition of the principal of minimum total potential
energy, equations (188) represent the equilibrium equations and variationally consistent
boundary conditions governing the three-dimensional response of a linear elastic body
undergoing large deformations in a rectangular coordinate system. It should be noted
that these are tensor equations, therefore, they can be transposed into any specific
curvilinear coordinates in Euclidean space through the rules of tensor analysis. Note
also, that the covariant and contravariant components of the tensor quantities in these
equations are identical, since the coordinate system is rectangular. In the following,
these equations will be transposed into curvilinear coordinates, and the distinction
between covariant and contravariant tensor components must be observed.

Eringen (ref. 5) notes that a tensor equation in rectangular coordinates can be
resolved into curvilinear coordinates by enforcing the following two rules: "(a) The

partial differentiation symbol (,) must be replaced with covariant differentiation (|), and

(b) The repeated indices must be on diagonal positions.” Applying these rules to egs.
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(188a) and (188b) results in a different form of the tensor equations, i.e.,
(ou + oipullp)L_ +fl =0 inV, (190a)

and

/' ons,, (190b)

t/ + tPul|, = {
where covariant differentiation of contravariant tensors is now involved. The tensor
calculus involved in carrying out these differentiations depends on the base vectors g,,
the metric tensor g,,, and the Christoffel symbols of the second kind {5} related to the

transformation from rectangular to cylindrical coordinates. For the coordinate system

used so far in the analysis, i.e., the coordinate system presented in Fig. 1, the base

vectors are - -
& =4 _ _
g, = (rcos6)i, - (rsinB)i, (191)
g, = (sin®)i, + (cosB)i;

where i-l, i-z, and ;-3 are the unit base vectors of the global rectangular coordinate

system. Therefore, the metric tensor is

1 00
“gu“ =|0 r2 0f, (192)
001

and the nonzero Christoffel symbols of the second kind are

{223} h {322} ’ 193)
{232} -
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Carrying out the differentiation in eq. (190a), according to the rules of covariant

differentiation results in a tensor equation involving only partial derivatives, namely,

S L s
e L) }f'“{ O -
Lol oend e

The underscore of the superscripts of gu signify that the summation is suspended. In
the following, the components of the body force, f/, are assumed to be zero.

By expanding the tensor equation, eq. (194), for j=1, substituting the values of the
metric tensor and Christoffel symbols derived above, collecting terms, and simplifying,

the first equilibrium equation is

r[t“(l tug) + tu, 1:13um].l

+ r[r”(l tuy) + 'l:zzul'2 + 1By, '3] \ (1952)

+ [r(e 1 ruy) + uy, + Py A, =0.
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Likewise, for j=2,

1 13

1 12/,2 13
+ + + + - =
u,, + 1 (r Uy, rus) tPu,, rt u,
L .1
+ .1.'21u + t”(r2+u +ru) + 2y, - —1-1.‘23!4}
1 2 3 2
o ? B 7, (195b)
31 32(,2 33 _ 1 3
+[etuy, + 1 (r +u22+ru3) + t2u,, ?1 “2]
3

+rettug + P (ruy, - uy) ¢ B(reruy,) =0,

and for j=3,

“z) + (1 ”‘3.3)]

11 12 -
r[‘f uz.l + T (u3 2
.1

1
r
+ r[t”us.l + 1:22(143'2 - %uz) + t”(l +Uy,)

+ [r(-r" Uy, * 1”(u3_2 - -}uz) + (1 + u”))]
3

1 2 2(.2 23 1
- —t'u,, - rc+ +ru,) - -~u,|=0.
rt 21~ ¢ ( oY) 3) Al (“2.3 ’ 2)

2 (195c¢)

It is important to realize that these equations involve tensor components t/ and u, and

not the physical components of the stresses and displacements. The physical components

of stress will be denoted by ¢ as given by

— — (196)
o = g™ o =g gel

197

where

|H

8 =
8

-~

for orthogonal coordinate systems. Since the cylindrical coordinate system in this
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analysis is orthogonal, then by egs. (192) and (197),

1
gll=1=g33 and g22-= ; . (198)

The physical components of the displacement tensor u; are u, as given by

171=@u, or u,=‘/@¢7‘, (199)

Using the above relations to obtain the physical components of the stress and
displacement tensors, and
(a) substituting x for the superscript 1, @ for 2, and r for 3 in egs. (195),
(b) substituting u for &,, v for &,, and w for &, , and
(c) replacing the partial derivative notation according to -%x—) =(),,
&=, ma =gy,

a more standard form of the equilibrium equations can be obtained, namely,

ri[(l +g)o”" + lir"e + it’"}

ox ox r 00 or

+ O Ou) a0, 13u o0, Ou o (200a)
00 ox r oo or

+._a_r 1+if"+l_@f°’+io" =0,
or ax r oo or
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(200Db)

and
, [aw , 1

(200c)

In the last step, symmetry of the stress tensor was used in order to emphasize that six
stress components, not nine, are involved. The fact that component designation of the
stresses are superscripts is an artifact of the contravariant tensor of egs. (195). However,
since the stress components in egs. (200) are physical components, they are not tensor
components, and therefore, the terms covariant and contravariant have no meaning in this
context. Hence, the difference between a superscript and subscript notation for the stress
components is superficial.

In a similar manner to that used for the equilibrium equations, the natural boundary
condition equation, eq. (190b), can be transposed into the cylindrical coordinate system.

The result, in the physical components of stress and displacement, is
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where the bar over the surface tractions 7 *, f°, and t", and surface normals r'z',, n

l+@o“+l@t’°+@t"ﬁ
' & r o0 a |
. {(l +_3ﬁ)txe + 10U oe @te’]ﬁe
) ax r oo or (201a)
o f1s Hlerr o 14 c0r -a—uo"ﬁ, =f* on§,
\ ox r 00 or
OR u is specifiedon S, ,
[ ov lov w ov -
— o+l +o— + 2|+ =10
™ +( y r)t ar ] x
+ 3Vt;e +(1+_1_Q+__‘g)000 + QTO’];’-O
N (1 1, w)t"' + avo"]ﬁ, =% onS§,
rod r or
OR v is specifiedon S, ,
X
ﬂo‘u«’-lﬂ-vﬁeq-l-ﬁﬂ‘t‘"ﬁ
| ax r\ o0 or *
L LN l(aw -v)a“ + l+ﬂ)r°']§,
fax r or (201¢)

OR w is specifiedon S, ,

0

and n, in eqs. (201) signify that these are the physical components of these quantities.

In summary, the equilibrium equations for the three-dimensional stress state of a body

in cylindrical coordinates undergoing large deformation are three coupled, nonlinear
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partial differential equations. The boundary condition relations are also coupled,

nonlinear equations.

B. Derivation of the Displacement Gradients and Rotation Components of the Finite
Strain Tensor in Cylindrical Coordinates

The equilibrium equations and boundary conditions just presented will later be
simplified by rewriting them such that the coefficients of the stress components are cast
in a form which reflects the contributions of the displacement gradients and rotations, in
accord with the method presented by Novozhilov (ref. 6). This method enables
one to simplify the equilibrium equations in a rational manner by eliminating certain
terms based on the relative magnitudes of the products of the displacement gradients
and/or rotations and stress components.

First, the displacement gradients and rotations will be derived for the cylindrical
coordinate system used thus far in the analyses. Eringen (Ref. 5) gives the following
definitions for the displacement gradients, or infinitesimal strains, and the rotations,

respectively, as

(“tl: + ullk) sy Iy = (“klx - "xlk) ’ (202a)

=
(NI

€1
where

m
Uplp = Uy ~ {k l} Uy - (202b)

If eq. (202b) is substituted into eq. (202a), the symmetry of the Christoffel symbols of

the second kind is recognized, and the result is expanded, the following expressions for
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the displacement gradient and rotations result

m
1 1
& = E[uk.: T 2{1:1}"-] S C Y RV
(203)

e, = ¢, foralkl,; ry = -r, for k#l
r, =0 for k=0.
These definitions can be expressed in terms of their physical components by using the
relation
&y = @\/;’Tl‘u ’ ry = @@’u : 209
The displacements appearing in eq. (203) may also be expressed in terms of their
physical components, as given by eq. (199). Therefore, the physical components of the
displacement gradients and rotations in terms of the physical components of the

displacements, can be shown to be

&y - P = 2|2y, iy, - -7
1 1.1 ° 12 7 |7 %2742, 21 °
E-12=l_‘712”721 ’ ;13=‘1'(‘713"731) ~Ty s
2 s 2 » »
;=l(,7 ), ;=li—"3+,7 Sz -5,
137 (%13 % 4s, 23 7 2|7 TH23T T ¥a 327 (2085)
- ) . -
€y = ;(“2.2 *u,),
- 1{ - 2 - Ez
‘73‘5(”23*;“3.2‘7]»
€33 T U3,
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These relations can be expressed in the terminology of the cylindrical coordinate system

by substituting, as before, the definitions u=u,, v=u, , and w=u,, and writing the

partial differentials using the definitions i(—) =(); > -%(6) =(),» %(Trl =(), .

These substitutions result in the following form of the displacement gradient and rotation

definitions:
ou 10u ov
exx=a-’ 27"0:-;--?“;‘—&—"2’0‘,
10u ov ou ow
2"*’:736"5;’ 2rx,=5-3x-=—2r",
2¢ =2u—+2w—, 2"6 =_V_+§!_l§t_v.____2r R
oo ox r yr or r oo r 206)
e =l_a_‘_’+..“_’
% rod r’
2e =2+}._ai—_v_
" % roe r’
_ ow
e"--g.

The displacement gradients and rotations can be combined in order to make
substitution into the equilibrium equations more obvious. Useful combinations of the

displacement gradients and rotations are:
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ou
_..=e ,
ax xx
1w _
;%'% Tro >
ou _
—a_’,—exr+rxr ’
v _
a"xe"xe ’
r
o _
E“o:*’or ’
ow
Tax_=exr_rxr ’
ow -
7(% ‘V) = €or ~ Tor >
ow
_=e
ar rr

Substituting these combinations into the equilibrium equations, egs.(200), derived in

the previous section results in

a xr
r ;[(1 +€,)0%F + (e + 7o) T + (e, + Tt ]

+ %[(l + Cu)txe + (exﬁ + rxe) 000 + exr + rxr ter] (2088)

+ gr[(l +e )T+ (€ 1) T * (€, * Ty o”] =0,
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r _a'[(e 6 " Tso) 0+ (1+g0) T * (€6, * Tor) al

& X

0 x r
" 56[(‘::6 ~ 1) T + (1 +€g0)0°° + (€, * 7o)’ ] (208b)
' % rl(ece = Tso) T + (1+€e0) s * (€ar * Tor) o”]

* (exr -rxr)“:x0 * (eﬂr -rer)oee * (1 te,, <=0 ’

and 3
r -é;[(exr - rxr) o* + (eer ~Ter 0+ (l * e") txr]
d x ’
* %[(exr - rxr)t °+ (eef - re') 0% + (1 * e")ra ] (208c¢)

F) r
* —67 T[(e" - rxr)r" * (ee' - rof)re' * (1 * e")o ']

~ (ero i) T (1+ €00)9% = (e6, * 7o) -0.
In a similar manner, the natural boundary condition relations, egs. (201), can be
rewritten by substituting the combinations of displacement gradients and rotations of eq.
(207), i.e.,

[(l + e“)o‘“ + (e,o + pr)txo + (exr + rxr)r" '—"

+ [(l + e“).rxe + (exe + 'xa) oee * (e" * r") 10’] ’Te

T Rt T LB T S
OR u is specifiedon S, ,
and [(exa - rxe)o“' + (l + eee)tlo + (eer + rer) o t-l-,
+ [l - Tt + (1+ €60)9°° * (€0, * T, ¥,
(209b)

R R O L TR

OR v is specifiedon S, ,
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and

[(exr - rxr) o™ + (eﬂr - rﬂr th + (1 + err) ™ ;ix
+ [(exr - rxr) txe + (eﬁr - ’er) 000

* [l 7)™+ (eor ~Ta) T + (L4, )07, = i" ons,

+(l+e, 2 ng

(209¢)

OR w is specifiedon S,

To summarize the results of this section, relations between the displacement gradients
and rotations and the partial derivatives appearing in the equilibrium equations for a
cylindrical body undergoing large deformations, i.e., egs. (200), and the natural
boundary conditions, egs. (201), have been obtained. These results were substituted into
the equilibrium equations and natural boundary conditions derived in the previous
section. In a subsequent section, the equilibrium equations and natural boundary
conditions will be simplified through a rational method of comparison of the relative
magnitudes of the displacement gradients and rotations in the coefficients of the stresses

in these equations.

C. Specialization of the Displacement Gradients and Rotations Under the
Assumption of Axisymmetry
Since the results of the previous chapters will be used to calculate the portions of the
three-dimensional equilibrium equations just presented, the relations for the displacement
gradients and rotations will be specialized under the assumption of axisymmetric response

and loading, so that they will be in accord with the previous analyses.
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The assumption of axisymmetric response and loading is defined by

.i)—:o
a6

(210)

() being any response quantity. By enforcing this definition, the displacement gradients

and rotations of the previous section, egs. (206), become

Ou ov
exx=a’ 2"36:—-&- 2’03’
ov ou Oow
2ex0=§’ 2rxr=—a—r'-'§=—2rrx’
ou ow v ov
2e, = —+—, 2r, =—+—=-2TI,,
i or ox r r or r (211)
_w
600_7’
ov v
2T 5
_ ow
err-_ar—

D. Simplification of the Axisymmetric Displacement Gradients and Rotations Under
the Assumptions of Kirchhoff and Donnell
In order to incorporate the analyses of the previous chapters, the axisymmetric
displacement gradients and rotations must be simplified by utilizing the relations
describing the displacements from the previous chapters, i.e.,
u(x,0,7) = u°(x,0) + 2B (x.0)
w(x,0,r) =v(x,8) +zPg(x,6)

w(x,6,r) =w°(x,0) ,
()
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and Bo__aw"
* ox
o__OW°
Be Rm’

L))
which describe the displacement field in general according to the Kirchhoff assumption,

and egs. (173a), (173b), and (166) which are the solutions for u °(x), v°(x), andw °(x)
for 0 2 N>N"*, egs. (174a), (174b), and (167) which are the solutions for 1 °(x), v°(x),
and w°(x) for N = N*, and egs. (175a), (175b), and (168) which are solutions for u °(x),
v°(x), and w°(x) for N<N*. Additionally, the assumption of Donnell was incorporated
in the analyses of the previous chapters, namely, that for thin shells, the variable r can
be replaced by the mean radius R.

Under the conditions imposed by the Kirchhoff and Donnell assumptions, the partial
differentials which make up the axisymmetric displacement gradients and rotations listed

in eq. (211) simplify to

o o [
exx = du -zdzw ’ 2rx0 = _dv = -2r0x’
dx dx? dx
[ [
2e,, = 3; , 2r, = —2% ==-2r,,
vO
2e, =0, 2r,, = i -2r,, 212)
0 = R
vO
2‘01 = ? ’
e =0.

r
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Note that under these assumptions,

=-e,, andry, = -¢€,, . (213)

’xe r

E. Specialization of the Three-Dimensional Equilibrium Equations and Boundary
Conditions Under the Assumption of Axisymmetry
The analyses previous to this chapter have been made under the assumption of
axisymmetry. Since the solutions obtained in the previous chapters are to be
incorporated into the three-dimensional equations derived previously in this chapter, the
last form of the equilibrium equations and boundary conditions, i.e., eq. (208) and (209),
will be specialized under the assumption of axisymmetry.
Enforcing the conditions for axisymmetry, eq. (210), into the equilibrium equations of

the previous section, i.e., egs. (200), results in

d
—[(1 + e o™ + 1,
r ol *ex) ] 2140
+ —aa—r [0 +e)T™ + ryo"]=0,
e
(214b)

a r r
+ sr-r[exet‘ + (1 +69)7"]

_ x0 00 or _
r,t° + 0"+ =0,
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and 3 ]
ra-[(—r")o ¥4 (2€5,) 7" + 1:"]

A CA L NI @140

- x6 _ 06 _ 6r _
2exet (l +eee)° 2¢,,7 0.

Enforcing eq. (210) on the natural boundary condition equations, egs. (201), results

in

[(1+e)o +r, T, 4 [Lre ) e, RS
+ [(1 te ) +r,d"n, =i* onS, 150
OR u is specifiedon S, ,
" (€)™ + (1 + ege) )7,
+ [(2€,6)7*° (1 + 40)0°° 7,
+ [(2€,0) T + (1 + eg) e =7% onS (215b)
OR v is specifiedon S, ,
ond [(~ra) o™ + (2€,)°° + t]a,
(1) T+ (265,)0% + ter] 7,
(215¢)

+ [(-r)™ + (2€)" + 0”]7, =i" oS,

OR w is specifiedon §,

F. Simplification of the Equilibrium Equations and Boundary Conditions Through
Elimination of Terms of Relatively Small Magnitude
At this point, the three-dimensional equilibrium equations and boundary conditions

have been simplified so that the solutions of the previous chapters can be used to evaluate
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the displacement gradients, rotations, and intralaminar stresses at any point within the
cylinder wall. It should be noted that these quantities are obtained from CLT. The
solutions of the previous chapter are being used in order to later derive recursive closed-
form relations for the interlaminar stresses at a given point along the length of the
cylinder.

In an attempt to further simplify the equilibrium equations, eqs. (214), and boundary
condition relations, egs. (215), a study will be conducted of the relative magnitudes of
the terms which are being differentiated in the equilibrium equations. This is similar to
the method implemented by Novozhilov (Ref. 6) to simplify the three-dimensional
equilibrium equations based on the relative magnitude of the displacement gradients and
rotations appearing in these equations in order to rationally obtain equations relevant to
small deformations and small rotations. To be conservative, no assumptions will be
made as to whether a term can be eliminated under a general case of cylinder stacking
sequence, constitutive properties, geometry, boundary condition, or load level.
Otherwise, the study will be conducted based on these parameters as they will occur in
the subsequent calculation of the interlaminar stresses. This precaution is being taken
due to the nonlinear nature of the CLT solutions presented in the previous chapters.

The cylinders to be analyzed in the rest of this work are the same cylinders which
were analyzed in the previous chapter on intralaminar stresses. Likewise, only clamped
boundary conditions will be investigated. Thermally-induced preloading effects with
AT =-280°F will be used in the CLT solutions.

The maximum absolute values of the displacement gradients and rotations for the
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cylinders subjected to compressive axial loads of N=10%N*, N=90%N", and

N =99%N" are presented in Table IIl. As can be seen, the displacement gradients and

rotations are considerably smaller than unity.

Table III.

Maximum Values of Displacement Gradients and Rotations

,7,‘ - T? = =————_——-—W——[—_-
Cylmder 1 Iexxlmu |exx|m Iewlmx lrxrlmu IexOImx leorlm
&load [ r=r.,., | I=re. | Te0 | max [ Tor | max
[£45/0}s | .20*103 | .29*10° | .12*102 | .11*102 0 0
N=10%N"
[£45/0)¢r [ .20%102 | .31%10° | .11*102? | .11*10? | .40*10° | .10*10%
N=10%N"
[0,/ F45],; || .27*103 | .31*103 | .12*102 | .18*102 | .28*10° | .17*10°
HN=10%N’
[£45/0,1,s | .29*102 | .32*102 | .12*102 | .15*10" 0 0
N=9%%N’
[£45/0,]4r || .29%102 | .290*102 | .11*102 | .14*107" | .28*10% | .14*10°
| N=90%N'
[0/ F45),r | .35*%102 | .38*10° | .13*102 | .18*10" | .35*10* | .18*10°
N=9%0%N"
[+£45/0,),5 H .37*102 | .35*102 | .15*102 | .21*10" 0 0
N=99%N"
[£45/0.],7 § .36*102 | .32*102 | .15*10 | .20*10! | .30*10* | .18*10°
N=99%N°’
[0/ F45),y || .44*102 | .42%10% | .21*102 | .25*10" | .39*10* | .24*10°
N=99%N"*
1. Simplification of the First Equilibrium Equation

The derivative with respect to x in the first equilibrium equation, eq. (214a), is
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-g;[(l e, )0 + rxrr"] . (216)

For the range of load levels investigated, the maximum absolute value of the
displacement gradient e, is less than 102, Therefore, e, is small enough relative to
1 such that it can be neglected, and the coefficient of o™ becomes 1. Since the
magnitude of t*" is expected to be small relative to the magnitude of 0™, and since the
rotation 7,, is small relative to 1 for these load cases, it can be reasonably assumed that
o™ is sufficiently large compared to 7, t*" to warrant the elimination of the latter term
from the derivative with respect to x.

The derivative with respect to r in the first equilibrium equation, eq. (214a), is
—a—r[(l ve T+ o"] . 217
ar XX xr

As with the derivative with respect to x, e, can be neglected such that the coefficient
" of ™ is1. Also, the interlaminar stress component ¢ is expected to be small relative
to ©*". Therefore, it can reasonably be assumed that ©* is sufficiently large compared

to 7,,6" to warrant the elimination of the latter from the derivative with respect to r.

In light of these results, the first equilibrium equation becomes

rao“ + a(rf") =0 , (218)
ox or

which is a linear partial differential equation.
2. simplification of the S { Equilibrium Equati

The derivative with respect to x in the second equation, eq. (214b), is
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Zles00™ + (1 e . (219)

Referring to Table III, the maximum absolute value of e, for the load levels investig.ated
is on the order of 10°. Therefore, it can be neglected in the coefficient of t*® in the
derivative with respect to x and the coefficient of t® in the derivative with respect to
r. The maximum absolute value of e g, is less than 10*. Therefore, in the derivative
with respect to x, the maximum absolute value of the coefficient of o** is less than 10*
and the coefficient of t*® is 1. The intralaminar stress component t*° is, in general,
one or two orders of magnitude smaller than o**. Therefore, it can reasonably be
assumed that ©*° is sufficiently large relative to e ,0* in the derivative with respect to
x such that the latter term can be eliminated.

The derivative with respect to r in the second equilibrium equation is

a r r
Er[exer‘ +(1 +eee)t°] . (220)

Based on the observations for the derivatives with respect to x, the coefficient of t® in
the derivative with respect to r is 1 and the coefficient of t*" has a maximum absolute
value of 10°. The interlaminar stress components t*" and t®" are expected to differ by
several orders of magnitude. Therefore, it is reasonable to assume that <" is sufficiently
large relative to e,,t*" in the derivative with respect to r such that the latter term can
be eliminated.

The terms in the second equilibrium equation that are not differentiated are
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86 L LOr (221)

_ x0
r.,T t €4,0

Since the magnitudes of the intralaminar stress components 0% and t*® are about the
same, and the maximum absolute value of r,, is approximately 0.025 for the load cases
investigated while the maximum absolute value of €, is less than 107, it can reasonably
be assumed that the term 7, v*° is sufficiently large compared to ¢, 0% such that the
latter term can be eliminated. Since the interlaminar stress component %" is expected
to be several orders of magnitude smaller than t*®  the magnitude of the term r"r“’

may be comparable to the magnitude of .

Based on these assumptions, the second equilibrium equation becomes

L8070 ars™) e cer g, (222)
a ar xr

which is a nonlinear partial differential equation.
implification of the Thir ilibrium ion
The derivative with respect to x in the third equilibrium equation, eq. (214c), is

Dfro + (2ea)e™ + 7 (223)

X

The maximum absolute value of the displacement gradient ¢€,, is less than 10 and the
maximum absolute value of the rotation r,, is 0.025. Therefore, the magnitude of the
(-7,,)0™" term can be assumed to be sufficiently large compared to the (2e,,) ©*° term
such that the latter term can be elimiﬁated. However, since t*" is expected to be several
orders of magnitude smaller than o**, the magnitude of (-7,,) ¢** can be expected to be

comparable to the magnitude of t*". Therefore, based on these observations, the
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derivative with respect to x becomes

%[(—r") o + 1] . (224)

The derivative with respect to r in the third equilibrium equation is

a xr r rr
31T+ (2€0)5% + 07]. (225)

xr,

Since the interlaminar stress components t*" and t® are expected to differ by several
orders of magnitude, and in light of the magnitudes of the coefficients of these
components, it can be assumed that (-7, )t*" is sufficiently large pompared to (2e,,) %
such that the latter term can be eliminated. The interlaminar stress component o’ is
expected to be small relative to t*". Therefore, the magnitude of the (~ry,) " term can
be assumed to be comparable to the magnitude of the ¢”” term. Based on these

observations, the derivative with respect to r becomes

a xr rr
Er[(—r )e*" + a”|. (226)

Xxr,

The terms in the third equilibrium equation that are not differentiated are
2,7 - (1+64)0% - 2¢,,7% . (227)

Due to the magnitudes of the absolute values of the displacement gradients e,y and e,,,

*® and -2e,,7® can be neglected with respect to the term

the terms -2e v
(l + € 0% . Also, due to the magnitude of g relative to 1, it can be neglected in the
latter term.

Based on the observations of the relative magnitudes of the terms in the third
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equilibrium equation, it can be simplified to

a X xr a Xxr rr -
r.a; [(-r")o‘ + ¥+ -a—rr[(—r")t +6" -0*®=0. (228)

4, Simplification of the Natural Bound ndition

Since the terms which appear as coefficients of the surface normals #, and n_ in the
natural boundary condition relations, eqgs. (215), are identical to the terms being
differentiated with respect to x and r, respectively, in the equilibrium equations, egs.
(214), the results of the previous sections where the equilibrium equations were
simplified can be used directly to simplify the natural boundaxfy condition relations.
Therefore, based on the magnitude study for the equilibrium equations, the natural

boundary condition relations become

lm +[(1+e \t*® +r |0, + [t**|n =i* on8S
[ ] x [( xx) xr ] ] [ ] r 2 (2293)

OR u is specifiedon S, ,

[T‘o] ﬁx + [(2¢xe)fx° + (1 +e“)o°°] 50 + [1.'0'] P-l’ = {0 on 82 (229b)
OR v is specifiedon S, ,

and [~ra)o + =5,

+ [(-r")t"’ + (2ee’)o°° + ¥n,

¢ [(ra)e + R, = E onS, @29

OR w is specifiedon S, .

However, the coefficients of the surface normal n, must be analyzed as to the relative
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magnitudes of the terms in these coefficients. In the coefficient of n, in the first natural
boundary condition relation, eq. (229a), e, can be neglected relative to 1 in the
coefficient of t*®. Since the interlaminar stress component t® is expected to be small
relative to the intralaminar stress component t*°, the term t*® can be assumed

sufficiently large compared to r_,t® such that the later term can be eliminated. Based

on these observations, the first natural boundary condition relation becomes

o™i, + [v*®)n. + [+*]F. = £* on §
[ x [ ]0 [ ]r 2 (2303)
OR u is specified on S, .

In the coefficient of n, in the second natural boundary condition relation, €qp is small
relative to 1 such that it can be ignored in the coefficient of ¢®. Also, since the
maximum absolute value of e, is less than 10, it can be assumed that the term o® is
sufficiently large compared to the term (2e,,) ©*® such that the latter term can be
eliminated. Therefore, the second natural boundary condition becomes

()7, + [0*7, + [+*]7, = 7° ons, 230
OR v is specifiedon S,

In the coefficient of 7, in the third boundary condition relation, the term (2¢,,) 0
can assumed to be small relative to the other two terms, since e,, is small. However,
although t® is expected to be small relative to the intralaminar stress component 0,
and since the maximum absolute value of r,, is approximately 0.025, the magnitude of

the term (-r,,)‘r“’ can be assumed comparable to the magnitude of the term t®.
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Therefore, the third natural boundary condition relation becomes

(e + <5,
e+ <R
oy« o+ 3509

OR w is specifiedon S,

In summary, after simplification by the consideration of the relative magnitudes of
the terms appearing in the equilibrium equations under the assumptions of axisymmetric

response and loading, and the assumptions of Kirchhoff and Donnell, these equations are

p80% e _ g (231a)
ax or
port , Art®) L e, cer g (231b)
& ar xr
2 [+ ] ¢ B e ] -0 =0 @

By the same method, the natural boundary conditions become

i+ [¢OlF, + [¢"]7, = on S
[ ]"x [ ]"o [t ]”r 2 232a)
OR u is specified on S, ,

e 9], + %], + [*]7, = 7° on'S
n +[c®®n, +|t|n_=t on
x 0 r 2 (232b)
OR v is specifiedon S, ,
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and

+ [(-r )T+ o"]ﬁ =1’ on S, (232¢)

OR w is specifiedon S,

In the following chapter, these equations will be solved and the interlaminar stresses

will be calculated for the three cylinders of interest.
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VI. SOLUTION OF THE THREE-DIMENSIONAL EQUILIBRIUM

EQUATIONS FOR THE INTERLAMINAR STRESSES

In chapter five, the three-dimensional equilibrium equations and boundary conditions
were derived for a linear elastic body in cylindrical coordinates for finite strains, under
the assumption of axisymmetric loading and response, and under Kirchhoff’s and
Donnell’s assumptions for the displacement variables. These steps were performed in
order to obtain three-dimensional equilibrium equations and boundary conditions
compatible with the assumptions and solutions of the previous chapters, which concluded
with the derivation of the intralaminar stress relations. Under these conditions, the
closed-form intralaminar stress relations can be used in the solution of the interlaminar
stress components, analogous to the method implemented by Pagano (Ref. 3).

In this chapter, the first of the equilibrium equations, i.e.

’ao" + a(rt"') =0 , (233)
ox or

will be solved for the interlaminar stress component t*". Since ¢**(x,r) is known at any
point along the length of the cylinder and at any point through its thickness from closed-
form relations obtained previously, the partial derivative with respect to x of o** is also
known through analytical differentiation of the closed-form solution to o™ (x,r).

The interlaminar stress components t® and ¢’ are assumed to be small relative to
the interlaminar stress component t*. For an axisymmetric response, % would be

expected to be small. Other researchers (ref. 7) have found ¢”” to be small for
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the case of cylinder bending, and that is assumed to be the case for the cylinder
compression problem studied here. Therefore, t® and o’” will not be solved for or
calculated in this work. However, the solution method to be presented for the
determination of the interlaminar stress component t* from the first equilibrium
equation is directly applicable to the determination of the other two interlaminar stress

components.

A. Solution of the First Equilibrium Equation
The differentiation implicit in eq. (233) can be distributed, and the result simplified

to give

ot* . 1'_" _ oo** . @234)
or r

As mentioned previously, the partial derivative appearing on the right-hand side of this
equation can be calculated from the closed-form relation for a**(x,r). For a given layer,
the intralaminar stress component o**(x,r) is given by eqgs. (19) and (20), which are the
CLT stress-strain relations, and egs. (12) and (128), which are the axisymmetric
kinematic relations. They are repeated here for convenience:

T

o, = Qque, + Qe + QY - O
0 = Que, + Qe + QuYss - H
T = Quet, + Qo + QYo ~ Tuos

(19)

where
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Axisymmetric Kinematic Relations:
€, =€ + 2%
€y = €5 * Z Ky
o [
Yoo = Yxo * 2 K0 s
(12)
where daw®
|3:='—2x-; ﬁg=0
du® 1,02 w?° dav’
s TP st et g
[ dp: [ [4
= ; =0; =0
K dx LY 5%
(128)

In order to proceed with the solution process, the first of egs. (19) must be
differentiated with respect to x. Since the transformed reduced stiffnesses 6.7 are
assumed constant along the length of the cylinder, the partial derivative of ¢** with

respect to x, in terms of the strain components is

d0** = Oe - O¢ - oY,
F™ = Qn'g: + Qu'aTe + Qs me . 235

Therefore, the partial derivatives of the inplane strain components given in egs. (12) and

(128) are required. Performing the differentiation results in
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ox dx? dx dx? dx3

9% _ 1dwe (236)
ox R dx ’

ano = dzvo

ox dx2

These partial derivatives involve the derivatives of the solutions for the reference surface
displacements u°(x), v°(x), and w°(x). For instance, the first of egs. (236) involves
the second derivative of 4 °(x). This term can most easily be derived from the definition

of N_ for the axisymmetric problem, given in eq. (134) as

w° d*w® T
N, =Aye; + An? - Bu'—de - N, , 237
where e, is given by eq. (13) as
du° 1 du® 1{dw° ’
eo = U lpst_ du® 1 _ (238)
dx 2 dx 2\ dx
o
Substituting eq. (238) into eq. (237), and solving for 2%~ results in

2
du’ _ Ly oNT)- 2o, Budive l[dw" (239)
dx A,V ! AR A, dx? 2\ dx

Differentiating the above expression once results in

d*u® _ Ay dw° . By d3w® _ dw® d*w® . (240)
dx? AnR dx All dx? dx Jdx?

Since the solution for w°(x) is known and it is continuous, its derivatives are obtainable
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and the expression in eq. (240) is known for any point along the half-length of the

cylinder.

de
Substituting eq. (240) into eq. (236) results in an expression for -g’ in terms of

derivatives of w°(x), i.e.,

de, |_ Ay dw® +_Bl1_d3w° _dw® d*w®| dw’ d*w’ vz _d¥w?®
ox A“R dx All dx? dx dx? dx dx? dx3
or
de, - Ap dw® +£_11d3w° .z _d*w°
ax AR dx Ay dx® dx3 )’
(241)

Since eq. (234) involves differentiation with respect tor, it will be necessary to express
the above equation in terms of r instead of z. This is easily accomplished by substituting

the definition of the local z coordinate, i.e.,

z=r-R, (242)
into the last expression in eq. (241), which results in
acx - - Alz dw?® + ﬁ +R d3w" +r __d3W° . (243)
ox A, R dx A, dx? dx?

The partial derivative of ¢4 in eqgs. (236) involves the constant R, the mean radius
of the cylinder, and the second derivative of w°(x), which can be obtained through
differentiation of the solution for w°(x), derived in chapter 3.

3
The partial derivative of v,q in eg. (236), ie., g;", can be obtained by

differentiating the equation for v, in terms of w°(x) given by eq. (135b), namely,
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Y:e ( B g2we i]

Ag dx? Ag
(135b)
Differentiating this equation once with respect to x results in
o _ Bigdlwe (249)
ox Ay dx?

Substituting the expressions for the partial derivatives of the inplane strain

components with respect to x , egs. (243), (244), and (236), into the expression

describing the partial derivative of ¢**, eq. (235), results in

B dw (245)
55 dx

This expression can be rewritten in the form

do™* _ doxx" ‘s doxx' ’ (246)
ox dx dx

(247a)
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and .
doxx -
dx ) { ~Qu

d’w"] } _ (247b)
dx?

Therefore, at any axial location along the length of the cylinder, the derivatives defined
in egs. (247) can be calculated from the derivatives of the solution for w°(x) and the
transformed reduced stiffnesses 6,.1. for the layer which corresponds to the coordinate r .
It should be noted that the derivatives in eqs. (247) are known functions of the x

coordinate. In order to make this point clear and to simplify the notation, the definitions

@) = 49 ‘{611[ Au i!L(fl_uR]“"‘"’]

dx AR dx (A dx? (2483)
= [1dwe®| = [Bisd®w®
' Q”[R dx } * Qs Ay dx? ’
and .
_do™ _| _5 |dw’ (248b)
b(x) dx = { Q“[__dxs ] }

are introduced. Substituting eqs. (246) and (247) into eq. (234) using the definitions in

eqgs. (248) results in the partial differential equation

at’ar(x,r) L 2en (m@) + @)} - 249)
r r

For a specified temperature change, boundary condition, axial load level N, , and axial
position x =x, the terms m(x) and b(x) are known quantities. Therefore, at a specified
axial location x =X, eq. (249) becomes a nonhomogeneous ordinary differential equation.

That is,
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dv'(xn . ™Gxn _

dr

Equation (250) is of the form

£+£=g+hr ,

dr

where the substitutions

F=F(r) = t™(x,r) ;

r

~{m(@X) + rpE)]} .

g=-m(x); h=-b(x)

have been made. By introducing a change of variable according to

eq. (251) becomes

dF

r=e*,

_-l-F':gez

dz

+ he?t

This differential equation has a homogeneous solution of the form

Fhuo. =Ae™

where A is an unknown constant to be determined, and the particular solution

Foan

or Fhom.=

~ |

=set + 2te¥ .

Substituting eq. (256) into eq. (254) results in

2s)e* + 3)e% =ge? + he*

Therefore, the particular solution is

152

-

2s =g ; 3t=h.

(250)

(251)

(252)

(253)

259

(255)

(256)

257



or (258)

F@r) =

DRES

+ &7 !'-rz ; (259)
2 3

Since the step relating the partial differential equation (249) to the ordinary differential
equations (250) and (251) was taken by restricting egs. (250) and (251) to a particular
x location, it must be realized that the constants 4, g, and h appearing in eq. (259) are
unique for each x location. Therefore, g and h in eq. (259) vary along the length of the
cylinder and are known quantities obtained by the relations in eqs. (248), and A = A(x)
is a unique constant for each x location, which will be determined later. Thus, by using
the definitions from eq. (252), and noting that 4 = A(x) , for a particular axial location

x = x, the solution presented above in eq. (259) becomes

(X, = A(x) - m(z-x-)r _ b(:)rz . (260)

It should be noted that since the stress-strain relations of eq. (19) apply only within a
given layer, the solution given in eq. (260) also applies only within a given layer. To
make this distinction clear, a superscript (k), which denotes the layer number from
k=1 at the inner layer to k = K at the outer layer, will be used from this point onward.

For example, eq. (260) will now be written
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%) = APGx) m""(f)r _ bw(f)rz (261)

T ’
2 3

which is valid in the range

r&Dercr® | (262)

Therefore, for a cylinder with K layers, there are K constants 4 ®(X) to be determined
in as many equations (261). In eq. (262), the superscript on r can take on the range
from 0 to K, with r@ = (R - —}2!) being the radius of the inner surface of the cylinder,
and r® = (R + }?I) being the radius of the outer surface of the cylinder. Therefore, r®
corresponds to the k* layer interface.

Thus far, the pertinent kinematic relations, constitutive relations, and the first
equilibrium equation have been used to derive the solution form of t*". Next, the
boundary condition relations of egs. (232) must be satisfied for each layer of the
cylinder. However, this is a trivial matter since the displacements are specified
everywhere within the cylinder and on its boundaries due to the assumptions of the CLT
analysis.

In this analysis, the adjacent layers are assumed to have a perfect bond at the layer
interface. This implies that all of the displacement components and interlaminar stress
components are continuous across the interfaces of adjacent layers. As noted in the
previous paragraph, the displacements are continuous across the interfaces since they
have been prescribed to vary linearly through the thickness of the cylinder wall in the
CLT analysis of chapters 2, 3, and 4. However, the interface condition for the

continuity of the interlaminar stress components has not yet been addressed. In order to
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solve for the unknown constants A®(X), the interface continuity of the interlaminar
stress component t* will be used. For the k=1 through K layers, there are (K-1)
interface continuity conditions and two surfaces on which t*" can be specified, namely
the surfaces at the inner and outer radii of the cylinder. This results in (K +1) conditions
from which the K unknown constants A®(X) can be determined. Since the interface
conditions for ©*" must be satisfied in order to comply with the assumption of perfectly
bonded layers mentioned previousty, the boundary condition for t*’ at either the inner
or outer radius will have to be ignored. Since the axial loading investigated thus far in
this work does not consist of an applied traction on either the inner or outer surfaces of

the cylinder, the condition
txra-l)(i-,r(o)) =0 , (263)

will be imposed. Therefore, for a particular axial location, x =X, the equation

describing ©*" for the first layer at the inner radius can be written as

oo 2
t”n)(f J(O)) = ‘_4_0_).(%.1 - rT(O) m(l)(;) - Sf_(;L b(l)(f) =0. (264)
r

This equation can be solved for A?(Z) to give
2 3
AN = ﬁr_(;_)Lm(l)(f) + Q_(;Lb(l)(f) , (265)

where the constants m®(x) and b®(X) are calculated from eqs. (248) using values for
the transformed reduced stiffnesses 6‘] for the first (inner) layer of the cylinder.

The interface continuity condition for t*" is
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tz,aon(;) = t"'m(f) (266)

over the range of k£ = 1 to K-1. Substituting eq. (261) into eq. (266) results in

A(k‘l)(;) _ r_(k).m(k,l)(i) _ ‘r(k)zz b(k&l)(;)
2 3

@

4 , (267)

®cy (] [(4)

= _4_& - '_m(k)(f) - Q_Lba)(;)
r® 2 3
which can be rearranged to provide a recursive relation for 4*'9(%), i.e.,
R =y

AT(x) = (268)

A(k)(;) + _(’;(;_)li[m(k’l)(;) _m(k)(i)] + L’%))z[b(kﬂ)(;) "b(k)(;)]

Hence, the K constants A®(X) in the equations describing t*'(X ,7) are known quantities
and the interlaminar stress component t*" can be calculated at any radial location r at

a specified axial location x =X where the CLT solutions have been previously calculated.

B. Calculation of the Interlaminar Stress Component 7™

In the following, numerical results will be presented which illustrate the relations
between the interlaminar stress component t*" and the radial coordinate r for the three
cylinders analyzed in this investigation. Clamped boundary conditions are enforced,
compressive axial loads of N=10%N* and N=90%N"* are applied, and thermally-
induced preloading effects corresponding to a temperature change of -280°F are included
in the CLT solutions used for the calculation of the terms of the solution of t*" involving
the intralaminar stress component ¢**. As noted in the previous section, the solution for

«®(X,r) is calculable only after an axial position x=x has been selected and the
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derivatives appearing in the definitions of the "constants" A ®x), m®(X), and bB(X)
have been calculated for each layer. The axial positions investigated will be: (a) The end
of the cylinder at x=+L/2; (b) The axial position x where the rotation r,, has a
maximum absolute value, and; (c) The axial position x where the interlaminar shear
stress resultant, Q,, has a maximum absolute value. An expression relating Q. to the

CLT solution is contained in the axisymmetric version of eq. (126b), namely,

0 -, ydv. (269)
*  dx dx

dM
The term —d—’ can be calculated from the expression for M, in eq. (134), i.e.,
x ‘

B 2,,,0
M, = Bye; + T}zwo + BigYze = Dy dd:; - M, 270)

which, by substituting the expressions relating £2 and v, to the solution for w(x) and
its derivatives, i.e., egs. (135), and differentiating the result once with respect to x

becomes

2 2
aM, (Bu Bis_, |dw®  (Bn_Budun)dw? @71)
dx |4, Ay ) dx? R A R)dx

The linear form of Q, is obtained by eliminating the second term in eq. (269), i.e.,

_ oM, e1)
Yme) dx

as given by equation (271). Since the solution for ©*" was obtained from the linearized
form of the first equilibrium equation, then it is expected that the formal definition of the

resultant Q, , i.e,
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&-1)

Q = 3:‘1 [ v ar] @73)

should agree with the expression for Qx(,__) given in egs. (271) and (272).

Therefore, the axial position x corresponding to the largest absolute value of

2 2
Q = fﬂ+ﬂ—p .d_a.w_o+ fﬁ_fﬂﬂ (274)
T A A M) dx? R AR |dx ’

will be one of the axial locations used to calculate the relation between t*’ and r.
Hence, as a check of the interlaminar stress calculation for t*", the values of t*" will
be numerically integrated along the radial direction as shown in eq. (273), and the result

will be compared to that calculated through eq. (274).

C. Numerical Results for the Interlaminar Stress Component T s Case of
Thermally-Induced Preloading Effects and a Compressive Axial Load with
Clamped Boundary Conditions
Fig. 41 through Fig. 45 illustrate the relationship between the normalized interlaminar

shear stress and the radial coordinate p for the compressive axial load levels

N=10%N" and N=90%N" at various locations along the length of the three cylinders.

The shear stress t*" has been normalized by the quantity (N/H), as the intralaminar

stress components were in chapter 4. The radial coordinate has been redefined as p,

where
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275

z
H H

and ~05sps+05. (276)

Each figure represents the interlaminar shear stress response of the three cylinders for
the two load cases and a particular axial location. In each of the figures, horizontal grid
lines and symbols are used to designate the 15 layer interfaces. Fig. 41 illustrates the
shear stress response at the end of the cylinders, x=+L/2, associated with the low axial
load level. While distribution of the shear stress in the symmetric laminate is shown to
be symmetric about the mean radius, p =0, the distributions of the shear stress in the
two unsymmetric cylinders are skewed, with the shear stress having larger magnitudes
to either side of the mean radius. For instance, the [0,/-45/+45)r laminate has a peak
shear stress magnitude at a radius two layer thicknesses inside of the mean radius. This
behavior leads to larger slope discontinuities in the interlaminar shear stress at the
interface of layers of differing orientations on the side of the mean radius to which the
response is skewed. Conversely, the slope discontinuities are smaller to the other side
of the maximum response location. Due to the opposite signs of the B matrix terms, the
[+45/-45/0,),; laminate has a peak interlaminar shear stress at a radial location outside
of the mean radius. These trends can be observed for the higher load level as well, i.e.,
the case represented in Fig. 42, which also represents the interlaminar stress component
at the end of the cylinder. However, partly due to the scale used to illustrate the higher
load level response plots, the effects appear to be smaller. It is also seen that the shear

stress at the end of the cylinder for the [0,/-45/+45] laminate is larger for both the low
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and high load levels then for the other two laminates.

For the low load level, the axial location of the maximum shear stress resultant Q,
is at the ends of all three cylinders. However, for the high load level the axial location
of the largest Q, occurs at x/L=0.480 for the [+45/-45/0,],s and [0,/-45/+45],;
cylinders and at x/L=0.478 for the [+45/-45/0,);; cylinder. The interlaminar shear
stress response for this case is presented in Fig. 43. Again, the [0,/-45/+45],; cylinder
has the largest shear stress magnitude. Shown in this plot is the fact that the shear stress
of all three cylinders at this axial location is also skewed relative to the mean radius of
the cylinder. The reason for this behavior is not immediately apparent, but it could be
a function of the magnitudes of the first and third derivatives of w°(x) at axial locations
away from the end of the cylinders, as they appear in the relations for the solution for
t*’", relative to the magnitudes of these terms at the ends of the cylinders.

Fig. 44 and Fig. 45 represent the interlaminar shear stress response at axial locations
for which the cylinders possess peak magnitudes of the rotation, r,,, for the low and
high load levels, respectively. These axial locations are in the vicinity of x/L=.470 for
all three laminates at the high load level, and at x/L= 0.480 for the [+45/-45/0,],s and
[0,/-45/+45],; cylinders and at x/L=0.5 for the [+45/-45/0,],; cylinder at the low load
level. Again, it is noted that the response of all three cylinders is skewed relative to the
mean radius. For the shear stress results previously discussed, i.e., at the low and high
load level and where the axial locations were that of maximum Q, and the cylinders’
end, the [0,/-45/+45],; cylinder has the largest overall shear stress magnitude of the two

three cylinders. This is also true for the high load level where the axial location is that
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of the maximum rotation r_,, as seen in Fig. 45. However, for the low load level and
at the axial location of maximum rotation r,,, the overall magnitude of the shear stress
for the [+45/-45/0,],; cylinder is larger than the overall magnitude for the [0,/-45/ -+-45],,.r
cylinder. This reversal in trend indicates that the thermally-induced preloading effects
dominate the response at the low load level. This characteristic was observed with the
interlaminar stresses discussed in chapter 4.

The responses shown in Fig. 41 through Fig. 45 where numerically integrated using
Simpson’s 1/3 quadrature rule. Since the relation describing t*" as a function of r is
parabolic in r, and Simpson’s quadrature involves approximation of the data by a series
of parabolic segments, the results of the numerical integration by Simpson’s rule are
independent of the number of data points used. The results presented in the figures were
numerically integrated on a layer-by-layer basis and the integration results were summed,
as indicated in eq. (273). Also, the linearized relation for the shear resultant Q,, given
by eq. (274) was calculated at the axial location corresponding to that at which the 1ol
data was obtained for each relation in each figure. These steps were conducted as a
check of the accuracy of the solution for t*". The results of these calculations are
presented in Table IV. The right-most column of Table IV is the CLT relation for the
shear resultant Q, as given in eq. (274), and the second column from the right is the
result of Simpson’s quadrature on the t*" data. It is seen that there is excellent
agreement between the two relations for all load cases and axial locations investigated.
This result suggests that the solution for ©* derived from the linearized version of the

first equilibrium equation, eg. (233), is accurate for these cylinders under the load levels
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and boundary conditions studied.

This chapter brings to a close the investigation of the displacement and stress
response of unsymmetrically laminated cylinders. Though specific cylinders were
considered, general conclusions can be drawn from the results presented. A discussion

of these conclusions is the subject of the final chapter.
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Table IV.  Comparison of the Shear Resultant Q, as Calculated from the Interlaminar
Shear Stress 7 and the Derivative of the CLT Relation for M,.

Cylinder | Axial Load |  Axial Axial f ™ _dp | am
Stacking Level, Location Location, (N/H) dx
L _ Sequence N/N’ Criterion x/L
[+45/-45/0,L 10% Cyl. End 0.5 0.0157 | 0.0158
[+45/-45/0,) 10% Cyl. End 0.5 0.0149 | 0.0149
| [0,/-45/+45]4 10% Cyl. End 0.5 0.0182 0.0183
F+45/-45/0 10% Max. r,, 0.477 0.00572 0.00572
[+45/-45/0,),r 10% Max. 1, 0.5 0.0149 | 0.0149
[0,/-45/+45])4r 10% Max. 1, 0.485 0.00909 0.00913
ﬁ+45/45/02]2s 90% Cyl. End 0.5 0.00524 | 0.00524
F+45/45/02]4T 90% Cyl. End 0.5 0.00454 | 0.00456
[0,/-45/+45]¢r 90% C)f_l._jnd 0.5 0.00650 0.00654
[+45/-45/0. 90% Max. 1, 0.470 0.00846 0.00851
[+45/-45/0,), 90% Max. 1 0.468 0.00798 | 0.00803
| [0,/-45/+45]y 9%0% Max. 1, 0.470 0.01010 0.01014|
[+45/-45/0,) 90% Max. Q, 0.480 0.00954 | 0.00954 y
[+45/-45/0,)4r 90% Max. Q, 0.478 0.00888 0.00892
[0,/-45/+45]4r 90% Max.gé= 0.480 0.01119 0.00127 |
! normalized to correlate with f —i-dp
(N/H)

165



VII. CONCLUSIONS

A. Discussion of Displacement Results

In chapter 3, results were presented for the mid-plane displacements u °(x), v°(x),
and w°(x) as they vary along the length of one symmetrically laminated cylinder and two
unsymmetrically laminated cylinders with equal and opposite B matrix terms. From the
results for the preloading response due to thermal effects, it was observed that all of the
cylinders expand axially due to the negative value of the effective axial thermal expansion
coefficient of the cylinders and the negative temperature change, AT, from consolidation
temperature to ambient temperature. In addition, all three cylinders respond to the
temperature change by a reduction in the radii of the cylinders. For the symmetric
cylinder, the tangential displacement is zero and radial displacement is constant along the
cylinder’s length. For the unsymmetric cylinders, the tangential and radial displacements
vary along the cylinders’ length, particularly near the ends. These two cylinders’ ends
"curl” radially and twist, producing a boundary layer effect. The direction of the curl
for the cylinders is opposite, depending on the sign of the thermally induced moment
M,T, which is a consequence of the opposite signs of the B matrix terms for these two
unsymmetric cylinders. Any unsymmetric laminate will exhibit this characteristic. This
thermally induced curl and twist must be accounted for in the boundary conditions for
subsequent axial loading and could have an effect on the onset of buckling of the
cylinders. This is because the radius at the end of an unsymmetric cylinder through

which the axial load is applied is different from the radius away from the ends.
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Displacement results of the case of compressive axial load, including the thermally-
induced preloading effects discussed above, indicate that the thermal effects have a
measurable influence on the radial displacements under axial load. Neglecting the
thermally-induced preloading effects results in smaller radial deformations. For a highly
unsymmetric stacking sequence, the effects become larger. The load-induced axiz;l and
tangential displacements appear to be relatively unaffected by the thermally-induced
preloading effects.

The shape and magnitude of the tangential and radial displacement responses change
as the level of the compressive axial load increases. In particular, the length of the
boundary layer, where the variation of the tangential and radial displacements fluctuate,
increases as the load level increases. The axial displacement remains virtually linear
along the axial direction, even at the high load level.

Comparison of the displacement results for simply supported and clamped boundary
conditions reveal that the simply supported case yields a larger range of tangential and
radial displacements for each cylinder although the axial displacement response is about
the same.

An important conclusion is that if unsymmetrically laminated cylinders are to be
analyzed or manufactured, it is important to include the thermally-induced preloading
effects not only in the prediction of the overall displacement behavior of the cylinder
under compressive axial loading, but also in the specification of the end conditions for
both the analysis and the fixture design. The extent to which these effects are important

depends on the material properties, stacking sequence, and the axial load level.
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B. Discussion of Intralaminar Stress Results

An interesting observation was made of the intralaminar stress results in chapter 4.
At the low load level investigated, N = 10% N *, the fiber-direction stresses, ©,,, iﬁ the
+45° layers is larger than the fiber-direction stresses in the 0° degree layers of the
[+45/-45/0,)55, [+45/-45/0,)4r, and [0,/-45/+45],; cylinders. This is surprising since
the 0° layers have fibers alignec_i with the axial load and are expected to bear the majority
of the axial load. This result indicates that at low load levels the thermally-induced
preloading effects dominate the fiber-direction intralaminar stress response. The
intralaminar stress component perpendicular to the fibers, a,,, and the intralaminar shear
stress component, t,,, are small relative to the fiber-direction stresses.

When the axial load level is increased to N=90%N"*, the thermally-induced
preloading effects are seen to be in the background, based on the observation that now
the 0° layers have a larger fiber-direction magnitude than the +45° layers, as would be
expected for a cylinder subject to large axial loads. The intralaminar stress component
perpendicular to the fibers, o,,, is observed to be compressive. This result virtually
eliminates the potential for matrix micro-cracking due to this stress component. The
possibility of inplane shear failure also seems low, since the magnitude of t,, is
observed to be low, even for this high load level. It should be noted that the application
of the relations for the principal material stress components presented in chapter 4 to
conventional CLT plane-stress failure theories can easily be accomplished, although it

was not done as part of this work.
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C. Discussion of Interlaminar Stress Results

In order to more fully develop the relations for the material failure modes of the
composite cylinders, a solution for the interlaminar shear stress t*" was developed and
used to calculate the interlaminar shear stress for the cylinders and load cases
investigated for the intralaminar stresses. It was reasoned that the remaining interlaminar
stresses t® and o'’ are small relative to t*" in the context of axisymmetric loading.
The solution for the interlaminar shear stress t*" was derived through a rational
simplification of the three-dimensional equilibrium equation for the axial direction.
Based on the excellent comparison between the results of num:rically integrating the
interlaminar shear stresses and the relation for the linearized shear stress resultant Q,
from the CLT solution of the third chapter, it is recognized that the solution obtained for
the intralaminar shear stress was accurate. It was hoped that this would be the case since
the method used to simplify the three-dimensional equilibrium equation, and the solution
used to obtain the other stress component appearing in the equilibrium equation, o,,,
both utilized the assumptions of Kirchhoff and Donnell.

It is observed that at the ends of the cylinders, the interlaminar shear stress response
of the symmetric cylinder is symmetric with respect to the mean radius, R, or p=0.
The two unsymmetric cylinders, with [0,/-45/+45],; and [+45/-45/0,},; stacking
sequences and equal but opposite B matrix terms, have peak interlaminar shear stresses
at radial locations to the inside and outside of the mean radius. However, the shape of
the interlaminar shear stress response through the cylinder wall is seen to vary along the

length of the cylinder. In particular, for both the low and high load levels, the location
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of peak interlaminar stress for the symmetric cylinder is seen to move away from the
mean radius as the axial location at which the response is calculated is varied from the
end of the cylinder, x/L=0.5, to the axial location of peak rotation, r,,. This is also
true as the axial location is varied from the end of the cylinder to the axial location of
peak Q,, for the high load level.

It is also observed that the axial location of peak Q, occurs at the end of the
cylinder, x/L=0.5, for the low load level, while the axial location of peak r,, is at
x/L=~0.48 for the high load level. For this load level the interlaminar shear stress
response is skewed relative to the mean radius.

Comparing the results for the interlaminar shear stress calculated at the axial location
of peak rotation, r,,, for the low and high load levels, reveals that the [+45/-45/0,),;
cylinder has the largest shear stress for the low load level, while the other unsymmetric
cylinder has the largest shear stress for the high load level. This difference is yet again
an indication of the thermally-induced preloading effects dominating the cylinder response

at low load levels.
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